1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2024 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <kunit/visibility.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 /* 38 * monitor mode reception 39 * 40 * This function cleans up the SKB, i.e. it removes all the stuff 41 * only useful for monitoring. 42 */ 43 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 44 unsigned int present_fcs_len, 45 unsigned int rtap_space) 46 { 47 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 48 struct ieee80211_hdr *hdr; 49 unsigned int hdrlen; 50 __le16 fc; 51 52 if (present_fcs_len) 53 __pskb_trim(skb, skb->len - present_fcs_len); 54 pskb_pull(skb, rtap_space); 55 56 /* After pulling radiotap header, clear all flags that indicate 57 * info in skb->data. 58 */ 59 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | 60 RX_FLAG_RADIOTAP_LSIG | 61 RX_FLAG_RADIOTAP_HE_MU | 62 RX_FLAG_RADIOTAP_HE); 63 64 hdr = (void *)skb->data; 65 fc = hdr->frame_control; 66 67 /* 68 * Remove the HT-Control field (if present) on management 69 * frames after we've sent the frame to monitoring. We 70 * (currently) don't need it, and don't properly parse 71 * frames with it present, due to the assumption of a 72 * fixed management header length. 73 */ 74 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 75 return skb; 76 77 hdrlen = ieee80211_hdrlen(fc); 78 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 79 80 if (!pskb_may_pull(skb, hdrlen)) { 81 dev_kfree_skb(skb); 82 return NULL; 83 } 84 85 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 86 hdrlen - IEEE80211_HT_CTL_LEN); 87 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 88 89 return skb; 90 } 91 92 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 93 unsigned int rtap_space) 94 { 95 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 96 struct ieee80211_hdr *hdr; 97 98 hdr = (void *)(skb->data + rtap_space); 99 100 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 101 RX_FLAG_FAILED_PLCP_CRC | 102 RX_FLAG_ONLY_MONITOR | 103 RX_FLAG_NO_PSDU)) 104 return true; 105 106 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 107 return true; 108 109 if (ieee80211_is_ctl(hdr->frame_control) && 110 !ieee80211_is_pspoll(hdr->frame_control) && 111 !ieee80211_is_back_req(hdr->frame_control)) 112 return true; 113 114 return false; 115 } 116 117 static int 118 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 119 struct ieee80211_rx_status *status, 120 struct sk_buff *skb) 121 { 122 int len; 123 124 /* always present fields */ 125 len = sizeof(struct ieee80211_radiotap_header) + 8; 126 127 /* allocate extra bitmaps */ 128 if (status->chains) 129 len += 4 * hweight8(status->chains); 130 131 if (ieee80211_have_rx_timestamp(status)) { 132 len = ALIGN(len, 8); 133 len += 8; 134 } 135 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 136 len += 1; 137 138 /* antenna field, if we don't have per-chain info */ 139 if (!status->chains) 140 len += 1; 141 142 /* padding for RX_FLAGS if necessary */ 143 len = ALIGN(len, 2); 144 145 if (status->encoding == RX_ENC_HT) /* HT info */ 146 len += 3; 147 148 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 149 len = ALIGN(len, 4); 150 len += 8; 151 } 152 153 if (status->encoding == RX_ENC_VHT) { 154 len = ALIGN(len, 2); 155 len += 12; 156 } 157 158 if (local->hw.radiotap_timestamp.units_pos >= 0) { 159 len = ALIGN(len, 8); 160 len += 12; 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 168 } 169 170 if (status->encoding == RX_ENC_HE && 171 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 172 len = ALIGN(len, 2); 173 len += 12; 174 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 175 } 176 177 if (status->flag & RX_FLAG_NO_PSDU) 178 len += 1; 179 180 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 181 len = ALIGN(len, 2); 182 len += 4; 183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 184 } 185 186 if (status->chains) { 187 /* antenna and antenna signal fields */ 188 len += 2 * hweight8(status->chains); 189 } 190 191 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 192 int tlv_offset = 0; 193 194 /* 195 * The position to look at depends on the existence (or non- 196 * existence) of other elements, so take that into account... 197 */ 198 if (status->flag & RX_FLAG_RADIOTAP_HE) 199 tlv_offset += 200 sizeof(struct ieee80211_radiotap_he); 201 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 202 tlv_offset += 203 sizeof(struct ieee80211_radiotap_he_mu); 204 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 205 tlv_offset += 206 sizeof(struct ieee80211_radiotap_lsig); 207 208 /* ensure 4 byte alignment for TLV */ 209 len = ALIGN(len, 4); 210 211 /* TLVs until the mac header */ 212 len += skb_mac_header(skb) - &skb->data[tlv_offset]; 213 } 214 215 return len; 216 } 217 218 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 219 int link_id, 220 struct sta_info *sta, 221 struct sk_buff *skb) 222 { 223 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 224 225 if (link_id >= 0) { 226 status->link_valid = 1; 227 status->link_id = link_id; 228 } else { 229 status->link_valid = 0; 230 } 231 232 skb_queue_tail(&sdata->skb_queue, skb); 233 wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); 234 if (sta) 235 sta->deflink.rx_stats.packets++; 236 } 237 238 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 239 int link_id, 240 struct sta_info *sta, 241 struct sk_buff *skb) 242 { 243 skb->protocol = 0; 244 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 245 } 246 247 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 248 struct sk_buff *skb, 249 int rtap_space) 250 { 251 struct { 252 struct ieee80211_hdr_3addr hdr; 253 u8 category; 254 u8 action_code; 255 } __packed __aligned(2) action; 256 257 if (!sdata) 258 return; 259 260 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 261 262 if (skb->len < rtap_space + sizeof(action) + 263 VHT_MUMIMO_GROUPS_DATA_LEN) 264 return; 265 266 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 267 return; 268 269 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 270 271 if (!ieee80211_is_action(action.hdr.frame_control)) 272 return; 273 274 if (action.category != WLAN_CATEGORY_VHT) 275 return; 276 277 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 278 return; 279 280 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 281 return; 282 283 skb = skb_copy(skb, GFP_ATOMIC); 284 if (!skb) 285 return; 286 287 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 288 } 289 290 /* 291 * ieee80211_add_rx_radiotap_header - add radiotap header 292 * 293 * add a radiotap header containing all the fields which the hardware provided. 294 */ 295 static void 296 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 297 struct sk_buff *skb, 298 struct ieee80211_rate *rate, 299 int rtap_len, bool has_fcs) 300 { 301 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 302 struct ieee80211_radiotap_header *rthdr; 303 unsigned char *pos; 304 __le32 *it_present; 305 u32 it_present_val; 306 u16 rx_flags = 0; 307 u16 channel_flags = 0; 308 u32 tlvs_len = 0; 309 int mpdulen, chain; 310 unsigned long chains = status->chains; 311 struct ieee80211_radiotap_he he = {}; 312 struct ieee80211_radiotap_he_mu he_mu = {}; 313 struct ieee80211_radiotap_lsig lsig = {}; 314 315 if (status->flag & RX_FLAG_RADIOTAP_HE) { 316 he = *(struct ieee80211_radiotap_he *)skb->data; 317 skb_pull(skb, sizeof(he)); 318 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 319 } 320 321 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 322 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 323 skb_pull(skb, sizeof(he_mu)); 324 } 325 326 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 327 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 328 skb_pull(skb, sizeof(lsig)); 329 } 330 331 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 332 /* data is pointer at tlv all other info was pulled off */ 333 tlvs_len = skb_mac_header(skb) - skb->data; 334 } 335 336 mpdulen = skb->len; 337 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 338 mpdulen += FCS_LEN; 339 340 rthdr = skb_push(skb, rtap_len - tlvs_len); 341 memset(rthdr, 0, rtap_len - tlvs_len); 342 it_present = &rthdr->it_present; 343 344 /* radiotap header, set always present flags */ 345 rthdr->it_len = cpu_to_le16(rtap_len); 346 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 347 BIT(IEEE80211_RADIOTAP_CHANNEL) | 348 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 349 350 if (!status->chains) 351 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 352 353 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 354 it_present_val |= 355 BIT(IEEE80211_RADIOTAP_EXT) | 356 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 357 put_unaligned_le32(it_present_val, it_present); 358 it_present++; 359 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 360 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 361 } 362 363 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 364 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); 365 366 put_unaligned_le32(it_present_val, it_present); 367 368 /* This references through an offset into it_optional[] rather 369 * than via it_present otherwise later uses of pos will cause 370 * the compiler to think we have walked past the end of the 371 * struct member. 372 */ 373 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 374 375 /* the order of the following fields is important */ 376 377 /* IEEE80211_RADIOTAP_TSFT */ 378 if (ieee80211_have_rx_timestamp(status)) { 379 /* padding */ 380 while ((pos - (u8 *)rthdr) & 7) 381 *pos++ = 0; 382 put_unaligned_le64( 383 ieee80211_calculate_rx_timestamp(local, status, 384 mpdulen, 0), 385 pos); 386 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 387 pos += 8; 388 } 389 390 /* IEEE80211_RADIOTAP_FLAGS */ 391 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 392 *pos |= IEEE80211_RADIOTAP_F_FCS; 393 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 394 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 395 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 396 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 397 pos++; 398 399 /* IEEE80211_RADIOTAP_RATE */ 400 if (!rate || status->encoding != RX_ENC_LEGACY) { 401 /* 402 * Without rate information don't add it. If we have, 403 * MCS information is a separate field in radiotap, 404 * added below. The byte here is needed as padding 405 * for the channel though, so initialise it to 0. 406 */ 407 *pos = 0; 408 } else { 409 int shift = 0; 410 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 411 if (status->bw == RATE_INFO_BW_10) 412 shift = 1; 413 else if (status->bw == RATE_INFO_BW_5) 414 shift = 2; 415 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 416 } 417 pos++; 418 419 /* IEEE80211_RADIOTAP_CHANNEL */ 420 /* TODO: frequency offset in KHz */ 421 put_unaligned_le16(status->freq, pos); 422 pos += 2; 423 if (status->bw == RATE_INFO_BW_10) 424 channel_flags |= IEEE80211_CHAN_HALF; 425 else if (status->bw == RATE_INFO_BW_5) 426 channel_flags |= IEEE80211_CHAN_QUARTER; 427 428 if (status->band == NL80211_BAND_5GHZ || 429 status->band == NL80211_BAND_6GHZ) 430 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 431 else if (status->encoding != RX_ENC_LEGACY) 432 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 433 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 434 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 435 else if (rate) 436 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 437 else 438 channel_flags |= IEEE80211_CHAN_2GHZ; 439 put_unaligned_le16(channel_flags, pos); 440 pos += 2; 441 442 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 443 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 444 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 445 *pos = status->signal; 446 rthdr->it_present |= 447 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 448 pos++; 449 } 450 451 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 452 453 if (!status->chains) { 454 /* IEEE80211_RADIOTAP_ANTENNA */ 455 *pos = status->antenna; 456 pos++; 457 } 458 459 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 460 461 /* IEEE80211_RADIOTAP_RX_FLAGS */ 462 /* ensure 2 byte alignment for the 2 byte field as required */ 463 if ((pos - (u8 *)rthdr) & 1) 464 *pos++ = 0; 465 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 466 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 467 put_unaligned_le16(rx_flags, pos); 468 pos += 2; 469 470 if (status->encoding == RX_ENC_HT) { 471 unsigned int stbc; 472 473 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 474 *pos = local->hw.radiotap_mcs_details; 475 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 476 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 477 if (status->enc_flags & RX_ENC_FLAG_LDPC) 478 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 479 pos++; 480 *pos = 0; 481 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 482 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 483 if (status->bw == RATE_INFO_BW_40) 484 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 485 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 486 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 487 if (status->enc_flags & RX_ENC_FLAG_LDPC) 488 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 489 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 490 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 491 pos++; 492 *pos++ = status->rate_idx; 493 } 494 495 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 496 u16 flags = 0; 497 498 /* ensure 4 byte alignment */ 499 while ((pos - (u8 *)rthdr) & 3) 500 pos++; 501 rthdr->it_present |= 502 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 503 put_unaligned_le32(status->ampdu_reference, pos); 504 pos += 4; 505 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 506 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 507 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 508 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 509 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 510 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 511 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 512 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 513 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 514 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 515 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 516 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 517 put_unaligned_le16(flags, pos); 518 pos += 2; 519 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 520 *pos++ = status->ampdu_delimiter_crc; 521 else 522 *pos++ = 0; 523 *pos++ = 0; 524 } 525 526 if (status->encoding == RX_ENC_VHT) { 527 u16 known = local->hw.radiotap_vht_details; 528 529 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 530 put_unaligned_le16(known, pos); 531 pos += 2; 532 /* flags */ 533 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 534 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 535 /* in VHT, STBC is binary */ 536 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 537 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 538 if (status->enc_flags & RX_ENC_FLAG_BF) 539 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 540 pos++; 541 /* bandwidth */ 542 switch (status->bw) { 543 case RATE_INFO_BW_80: 544 *pos++ = 4; 545 break; 546 case RATE_INFO_BW_160: 547 *pos++ = 11; 548 break; 549 case RATE_INFO_BW_40: 550 *pos++ = 1; 551 break; 552 default: 553 *pos++ = 0; 554 } 555 /* MCS/NSS */ 556 *pos = (status->rate_idx << 4) | status->nss; 557 pos += 4; 558 /* coding field */ 559 if (status->enc_flags & RX_ENC_FLAG_LDPC) 560 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 561 pos++; 562 /* group ID */ 563 pos++; 564 /* partial_aid */ 565 pos += 2; 566 } 567 568 if (local->hw.radiotap_timestamp.units_pos >= 0) { 569 u16 accuracy = 0; 570 u8 flags; 571 u64 ts; 572 573 rthdr->it_present |= 574 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 575 576 /* ensure 8 byte alignment */ 577 while ((pos - (u8 *)rthdr) & 7) 578 pos++; 579 580 if (status->flag & RX_FLAG_MACTIME_IS_RTAP_TS64) { 581 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_64BIT; 582 ts = status->mactime; 583 } else { 584 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 585 ts = status->device_timestamp; 586 } 587 588 put_unaligned_le64(ts, pos); 589 pos += sizeof(u64); 590 591 if (local->hw.radiotap_timestamp.accuracy >= 0) { 592 accuracy = local->hw.radiotap_timestamp.accuracy; 593 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 594 } 595 put_unaligned_le16(accuracy, pos); 596 pos += sizeof(u16); 597 598 *pos++ = local->hw.radiotap_timestamp.units_pos; 599 *pos++ = flags; 600 } 601 602 if (status->encoding == RX_ENC_HE && 603 status->flag & RX_FLAG_RADIOTAP_HE) { 604 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 605 606 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 607 he.data6 |= HE_PREP(DATA6_NSTS, 608 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 609 status->enc_flags)); 610 he.data3 |= HE_PREP(DATA3_STBC, 1); 611 } else { 612 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 613 } 614 615 #define CHECK_GI(s) \ 616 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 617 (int)NL80211_RATE_INFO_HE_GI_##s) 618 619 CHECK_GI(0_8); 620 CHECK_GI(1_6); 621 CHECK_GI(3_2); 622 623 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 624 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 625 he.data3 |= HE_PREP(DATA3_CODING, 626 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 627 628 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 629 630 switch (status->bw) { 631 case RATE_INFO_BW_20: 632 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 633 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 634 break; 635 case RATE_INFO_BW_40: 636 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 637 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 638 break; 639 case RATE_INFO_BW_80: 640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 641 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 642 break; 643 case RATE_INFO_BW_160: 644 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 645 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 646 break; 647 case RATE_INFO_BW_HE_RU: 648 #define CHECK_RU_ALLOC(s) \ 649 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 650 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 651 652 CHECK_RU_ALLOC(26); 653 CHECK_RU_ALLOC(52); 654 CHECK_RU_ALLOC(106); 655 CHECK_RU_ALLOC(242); 656 CHECK_RU_ALLOC(484); 657 CHECK_RU_ALLOC(996); 658 CHECK_RU_ALLOC(2x996); 659 660 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 661 status->he_ru + 4); 662 break; 663 default: 664 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 665 } 666 667 /* ensure 2 byte alignment */ 668 while ((pos - (u8 *)rthdr) & 1) 669 pos++; 670 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 671 memcpy(pos, &he, sizeof(he)); 672 pos += sizeof(he); 673 } 674 675 if (status->encoding == RX_ENC_HE && 676 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 677 /* ensure 2 byte alignment */ 678 while ((pos - (u8 *)rthdr) & 1) 679 pos++; 680 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 681 memcpy(pos, &he_mu, sizeof(he_mu)); 682 pos += sizeof(he_mu); 683 } 684 685 if (status->flag & RX_FLAG_NO_PSDU) { 686 rthdr->it_present |= 687 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 688 *pos++ = status->zero_length_psdu_type; 689 } 690 691 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 692 /* ensure 2 byte alignment */ 693 while ((pos - (u8 *)rthdr) & 1) 694 pos++; 695 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 696 memcpy(pos, &lsig, sizeof(lsig)); 697 pos += sizeof(lsig); 698 } 699 700 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 701 *pos++ = status->chain_signal[chain]; 702 *pos++ = chain; 703 } 704 } 705 706 static struct sk_buff * 707 ieee80211_make_monitor_skb(struct ieee80211_local *local, 708 struct sk_buff **origskb, 709 struct ieee80211_rate *rate, 710 int rtap_space, bool use_origskb) 711 { 712 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 713 int rt_hdrlen, needed_headroom; 714 struct sk_buff *skb; 715 716 /* room for the radiotap header based on driver features */ 717 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 718 needed_headroom = rt_hdrlen - rtap_space; 719 720 if (use_origskb) { 721 /* only need to expand headroom if necessary */ 722 skb = *origskb; 723 *origskb = NULL; 724 725 /* 726 * This shouldn't trigger often because most devices have an 727 * RX header they pull before we get here, and that should 728 * be big enough for our radiotap information. We should 729 * probably export the length to drivers so that we can have 730 * them allocate enough headroom to start with. 731 */ 732 if (skb_headroom(skb) < needed_headroom && 733 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 734 dev_kfree_skb(skb); 735 return NULL; 736 } 737 } else { 738 /* 739 * Need to make a copy and possibly remove radiotap header 740 * and FCS from the original. 741 */ 742 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 743 0, GFP_ATOMIC); 744 745 if (!skb) 746 return NULL; 747 } 748 749 /* prepend radiotap information */ 750 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 751 752 skb_reset_mac_header(skb); 753 skb->ip_summed = CHECKSUM_UNNECESSARY; 754 skb->pkt_type = PACKET_OTHERHOST; 755 skb->protocol = htons(ETH_P_802_2); 756 757 return skb; 758 } 759 760 /* 761 * This function copies a received frame to all monitor interfaces and 762 * returns a cleaned-up SKB that no longer includes the FCS nor the 763 * radiotap header the driver might have added. 764 */ 765 static struct sk_buff * 766 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 767 struct ieee80211_rate *rate) 768 { 769 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 770 struct ieee80211_sub_if_data *sdata; 771 struct sk_buff *monskb = NULL; 772 int present_fcs_len = 0; 773 unsigned int rtap_space = 0; 774 struct ieee80211_sub_if_data *monitor_sdata = 775 rcu_dereference(local->monitor_sdata); 776 bool only_monitor = false; 777 unsigned int min_head_len; 778 779 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && 780 !skb_mac_header_was_set(origskb))) { 781 /* with this skb no way to know where frame payload starts */ 782 dev_kfree_skb(origskb); 783 return NULL; 784 } 785 786 if (status->flag & RX_FLAG_RADIOTAP_HE) 787 rtap_space += sizeof(struct ieee80211_radiotap_he); 788 789 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 790 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 791 792 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 793 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 794 795 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 796 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; 797 798 min_head_len = rtap_space; 799 800 /* 801 * First, we may need to make a copy of the skb because 802 * (1) we need to modify it for radiotap (if not present), and 803 * (2) the other RX handlers will modify the skb we got. 804 * 805 * We don't need to, of course, if we aren't going to return 806 * the SKB because it has a bad FCS/PLCP checksum. 807 */ 808 809 if (!(status->flag & RX_FLAG_NO_PSDU)) { 810 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 811 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 812 /* driver bug */ 813 WARN_ON(1); 814 dev_kfree_skb(origskb); 815 return NULL; 816 } 817 present_fcs_len = FCS_LEN; 818 } 819 820 /* also consider the hdr->frame_control */ 821 min_head_len += 2; 822 } 823 824 /* ensure that the expected data elements are in skb head */ 825 if (!pskb_may_pull(origskb, min_head_len)) { 826 dev_kfree_skb(origskb); 827 return NULL; 828 } 829 830 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 831 832 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 833 if (only_monitor) { 834 dev_kfree_skb(origskb); 835 return NULL; 836 } 837 838 return ieee80211_clean_skb(origskb, present_fcs_len, 839 rtap_space); 840 } 841 842 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 843 844 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 845 bool last_monitor = list_is_last(&sdata->u.mntr.list, 846 &local->mon_list); 847 848 if (!monskb) 849 monskb = ieee80211_make_monitor_skb(local, &origskb, 850 rate, rtap_space, 851 only_monitor && 852 last_monitor); 853 854 if (monskb) { 855 struct sk_buff *skb; 856 857 if (last_monitor) { 858 skb = monskb; 859 monskb = NULL; 860 } else { 861 skb = skb_clone(monskb, GFP_ATOMIC); 862 } 863 864 if (skb) { 865 skb->dev = sdata->dev; 866 dev_sw_netstats_rx_add(skb->dev, skb->len); 867 netif_receive_skb(skb); 868 } 869 } 870 871 if (last_monitor) 872 break; 873 } 874 875 /* this happens if last_monitor was erroneously false */ 876 dev_kfree_skb(monskb); 877 878 /* ditto */ 879 if (!origskb) 880 return NULL; 881 882 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 883 } 884 885 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 886 { 887 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 889 int tid, seqno_idx, security_idx; 890 891 /* does the frame have a qos control field? */ 892 if (ieee80211_is_data_qos(hdr->frame_control)) { 893 u8 *qc = ieee80211_get_qos_ctl(hdr); 894 /* frame has qos control */ 895 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 896 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 897 status->rx_flags |= IEEE80211_RX_AMSDU; 898 899 seqno_idx = tid; 900 security_idx = tid; 901 } else { 902 /* 903 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 904 * 905 * Sequence numbers for management frames, QoS data 906 * frames with a broadcast/multicast address in the 907 * Address 1 field, and all non-QoS data frames sent 908 * by QoS STAs are assigned using an additional single 909 * modulo-4096 counter, [...] 910 * 911 * We also use that counter for non-QoS STAs. 912 */ 913 seqno_idx = IEEE80211_NUM_TIDS; 914 security_idx = 0; 915 if (ieee80211_is_mgmt(hdr->frame_control)) 916 security_idx = IEEE80211_NUM_TIDS; 917 tid = 0; 918 } 919 920 rx->seqno_idx = seqno_idx; 921 rx->security_idx = security_idx; 922 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 923 * For now, set skb->priority to 0 for other cases. */ 924 rx->skb->priority = (tid > 7) ? 0 : tid; 925 } 926 927 /** 928 * DOC: Packet alignment 929 * 930 * Drivers always need to pass packets that are aligned to two-byte boundaries 931 * to the stack. 932 * 933 * Additionally, they should, if possible, align the payload data in a way that 934 * guarantees that the contained IP header is aligned to a four-byte 935 * boundary. In the case of regular frames, this simply means aligning the 936 * payload to a four-byte boundary (because either the IP header is directly 937 * contained, or IV/RFC1042 headers that have a length divisible by four are 938 * in front of it). If the payload data is not properly aligned and the 939 * architecture doesn't support efficient unaligned operations, mac80211 940 * will align the data. 941 * 942 * With A-MSDU frames, however, the payload data address must yield two modulo 943 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 944 * push the IP header further back to a multiple of four again. Thankfully, the 945 * specs were sane enough this time around to require padding each A-MSDU 946 * subframe to a length that is a multiple of four. 947 * 948 * Padding like Atheros hardware adds which is between the 802.11 header and 949 * the payload is not supported; the driver is required to move the 802.11 950 * header to be directly in front of the payload in that case. 951 */ 952 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 953 { 954 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 955 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 956 #endif 957 } 958 959 960 /* rx handlers */ 961 962 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 963 { 964 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 965 966 if (is_multicast_ether_addr(hdr->addr1)) 967 return 0; 968 969 return ieee80211_is_robust_mgmt_frame(skb); 970 } 971 972 973 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 974 { 975 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 976 977 if (!is_multicast_ether_addr(hdr->addr1)) 978 return 0; 979 980 return ieee80211_is_robust_mgmt_frame(skb); 981 } 982 983 984 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 985 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 986 { 987 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 988 struct ieee80211_mmie *mmie; 989 struct ieee80211_mmie_16 *mmie16; 990 991 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 992 return -1; 993 994 if (!ieee80211_is_robust_mgmt_frame(skb) && 995 !ieee80211_is_beacon(hdr->frame_control)) 996 return -1; /* not a robust management frame */ 997 998 mmie = (struct ieee80211_mmie *) 999 (skb->data + skb->len - sizeof(*mmie)); 1000 if (mmie->element_id == WLAN_EID_MMIE && 1001 mmie->length == sizeof(*mmie) - 2) 1002 return le16_to_cpu(mmie->key_id); 1003 1004 mmie16 = (struct ieee80211_mmie_16 *) 1005 (skb->data + skb->len - sizeof(*mmie16)); 1006 if (skb->len >= 24 + sizeof(*mmie16) && 1007 mmie16->element_id == WLAN_EID_MMIE && 1008 mmie16->length == sizeof(*mmie16) - 2) 1009 return le16_to_cpu(mmie16->key_id); 1010 1011 return -1; 1012 } 1013 1014 static int ieee80211_get_keyid(struct sk_buff *skb) 1015 { 1016 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1017 __le16 fc = hdr->frame_control; 1018 int hdrlen = ieee80211_hdrlen(fc); 1019 u8 keyid; 1020 1021 /* WEP, TKIP, CCMP and GCMP */ 1022 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1023 return -EINVAL; 1024 1025 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1026 1027 keyid >>= 6; 1028 1029 return keyid; 1030 } 1031 1032 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1033 { 1034 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1035 char *dev_addr = rx->sdata->vif.addr; 1036 1037 if (ieee80211_is_data(hdr->frame_control)) { 1038 if (is_multicast_ether_addr(hdr->addr1)) { 1039 if (ieee80211_has_tods(hdr->frame_control) || 1040 !ieee80211_has_fromds(hdr->frame_control)) 1041 return RX_DROP_MONITOR; 1042 if (ether_addr_equal(hdr->addr3, dev_addr)) 1043 return RX_DROP_MONITOR; 1044 } else { 1045 if (!ieee80211_has_a4(hdr->frame_control)) 1046 return RX_DROP_MONITOR; 1047 if (ether_addr_equal(hdr->addr4, dev_addr)) 1048 return RX_DROP_MONITOR; 1049 } 1050 } 1051 1052 /* If there is not an established peer link and this is not a peer link 1053 * establisment frame, beacon or probe, drop the frame. 1054 */ 1055 1056 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1057 struct ieee80211_mgmt *mgmt; 1058 1059 if (!ieee80211_is_mgmt(hdr->frame_control)) 1060 return RX_DROP_MONITOR; 1061 1062 if (ieee80211_is_action(hdr->frame_control)) { 1063 u8 category; 1064 1065 /* make sure category field is present */ 1066 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1067 return RX_DROP_MONITOR; 1068 1069 mgmt = (struct ieee80211_mgmt *)hdr; 1070 category = mgmt->u.action.category; 1071 if (category != WLAN_CATEGORY_MESH_ACTION && 1072 category != WLAN_CATEGORY_SELF_PROTECTED) 1073 return RX_DROP_MONITOR; 1074 return RX_CONTINUE; 1075 } 1076 1077 if (ieee80211_is_probe_req(hdr->frame_control) || 1078 ieee80211_is_probe_resp(hdr->frame_control) || 1079 ieee80211_is_beacon(hdr->frame_control) || 1080 ieee80211_is_auth(hdr->frame_control)) 1081 return RX_CONTINUE; 1082 1083 return RX_DROP_MONITOR; 1084 } 1085 1086 return RX_CONTINUE; 1087 } 1088 1089 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1090 int index) 1091 { 1092 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1093 struct sk_buff *tail = skb_peek_tail(frames); 1094 struct ieee80211_rx_status *status; 1095 1096 if (tid_agg_rx->reorder_buf_filtered && 1097 tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1098 return true; 1099 1100 if (!tail) 1101 return false; 1102 1103 status = IEEE80211_SKB_RXCB(tail); 1104 if (status->flag & RX_FLAG_AMSDU_MORE) 1105 return false; 1106 1107 return true; 1108 } 1109 1110 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1111 struct tid_ampdu_rx *tid_agg_rx, 1112 int index, 1113 struct sk_buff_head *frames) 1114 { 1115 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1116 struct sk_buff *skb; 1117 struct ieee80211_rx_status *status; 1118 1119 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1120 1121 if (skb_queue_empty(skb_list)) 1122 goto no_frame; 1123 1124 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1125 __skb_queue_purge(skb_list); 1126 goto no_frame; 1127 } 1128 1129 /* release frames from the reorder ring buffer */ 1130 tid_agg_rx->stored_mpdu_num--; 1131 while ((skb = __skb_dequeue(skb_list))) { 1132 status = IEEE80211_SKB_RXCB(skb); 1133 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1134 __skb_queue_tail(frames, skb); 1135 } 1136 1137 no_frame: 1138 if (tid_agg_rx->reorder_buf_filtered) 1139 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1140 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1141 } 1142 1143 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1144 struct tid_ampdu_rx *tid_agg_rx, 1145 u16 head_seq_num, 1146 struct sk_buff_head *frames) 1147 { 1148 int index; 1149 1150 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1151 1152 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1153 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1154 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1155 frames); 1156 } 1157 } 1158 1159 /* 1160 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1161 * the skb was added to the buffer longer than this time ago, the earlier 1162 * frames that have not yet been received are assumed to be lost and the skb 1163 * can be released for processing. This may also release other skb's from the 1164 * reorder buffer if there are no additional gaps between the frames. 1165 * 1166 * Callers must hold tid_agg_rx->reorder_lock. 1167 */ 1168 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1169 1170 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1171 struct tid_ampdu_rx *tid_agg_rx, 1172 struct sk_buff_head *frames) 1173 { 1174 int index, i, j; 1175 1176 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1177 1178 /* release the buffer until next missing frame */ 1179 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1180 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1181 tid_agg_rx->stored_mpdu_num) { 1182 /* 1183 * No buffers ready to be released, but check whether any 1184 * frames in the reorder buffer have timed out. 1185 */ 1186 int skipped = 1; 1187 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1188 j = (j + 1) % tid_agg_rx->buf_size) { 1189 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1190 skipped++; 1191 continue; 1192 } 1193 if (skipped && 1194 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1195 HT_RX_REORDER_BUF_TIMEOUT)) 1196 goto set_release_timer; 1197 1198 /* don't leave incomplete A-MSDUs around */ 1199 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1200 i = (i + 1) % tid_agg_rx->buf_size) 1201 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1202 1203 ht_dbg_ratelimited(sdata, 1204 "release an RX reorder frame due to timeout on earlier frames\n"); 1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1206 frames); 1207 1208 /* 1209 * Increment the head seq# also for the skipped slots. 1210 */ 1211 tid_agg_rx->head_seq_num = 1212 (tid_agg_rx->head_seq_num + 1213 skipped) & IEEE80211_SN_MASK; 1214 skipped = 0; 1215 } 1216 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1218 frames); 1219 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1220 } 1221 1222 if (tid_agg_rx->stored_mpdu_num) { 1223 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1224 1225 for (; j != (index - 1) % tid_agg_rx->buf_size; 1226 j = (j + 1) % tid_agg_rx->buf_size) { 1227 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1228 break; 1229 } 1230 1231 set_release_timer: 1232 1233 if (!tid_agg_rx->removed) 1234 mod_timer(&tid_agg_rx->reorder_timer, 1235 tid_agg_rx->reorder_time[j] + 1 + 1236 HT_RX_REORDER_BUF_TIMEOUT); 1237 } else { 1238 del_timer(&tid_agg_rx->reorder_timer); 1239 } 1240 } 1241 1242 /* 1243 * As this function belongs to the RX path it must be under 1244 * rcu_read_lock protection. It returns false if the frame 1245 * can be processed immediately, true if it was consumed. 1246 */ 1247 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1248 struct tid_ampdu_rx *tid_agg_rx, 1249 struct sk_buff *skb, 1250 struct sk_buff_head *frames) 1251 { 1252 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1254 u16 mpdu_seq_num = ieee80211_get_sn(hdr); 1255 u16 head_seq_num, buf_size; 1256 int index; 1257 bool ret = true; 1258 1259 spin_lock(&tid_agg_rx->reorder_lock); 1260 1261 /* 1262 * Offloaded BA sessions have no known starting sequence number so pick 1263 * one from first Rxed frame for this tid after BA was started. 1264 */ 1265 if (unlikely(tid_agg_rx->auto_seq)) { 1266 tid_agg_rx->auto_seq = false; 1267 tid_agg_rx->ssn = mpdu_seq_num; 1268 tid_agg_rx->head_seq_num = mpdu_seq_num; 1269 } 1270 1271 buf_size = tid_agg_rx->buf_size; 1272 head_seq_num = tid_agg_rx->head_seq_num; 1273 1274 /* 1275 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1276 * be reordered. 1277 */ 1278 if (unlikely(!tid_agg_rx->started)) { 1279 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1280 ret = false; 1281 goto out; 1282 } 1283 tid_agg_rx->started = true; 1284 } 1285 1286 /* frame with out of date sequence number */ 1287 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1288 dev_kfree_skb(skb); 1289 goto out; 1290 } 1291 1292 /* 1293 * If frame the sequence number exceeds our buffering window 1294 * size release some previous frames to make room for this one. 1295 */ 1296 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1297 head_seq_num = ieee80211_sn_inc( 1298 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1299 /* release stored frames up to new head to stack */ 1300 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1301 head_seq_num, frames); 1302 } 1303 1304 /* Now the new frame is always in the range of the reordering buffer */ 1305 1306 index = mpdu_seq_num % tid_agg_rx->buf_size; 1307 1308 /* check if we already stored this frame */ 1309 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1310 dev_kfree_skb(skb); 1311 goto out; 1312 } 1313 1314 /* 1315 * If the current MPDU is in the right order and nothing else 1316 * is stored we can process it directly, no need to buffer it. 1317 * If it is first but there's something stored, we may be able 1318 * to release frames after this one. 1319 */ 1320 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1321 tid_agg_rx->stored_mpdu_num == 0) { 1322 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1323 tid_agg_rx->head_seq_num = 1324 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1325 ret = false; 1326 goto out; 1327 } 1328 1329 /* put the frame in the reordering buffer */ 1330 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1331 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1332 tid_agg_rx->reorder_time[index] = jiffies; 1333 tid_agg_rx->stored_mpdu_num++; 1334 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1335 } 1336 1337 out: 1338 spin_unlock(&tid_agg_rx->reorder_lock); 1339 return ret; 1340 } 1341 1342 /* 1343 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1344 * true if the MPDU was buffered, false if it should be processed. 1345 */ 1346 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1347 struct sk_buff_head *frames) 1348 { 1349 struct sk_buff *skb = rx->skb; 1350 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1351 struct sta_info *sta = rx->sta; 1352 struct tid_ampdu_rx *tid_agg_rx; 1353 u16 sc; 1354 u8 tid, ack_policy; 1355 1356 if (!ieee80211_is_data_qos(hdr->frame_control) || 1357 is_multicast_ether_addr(hdr->addr1)) 1358 goto dont_reorder; 1359 1360 /* 1361 * filter the QoS data rx stream according to 1362 * STA/TID and check if this STA/TID is on aggregation 1363 */ 1364 1365 if (!sta) 1366 goto dont_reorder; 1367 1368 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1369 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1370 tid = ieee80211_get_tid(hdr); 1371 1372 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1373 if (!tid_agg_rx) { 1374 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1375 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1376 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1377 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1378 WLAN_BACK_RECIPIENT, 1379 WLAN_REASON_QSTA_REQUIRE_SETUP); 1380 goto dont_reorder; 1381 } 1382 1383 /* qos null data frames are excluded */ 1384 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1385 goto dont_reorder; 1386 1387 /* not part of a BA session */ 1388 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1389 goto dont_reorder; 1390 1391 /* new, potentially un-ordered, ampdu frame - process it */ 1392 1393 /* reset session timer */ 1394 if (tid_agg_rx->timeout) 1395 tid_agg_rx->last_rx = jiffies; 1396 1397 /* if this mpdu is fragmented - terminate rx aggregation session */ 1398 sc = le16_to_cpu(hdr->seq_ctrl); 1399 if (sc & IEEE80211_SCTL_FRAG) { 1400 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1401 return; 1402 } 1403 1404 /* 1405 * No locking needed -- we will only ever process one 1406 * RX packet at a time, and thus own tid_agg_rx. All 1407 * other code manipulating it needs to (and does) make 1408 * sure that we cannot get to it any more before doing 1409 * anything with it. 1410 */ 1411 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1412 frames)) 1413 return; 1414 1415 dont_reorder: 1416 __skb_queue_tail(frames, skb); 1417 } 1418 1419 static ieee80211_rx_result debug_noinline 1420 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1421 { 1422 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1423 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1424 1425 if (status->flag & RX_FLAG_DUP_VALIDATED) 1426 return RX_CONTINUE; 1427 1428 /* 1429 * Drop duplicate 802.11 retransmissions 1430 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1431 */ 1432 1433 if (rx->skb->len < 24) 1434 return RX_CONTINUE; 1435 1436 if (ieee80211_is_ctl(hdr->frame_control) || 1437 ieee80211_is_any_nullfunc(hdr->frame_control)) 1438 return RX_CONTINUE; 1439 1440 if (!rx->sta) 1441 return RX_CONTINUE; 1442 1443 if (unlikely(is_multicast_ether_addr(hdr->addr1))) { 1444 struct ieee80211_sub_if_data *sdata = rx->sdata; 1445 u16 sn = ieee80211_get_sn(hdr); 1446 1447 if (!ieee80211_is_data_present(hdr->frame_control)) 1448 return RX_CONTINUE; 1449 1450 if (!ieee80211_vif_is_mld(&sdata->vif) || 1451 sdata->vif.type != NL80211_IFTYPE_STATION) 1452 return RX_CONTINUE; 1453 1454 if (sdata->u.mgd.mcast_seq_last != IEEE80211_SN_MODULO && 1455 ieee80211_sn_less_eq(sn, sdata->u.mgd.mcast_seq_last)) 1456 return RX_DROP_U_DUP; 1457 1458 sdata->u.mgd.mcast_seq_last = sn; 1459 return RX_CONTINUE; 1460 } 1461 1462 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1463 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1464 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1465 rx->link_sta->rx_stats.num_duplicates++; 1466 return RX_DROP_U_DUP; 1467 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1468 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1469 } 1470 1471 return RX_CONTINUE; 1472 } 1473 1474 static ieee80211_rx_result debug_noinline 1475 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1476 { 1477 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1478 1479 /* Drop disallowed frame classes based on STA auth/assoc state; 1480 * IEEE 802.11, Chap 5.5. 1481 * 1482 * mac80211 filters only based on association state, i.e. it drops 1483 * Class 3 frames from not associated stations. hostapd sends 1484 * deauth/disassoc frames when needed. In addition, hostapd is 1485 * responsible for filtering on both auth and assoc states. 1486 */ 1487 1488 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1489 return ieee80211_rx_mesh_check(rx); 1490 1491 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1492 ieee80211_is_pspoll(hdr->frame_control)) && 1493 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1494 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1495 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1496 /* 1497 * accept port control frames from the AP even when it's not 1498 * yet marked ASSOC to prevent a race where we don't set the 1499 * assoc bit quickly enough before it sends the first frame 1500 */ 1501 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1502 ieee80211_is_data_present(hdr->frame_control)) { 1503 unsigned int hdrlen; 1504 __be16 ethertype; 1505 1506 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1507 1508 if (rx->skb->len < hdrlen + 8) 1509 return RX_DROP_MONITOR; 1510 1511 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1512 if (ethertype == rx->sdata->control_port_protocol) 1513 return RX_CONTINUE; 1514 } 1515 1516 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1517 cfg80211_rx_spurious_frame(rx->sdata->dev, 1518 hdr->addr2, 1519 GFP_ATOMIC)) 1520 return RX_DROP_U_SPURIOUS; 1521 1522 return RX_DROP_MONITOR; 1523 } 1524 1525 return RX_CONTINUE; 1526 } 1527 1528 1529 static ieee80211_rx_result debug_noinline 1530 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1531 { 1532 struct ieee80211_local *local; 1533 struct ieee80211_hdr *hdr; 1534 struct sk_buff *skb; 1535 1536 local = rx->local; 1537 skb = rx->skb; 1538 hdr = (struct ieee80211_hdr *) skb->data; 1539 1540 if (!local->pspolling) 1541 return RX_CONTINUE; 1542 1543 if (!ieee80211_has_fromds(hdr->frame_control)) 1544 /* this is not from AP */ 1545 return RX_CONTINUE; 1546 1547 if (!ieee80211_is_data(hdr->frame_control)) 1548 return RX_CONTINUE; 1549 1550 if (!ieee80211_has_moredata(hdr->frame_control)) { 1551 /* AP has no more frames buffered for us */ 1552 local->pspolling = false; 1553 return RX_CONTINUE; 1554 } 1555 1556 /* more data bit is set, let's request a new frame from the AP */ 1557 ieee80211_send_pspoll(local, rx->sdata); 1558 1559 return RX_CONTINUE; 1560 } 1561 1562 static void sta_ps_start(struct sta_info *sta) 1563 { 1564 struct ieee80211_sub_if_data *sdata = sta->sdata; 1565 struct ieee80211_local *local = sdata->local; 1566 struct ps_data *ps; 1567 int tid; 1568 1569 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1570 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1571 ps = &sdata->bss->ps; 1572 else 1573 return; 1574 1575 atomic_inc(&ps->num_sta_ps); 1576 set_sta_flag(sta, WLAN_STA_PS_STA); 1577 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1578 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1579 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1580 sta->sta.addr, sta->sta.aid); 1581 1582 ieee80211_clear_fast_xmit(sta); 1583 1584 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1585 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1586 struct txq_info *txqi = to_txq_info(txq); 1587 1588 spin_lock(&local->active_txq_lock[txq->ac]); 1589 if (!list_empty(&txqi->schedule_order)) 1590 list_del_init(&txqi->schedule_order); 1591 spin_unlock(&local->active_txq_lock[txq->ac]); 1592 1593 if (txq_has_queue(txq)) 1594 set_bit(tid, &sta->txq_buffered_tids); 1595 else 1596 clear_bit(tid, &sta->txq_buffered_tids); 1597 } 1598 } 1599 1600 static void sta_ps_end(struct sta_info *sta) 1601 { 1602 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1603 sta->sta.addr, sta->sta.aid); 1604 1605 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1606 /* 1607 * Clear the flag only if the other one is still set 1608 * so that the TX path won't start TX'ing new frames 1609 * directly ... In the case that the driver flag isn't 1610 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1611 */ 1612 clear_sta_flag(sta, WLAN_STA_PS_STA); 1613 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1614 sta->sta.addr, sta->sta.aid); 1615 return; 1616 } 1617 1618 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1619 clear_sta_flag(sta, WLAN_STA_PS_STA); 1620 ieee80211_sta_ps_deliver_wakeup(sta); 1621 } 1622 1623 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1624 { 1625 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1626 bool in_ps; 1627 1628 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1629 1630 /* Don't let the same PS state be set twice */ 1631 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1632 if ((start && in_ps) || (!start && !in_ps)) 1633 return -EINVAL; 1634 1635 if (start) 1636 sta_ps_start(sta); 1637 else 1638 sta_ps_end(sta); 1639 1640 return 0; 1641 } 1642 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1643 1644 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1645 { 1646 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1647 1648 if (test_sta_flag(sta, WLAN_STA_SP)) 1649 return; 1650 1651 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1652 ieee80211_sta_ps_deliver_poll_response(sta); 1653 else 1654 set_sta_flag(sta, WLAN_STA_PSPOLL); 1655 } 1656 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1657 1658 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1659 { 1660 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1661 int ac = ieee80211_ac_from_tid(tid); 1662 1663 /* 1664 * If this AC is not trigger-enabled do nothing unless the 1665 * driver is calling us after it already checked. 1666 * 1667 * NB: This could/should check a separate bitmap of trigger- 1668 * enabled queues, but for now we only implement uAPSD w/o 1669 * TSPEC changes to the ACs, so they're always the same. 1670 */ 1671 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1672 tid != IEEE80211_NUM_TIDS) 1673 return; 1674 1675 /* if we are in a service period, do nothing */ 1676 if (test_sta_flag(sta, WLAN_STA_SP)) 1677 return; 1678 1679 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1680 ieee80211_sta_ps_deliver_uapsd(sta); 1681 else 1682 set_sta_flag(sta, WLAN_STA_UAPSD); 1683 } 1684 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1685 1686 static ieee80211_rx_result debug_noinline 1687 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1688 { 1689 struct ieee80211_sub_if_data *sdata = rx->sdata; 1690 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1691 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1692 1693 if (!rx->sta) 1694 return RX_CONTINUE; 1695 1696 if (sdata->vif.type != NL80211_IFTYPE_AP && 1697 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1698 return RX_CONTINUE; 1699 1700 /* 1701 * The device handles station powersave, so don't do anything about 1702 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1703 * it to mac80211 since they're handled.) 1704 */ 1705 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1706 return RX_CONTINUE; 1707 1708 /* 1709 * Don't do anything if the station isn't already asleep. In 1710 * the uAPSD case, the station will probably be marked asleep, 1711 * in the PS-Poll case the station must be confused ... 1712 */ 1713 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1714 return RX_CONTINUE; 1715 1716 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1717 ieee80211_sta_pspoll(&rx->sta->sta); 1718 1719 /* Free PS Poll skb here instead of returning RX_DROP that would 1720 * count as an dropped frame. */ 1721 dev_kfree_skb(rx->skb); 1722 1723 return RX_QUEUED; 1724 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1725 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1726 ieee80211_has_pm(hdr->frame_control) && 1727 (ieee80211_is_data_qos(hdr->frame_control) || 1728 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1729 u8 tid = ieee80211_get_tid(hdr); 1730 1731 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1732 } 1733 1734 return RX_CONTINUE; 1735 } 1736 1737 static ieee80211_rx_result debug_noinline 1738 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1739 { 1740 struct sta_info *sta = rx->sta; 1741 struct link_sta_info *link_sta = rx->link_sta; 1742 struct sk_buff *skb = rx->skb; 1743 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1744 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1745 int i; 1746 1747 if (!sta || !link_sta) 1748 return RX_CONTINUE; 1749 1750 /* 1751 * Update last_rx only for IBSS packets which are for the current 1752 * BSSID and for station already AUTHORIZED to avoid keeping the 1753 * current IBSS network alive in cases where other STAs start 1754 * using different BSSID. This will also give the station another 1755 * chance to restart the authentication/authorization in case 1756 * something went wrong the first time. 1757 */ 1758 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1759 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1760 NL80211_IFTYPE_ADHOC); 1761 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1762 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1763 link_sta->rx_stats.last_rx = jiffies; 1764 if (ieee80211_is_data_present(hdr->frame_control) && 1765 !is_multicast_ether_addr(hdr->addr1)) 1766 link_sta->rx_stats.last_rate = 1767 sta_stats_encode_rate(status); 1768 } 1769 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1770 link_sta->rx_stats.last_rx = jiffies; 1771 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1772 !is_multicast_ether_addr(hdr->addr1)) { 1773 /* 1774 * Mesh beacons will update last_rx when if they are found to 1775 * match the current local configuration when processed. 1776 */ 1777 link_sta->rx_stats.last_rx = jiffies; 1778 if (ieee80211_is_data_present(hdr->frame_control)) 1779 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1780 } 1781 1782 link_sta->rx_stats.fragments++; 1783 1784 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1785 link_sta->rx_stats.bytes += rx->skb->len; 1786 u64_stats_update_end(&link_sta->rx_stats.syncp); 1787 1788 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1789 link_sta->rx_stats.last_signal = status->signal; 1790 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1791 -status->signal); 1792 } 1793 1794 if (status->chains) { 1795 link_sta->rx_stats.chains = status->chains; 1796 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1797 int signal = status->chain_signal[i]; 1798 1799 if (!(status->chains & BIT(i))) 1800 continue; 1801 1802 link_sta->rx_stats.chain_signal_last[i] = signal; 1803 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1804 -signal); 1805 } 1806 } 1807 1808 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1809 return RX_CONTINUE; 1810 1811 /* 1812 * Change STA power saving mode only at the end of a frame 1813 * exchange sequence, and only for a data or management 1814 * frame as specified in IEEE 802.11-2016 11.2.3.2 1815 */ 1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1817 !ieee80211_has_morefrags(hdr->frame_control) && 1818 !is_multicast_ether_addr(hdr->addr1) && 1819 (ieee80211_is_mgmt(hdr->frame_control) || 1820 ieee80211_is_data(hdr->frame_control)) && 1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1824 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1825 if (!ieee80211_has_pm(hdr->frame_control)) 1826 sta_ps_end(sta); 1827 } else { 1828 if (ieee80211_has_pm(hdr->frame_control)) 1829 sta_ps_start(sta); 1830 } 1831 } 1832 1833 /* mesh power save support */ 1834 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1835 ieee80211_mps_rx_h_sta_process(sta, hdr); 1836 1837 /* 1838 * Drop (qos-)data::nullfunc frames silently, since they 1839 * are used only to control station power saving mode. 1840 */ 1841 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1842 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1843 1844 /* 1845 * If we receive a 4-addr nullfunc frame from a STA 1846 * that was not moved to a 4-addr STA vlan yet send 1847 * the event to userspace and for older hostapd drop 1848 * the frame to the monitor interface. 1849 */ 1850 if (ieee80211_has_a4(hdr->frame_control) && 1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1853 !rx->sdata->u.vlan.sta))) { 1854 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1855 cfg80211_rx_unexpected_4addr_frame( 1856 rx->sdata->dev, sta->sta.addr, 1857 GFP_ATOMIC); 1858 return RX_DROP_M_UNEXPECTED_4ADDR_FRAME; 1859 } 1860 /* 1861 * Update counter and free packet here to avoid 1862 * counting this as a dropped packed. 1863 */ 1864 link_sta->rx_stats.packets++; 1865 dev_kfree_skb(rx->skb); 1866 return RX_QUEUED; 1867 } 1868 1869 return RX_CONTINUE; 1870 } /* ieee80211_rx_h_sta_process */ 1871 1872 static struct ieee80211_key * 1873 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1874 { 1875 struct ieee80211_key *key = NULL; 1876 int idx2; 1877 1878 /* Make sure key gets set if either BIGTK key index is set so that 1879 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1880 * Beacon frames and Beacon frames that claim to use another BIGTK key 1881 * index (i.e., a key that we do not have). 1882 */ 1883 1884 if (idx < 0) { 1885 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1886 idx2 = idx + 1; 1887 } else { 1888 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1889 idx2 = idx + 1; 1890 else 1891 idx2 = idx - 1; 1892 } 1893 1894 if (rx->link_sta) 1895 key = rcu_dereference(rx->link_sta->gtk[idx]); 1896 if (!key) 1897 key = rcu_dereference(rx->link->gtk[idx]); 1898 if (!key && rx->link_sta) 1899 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1900 if (!key) 1901 key = rcu_dereference(rx->link->gtk[idx2]); 1902 1903 return key; 1904 } 1905 1906 static ieee80211_rx_result debug_noinline 1907 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1908 { 1909 struct sk_buff *skb = rx->skb; 1910 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1911 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1912 int keyidx; 1913 ieee80211_rx_result result = RX_DROP_U_DECRYPT_FAIL; 1914 struct ieee80211_key *sta_ptk = NULL; 1915 struct ieee80211_key *ptk_idx = NULL; 1916 int mmie_keyidx = -1; 1917 __le16 fc; 1918 1919 if (ieee80211_is_ext(hdr->frame_control)) 1920 return RX_CONTINUE; 1921 1922 /* 1923 * Key selection 101 1924 * 1925 * There are five types of keys: 1926 * - GTK (group keys) 1927 * - IGTK (group keys for management frames) 1928 * - BIGTK (group keys for Beacon frames) 1929 * - PTK (pairwise keys) 1930 * - STK (station-to-station pairwise keys) 1931 * 1932 * When selecting a key, we have to distinguish between multicast 1933 * (including broadcast) and unicast frames, the latter can only 1934 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1935 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1936 * then unicast frames can also use key indices like GTKs. Hence, if we 1937 * don't have a PTK/STK we check the key index for a WEP key. 1938 * 1939 * Note that in a regular BSS, multicast frames are sent by the 1940 * AP only, associated stations unicast the frame to the AP first 1941 * which then multicasts it on their behalf. 1942 * 1943 * There is also a slight problem in IBSS mode: GTKs are negotiated 1944 * with each station, that is something we don't currently handle. 1945 * The spec seems to expect that one negotiates the same key with 1946 * every station but there's no such requirement; VLANs could be 1947 * possible. 1948 */ 1949 1950 /* start without a key */ 1951 rx->key = NULL; 1952 fc = hdr->frame_control; 1953 1954 if (rx->sta) { 1955 int keyid = rx->sta->ptk_idx; 1956 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1957 1958 if (ieee80211_has_protected(fc) && 1959 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1960 keyid = ieee80211_get_keyid(rx->skb); 1961 1962 if (unlikely(keyid < 0)) 1963 return RX_DROP_U_NO_KEY_ID; 1964 1965 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1966 } 1967 } 1968 1969 if (!ieee80211_has_protected(fc)) 1970 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1971 1972 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1973 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1974 if ((status->flag & RX_FLAG_DECRYPTED) && 1975 (status->flag & RX_FLAG_IV_STRIPPED)) 1976 return RX_CONTINUE; 1977 /* Skip decryption if the frame is not protected. */ 1978 if (!ieee80211_has_protected(fc)) 1979 return RX_CONTINUE; 1980 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1981 /* Broadcast/multicast robust management frame / BIP */ 1982 if ((status->flag & RX_FLAG_DECRYPTED) && 1983 (status->flag & RX_FLAG_IV_STRIPPED)) 1984 return RX_CONTINUE; 1985 1986 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1987 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1988 NUM_DEFAULT_BEACON_KEYS) { 1989 if (rx->sdata->dev) 1990 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1991 skb->data, 1992 skb->len); 1993 return RX_DROP_M_BAD_BCN_KEYIDX; 1994 } 1995 1996 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1997 if (!rx->key) 1998 return RX_CONTINUE; /* Beacon protection not in use */ 1999 } else if (mmie_keyidx >= 0) { 2000 /* Broadcast/multicast robust management frame / BIP */ 2001 if ((status->flag & RX_FLAG_DECRYPTED) && 2002 (status->flag & RX_FLAG_IV_STRIPPED)) 2003 return RX_CONTINUE; 2004 2005 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2006 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2007 return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */ 2008 if (rx->link_sta) { 2009 if (ieee80211_is_group_privacy_action(skb) && 2010 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2011 return RX_DROP_MONITOR; 2012 2013 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 2014 } 2015 if (!rx->key) 2016 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 2017 } else if (!ieee80211_has_protected(fc)) { 2018 /* 2019 * The frame was not protected, so skip decryption. However, we 2020 * need to set rx->key if there is a key that could have been 2021 * used so that the frame may be dropped if encryption would 2022 * have been expected. 2023 */ 2024 struct ieee80211_key *key = NULL; 2025 int i; 2026 2027 if (ieee80211_is_beacon(fc)) { 2028 key = ieee80211_rx_get_bigtk(rx, -1); 2029 } else if (ieee80211_is_mgmt(fc) && 2030 is_multicast_ether_addr(hdr->addr1)) { 2031 key = rcu_dereference(rx->link->default_mgmt_key); 2032 } else { 2033 if (rx->link_sta) { 2034 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2035 key = rcu_dereference(rx->link_sta->gtk[i]); 2036 if (key) 2037 break; 2038 } 2039 } 2040 if (!key) { 2041 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2042 key = rcu_dereference(rx->link->gtk[i]); 2043 if (key) 2044 break; 2045 } 2046 } 2047 } 2048 if (key) 2049 rx->key = key; 2050 return RX_CONTINUE; 2051 } else { 2052 /* 2053 * The device doesn't give us the IV so we won't be 2054 * able to look up the key. That's ok though, we 2055 * don't need to decrypt the frame, we just won't 2056 * be able to keep statistics accurate. 2057 * Except for key threshold notifications, should 2058 * we somehow allow the driver to tell us which key 2059 * the hardware used if this flag is set? 2060 */ 2061 if ((status->flag & RX_FLAG_DECRYPTED) && 2062 (status->flag & RX_FLAG_IV_STRIPPED)) 2063 return RX_CONTINUE; 2064 2065 keyidx = ieee80211_get_keyid(rx->skb); 2066 2067 if (unlikely(keyidx < 0)) 2068 return RX_DROP_U_NO_KEY_ID; 2069 2070 /* check per-station GTK first, if multicast packet */ 2071 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2072 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2073 2074 /* if not found, try default key */ 2075 if (!rx->key) { 2076 if (is_multicast_ether_addr(hdr->addr1)) 2077 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2078 if (!rx->key) 2079 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2080 2081 /* 2082 * RSNA-protected unicast frames should always be 2083 * sent with pairwise or station-to-station keys, 2084 * but for WEP we allow using a key index as well. 2085 */ 2086 if (rx->key && 2087 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2088 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2089 !is_multicast_ether_addr(hdr->addr1)) 2090 rx->key = NULL; 2091 } 2092 } 2093 2094 if (rx->key) { 2095 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2096 return RX_DROP_MONITOR; 2097 2098 /* TODO: add threshold stuff again */ 2099 } else { 2100 return RX_DROP_MONITOR; 2101 } 2102 2103 switch (rx->key->conf.cipher) { 2104 case WLAN_CIPHER_SUITE_WEP40: 2105 case WLAN_CIPHER_SUITE_WEP104: 2106 result = ieee80211_crypto_wep_decrypt(rx); 2107 break; 2108 case WLAN_CIPHER_SUITE_TKIP: 2109 result = ieee80211_crypto_tkip_decrypt(rx); 2110 break; 2111 case WLAN_CIPHER_SUITE_CCMP: 2112 result = ieee80211_crypto_ccmp_decrypt( 2113 rx, IEEE80211_CCMP_MIC_LEN); 2114 break; 2115 case WLAN_CIPHER_SUITE_CCMP_256: 2116 result = ieee80211_crypto_ccmp_decrypt( 2117 rx, IEEE80211_CCMP_256_MIC_LEN); 2118 break; 2119 case WLAN_CIPHER_SUITE_AES_CMAC: 2120 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2121 break; 2122 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2123 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2124 break; 2125 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2126 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2127 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2128 break; 2129 case WLAN_CIPHER_SUITE_GCMP: 2130 case WLAN_CIPHER_SUITE_GCMP_256: 2131 result = ieee80211_crypto_gcmp_decrypt(rx); 2132 break; 2133 default: 2134 result = RX_DROP_U_BAD_CIPHER; 2135 } 2136 2137 /* the hdr variable is invalid after the decrypt handlers */ 2138 2139 /* either the frame has been decrypted or will be dropped */ 2140 status->flag |= RX_FLAG_DECRYPTED; 2141 2142 if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) && 2143 rx->sdata->dev)) 2144 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2145 skb->data, skb->len); 2146 2147 return result; 2148 } 2149 2150 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2151 { 2152 int i; 2153 2154 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2155 skb_queue_head_init(&cache->entries[i].skb_list); 2156 } 2157 2158 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2159 { 2160 int i; 2161 2162 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2163 __skb_queue_purge(&cache->entries[i].skb_list); 2164 } 2165 2166 static inline struct ieee80211_fragment_entry * 2167 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2168 unsigned int frag, unsigned int seq, int rx_queue, 2169 struct sk_buff **skb) 2170 { 2171 struct ieee80211_fragment_entry *entry; 2172 2173 entry = &cache->entries[cache->next++]; 2174 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2175 cache->next = 0; 2176 2177 __skb_queue_purge(&entry->skb_list); 2178 2179 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2180 *skb = NULL; 2181 entry->first_frag_time = jiffies; 2182 entry->seq = seq; 2183 entry->rx_queue = rx_queue; 2184 entry->last_frag = frag; 2185 entry->check_sequential_pn = false; 2186 entry->extra_len = 0; 2187 2188 return entry; 2189 } 2190 2191 static inline struct ieee80211_fragment_entry * 2192 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2193 unsigned int frag, unsigned int seq, 2194 int rx_queue, struct ieee80211_hdr *hdr) 2195 { 2196 struct ieee80211_fragment_entry *entry; 2197 int i, idx; 2198 2199 idx = cache->next; 2200 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2201 struct ieee80211_hdr *f_hdr; 2202 struct sk_buff *f_skb; 2203 2204 idx--; 2205 if (idx < 0) 2206 idx = IEEE80211_FRAGMENT_MAX - 1; 2207 2208 entry = &cache->entries[idx]; 2209 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2210 entry->rx_queue != rx_queue || 2211 entry->last_frag + 1 != frag) 2212 continue; 2213 2214 f_skb = __skb_peek(&entry->skb_list); 2215 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2216 2217 /* 2218 * Check ftype and addresses are equal, else check next fragment 2219 */ 2220 if (((hdr->frame_control ^ f_hdr->frame_control) & 2221 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2222 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2223 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2224 continue; 2225 2226 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2227 __skb_queue_purge(&entry->skb_list); 2228 continue; 2229 } 2230 return entry; 2231 } 2232 2233 return NULL; 2234 } 2235 2236 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2237 { 2238 return rx->key && 2239 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2240 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2241 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2242 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2243 ieee80211_has_protected(fc); 2244 } 2245 2246 static ieee80211_rx_result debug_noinline 2247 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2248 { 2249 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2250 struct ieee80211_hdr *hdr; 2251 u16 sc; 2252 __le16 fc; 2253 unsigned int frag, seq; 2254 struct ieee80211_fragment_entry *entry; 2255 struct sk_buff *skb; 2256 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2257 2258 hdr = (struct ieee80211_hdr *)rx->skb->data; 2259 fc = hdr->frame_control; 2260 2261 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2262 return RX_CONTINUE; 2263 2264 sc = le16_to_cpu(hdr->seq_ctrl); 2265 frag = sc & IEEE80211_SCTL_FRAG; 2266 2267 if (rx->sta) 2268 cache = &rx->sta->frags; 2269 2270 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2271 goto out; 2272 2273 if (is_multicast_ether_addr(hdr->addr1)) 2274 return RX_DROP_MONITOR; 2275 2276 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2277 2278 if (skb_linearize(rx->skb)) 2279 return RX_DROP_U_OOM; 2280 2281 /* 2282 * skb_linearize() might change the skb->data and 2283 * previously cached variables (in this case, hdr) need to 2284 * be refreshed with the new data. 2285 */ 2286 hdr = (struct ieee80211_hdr *)rx->skb->data; 2287 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2288 2289 if (frag == 0) { 2290 /* This is the first fragment of a new frame. */ 2291 entry = ieee80211_reassemble_add(cache, frag, seq, 2292 rx->seqno_idx, &(rx->skb)); 2293 if (requires_sequential_pn(rx, fc)) { 2294 int queue = rx->security_idx; 2295 2296 /* Store CCMP/GCMP PN so that we can verify that the 2297 * next fragment has a sequential PN value. 2298 */ 2299 entry->check_sequential_pn = true; 2300 entry->is_protected = true; 2301 entry->key_color = rx->key->color; 2302 memcpy(entry->last_pn, 2303 rx->key->u.ccmp.rx_pn[queue], 2304 IEEE80211_CCMP_PN_LEN); 2305 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2306 u.ccmp.rx_pn) != 2307 offsetof(struct ieee80211_key, 2308 u.gcmp.rx_pn)); 2309 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2310 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2311 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2312 IEEE80211_GCMP_PN_LEN); 2313 } else if (rx->key && 2314 (ieee80211_has_protected(fc) || 2315 (status->flag & RX_FLAG_DECRYPTED))) { 2316 entry->is_protected = true; 2317 entry->key_color = rx->key->color; 2318 } 2319 return RX_QUEUED; 2320 } 2321 2322 /* This is a fragment for a frame that should already be pending in 2323 * fragment cache. Add this fragment to the end of the pending entry. 2324 */ 2325 entry = ieee80211_reassemble_find(cache, frag, seq, 2326 rx->seqno_idx, hdr); 2327 if (!entry) { 2328 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2329 return RX_DROP_MONITOR; 2330 } 2331 2332 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2333 * MPDU PN values are not incrementing in steps of 1." 2334 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2335 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2336 */ 2337 if (entry->check_sequential_pn) { 2338 int i; 2339 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2340 2341 if (!requires_sequential_pn(rx, fc)) 2342 return RX_DROP_U_NONSEQ_PN; 2343 2344 /* Prevent mixed key and fragment cache attacks */ 2345 if (entry->key_color != rx->key->color) 2346 return RX_DROP_U_BAD_KEY_COLOR; 2347 2348 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2349 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2350 pn[i]++; 2351 if (pn[i]) 2352 break; 2353 } 2354 2355 rpn = rx->ccm_gcm.pn; 2356 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2357 return RX_DROP_U_REPLAY; 2358 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2359 } else if (entry->is_protected && 2360 (!rx->key || 2361 (!ieee80211_has_protected(fc) && 2362 !(status->flag & RX_FLAG_DECRYPTED)) || 2363 rx->key->color != entry->key_color)) { 2364 /* Drop this as a mixed key or fragment cache attack, even 2365 * if for TKIP Michael MIC should protect us, and WEP is a 2366 * lost cause anyway. 2367 */ 2368 return RX_DROP_U_EXPECT_DEFRAG_PROT; 2369 } else if (entry->is_protected && rx->key && 2370 entry->key_color != rx->key->color && 2371 (status->flag & RX_FLAG_DECRYPTED)) { 2372 return RX_DROP_U_BAD_KEY_COLOR; 2373 } 2374 2375 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2376 __skb_queue_tail(&entry->skb_list, rx->skb); 2377 entry->last_frag = frag; 2378 entry->extra_len += rx->skb->len; 2379 if (ieee80211_has_morefrags(fc)) { 2380 rx->skb = NULL; 2381 return RX_QUEUED; 2382 } 2383 2384 rx->skb = __skb_dequeue(&entry->skb_list); 2385 if (skb_tailroom(rx->skb) < entry->extra_len) { 2386 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2387 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2388 GFP_ATOMIC))) { 2389 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2390 __skb_queue_purge(&entry->skb_list); 2391 return RX_DROP_U_OOM; 2392 } 2393 } 2394 while ((skb = __skb_dequeue(&entry->skb_list))) { 2395 skb_put_data(rx->skb, skb->data, skb->len); 2396 dev_kfree_skb(skb); 2397 } 2398 2399 out: 2400 ieee80211_led_rx(rx->local); 2401 if (rx->sta) 2402 rx->link_sta->rx_stats.packets++; 2403 return RX_CONTINUE; 2404 } 2405 2406 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2407 { 2408 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2409 return -EACCES; 2410 2411 return 0; 2412 } 2413 2414 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2415 { 2416 struct sk_buff *skb = rx->skb; 2417 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2418 2419 /* 2420 * Pass through unencrypted frames if the hardware has 2421 * decrypted them already. 2422 */ 2423 if (status->flag & RX_FLAG_DECRYPTED) 2424 return 0; 2425 2426 /* Drop unencrypted frames if key is set. */ 2427 if (unlikely(!ieee80211_has_protected(fc) && 2428 !ieee80211_is_any_nullfunc(fc) && 2429 ieee80211_is_data(fc) && rx->key)) 2430 return -EACCES; 2431 2432 return 0; 2433 } 2434 2435 VISIBLE_IF_MAC80211_KUNIT ieee80211_rx_result 2436 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2437 { 2438 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2439 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2440 __le16 fc = mgmt->frame_control; 2441 2442 /* 2443 * Pass through unencrypted frames if the hardware has 2444 * decrypted them already. 2445 */ 2446 if (status->flag & RX_FLAG_DECRYPTED) 2447 return RX_CONTINUE; 2448 2449 /* drop unicast protected dual (that wasn't protected) */ 2450 if (ieee80211_is_action(fc) && 2451 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 2452 return RX_DROP_U_UNPROT_DUAL; 2453 2454 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2455 if (unlikely(!ieee80211_has_protected(fc) && 2456 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) { 2457 if (ieee80211_is_deauth(fc) || 2458 ieee80211_is_disassoc(fc)) { 2459 /* 2460 * Permit unprotected deauth/disassoc frames 2461 * during 4-way-HS (key is installed after HS). 2462 */ 2463 if (!rx->key) 2464 return RX_CONTINUE; 2465 2466 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2467 rx->skb->data, 2468 rx->skb->len); 2469 } 2470 return RX_DROP_U_UNPROT_UCAST_MGMT; 2471 } 2472 /* BIP does not use Protected field, so need to check MMIE */ 2473 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2474 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2475 if (ieee80211_is_deauth(fc) || 2476 ieee80211_is_disassoc(fc)) 2477 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2478 rx->skb->data, 2479 rx->skb->len); 2480 return RX_DROP_U_UNPROT_MCAST_MGMT; 2481 } 2482 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2483 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2484 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2485 rx->skb->data, 2486 rx->skb->len); 2487 return RX_DROP_U_UNPROT_BEACON; 2488 } 2489 /* 2490 * When using MFP, Action frames are not allowed prior to 2491 * having configured keys. 2492 */ 2493 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2494 ieee80211_is_robust_mgmt_frame(rx->skb))) 2495 return RX_DROP_U_UNPROT_ACTION; 2496 2497 /* drop unicast public action frames when using MPF */ 2498 if (is_unicast_ether_addr(mgmt->da) && 2499 ieee80211_is_protected_dual_of_public_action(rx->skb)) 2500 return RX_DROP_U_UNPROT_UNICAST_PUB_ACTION; 2501 } 2502 2503 /* 2504 * Drop robust action frames before assoc regardless of MFP state, 2505 * after assoc we also have decided on MFP or not. 2506 */ 2507 if (ieee80211_is_action(fc) && 2508 ieee80211_is_robust_mgmt_frame(rx->skb) && 2509 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC))) 2510 return RX_DROP_U_UNPROT_ROBUST_ACTION; 2511 2512 return RX_CONTINUE; 2513 } 2514 EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_drop_unencrypted_mgmt); 2515 2516 static ieee80211_rx_result 2517 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2518 { 2519 struct ieee80211_sub_if_data *sdata = rx->sdata; 2520 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2521 bool check_port_control = false; 2522 struct ethhdr *ehdr; 2523 int ret; 2524 2525 *port_control = false; 2526 if (ieee80211_has_a4(hdr->frame_control) && 2527 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2528 return RX_DROP_U_UNEXPECTED_VLAN_4ADDR; 2529 2530 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2531 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2532 if (!sdata->u.mgd.use_4addr) 2533 return RX_DROP_U_UNEXPECTED_STA_4ADDR; 2534 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2535 check_port_control = true; 2536 } 2537 2538 if (is_multicast_ether_addr(hdr->addr1) && 2539 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2540 return RX_DROP_U_UNEXPECTED_VLAN_MCAST; 2541 2542 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2543 if (ret < 0) 2544 return RX_DROP_U_INVALID_8023; 2545 2546 ehdr = (struct ethhdr *) rx->skb->data; 2547 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2548 *port_control = true; 2549 else if (check_port_control) 2550 return RX_DROP_U_NOT_PORT_CONTROL; 2551 2552 return RX_CONTINUE; 2553 } 2554 2555 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2556 const u8 *addr, int *out_link_id) 2557 { 2558 unsigned int link_id; 2559 2560 /* non-MLO, or MLD address replaced by hardware */ 2561 if (ether_addr_equal(sdata->vif.addr, addr)) 2562 return true; 2563 2564 if (!ieee80211_vif_is_mld(&sdata->vif)) 2565 return false; 2566 2567 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2568 struct ieee80211_bss_conf *conf; 2569 2570 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2571 2572 if (!conf) 2573 continue; 2574 if (ether_addr_equal(conf->addr, addr)) { 2575 if (out_link_id) 2576 *out_link_id = link_id; 2577 return true; 2578 } 2579 } 2580 2581 return false; 2582 } 2583 2584 /* 2585 * requires that rx->skb is a frame with ethernet header 2586 */ 2587 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2588 { 2589 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2590 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2591 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2592 2593 /* 2594 * Allow EAPOL frames to us/the PAE group address regardless of 2595 * whether the frame was encrypted or not, and always disallow 2596 * all other destination addresses for them. 2597 */ 2598 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2599 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2600 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2601 2602 if (ieee80211_802_1x_port_control(rx) || 2603 ieee80211_drop_unencrypted(rx, fc)) 2604 return false; 2605 2606 return true; 2607 } 2608 2609 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2610 struct ieee80211_rx_data *rx) 2611 { 2612 struct ieee80211_sub_if_data *sdata = rx->sdata; 2613 struct net_device *dev = sdata->dev; 2614 2615 if (unlikely((skb->protocol == sdata->control_port_protocol || 2616 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2617 !sdata->control_port_no_preauth)) && 2618 sdata->control_port_over_nl80211)) { 2619 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2620 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2621 2622 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); 2623 dev_kfree_skb(skb); 2624 } else { 2625 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2626 2627 memset(skb->cb, 0, sizeof(skb->cb)); 2628 2629 /* 2630 * 802.1X over 802.11 requires that the authenticator address 2631 * be used for EAPOL frames. However, 802.1X allows the use of 2632 * the PAE group address instead. If the interface is part of 2633 * a bridge and we pass the frame with the PAE group address, 2634 * then the bridge will forward it to the network (even if the 2635 * client was not associated yet), which isn't supposed to 2636 * happen. 2637 * To avoid that, rewrite the destination address to our own 2638 * address, so that the authenticator (e.g. hostapd) will see 2639 * the frame, but bridge won't forward it anywhere else. Note 2640 * that due to earlier filtering, the only other address can 2641 * be the PAE group address, unless the hardware allowed them 2642 * through in 802.3 offloaded mode. 2643 */ 2644 if (unlikely(skb->protocol == sdata->control_port_protocol && 2645 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2646 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2647 2648 /* deliver to local stack */ 2649 if (rx->list) 2650 list_add_tail(&skb->list, rx->list); 2651 else 2652 netif_receive_skb(skb); 2653 } 2654 } 2655 2656 /* 2657 * requires that rx->skb is a frame with ethernet header 2658 */ 2659 static void 2660 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2661 { 2662 struct ieee80211_sub_if_data *sdata = rx->sdata; 2663 struct net_device *dev = sdata->dev; 2664 struct sk_buff *skb, *xmit_skb; 2665 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2666 struct sta_info *dsta; 2667 2668 skb = rx->skb; 2669 xmit_skb = NULL; 2670 2671 dev_sw_netstats_rx_add(dev, skb->len); 2672 2673 if (rx->sta) { 2674 /* The seqno index has the same property as needed 2675 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2676 * for non-QoS-data frames. Here we know it's a data 2677 * frame, so count MSDUs. 2678 */ 2679 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2680 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2681 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2682 } 2683 2684 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2685 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2686 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2687 ehdr->h_proto != rx->sdata->control_port_protocol && 2688 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2689 if (is_multicast_ether_addr(ehdr->h_dest) && 2690 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2691 /* 2692 * send multicast frames both to higher layers in 2693 * local net stack and back to the wireless medium 2694 */ 2695 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2696 if (!xmit_skb) 2697 net_info_ratelimited("%s: failed to clone multicast frame\n", 2698 dev->name); 2699 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2700 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2701 dsta = sta_info_get(sdata, ehdr->h_dest); 2702 if (dsta) { 2703 /* 2704 * The destination station is associated to 2705 * this AP (in this VLAN), so send the frame 2706 * directly to it and do not pass it to local 2707 * net stack. 2708 */ 2709 xmit_skb = skb; 2710 skb = NULL; 2711 } 2712 } 2713 } 2714 2715 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2716 if (skb) { 2717 /* 'align' will only take the values 0 or 2 here since all 2718 * frames are required to be aligned to 2-byte boundaries 2719 * when being passed to mac80211; the code here works just 2720 * as well if that isn't true, but mac80211 assumes it can 2721 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2722 */ 2723 int align; 2724 2725 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2726 if (align) { 2727 if (WARN_ON(skb_headroom(skb) < 3)) { 2728 dev_kfree_skb(skb); 2729 skb = NULL; 2730 } else { 2731 u8 *data = skb->data; 2732 size_t len = skb_headlen(skb); 2733 skb->data -= align; 2734 memmove(skb->data, data, len); 2735 skb_set_tail_pointer(skb, len); 2736 } 2737 } 2738 } 2739 #endif 2740 2741 if (skb) { 2742 skb->protocol = eth_type_trans(skb, dev); 2743 ieee80211_deliver_skb_to_local_stack(skb, rx); 2744 } 2745 2746 if (xmit_skb) { 2747 /* 2748 * Send to wireless media and increase priority by 256 to 2749 * keep the received priority instead of reclassifying 2750 * the frame (see cfg80211_classify8021d). 2751 */ 2752 xmit_skb->priority += 256; 2753 xmit_skb->protocol = htons(ETH_P_802_3); 2754 skb_reset_network_header(xmit_skb); 2755 skb_reset_mac_header(xmit_skb); 2756 dev_queue_xmit(xmit_skb); 2757 } 2758 } 2759 2760 #ifdef CONFIG_MAC80211_MESH 2761 static bool 2762 ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata, 2763 struct sk_buff *skb, int hdrlen) 2764 { 2765 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2766 struct ieee80211_mesh_fast_tx_key key = { 2767 .type = MESH_FAST_TX_TYPE_FORWARDED 2768 }; 2769 struct ieee80211_mesh_fast_tx *entry; 2770 struct ieee80211s_hdr *mesh_hdr; 2771 struct tid_ampdu_tx *tid_tx; 2772 struct sta_info *sta; 2773 struct ethhdr eth; 2774 u8 tid; 2775 2776 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth)); 2777 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2778 ether_addr_copy(key.addr, mesh_hdr->eaddr1); 2779 else if (!(mesh_hdr->flags & MESH_FLAGS_AE)) 2780 ether_addr_copy(key.addr, skb->data); 2781 else 2782 return false; 2783 2784 entry = mesh_fast_tx_get(sdata, &key); 2785 if (!entry) 2786 return false; 2787 2788 sta = rcu_dereference(entry->mpath->next_hop); 2789 if (!sta) 2790 return false; 2791 2792 if (skb_linearize(skb)) 2793 return false; 2794 2795 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; 2796 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); 2797 if (tid_tx) { 2798 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) 2799 return false; 2800 2801 if (tid_tx->timeout) 2802 tid_tx->last_tx = jiffies; 2803 } 2804 2805 ieee80211_aggr_check(sdata, sta, skb); 2806 2807 if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 2808 &skb->protocol)) 2809 hdrlen += ETH_ALEN; 2810 else 2811 skb->protocol = htons(skb->len - hdrlen); 2812 skb_set_network_header(skb, hdrlen + 2); 2813 2814 skb->dev = sdata->dev; 2815 memcpy(ð, skb->data, ETH_HLEN - 2); 2816 skb_pull(skb, 2); 2817 __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, 2818 eth.h_dest, eth.h_source); 2819 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2820 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2821 2822 return true; 2823 } 2824 #endif 2825 2826 static ieee80211_rx_result 2827 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2828 struct sk_buff *skb) 2829 { 2830 #ifdef CONFIG_MAC80211_MESH 2831 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2832 struct ieee80211_local *local = sdata->local; 2833 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2834 struct ieee80211_hdr hdr = { 2835 .frame_control = cpu_to_le16(fc) 2836 }; 2837 struct ieee80211_hdr *fwd_hdr; 2838 struct ieee80211s_hdr *mesh_hdr; 2839 struct ieee80211_tx_info *info; 2840 struct sk_buff *fwd_skb; 2841 struct ethhdr *eth; 2842 bool multicast; 2843 int tailroom = 0; 2844 int hdrlen, mesh_hdrlen; 2845 u8 *qos; 2846 2847 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2848 return RX_CONTINUE; 2849 2850 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2851 return RX_DROP_MONITOR; 2852 2853 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2854 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2855 2856 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2857 return RX_DROP_MONITOR; 2858 2859 eth = (struct ethhdr *)skb->data; 2860 multicast = is_multicast_ether_addr(eth->h_dest); 2861 2862 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2863 if (!mesh_hdr->ttl) 2864 return RX_DROP_MONITOR; 2865 2866 /* frame is in RMC, don't forward */ 2867 if (is_multicast_ether_addr(eth->h_dest) && 2868 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2869 return RX_DROP_MONITOR; 2870 2871 /* forward packet */ 2872 if (sdata->crypto_tx_tailroom_needed_cnt) 2873 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2874 2875 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2876 struct mesh_path *mppath; 2877 char *proxied_addr; 2878 bool update = false; 2879 2880 if (multicast) 2881 proxied_addr = mesh_hdr->eaddr1; 2882 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2883 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2884 proxied_addr = mesh_hdr->eaddr2; 2885 else 2886 return RX_DROP_MONITOR; 2887 2888 rcu_read_lock(); 2889 mppath = mpp_path_lookup(sdata, proxied_addr); 2890 if (!mppath) { 2891 mpp_path_add(sdata, proxied_addr, eth->h_source); 2892 } else { 2893 spin_lock_bh(&mppath->state_lock); 2894 if (!ether_addr_equal(mppath->mpp, eth->h_source)) { 2895 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2896 update = true; 2897 } 2898 mppath->exp_time = jiffies; 2899 spin_unlock_bh(&mppath->state_lock); 2900 } 2901 2902 /* flush fast xmit cache if the address path changed */ 2903 if (update) 2904 mesh_fast_tx_flush_addr(sdata, proxied_addr); 2905 2906 rcu_read_unlock(); 2907 } 2908 2909 /* Frame has reached destination. Don't forward */ 2910 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2911 goto rx_accept; 2912 2913 if (!--mesh_hdr->ttl) { 2914 if (multicast) 2915 goto rx_accept; 2916 2917 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2918 return RX_DROP_MONITOR; 2919 } 2920 2921 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2922 if (is_multicast_ether_addr(eth->h_dest)) 2923 goto rx_accept; 2924 2925 return RX_DROP_MONITOR; 2926 } 2927 2928 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2929 2930 if (!multicast && 2931 ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen)) 2932 return RX_QUEUED; 2933 2934 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2935 eth->h_dest, eth->h_source); 2936 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2937 if (multicast) { 2938 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2939 2940 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2941 IEEE80211_ENCRYPT_HEADROOM, 2942 tailroom, GFP_ATOMIC); 2943 if (!fwd_skb) 2944 goto rx_accept; 2945 } else { 2946 fwd_skb = skb; 2947 skb = NULL; 2948 2949 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2950 return RX_DROP_U_OOM; 2951 2952 if (skb_linearize(fwd_skb)) 2953 return RX_DROP_U_OOM; 2954 } 2955 2956 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2957 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2958 qos = ieee80211_get_qos_ctl(fwd_hdr); 2959 qos[0] = qos[1] = 0; 2960 2961 skb_reset_mac_header(fwd_skb); 2962 hdrlen += mesh_hdrlen; 2963 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2964 &fwd_skb->protocol)) 2965 hdrlen += ETH_ALEN; 2966 else 2967 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2968 skb_set_network_header(fwd_skb, hdrlen + 2); 2969 2970 info = IEEE80211_SKB_CB(fwd_skb); 2971 memset(info, 0, sizeof(*info)); 2972 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2973 info->control.vif = &sdata->vif; 2974 info->control.jiffies = jiffies; 2975 fwd_skb->dev = sdata->dev; 2976 if (multicast) { 2977 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2978 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2979 /* update power mode indication when forwarding */ 2980 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2981 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2982 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2983 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2984 } else { 2985 /* unable to resolve next hop */ 2986 if (sta) 2987 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2988 hdr.addr3, 0, 2989 WLAN_REASON_MESH_PATH_NOFORWARD, 2990 sta->sta.addr); 2991 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2992 kfree_skb(fwd_skb); 2993 goto rx_accept; 2994 } 2995 2996 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2997 ieee80211_add_pending_skb(local, fwd_skb); 2998 2999 rx_accept: 3000 if (!skb) 3001 return RX_QUEUED; 3002 3003 ieee80211_strip_8023_mesh_hdr(skb); 3004 #endif 3005 3006 return RX_CONTINUE; 3007 } 3008 3009 static ieee80211_rx_result debug_noinline 3010 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 3011 { 3012 struct net_device *dev = rx->sdata->dev; 3013 struct sk_buff *skb = rx->skb; 3014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3015 __le16 fc = hdr->frame_control; 3016 struct sk_buff_head frame_list; 3017 ieee80211_rx_result res; 3018 struct ethhdr ethhdr; 3019 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 3020 3021 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3022 check_da = NULL; 3023 check_sa = NULL; 3024 } else switch (rx->sdata->vif.type) { 3025 case NL80211_IFTYPE_AP: 3026 case NL80211_IFTYPE_AP_VLAN: 3027 check_da = NULL; 3028 break; 3029 case NL80211_IFTYPE_STATION: 3030 if (!rx->sta || 3031 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 3032 check_sa = NULL; 3033 break; 3034 case NL80211_IFTYPE_MESH_POINT: 3035 check_sa = NULL; 3036 check_da = NULL; 3037 break; 3038 default: 3039 break; 3040 } 3041 3042 skb->dev = dev; 3043 __skb_queue_head_init(&frame_list); 3044 3045 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 3046 rx->sdata->vif.addr, 3047 rx->sdata->vif.type, 3048 data_offset, true)) 3049 return RX_DROP_U_BAD_AMSDU; 3050 3051 if (rx->sta->amsdu_mesh_control < 0) { 3052 s8 valid = -1; 3053 int i; 3054 3055 for (i = 0; i <= 2; i++) { 3056 if (!ieee80211_is_valid_amsdu(skb, i)) 3057 continue; 3058 3059 if (valid >= 0) { 3060 /* ambiguous */ 3061 valid = -1; 3062 break; 3063 } 3064 3065 valid = i; 3066 } 3067 3068 rx->sta->amsdu_mesh_control = valid; 3069 } 3070 3071 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 3072 rx->sdata->vif.type, 3073 rx->local->hw.extra_tx_headroom, 3074 check_da, check_sa, 3075 rx->sta->amsdu_mesh_control); 3076 3077 while (!skb_queue_empty(&frame_list)) { 3078 rx->skb = __skb_dequeue(&frame_list); 3079 3080 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3081 switch (res) { 3082 case RX_QUEUED: 3083 continue; 3084 case RX_CONTINUE: 3085 break; 3086 default: 3087 goto free; 3088 } 3089 3090 if (!ieee80211_frame_allowed(rx, fc)) 3091 goto free; 3092 3093 ieee80211_deliver_skb(rx); 3094 continue; 3095 3096 free: 3097 dev_kfree_skb(rx->skb); 3098 } 3099 3100 return RX_QUEUED; 3101 } 3102 3103 static ieee80211_rx_result debug_noinline 3104 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 3105 { 3106 struct sk_buff *skb = rx->skb; 3107 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3108 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3109 __le16 fc = hdr->frame_control; 3110 3111 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 3112 return RX_CONTINUE; 3113 3114 if (unlikely(!ieee80211_is_data(fc))) 3115 return RX_CONTINUE; 3116 3117 if (unlikely(!ieee80211_is_data_present(fc))) 3118 return RX_DROP_MONITOR; 3119 3120 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3121 switch (rx->sdata->vif.type) { 3122 case NL80211_IFTYPE_AP_VLAN: 3123 if (!rx->sdata->u.vlan.sta) 3124 return RX_DROP_U_BAD_4ADDR; 3125 break; 3126 case NL80211_IFTYPE_STATION: 3127 if (!rx->sdata->u.mgd.use_4addr) 3128 return RX_DROP_U_BAD_4ADDR; 3129 break; 3130 case NL80211_IFTYPE_MESH_POINT: 3131 break; 3132 default: 3133 return RX_DROP_U_BAD_4ADDR; 3134 } 3135 } 3136 3137 if (is_multicast_ether_addr(hdr->addr1) || !rx->sta) 3138 return RX_DROP_U_BAD_AMSDU; 3139 3140 if (rx->key) { 3141 /* 3142 * We should not receive A-MSDUs on pre-HT connections, 3143 * and HT connections cannot use old ciphers. Thus drop 3144 * them, as in those cases we couldn't even have SPP 3145 * A-MSDUs or such. 3146 */ 3147 switch (rx->key->conf.cipher) { 3148 case WLAN_CIPHER_SUITE_WEP40: 3149 case WLAN_CIPHER_SUITE_WEP104: 3150 case WLAN_CIPHER_SUITE_TKIP: 3151 return RX_DROP_U_BAD_AMSDU_CIPHER; 3152 default: 3153 break; 3154 } 3155 } 3156 3157 return __ieee80211_rx_h_amsdu(rx, 0); 3158 } 3159 3160 static ieee80211_rx_result debug_noinline 3161 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3162 { 3163 struct ieee80211_sub_if_data *sdata = rx->sdata; 3164 struct ieee80211_local *local = rx->local; 3165 struct net_device *dev = sdata->dev; 3166 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3167 __le16 fc = hdr->frame_control; 3168 ieee80211_rx_result res; 3169 bool port_control; 3170 3171 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3172 return RX_CONTINUE; 3173 3174 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3175 return RX_DROP_MONITOR; 3176 3177 /* 3178 * Send unexpected-4addr-frame event to hostapd. For older versions, 3179 * also drop the frame to cooked monitor interfaces. 3180 */ 3181 if (ieee80211_has_a4(hdr->frame_control) && 3182 sdata->vif.type == NL80211_IFTYPE_AP) { 3183 if (rx->sta && 3184 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3185 cfg80211_rx_unexpected_4addr_frame( 3186 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3187 return RX_DROP_MONITOR; 3188 } 3189 3190 res = __ieee80211_data_to_8023(rx, &port_control); 3191 if (unlikely(res != RX_CONTINUE)) 3192 return res; 3193 3194 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3195 if (res != RX_CONTINUE) 3196 return res; 3197 3198 if (!ieee80211_frame_allowed(rx, fc)) 3199 return RX_DROP_MONITOR; 3200 3201 /* directly handle TDLS channel switch requests/responses */ 3202 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3203 cpu_to_be16(ETH_P_TDLS))) { 3204 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3205 3206 if (pskb_may_pull(rx->skb, 3207 offsetof(struct ieee80211_tdls_data, u)) && 3208 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3209 tf->category == WLAN_CATEGORY_TDLS && 3210 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3211 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3212 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3213 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3214 rx->sta, rx->skb); 3215 return RX_QUEUED; 3216 } 3217 } 3218 3219 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3220 unlikely(port_control) && sdata->bss) { 3221 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3222 u.ap); 3223 dev = sdata->dev; 3224 rx->sdata = sdata; 3225 } 3226 3227 rx->skb->dev = dev; 3228 3229 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3230 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3231 !is_multicast_ether_addr( 3232 ((struct ethhdr *)rx->skb->data)->h_dest) && 3233 (!local->scanning && 3234 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3235 mod_timer(&local->dynamic_ps_timer, jiffies + 3236 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3237 3238 ieee80211_deliver_skb(rx); 3239 3240 return RX_QUEUED; 3241 } 3242 3243 static ieee80211_rx_result debug_noinline 3244 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3245 { 3246 struct sk_buff *skb = rx->skb; 3247 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3248 struct tid_ampdu_rx *tid_agg_rx; 3249 u16 start_seq_num; 3250 u16 tid; 3251 3252 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3253 return RX_CONTINUE; 3254 3255 if (ieee80211_is_back_req(bar->frame_control)) { 3256 struct { 3257 __le16 control, start_seq_num; 3258 } __packed bar_data; 3259 struct ieee80211_event event = { 3260 .type = BAR_RX_EVENT, 3261 }; 3262 3263 if (!rx->sta) 3264 return RX_DROP_MONITOR; 3265 3266 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3267 &bar_data, sizeof(bar_data))) 3268 return RX_DROP_MONITOR; 3269 3270 tid = le16_to_cpu(bar_data.control) >> 12; 3271 3272 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3273 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3274 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3275 WLAN_BACK_RECIPIENT, 3276 WLAN_REASON_QSTA_REQUIRE_SETUP); 3277 3278 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3279 if (!tid_agg_rx) 3280 return RX_DROP_MONITOR; 3281 3282 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3283 event.u.ba.tid = tid; 3284 event.u.ba.ssn = start_seq_num; 3285 event.u.ba.sta = &rx->sta->sta; 3286 3287 /* reset session timer */ 3288 if (tid_agg_rx->timeout) 3289 mod_timer(&tid_agg_rx->session_timer, 3290 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3291 3292 spin_lock(&tid_agg_rx->reorder_lock); 3293 /* release stored frames up to start of BAR */ 3294 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3295 start_seq_num, frames); 3296 spin_unlock(&tid_agg_rx->reorder_lock); 3297 3298 drv_event_callback(rx->local, rx->sdata, &event); 3299 3300 kfree_skb(skb); 3301 return RX_QUEUED; 3302 } 3303 3304 /* 3305 * After this point, we only want management frames, 3306 * so we can drop all remaining control frames to 3307 * cooked monitor interfaces. 3308 */ 3309 return RX_DROP_MONITOR; 3310 } 3311 3312 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3313 struct ieee80211_mgmt *mgmt, 3314 size_t len) 3315 { 3316 struct ieee80211_local *local = sdata->local; 3317 struct sk_buff *skb; 3318 struct ieee80211_mgmt *resp; 3319 3320 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3321 /* Not to own unicast address */ 3322 return; 3323 } 3324 3325 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3326 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3327 /* Not from the current AP or not associated yet. */ 3328 return; 3329 } 3330 3331 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3332 /* Too short SA Query request frame */ 3333 return; 3334 } 3335 3336 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3337 if (skb == NULL) 3338 return; 3339 3340 skb_reserve(skb, local->hw.extra_tx_headroom); 3341 resp = skb_put_zero(skb, 24); 3342 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3343 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3344 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3345 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3346 IEEE80211_STYPE_ACTION); 3347 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3348 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3349 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3350 memcpy(resp->u.action.u.sa_query.trans_id, 3351 mgmt->u.action.u.sa_query.trans_id, 3352 WLAN_SA_QUERY_TR_ID_LEN); 3353 3354 ieee80211_tx_skb(sdata, skb); 3355 } 3356 3357 static void 3358 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3359 { 3360 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3361 struct ieee80211_bss_conf *bss_conf; 3362 const struct element *ie; 3363 size_t baselen; 3364 3365 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3366 NL80211_EXT_FEATURE_BSS_COLOR)) 3367 return; 3368 3369 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3370 return; 3371 3372 bss_conf = rx->link->conf; 3373 if (bss_conf->csa_active || bss_conf->color_change_active || 3374 !bss_conf->he_bss_color.enabled) 3375 return; 3376 3377 baselen = mgmt->u.beacon.variable - rx->skb->data; 3378 if (baselen > rx->skb->len) 3379 return; 3380 3381 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3382 mgmt->u.beacon.variable, 3383 rx->skb->len - baselen); 3384 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3385 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3386 const struct ieee80211_he_operation *he_oper; 3387 u8 color; 3388 3389 he_oper = (void *)(ie->data + 1); 3390 if (le32_get_bits(he_oper->he_oper_params, 3391 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3392 return; 3393 3394 color = le32_get_bits(he_oper->he_oper_params, 3395 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3396 if (color == bss_conf->he_bss_color.color) 3397 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3398 BIT_ULL(color), 3399 bss_conf->link_id); 3400 } 3401 } 3402 3403 static ieee80211_rx_result debug_noinline 3404 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3405 { 3406 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3407 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3408 3409 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3410 return RX_CONTINUE; 3411 3412 /* 3413 * From here on, look only at management frames. 3414 * Data and control frames are already handled, 3415 * and unknown (reserved) frames are useless. 3416 */ 3417 if (rx->skb->len < 24) 3418 return RX_DROP_MONITOR; 3419 3420 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3421 return RX_DROP_MONITOR; 3422 3423 /* drop too small action frames */ 3424 if (ieee80211_is_action(mgmt->frame_control) && 3425 rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 3426 return RX_DROP_U_RUNT_ACTION; 3427 3428 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3429 ieee80211_is_beacon(mgmt->frame_control) && 3430 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3431 int sig = 0; 3432 3433 /* sw bss color collision detection */ 3434 ieee80211_rx_check_bss_color_collision(rx); 3435 3436 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3437 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3438 sig = status->signal; 3439 3440 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3441 rx->skb->data, rx->skb->len, 3442 ieee80211_rx_status_to_khz(status), 3443 sig); 3444 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3445 } 3446 3447 return ieee80211_drop_unencrypted_mgmt(rx); 3448 } 3449 3450 static bool 3451 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3452 { 3453 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3454 struct ieee80211_sub_if_data *sdata = rx->sdata; 3455 3456 /* TWT actions are only supported in AP for the moment */ 3457 if (sdata->vif.type != NL80211_IFTYPE_AP) 3458 return false; 3459 3460 if (!rx->local->ops->add_twt_setup) 3461 return false; 3462 3463 if (!sdata->vif.bss_conf.twt_responder) 3464 return false; 3465 3466 if (!rx->sta) 3467 return false; 3468 3469 switch (mgmt->u.action.u.s1g.action_code) { 3470 case WLAN_S1G_TWT_SETUP: { 3471 struct ieee80211_twt_setup *twt; 3472 3473 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3474 1 + /* action code */ 3475 sizeof(struct ieee80211_twt_setup) + 3476 2 /* TWT req_type agrt */) 3477 break; 3478 3479 twt = (void *)mgmt->u.action.u.s1g.variable; 3480 if (twt->element_id != WLAN_EID_S1G_TWT) 3481 break; 3482 3483 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3484 4 + /* action code + token + tlv */ 3485 twt->length) 3486 break; 3487 3488 return true; /* queue the frame */ 3489 } 3490 case WLAN_S1G_TWT_TEARDOWN: 3491 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3492 break; 3493 3494 return true; /* queue the frame */ 3495 default: 3496 break; 3497 } 3498 3499 return false; 3500 } 3501 3502 static ieee80211_rx_result debug_noinline 3503 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3504 { 3505 struct ieee80211_local *local = rx->local; 3506 struct ieee80211_sub_if_data *sdata = rx->sdata; 3507 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3508 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3509 int len = rx->skb->len; 3510 3511 if (!ieee80211_is_action(mgmt->frame_control)) 3512 return RX_CONTINUE; 3513 3514 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3515 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3516 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3517 return RX_DROP_U_ACTION_UNKNOWN_SRC; 3518 3519 switch (mgmt->u.action.category) { 3520 case WLAN_CATEGORY_HT: 3521 /* reject HT action frames from stations not supporting HT */ 3522 if (!rx->link_sta->pub->ht_cap.ht_supported) 3523 goto invalid; 3524 3525 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3526 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3527 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3528 sdata->vif.type != NL80211_IFTYPE_AP && 3529 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3530 break; 3531 3532 /* verify action & smps_control/chanwidth are present */ 3533 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3534 goto invalid; 3535 3536 switch (mgmt->u.action.u.ht_smps.action) { 3537 case WLAN_HT_ACTION_SMPS: { 3538 struct ieee80211_supported_band *sband; 3539 enum ieee80211_smps_mode smps_mode; 3540 struct sta_opmode_info sta_opmode = {}; 3541 3542 if (sdata->vif.type != NL80211_IFTYPE_AP && 3543 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3544 goto handled; 3545 3546 /* convert to HT capability */ 3547 switch (mgmt->u.action.u.ht_smps.smps_control) { 3548 case WLAN_HT_SMPS_CONTROL_DISABLED: 3549 smps_mode = IEEE80211_SMPS_OFF; 3550 break; 3551 case WLAN_HT_SMPS_CONTROL_STATIC: 3552 smps_mode = IEEE80211_SMPS_STATIC; 3553 break; 3554 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3555 smps_mode = IEEE80211_SMPS_DYNAMIC; 3556 break; 3557 default: 3558 goto invalid; 3559 } 3560 3561 /* if no change do nothing */ 3562 if (rx->link_sta->pub->smps_mode == smps_mode) 3563 goto handled; 3564 rx->link_sta->pub->smps_mode = smps_mode; 3565 sta_opmode.smps_mode = 3566 ieee80211_smps_mode_to_smps_mode(smps_mode); 3567 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3568 3569 sband = rx->local->hw.wiphy->bands[status->band]; 3570 3571 rate_control_rate_update(local, sband, rx->sta, 0, 3572 IEEE80211_RC_SMPS_CHANGED); 3573 cfg80211_sta_opmode_change_notify(sdata->dev, 3574 rx->sta->addr, 3575 &sta_opmode, 3576 GFP_ATOMIC); 3577 goto handled; 3578 } 3579 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3580 struct ieee80211_supported_band *sband; 3581 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3582 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3583 struct sta_opmode_info sta_opmode = {}; 3584 3585 /* If it doesn't support 40 MHz it can't change ... */ 3586 if (!(rx->link_sta->pub->ht_cap.cap & 3587 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3588 goto handled; 3589 3590 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3591 max_bw = IEEE80211_STA_RX_BW_20; 3592 else 3593 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3594 3595 /* set cur_max_bandwidth and recalc sta bw */ 3596 rx->link_sta->cur_max_bandwidth = max_bw; 3597 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3598 3599 if (rx->link_sta->pub->bandwidth == new_bw) 3600 goto handled; 3601 3602 rx->link_sta->pub->bandwidth = new_bw; 3603 sband = rx->local->hw.wiphy->bands[status->band]; 3604 sta_opmode.bw = 3605 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3606 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3607 3608 rate_control_rate_update(local, sband, rx->sta, 0, 3609 IEEE80211_RC_BW_CHANGED); 3610 cfg80211_sta_opmode_change_notify(sdata->dev, 3611 rx->sta->addr, 3612 &sta_opmode, 3613 GFP_ATOMIC); 3614 goto handled; 3615 } 3616 default: 3617 goto invalid; 3618 } 3619 3620 break; 3621 case WLAN_CATEGORY_PUBLIC: 3622 case WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION: 3623 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3624 goto invalid; 3625 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3626 break; 3627 if (!rx->sta) 3628 break; 3629 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3630 break; 3631 if (mgmt->u.action.u.ext_chan_switch.action_code != 3632 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3633 break; 3634 if (len < offsetof(struct ieee80211_mgmt, 3635 u.action.u.ext_chan_switch.variable)) 3636 goto invalid; 3637 goto queue; 3638 case WLAN_CATEGORY_VHT: 3639 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3640 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3641 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3642 sdata->vif.type != NL80211_IFTYPE_AP && 3643 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3644 break; 3645 3646 /* verify action code is present */ 3647 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3648 goto invalid; 3649 3650 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3651 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3652 /* verify opmode is present */ 3653 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3654 goto invalid; 3655 goto queue; 3656 } 3657 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3658 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3659 goto invalid; 3660 goto queue; 3661 } 3662 default: 3663 break; 3664 } 3665 break; 3666 case WLAN_CATEGORY_BACK: 3667 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3668 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3669 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3670 sdata->vif.type != NL80211_IFTYPE_AP && 3671 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3672 break; 3673 3674 /* verify action_code is present */ 3675 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3676 break; 3677 3678 switch (mgmt->u.action.u.addba_req.action_code) { 3679 case WLAN_ACTION_ADDBA_REQ: 3680 if (len < (IEEE80211_MIN_ACTION_SIZE + 3681 sizeof(mgmt->u.action.u.addba_req))) 3682 goto invalid; 3683 break; 3684 case WLAN_ACTION_ADDBA_RESP: 3685 if (len < (IEEE80211_MIN_ACTION_SIZE + 3686 sizeof(mgmt->u.action.u.addba_resp))) 3687 goto invalid; 3688 break; 3689 case WLAN_ACTION_DELBA: 3690 if (len < (IEEE80211_MIN_ACTION_SIZE + 3691 sizeof(mgmt->u.action.u.delba))) 3692 goto invalid; 3693 break; 3694 default: 3695 goto invalid; 3696 } 3697 3698 goto queue; 3699 case WLAN_CATEGORY_SPECTRUM_MGMT: 3700 /* verify action_code is present */ 3701 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3702 break; 3703 3704 switch (mgmt->u.action.u.measurement.action_code) { 3705 case WLAN_ACTION_SPCT_MSR_REQ: 3706 if (status->band != NL80211_BAND_5GHZ) 3707 break; 3708 3709 if (len < (IEEE80211_MIN_ACTION_SIZE + 3710 sizeof(mgmt->u.action.u.measurement))) 3711 break; 3712 3713 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3714 break; 3715 3716 ieee80211_process_measurement_req(sdata, mgmt, len); 3717 goto handled; 3718 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3719 u8 *bssid; 3720 if (len < (IEEE80211_MIN_ACTION_SIZE + 3721 sizeof(mgmt->u.action.u.chan_switch))) 3722 break; 3723 3724 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3725 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3726 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3727 break; 3728 3729 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3730 bssid = sdata->deflink.u.mgd.bssid; 3731 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3732 bssid = sdata->u.ibss.bssid; 3733 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3734 bssid = mgmt->sa; 3735 else 3736 break; 3737 3738 if (!ether_addr_equal(mgmt->bssid, bssid)) 3739 break; 3740 3741 goto queue; 3742 } 3743 } 3744 break; 3745 case WLAN_CATEGORY_SELF_PROTECTED: 3746 if (len < (IEEE80211_MIN_ACTION_SIZE + 3747 sizeof(mgmt->u.action.u.self_prot.action_code))) 3748 break; 3749 3750 switch (mgmt->u.action.u.self_prot.action_code) { 3751 case WLAN_SP_MESH_PEERING_OPEN: 3752 case WLAN_SP_MESH_PEERING_CLOSE: 3753 case WLAN_SP_MESH_PEERING_CONFIRM: 3754 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3755 goto invalid; 3756 if (sdata->u.mesh.user_mpm) 3757 /* userspace handles this frame */ 3758 break; 3759 goto queue; 3760 case WLAN_SP_MGK_INFORM: 3761 case WLAN_SP_MGK_ACK: 3762 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3763 goto invalid; 3764 break; 3765 } 3766 break; 3767 case WLAN_CATEGORY_MESH_ACTION: 3768 if (len < (IEEE80211_MIN_ACTION_SIZE + 3769 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3770 break; 3771 3772 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3773 break; 3774 if (mesh_action_is_path_sel(mgmt) && 3775 !mesh_path_sel_is_hwmp(sdata)) 3776 break; 3777 goto queue; 3778 case WLAN_CATEGORY_S1G: 3779 if (len < offsetofend(typeof(*mgmt), 3780 u.action.u.s1g.action_code)) 3781 break; 3782 3783 switch (mgmt->u.action.u.s1g.action_code) { 3784 case WLAN_S1G_TWT_SETUP: 3785 case WLAN_S1G_TWT_TEARDOWN: 3786 if (ieee80211_process_rx_twt_action(rx)) 3787 goto queue; 3788 break; 3789 default: 3790 break; 3791 } 3792 break; 3793 case WLAN_CATEGORY_PROTECTED_EHT: 3794 if (len < offsetofend(typeof(*mgmt), 3795 u.action.u.ttlm_req.action_code)) 3796 break; 3797 3798 switch (mgmt->u.action.u.ttlm_req.action_code) { 3799 case WLAN_PROTECTED_EHT_ACTION_TTLM_REQ: 3800 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3801 break; 3802 3803 if (len < offsetofend(typeof(*mgmt), 3804 u.action.u.ttlm_req)) 3805 goto invalid; 3806 goto queue; 3807 case WLAN_PROTECTED_EHT_ACTION_TTLM_RES: 3808 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3809 break; 3810 3811 if (len < offsetofend(typeof(*mgmt), 3812 u.action.u.ttlm_res)) 3813 goto invalid; 3814 goto queue; 3815 default: 3816 break; 3817 } 3818 break; 3819 } 3820 3821 return RX_CONTINUE; 3822 3823 invalid: 3824 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3825 /* will return in the next handlers */ 3826 return RX_CONTINUE; 3827 3828 handled: 3829 if (rx->sta) 3830 rx->link_sta->rx_stats.packets++; 3831 dev_kfree_skb(rx->skb); 3832 return RX_QUEUED; 3833 3834 queue: 3835 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3836 return RX_QUEUED; 3837 } 3838 3839 static ieee80211_rx_result debug_noinline 3840 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3841 { 3842 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3843 struct cfg80211_rx_info info = { 3844 .freq = ieee80211_rx_status_to_khz(status), 3845 .buf = rx->skb->data, 3846 .len = rx->skb->len, 3847 .link_id = rx->link_id, 3848 .have_link_id = rx->link_id >= 0, 3849 }; 3850 3851 /* skip known-bad action frames and return them in the next handler */ 3852 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3853 return RX_CONTINUE; 3854 3855 /* 3856 * Getting here means the kernel doesn't know how to handle 3857 * it, but maybe userspace does ... include returned frames 3858 * so userspace can register for those to know whether ones 3859 * it transmitted were processed or returned. 3860 */ 3861 3862 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3863 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3864 info.sig_dbm = status->signal; 3865 3866 if (ieee80211_is_timing_measurement(rx->skb) || 3867 ieee80211_is_ftm(rx->skb)) { 3868 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3869 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3870 } 3871 3872 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3873 if (rx->sta) 3874 rx->link_sta->rx_stats.packets++; 3875 dev_kfree_skb(rx->skb); 3876 return RX_QUEUED; 3877 } 3878 3879 return RX_CONTINUE; 3880 } 3881 3882 static ieee80211_rx_result debug_noinline 3883 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3884 { 3885 struct ieee80211_sub_if_data *sdata = rx->sdata; 3886 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3887 int len = rx->skb->len; 3888 3889 if (!ieee80211_is_action(mgmt->frame_control)) 3890 return RX_CONTINUE; 3891 3892 switch (mgmt->u.action.category) { 3893 case WLAN_CATEGORY_SA_QUERY: 3894 if (len < (IEEE80211_MIN_ACTION_SIZE + 3895 sizeof(mgmt->u.action.u.sa_query))) 3896 break; 3897 3898 switch (mgmt->u.action.u.sa_query.action) { 3899 case WLAN_ACTION_SA_QUERY_REQUEST: 3900 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3901 break; 3902 ieee80211_process_sa_query_req(sdata, mgmt, len); 3903 goto handled; 3904 } 3905 break; 3906 } 3907 3908 return RX_CONTINUE; 3909 3910 handled: 3911 if (rx->sta) 3912 rx->link_sta->rx_stats.packets++; 3913 dev_kfree_skb(rx->skb); 3914 return RX_QUEUED; 3915 } 3916 3917 static ieee80211_rx_result debug_noinline 3918 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3919 { 3920 struct ieee80211_local *local = rx->local; 3921 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3922 struct sk_buff *nskb; 3923 struct ieee80211_sub_if_data *sdata = rx->sdata; 3924 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3925 3926 if (!ieee80211_is_action(mgmt->frame_control)) 3927 return RX_CONTINUE; 3928 3929 /* 3930 * For AP mode, hostapd is responsible for handling any action 3931 * frames that we didn't handle, including returning unknown 3932 * ones. For all other modes we will return them to the sender, 3933 * setting the 0x80 bit in the action category, as required by 3934 * 802.11-2012 9.24.4. 3935 * Newer versions of hostapd shall also use the management frame 3936 * registration mechanisms, but older ones still use cooked 3937 * monitor interfaces so push all frames there. 3938 */ 3939 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3940 (sdata->vif.type == NL80211_IFTYPE_AP || 3941 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3942 return RX_DROP_MONITOR; 3943 3944 if (is_multicast_ether_addr(mgmt->da)) 3945 return RX_DROP_MONITOR; 3946 3947 /* do not return rejected action frames */ 3948 if (mgmt->u.action.category & 0x80) 3949 return RX_DROP_U_REJECTED_ACTION_RESPONSE; 3950 3951 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3952 GFP_ATOMIC); 3953 if (nskb) { 3954 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3955 3956 nmgmt->u.action.category |= 0x80; 3957 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3958 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3959 3960 memset(nskb->cb, 0, sizeof(nskb->cb)); 3961 3962 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3963 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3964 3965 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3966 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3967 IEEE80211_TX_CTL_NO_CCK_RATE; 3968 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3969 info->hw_queue = 3970 local->hw.offchannel_tx_hw_queue; 3971 } 3972 3973 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3974 status->band); 3975 } 3976 3977 return RX_DROP_U_UNKNOWN_ACTION_REJECTED; 3978 } 3979 3980 static ieee80211_rx_result debug_noinline 3981 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3982 { 3983 struct ieee80211_sub_if_data *sdata = rx->sdata; 3984 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3985 3986 if (!ieee80211_is_ext(hdr->frame_control)) 3987 return RX_CONTINUE; 3988 3989 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3990 return RX_DROP_MONITOR; 3991 3992 /* for now only beacons are ext, so queue them */ 3993 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3994 3995 return RX_QUEUED; 3996 } 3997 3998 static ieee80211_rx_result debug_noinline 3999 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 4000 { 4001 struct ieee80211_sub_if_data *sdata = rx->sdata; 4002 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 4003 __le16 stype; 4004 4005 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 4006 4007 if (!ieee80211_vif_is_mesh(&sdata->vif) && 4008 sdata->vif.type != NL80211_IFTYPE_ADHOC && 4009 sdata->vif.type != NL80211_IFTYPE_OCB && 4010 sdata->vif.type != NL80211_IFTYPE_STATION) 4011 return RX_DROP_MONITOR; 4012 4013 switch (stype) { 4014 case cpu_to_le16(IEEE80211_STYPE_AUTH): 4015 case cpu_to_le16(IEEE80211_STYPE_BEACON): 4016 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 4017 /* process for all: mesh, mlme, ibss */ 4018 break; 4019 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 4020 if (is_multicast_ether_addr(mgmt->da) && 4021 !is_broadcast_ether_addr(mgmt->da)) 4022 return RX_DROP_MONITOR; 4023 4024 /* process only for station/IBSS */ 4025 if (sdata->vif.type != NL80211_IFTYPE_STATION && 4026 sdata->vif.type != NL80211_IFTYPE_ADHOC) 4027 return RX_DROP_MONITOR; 4028 break; 4029 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 4030 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 4031 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 4032 if (is_multicast_ether_addr(mgmt->da) && 4033 !is_broadcast_ether_addr(mgmt->da)) 4034 return RX_DROP_MONITOR; 4035 4036 /* process only for station */ 4037 if (sdata->vif.type != NL80211_IFTYPE_STATION) 4038 return RX_DROP_MONITOR; 4039 break; 4040 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 4041 /* process only for ibss and mesh */ 4042 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4043 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4044 return RX_DROP_MONITOR; 4045 break; 4046 default: 4047 return RX_DROP_MONITOR; 4048 } 4049 4050 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 4051 4052 return RX_QUEUED; 4053 } 4054 4055 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 4056 struct ieee80211_rate *rate, 4057 ieee80211_rx_result reason) 4058 { 4059 struct ieee80211_sub_if_data *sdata; 4060 struct ieee80211_local *local = rx->local; 4061 struct sk_buff *skb = rx->skb, *skb2; 4062 struct net_device *prev_dev = NULL; 4063 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4064 int needed_headroom; 4065 4066 /* 4067 * If cooked monitor has been processed already, then 4068 * don't do it again. If not, set the flag. 4069 */ 4070 if (rx->flags & IEEE80211_RX_CMNTR) 4071 goto out_free_skb; 4072 rx->flags |= IEEE80211_RX_CMNTR; 4073 4074 /* If there are no cooked monitor interfaces, just free the SKB */ 4075 if (!local->cooked_mntrs) 4076 goto out_free_skb; 4077 4078 /* room for the radiotap header based on driver features */ 4079 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 4080 4081 if (skb_headroom(skb) < needed_headroom && 4082 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 4083 goto out_free_skb; 4084 4085 /* prepend radiotap information */ 4086 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 4087 false); 4088 4089 skb_reset_mac_header(skb); 4090 skb->ip_summed = CHECKSUM_UNNECESSARY; 4091 skb->pkt_type = PACKET_OTHERHOST; 4092 skb->protocol = htons(ETH_P_802_2); 4093 4094 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4095 if (!ieee80211_sdata_running(sdata)) 4096 continue; 4097 4098 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 4099 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 4100 continue; 4101 4102 if (prev_dev) { 4103 skb2 = skb_clone(skb, GFP_ATOMIC); 4104 if (skb2) { 4105 skb2->dev = prev_dev; 4106 netif_receive_skb(skb2); 4107 } 4108 } 4109 4110 prev_dev = sdata->dev; 4111 dev_sw_netstats_rx_add(sdata->dev, skb->len); 4112 } 4113 4114 if (prev_dev) { 4115 skb->dev = prev_dev; 4116 netif_receive_skb(skb); 4117 return; 4118 } 4119 4120 out_free_skb: 4121 kfree_skb_reason(skb, (__force u32)reason); 4122 } 4123 4124 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 4125 ieee80211_rx_result res) 4126 { 4127 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4128 struct ieee80211_supported_band *sband; 4129 struct ieee80211_rate *rate = NULL; 4130 4131 if (res == RX_QUEUED) { 4132 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 4133 return; 4134 } 4135 4136 if (res != RX_CONTINUE) { 4137 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 4138 if (rx->sta) 4139 rx->link_sta->rx_stats.dropped++; 4140 } 4141 4142 if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) == 4143 SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) { 4144 kfree_skb_reason(rx->skb, (__force u32)res); 4145 return; 4146 } 4147 4148 sband = rx->local->hw.wiphy->bands[status->band]; 4149 if (status->encoding == RX_ENC_LEGACY) 4150 rate = &sband->bitrates[status->rate_idx]; 4151 4152 ieee80211_rx_cooked_monitor(rx, rate, res); 4153 } 4154 4155 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 4156 struct sk_buff_head *frames) 4157 { 4158 ieee80211_rx_result res = RX_DROP_MONITOR; 4159 struct sk_buff *skb; 4160 4161 #define CALL_RXH(rxh) \ 4162 do { \ 4163 res = rxh(rx); \ 4164 if (res != RX_CONTINUE) \ 4165 goto rxh_next; \ 4166 } while (0) 4167 4168 /* Lock here to avoid hitting all of the data used in the RX 4169 * path (e.g. key data, station data, ...) concurrently when 4170 * a frame is released from the reorder buffer due to timeout 4171 * from the timer, potentially concurrently with RX from the 4172 * driver. 4173 */ 4174 spin_lock_bh(&rx->local->rx_path_lock); 4175 4176 while ((skb = __skb_dequeue(frames))) { 4177 /* 4178 * all the other fields are valid across frames 4179 * that belong to an aMPDU since they are on the 4180 * same TID from the same station 4181 */ 4182 rx->skb = skb; 4183 4184 if (WARN_ON_ONCE(!rx->link)) 4185 goto rxh_next; 4186 4187 CALL_RXH(ieee80211_rx_h_check_more_data); 4188 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4189 CALL_RXH(ieee80211_rx_h_sta_process); 4190 CALL_RXH(ieee80211_rx_h_decrypt); 4191 CALL_RXH(ieee80211_rx_h_defragment); 4192 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4193 /* must be after MMIC verify so header is counted in MPDU mic */ 4194 CALL_RXH(ieee80211_rx_h_amsdu); 4195 CALL_RXH(ieee80211_rx_h_data); 4196 4197 /* special treatment -- needs the queue */ 4198 res = ieee80211_rx_h_ctrl(rx, frames); 4199 if (res != RX_CONTINUE) 4200 goto rxh_next; 4201 4202 CALL_RXH(ieee80211_rx_h_mgmt_check); 4203 CALL_RXH(ieee80211_rx_h_action); 4204 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4205 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4206 CALL_RXH(ieee80211_rx_h_action_return); 4207 CALL_RXH(ieee80211_rx_h_ext); 4208 CALL_RXH(ieee80211_rx_h_mgmt); 4209 4210 rxh_next: 4211 ieee80211_rx_handlers_result(rx, res); 4212 4213 #undef CALL_RXH 4214 } 4215 4216 spin_unlock_bh(&rx->local->rx_path_lock); 4217 } 4218 4219 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4220 { 4221 struct sk_buff_head reorder_release; 4222 ieee80211_rx_result res = RX_DROP_MONITOR; 4223 4224 __skb_queue_head_init(&reorder_release); 4225 4226 #define CALL_RXH(rxh) \ 4227 do { \ 4228 res = rxh(rx); \ 4229 if (res != RX_CONTINUE) \ 4230 goto rxh_next; \ 4231 } while (0) 4232 4233 CALL_RXH(ieee80211_rx_h_check_dup); 4234 CALL_RXH(ieee80211_rx_h_check); 4235 4236 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4237 4238 ieee80211_rx_handlers(rx, &reorder_release); 4239 return; 4240 4241 rxh_next: 4242 ieee80211_rx_handlers_result(rx, res); 4243 4244 #undef CALL_RXH 4245 } 4246 4247 static bool 4248 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4249 { 4250 return !!(sta->valid_links & BIT(link_id)); 4251 } 4252 4253 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4254 u8 link_id) 4255 { 4256 rx->link_id = link_id; 4257 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4258 4259 if (!rx->sta) 4260 return rx->link; 4261 4262 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4263 return false; 4264 4265 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4266 4267 return rx->link && rx->link_sta; 4268 } 4269 4270 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4271 struct sta_info *sta, int link_id) 4272 { 4273 rx->link_id = link_id; 4274 rx->sta = sta; 4275 4276 if (sta) { 4277 rx->local = sta->sdata->local; 4278 if (!rx->sdata) 4279 rx->sdata = sta->sdata; 4280 rx->link_sta = &sta->deflink; 4281 } else { 4282 rx->link_sta = NULL; 4283 } 4284 4285 if (link_id < 0) 4286 rx->link = &rx->sdata->deflink; 4287 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4288 return false; 4289 4290 return true; 4291 } 4292 4293 /* 4294 * This function makes calls into the RX path, therefore 4295 * it has to be invoked under RCU read lock. 4296 */ 4297 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4298 { 4299 struct sk_buff_head frames; 4300 struct ieee80211_rx_data rx = { 4301 /* This is OK -- must be QoS data frame */ 4302 .security_idx = tid, 4303 .seqno_idx = tid, 4304 }; 4305 struct tid_ampdu_rx *tid_agg_rx; 4306 int link_id = -1; 4307 4308 /* FIXME: statistics won't be right with this */ 4309 if (sta->sta.valid_links) 4310 link_id = ffs(sta->sta.valid_links) - 1; 4311 4312 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4313 return; 4314 4315 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4316 if (!tid_agg_rx) 4317 return; 4318 4319 __skb_queue_head_init(&frames); 4320 4321 spin_lock(&tid_agg_rx->reorder_lock); 4322 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4323 spin_unlock(&tid_agg_rx->reorder_lock); 4324 4325 if (!skb_queue_empty(&frames)) { 4326 struct ieee80211_event event = { 4327 .type = BA_FRAME_TIMEOUT, 4328 .u.ba.tid = tid, 4329 .u.ba.sta = &sta->sta, 4330 }; 4331 drv_event_callback(rx.local, rx.sdata, &event); 4332 } 4333 4334 ieee80211_rx_handlers(&rx, &frames); 4335 } 4336 4337 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4338 u16 ssn, u64 filtered, 4339 u16 received_mpdus) 4340 { 4341 struct ieee80211_local *local; 4342 struct sta_info *sta; 4343 struct tid_ampdu_rx *tid_agg_rx; 4344 struct sk_buff_head frames; 4345 struct ieee80211_rx_data rx = { 4346 /* This is OK -- must be QoS data frame */ 4347 .security_idx = tid, 4348 .seqno_idx = tid, 4349 }; 4350 int i, diff; 4351 4352 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4353 return; 4354 4355 __skb_queue_head_init(&frames); 4356 4357 sta = container_of(pubsta, struct sta_info, sta); 4358 4359 local = sta->sdata->local; 4360 WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64, 4361 "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n", 4362 local->hw.max_rx_aggregation_subframes); 4363 4364 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4365 return; 4366 4367 rcu_read_lock(); 4368 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4369 if (!tid_agg_rx) 4370 goto out; 4371 4372 spin_lock_bh(&tid_agg_rx->reorder_lock); 4373 4374 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4375 int release; 4376 4377 /* release all frames in the reorder buffer */ 4378 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4379 IEEE80211_SN_MODULO; 4380 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4381 release, &frames); 4382 /* update ssn to match received ssn */ 4383 tid_agg_rx->head_seq_num = ssn; 4384 } else { 4385 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4386 &frames); 4387 } 4388 4389 /* handle the case that received ssn is behind the mac ssn. 4390 * it can be tid_agg_rx->buf_size behind and still be valid */ 4391 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4392 if (diff >= tid_agg_rx->buf_size) { 4393 tid_agg_rx->reorder_buf_filtered = 0; 4394 goto release; 4395 } 4396 filtered = filtered >> diff; 4397 ssn += diff; 4398 4399 /* update bitmap */ 4400 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4401 int index = (ssn + i) % tid_agg_rx->buf_size; 4402 4403 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4404 if (filtered & BIT_ULL(i)) 4405 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4406 } 4407 4408 /* now process also frames that the filter marking released */ 4409 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4410 4411 release: 4412 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4413 4414 ieee80211_rx_handlers(&rx, &frames); 4415 4416 out: 4417 rcu_read_unlock(); 4418 } 4419 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4420 4421 /* main receive path */ 4422 4423 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4424 { 4425 return ether_addr_equal(raddr, addr) || 4426 is_broadcast_ether_addr(raddr); 4427 } 4428 4429 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4430 { 4431 struct ieee80211_sub_if_data *sdata = rx->sdata; 4432 struct sk_buff *skb = rx->skb; 4433 struct ieee80211_hdr *hdr = (void *)skb->data; 4434 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4435 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4436 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4437 ieee80211_is_s1g_beacon(hdr->frame_control); 4438 4439 switch (sdata->vif.type) { 4440 case NL80211_IFTYPE_STATION: 4441 if (!bssid && !sdata->u.mgd.use_4addr) 4442 return false; 4443 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4444 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4445 return false; 4446 if (multicast) 4447 return true; 4448 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4449 case NL80211_IFTYPE_ADHOC: 4450 if (!bssid) 4451 return false; 4452 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4453 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4454 !is_valid_ether_addr(hdr->addr2)) 4455 return false; 4456 if (ieee80211_is_beacon(hdr->frame_control)) 4457 return true; 4458 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4459 return false; 4460 if (!multicast && 4461 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4462 return false; 4463 if (!rx->sta) { 4464 int rate_idx; 4465 if (status->encoding != RX_ENC_LEGACY) 4466 rate_idx = 0; /* TODO: HT/VHT rates */ 4467 else 4468 rate_idx = status->rate_idx; 4469 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4470 BIT(rate_idx)); 4471 } 4472 return true; 4473 case NL80211_IFTYPE_OCB: 4474 if (!bssid) 4475 return false; 4476 if (!ieee80211_is_data_present(hdr->frame_control)) 4477 return false; 4478 if (!is_broadcast_ether_addr(bssid)) 4479 return false; 4480 if (!multicast && 4481 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4482 return false; 4483 if (!rx->sta) { 4484 int rate_idx; 4485 if (status->encoding != RX_ENC_LEGACY) 4486 rate_idx = 0; /* TODO: HT rates */ 4487 else 4488 rate_idx = status->rate_idx; 4489 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4490 BIT(rate_idx)); 4491 } 4492 return true; 4493 case NL80211_IFTYPE_MESH_POINT: 4494 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4495 return false; 4496 if (multicast) 4497 return true; 4498 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4499 case NL80211_IFTYPE_AP_VLAN: 4500 case NL80211_IFTYPE_AP: 4501 if (!bssid) 4502 return ieee80211_is_our_addr(sdata, hdr->addr1, 4503 &rx->link_id); 4504 4505 if (!is_broadcast_ether_addr(bssid) && 4506 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4507 /* 4508 * Accept public action frames even when the 4509 * BSSID doesn't match, this is used for P2P 4510 * and location updates. Note that mac80211 4511 * itself never looks at these frames. 4512 */ 4513 if (!multicast && 4514 !ieee80211_is_our_addr(sdata, hdr->addr1, 4515 &rx->link_id)) 4516 return false; 4517 if (ieee80211_is_public_action(hdr, skb->len)) 4518 return true; 4519 return ieee80211_is_beacon(hdr->frame_control); 4520 } 4521 4522 if (!ieee80211_has_tods(hdr->frame_control)) { 4523 /* ignore data frames to TDLS-peers */ 4524 if (ieee80211_is_data(hdr->frame_control)) 4525 return false; 4526 /* ignore action frames to TDLS-peers */ 4527 if (ieee80211_is_action(hdr->frame_control) && 4528 !is_broadcast_ether_addr(bssid) && 4529 !ether_addr_equal(bssid, hdr->addr1)) 4530 return false; 4531 } 4532 4533 /* 4534 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4535 * the BSSID - we've checked that already but may have accepted 4536 * the wildcard (ff:ff:ff:ff:ff:ff). 4537 * 4538 * It also says: 4539 * The BSSID of the Data frame is determined as follows: 4540 * a) If the STA is contained within an AP or is associated 4541 * with an AP, the BSSID is the address currently in use 4542 * by the STA contained in the AP. 4543 * 4544 * So we should not accept data frames with an address that's 4545 * multicast. 4546 * 4547 * Accepting it also opens a security problem because stations 4548 * could encrypt it with the GTK and inject traffic that way. 4549 */ 4550 if (ieee80211_is_data(hdr->frame_control) && multicast) 4551 return false; 4552 4553 return true; 4554 case NL80211_IFTYPE_P2P_DEVICE: 4555 return ieee80211_is_public_action(hdr, skb->len) || 4556 ieee80211_is_probe_req(hdr->frame_control) || 4557 ieee80211_is_probe_resp(hdr->frame_control) || 4558 ieee80211_is_beacon(hdr->frame_control); 4559 case NL80211_IFTYPE_NAN: 4560 /* Currently no frames on NAN interface are allowed */ 4561 return false; 4562 default: 4563 break; 4564 } 4565 4566 WARN_ON_ONCE(1); 4567 return false; 4568 } 4569 4570 void ieee80211_check_fast_rx(struct sta_info *sta) 4571 { 4572 struct ieee80211_sub_if_data *sdata = sta->sdata; 4573 struct ieee80211_local *local = sdata->local; 4574 struct ieee80211_key *key; 4575 struct ieee80211_fast_rx fastrx = { 4576 .dev = sdata->dev, 4577 .vif_type = sdata->vif.type, 4578 .control_port_protocol = sdata->control_port_protocol, 4579 }, *old, *new = NULL; 4580 u32 offload_flags; 4581 bool set_offload = false; 4582 bool assign = false; 4583 bool offload; 4584 4585 /* use sparse to check that we don't return without updating */ 4586 __acquire(check_fast_rx); 4587 4588 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4589 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4590 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4591 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4592 4593 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4594 4595 /* fast-rx doesn't do reordering */ 4596 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4597 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4598 goto clear; 4599 4600 switch (sdata->vif.type) { 4601 case NL80211_IFTYPE_STATION: 4602 if (sta->sta.tdls) { 4603 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4604 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4605 fastrx.expected_ds_bits = 0; 4606 } else { 4607 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4608 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4609 fastrx.expected_ds_bits = 4610 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4611 } 4612 4613 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4614 fastrx.expected_ds_bits |= 4615 cpu_to_le16(IEEE80211_FCTL_TODS); 4616 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4617 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4618 } 4619 4620 if (!sdata->u.mgd.powersave) 4621 break; 4622 4623 /* software powersave is a huge mess, avoid all of it */ 4624 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4625 goto clear; 4626 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4627 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4628 goto clear; 4629 break; 4630 case NL80211_IFTYPE_AP_VLAN: 4631 case NL80211_IFTYPE_AP: 4632 /* parallel-rx requires this, at least with calls to 4633 * ieee80211_sta_ps_transition() 4634 */ 4635 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4636 goto clear; 4637 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4638 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4639 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4640 4641 fastrx.internal_forward = 4642 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4643 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4644 !sdata->u.vlan.sta); 4645 4646 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4647 sdata->u.vlan.sta) { 4648 fastrx.expected_ds_bits |= 4649 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4650 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4651 fastrx.internal_forward = 0; 4652 } 4653 4654 break; 4655 case NL80211_IFTYPE_MESH_POINT: 4656 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS | 4657 IEEE80211_FCTL_TODS); 4658 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4659 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4660 break; 4661 default: 4662 goto clear; 4663 } 4664 4665 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4666 goto clear; 4667 4668 rcu_read_lock(); 4669 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4670 if (!key) 4671 key = rcu_dereference(sdata->default_unicast_key); 4672 if (key) { 4673 switch (key->conf.cipher) { 4674 case WLAN_CIPHER_SUITE_TKIP: 4675 /* we don't want to deal with MMIC in fast-rx */ 4676 goto clear_rcu; 4677 case WLAN_CIPHER_SUITE_CCMP: 4678 case WLAN_CIPHER_SUITE_CCMP_256: 4679 case WLAN_CIPHER_SUITE_GCMP: 4680 case WLAN_CIPHER_SUITE_GCMP_256: 4681 break; 4682 default: 4683 /* We also don't want to deal with 4684 * WEP or cipher scheme. 4685 */ 4686 goto clear_rcu; 4687 } 4688 4689 fastrx.key = true; 4690 fastrx.icv_len = key->conf.icv_len; 4691 } 4692 4693 assign = true; 4694 clear_rcu: 4695 rcu_read_unlock(); 4696 clear: 4697 __release(check_fast_rx); 4698 4699 if (assign) 4700 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4701 4702 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4703 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4704 4705 if (assign && offload) 4706 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4707 else 4708 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4709 4710 if (set_offload) 4711 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4712 4713 spin_lock_bh(&sta->lock); 4714 old = rcu_dereference_protected(sta->fast_rx, true); 4715 rcu_assign_pointer(sta->fast_rx, new); 4716 spin_unlock_bh(&sta->lock); 4717 4718 if (old) 4719 kfree_rcu(old, rcu_head); 4720 } 4721 4722 void ieee80211_clear_fast_rx(struct sta_info *sta) 4723 { 4724 struct ieee80211_fast_rx *old; 4725 4726 spin_lock_bh(&sta->lock); 4727 old = rcu_dereference_protected(sta->fast_rx, true); 4728 RCU_INIT_POINTER(sta->fast_rx, NULL); 4729 spin_unlock_bh(&sta->lock); 4730 4731 if (old) 4732 kfree_rcu(old, rcu_head); 4733 } 4734 4735 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4736 { 4737 struct ieee80211_local *local = sdata->local; 4738 struct sta_info *sta; 4739 4740 lockdep_assert_wiphy(local->hw.wiphy); 4741 4742 list_for_each_entry(sta, &local->sta_list, list) { 4743 if (sdata != sta->sdata && 4744 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4745 continue; 4746 ieee80211_check_fast_rx(sta); 4747 } 4748 } 4749 4750 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4751 { 4752 struct ieee80211_local *local = sdata->local; 4753 4754 lockdep_assert_wiphy(local->hw.wiphy); 4755 4756 __ieee80211_check_fast_rx_iface(sdata); 4757 } 4758 4759 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4760 struct ieee80211_fast_rx *fast_rx, 4761 int orig_len) 4762 { 4763 struct ieee80211_sta_rx_stats *stats; 4764 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4765 struct sta_info *sta = rx->sta; 4766 struct link_sta_info *link_sta; 4767 struct sk_buff *skb = rx->skb; 4768 void *sa = skb->data + ETH_ALEN; 4769 void *da = skb->data; 4770 4771 if (rx->link_id >= 0) { 4772 link_sta = rcu_dereference(sta->link[rx->link_id]); 4773 if (WARN_ON_ONCE(!link_sta)) { 4774 dev_kfree_skb(rx->skb); 4775 return; 4776 } 4777 } else { 4778 link_sta = &sta->deflink; 4779 } 4780 4781 stats = &link_sta->rx_stats; 4782 if (fast_rx->uses_rss) 4783 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4784 4785 /* statistics part of ieee80211_rx_h_sta_process() */ 4786 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4787 stats->last_signal = status->signal; 4788 if (!fast_rx->uses_rss) 4789 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4790 -status->signal); 4791 } 4792 4793 if (status->chains) { 4794 int i; 4795 4796 stats->chains = status->chains; 4797 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4798 int signal = status->chain_signal[i]; 4799 4800 if (!(status->chains & BIT(i))) 4801 continue; 4802 4803 stats->chain_signal_last[i] = signal; 4804 if (!fast_rx->uses_rss) 4805 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4806 -signal); 4807 } 4808 } 4809 /* end of statistics */ 4810 4811 stats->last_rx = jiffies; 4812 stats->last_rate = sta_stats_encode_rate(status); 4813 4814 stats->fragments++; 4815 stats->packets++; 4816 4817 skb->dev = fast_rx->dev; 4818 4819 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4820 4821 /* The seqno index has the same property as needed 4822 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4823 * for non-QoS-data frames. Here we know it's a data 4824 * frame, so count MSDUs. 4825 */ 4826 u64_stats_update_begin(&stats->syncp); 4827 stats->msdu[rx->seqno_idx]++; 4828 stats->bytes += orig_len; 4829 u64_stats_update_end(&stats->syncp); 4830 4831 if (fast_rx->internal_forward) { 4832 struct sk_buff *xmit_skb = NULL; 4833 if (is_multicast_ether_addr(da)) { 4834 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4835 } else if (!ether_addr_equal(da, sa) && 4836 sta_info_get(rx->sdata, da)) { 4837 xmit_skb = skb; 4838 skb = NULL; 4839 } 4840 4841 if (xmit_skb) { 4842 /* 4843 * Send to wireless media and increase priority by 256 4844 * to keep the received priority instead of 4845 * reclassifying the frame (see cfg80211_classify8021d). 4846 */ 4847 xmit_skb->priority += 256; 4848 xmit_skb->protocol = htons(ETH_P_802_3); 4849 skb_reset_network_header(xmit_skb); 4850 skb_reset_mac_header(xmit_skb); 4851 dev_queue_xmit(xmit_skb); 4852 } 4853 4854 if (!skb) 4855 return; 4856 } 4857 4858 /* deliver to local stack */ 4859 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4860 ieee80211_deliver_skb_to_local_stack(skb, rx); 4861 } 4862 4863 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4864 struct ieee80211_fast_rx *fast_rx) 4865 { 4866 struct sk_buff *skb = rx->skb; 4867 struct ieee80211_hdr *hdr = (void *)skb->data; 4868 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4869 static ieee80211_rx_result res; 4870 int orig_len = skb->len; 4871 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4872 int snap_offs = hdrlen; 4873 struct { 4874 u8 snap[sizeof(rfc1042_header)]; 4875 __be16 proto; 4876 } *payload __aligned(2); 4877 struct { 4878 u8 da[ETH_ALEN]; 4879 u8 sa[ETH_ALEN]; 4880 } addrs __aligned(2); 4881 struct ieee80211_sta_rx_stats *stats; 4882 4883 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4884 * to a common data structure; drivers can implement that per queue 4885 * but we don't have that information in mac80211 4886 */ 4887 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4888 return false; 4889 4890 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4891 4892 /* If using encryption, we also need to have: 4893 * - PN_VALIDATED: similar, but the implementation is tricky 4894 * - DECRYPTED: necessary for PN_VALIDATED 4895 */ 4896 if (fast_rx->key && 4897 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4898 return false; 4899 4900 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4901 return false; 4902 4903 if (unlikely(ieee80211_is_frag(hdr))) 4904 return false; 4905 4906 /* Since our interface address cannot be multicast, this 4907 * implicitly also rejects multicast frames without the 4908 * explicit check. 4909 * 4910 * We shouldn't get any *data* frames not addressed to us 4911 * (AP mode will accept multicast *management* frames), but 4912 * punting here will make it go through the full checks in 4913 * ieee80211_accept_frame(). 4914 */ 4915 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4916 return false; 4917 4918 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4919 IEEE80211_FCTL_TODS)) != 4920 fast_rx->expected_ds_bits) 4921 return false; 4922 4923 /* assign the key to drop unencrypted frames (later) 4924 * and strip the IV/MIC if necessary 4925 */ 4926 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4927 /* GCMP header length is the same */ 4928 snap_offs += IEEE80211_CCMP_HDR_LEN; 4929 } 4930 4931 if (!ieee80211_vif_is_mesh(&rx->sdata->vif) && 4932 !(status->rx_flags & IEEE80211_RX_AMSDU)) { 4933 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4934 return false; 4935 4936 payload = (void *)(skb->data + snap_offs); 4937 4938 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4939 return false; 4940 4941 /* Don't handle these here since they require special code. 4942 * Accept AARP and IPX even though they should come with a 4943 * bridge-tunnel header - but if we get them this way then 4944 * there's little point in discarding them. 4945 */ 4946 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4947 payload->proto == fast_rx->control_port_protocol)) 4948 return false; 4949 } 4950 4951 /* after this point, don't punt to the slowpath! */ 4952 4953 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4954 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4955 goto drop; 4956 4957 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4958 goto drop; 4959 4960 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4961 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4962 RX_QUEUED) 4963 goto drop; 4964 4965 return true; 4966 } 4967 4968 /* do the header conversion - first grab the addresses */ 4969 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4970 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4971 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) { 4972 skb_pull(skb, snap_offs - 2); 4973 put_unaligned_be16(skb->len - 2, skb->data); 4974 } else { 4975 skb_postpull_rcsum(skb, skb->data + snap_offs, 4976 sizeof(rfc1042_header) + 2); 4977 4978 /* remove the SNAP but leave the ethertype */ 4979 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4980 } 4981 /* push the addresses in front */ 4982 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4983 4984 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 4985 switch (res) { 4986 case RX_QUEUED: 4987 return true; 4988 case RX_CONTINUE: 4989 break; 4990 default: 4991 goto drop; 4992 } 4993 4994 ieee80211_rx_8023(rx, fast_rx, orig_len); 4995 4996 return true; 4997 drop: 4998 dev_kfree_skb(skb); 4999 5000 if (fast_rx->uses_rss) 5001 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 5002 else 5003 stats = &rx->link_sta->rx_stats; 5004 5005 stats->dropped++; 5006 return true; 5007 } 5008 5009 /* 5010 * This function returns whether or not the SKB 5011 * was destined for RX processing or not, which, 5012 * if consume is true, is equivalent to whether 5013 * or not the skb was consumed. 5014 */ 5015 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 5016 struct sk_buff *skb, bool consume) 5017 { 5018 struct ieee80211_local *local = rx->local; 5019 struct ieee80211_sub_if_data *sdata = rx->sdata; 5020 struct ieee80211_hdr *hdr = (void *)skb->data; 5021 struct link_sta_info *link_sta = rx->link_sta; 5022 struct ieee80211_link_data *link = rx->link; 5023 5024 rx->skb = skb; 5025 5026 /* See if we can do fast-rx; if we have to copy we already lost, 5027 * so punt in that case. We should never have to deliver a data 5028 * frame to multiple interfaces anyway. 5029 * 5030 * We skip the ieee80211_accept_frame() call and do the necessary 5031 * checking inside ieee80211_invoke_fast_rx(). 5032 */ 5033 if (consume && rx->sta) { 5034 struct ieee80211_fast_rx *fast_rx; 5035 5036 fast_rx = rcu_dereference(rx->sta->fast_rx); 5037 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 5038 return true; 5039 } 5040 5041 if (!ieee80211_accept_frame(rx)) 5042 return false; 5043 5044 if (!consume) { 5045 struct skb_shared_hwtstamps *shwt; 5046 5047 rx->skb = skb_copy(skb, GFP_ATOMIC); 5048 if (!rx->skb) { 5049 if (net_ratelimit()) 5050 wiphy_debug(local->hw.wiphy, 5051 "failed to copy skb for %s\n", 5052 sdata->name); 5053 return true; 5054 } 5055 5056 /* skb_copy() does not copy the hw timestamps, so copy it 5057 * explicitly 5058 */ 5059 shwt = skb_hwtstamps(rx->skb); 5060 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 5061 5062 /* Update the hdr pointer to the new skb for translation below */ 5063 hdr = (struct ieee80211_hdr *)rx->skb->data; 5064 } 5065 5066 if (unlikely(rx->sta && rx->sta->sta.mlo) && 5067 is_unicast_ether_addr(hdr->addr1) && 5068 !ieee80211_is_probe_resp(hdr->frame_control) && 5069 !ieee80211_is_beacon(hdr->frame_control)) { 5070 /* translate to MLD addresses */ 5071 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 5072 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 5073 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 5074 ether_addr_copy(hdr->addr2, rx->sta->addr); 5075 /* translate A3 only if it's the BSSID */ 5076 if (!ieee80211_has_tods(hdr->frame_control) && 5077 !ieee80211_has_fromds(hdr->frame_control)) { 5078 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 5079 ether_addr_copy(hdr->addr3, rx->sta->addr); 5080 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 5081 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 5082 } 5083 /* not needed for A4 since it can only carry the SA */ 5084 } 5085 5086 ieee80211_invoke_rx_handlers(rx); 5087 return true; 5088 } 5089 5090 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 5091 struct ieee80211_sta *pubsta, 5092 struct sk_buff *skb, 5093 struct list_head *list) 5094 { 5095 struct ieee80211_local *local = hw_to_local(hw); 5096 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5097 struct ieee80211_fast_rx *fast_rx; 5098 struct ieee80211_rx_data rx; 5099 struct sta_info *sta; 5100 int link_id = -1; 5101 5102 memset(&rx, 0, sizeof(rx)); 5103 rx.skb = skb; 5104 rx.local = local; 5105 rx.list = list; 5106 rx.link_id = -1; 5107 5108 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5109 5110 /* drop frame if too short for header */ 5111 if (skb->len < sizeof(struct ethhdr)) 5112 goto drop; 5113 5114 if (!pubsta) 5115 goto drop; 5116 5117 if (status->link_valid) 5118 link_id = status->link_id; 5119 5120 /* 5121 * TODO: Should the frame be dropped if the right link_id is not 5122 * available? Or may be it is fine in the current form to proceed with 5123 * the frame processing because with frame being in 802.3 format, 5124 * link_id is used only for stats purpose and updating the stats on 5125 * the deflink is fine? 5126 */ 5127 sta = container_of(pubsta, struct sta_info, sta); 5128 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5129 goto drop; 5130 5131 fast_rx = rcu_dereference(rx.sta->fast_rx); 5132 if (!fast_rx) 5133 goto drop; 5134 5135 ieee80211_rx_8023(&rx, fast_rx, skb->len); 5136 return; 5137 5138 drop: 5139 dev_kfree_skb(skb); 5140 } 5141 5142 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 5143 struct sk_buff *skb, bool consume) 5144 { 5145 struct link_sta_info *link_sta; 5146 struct ieee80211_hdr *hdr = (void *)skb->data; 5147 struct sta_info *sta; 5148 int link_id = -1; 5149 5150 /* 5151 * Look up link station first, in case there's a 5152 * chance that they might have a link address that 5153 * is identical to the MLD address, that way we'll 5154 * have the link information if needed. 5155 */ 5156 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 5157 if (link_sta) { 5158 sta = link_sta->sta; 5159 link_id = link_sta->link_id; 5160 } else { 5161 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5162 5163 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 5164 if (status->link_valid) 5165 link_id = status->link_id; 5166 } 5167 5168 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 5169 return false; 5170 5171 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 5172 } 5173 5174 /* 5175 * This is the actual Rx frames handler. as it belongs to Rx path it must 5176 * be called with rcu_read_lock protection. 5177 */ 5178 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 5179 struct ieee80211_sta *pubsta, 5180 struct sk_buff *skb, 5181 struct list_head *list) 5182 { 5183 struct ieee80211_local *local = hw_to_local(hw); 5184 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5185 struct ieee80211_sub_if_data *sdata; 5186 struct ieee80211_hdr *hdr; 5187 __le16 fc; 5188 struct ieee80211_rx_data rx; 5189 struct ieee80211_sub_if_data *prev; 5190 struct rhlist_head *tmp; 5191 int err = 0; 5192 5193 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5194 memset(&rx, 0, sizeof(rx)); 5195 rx.skb = skb; 5196 rx.local = local; 5197 rx.list = list; 5198 rx.link_id = -1; 5199 5200 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5201 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5202 5203 if (ieee80211_is_mgmt(fc)) { 5204 /* drop frame if too short for header */ 5205 if (skb->len < ieee80211_hdrlen(fc)) 5206 err = -ENOBUFS; 5207 else 5208 err = skb_linearize(skb); 5209 } else { 5210 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5211 } 5212 5213 if (err) { 5214 dev_kfree_skb(skb); 5215 return; 5216 } 5217 5218 hdr = (struct ieee80211_hdr *)skb->data; 5219 ieee80211_parse_qos(&rx); 5220 ieee80211_verify_alignment(&rx); 5221 5222 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5223 ieee80211_is_beacon(hdr->frame_control) || 5224 ieee80211_is_s1g_beacon(hdr->frame_control))) 5225 ieee80211_scan_rx(local, skb); 5226 5227 if (ieee80211_is_data(fc)) { 5228 struct sta_info *sta, *prev_sta; 5229 int link_id = -1; 5230 5231 if (status->link_valid) 5232 link_id = status->link_id; 5233 5234 if (pubsta) { 5235 sta = container_of(pubsta, struct sta_info, sta); 5236 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5237 goto out; 5238 5239 /* 5240 * In MLO connection, fetch the link_id using addr2 5241 * when the driver does not pass link_id in status. 5242 * When the address translation is already performed by 5243 * driver/hw, the valid link_id must be passed in 5244 * status. 5245 */ 5246 5247 if (!status->link_valid && pubsta->mlo) { 5248 struct link_sta_info *link_sta; 5249 5250 link_sta = link_sta_info_get_bss(rx.sdata, 5251 hdr->addr2); 5252 if (!link_sta) 5253 goto out; 5254 5255 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5256 } 5257 5258 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5259 return; 5260 goto out; 5261 } 5262 5263 prev_sta = NULL; 5264 5265 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5266 if (!prev_sta) { 5267 prev_sta = sta; 5268 continue; 5269 } 5270 5271 rx.sdata = prev_sta->sdata; 5272 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5273 goto out; 5274 5275 if (!status->link_valid && prev_sta->sta.mlo) 5276 continue; 5277 5278 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5279 5280 prev_sta = sta; 5281 } 5282 5283 if (prev_sta) { 5284 rx.sdata = prev_sta->sdata; 5285 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5286 goto out; 5287 5288 if (!status->link_valid && prev_sta->sta.mlo) 5289 goto out; 5290 5291 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5292 return; 5293 goto out; 5294 } 5295 } 5296 5297 prev = NULL; 5298 5299 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5300 if (!ieee80211_sdata_running(sdata)) 5301 continue; 5302 5303 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5304 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5305 continue; 5306 5307 /* 5308 * frame is destined for this interface, but if it's 5309 * not also for the previous one we handle that after 5310 * the loop to avoid copying the SKB once too much 5311 */ 5312 5313 if (!prev) { 5314 prev = sdata; 5315 continue; 5316 } 5317 5318 rx.sdata = prev; 5319 ieee80211_rx_for_interface(&rx, skb, false); 5320 5321 prev = sdata; 5322 } 5323 5324 if (prev) { 5325 rx.sdata = prev; 5326 5327 if (ieee80211_rx_for_interface(&rx, skb, true)) 5328 return; 5329 } 5330 5331 out: 5332 dev_kfree_skb(skb); 5333 } 5334 5335 /* 5336 * This is the receive path handler. It is called by a low level driver when an 5337 * 802.11 MPDU is received from the hardware. 5338 */ 5339 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5340 struct sk_buff *skb, struct list_head *list) 5341 { 5342 struct ieee80211_local *local = hw_to_local(hw); 5343 struct ieee80211_rate *rate = NULL; 5344 struct ieee80211_supported_band *sband; 5345 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5346 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5347 5348 WARN_ON_ONCE(softirq_count() == 0); 5349 5350 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5351 goto drop; 5352 5353 sband = local->hw.wiphy->bands[status->band]; 5354 if (WARN_ON(!sband)) 5355 goto drop; 5356 5357 /* 5358 * If we're suspending, it is possible although not too likely 5359 * that we'd be receiving frames after having already partially 5360 * quiesced the stack. We can't process such frames then since 5361 * that might, for example, cause stations to be added or other 5362 * driver callbacks be invoked. 5363 */ 5364 if (unlikely(local->quiescing || local->suspended)) 5365 goto drop; 5366 5367 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5368 if (unlikely(local->in_reconfig)) 5369 goto drop; 5370 5371 /* 5372 * The same happens when we're not even started, 5373 * but that's worth a warning. 5374 */ 5375 if (WARN_ON(!local->started)) 5376 goto drop; 5377 5378 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5379 /* 5380 * Validate the rate, unless a PLCP error means that 5381 * we probably can't have a valid rate here anyway. 5382 */ 5383 5384 switch (status->encoding) { 5385 case RX_ENC_HT: 5386 /* 5387 * rate_idx is MCS index, which can be [0-76] 5388 * as documented on: 5389 * 5390 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5391 * 5392 * Anything else would be some sort of driver or 5393 * hardware error. The driver should catch hardware 5394 * errors. 5395 */ 5396 if (WARN(status->rate_idx > 76, 5397 "Rate marked as an HT rate but passed " 5398 "status->rate_idx is not " 5399 "an MCS index [0-76]: %d (0x%02x)\n", 5400 status->rate_idx, 5401 status->rate_idx)) 5402 goto drop; 5403 break; 5404 case RX_ENC_VHT: 5405 if (WARN_ONCE(status->rate_idx > 11 || 5406 !status->nss || 5407 status->nss > 8, 5408 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5409 status->rate_idx, status->nss)) 5410 goto drop; 5411 break; 5412 case RX_ENC_HE: 5413 if (WARN_ONCE(status->rate_idx > 11 || 5414 !status->nss || 5415 status->nss > 8, 5416 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5417 status->rate_idx, status->nss)) 5418 goto drop; 5419 break; 5420 case RX_ENC_EHT: 5421 if (WARN_ONCE(status->rate_idx > 15 || 5422 !status->nss || 5423 status->nss > 8 || 5424 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5425 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5426 status->rate_idx, status->nss, status->eht.gi)) 5427 goto drop; 5428 break; 5429 default: 5430 WARN_ON_ONCE(1); 5431 fallthrough; 5432 case RX_ENC_LEGACY: 5433 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5434 goto drop; 5435 rate = &sband->bitrates[status->rate_idx]; 5436 } 5437 } 5438 5439 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5440 goto drop; 5441 5442 status->rx_flags = 0; 5443 5444 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5445 5446 /* 5447 * Frames with failed FCS/PLCP checksum are not returned, 5448 * all other frames are returned without radiotap header 5449 * if it was previously present. 5450 * Also, frames with less than 16 bytes are dropped. 5451 */ 5452 if (!(status->flag & RX_FLAG_8023)) 5453 skb = ieee80211_rx_monitor(local, skb, rate); 5454 if (skb) { 5455 if ((status->flag & RX_FLAG_8023) || 5456 ieee80211_is_data_present(hdr->frame_control)) 5457 ieee80211_tpt_led_trig_rx(local, skb->len); 5458 5459 if (status->flag & RX_FLAG_8023) 5460 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5461 else 5462 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5463 } 5464 5465 kcov_remote_stop(); 5466 return; 5467 drop: 5468 kfree_skb(skb); 5469 } 5470 EXPORT_SYMBOL(ieee80211_rx_list); 5471 5472 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5473 struct sk_buff *skb, struct napi_struct *napi) 5474 { 5475 struct sk_buff *tmp; 5476 LIST_HEAD(list); 5477 5478 5479 /* 5480 * key references and virtual interfaces are protected using RCU 5481 * and this requires that we are in a read-side RCU section during 5482 * receive processing 5483 */ 5484 rcu_read_lock(); 5485 ieee80211_rx_list(hw, pubsta, skb, &list); 5486 rcu_read_unlock(); 5487 5488 if (!napi) { 5489 netif_receive_skb_list(&list); 5490 return; 5491 } 5492 5493 list_for_each_entry_safe(skb, tmp, &list, list) { 5494 skb_list_del_init(skb); 5495 napi_gro_receive(napi, skb); 5496 } 5497 } 5498 EXPORT_SYMBOL(ieee80211_rx_napi); 5499 5500 /* This is a version of the rx handler that can be called from hard irq 5501 * context. Post the skb on the queue and schedule the tasklet */ 5502 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5503 { 5504 struct ieee80211_local *local = hw_to_local(hw); 5505 5506 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5507 5508 skb->pkt_type = IEEE80211_RX_MSG; 5509 skb_queue_tail(&local->skb_queue, skb); 5510 tasklet_schedule(&local->tasklet); 5511 } 5512 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5513