1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "led.h" 26 #include "mesh.h" 27 #include "wep.h" 28 #include "wpa.h" 29 #include "tkip.h" 30 #include "wme.h" 31 32 /* 33 * monitor mode reception 34 * 35 * This function cleans up the SKB, i.e. it removes all the stuff 36 * only useful for monitoring. 37 */ 38 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 39 struct sk_buff *skb) 40 { 41 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 42 if (likely(skb->len > FCS_LEN)) 43 __pskb_trim(skb, skb->len - FCS_LEN); 44 else { 45 /* driver bug */ 46 WARN_ON(1); 47 dev_kfree_skb(skb); 48 skb = NULL; 49 } 50 } 51 52 return skb; 53 } 54 55 static inline int should_drop_frame(struct sk_buff *skb, 56 int present_fcs_len) 57 { 58 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 59 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 60 61 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 62 return 1; 63 if (unlikely(skb->len < 16 + present_fcs_len)) 64 return 1; 65 if (ieee80211_is_ctl(hdr->frame_control) && 66 !ieee80211_is_pspoll(hdr->frame_control) && 67 !ieee80211_is_back_req(hdr->frame_control)) 68 return 1; 69 return 0; 70 } 71 72 static int 73 ieee80211_rx_radiotap_len(struct ieee80211_local *local, 74 struct ieee80211_rx_status *status) 75 { 76 int len; 77 78 /* always present fields */ 79 len = sizeof(struct ieee80211_radiotap_header) + 9; 80 81 if (status->flag & RX_FLAG_MACTIME_MPDU) 82 len += 8; 83 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 84 len += 1; 85 86 if (len & 1) /* padding for RX_FLAGS if necessary */ 87 len++; 88 89 if (status->flag & RX_FLAG_HT) /* HT info */ 90 len += 3; 91 92 return len; 93 } 94 95 /* 96 * ieee80211_add_rx_radiotap_header - add radiotap header 97 * 98 * add a radiotap header containing all the fields which the hardware provided. 99 */ 100 static void 101 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 102 struct sk_buff *skb, 103 struct ieee80211_rate *rate, 104 int rtap_len) 105 { 106 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 107 struct ieee80211_radiotap_header *rthdr; 108 unsigned char *pos; 109 u16 rx_flags = 0; 110 111 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 112 memset(rthdr, 0, rtap_len); 113 114 /* radiotap header, set always present flags */ 115 rthdr->it_present = 116 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 117 (1 << IEEE80211_RADIOTAP_CHANNEL) | 118 (1 << IEEE80211_RADIOTAP_ANTENNA) | 119 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 120 rthdr->it_len = cpu_to_le16(rtap_len); 121 122 pos = (unsigned char *)(rthdr+1); 123 124 /* the order of the following fields is important */ 125 126 /* IEEE80211_RADIOTAP_TSFT */ 127 if (status->flag & RX_FLAG_MACTIME_MPDU) { 128 put_unaligned_le64(status->mactime, pos); 129 rthdr->it_present |= 130 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 131 pos += 8; 132 } 133 134 /* IEEE80211_RADIOTAP_FLAGS */ 135 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 136 *pos |= IEEE80211_RADIOTAP_F_FCS; 137 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 138 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 139 if (status->flag & RX_FLAG_SHORTPRE) 140 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 141 pos++; 142 143 /* IEEE80211_RADIOTAP_RATE */ 144 if (status->flag & RX_FLAG_HT) { 145 /* 146 * MCS information is a separate field in radiotap, 147 * added below. The byte here is needed as padding 148 * for the channel though, so initialise it to 0. 149 */ 150 *pos = 0; 151 } else { 152 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 153 *pos = rate->bitrate / 5; 154 } 155 pos++; 156 157 /* IEEE80211_RADIOTAP_CHANNEL */ 158 put_unaligned_le16(status->freq, pos); 159 pos += 2; 160 if (status->band == IEEE80211_BAND_5GHZ) 161 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 162 pos); 163 else if (status->flag & RX_FLAG_HT) 164 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 165 pos); 166 else if (rate->flags & IEEE80211_RATE_ERP_G) 167 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 168 pos); 169 else 170 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 171 pos); 172 pos += 2; 173 174 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 175 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) { 176 *pos = status->signal; 177 rthdr->it_present |= 178 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 179 pos++; 180 } 181 182 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 183 184 /* IEEE80211_RADIOTAP_ANTENNA */ 185 *pos = status->antenna; 186 pos++; 187 188 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 189 190 /* IEEE80211_RADIOTAP_RX_FLAGS */ 191 /* ensure 2 byte alignment for the 2 byte field as required */ 192 if ((pos - (u8 *)rthdr) & 1) 193 pos++; 194 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 195 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 196 put_unaligned_le16(rx_flags, pos); 197 pos += 2; 198 199 if (status->flag & RX_FLAG_HT) { 200 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 201 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS | 202 IEEE80211_RADIOTAP_MCS_HAVE_GI | 203 IEEE80211_RADIOTAP_MCS_HAVE_BW; 204 *pos = 0; 205 if (status->flag & RX_FLAG_SHORT_GI) 206 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 207 if (status->flag & RX_FLAG_40MHZ) 208 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 209 pos++; 210 *pos++ = status->rate_idx; 211 } 212 } 213 214 /* 215 * This function copies a received frame to all monitor interfaces and 216 * returns a cleaned-up SKB that no longer includes the FCS nor the 217 * radiotap header the driver might have added. 218 */ 219 static struct sk_buff * 220 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 221 struct ieee80211_rate *rate) 222 { 223 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 224 struct ieee80211_sub_if_data *sdata; 225 int needed_headroom = 0; 226 struct sk_buff *skb, *skb2; 227 struct net_device *prev_dev = NULL; 228 int present_fcs_len = 0; 229 230 /* 231 * First, we may need to make a copy of the skb because 232 * (1) we need to modify it for radiotap (if not present), and 233 * (2) the other RX handlers will modify the skb we got. 234 * 235 * We don't need to, of course, if we aren't going to return 236 * the SKB because it has a bad FCS/PLCP checksum. 237 */ 238 239 /* room for the radiotap header based on driver features */ 240 needed_headroom = ieee80211_rx_radiotap_len(local, status); 241 242 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 243 present_fcs_len = FCS_LEN; 244 245 /* make sure hdr->frame_control is on the linear part */ 246 if (!pskb_may_pull(origskb, 2)) { 247 dev_kfree_skb(origskb); 248 return NULL; 249 } 250 251 if (!local->monitors) { 252 if (should_drop_frame(origskb, present_fcs_len)) { 253 dev_kfree_skb(origskb); 254 return NULL; 255 } 256 257 return remove_monitor_info(local, origskb); 258 } 259 260 if (should_drop_frame(origskb, present_fcs_len)) { 261 /* only need to expand headroom if necessary */ 262 skb = origskb; 263 origskb = NULL; 264 265 /* 266 * This shouldn't trigger often because most devices have an 267 * RX header they pull before we get here, and that should 268 * be big enough for our radiotap information. We should 269 * probably export the length to drivers so that we can have 270 * them allocate enough headroom to start with. 271 */ 272 if (skb_headroom(skb) < needed_headroom && 273 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 274 dev_kfree_skb(skb); 275 return NULL; 276 } 277 } else { 278 /* 279 * Need to make a copy and possibly remove radiotap header 280 * and FCS from the original. 281 */ 282 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 283 284 origskb = remove_monitor_info(local, origskb); 285 286 if (!skb) 287 return origskb; 288 } 289 290 /* prepend radiotap information */ 291 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom); 292 293 skb_reset_mac_header(skb); 294 skb->ip_summed = CHECKSUM_UNNECESSARY; 295 skb->pkt_type = PACKET_OTHERHOST; 296 skb->protocol = htons(ETH_P_802_2); 297 298 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 299 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 300 continue; 301 302 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 303 continue; 304 305 if (!ieee80211_sdata_running(sdata)) 306 continue; 307 308 if (prev_dev) { 309 skb2 = skb_clone(skb, GFP_ATOMIC); 310 if (skb2) { 311 skb2->dev = prev_dev; 312 netif_receive_skb(skb2); 313 } 314 } 315 316 prev_dev = sdata->dev; 317 sdata->dev->stats.rx_packets++; 318 sdata->dev->stats.rx_bytes += skb->len; 319 } 320 321 if (prev_dev) { 322 skb->dev = prev_dev; 323 netif_receive_skb(skb); 324 } else 325 dev_kfree_skb(skb); 326 327 return origskb; 328 } 329 330 331 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 332 { 333 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 334 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 335 int tid, seqno_idx, security_idx; 336 337 /* does the frame have a qos control field? */ 338 if (ieee80211_is_data_qos(hdr->frame_control)) { 339 u8 *qc = ieee80211_get_qos_ctl(hdr); 340 /* frame has qos control */ 341 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 342 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 343 status->rx_flags |= IEEE80211_RX_AMSDU; 344 345 seqno_idx = tid; 346 security_idx = tid; 347 } else { 348 /* 349 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 350 * 351 * Sequence numbers for management frames, QoS data 352 * frames with a broadcast/multicast address in the 353 * Address 1 field, and all non-QoS data frames sent 354 * by QoS STAs are assigned using an additional single 355 * modulo-4096 counter, [...] 356 * 357 * We also use that counter for non-QoS STAs. 358 */ 359 seqno_idx = NUM_RX_DATA_QUEUES; 360 security_idx = 0; 361 if (ieee80211_is_mgmt(hdr->frame_control)) 362 security_idx = NUM_RX_DATA_QUEUES; 363 tid = 0; 364 } 365 366 rx->seqno_idx = seqno_idx; 367 rx->security_idx = security_idx; 368 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 369 * For now, set skb->priority to 0 for other cases. */ 370 rx->skb->priority = (tid > 7) ? 0 : tid; 371 } 372 373 /** 374 * DOC: Packet alignment 375 * 376 * Drivers always need to pass packets that are aligned to two-byte boundaries 377 * to the stack. 378 * 379 * Additionally, should, if possible, align the payload data in a way that 380 * guarantees that the contained IP header is aligned to a four-byte 381 * boundary. In the case of regular frames, this simply means aligning the 382 * payload to a four-byte boundary (because either the IP header is directly 383 * contained, or IV/RFC1042 headers that have a length divisible by four are 384 * in front of it). If the payload data is not properly aligned and the 385 * architecture doesn't support efficient unaligned operations, mac80211 386 * will align the data. 387 * 388 * With A-MSDU frames, however, the payload data address must yield two modulo 389 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 390 * push the IP header further back to a multiple of four again. Thankfully, the 391 * specs were sane enough this time around to require padding each A-MSDU 392 * subframe to a length that is a multiple of four. 393 * 394 * Padding like Atheros hardware adds which is between the 802.11 header and 395 * the payload is not supported, the driver is required to move the 802.11 396 * header to be directly in front of the payload in that case. 397 */ 398 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 399 { 400 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 401 WARN_ONCE((unsigned long)rx->skb->data & 1, 402 "unaligned packet at 0x%p\n", rx->skb->data); 403 #endif 404 } 405 406 407 /* rx handlers */ 408 409 static ieee80211_rx_result debug_noinline 410 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx) 411 { 412 struct ieee80211_local *local = rx->local; 413 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 414 struct sk_buff *skb = rx->skb; 415 416 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 417 !local->sched_scanning)) 418 return RX_CONTINUE; 419 420 if (test_bit(SCAN_HW_SCANNING, &local->scanning) || 421 test_bit(SCAN_SW_SCANNING, &local->scanning) || 422 local->sched_scanning) 423 return ieee80211_scan_rx(rx->sdata, skb); 424 425 /* scanning finished during invoking of handlers */ 426 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); 427 return RX_DROP_UNUSABLE; 428 } 429 430 431 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 432 { 433 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 434 435 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 436 return 0; 437 438 return ieee80211_is_robust_mgmt_frame(hdr); 439 } 440 441 442 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 443 { 444 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 445 446 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 447 return 0; 448 449 return ieee80211_is_robust_mgmt_frame(hdr); 450 } 451 452 453 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 454 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 455 { 456 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 457 struct ieee80211_mmie *mmie; 458 459 if (skb->len < 24 + sizeof(*mmie) || 460 !is_multicast_ether_addr(hdr->da)) 461 return -1; 462 463 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 464 return -1; /* not a robust management frame */ 465 466 mmie = (struct ieee80211_mmie *) 467 (skb->data + skb->len - sizeof(*mmie)); 468 if (mmie->element_id != WLAN_EID_MMIE || 469 mmie->length != sizeof(*mmie) - 2) 470 return -1; 471 472 return le16_to_cpu(mmie->key_id); 473 } 474 475 476 static ieee80211_rx_result 477 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 478 { 479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 480 char *dev_addr = rx->sdata->vif.addr; 481 482 if (ieee80211_is_data(hdr->frame_control)) { 483 if (is_multicast_ether_addr(hdr->addr1)) { 484 if (ieee80211_has_tods(hdr->frame_control) || 485 !ieee80211_has_fromds(hdr->frame_control)) 486 return RX_DROP_MONITOR; 487 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0) 488 return RX_DROP_MONITOR; 489 } else { 490 if (!ieee80211_has_a4(hdr->frame_control)) 491 return RX_DROP_MONITOR; 492 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0) 493 return RX_DROP_MONITOR; 494 } 495 } 496 497 /* If there is not an established peer link and this is not a peer link 498 * establisment frame, beacon or probe, drop the frame. 499 */ 500 501 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 502 struct ieee80211_mgmt *mgmt; 503 504 if (!ieee80211_is_mgmt(hdr->frame_control)) 505 return RX_DROP_MONITOR; 506 507 if (ieee80211_is_action(hdr->frame_control)) { 508 u8 category; 509 mgmt = (struct ieee80211_mgmt *)hdr; 510 category = mgmt->u.action.category; 511 if (category != WLAN_CATEGORY_MESH_ACTION && 512 category != WLAN_CATEGORY_SELF_PROTECTED) 513 return RX_DROP_MONITOR; 514 return RX_CONTINUE; 515 } 516 517 if (ieee80211_is_probe_req(hdr->frame_control) || 518 ieee80211_is_probe_resp(hdr->frame_control) || 519 ieee80211_is_beacon(hdr->frame_control) || 520 ieee80211_is_auth(hdr->frame_control)) 521 return RX_CONTINUE; 522 523 return RX_DROP_MONITOR; 524 525 } 526 527 return RX_CONTINUE; 528 } 529 530 #define SEQ_MODULO 0x1000 531 #define SEQ_MASK 0xfff 532 533 static inline int seq_less(u16 sq1, u16 sq2) 534 { 535 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 536 } 537 538 static inline u16 seq_inc(u16 sq) 539 { 540 return (sq + 1) & SEQ_MASK; 541 } 542 543 static inline u16 seq_sub(u16 sq1, u16 sq2) 544 { 545 return (sq1 - sq2) & SEQ_MASK; 546 } 547 548 549 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw, 550 struct tid_ampdu_rx *tid_agg_rx, 551 int index) 552 { 553 struct ieee80211_local *local = hw_to_local(hw); 554 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 555 struct ieee80211_rx_status *status; 556 557 lockdep_assert_held(&tid_agg_rx->reorder_lock); 558 559 if (!skb) 560 goto no_frame; 561 562 /* release the frame from the reorder ring buffer */ 563 tid_agg_rx->stored_mpdu_num--; 564 tid_agg_rx->reorder_buf[index] = NULL; 565 status = IEEE80211_SKB_RXCB(skb); 566 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 567 skb_queue_tail(&local->rx_skb_queue, skb); 568 569 no_frame: 570 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 571 } 572 573 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw, 574 struct tid_ampdu_rx *tid_agg_rx, 575 u16 head_seq_num) 576 { 577 int index; 578 579 lockdep_assert_held(&tid_agg_rx->reorder_lock); 580 581 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 582 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 583 tid_agg_rx->buf_size; 584 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 585 } 586 } 587 588 /* 589 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 590 * the skb was added to the buffer longer than this time ago, the earlier 591 * frames that have not yet been received are assumed to be lost and the skb 592 * can be released for processing. This may also release other skb's from the 593 * reorder buffer if there are no additional gaps between the frames. 594 * 595 * Callers must hold tid_agg_rx->reorder_lock. 596 */ 597 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 598 599 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw, 600 struct tid_ampdu_rx *tid_agg_rx) 601 { 602 int index, j; 603 604 lockdep_assert_held(&tid_agg_rx->reorder_lock); 605 606 /* release the buffer until next missing frame */ 607 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 608 tid_agg_rx->buf_size; 609 if (!tid_agg_rx->reorder_buf[index] && 610 tid_agg_rx->stored_mpdu_num > 1) { 611 /* 612 * No buffers ready to be released, but check whether any 613 * frames in the reorder buffer have timed out. 614 */ 615 int skipped = 1; 616 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 617 j = (j + 1) % tid_agg_rx->buf_size) { 618 if (!tid_agg_rx->reorder_buf[j]) { 619 skipped++; 620 continue; 621 } 622 if (skipped && 623 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 624 HT_RX_REORDER_BUF_TIMEOUT)) 625 goto set_release_timer; 626 627 #ifdef CONFIG_MAC80211_HT_DEBUG 628 if (net_ratelimit()) 629 wiphy_debug(hw->wiphy, 630 "release an RX reorder frame due to timeout on earlier frames\n"); 631 #endif 632 ieee80211_release_reorder_frame(hw, tid_agg_rx, j); 633 634 /* 635 * Increment the head seq# also for the skipped slots. 636 */ 637 tid_agg_rx->head_seq_num = 638 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 639 skipped = 0; 640 } 641 } else while (tid_agg_rx->reorder_buf[index]) { 642 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 643 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 644 tid_agg_rx->buf_size; 645 } 646 647 if (tid_agg_rx->stored_mpdu_num) { 648 j = index = seq_sub(tid_agg_rx->head_seq_num, 649 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 650 651 for (; j != (index - 1) % tid_agg_rx->buf_size; 652 j = (j + 1) % tid_agg_rx->buf_size) { 653 if (tid_agg_rx->reorder_buf[j]) 654 break; 655 } 656 657 set_release_timer: 658 659 mod_timer(&tid_agg_rx->reorder_timer, 660 tid_agg_rx->reorder_time[j] + 1 + 661 HT_RX_REORDER_BUF_TIMEOUT); 662 } else { 663 del_timer(&tid_agg_rx->reorder_timer); 664 } 665 } 666 667 /* 668 * As this function belongs to the RX path it must be under 669 * rcu_read_lock protection. It returns false if the frame 670 * can be processed immediately, true if it was consumed. 671 */ 672 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 673 struct tid_ampdu_rx *tid_agg_rx, 674 struct sk_buff *skb) 675 { 676 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 677 u16 sc = le16_to_cpu(hdr->seq_ctrl); 678 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 679 u16 head_seq_num, buf_size; 680 int index; 681 bool ret = true; 682 683 spin_lock(&tid_agg_rx->reorder_lock); 684 685 buf_size = tid_agg_rx->buf_size; 686 head_seq_num = tid_agg_rx->head_seq_num; 687 688 /* frame with out of date sequence number */ 689 if (seq_less(mpdu_seq_num, head_seq_num)) { 690 dev_kfree_skb(skb); 691 goto out; 692 } 693 694 /* 695 * If frame the sequence number exceeds our buffering window 696 * size release some previous frames to make room for this one. 697 */ 698 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 699 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 700 /* release stored frames up to new head to stack */ 701 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num); 702 } 703 704 /* Now the new frame is always in the range of the reordering buffer */ 705 706 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 707 708 /* check if we already stored this frame */ 709 if (tid_agg_rx->reorder_buf[index]) { 710 dev_kfree_skb(skb); 711 goto out; 712 } 713 714 /* 715 * If the current MPDU is in the right order and nothing else 716 * is stored we can process it directly, no need to buffer it. 717 * If it is first but there's something stored, we may be able 718 * to release frames after this one. 719 */ 720 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 721 tid_agg_rx->stored_mpdu_num == 0) { 722 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 723 ret = false; 724 goto out; 725 } 726 727 /* put the frame in the reordering buffer */ 728 tid_agg_rx->reorder_buf[index] = skb; 729 tid_agg_rx->reorder_time[index] = jiffies; 730 tid_agg_rx->stored_mpdu_num++; 731 ieee80211_sta_reorder_release(hw, tid_agg_rx); 732 733 out: 734 spin_unlock(&tid_agg_rx->reorder_lock); 735 return ret; 736 } 737 738 /* 739 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 740 * true if the MPDU was buffered, false if it should be processed. 741 */ 742 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx) 743 { 744 struct sk_buff *skb = rx->skb; 745 struct ieee80211_local *local = rx->local; 746 struct ieee80211_hw *hw = &local->hw; 747 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 748 struct sta_info *sta = rx->sta; 749 struct tid_ampdu_rx *tid_agg_rx; 750 u16 sc; 751 int tid; 752 753 if (!ieee80211_is_data_qos(hdr->frame_control)) 754 goto dont_reorder; 755 756 /* 757 * filter the QoS data rx stream according to 758 * STA/TID and check if this STA/TID is on aggregation 759 */ 760 761 if (!sta) 762 goto dont_reorder; 763 764 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 765 766 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 767 if (!tid_agg_rx) 768 goto dont_reorder; 769 770 /* qos null data frames are excluded */ 771 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 772 goto dont_reorder; 773 774 /* new, potentially un-ordered, ampdu frame - process it */ 775 776 /* reset session timer */ 777 if (tid_agg_rx->timeout) 778 mod_timer(&tid_agg_rx->session_timer, 779 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 780 781 /* if this mpdu is fragmented - terminate rx aggregation session */ 782 sc = le16_to_cpu(hdr->seq_ctrl); 783 if (sc & IEEE80211_SCTL_FRAG) { 784 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 785 skb_queue_tail(&rx->sdata->skb_queue, skb); 786 ieee80211_queue_work(&local->hw, &rx->sdata->work); 787 return; 788 } 789 790 /* 791 * No locking needed -- we will only ever process one 792 * RX packet at a time, and thus own tid_agg_rx. All 793 * other code manipulating it needs to (and does) make 794 * sure that we cannot get to it any more before doing 795 * anything with it. 796 */ 797 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb)) 798 return; 799 800 dont_reorder: 801 skb_queue_tail(&local->rx_skb_queue, skb); 802 } 803 804 static ieee80211_rx_result debug_noinline 805 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 806 { 807 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 808 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 809 810 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 811 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 812 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 813 rx->sta->last_seq_ctrl[rx->seqno_idx] == 814 hdr->seq_ctrl)) { 815 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 816 rx->local->dot11FrameDuplicateCount++; 817 rx->sta->num_duplicates++; 818 } 819 return RX_DROP_UNUSABLE; 820 } else 821 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 822 } 823 824 if (unlikely(rx->skb->len < 16)) { 825 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 826 return RX_DROP_MONITOR; 827 } 828 829 /* Drop disallowed frame classes based on STA auth/assoc state; 830 * IEEE 802.11, Chap 5.5. 831 * 832 * mac80211 filters only based on association state, i.e. it drops 833 * Class 3 frames from not associated stations. hostapd sends 834 * deauth/disassoc frames when needed. In addition, hostapd is 835 * responsible for filtering on both auth and assoc states. 836 */ 837 838 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 839 return ieee80211_rx_mesh_check(rx); 840 841 if (unlikely((ieee80211_is_data(hdr->frame_control) || 842 ieee80211_is_pspoll(hdr->frame_control)) && 843 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 844 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 845 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 846 if (rx->sta && rx->sta->dummy && 847 ieee80211_is_data_present(hdr->frame_control)) { 848 u16 ethertype; 849 u8 *payload; 850 851 payload = rx->skb->data + 852 ieee80211_hdrlen(hdr->frame_control); 853 ethertype = (payload[6] << 8) | payload[7]; 854 if (cpu_to_be16(ethertype) == 855 rx->sdata->control_port_protocol) 856 return RX_CONTINUE; 857 } 858 return RX_DROP_MONITOR; 859 } 860 861 return RX_CONTINUE; 862 } 863 864 865 static ieee80211_rx_result debug_noinline 866 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 867 { 868 struct sk_buff *skb = rx->skb; 869 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 870 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 871 int keyidx; 872 int hdrlen; 873 ieee80211_rx_result result = RX_DROP_UNUSABLE; 874 struct ieee80211_key *sta_ptk = NULL; 875 int mmie_keyidx = -1; 876 __le16 fc; 877 878 /* 879 * Key selection 101 880 * 881 * There are four types of keys: 882 * - GTK (group keys) 883 * - IGTK (group keys for management frames) 884 * - PTK (pairwise keys) 885 * - STK (station-to-station pairwise keys) 886 * 887 * When selecting a key, we have to distinguish between multicast 888 * (including broadcast) and unicast frames, the latter can only 889 * use PTKs and STKs while the former always use GTKs and IGTKs. 890 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 891 * unicast frames can also use key indices like GTKs. Hence, if we 892 * don't have a PTK/STK we check the key index for a WEP key. 893 * 894 * Note that in a regular BSS, multicast frames are sent by the 895 * AP only, associated stations unicast the frame to the AP first 896 * which then multicasts it on their behalf. 897 * 898 * There is also a slight problem in IBSS mode: GTKs are negotiated 899 * with each station, that is something we don't currently handle. 900 * The spec seems to expect that one negotiates the same key with 901 * every station but there's no such requirement; VLANs could be 902 * possible. 903 */ 904 905 /* 906 * No point in finding a key and decrypting if the frame is neither 907 * addressed to us nor a multicast frame. 908 */ 909 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 910 return RX_CONTINUE; 911 912 /* start without a key */ 913 rx->key = NULL; 914 915 if (rx->sta) 916 sta_ptk = rcu_dereference(rx->sta->ptk); 917 918 fc = hdr->frame_control; 919 920 if (!ieee80211_has_protected(fc)) 921 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 922 923 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 924 rx->key = sta_ptk; 925 if ((status->flag & RX_FLAG_DECRYPTED) && 926 (status->flag & RX_FLAG_IV_STRIPPED)) 927 return RX_CONTINUE; 928 /* Skip decryption if the frame is not protected. */ 929 if (!ieee80211_has_protected(fc)) 930 return RX_CONTINUE; 931 } else if (mmie_keyidx >= 0) { 932 /* Broadcast/multicast robust management frame / BIP */ 933 if ((status->flag & RX_FLAG_DECRYPTED) && 934 (status->flag & RX_FLAG_IV_STRIPPED)) 935 return RX_CONTINUE; 936 937 if (mmie_keyidx < NUM_DEFAULT_KEYS || 938 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 939 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 940 if (rx->sta) 941 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 942 if (!rx->key) 943 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 944 } else if (!ieee80211_has_protected(fc)) { 945 /* 946 * The frame was not protected, so skip decryption. However, we 947 * need to set rx->key if there is a key that could have been 948 * used so that the frame may be dropped if encryption would 949 * have been expected. 950 */ 951 struct ieee80211_key *key = NULL; 952 struct ieee80211_sub_if_data *sdata = rx->sdata; 953 int i; 954 955 if (ieee80211_is_mgmt(fc) && 956 is_multicast_ether_addr(hdr->addr1) && 957 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 958 rx->key = key; 959 else { 960 if (rx->sta) { 961 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 962 key = rcu_dereference(rx->sta->gtk[i]); 963 if (key) 964 break; 965 } 966 } 967 if (!key) { 968 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 969 key = rcu_dereference(sdata->keys[i]); 970 if (key) 971 break; 972 } 973 } 974 if (key) 975 rx->key = key; 976 } 977 return RX_CONTINUE; 978 } else { 979 u8 keyid; 980 /* 981 * The device doesn't give us the IV so we won't be 982 * able to look up the key. That's ok though, we 983 * don't need to decrypt the frame, we just won't 984 * be able to keep statistics accurate. 985 * Except for key threshold notifications, should 986 * we somehow allow the driver to tell us which key 987 * the hardware used if this flag is set? 988 */ 989 if ((status->flag & RX_FLAG_DECRYPTED) && 990 (status->flag & RX_FLAG_IV_STRIPPED)) 991 return RX_CONTINUE; 992 993 hdrlen = ieee80211_hdrlen(fc); 994 995 if (rx->skb->len < 8 + hdrlen) 996 return RX_DROP_UNUSABLE; /* TODO: count this? */ 997 998 /* 999 * no need to call ieee80211_wep_get_keyidx, 1000 * it verifies a bunch of things we've done already 1001 */ 1002 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1003 keyidx = keyid >> 6; 1004 1005 /* check per-station GTK first, if multicast packet */ 1006 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1007 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1008 1009 /* if not found, try default key */ 1010 if (!rx->key) { 1011 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1012 1013 /* 1014 * RSNA-protected unicast frames should always be 1015 * sent with pairwise or station-to-station keys, 1016 * but for WEP we allow using a key index as well. 1017 */ 1018 if (rx->key && 1019 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1020 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1021 !is_multicast_ether_addr(hdr->addr1)) 1022 rx->key = NULL; 1023 } 1024 } 1025 1026 if (rx->key) { 1027 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1028 return RX_DROP_MONITOR; 1029 1030 rx->key->tx_rx_count++; 1031 /* TODO: add threshold stuff again */ 1032 } else { 1033 return RX_DROP_MONITOR; 1034 } 1035 1036 if (skb_linearize(rx->skb)) 1037 return RX_DROP_UNUSABLE; 1038 /* the hdr variable is invalid now! */ 1039 1040 switch (rx->key->conf.cipher) { 1041 case WLAN_CIPHER_SUITE_WEP40: 1042 case WLAN_CIPHER_SUITE_WEP104: 1043 /* Check for weak IVs if possible */ 1044 if (rx->sta && ieee80211_is_data(fc) && 1045 (!(status->flag & RX_FLAG_IV_STRIPPED) || 1046 !(status->flag & RX_FLAG_DECRYPTED)) && 1047 ieee80211_wep_is_weak_iv(rx->skb, rx->key)) 1048 rx->sta->wep_weak_iv_count++; 1049 1050 result = ieee80211_crypto_wep_decrypt(rx); 1051 break; 1052 case WLAN_CIPHER_SUITE_TKIP: 1053 result = ieee80211_crypto_tkip_decrypt(rx); 1054 break; 1055 case WLAN_CIPHER_SUITE_CCMP: 1056 result = ieee80211_crypto_ccmp_decrypt(rx); 1057 break; 1058 case WLAN_CIPHER_SUITE_AES_CMAC: 1059 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1060 break; 1061 default: 1062 /* 1063 * We can reach here only with HW-only algorithms 1064 * but why didn't it decrypt the frame?! 1065 */ 1066 return RX_DROP_UNUSABLE; 1067 } 1068 1069 /* either the frame has been decrypted or will be dropped */ 1070 status->flag |= RX_FLAG_DECRYPTED; 1071 1072 return result; 1073 } 1074 1075 static ieee80211_rx_result debug_noinline 1076 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1077 { 1078 struct ieee80211_local *local; 1079 struct ieee80211_hdr *hdr; 1080 struct sk_buff *skb; 1081 1082 local = rx->local; 1083 skb = rx->skb; 1084 hdr = (struct ieee80211_hdr *) skb->data; 1085 1086 if (!local->pspolling) 1087 return RX_CONTINUE; 1088 1089 if (!ieee80211_has_fromds(hdr->frame_control)) 1090 /* this is not from AP */ 1091 return RX_CONTINUE; 1092 1093 if (!ieee80211_is_data(hdr->frame_control)) 1094 return RX_CONTINUE; 1095 1096 if (!ieee80211_has_moredata(hdr->frame_control)) { 1097 /* AP has no more frames buffered for us */ 1098 local->pspolling = false; 1099 return RX_CONTINUE; 1100 } 1101 1102 /* more data bit is set, let's request a new frame from the AP */ 1103 ieee80211_send_pspoll(local, rx->sdata); 1104 1105 return RX_CONTINUE; 1106 } 1107 1108 static void ap_sta_ps_start(struct sta_info *sta) 1109 { 1110 struct ieee80211_sub_if_data *sdata = sta->sdata; 1111 struct ieee80211_local *local = sdata->local; 1112 1113 atomic_inc(&sdata->bss->num_sta_ps); 1114 set_sta_flag(sta, WLAN_STA_PS_STA); 1115 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1116 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1117 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1118 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n", 1119 sdata->name, sta->sta.addr, sta->sta.aid); 1120 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1121 } 1122 1123 static void ap_sta_ps_end(struct sta_info *sta) 1124 { 1125 struct ieee80211_sub_if_data *sdata = sta->sdata; 1126 1127 atomic_dec(&sdata->bss->num_sta_ps); 1128 1129 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1130 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n", 1131 sdata->name, sta->sta.addr, sta->sta.aid); 1132 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1133 1134 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1135 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1136 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n", 1137 sdata->name, sta->sta.addr, sta->sta.aid); 1138 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1139 return; 1140 } 1141 1142 ieee80211_sta_ps_deliver_wakeup(sta); 1143 } 1144 1145 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1146 { 1147 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1148 bool in_ps; 1149 1150 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1151 1152 /* Don't let the same PS state be set twice */ 1153 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1154 if ((start && in_ps) || (!start && !in_ps)) 1155 return -EINVAL; 1156 1157 if (start) 1158 ap_sta_ps_start(sta_inf); 1159 else 1160 ap_sta_ps_end(sta_inf); 1161 1162 return 0; 1163 } 1164 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1165 1166 static ieee80211_rx_result debug_noinline 1167 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1168 { 1169 struct ieee80211_sub_if_data *sdata = rx->sdata; 1170 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1171 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1172 int tid, ac; 1173 1174 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1175 return RX_CONTINUE; 1176 1177 if (sdata->vif.type != NL80211_IFTYPE_AP && 1178 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1179 return RX_CONTINUE; 1180 1181 /* 1182 * The device handles station powersave, so don't do anything about 1183 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1184 * it to mac80211 since they're handled.) 1185 */ 1186 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1187 return RX_CONTINUE; 1188 1189 /* 1190 * Don't do anything if the station isn't already asleep. In 1191 * the uAPSD case, the station will probably be marked asleep, 1192 * in the PS-Poll case the station must be confused ... 1193 */ 1194 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1195 return RX_CONTINUE; 1196 1197 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1198 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1199 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1200 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1201 else 1202 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1203 } 1204 1205 /* Free PS Poll skb here instead of returning RX_DROP that would 1206 * count as an dropped frame. */ 1207 dev_kfree_skb(rx->skb); 1208 1209 return RX_QUEUED; 1210 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1211 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1212 ieee80211_has_pm(hdr->frame_control) && 1213 (ieee80211_is_data_qos(hdr->frame_control) || 1214 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1215 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1216 ac = ieee802_1d_to_ac[tid & 7]; 1217 1218 /* 1219 * If this AC is not trigger-enabled do nothing. 1220 * 1221 * NB: This could/should check a separate bitmap of trigger- 1222 * enabled queues, but for now we only implement uAPSD w/o 1223 * TSPEC changes to the ACs, so they're always the same. 1224 */ 1225 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1226 return RX_CONTINUE; 1227 1228 /* if we are in a service period, do nothing */ 1229 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1230 return RX_CONTINUE; 1231 1232 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1233 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1234 else 1235 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1236 } 1237 1238 return RX_CONTINUE; 1239 } 1240 1241 static ieee80211_rx_result debug_noinline 1242 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1243 { 1244 struct sta_info *sta = rx->sta; 1245 struct sk_buff *skb = rx->skb; 1246 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1247 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1248 1249 if (!sta) 1250 return RX_CONTINUE; 1251 1252 /* 1253 * Update last_rx only for IBSS packets which are for the current 1254 * BSSID to avoid keeping the current IBSS network alive in cases 1255 * where other STAs start using different BSSID. 1256 */ 1257 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1258 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1259 NL80211_IFTYPE_ADHOC); 1260 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) { 1261 sta->last_rx = jiffies; 1262 if (ieee80211_is_data(hdr->frame_control)) { 1263 sta->last_rx_rate_idx = status->rate_idx; 1264 sta->last_rx_rate_flag = status->flag; 1265 } 1266 } 1267 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1268 /* 1269 * Mesh beacons will update last_rx when if they are found to 1270 * match the current local configuration when processed. 1271 */ 1272 sta->last_rx = jiffies; 1273 if (ieee80211_is_data(hdr->frame_control)) { 1274 sta->last_rx_rate_idx = status->rate_idx; 1275 sta->last_rx_rate_flag = status->flag; 1276 } 1277 } 1278 1279 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1280 return RX_CONTINUE; 1281 1282 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1283 ieee80211_sta_rx_notify(rx->sdata, hdr); 1284 1285 sta->rx_fragments++; 1286 sta->rx_bytes += rx->skb->len; 1287 sta->last_signal = status->signal; 1288 ewma_add(&sta->avg_signal, -status->signal); 1289 1290 /* 1291 * Change STA power saving mode only at the end of a frame 1292 * exchange sequence. 1293 */ 1294 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1295 !ieee80211_has_morefrags(hdr->frame_control) && 1296 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1297 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1298 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1299 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1300 /* 1301 * Ignore doze->wake transitions that are 1302 * indicated by non-data frames, the standard 1303 * is unclear here, but for example going to 1304 * PS mode and then scanning would cause a 1305 * doze->wake transition for the probe request, 1306 * and that is clearly undesirable. 1307 */ 1308 if (ieee80211_is_data(hdr->frame_control) && 1309 !ieee80211_has_pm(hdr->frame_control)) 1310 ap_sta_ps_end(sta); 1311 } else { 1312 if (ieee80211_has_pm(hdr->frame_control)) 1313 ap_sta_ps_start(sta); 1314 } 1315 } 1316 1317 /* 1318 * Drop (qos-)data::nullfunc frames silently, since they 1319 * are used only to control station power saving mode. 1320 */ 1321 if (ieee80211_is_nullfunc(hdr->frame_control) || 1322 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1323 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1324 1325 /* 1326 * If we receive a 4-addr nullfunc frame from a STA 1327 * that was not moved to a 4-addr STA vlan yet, drop 1328 * the frame to the monitor interface, to make sure 1329 * that hostapd sees it 1330 */ 1331 if (ieee80211_has_a4(hdr->frame_control) && 1332 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1333 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1334 !rx->sdata->u.vlan.sta))) 1335 return RX_DROP_MONITOR; 1336 /* 1337 * Update counter and free packet here to avoid 1338 * counting this as a dropped packed. 1339 */ 1340 sta->rx_packets++; 1341 dev_kfree_skb(rx->skb); 1342 return RX_QUEUED; 1343 } 1344 1345 return RX_CONTINUE; 1346 } /* ieee80211_rx_h_sta_process */ 1347 1348 static inline struct ieee80211_fragment_entry * 1349 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1350 unsigned int frag, unsigned int seq, int rx_queue, 1351 struct sk_buff **skb) 1352 { 1353 struct ieee80211_fragment_entry *entry; 1354 int idx; 1355 1356 idx = sdata->fragment_next; 1357 entry = &sdata->fragments[sdata->fragment_next++]; 1358 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1359 sdata->fragment_next = 0; 1360 1361 if (!skb_queue_empty(&entry->skb_list)) { 1362 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1363 struct ieee80211_hdr *hdr = 1364 (struct ieee80211_hdr *) entry->skb_list.next->data; 1365 printk(KERN_DEBUG "%s: RX reassembly removed oldest " 1366 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " 1367 "addr1=%pM addr2=%pM\n", 1368 sdata->name, idx, 1369 jiffies - entry->first_frag_time, entry->seq, 1370 entry->last_frag, hdr->addr1, hdr->addr2); 1371 #endif 1372 __skb_queue_purge(&entry->skb_list); 1373 } 1374 1375 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1376 *skb = NULL; 1377 entry->first_frag_time = jiffies; 1378 entry->seq = seq; 1379 entry->rx_queue = rx_queue; 1380 entry->last_frag = frag; 1381 entry->ccmp = 0; 1382 entry->extra_len = 0; 1383 1384 return entry; 1385 } 1386 1387 static inline struct ieee80211_fragment_entry * 1388 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1389 unsigned int frag, unsigned int seq, 1390 int rx_queue, struct ieee80211_hdr *hdr) 1391 { 1392 struct ieee80211_fragment_entry *entry; 1393 int i, idx; 1394 1395 idx = sdata->fragment_next; 1396 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1397 struct ieee80211_hdr *f_hdr; 1398 1399 idx--; 1400 if (idx < 0) 1401 idx = IEEE80211_FRAGMENT_MAX - 1; 1402 1403 entry = &sdata->fragments[idx]; 1404 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1405 entry->rx_queue != rx_queue || 1406 entry->last_frag + 1 != frag) 1407 continue; 1408 1409 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1410 1411 /* 1412 * Check ftype and addresses are equal, else check next fragment 1413 */ 1414 if (((hdr->frame_control ^ f_hdr->frame_control) & 1415 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1416 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || 1417 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) 1418 continue; 1419 1420 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1421 __skb_queue_purge(&entry->skb_list); 1422 continue; 1423 } 1424 return entry; 1425 } 1426 1427 return NULL; 1428 } 1429 1430 static ieee80211_rx_result debug_noinline 1431 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1432 { 1433 struct ieee80211_hdr *hdr; 1434 u16 sc; 1435 __le16 fc; 1436 unsigned int frag, seq; 1437 struct ieee80211_fragment_entry *entry; 1438 struct sk_buff *skb; 1439 struct ieee80211_rx_status *status; 1440 1441 hdr = (struct ieee80211_hdr *)rx->skb->data; 1442 fc = hdr->frame_control; 1443 sc = le16_to_cpu(hdr->seq_ctrl); 1444 frag = sc & IEEE80211_SCTL_FRAG; 1445 1446 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1447 (rx->skb)->len < 24 || 1448 is_multicast_ether_addr(hdr->addr1))) { 1449 /* not fragmented */ 1450 goto out; 1451 } 1452 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1453 1454 if (skb_linearize(rx->skb)) 1455 return RX_DROP_UNUSABLE; 1456 1457 /* 1458 * skb_linearize() might change the skb->data and 1459 * previously cached variables (in this case, hdr) need to 1460 * be refreshed with the new data. 1461 */ 1462 hdr = (struct ieee80211_hdr *)rx->skb->data; 1463 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1464 1465 if (frag == 0) { 1466 /* This is the first fragment of a new frame. */ 1467 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1468 rx->seqno_idx, &(rx->skb)); 1469 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1470 ieee80211_has_protected(fc)) { 1471 int queue = rx->security_idx; 1472 /* Store CCMP PN so that we can verify that the next 1473 * fragment has a sequential PN value. */ 1474 entry->ccmp = 1; 1475 memcpy(entry->last_pn, 1476 rx->key->u.ccmp.rx_pn[queue], 1477 CCMP_PN_LEN); 1478 } 1479 return RX_QUEUED; 1480 } 1481 1482 /* This is a fragment for a frame that should already be pending in 1483 * fragment cache. Add this fragment to the end of the pending entry. 1484 */ 1485 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1486 rx->seqno_idx, hdr); 1487 if (!entry) { 1488 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1489 return RX_DROP_MONITOR; 1490 } 1491 1492 /* Verify that MPDUs within one MSDU have sequential PN values. 1493 * (IEEE 802.11i, 8.3.3.4.5) */ 1494 if (entry->ccmp) { 1495 int i; 1496 u8 pn[CCMP_PN_LEN], *rpn; 1497 int queue; 1498 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1499 return RX_DROP_UNUSABLE; 1500 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1501 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1502 pn[i]++; 1503 if (pn[i]) 1504 break; 1505 } 1506 queue = rx->security_idx; 1507 rpn = rx->key->u.ccmp.rx_pn[queue]; 1508 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1509 return RX_DROP_UNUSABLE; 1510 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1511 } 1512 1513 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1514 __skb_queue_tail(&entry->skb_list, rx->skb); 1515 entry->last_frag = frag; 1516 entry->extra_len += rx->skb->len; 1517 if (ieee80211_has_morefrags(fc)) { 1518 rx->skb = NULL; 1519 return RX_QUEUED; 1520 } 1521 1522 rx->skb = __skb_dequeue(&entry->skb_list); 1523 if (skb_tailroom(rx->skb) < entry->extra_len) { 1524 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1525 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1526 GFP_ATOMIC))) { 1527 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1528 __skb_queue_purge(&entry->skb_list); 1529 return RX_DROP_UNUSABLE; 1530 } 1531 } 1532 while ((skb = __skb_dequeue(&entry->skb_list))) { 1533 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1534 dev_kfree_skb(skb); 1535 } 1536 1537 /* Complete frame has been reassembled - process it now */ 1538 status = IEEE80211_SKB_RXCB(rx->skb); 1539 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1540 1541 out: 1542 if (rx->sta) 1543 rx->sta->rx_packets++; 1544 if (is_multicast_ether_addr(hdr->addr1)) 1545 rx->local->dot11MulticastReceivedFrameCount++; 1546 else 1547 ieee80211_led_rx(rx->local); 1548 return RX_CONTINUE; 1549 } 1550 1551 static ieee80211_rx_result debug_noinline 1552 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx) 1553 { 1554 u8 *data = rx->skb->data; 1555 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data; 1556 1557 if (!ieee80211_is_data_qos(hdr->frame_control)) 1558 return RX_CONTINUE; 1559 1560 /* remove the qos control field, update frame type and meta-data */ 1561 memmove(data + IEEE80211_QOS_CTL_LEN, data, 1562 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN); 1563 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN); 1564 /* change frame type to non QOS */ 1565 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1566 1567 return RX_CONTINUE; 1568 } 1569 1570 static int 1571 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1572 { 1573 if (unlikely(!rx->sta || 1574 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1575 return -EACCES; 1576 1577 return 0; 1578 } 1579 1580 static int 1581 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1582 { 1583 struct sk_buff *skb = rx->skb; 1584 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1585 1586 /* 1587 * Pass through unencrypted frames if the hardware has 1588 * decrypted them already. 1589 */ 1590 if (status->flag & RX_FLAG_DECRYPTED) 1591 return 0; 1592 1593 /* Drop unencrypted frames if key is set. */ 1594 if (unlikely(!ieee80211_has_protected(fc) && 1595 !ieee80211_is_nullfunc(fc) && 1596 ieee80211_is_data(fc) && 1597 (rx->key || rx->sdata->drop_unencrypted))) 1598 return -EACCES; 1599 1600 return 0; 1601 } 1602 1603 static int 1604 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1605 { 1606 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1607 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1608 __le16 fc = hdr->frame_control; 1609 1610 /* 1611 * Pass through unencrypted frames if the hardware has 1612 * decrypted them already. 1613 */ 1614 if (status->flag & RX_FLAG_DECRYPTED) 1615 return 0; 1616 1617 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1618 if (unlikely(!ieee80211_has_protected(fc) && 1619 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1620 rx->key)) { 1621 if (ieee80211_is_deauth(fc)) 1622 cfg80211_send_unprot_deauth(rx->sdata->dev, 1623 rx->skb->data, 1624 rx->skb->len); 1625 else if (ieee80211_is_disassoc(fc)) 1626 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1627 rx->skb->data, 1628 rx->skb->len); 1629 return -EACCES; 1630 } 1631 /* BIP does not use Protected field, so need to check MMIE */ 1632 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1633 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1634 if (ieee80211_is_deauth(fc)) 1635 cfg80211_send_unprot_deauth(rx->sdata->dev, 1636 rx->skb->data, 1637 rx->skb->len); 1638 else if (ieee80211_is_disassoc(fc)) 1639 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1640 rx->skb->data, 1641 rx->skb->len); 1642 return -EACCES; 1643 } 1644 /* 1645 * When using MFP, Action frames are not allowed prior to 1646 * having configured keys. 1647 */ 1648 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1649 ieee80211_is_robust_mgmt_frame( 1650 (struct ieee80211_hdr *) rx->skb->data))) 1651 return -EACCES; 1652 } 1653 1654 return 0; 1655 } 1656 1657 static int 1658 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1659 { 1660 struct ieee80211_sub_if_data *sdata = rx->sdata; 1661 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1662 bool check_port_control = false; 1663 struct ethhdr *ehdr; 1664 int ret; 1665 1666 *port_control = false; 1667 if (ieee80211_has_a4(hdr->frame_control) && 1668 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1669 return -1; 1670 1671 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1672 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1673 1674 if (!sdata->u.mgd.use_4addr) 1675 return -1; 1676 else 1677 check_port_control = true; 1678 } 1679 1680 if (is_multicast_ether_addr(hdr->addr1) && 1681 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1682 return -1; 1683 1684 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1685 if (ret < 0) 1686 return ret; 1687 1688 ehdr = (struct ethhdr *) rx->skb->data; 1689 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1690 *port_control = true; 1691 else if (check_port_control) 1692 return -1; 1693 1694 return 0; 1695 } 1696 1697 /* 1698 * requires that rx->skb is a frame with ethernet header 1699 */ 1700 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1701 { 1702 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1703 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1704 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1705 1706 /* 1707 * Allow EAPOL frames to us/the PAE group address regardless 1708 * of whether the frame was encrypted or not. 1709 */ 1710 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1711 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 || 1712 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) 1713 return true; 1714 1715 if (ieee80211_802_1x_port_control(rx) || 1716 ieee80211_drop_unencrypted(rx, fc)) 1717 return false; 1718 1719 return true; 1720 } 1721 1722 /* 1723 * requires that rx->skb is a frame with ethernet header 1724 */ 1725 static void 1726 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1727 { 1728 struct ieee80211_sub_if_data *sdata = rx->sdata; 1729 struct net_device *dev = sdata->dev; 1730 struct sk_buff *skb, *xmit_skb; 1731 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1732 struct sta_info *dsta; 1733 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1734 1735 skb = rx->skb; 1736 xmit_skb = NULL; 1737 1738 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1739 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1740 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1741 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1742 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1743 if (is_multicast_ether_addr(ehdr->h_dest)) { 1744 /* 1745 * send multicast frames both to higher layers in 1746 * local net stack and back to the wireless medium 1747 */ 1748 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1749 if (!xmit_skb && net_ratelimit()) 1750 printk(KERN_DEBUG "%s: failed to clone " 1751 "multicast frame\n", dev->name); 1752 } else { 1753 dsta = sta_info_get(sdata, skb->data); 1754 if (dsta) { 1755 /* 1756 * The destination station is associated to 1757 * this AP (in this VLAN), so send the frame 1758 * directly to it and do not pass it to local 1759 * net stack. 1760 */ 1761 xmit_skb = skb; 1762 skb = NULL; 1763 } 1764 } 1765 } 1766 1767 if (skb) { 1768 int align __maybe_unused; 1769 1770 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1771 /* 1772 * 'align' will only take the values 0 or 2 here 1773 * since all frames are required to be aligned 1774 * to 2-byte boundaries when being passed to 1775 * mac80211. That also explains the __skb_push() 1776 * below. 1777 */ 1778 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1779 if (align) { 1780 if (WARN_ON(skb_headroom(skb) < 3)) { 1781 dev_kfree_skb(skb); 1782 skb = NULL; 1783 } else { 1784 u8 *data = skb->data; 1785 size_t len = skb_headlen(skb); 1786 skb->data -= align; 1787 memmove(skb->data, data, len); 1788 skb_set_tail_pointer(skb, len); 1789 } 1790 } 1791 #endif 1792 1793 if (skb) { 1794 /* deliver to local stack */ 1795 skb->protocol = eth_type_trans(skb, dev); 1796 memset(skb->cb, 0, sizeof(skb->cb)); 1797 netif_receive_skb(skb); 1798 } 1799 } 1800 1801 if (xmit_skb) { 1802 /* send to wireless media */ 1803 xmit_skb->protocol = htons(ETH_P_802_3); 1804 skb_reset_network_header(xmit_skb); 1805 skb_reset_mac_header(xmit_skb); 1806 dev_queue_xmit(xmit_skb); 1807 } 1808 } 1809 1810 static ieee80211_rx_result debug_noinline 1811 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1812 { 1813 struct net_device *dev = rx->sdata->dev; 1814 struct sk_buff *skb = rx->skb; 1815 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1816 __le16 fc = hdr->frame_control; 1817 struct sk_buff_head frame_list; 1818 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1819 1820 if (unlikely(!ieee80211_is_data(fc))) 1821 return RX_CONTINUE; 1822 1823 if (unlikely(!ieee80211_is_data_present(fc))) 1824 return RX_DROP_MONITOR; 1825 1826 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1827 return RX_CONTINUE; 1828 1829 if (ieee80211_has_a4(hdr->frame_control) && 1830 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1831 !rx->sdata->u.vlan.sta) 1832 return RX_DROP_UNUSABLE; 1833 1834 if (is_multicast_ether_addr(hdr->addr1) && 1835 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1836 rx->sdata->u.vlan.sta) || 1837 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1838 rx->sdata->u.mgd.use_4addr))) 1839 return RX_DROP_UNUSABLE; 1840 1841 skb->dev = dev; 1842 __skb_queue_head_init(&frame_list); 1843 1844 if (skb_linearize(skb)) 1845 return RX_DROP_UNUSABLE; 1846 1847 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1848 rx->sdata->vif.type, 1849 rx->local->hw.extra_tx_headroom, true); 1850 1851 while (!skb_queue_empty(&frame_list)) { 1852 rx->skb = __skb_dequeue(&frame_list); 1853 1854 if (!ieee80211_frame_allowed(rx, fc)) { 1855 dev_kfree_skb(rx->skb); 1856 continue; 1857 } 1858 dev->stats.rx_packets++; 1859 dev->stats.rx_bytes += rx->skb->len; 1860 1861 ieee80211_deliver_skb(rx); 1862 } 1863 1864 return RX_QUEUED; 1865 } 1866 1867 #ifdef CONFIG_MAC80211_MESH 1868 static ieee80211_rx_result 1869 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1870 { 1871 struct ieee80211_hdr *hdr; 1872 struct ieee80211s_hdr *mesh_hdr; 1873 unsigned int hdrlen; 1874 struct sk_buff *skb = rx->skb, *fwd_skb; 1875 struct ieee80211_local *local = rx->local; 1876 struct ieee80211_sub_if_data *sdata = rx->sdata; 1877 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1878 1879 hdr = (struct ieee80211_hdr *) skb->data; 1880 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1881 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1882 1883 /* frame is in RMC, don't forward */ 1884 if (ieee80211_is_data(hdr->frame_control) && 1885 is_multicast_ether_addr(hdr->addr1) && 1886 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata)) 1887 return RX_DROP_MONITOR; 1888 1889 if (!ieee80211_is_data(hdr->frame_control)) 1890 return RX_CONTINUE; 1891 1892 if (!mesh_hdr->ttl) 1893 /* illegal frame */ 1894 return RX_DROP_MONITOR; 1895 1896 if (ieee80211_queue_stopped(&local->hw, skb_get_queue_mapping(skb))) { 1897 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1898 dropped_frames_congestion); 1899 return RX_DROP_MONITOR; 1900 } 1901 1902 if (mesh_hdr->flags & MESH_FLAGS_AE) { 1903 struct mesh_path *mppath; 1904 char *proxied_addr; 1905 char *mpp_addr; 1906 1907 if (is_multicast_ether_addr(hdr->addr1)) { 1908 mpp_addr = hdr->addr3; 1909 proxied_addr = mesh_hdr->eaddr1; 1910 } else { 1911 mpp_addr = hdr->addr4; 1912 proxied_addr = mesh_hdr->eaddr2; 1913 } 1914 1915 rcu_read_lock(); 1916 mppath = mpp_path_lookup(proxied_addr, sdata); 1917 if (!mppath) { 1918 mpp_path_add(proxied_addr, mpp_addr, sdata); 1919 } else { 1920 spin_lock_bh(&mppath->state_lock); 1921 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0) 1922 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 1923 spin_unlock_bh(&mppath->state_lock); 1924 } 1925 rcu_read_unlock(); 1926 } 1927 1928 /* Frame has reached destination. Don't forward */ 1929 if (!is_multicast_ether_addr(hdr->addr1) && 1930 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0) 1931 return RX_CONTINUE; 1932 1933 mesh_hdr->ttl--; 1934 1935 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1936 if (!mesh_hdr->ttl) 1937 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh, 1938 dropped_frames_ttl); 1939 else { 1940 struct ieee80211_hdr *fwd_hdr; 1941 struct ieee80211_tx_info *info; 1942 1943 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1944 1945 if (!fwd_skb && net_ratelimit()) 1946 printk(KERN_DEBUG "%s: failed to clone mesh frame\n", 1947 sdata->name); 1948 if (!fwd_skb) 1949 goto out; 1950 1951 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1952 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 1953 info = IEEE80211_SKB_CB(fwd_skb); 1954 memset(info, 0, sizeof(*info)); 1955 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1956 info->control.vif = &rx->sdata->vif; 1957 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 1958 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1959 fwded_mcast); 1960 skb_set_queue_mapping(fwd_skb, 1961 ieee80211_select_queue(sdata, fwd_skb)); 1962 ieee80211_set_qos_hdr(sdata, fwd_skb); 1963 } else { 1964 int err; 1965 /* 1966 * Save TA to addr1 to send TA a path error if a 1967 * suitable next hop is not found 1968 */ 1969 memcpy(fwd_hdr->addr1, fwd_hdr->addr2, 1970 ETH_ALEN); 1971 err = mesh_nexthop_lookup(fwd_skb, sdata); 1972 /* Failed to immediately resolve next hop: 1973 * fwded frame was dropped or will be added 1974 * later to the pending skb queue. */ 1975 if (err) 1976 return RX_DROP_MONITOR; 1977 1978 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1979 fwded_unicast); 1980 } 1981 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1982 fwded_frames); 1983 ieee80211_add_pending_skb(local, fwd_skb); 1984 } 1985 } 1986 1987 out: 1988 if (is_multicast_ether_addr(hdr->addr1) || 1989 sdata->dev->flags & IFF_PROMISC) 1990 return RX_CONTINUE; 1991 else 1992 return RX_DROP_MONITOR; 1993 } 1994 #endif 1995 1996 static ieee80211_rx_result debug_noinline 1997 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 1998 { 1999 struct ieee80211_sub_if_data *sdata = rx->sdata; 2000 struct ieee80211_local *local = rx->local; 2001 struct net_device *dev = sdata->dev; 2002 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2003 __le16 fc = hdr->frame_control; 2004 bool port_control; 2005 int err; 2006 2007 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2008 return RX_CONTINUE; 2009 2010 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2011 return RX_DROP_MONITOR; 2012 2013 /* 2014 * Allow the cooked monitor interface of an AP to see 4-addr frames so 2015 * that a 4-addr station can be detected and moved into a separate VLAN 2016 */ 2017 if (ieee80211_has_a4(hdr->frame_control) && 2018 sdata->vif.type == NL80211_IFTYPE_AP) 2019 return RX_DROP_MONITOR; 2020 2021 err = __ieee80211_data_to_8023(rx, &port_control); 2022 if (unlikely(err)) 2023 return RX_DROP_UNUSABLE; 2024 2025 if (!ieee80211_frame_allowed(rx, fc)) 2026 return RX_DROP_MONITOR; 2027 2028 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2029 unlikely(port_control) && sdata->bss) { 2030 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2031 u.ap); 2032 dev = sdata->dev; 2033 rx->sdata = sdata; 2034 } 2035 2036 rx->skb->dev = dev; 2037 2038 dev->stats.rx_packets++; 2039 dev->stats.rx_bytes += rx->skb->len; 2040 2041 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2042 !is_multicast_ether_addr( 2043 ((struct ethhdr *)rx->skb->data)->h_dest) && 2044 (!local->scanning && 2045 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2046 mod_timer(&local->dynamic_ps_timer, jiffies + 2047 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2048 } 2049 2050 ieee80211_deliver_skb(rx); 2051 2052 return RX_QUEUED; 2053 } 2054 2055 static ieee80211_rx_result debug_noinline 2056 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 2057 { 2058 struct ieee80211_local *local = rx->local; 2059 struct ieee80211_hw *hw = &local->hw; 2060 struct sk_buff *skb = rx->skb; 2061 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2062 struct tid_ampdu_rx *tid_agg_rx; 2063 u16 start_seq_num; 2064 u16 tid; 2065 2066 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2067 return RX_CONTINUE; 2068 2069 if (ieee80211_is_back_req(bar->frame_control)) { 2070 struct { 2071 __le16 control, start_seq_num; 2072 } __packed bar_data; 2073 2074 if (!rx->sta) 2075 return RX_DROP_MONITOR; 2076 2077 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2078 &bar_data, sizeof(bar_data))) 2079 return RX_DROP_MONITOR; 2080 2081 tid = le16_to_cpu(bar_data.control) >> 12; 2082 2083 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2084 if (!tid_agg_rx) 2085 return RX_DROP_MONITOR; 2086 2087 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2088 2089 /* reset session timer */ 2090 if (tid_agg_rx->timeout) 2091 mod_timer(&tid_agg_rx->session_timer, 2092 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2093 2094 spin_lock(&tid_agg_rx->reorder_lock); 2095 /* release stored frames up to start of BAR */ 2096 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num); 2097 spin_unlock(&tid_agg_rx->reorder_lock); 2098 2099 kfree_skb(skb); 2100 return RX_QUEUED; 2101 } 2102 2103 /* 2104 * After this point, we only want management frames, 2105 * so we can drop all remaining control frames to 2106 * cooked monitor interfaces. 2107 */ 2108 return RX_DROP_MONITOR; 2109 } 2110 2111 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2112 struct ieee80211_mgmt *mgmt, 2113 size_t len) 2114 { 2115 struct ieee80211_local *local = sdata->local; 2116 struct sk_buff *skb; 2117 struct ieee80211_mgmt *resp; 2118 2119 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) { 2120 /* Not to own unicast address */ 2121 return; 2122 } 2123 2124 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 || 2125 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) { 2126 /* Not from the current AP or not associated yet. */ 2127 return; 2128 } 2129 2130 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2131 /* Too short SA Query request frame */ 2132 return; 2133 } 2134 2135 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2136 if (skb == NULL) 2137 return; 2138 2139 skb_reserve(skb, local->hw.extra_tx_headroom); 2140 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2141 memset(resp, 0, 24); 2142 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2143 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2144 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2145 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2146 IEEE80211_STYPE_ACTION); 2147 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2148 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2149 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2150 memcpy(resp->u.action.u.sa_query.trans_id, 2151 mgmt->u.action.u.sa_query.trans_id, 2152 WLAN_SA_QUERY_TR_ID_LEN); 2153 2154 ieee80211_tx_skb(sdata, skb); 2155 } 2156 2157 static ieee80211_rx_result debug_noinline 2158 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2159 { 2160 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2161 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2162 2163 /* 2164 * From here on, look only at management frames. 2165 * Data and control frames are already handled, 2166 * and unknown (reserved) frames are useless. 2167 */ 2168 if (rx->skb->len < 24) 2169 return RX_DROP_MONITOR; 2170 2171 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2172 return RX_DROP_MONITOR; 2173 2174 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2175 return RX_DROP_MONITOR; 2176 2177 if (ieee80211_drop_unencrypted_mgmt(rx)) 2178 return RX_DROP_UNUSABLE; 2179 2180 return RX_CONTINUE; 2181 } 2182 2183 static ieee80211_rx_result debug_noinline 2184 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2185 { 2186 struct ieee80211_local *local = rx->local; 2187 struct ieee80211_sub_if_data *sdata = rx->sdata; 2188 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2189 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2190 int len = rx->skb->len; 2191 2192 if (!ieee80211_is_action(mgmt->frame_control)) 2193 return RX_CONTINUE; 2194 2195 /* drop too small frames */ 2196 if (len < IEEE80211_MIN_ACTION_SIZE) 2197 return RX_DROP_UNUSABLE; 2198 2199 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) 2200 return RX_DROP_UNUSABLE; 2201 2202 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2203 return RX_DROP_UNUSABLE; 2204 2205 switch (mgmt->u.action.category) { 2206 case WLAN_CATEGORY_BACK: 2207 /* 2208 * The aggregation code is not prepared to handle 2209 * anything but STA/AP due to the BSSID handling; 2210 * IBSS could work in the code but isn't supported 2211 * by drivers or the standard. 2212 */ 2213 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2214 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2215 sdata->vif.type != NL80211_IFTYPE_AP) 2216 break; 2217 2218 /* verify action_code is present */ 2219 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2220 break; 2221 2222 switch (mgmt->u.action.u.addba_req.action_code) { 2223 case WLAN_ACTION_ADDBA_REQ: 2224 if (len < (IEEE80211_MIN_ACTION_SIZE + 2225 sizeof(mgmt->u.action.u.addba_req))) 2226 goto invalid; 2227 break; 2228 case WLAN_ACTION_ADDBA_RESP: 2229 if (len < (IEEE80211_MIN_ACTION_SIZE + 2230 sizeof(mgmt->u.action.u.addba_resp))) 2231 goto invalid; 2232 break; 2233 case WLAN_ACTION_DELBA: 2234 if (len < (IEEE80211_MIN_ACTION_SIZE + 2235 sizeof(mgmt->u.action.u.delba))) 2236 goto invalid; 2237 break; 2238 default: 2239 goto invalid; 2240 } 2241 2242 goto queue; 2243 case WLAN_CATEGORY_SPECTRUM_MGMT: 2244 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 2245 break; 2246 2247 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2248 break; 2249 2250 /* verify action_code is present */ 2251 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2252 break; 2253 2254 switch (mgmt->u.action.u.measurement.action_code) { 2255 case WLAN_ACTION_SPCT_MSR_REQ: 2256 if (len < (IEEE80211_MIN_ACTION_SIZE + 2257 sizeof(mgmt->u.action.u.measurement))) 2258 break; 2259 ieee80211_process_measurement_req(sdata, mgmt, len); 2260 goto handled; 2261 case WLAN_ACTION_SPCT_CHL_SWITCH: 2262 if (len < (IEEE80211_MIN_ACTION_SIZE + 2263 sizeof(mgmt->u.action.u.chan_switch))) 2264 break; 2265 2266 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2267 break; 2268 2269 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN)) 2270 break; 2271 2272 goto queue; 2273 } 2274 break; 2275 case WLAN_CATEGORY_SA_QUERY: 2276 if (len < (IEEE80211_MIN_ACTION_SIZE + 2277 sizeof(mgmt->u.action.u.sa_query))) 2278 break; 2279 2280 switch (mgmt->u.action.u.sa_query.action) { 2281 case WLAN_ACTION_SA_QUERY_REQUEST: 2282 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2283 break; 2284 ieee80211_process_sa_query_req(sdata, mgmt, len); 2285 goto handled; 2286 } 2287 break; 2288 case WLAN_CATEGORY_SELF_PROTECTED: 2289 switch (mgmt->u.action.u.self_prot.action_code) { 2290 case WLAN_SP_MESH_PEERING_OPEN: 2291 case WLAN_SP_MESH_PEERING_CLOSE: 2292 case WLAN_SP_MESH_PEERING_CONFIRM: 2293 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2294 goto invalid; 2295 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) 2296 /* userspace handles this frame */ 2297 break; 2298 goto queue; 2299 case WLAN_SP_MGK_INFORM: 2300 case WLAN_SP_MGK_ACK: 2301 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2302 goto invalid; 2303 break; 2304 } 2305 break; 2306 case WLAN_CATEGORY_MESH_ACTION: 2307 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2308 break; 2309 if (mesh_action_is_path_sel(mgmt) && 2310 (!mesh_path_sel_is_hwmp(sdata))) 2311 break; 2312 goto queue; 2313 } 2314 2315 return RX_CONTINUE; 2316 2317 invalid: 2318 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2319 /* will return in the next handlers */ 2320 return RX_CONTINUE; 2321 2322 handled: 2323 if (rx->sta) 2324 rx->sta->rx_packets++; 2325 dev_kfree_skb(rx->skb); 2326 return RX_QUEUED; 2327 2328 queue: 2329 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2330 skb_queue_tail(&sdata->skb_queue, rx->skb); 2331 ieee80211_queue_work(&local->hw, &sdata->work); 2332 if (rx->sta) 2333 rx->sta->rx_packets++; 2334 return RX_QUEUED; 2335 } 2336 2337 static ieee80211_rx_result debug_noinline 2338 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2339 { 2340 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2341 2342 /* skip known-bad action frames and return them in the next handler */ 2343 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2344 return RX_CONTINUE; 2345 2346 /* 2347 * Getting here means the kernel doesn't know how to handle 2348 * it, but maybe userspace does ... include returned frames 2349 * so userspace can register for those to know whether ones 2350 * it transmitted were processed or returned. 2351 */ 2352 2353 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, 2354 rx->skb->data, rx->skb->len, 2355 GFP_ATOMIC)) { 2356 if (rx->sta) 2357 rx->sta->rx_packets++; 2358 dev_kfree_skb(rx->skb); 2359 return RX_QUEUED; 2360 } 2361 2362 2363 return RX_CONTINUE; 2364 } 2365 2366 static ieee80211_rx_result debug_noinline 2367 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2368 { 2369 struct ieee80211_local *local = rx->local; 2370 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2371 struct sk_buff *nskb; 2372 struct ieee80211_sub_if_data *sdata = rx->sdata; 2373 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2374 2375 if (!ieee80211_is_action(mgmt->frame_control)) 2376 return RX_CONTINUE; 2377 2378 /* 2379 * For AP mode, hostapd is responsible for handling any action 2380 * frames that we didn't handle, including returning unknown 2381 * ones. For all other modes we will return them to the sender, 2382 * setting the 0x80 bit in the action category, as required by 2383 * 802.11-2007 7.3.1.11. 2384 * Newer versions of hostapd shall also use the management frame 2385 * registration mechanisms, but older ones still use cooked 2386 * monitor interfaces so push all frames there. 2387 */ 2388 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2389 (sdata->vif.type == NL80211_IFTYPE_AP || 2390 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2391 return RX_DROP_MONITOR; 2392 2393 /* do not return rejected action frames */ 2394 if (mgmt->u.action.category & 0x80) 2395 return RX_DROP_UNUSABLE; 2396 2397 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2398 GFP_ATOMIC); 2399 if (nskb) { 2400 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2401 2402 nmgmt->u.action.category |= 0x80; 2403 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2404 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2405 2406 memset(nskb->cb, 0, sizeof(nskb->cb)); 2407 2408 ieee80211_tx_skb(rx->sdata, nskb); 2409 } 2410 dev_kfree_skb(rx->skb); 2411 return RX_QUEUED; 2412 } 2413 2414 static ieee80211_rx_result debug_noinline 2415 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2416 { 2417 struct ieee80211_sub_if_data *sdata = rx->sdata; 2418 ieee80211_rx_result rxs; 2419 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2420 __le16 stype; 2421 2422 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb); 2423 if (rxs != RX_CONTINUE) 2424 return rxs; 2425 2426 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2427 2428 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2429 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2430 sdata->vif.type != NL80211_IFTYPE_STATION) 2431 return RX_DROP_MONITOR; 2432 2433 switch (stype) { 2434 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2435 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2436 /* process for all: mesh, mlme, ibss */ 2437 break; 2438 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2439 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2440 if (is_multicast_ether_addr(mgmt->da) && 2441 !is_broadcast_ether_addr(mgmt->da)) 2442 return RX_DROP_MONITOR; 2443 2444 /* process only for station */ 2445 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2446 return RX_DROP_MONITOR; 2447 break; 2448 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2449 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2450 /* process only for ibss */ 2451 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 2452 return RX_DROP_MONITOR; 2453 break; 2454 default: 2455 return RX_DROP_MONITOR; 2456 } 2457 2458 /* queue up frame and kick off work to process it */ 2459 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2460 skb_queue_tail(&sdata->skb_queue, rx->skb); 2461 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2462 if (rx->sta) 2463 rx->sta->rx_packets++; 2464 2465 return RX_QUEUED; 2466 } 2467 2468 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2469 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2470 struct ieee80211_rate *rate) 2471 { 2472 struct ieee80211_sub_if_data *sdata; 2473 struct ieee80211_local *local = rx->local; 2474 struct ieee80211_rtap_hdr { 2475 struct ieee80211_radiotap_header hdr; 2476 u8 flags; 2477 u8 rate_or_pad; 2478 __le16 chan_freq; 2479 __le16 chan_flags; 2480 } __packed *rthdr; 2481 struct sk_buff *skb = rx->skb, *skb2; 2482 struct net_device *prev_dev = NULL; 2483 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2484 2485 /* 2486 * If cooked monitor has been processed already, then 2487 * don't do it again. If not, set the flag. 2488 */ 2489 if (rx->flags & IEEE80211_RX_CMNTR) 2490 goto out_free_skb; 2491 rx->flags |= IEEE80211_RX_CMNTR; 2492 2493 if (skb_headroom(skb) < sizeof(*rthdr) && 2494 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) 2495 goto out_free_skb; 2496 2497 rthdr = (void *)skb_push(skb, sizeof(*rthdr)); 2498 memset(rthdr, 0, sizeof(*rthdr)); 2499 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); 2500 rthdr->hdr.it_present = 2501 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 2502 (1 << IEEE80211_RADIOTAP_CHANNEL)); 2503 2504 if (rate) { 2505 rthdr->rate_or_pad = rate->bitrate / 5; 2506 rthdr->hdr.it_present |= 2507 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 2508 } 2509 rthdr->chan_freq = cpu_to_le16(status->freq); 2510 2511 if (status->band == IEEE80211_BAND_5GHZ) 2512 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM | 2513 IEEE80211_CHAN_5GHZ); 2514 else 2515 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN | 2516 IEEE80211_CHAN_2GHZ); 2517 2518 skb_set_mac_header(skb, 0); 2519 skb->ip_summed = CHECKSUM_UNNECESSARY; 2520 skb->pkt_type = PACKET_OTHERHOST; 2521 skb->protocol = htons(ETH_P_802_2); 2522 2523 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2524 if (!ieee80211_sdata_running(sdata)) 2525 continue; 2526 2527 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2528 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2529 continue; 2530 2531 if (prev_dev) { 2532 skb2 = skb_clone(skb, GFP_ATOMIC); 2533 if (skb2) { 2534 skb2->dev = prev_dev; 2535 netif_receive_skb(skb2); 2536 } 2537 } 2538 2539 prev_dev = sdata->dev; 2540 sdata->dev->stats.rx_packets++; 2541 sdata->dev->stats.rx_bytes += skb->len; 2542 } 2543 2544 if (prev_dev) { 2545 skb->dev = prev_dev; 2546 netif_receive_skb(skb); 2547 return; 2548 } 2549 2550 out_free_skb: 2551 dev_kfree_skb(skb); 2552 } 2553 2554 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2555 ieee80211_rx_result res) 2556 { 2557 switch (res) { 2558 case RX_DROP_MONITOR: 2559 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2560 if (rx->sta) 2561 rx->sta->rx_dropped++; 2562 /* fall through */ 2563 case RX_CONTINUE: { 2564 struct ieee80211_rate *rate = NULL; 2565 struct ieee80211_supported_band *sband; 2566 struct ieee80211_rx_status *status; 2567 2568 status = IEEE80211_SKB_RXCB((rx->skb)); 2569 2570 sband = rx->local->hw.wiphy->bands[status->band]; 2571 if (!(status->flag & RX_FLAG_HT)) 2572 rate = &sband->bitrates[status->rate_idx]; 2573 2574 ieee80211_rx_cooked_monitor(rx, rate); 2575 break; 2576 } 2577 case RX_DROP_UNUSABLE: 2578 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2579 if (rx->sta) 2580 rx->sta->rx_dropped++; 2581 dev_kfree_skb(rx->skb); 2582 break; 2583 case RX_QUEUED: 2584 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2585 break; 2586 } 2587 } 2588 2589 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx) 2590 { 2591 ieee80211_rx_result res = RX_DROP_MONITOR; 2592 struct sk_buff *skb; 2593 2594 #define CALL_RXH(rxh) \ 2595 do { \ 2596 res = rxh(rx); \ 2597 if (res != RX_CONTINUE) \ 2598 goto rxh_next; \ 2599 } while (0); 2600 2601 spin_lock(&rx->local->rx_skb_queue.lock); 2602 if (rx->local->running_rx_handler) 2603 goto unlock; 2604 2605 rx->local->running_rx_handler = true; 2606 2607 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) { 2608 spin_unlock(&rx->local->rx_skb_queue.lock); 2609 2610 /* 2611 * all the other fields are valid across frames 2612 * that belong to an aMPDU since they are on the 2613 * same TID from the same station 2614 */ 2615 rx->skb = skb; 2616 2617 CALL_RXH(ieee80211_rx_h_decrypt) 2618 CALL_RXH(ieee80211_rx_h_check_more_data) 2619 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2620 CALL_RXH(ieee80211_rx_h_sta_process) 2621 CALL_RXH(ieee80211_rx_h_defragment) 2622 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2623 /* must be after MMIC verify so header is counted in MPDU mic */ 2624 #ifdef CONFIG_MAC80211_MESH 2625 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2626 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2627 #endif 2628 CALL_RXH(ieee80211_rx_h_remove_qos_control) 2629 CALL_RXH(ieee80211_rx_h_amsdu) 2630 CALL_RXH(ieee80211_rx_h_data) 2631 CALL_RXH(ieee80211_rx_h_ctrl); 2632 CALL_RXH(ieee80211_rx_h_mgmt_check) 2633 CALL_RXH(ieee80211_rx_h_action) 2634 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2635 CALL_RXH(ieee80211_rx_h_action_return) 2636 CALL_RXH(ieee80211_rx_h_mgmt) 2637 2638 rxh_next: 2639 ieee80211_rx_handlers_result(rx, res); 2640 spin_lock(&rx->local->rx_skb_queue.lock); 2641 #undef CALL_RXH 2642 } 2643 2644 rx->local->running_rx_handler = false; 2645 2646 unlock: 2647 spin_unlock(&rx->local->rx_skb_queue.lock); 2648 } 2649 2650 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2651 { 2652 ieee80211_rx_result res = RX_DROP_MONITOR; 2653 2654 #define CALL_RXH(rxh) \ 2655 do { \ 2656 res = rxh(rx); \ 2657 if (res != RX_CONTINUE) \ 2658 goto rxh_next; \ 2659 } while (0); 2660 2661 CALL_RXH(ieee80211_rx_h_passive_scan) 2662 CALL_RXH(ieee80211_rx_h_check) 2663 2664 ieee80211_rx_reorder_ampdu(rx); 2665 2666 ieee80211_rx_handlers(rx); 2667 return; 2668 2669 rxh_next: 2670 ieee80211_rx_handlers_result(rx, res); 2671 2672 #undef CALL_RXH 2673 } 2674 2675 /* 2676 * This function makes calls into the RX path, therefore 2677 * it has to be invoked under RCU read lock. 2678 */ 2679 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2680 { 2681 struct ieee80211_rx_data rx = { 2682 .sta = sta, 2683 .sdata = sta->sdata, 2684 .local = sta->local, 2685 /* This is OK -- must be QoS data frame */ 2686 .security_idx = tid, 2687 .seqno_idx = tid, 2688 .flags = 0, 2689 }; 2690 struct tid_ampdu_rx *tid_agg_rx; 2691 2692 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2693 if (!tid_agg_rx) 2694 return; 2695 2696 spin_lock(&tid_agg_rx->reorder_lock); 2697 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx); 2698 spin_unlock(&tid_agg_rx->reorder_lock); 2699 2700 ieee80211_rx_handlers(&rx); 2701 } 2702 2703 /* main receive path */ 2704 2705 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2706 struct ieee80211_hdr *hdr) 2707 { 2708 struct ieee80211_sub_if_data *sdata = rx->sdata; 2709 struct sk_buff *skb = rx->skb; 2710 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2711 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2712 int multicast = is_multicast_ether_addr(hdr->addr1); 2713 2714 switch (sdata->vif.type) { 2715 case NL80211_IFTYPE_STATION: 2716 if (!bssid && !sdata->u.mgd.use_4addr) 2717 return 0; 2718 if (!multicast && 2719 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) { 2720 if (!(sdata->dev->flags & IFF_PROMISC) || 2721 sdata->u.mgd.use_4addr) 2722 return 0; 2723 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2724 } 2725 break; 2726 case NL80211_IFTYPE_ADHOC: 2727 if (!bssid) 2728 return 0; 2729 if (ieee80211_is_beacon(hdr->frame_control)) { 2730 return 1; 2731 } 2732 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2733 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN)) 2734 return 0; 2735 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2736 } else if (!multicast && 2737 compare_ether_addr(sdata->vif.addr, 2738 hdr->addr1) != 0) { 2739 if (!(sdata->dev->flags & IFF_PROMISC)) 2740 return 0; 2741 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2742 } else if (!rx->sta) { 2743 int rate_idx; 2744 if (status->flag & RX_FLAG_HT) 2745 rate_idx = 0; /* TODO: HT rates */ 2746 else 2747 rate_idx = status->rate_idx; 2748 rx->sta = ieee80211_ibss_add_sta(sdata, bssid, 2749 hdr->addr2, BIT(rate_idx), GFP_ATOMIC); 2750 } 2751 break; 2752 case NL80211_IFTYPE_MESH_POINT: 2753 if (!multicast && 2754 compare_ether_addr(sdata->vif.addr, 2755 hdr->addr1) != 0) { 2756 if (!(sdata->dev->flags & IFF_PROMISC)) 2757 return 0; 2758 2759 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2760 } 2761 break; 2762 case NL80211_IFTYPE_AP_VLAN: 2763 case NL80211_IFTYPE_AP: 2764 if (!bssid) { 2765 if (compare_ether_addr(sdata->vif.addr, 2766 hdr->addr1)) 2767 return 0; 2768 } else if (!ieee80211_bssid_match(bssid, 2769 sdata->vif.addr)) { 2770 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 2771 !ieee80211_is_beacon(hdr->frame_control) && 2772 !(ieee80211_is_action(hdr->frame_control) && 2773 sdata->vif.p2p)) 2774 return 0; 2775 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2776 } 2777 break; 2778 case NL80211_IFTYPE_WDS: 2779 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2780 return 0; 2781 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) 2782 return 0; 2783 break; 2784 default: 2785 /* should never get here */ 2786 WARN_ON(1); 2787 break; 2788 } 2789 2790 return 1; 2791 } 2792 2793 /* 2794 * This function returns whether or not the SKB 2795 * was destined for RX processing or not, which, 2796 * if consume is true, is equivalent to whether 2797 * or not the skb was consumed. 2798 */ 2799 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 2800 struct sk_buff *skb, bool consume) 2801 { 2802 struct ieee80211_local *local = rx->local; 2803 struct ieee80211_sub_if_data *sdata = rx->sdata; 2804 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2805 struct ieee80211_hdr *hdr = (void *)skb->data; 2806 int prepares; 2807 2808 rx->skb = skb; 2809 status->rx_flags |= IEEE80211_RX_RA_MATCH; 2810 prepares = prepare_for_handlers(rx, hdr); 2811 2812 if (!prepares) 2813 return false; 2814 2815 if (!consume) { 2816 skb = skb_copy(skb, GFP_ATOMIC); 2817 if (!skb) { 2818 if (net_ratelimit()) 2819 wiphy_debug(local->hw.wiphy, 2820 "failed to copy skb for %s\n", 2821 sdata->name); 2822 return true; 2823 } 2824 2825 rx->skb = skb; 2826 } 2827 2828 ieee80211_invoke_rx_handlers(rx); 2829 return true; 2830 } 2831 2832 /* 2833 * This is the actual Rx frames handler. as it blongs to Rx path it must 2834 * be called with rcu_read_lock protection. 2835 */ 2836 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 2837 struct sk_buff *skb) 2838 { 2839 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2840 struct ieee80211_local *local = hw_to_local(hw); 2841 struct ieee80211_sub_if_data *sdata; 2842 struct ieee80211_hdr *hdr; 2843 __le16 fc; 2844 struct ieee80211_rx_data rx; 2845 struct ieee80211_sub_if_data *prev; 2846 struct sta_info *sta, *tmp, *prev_sta; 2847 int err = 0; 2848 2849 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 2850 memset(&rx, 0, sizeof(rx)); 2851 rx.skb = skb; 2852 rx.local = local; 2853 2854 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 2855 local->dot11ReceivedFragmentCount++; 2856 2857 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) || 2858 test_bit(SCAN_SW_SCANNING, &local->scanning))) 2859 status->rx_flags |= IEEE80211_RX_IN_SCAN; 2860 2861 if (ieee80211_is_mgmt(fc)) 2862 err = skb_linearize(skb); 2863 else 2864 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 2865 2866 if (err) { 2867 dev_kfree_skb(skb); 2868 return; 2869 } 2870 2871 hdr = (struct ieee80211_hdr *)skb->data; 2872 ieee80211_parse_qos(&rx); 2873 ieee80211_verify_alignment(&rx); 2874 2875 if (ieee80211_is_data(fc)) { 2876 prev_sta = NULL; 2877 2878 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) { 2879 if (!prev_sta) { 2880 prev_sta = sta; 2881 continue; 2882 } 2883 2884 rx.sta = prev_sta; 2885 rx.sdata = prev_sta->sdata; 2886 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2887 2888 prev_sta = sta; 2889 } 2890 2891 if (prev_sta) { 2892 rx.sta = prev_sta; 2893 rx.sdata = prev_sta->sdata; 2894 2895 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2896 return; 2897 goto out; 2898 } 2899 } 2900 2901 prev = NULL; 2902 2903 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2904 if (!ieee80211_sdata_running(sdata)) 2905 continue; 2906 2907 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 2908 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 2909 continue; 2910 2911 /* 2912 * frame is destined for this interface, but if it's 2913 * not also for the previous one we handle that after 2914 * the loop to avoid copying the SKB once too much 2915 */ 2916 2917 if (!prev) { 2918 prev = sdata; 2919 continue; 2920 } 2921 2922 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2); 2923 rx.sdata = prev; 2924 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2925 2926 prev = sdata; 2927 } 2928 2929 if (prev) { 2930 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2); 2931 rx.sdata = prev; 2932 2933 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2934 return; 2935 } 2936 2937 out: 2938 dev_kfree_skb(skb); 2939 } 2940 2941 /* 2942 * This is the receive path handler. It is called by a low level driver when an 2943 * 802.11 MPDU is received from the hardware. 2944 */ 2945 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 2946 { 2947 struct ieee80211_local *local = hw_to_local(hw); 2948 struct ieee80211_rate *rate = NULL; 2949 struct ieee80211_supported_band *sband; 2950 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2951 2952 WARN_ON_ONCE(softirq_count() == 0); 2953 2954 if (WARN_ON(status->band < 0 || 2955 status->band >= IEEE80211_NUM_BANDS)) 2956 goto drop; 2957 2958 sband = local->hw.wiphy->bands[status->band]; 2959 if (WARN_ON(!sband)) 2960 goto drop; 2961 2962 /* 2963 * If we're suspending, it is possible although not too likely 2964 * that we'd be receiving frames after having already partially 2965 * quiesced the stack. We can't process such frames then since 2966 * that might, for example, cause stations to be added or other 2967 * driver callbacks be invoked. 2968 */ 2969 if (unlikely(local->quiescing || local->suspended)) 2970 goto drop; 2971 2972 /* 2973 * The same happens when we're not even started, 2974 * but that's worth a warning. 2975 */ 2976 if (WARN_ON(!local->started)) 2977 goto drop; 2978 2979 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 2980 /* 2981 * Validate the rate, unless a PLCP error means that 2982 * we probably can't have a valid rate here anyway. 2983 */ 2984 2985 if (status->flag & RX_FLAG_HT) { 2986 /* 2987 * rate_idx is MCS index, which can be [0-76] 2988 * as documented on: 2989 * 2990 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 2991 * 2992 * Anything else would be some sort of driver or 2993 * hardware error. The driver should catch hardware 2994 * errors. 2995 */ 2996 if (WARN((status->rate_idx < 0 || 2997 status->rate_idx > 76), 2998 "Rate marked as an HT rate but passed " 2999 "status->rate_idx is not " 3000 "an MCS index [0-76]: %d (0x%02x)\n", 3001 status->rate_idx, 3002 status->rate_idx)) 3003 goto drop; 3004 } else { 3005 if (WARN_ON(status->rate_idx < 0 || 3006 status->rate_idx >= sband->n_bitrates)) 3007 goto drop; 3008 rate = &sband->bitrates[status->rate_idx]; 3009 } 3010 } 3011 3012 status->rx_flags = 0; 3013 3014 /* 3015 * key references and virtual interfaces are protected using RCU 3016 * and this requires that we are in a read-side RCU section during 3017 * receive processing 3018 */ 3019 rcu_read_lock(); 3020 3021 /* 3022 * Frames with failed FCS/PLCP checksum are not returned, 3023 * all other frames are returned without radiotap header 3024 * if it was previously present. 3025 * Also, frames with less than 16 bytes are dropped. 3026 */ 3027 skb = ieee80211_rx_monitor(local, skb, rate); 3028 if (!skb) { 3029 rcu_read_unlock(); 3030 return; 3031 } 3032 3033 ieee80211_tpt_led_trig_rx(local, 3034 ((struct ieee80211_hdr *)skb->data)->frame_control, 3035 skb->len); 3036 __ieee80211_rx_handle_packet(hw, skb); 3037 3038 rcu_read_unlock(); 3039 3040 return; 3041 drop: 3042 kfree_skb(skb); 3043 } 3044 EXPORT_SYMBOL(ieee80211_rx); 3045 3046 /* This is a version of the rx handler that can be called from hard irq 3047 * context. Post the skb on the queue and schedule the tasklet */ 3048 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3049 { 3050 struct ieee80211_local *local = hw_to_local(hw); 3051 3052 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3053 3054 skb->pkt_type = IEEE80211_RX_MSG; 3055 skb_queue_tail(&local->skb_queue, skb); 3056 tasklet_schedule(&local->tasklet); 3057 } 3058 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3059