1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/jiffies.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/skbuff.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <linux/bitops.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 38 { 39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 40 41 u64_stats_update_begin(&tstats->syncp); 42 tstats->rx_packets++; 43 tstats->rx_bytes += len; 44 u64_stats_update_end(&tstats->syncp); 45 } 46 47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 48 enum nl80211_iftype type) 49 { 50 __le16 fc = hdr->frame_control; 51 52 if (ieee80211_is_data(fc)) { 53 if (len < 24) /* drop incorrect hdr len (data) */ 54 return NULL; 55 56 if (ieee80211_has_a4(fc)) 57 return NULL; 58 if (ieee80211_has_tods(fc)) 59 return hdr->addr1; 60 if (ieee80211_has_fromds(fc)) 61 return hdr->addr2; 62 63 return hdr->addr3; 64 } 65 66 if (ieee80211_is_mgmt(fc)) { 67 if (len < 24) /* drop incorrect hdr len (mgmt) */ 68 return NULL; 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_ctl(fc)) { 73 if (ieee80211_is_pspoll(fc)) 74 return hdr->addr1; 75 76 if (ieee80211_is_back_req(fc)) { 77 switch (type) { 78 case NL80211_IFTYPE_STATION: 79 return hdr->addr2; 80 case NL80211_IFTYPE_AP: 81 case NL80211_IFTYPE_AP_VLAN: 82 return hdr->addr1; 83 default: 84 break; /* fall through to the return */ 85 } 86 } 87 } 88 89 return NULL; 90 } 91 92 /* 93 * monitor mode reception 94 * 95 * This function cleans up the SKB, i.e. it removes all the stuff 96 * only useful for monitoring. 97 */ 98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 99 struct sk_buff *skb, 100 unsigned int rtap_vendor_space) 101 { 102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 103 if (likely(skb->len > FCS_LEN)) 104 __pskb_trim(skb, skb->len - FCS_LEN); 105 else { 106 /* driver bug */ 107 WARN_ON(1); 108 dev_kfree_skb(skb); 109 return NULL; 110 } 111 } 112 113 __pskb_pull(skb, rtap_vendor_space); 114 115 return skb; 116 } 117 118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 119 unsigned int rtap_vendor_space) 120 { 121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 122 struct ieee80211_hdr *hdr; 123 124 hdr = (void *)(skb->data + rtap_vendor_space); 125 126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 127 RX_FLAG_FAILED_PLCP_CRC | 128 RX_FLAG_ONLY_MONITOR)) 129 return true; 130 131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 132 return true; 133 134 if (ieee80211_is_ctl(hdr->frame_control) && 135 !ieee80211_is_pspoll(hdr->frame_control) && 136 !ieee80211_is_back_req(hdr->frame_control)) 137 return true; 138 139 return false; 140 } 141 142 static int 143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 144 struct ieee80211_rx_status *status, 145 struct sk_buff *skb) 146 { 147 int len; 148 149 /* always present fields */ 150 len = sizeof(struct ieee80211_radiotap_header) + 8; 151 152 /* allocate extra bitmaps */ 153 if (status->chains) 154 len += 4 * hweight8(status->chains); 155 156 if (ieee80211_have_rx_timestamp(status)) { 157 len = ALIGN(len, 8); 158 len += 8; 159 } 160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 161 len += 1; 162 163 /* antenna field, if we don't have per-chain info */ 164 if (!status->chains) 165 len += 1; 166 167 /* padding for RX_FLAGS if necessary */ 168 len = ALIGN(len, 2); 169 170 if (status->flag & RX_FLAG_HT) /* HT info */ 171 len += 3; 172 173 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 174 len = ALIGN(len, 4); 175 len += 8; 176 } 177 178 if (status->flag & RX_FLAG_VHT) { 179 len = ALIGN(len, 2); 180 len += 12; 181 } 182 183 if (local->hw.radiotap_timestamp.units_pos >= 0) { 184 len = ALIGN(len, 8); 185 len += 12; 186 } 187 188 if (status->chains) { 189 /* antenna and antenna signal fields */ 190 len += 2 * hweight8(status->chains); 191 } 192 193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 194 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 195 196 /* vendor presence bitmap */ 197 len += 4; 198 /* alignment for fixed 6-byte vendor data header */ 199 len = ALIGN(len, 2); 200 /* vendor data header */ 201 len += 6; 202 if (WARN_ON(rtap->align == 0)) 203 rtap->align = 1; 204 len = ALIGN(len, rtap->align); 205 len += rtap->len + rtap->pad; 206 } 207 208 return len; 209 } 210 211 /* 212 * ieee80211_add_rx_radiotap_header - add radiotap header 213 * 214 * add a radiotap header containing all the fields which the hardware provided. 215 */ 216 static void 217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 218 struct sk_buff *skb, 219 struct ieee80211_rate *rate, 220 int rtap_len, bool has_fcs) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 struct ieee80211_radiotap_header *rthdr; 224 unsigned char *pos; 225 __le32 *it_present; 226 u32 it_present_val; 227 u16 rx_flags = 0; 228 u16 channel_flags = 0; 229 int mpdulen, chain; 230 unsigned long chains = status->chains; 231 struct ieee80211_vendor_radiotap rtap = {}; 232 233 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 234 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 235 /* rtap.len and rtap.pad are undone immediately */ 236 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 237 } 238 239 mpdulen = skb->len; 240 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 241 mpdulen += FCS_LEN; 242 243 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 244 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 245 it_present = &rthdr->it_present; 246 247 /* radiotap header, set always present flags */ 248 rthdr->it_len = cpu_to_le16(rtap_len); 249 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 250 BIT(IEEE80211_RADIOTAP_CHANNEL) | 251 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 252 253 if (!status->chains) 254 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 255 256 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 257 it_present_val |= 258 BIT(IEEE80211_RADIOTAP_EXT) | 259 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 260 put_unaligned_le32(it_present_val, it_present); 261 it_present++; 262 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 263 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 264 } 265 266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 267 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 268 BIT(IEEE80211_RADIOTAP_EXT); 269 put_unaligned_le32(it_present_val, it_present); 270 it_present++; 271 it_present_val = rtap.present; 272 } 273 274 put_unaligned_le32(it_present_val, it_present); 275 276 pos = (void *)(it_present + 1); 277 278 /* the order of the following fields is important */ 279 280 /* IEEE80211_RADIOTAP_TSFT */ 281 if (ieee80211_have_rx_timestamp(status)) { 282 /* padding */ 283 while ((pos - (u8 *)rthdr) & 7) 284 *pos++ = 0; 285 put_unaligned_le64( 286 ieee80211_calculate_rx_timestamp(local, status, 287 mpdulen, 0), 288 pos); 289 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 290 pos += 8; 291 } 292 293 /* IEEE80211_RADIOTAP_FLAGS */ 294 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 295 *pos |= IEEE80211_RADIOTAP_F_FCS; 296 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 297 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 298 if (status->flag & RX_FLAG_SHORTPRE) 299 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 300 pos++; 301 302 /* IEEE80211_RADIOTAP_RATE */ 303 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 304 /* 305 * Without rate information don't add it. If we have, 306 * MCS information is a separate field in radiotap, 307 * added below. The byte here is needed as padding 308 * for the channel though, so initialise it to 0. 309 */ 310 *pos = 0; 311 } else { 312 int shift = 0; 313 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 314 if (status->flag & RX_FLAG_10MHZ) 315 shift = 1; 316 else if (status->flag & RX_FLAG_5MHZ) 317 shift = 2; 318 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 319 } 320 pos++; 321 322 /* IEEE80211_RADIOTAP_CHANNEL */ 323 put_unaligned_le16(status->freq, pos); 324 pos += 2; 325 if (status->flag & RX_FLAG_10MHZ) 326 channel_flags |= IEEE80211_CHAN_HALF; 327 else if (status->flag & RX_FLAG_5MHZ) 328 channel_flags |= IEEE80211_CHAN_QUARTER; 329 330 if (status->band == NL80211_BAND_5GHZ) 331 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 332 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 333 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 334 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 335 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 336 else if (rate) 337 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 338 else 339 channel_flags |= IEEE80211_CHAN_2GHZ; 340 put_unaligned_le16(channel_flags, pos); 341 pos += 2; 342 343 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 344 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 345 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 346 *pos = status->signal; 347 rthdr->it_present |= 348 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 349 pos++; 350 } 351 352 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 353 354 if (!status->chains) { 355 /* IEEE80211_RADIOTAP_ANTENNA */ 356 *pos = status->antenna; 357 pos++; 358 } 359 360 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 361 362 /* IEEE80211_RADIOTAP_RX_FLAGS */ 363 /* ensure 2 byte alignment for the 2 byte field as required */ 364 if ((pos - (u8 *)rthdr) & 1) 365 *pos++ = 0; 366 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 367 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 368 put_unaligned_le16(rx_flags, pos); 369 pos += 2; 370 371 if (status->flag & RX_FLAG_HT) { 372 unsigned int stbc; 373 374 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 375 *pos++ = local->hw.radiotap_mcs_details; 376 *pos = 0; 377 if (status->flag & RX_FLAG_SHORT_GI) 378 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 379 if (status->flag & RX_FLAG_40MHZ) 380 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 381 if (status->flag & RX_FLAG_HT_GF) 382 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 383 if (status->flag & RX_FLAG_LDPC) 384 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 385 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 386 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 387 pos++; 388 *pos++ = status->rate_idx; 389 } 390 391 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 392 u16 flags = 0; 393 394 /* ensure 4 byte alignment */ 395 while ((pos - (u8 *)rthdr) & 3) 396 pos++; 397 rthdr->it_present |= 398 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 399 put_unaligned_le32(status->ampdu_reference, pos); 400 pos += 4; 401 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 402 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 403 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 404 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 405 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 406 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 407 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 408 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 409 put_unaligned_le16(flags, pos); 410 pos += 2; 411 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 412 *pos++ = status->ampdu_delimiter_crc; 413 else 414 *pos++ = 0; 415 *pos++ = 0; 416 } 417 418 if (status->flag & RX_FLAG_VHT) { 419 u16 known = local->hw.radiotap_vht_details; 420 421 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 422 put_unaligned_le16(known, pos); 423 pos += 2; 424 /* flags */ 425 if (status->flag & RX_FLAG_SHORT_GI) 426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 427 /* in VHT, STBC is binary */ 428 if (status->flag & RX_FLAG_STBC_MASK) 429 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 430 if (status->vht_flag & RX_VHT_FLAG_BF) 431 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 432 pos++; 433 /* bandwidth */ 434 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 435 *pos++ = 4; 436 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 437 *pos++ = 11; 438 else if (status->flag & RX_FLAG_40MHZ) 439 *pos++ = 1; 440 else /* 20 MHz */ 441 *pos++ = 0; 442 /* MCS/NSS */ 443 *pos = (status->rate_idx << 4) | status->vht_nss; 444 pos += 4; 445 /* coding field */ 446 if (status->flag & RX_FLAG_LDPC) 447 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 448 pos++; 449 /* group ID */ 450 pos++; 451 /* partial_aid */ 452 pos += 2; 453 } 454 455 if (local->hw.radiotap_timestamp.units_pos >= 0) { 456 u16 accuracy = 0; 457 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 458 459 rthdr->it_present |= 460 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 461 462 /* ensure 8 byte alignment */ 463 while ((pos - (u8 *)rthdr) & 7) 464 pos++; 465 466 put_unaligned_le64(status->device_timestamp, pos); 467 pos += sizeof(u64); 468 469 if (local->hw.radiotap_timestamp.accuracy >= 0) { 470 accuracy = local->hw.radiotap_timestamp.accuracy; 471 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 472 } 473 put_unaligned_le16(accuracy, pos); 474 pos += sizeof(u16); 475 476 *pos++ = local->hw.radiotap_timestamp.units_pos; 477 *pos++ = flags; 478 } 479 480 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 481 *pos++ = status->chain_signal[chain]; 482 *pos++ = chain; 483 } 484 485 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 486 /* ensure 2 byte alignment for the vendor field as required */ 487 if ((pos - (u8 *)rthdr) & 1) 488 *pos++ = 0; 489 *pos++ = rtap.oui[0]; 490 *pos++ = rtap.oui[1]; 491 *pos++ = rtap.oui[2]; 492 *pos++ = rtap.subns; 493 put_unaligned_le16(rtap.len, pos); 494 pos += 2; 495 /* align the actual payload as requested */ 496 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 497 *pos++ = 0; 498 /* data (and possible padding) already follows */ 499 } 500 } 501 502 /* 503 * This function copies a received frame to all monitor interfaces and 504 * returns a cleaned-up SKB that no longer includes the FCS nor the 505 * radiotap header the driver might have added. 506 */ 507 static struct sk_buff * 508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 509 struct ieee80211_rate *rate) 510 { 511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 512 struct ieee80211_sub_if_data *sdata; 513 int rt_hdrlen, needed_headroom; 514 struct sk_buff *skb, *skb2; 515 struct net_device *prev_dev = NULL; 516 int present_fcs_len = 0; 517 unsigned int rtap_vendor_space = 0; 518 struct ieee80211_mgmt *mgmt; 519 struct ieee80211_sub_if_data *monitor_sdata = 520 rcu_dereference(local->monitor_sdata); 521 522 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 523 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 524 525 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 526 } 527 528 /* 529 * First, we may need to make a copy of the skb because 530 * (1) we need to modify it for radiotap (if not present), and 531 * (2) the other RX handlers will modify the skb we got. 532 * 533 * We don't need to, of course, if we aren't going to return 534 * the SKB because it has a bad FCS/PLCP checksum. 535 */ 536 537 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 538 present_fcs_len = FCS_LEN; 539 540 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 541 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 542 dev_kfree_skb(origskb); 543 return NULL; 544 } 545 546 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 547 if (should_drop_frame(origskb, present_fcs_len, 548 rtap_vendor_space)) { 549 dev_kfree_skb(origskb); 550 return NULL; 551 } 552 553 return remove_monitor_info(local, origskb, rtap_vendor_space); 554 } 555 556 /* room for the radiotap header based on driver features */ 557 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 558 needed_headroom = rt_hdrlen - rtap_vendor_space; 559 560 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 561 /* only need to expand headroom if necessary */ 562 skb = origskb; 563 origskb = NULL; 564 565 /* 566 * This shouldn't trigger often because most devices have an 567 * RX header they pull before we get here, and that should 568 * be big enough for our radiotap information. We should 569 * probably export the length to drivers so that we can have 570 * them allocate enough headroom to start with. 571 */ 572 if (skb_headroom(skb) < needed_headroom && 573 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 574 dev_kfree_skb(skb); 575 return NULL; 576 } 577 } else { 578 /* 579 * Need to make a copy and possibly remove radiotap header 580 * and FCS from the original. 581 */ 582 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 583 584 origskb = remove_monitor_info(local, origskb, 585 rtap_vendor_space); 586 587 if (!skb) 588 return origskb; 589 } 590 591 /* prepend radiotap information */ 592 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 593 594 skb_reset_mac_header(skb); 595 skb->ip_summed = CHECKSUM_UNNECESSARY; 596 skb->pkt_type = PACKET_OTHERHOST; 597 skb->protocol = htons(ETH_P_802_2); 598 599 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 600 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 601 continue; 602 603 if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) 604 continue; 605 606 if (!ieee80211_sdata_running(sdata)) 607 continue; 608 609 if (prev_dev) { 610 skb2 = skb_clone(skb, GFP_ATOMIC); 611 if (skb2) { 612 skb2->dev = prev_dev; 613 netif_receive_skb(skb2); 614 } 615 } 616 617 prev_dev = sdata->dev; 618 ieee80211_rx_stats(sdata->dev, skb->len); 619 } 620 621 mgmt = (void *)skb->data; 622 if (monitor_sdata && 623 skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN && 624 ieee80211_is_action(mgmt->frame_control) && 625 mgmt->u.action.category == WLAN_CATEGORY_VHT && 626 mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT && 627 is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) && 628 ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) { 629 struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC); 630 631 if (mu_skb) { 632 mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 633 skb_queue_tail(&monitor_sdata->skb_queue, mu_skb); 634 ieee80211_queue_work(&local->hw, &monitor_sdata->work); 635 } 636 } 637 638 if (prev_dev) { 639 skb->dev = prev_dev; 640 netif_receive_skb(skb); 641 } else 642 dev_kfree_skb(skb); 643 644 return origskb; 645 } 646 647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 648 { 649 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 650 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 651 int tid, seqno_idx, security_idx; 652 653 /* does the frame have a qos control field? */ 654 if (ieee80211_is_data_qos(hdr->frame_control)) { 655 u8 *qc = ieee80211_get_qos_ctl(hdr); 656 /* frame has qos control */ 657 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 658 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 659 status->rx_flags |= IEEE80211_RX_AMSDU; 660 661 seqno_idx = tid; 662 security_idx = tid; 663 } else { 664 /* 665 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 666 * 667 * Sequence numbers for management frames, QoS data 668 * frames with a broadcast/multicast address in the 669 * Address 1 field, and all non-QoS data frames sent 670 * by QoS STAs are assigned using an additional single 671 * modulo-4096 counter, [...] 672 * 673 * We also use that counter for non-QoS STAs. 674 */ 675 seqno_idx = IEEE80211_NUM_TIDS; 676 security_idx = 0; 677 if (ieee80211_is_mgmt(hdr->frame_control)) 678 security_idx = IEEE80211_NUM_TIDS; 679 tid = 0; 680 } 681 682 rx->seqno_idx = seqno_idx; 683 rx->security_idx = security_idx; 684 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 685 * For now, set skb->priority to 0 for other cases. */ 686 rx->skb->priority = (tid > 7) ? 0 : tid; 687 } 688 689 /** 690 * DOC: Packet alignment 691 * 692 * Drivers always need to pass packets that are aligned to two-byte boundaries 693 * to the stack. 694 * 695 * Additionally, should, if possible, align the payload data in a way that 696 * guarantees that the contained IP header is aligned to a four-byte 697 * boundary. In the case of regular frames, this simply means aligning the 698 * payload to a four-byte boundary (because either the IP header is directly 699 * contained, or IV/RFC1042 headers that have a length divisible by four are 700 * in front of it). If the payload data is not properly aligned and the 701 * architecture doesn't support efficient unaligned operations, mac80211 702 * will align the data. 703 * 704 * With A-MSDU frames, however, the payload data address must yield two modulo 705 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 706 * push the IP header further back to a multiple of four again. Thankfully, the 707 * specs were sane enough this time around to require padding each A-MSDU 708 * subframe to a length that is a multiple of four. 709 * 710 * Padding like Atheros hardware adds which is between the 802.11 header and 711 * the payload is not supported, the driver is required to move the 802.11 712 * header to be directly in front of the payload in that case. 713 */ 714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 715 { 716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 717 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 718 #endif 719 } 720 721 722 /* rx handlers */ 723 724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 725 { 726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 727 728 if (is_multicast_ether_addr(hdr->addr1)) 729 return 0; 730 731 return ieee80211_is_robust_mgmt_frame(skb); 732 } 733 734 735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 736 { 737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 738 739 if (!is_multicast_ether_addr(hdr->addr1)) 740 return 0; 741 742 return ieee80211_is_robust_mgmt_frame(skb); 743 } 744 745 746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 748 { 749 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 750 struct ieee80211_mmie *mmie; 751 struct ieee80211_mmie_16 *mmie16; 752 753 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 754 return -1; 755 756 if (!ieee80211_is_robust_mgmt_frame(skb)) 757 return -1; /* not a robust management frame */ 758 759 mmie = (struct ieee80211_mmie *) 760 (skb->data + skb->len - sizeof(*mmie)); 761 if (mmie->element_id == WLAN_EID_MMIE && 762 mmie->length == sizeof(*mmie) - 2) 763 return le16_to_cpu(mmie->key_id); 764 765 mmie16 = (struct ieee80211_mmie_16 *) 766 (skb->data + skb->len - sizeof(*mmie16)); 767 if (skb->len >= 24 + sizeof(*mmie16) && 768 mmie16->element_id == WLAN_EID_MMIE && 769 mmie16->length == sizeof(*mmie16) - 2) 770 return le16_to_cpu(mmie16->key_id); 771 772 return -1; 773 } 774 775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 776 struct sk_buff *skb) 777 { 778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 779 __le16 fc; 780 int hdrlen; 781 u8 keyid; 782 783 fc = hdr->frame_control; 784 hdrlen = ieee80211_hdrlen(fc); 785 786 if (skb->len < hdrlen + cs->hdr_len) 787 return -EINVAL; 788 789 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 790 keyid &= cs->key_idx_mask; 791 keyid >>= cs->key_idx_shift; 792 793 return keyid; 794 } 795 796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 797 { 798 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 799 char *dev_addr = rx->sdata->vif.addr; 800 801 if (ieee80211_is_data(hdr->frame_control)) { 802 if (is_multicast_ether_addr(hdr->addr1)) { 803 if (ieee80211_has_tods(hdr->frame_control) || 804 !ieee80211_has_fromds(hdr->frame_control)) 805 return RX_DROP_MONITOR; 806 if (ether_addr_equal(hdr->addr3, dev_addr)) 807 return RX_DROP_MONITOR; 808 } else { 809 if (!ieee80211_has_a4(hdr->frame_control)) 810 return RX_DROP_MONITOR; 811 if (ether_addr_equal(hdr->addr4, dev_addr)) 812 return RX_DROP_MONITOR; 813 } 814 } 815 816 /* If there is not an established peer link and this is not a peer link 817 * establisment frame, beacon or probe, drop the frame. 818 */ 819 820 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 821 struct ieee80211_mgmt *mgmt; 822 823 if (!ieee80211_is_mgmt(hdr->frame_control)) 824 return RX_DROP_MONITOR; 825 826 if (ieee80211_is_action(hdr->frame_control)) { 827 u8 category; 828 829 /* make sure category field is present */ 830 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 831 return RX_DROP_MONITOR; 832 833 mgmt = (struct ieee80211_mgmt *)hdr; 834 category = mgmt->u.action.category; 835 if (category != WLAN_CATEGORY_MESH_ACTION && 836 category != WLAN_CATEGORY_SELF_PROTECTED) 837 return RX_DROP_MONITOR; 838 return RX_CONTINUE; 839 } 840 841 if (ieee80211_is_probe_req(hdr->frame_control) || 842 ieee80211_is_probe_resp(hdr->frame_control) || 843 ieee80211_is_beacon(hdr->frame_control) || 844 ieee80211_is_auth(hdr->frame_control)) 845 return RX_CONTINUE; 846 847 return RX_DROP_MONITOR; 848 } 849 850 return RX_CONTINUE; 851 } 852 853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 854 int index) 855 { 856 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 857 struct sk_buff *tail = skb_peek_tail(frames); 858 struct ieee80211_rx_status *status; 859 860 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 861 return true; 862 863 if (!tail) 864 return false; 865 866 status = IEEE80211_SKB_RXCB(tail); 867 if (status->flag & RX_FLAG_AMSDU_MORE) 868 return false; 869 870 return true; 871 } 872 873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 874 struct tid_ampdu_rx *tid_agg_rx, 875 int index, 876 struct sk_buff_head *frames) 877 { 878 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 879 struct sk_buff *skb; 880 struct ieee80211_rx_status *status; 881 882 lockdep_assert_held(&tid_agg_rx->reorder_lock); 883 884 if (skb_queue_empty(skb_list)) 885 goto no_frame; 886 887 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 888 __skb_queue_purge(skb_list); 889 goto no_frame; 890 } 891 892 /* release frames from the reorder ring buffer */ 893 tid_agg_rx->stored_mpdu_num--; 894 while ((skb = __skb_dequeue(skb_list))) { 895 status = IEEE80211_SKB_RXCB(skb); 896 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 897 __skb_queue_tail(frames, skb); 898 } 899 900 no_frame: 901 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 902 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 903 } 904 905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 906 struct tid_ampdu_rx *tid_agg_rx, 907 u16 head_seq_num, 908 struct sk_buff_head *frames) 909 { 910 int index; 911 912 lockdep_assert_held(&tid_agg_rx->reorder_lock); 913 914 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 915 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 916 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 917 frames); 918 } 919 } 920 921 /* 922 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 923 * the skb was added to the buffer longer than this time ago, the earlier 924 * frames that have not yet been received are assumed to be lost and the skb 925 * can be released for processing. This may also release other skb's from the 926 * reorder buffer if there are no additional gaps between the frames. 927 * 928 * Callers must hold tid_agg_rx->reorder_lock. 929 */ 930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 931 932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 933 struct tid_ampdu_rx *tid_agg_rx, 934 struct sk_buff_head *frames) 935 { 936 int index, i, j; 937 938 lockdep_assert_held(&tid_agg_rx->reorder_lock); 939 940 /* release the buffer until next missing frame */ 941 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 943 tid_agg_rx->stored_mpdu_num) { 944 /* 945 * No buffers ready to be released, but check whether any 946 * frames in the reorder buffer have timed out. 947 */ 948 int skipped = 1; 949 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 950 j = (j + 1) % tid_agg_rx->buf_size) { 951 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 952 skipped++; 953 continue; 954 } 955 if (skipped && 956 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 957 HT_RX_REORDER_BUF_TIMEOUT)) 958 goto set_release_timer; 959 960 /* don't leave incomplete A-MSDUs around */ 961 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 962 i = (i + 1) % tid_agg_rx->buf_size) 963 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 964 965 ht_dbg_ratelimited(sdata, 966 "release an RX reorder frame due to timeout on earlier frames\n"); 967 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 968 frames); 969 970 /* 971 * Increment the head seq# also for the skipped slots. 972 */ 973 tid_agg_rx->head_seq_num = 974 (tid_agg_rx->head_seq_num + 975 skipped) & IEEE80211_SN_MASK; 976 skipped = 0; 977 } 978 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 979 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 980 frames); 981 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 982 } 983 984 if (tid_agg_rx->stored_mpdu_num) { 985 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 986 987 for (; j != (index - 1) % tid_agg_rx->buf_size; 988 j = (j + 1) % tid_agg_rx->buf_size) { 989 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 990 break; 991 } 992 993 set_release_timer: 994 995 if (!tid_agg_rx->removed) 996 mod_timer(&tid_agg_rx->reorder_timer, 997 tid_agg_rx->reorder_time[j] + 1 + 998 HT_RX_REORDER_BUF_TIMEOUT); 999 } else { 1000 del_timer(&tid_agg_rx->reorder_timer); 1001 } 1002 } 1003 1004 /* 1005 * As this function belongs to the RX path it must be under 1006 * rcu_read_lock protection. It returns false if the frame 1007 * can be processed immediately, true if it was consumed. 1008 */ 1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1010 struct tid_ampdu_rx *tid_agg_rx, 1011 struct sk_buff *skb, 1012 struct sk_buff_head *frames) 1013 { 1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1016 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1017 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1018 u16 head_seq_num, buf_size; 1019 int index; 1020 bool ret = true; 1021 1022 spin_lock(&tid_agg_rx->reorder_lock); 1023 1024 /* 1025 * Offloaded BA sessions have no known starting sequence number so pick 1026 * one from first Rxed frame for this tid after BA was started. 1027 */ 1028 if (unlikely(tid_agg_rx->auto_seq)) { 1029 tid_agg_rx->auto_seq = false; 1030 tid_agg_rx->ssn = mpdu_seq_num; 1031 tid_agg_rx->head_seq_num = mpdu_seq_num; 1032 } 1033 1034 buf_size = tid_agg_rx->buf_size; 1035 head_seq_num = tid_agg_rx->head_seq_num; 1036 1037 /* frame with out of date sequence number */ 1038 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1039 dev_kfree_skb(skb); 1040 goto out; 1041 } 1042 1043 /* 1044 * If frame the sequence number exceeds our buffering window 1045 * size release some previous frames to make room for this one. 1046 */ 1047 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1048 head_seq_num = ieee80211_sn_inc( 1049 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1050 /* release stored frames up to new head to stack */ 1051 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1052 head_seq_num, frames); 1053 } 1054 1055 /* Now the new frame is always in the range of the reordering buffer */ 1056 1057 index = mpdu_seq_num % tid_agg_rx->buf_size; 1058 1059 /* check if we already stored this frame */ 1060 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1061 dev_kfree_skb(skb); 1062 goto out; 1063 } 1064 1065 /* 1066 * If the current MPDU is in the right order and nothing else 1067 * is stored we can process it directly, no need to buffer it. 1068 * If it is first but there's something stored, we may be able 1069 * to release frames after this one. 1070 */ 1071 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1072 tid_agg_rx->stored_mpdu_num == 0) { 1073 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1074 tid_agg_rx->head_seq_num = 1075 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1076 ret = false; 1077 goto out; 1078 } 1079 1080 /* put the frame in the reordering buffer */ 1081 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1082 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1083 tid_agg_rx->reorder_time[index] = jiffies; 1084 tid_agg_rx->stored_mpdu_num++; 1085 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1086 } 1087 1088 out: 1089 spin_unlock(&tid_agg_rx->reorder_lock); 1090 return ret; 1091 } 1092 1093 /* 1094 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1095 * true if the MPDU was buffered, false if it should be processed. 1096 */ 1097 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1098 struct sk_buff_head *frames) 1099 { 1100 struct sk_buff *skb = rx->skb; 1101 struct ieee80211_local *local = rx->local; 1102 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1103 struct sta_info *sta = rx->sta; 1104 struct tid_ampdu_rx *tid_agg_rx; 1105 u16 sc; 1106 u8 tid, ack_policy; 1107 1108 if (!ieee80211_is_data_qos(hdr->frame_control) || 1109 is_multicast_ether_addr(hdr->addr1)) 1110 goto dont_reorder; 1111 1112 /* 1113 * filter the QoS data rx stream according to 1114 * STA/TID and check if this STA/TID is on aggregation 1115 */ 1116 1117 if (!sta) 1118 goto dont_reorder; 1119 1120 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1121 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1122 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1123 1124 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1125 if (!tid_agg_rx) { 1126 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1127 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1128 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1129 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1130 WLAN_BACK_RECIPIENT, 1131 WLAN_REASON_QSTA_REQUIRE_SETUP); 1132 goto dont_reorder; 1133 } 1134 1135 /* qos null data frames are excluded */ 1136 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1137 goto dont_reorder; 1138 1139 /* not part of a BA session */ 1140 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1141 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1142 goto dont_reorder; 1143 1144 /* new, potentially un-ordered, ampdu frame - process it */ 1145 1146 /* reset session timer */ 1147 if (tid_agg_rx->timeout) 1148 tid_agg_rx->last_rx = jiffies; 1149 1150 /* if this mpdu is fragmented - terminate rx aggregation session */ 1151 sc = le16_to_cpu(hdr->seq_ctrl); 1152 if (sc & IEEE80211_SCTL_FRAG) { 1153 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1154 skb_queue_tail(&rx->sdata->skb_queue, skb); 1155 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1156 return; 1157 } 1158 1159 /* 1160 * No locking needed -- we will only ever process one 1161 * RX packet at a time, and thus own tid_agg_rx. All 1162 * other code manipulating it needs to (and does) make 1163 * sure that we cannot get to it any more before doing 1164 * anything with it. 1165 */ 1166 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1167 frames)) 1168 return; 1169 1170 dont_reorder: 1171 __skb_queue_tail(frames, skb); 1172 } 1173 1174 static ieee80211_rx_result debug_noinline 1175 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1176 { 1177 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1178 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1179 1180 if (status->flag & RX_FLAG_DUP_VALIDATED) 1181 return RX_CONTINUE; 1182 1183 /* 1184 * Drop duplicate 802.11 retransmissions 1185 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1186 */ 1187 1188 if (rx->skb->len < 24) 1189 return RX_CONTINUE; 1190 1191 if (ieee80211_is_ctl(hdr->frame_control) || 1192 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1193 is_multicast_ether_addr(hdr->addr1)) 1194 return RX_CONTINUE; 1195 1196 if (!rx->sta) 1197 return RX_CONTINUE; 1198 1199 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1200 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1201 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1202 rx->sta->rx_stats.num_duplicates++; 1203 return RX_DROP_UNUSABLE; 1204 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1205 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1206 } 1207 1208 return RX_CONTINUE; 1209 } 1210 1211 static ieee80211_rx_result debug_noinline 1212 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1213 { 1214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1215 1216 /* Drop disallowed frame classes based on STA auth/assoc state; 1217 * IEEE 802.11, Chap 5.5. 1218 * 1219 * mac80211 filters only based on association state, i.e. it drops 1220 * Class 3 frames from not associated stations. hostapd sends 1221 * deauth/disassoc frames when needed. In addition, hostapd is 1222 * responsible for filtering on both auth and assoc states. 1223 */ 1224 1225 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1226 return ieee80211_rx_mesh_check(rx); 1227 1228 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1229 ieee80211_is_pspoll(hdr->frame_control)) && 1230 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1231 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1232 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1233 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1234 /* 1235 * accept port control frames from the AP even when it's not 1236 * yet marked ASSOC to prevent a race where we don't set the 1237 * assoc bit quickly enough before it sends the first frame 1238 */ 1239 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1240 ieee80211_is_data_present(hdr->frame_control)) { 1241 unsigned int hdrlen; 1242 __be16 ethertype; 1243 1244 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1245 1246 if (rx->skb->len < hdrlen + 8) 1247 return RX_DROP_MONITOR; 1248 1249 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1250 if (ethertype == rx->sdata->control_port_protocol) 1251 return RX_CONTINUE; 1252 } 1253 1254 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1255 cfg80211_rx_spurious_frame(rx->sdata->dev, 1256 hdr->addr2, 1257 GFP_ATOMIC)) 1258 return RX_DROP_UNUSABLE; 1259 1260 return RX_DROP_MONITOR; 1261 } 1262 1263 return RX_CONTINUE; 1264 } 1265 1266 1267 static ieee80211_rx_result debug_noinline 1268 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1269 { 1270 struct ieee80211_local *local; 1271 struct ieee80211_hdr *hdr; 1272 struct sk_buff *skb; 1273 1274 local = rx->local; 1275 skb = rx->skb; 1276 hdr = (struct ieee80211_hdr *) skb->data; 1277 1278 if (!local->pspolling) 1279 return RX_CONTINUE; 1280 1281 if (!ieee80211_has_fromds(hdr->frame_control)) 1282 /* this is not from AP */ 1283 return RX_CONTINUE; 1284 1285 if (!ieee80211_is_data(hdr->frame_control)) 1286 return RX_CONTINUE; 1287 1288 if (!ieee80211_has_moredata(hdr->frame_control)) { 1289 /* AP has no more frames buffered for us */ 1290 local->pspolling = false; 1291 return RX_CONTINUE; 1292 } 1293 1294 /* more data bit is set, let's request a new frame from the AP */ 1295 ieee80211_send_pspoll(local, rx->sdata); 1296 1297 return RX_CONTINUE; 1298 } 1299 1300 static void sta_ps_start(struct sta_info *sta) 1301 { 1302 struct ieee80211_sub_if_data *sdata = sta->sdata; 1303 struct ieee80211_local *local = sdata->local; 1304 struct ps_data *ps; 1305 int tid; 1306 1307 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1308 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1309 ps = &sdata->bss->ps; 1310 else 1311 return; 1312 1313 atomic_inc(&ps->num_sta_ps); 1314 set_sta_flag(sta, WLAN_STA_PS_STA); 1315 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1316 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1317 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1318 sta->sta.addr, sta->sta.aid); 1319 1320 ieee80211_clear_fast_xmit(sta); 1321 1322 if (!sta->sta.txq[0]) 1323 return; 1324 1325 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1326 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1327 1328 if (txqi->tin.backlog_packets) 1329 set_bit(tid, &sta->txq_buffered_tids); 1330 else 1331 clear_bit(tid, &sta->txq_buffered_tids); 1332 } 1333 } 1334 1335 static void sta_ps_end(struct sta_info *sta) 1336 { 1337 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1338 sta->sta.addr, sta->sta.aid); 1339 1340 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1341 /* 1342 * Clear the flag only if the other one is still set 1343 * so that the TX path won't start TX'ing new frames 1344 * directly ... In the case that the driver flag isn't 1345 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1346 */ 1347 clear_sta_flag(sta, WLAN_STA_PS_STA); 1348 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1349 sta->sta.addr, sta->sta.aid); 1350 return; 1351 } 1352 1353 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1354 clear_sta_flag(sta, WLAN_STA_PS_STA); 1355 ieee80211_sta_ps_deliver_wakeup(sta); 1356 } 1357 1358 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1359 { 1360 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1361 bool in_ps; 1362 1363 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1364 1365 /* Don't let the same PS state be set twice */ 1366 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1367 if ((start && in_ps) || (!start && !in_ps)) 1368 return -EINVAL; 1369 1370 if (start) 1371 sta_ps_start(sta); 1372 else 1373 sta_ps_end(sta); 1374 1375 return 0; 1376 } 1377 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1378 1379 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1380 { 1381 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1382 1383 if (test_sta_flag(sta, WLAN_STA_SP)) 1384 return; 1385 1386 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1387 ieee80211_sta_ps_deliver_poll_response(sta); 1388 else 1389 set_sta_flag(sta, WLAN_STA_PSPOLL); 1390 } 1391 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1392 1393 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1394 { 1395 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1396 u8 ac = ieee802_1d_to_ac[tid & 7]; 1397 1398 /* 1399 * If this AC is not trigger-enabled do nothing. 1400 * 1401 * NB: This could/should check a separate bitmap of trigger- 1402 * enabled queues, but for now we only implement uAPSD w/o 1403 * TSPEC changes to the ACs, so they're always the same. 1404 */ 1405 if (!(sta->sta.uapsd_queues & BIT(ac))) 1406 return; 1407 1408 /* if we are in a service period, do nothing */ 1409 if (test_sta_flag(sta, WLAN_STA_SP)) 1410 return; 1411 1412 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1413 ieee80211_sta_ps_deliver_uapsd(sta); 1414 else 1415 set_sta_flag(sta, WLAN_STA_UAPSD); 1416 } 1417 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1418 1419 static ieee80211_rx_result debug_noinline 1420 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1421 { 1422 struct ieee80211_sub_if_data *sdata = rx->sdata; 1423 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1424 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1425 1426 if (!rx->sta) 1427 return RX_CONTINUE; 1428 1429 if (sdata->vif.type != NL80211_IFTYPE_AP && 1430 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1431 return RX_CONTINUE; 1432 1433 /* 1434 * The device handles station powersave, so don't do anything about 1435 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1436 * it to mac80211 since they're handled.) 1437 */ 1438 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1439 return RX_CONTINUE; 1440 1441 /* 1442 * Don't do anything if the station isn't already asleep. In 1443 * the uAPSD case, the station will probably be marked asleep, 1444 * in the PS-Poll case the station must be confused ... 1445 */ 1446 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1447 return RX_CONTINUE; 1448 1449 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1450 ieee80211_sta_pspoll(&rx->sta->sta); 1451 1452 /* Free PS Poll skb here instead of returning RX_DROP that would 1453 * count as an dropped frame. */ 1454 dev_kfree_skb(rx->skb); 1455 1456 return RX_QUEUED; 1457 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1458 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1459 ieee80211_has_pm(hdr->frame_control) && 1460 (ieee80211_is_data_qos(hdr->frame_control) || 1461 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1462 u8 tid; 1463 1464 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1465 1466 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1467 } 1468 1469 return RX_CONTINUE; 1470 } 1471 1472 static ieee80211_rx_result debug_noinline 1473 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1474 { 1475 struct sta_info *sta = rx->sta; 1476 struct sk_buff *skb = rx->skb; 1477 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1479 int i; 1480 1481 if (!sta) 1482 return RX_CONTINUE; 1483 1484 /* 1485 * Update last_rx only for IBSS packets which are for the current 1486 * BSSID and for station already AUTHORIZED to avoid keeping the 1487 * current IBSS network alive in cases where other STAs start 1488 * using different BSSID. This will also give the station another 1489 * chance to restart the authentication/authorization in case 1490 * something went wrong the first time. 1491 */ 1492 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1493 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1494 NL80211_IFTYPE_ADHOC); 1495 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1496 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1497 sta->rx_stats.last_rx = jiffies; 1498 if (ieee80211_is_data(hdr->frame_control) && 1499 !is_multicast_ether_addr(hdr->addr1)) 1500 sta->rx_stats.last_rate = 1501 sta_stats_encode_rate(status); 1502 } 1503 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1504 sta->rx_stats.last_rx = jiffies; 1505 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1506 /* 1507 * Mesh beacons will update last_rx when if they are found to 1508 * match the current local configuration when processed. 1509 */ 1510 sta->rx_stats.last_rx = jiffies; 1511 if (ieee80211_is_data(hdr->frame_control)) 1512 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1513 } 1514 1515 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1516 ieee80211_sta_rx_notify(rx->sdata, hdr); 1517 1518 sta->rx_stats.fragments++; 1519 1520 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1521 sta->rx_stats.bytes += rx->skb->len; 1522 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1523 1524 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1525 sta->rx_stats.last_signal = status->signal; 1526 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1527 } 1528 1529 if (status->chains) { 1530 sta->rx_stats.chains = status->chains; 1531 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1532 int signal = status->chain_signal[i]; 1533 1534 if (!(status->chains & BIT(i))) 1535 continue; 1536 1537 sta->rx_stats.chain_signal_last[i] = signal; 1538 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1539 -signal); 1540 } 1541 } 1542 1543 /* 1544 * Change STA power saving mode only at the end of a frame 1545 * exchange sequence. 1546 */ 1547 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1548 !ieee80211_has_morefrags(hdr->frame_control) && 1549 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1550 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1551 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1552 /* PM bit is only checked in frames where it isn't reserved, 1553 * in AP mode it's reserved in non-bufferable management frames 1554 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1555 */ 1556 (!ieee80211_is_mgmt(hdr->frame_control) || 1557 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1558 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1559 if (!ieee80211_has_pm(hdr->frame_control)) 1560 sta_ps_end(sta); 1561 } else { 1562 if (ieee80211_has_pm(hdr->frame_control)) 1563 sta_ps_start(sta); 1564 } 1565 } 1566 1567 /* mesh power save support */ 1568 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1569 ieee80211_mps_rx_h_sta_process(sta, hdr); 1570 1571 /* 1572 * Drop (qos-)data::nullfunc frames silently, since they 1573 * are used only to control station power saving mode. 1574 */ 1575 if (ieee80211_is_nullfunc(hdr->frame_control) || 1576 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1577 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1578 1579 /* 1580 * If we receive a 4-addr nullfunc frame from a STA 1581 * that was not moved to a 4-addr STA vlan yet send 1582 * the event to userspace and for older hostapd drop 1583 * the frame to the monitor interface. 1584 */ 1585 if (ieee80211_has_a4(hdr->frame_control) && 1586 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1587 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1588 !rx->sdata->u.vlan.sta))) { 1589 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1590 cfg80211_rx_unexpected_4addr_frame( 1591 rx->sdata->dev, sta->sta.addr, 1592 GFP_ATOMIC); 1593 return RX_DROP_MONITOR; 1594 } 1595 /* 1596 * Update counter and free packet here to avoid 1597 * counting this as a dropped packed. 1598 */ 1599 sta->rx_stats.packets++; 1600 dev_kfree_skb(rx->skb); 1601 return RX_QUEUED; 1602 } 1603 1604 return RX_CONTINUE; 1605 } /* ieee80211_rx_h_sta_process */ 1606 1607 static ieee80211_rx_result debug_noinline 1608 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1609 { 1610 struct sk_buff *skb = rx->skb; 1611 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1613 int keyidx; 1614 int hdrlen; 1615 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1616 struct ieee80211_key *sta_ptk = NULL; 1617 int mmie_keyidx = -1; 1618 __le16 fc; 1619 const struct ieee80211_cipher_scheme *cs = NULL; 1620 1621 /* 1622 * Key selection 101 1623 * 1624 * There are four types of keys: 1625 * - GTK (group keys) 1626 * - IGTK (group keys for management frames) 1627 * - PTK (pairwise keys) 1628 * - STK (station-to-station pairwise keys) 1629 * 1630 * When selecting a key, we have to distinguish between multicast 1631 * (including broadcast) and unicast frames, the latter can only 1632 * use PTKs and STKs while the former always use GTKs and IGTKs. 1633 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1634 * unicast frames can also use key indices like GTKs. Hence, if we 1635 * don't have a PTK/STK we check the key index for a WEP key. 1636 * 1637 * Note that in a regular BSS, multicast frames are sent by the 1638 * AP only, associated stations unicast the frame to the AP first 1639 * which then multicasts it on their behalf. 1640 * 1641 * There is also a slight problem in IBSS mode: GTKs are negotiated 1642 * with each station, that is something we don't currently handle. 1643 * The spec seems to expect that one negotiates the same key with 1644 * every station but there's no such requirement; VLANs could be 1645 * possible. 1646 */ 1647 1648 /* start without a key */ 1649 rx->key = NULL; 1650 fc = hdr->frame_control; 1651 1652 if (rx->sta) { 1653 int keyid = rx->sta->ptk_idx; 1654 1655 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1656 cs = rx->sta->cipher_scheme; 1657 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1658 if (unlikely(keyid < 0)) 1659 return RX_DROP_UNUSABLE; 1660 } 1661 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1662 } 1663 1664 if (!ieee80211_has_protected(fc)) 1665 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1666 1667 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1668 rx->key = sta_ptk; 1669 if ((status->flag & RX_FLAG_DECRYPTED) && 1670 (status->flag & RX_FLAG_IV_STRIPPED)) 1671 return RX_CONTINUE; 1672 /* Skip decryption if the frame is not protected. */ 1673 if (!ieee80211_has_protected(fc)) 1674 return RX_CONTINUE; 1675 } else if (mmie_keyidx >= 0) { 1676 /* Broadcast/multicast robust management frame / BIP */ 1677 if ((status->flag & RX_FLAG_DECRYPTED) && 1678 (status->flag & RX_FLAG_IV_STRIPPED)) 1679 return RX_CONTINUE; 1680 1681 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1682 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1683 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1684 if (rx->sta) { 1685 if (ieee80211_is_group_privacy_action(skb) && 1686 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1687 return RX_DROP_MONITOR; 1688 1689 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1690 } 1691 if (!rx->key) 1692 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1693 } else if (!ieee80211_has_protected(fc)) { 1694 /* 1695 * The frame was not protected, so skip decryption. However, we 1696 * need to set rx->key if there is a key that could have been 1697 * used so that the frame may be dropped if encryption would 1698 * have been expected. 1699 */ 1700 struct ieee80211_key *key = NULL; 1701 struct ieee80211_sub_if_data *sdata = rx->sdata; 1702 int i; 1703 1704 if (ieee80211_is_mgmt(fc) && 1705 is_multicast_ether_addr(hdr->addr1) && 1706 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1707 rx->key = key; 1708 else { 1709 if (rx->sta) { 1710 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1711 key = rcu_dereference(rx->sta->gtk[i]); 1712 if (key) 1713 break; 1714 } 1715 } 1716 if (!key) { 1717 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1718 key = rcu_dereference(sdata->keys[i]); 1719 if (key) 1720 break; 1721 } 1722 } 1723 if (key) 1724 rx->key = key; 1725 } 1726 return RX_CONTINUE; 1727 } else { 1728 u8 keyid; 1729 1730 /* 1731 * The device doesn't give us the IV so we won't be 1732 * able to look up the key. That's ok though, we 1733 * don't need to decrypt the frame, we just won't 1734 * be able to keep statistics accurate. 1735 * Except for key threshold notifications, should 1736 * we somehow allow the driver to tell us which key 1737 * the hardware used if this flag is set? 1738 */ 1739 if ((status->flag & RX_FLAG_DECRYPTED) && 1740 (status->flag & RX_FLAG_IV_STRIPPED)) 1741 return RX_CONTINUE; 1742 1743 hdrlen = ieee80211_hdrlen(fc); 1744 1745 if (cs) { 1746 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1747 1748 if (unlikely(keyidx < 0)) 1749 return RX_DROP_UNUSABLE; 1750 } else { 1751 if (rx->skb->len < 8 + hdrlen) 1752 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1753 /* 1754 * no need to call ieee80211_wep_get_keyidx, 1755 * it verifies a bunch of things we've done already 1756 */ 1757 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1758 keyidx = keyid >> 6; 1759 } 1760 1761 /* check per-station GTK first, if multicast packet */ 1762 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1763 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1764 1765 /* if not found, try default key */ 1766 if (!rx->key) { 1767 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1768 1769 /* 1770 * RSNA-protected unicast frames should always be 1771 * sent with pairwise or station-to-station keys, 1772 * but for WEP we allow using a key index as well. 1773 */ 1774 if (rx->key && 1775 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1776 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1777 !is_multicast_ether_addr(hdr->addr1)) 1778 rx->key = NULL; 1779 } 1780 } 1781 1782 if (rx->key) { 1783 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1784 return RX_DROP_MONITOR; 1785 1786 /* TODO: add threshold stuff again */ 1787 } else { 1788 return RX_DROP_MONITOR; 1789 } 1790 1791 switch (rx->key->conf.cipher) { 1792 case WLAN_CIPHER_SUITE_WEP40: 1793 case WLAN_CIPHER_SUITE_WEP104: 1794 result = ieee80211_crypto_wep_decrypt(rx); 1795 break; 1796 case WLAN_CIPHER_SUITE_TKIP: 1797 result = ieee80211_crypto_tkip_decrypt(rx); 1798 break; 1799 case WLAN_CIPHER_SUITE_CCMP: 1800 result = ieee80211_crypto_ccmp_decrypt( 1801 rx, IEEE80211_CCMP_MIC_LEN); 1802 break; 1803 case WLAN_CIPHER_SUITE_CCMP_256: 1804 result = ieee80211_crypto_ccmp_decrypt( 1805 rx, IEEE80211_CCMP_256_MIC_LEN); 1806 break; 1807 case WLAN_CIPHER_SUITE_AES_CMAC: 1808 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1809 break; 1810 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1811 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1812 break; 1813 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1814 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1815 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1816 break; 1817 case WLAN_CIPHER_SUITE_GCMP: 1818 case WLAN_CIPHER_SUITE_GCMP_256: 1819 result = ieee80211_crypto_gcmp_decrypt(rx); 1820 break; 1821 default: 1822 result = ieee80211_crypto_hw_decrypt(rx); 1823 } 1824 1825 /* the hdr variable is invalid after the decrypt handlers */ 1826 1827 /* either the frame has been decrypted or will be dropped */ 1828 status->flag |= RX_FLAG_DECRYPTED; 1829 1830 return result; 1831 } 1832 1833 static inline struct ieee80211_fragment_entry * 1834 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1835 unsigned int frag, unsigned int seq, int rx_queue, 1836 struct sk_buff **skb) 1837 { 1838 struct ieee80211_fragment_entry *entry; 1839 1840 entry = &sdata->fragments[sdata->fragment_next++]; 1841 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1842 sdata->fragment_next = 0; 1843 1844 if (!skb_queue_empty(&entry->skb_list)) 1845 __skb_queue_purge(&entry->skb_list); 1846 1847 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1848 *skb = NULL; 1849 entry->first_frag_time = jiffies; 1850 entry->seq = seq; 1851 entry->rx_queue = rx_queue; 1852 entry->last_frag = frag; 1853 entry->check_sequential_pn = false; 1854 entry->extra_len = 0; 1855 1856 return entry; 1857 } 1858 1859 static inline struct ieee80211_fragment_entry * 1860 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1861 unsigned int frag, unsigned int seq, 1862 int rx_queue, struct ieee80211_hdr *hdr) 1863 { 1864 struct ieee80211_fragment_entry *entry; 1865 int i, idx; 1866 1867 idx = sdata->fragment_next; 1868 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1869 struct ieee80211_hdr *f_hdr; 1870 1871 idx--; 1872 if (idx < 0) 1873 idx = IEEE80211_FRAGMENT_MAX - 1; 1874 1875 entry = &sdata->fragments[idx]; 1876 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1877 entry->rx_queue != rx_queue || 1878 entry->last_frag + 1 != frag) 1879 continue; 1880 1881 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1882 1883 /* 1884 * Check ftype and addresses are equal, else check next fragment 1885 */ 1886 if (((hdr->frame_control ^ f_hdr->frame_control) & 1887 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1888 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1889 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1890 continue; 1891 1892 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1893 __skb_queue_purge(&entry->skb_list); 1894 continue; 1895 } 1896 return entry; 1897 } 1898 1899 return NULL; 1900 } 1901 1902 static ieee80211_rx_result debug_noinline 1903 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1904 { 1905 struct ieee80211_hdr *hdr; 1906 u16 sc; 1907 __le16 fc; 1908 unsigned int frag, seq; 1909 struct ieee80211_fragment_entry *entry; 1910 struct sk_buff *skb; 1911 struct ieee80211_rx_status *status; 1912 1913 hdr = (struct ieee80211_hdr *)rx->skb->data; 1914 fc = hdr->frame_control; 1915 1916 if (ieee80211_is_ctl(fc)) 1917 return RX_CONTINUE; 1918 1919 sc = le16_to_cpu(hdr->seq_ctrl); 1920 frag = sc & IEEE80211_SCTL_FRAG; 1921 1922 if (is_multicast_ether_addr(hdr->addr1)) { 1923 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1924 goto out_no_led; 1925 } 1926 1927 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1928 goto out; 1929 1930 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1931 1932 if (skb_linearize(rx->skb)) 1933 return RX_DROP_UNUSABLE; 1934 1935 /* 1936 * skb_linearize() might change the skb->data and 1937 * previously cached variables (in this case, hdr) need to 1938 * be refreshed with the new data. 1939 */ 1940 hdr = (struct ieee80211_hdr *)rx->skb->data; 1941 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1942 1943 if (frag == 0) { 1944 /* This is the first fragment of a new frame. */ 1945 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1946 rx->seqno_idx, &(rx->skb)); 1947 if (rx->key && 1948 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1949 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 1950 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 1951 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 1952 ieee80211_has_protected(fc)) { 1953 int queue = rx->security_idx; 1954 1955 /* Store CCMP/GCMP PN so that we can verify that the 1956 * next fragment has a sequential PN value. 1957 */ 1958 entry->check_sequential_pn = true; 1959 memcpy(entry->last_pn, 1960 rx->key->u.ccmp.rx_pn[queue], 1961 IEEE80211_CCMP_PN_LEN); 1962 BUILD_BUG_ON(offsetof(struct ieee80211_key, 1963 u.ccmp.rx_pn) != 1964 offsetof(struct ieee80211_key, 1965 u.gcmp.rx_pn)); 1966 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 1967 sizeof(rx->key->u.gcmp.rx_pn[queue])); 1968 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 1969 IEEE80211_GCMP_PN_LEN); 1970 } 1971 return RX_QUEUED; 1972 } 1973 1974 /* This is a fragment for a frame that should already be pending in 1975 * fragment cache. Add this fragment to the end of the pending entry. 1976 */ 1977 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1978 rx->seqno_idx, hdr); 1979 if (!entry) { 1980 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1981 return RX_DROP_MONITOR; 1982 } 1983 1984 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 1985 * MPDU PN values are not incrementing in steps of 1." 1986 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 1987 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 1988 */ 1989 if (entry->check_sequential_pn) { 1990 int i; 1991 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1992 int queue; 1993 1994 if (!rx->key || 1995 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1996 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 1997 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 1998 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 1999 return RX_DROP_UNUSABLE; 2000 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2001 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2002 pn[i]++; 2003 if (pn[i]) 2004 break; 2005 } 2006 queue = rx->security_idx; 2007 rpn = rx->key->u.ccmp.rx_pn[queue]; 2008 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2009 return RX_DROP_UNUSABLE; 2010 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2011 } 2012 2013 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2014 __skb_queue_tail(&entry->skb_list, rx->skb); 2015 entry->last_frag = frag; 2016 entry->extra_len += rx->skb->len; 2017 if (ieee80211_has_morefrags(fc)) { 2018 rx->skb = NULL; 2019 return RX_QUEUED; 2020 } 2021 2022 rx->skb = __skb_dequeue(&entry->skb_list); 2023 if (skb_tailroom(rx->skb) < entry->extra_len) { 2024 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2025 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2026 GFP_ATOMIC))) { 2027 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2028 __skb_queue_purge(&entry->skb_list); 2029 return RX_DROP_UNUSABLE; 2030 } 2031 } 2032 while ((skb = __skb_dequeue(&entry->skb_list))) { 2033 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 2034 dev_kfree_skb(skb); 2035 } 2036 2037 /* Complete frame has been reassembled - process it now */ 2038 status = IEEE80211_SKB_RXCB(rx->skb); 2039 2040 out: 2041 ieee80211_led_rx(rx->local); 2042 out_no_led: 2043 if (rx->sta) 2044 rx->sta->rx_stats.packets++; 2045 return RX_CONTINUE; 2046 } 2047 2048 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2049 { 2050 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2051 return -EACCES; 2052 2053 return 0; 2054 } 2055 2056 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2057 { 2058 struct sk_buff *skb = rx->skb; 2059 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2060 2061 /* 2062 * Pass through unencrypted frames if the hardware has 2063 * decrypted them already. 2064 */ 2065 if (status->flag & RX_FLAG_DECRYPTED) 2066 return 0; 2067 2068 /* Drop unencrypted frames if key is set. */ 2069 if (unlikely(!ieee80211_has_protected(fc) && 2070 !ieee80211_is_nullfunc(fc) && 2071 ieee80211_is_data(fc) && rx->key)) 2072 return -EACCES; 2073 2074 return 0; 2075 } 2076 2077 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2078 { 2079 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2080 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2081 __le16 fc = hdr->frame_control; 2082 2083 /* 2084 * Pass through unencrypted frames if the hardware has 2085 * decrypted them already. 2086 */ 2087 if (status->flag & RX_FLAG_DECRYPTED) 2088 return 0; 2089 2090 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2091 if (unlikely(!ieee80211_has_protected(fc) && 2092 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2093 rx->key)) { 2094 if (ieee80211_is_deauth(fc) || 2095 ieee80211_is_disassoc(fc)) 2096 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2097 rx->skb->data, 2098 rx->skb->len); 2099 return -EACCES; 2100 } 2101 /* BIP does not use Protected field, so need to check MMIE */ 2102 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2103 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2104 if (ieee80211_is_deauth(fc) || 2105 ieee80211_is_disassoc(fc)) 2106 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2107 rx->skb->data, 2108 rx->skb->len); 2109 return -EACCES; 2110 } 2111 /* 2112 * When using MFP, Action frames are not allowed prior to 2113 * having configured keys. 2114 */ 2115 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2116 ieee80211_is_robust_mgmt_frame(rx->skb))) 2117 return -EACCES; 2118 } 2119 2120 return 0; 2121 } 2122 2123 static int 2124 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2125 { 2126 struct ieee80211_sub_if_data *sdata = rx->sdata; 2127 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2128 bool check_port_control = false; 2129 struct ethhdr *ehdr; 2130 int ret; 2131 2132 *port_control = false; 2133 if (ieee80211_has_a4(hdr->frame_control) && 2134 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2135 return -1; 2136 2137 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2138 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2139 2140 if (!sdata->u.mgd.use_4addr) 2141 return -1; 2142 else 2143 check_port_control = true; 2144 } 2145 2146 if (is_multicast_ether_addr(hdr->addr1) && 2147 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2148 return -1; 2149 2150 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2151 if (ret < 0) 2152 return ret; 2153 2154 ehdr = (struct ethhdr *) rx->skb->data; 2155 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2156 *port_control = true; 2157 else if (check_port_control) 2158 return -1; 2159 2160 return 0; 2161 } 2162 2163 /* 2164 * requires that rx->skb is a frame with ethernet header 2165 */ 2166 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2167 { 2168 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2169 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2170 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2171 2172 /* 2173 * Allow EAPOL frames to us/the PAE group address regardless 2174 * of whether the frame was encrypted or not. 2175 */ 2176 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2177 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2178 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2179 return true; 2180 2181 if (ieee80211_802_1x_port_control(rx) || 2182 ieee80211_drop_unencrypted(rx, fc)) 2183 return false; 2184 2185 return true; 2186 } 2187 2188 /* 2189 * requires that rx->skb is a frame with ethernet header 2190 */ 2191 static void 2192 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2193 { 2194 struct ieee80211_sub_if_data *sdata = rx->sdata; 2195 struct net_device *dev = sdata->dev; 2196 struct sk_buff *skb, *xmit_skb; 2197 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2198 struct sta_info *dsta; 2199 2200 skb = rx->skb; 2201 xmit_skb = NULL; 2202 2203 ieee80211_rx_stats(dev, skb->len); 2204 2205 if (rx->sta) { 2206 /* The seqno index has the same property as needed 2207 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2208 * for non-QoS-data frames. Here we know it's a data 2209 * frame, so count MSDUs. 2210 */ 2211 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2212 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2213 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2214 } 2215 2216 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2217 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2218 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2219 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2220 if (is_multicast_ether_addr(ehdr->h_dest)) { 2221 /* 2222 * send multicast frames both to higher layers in 2223 * local net stack and back to the wireless medium 2224 */ 2225 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2226 if (!xmit_skb) 2227 net_info_ratelimited("%s: failed to clone multicast frame\n", 2228 dev->name); 2229 } else { 2230 dsta = sta_info_get(sdata, skb->data); 2231 if (dsta) { 2232 /* 2233 * The destination station is associated to 2234 * this AP (in this VLAN), so send the frame 2235 * directly to it and do not pass it to local 2236 * net stack. 2237 */ 2238 xmit_skb = skb; 2239 skb = NULL; 2240 } 2241 } 2242 } 2243 2244 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2245 if (skb) { 2246 /* 'align' will only take the values 0 or 2 here since all 2247 * frames are required to be aligned to 2-byte boundaries 2248 * when being passed to mac80211; the code here works just 2249 * as well if that isn't true, but mac80211 assumes it can 2250 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2251 */ 2252 int align; 2253 2254 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2255 if (align) { 2256 if (WARN_ON(skb_headroom(skb) < 3)) { 2257 dev_kfree_skb(skb); 2258 skb = NULL; 2259 } else { 2260 u8 *data = skb->data; 2261 size_t len = skb_headlen(skb); 2262 skb->data -= align; 2263 memmove(skb->data, data, len); 2264 skb_set_tail_pointer(skb, len); 2265 } 2266 } 2267 } 2268 #endif 2269 2270 if (skb) { 2271 /* deliver to local stack */ 2272 skb->protocol = eth_type_trans(skb, dev); 2273 memset(skb->cb, 0, sizeof(skb->cb)); 2274 if (rx->napi) 2275 napi_gro_receive(rx->napi, skb); 2276 else 2277 netif_receive_skb(skb); 2278 } 2279 2280 if (xmit_skb) { 2281 /* 2282 * Send to wireless media and increase priority by 256 to 2283 * keep the received priority instead of reclassifying 2284 * the frame (see cfg80211_classify8021d). 2285 */ 2286 xmit_skb->priority += 256; 2287 xmit_skb->protocol = htons(ETH_P_802_3); 2288 skb_reset_network_header(xmit_skb); 2289 skb_reset_mac_header(xmit_skb); 2290 dev_queue_xmit(xmit_skb); 2291 } 2292 } 2293 2294 static ieee80211_rx_result debug_noinline 2295 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2296 { 2297 struct net_device *dev = rx->sdata->dev; 2298 struct sk_buff *skb = rx->skb; 2299 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2300 __le16 fc = hdr->frame_control; 2301 struct sk_buff_head frame_list; 2302 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2303 2304 if (unlikely(!ieee80211_is_data(fc))) 2305 return RX_CONTINUE; 2306 2307 if (unlikely(!ieee80211_is_data_present(fc))) 2308 return RX_DROP_MONITOR; 2309 2310 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2311 return RX_CONTINUE; 2312 2313 if (ieee80211_has_a4(hdr->frame_control) && 2314 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2315 !rx->sdata->u.vlan.sta) 2316 return RX_DROP_UNUSABLE; 2317 2318 if (is_multicast_ether_addr(hdr->addr1) && 2319 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2320 rx->sdata->u.vlan.sta) || 2321 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2322 rx->sdata->u.mgd.use_4addr))) 2323 return RX_DROP_UNUSABLE; 2324 2325 skb->dev = dev; 2326 __skb_queue_head_init(&frame_list); 2327 2328 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2329 rx->sdata->vif.type, 2330 rx->local->hw.extra_tx_headroom, true); 2331 2332 while (!skb_queue_empty(&frame_list)) { 2333 rx->skb = __skb_dequeue(&frame_list); 2334 2335 if (!ieee80211_frame_allowed(rx, fc)) { 2336 dev_kfree_skb(rx->skb); 2337 continue; 2338 } 2339 2340 ieee80211_deliver_skb(rx); 2341 } 2342 2343 return RX_QUEUED; 2344 } 2345 2346 #ifdef CONFIG_MAC80211_MESH 2347 static ieee80211_rx_result 2348 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2349 { 2350 struct ieee80211_hdr *fwd_hdr, *hdr; 2351 struct ieee80211_tx_info *info; 2352 struct ieee80211s_hdr *mesh_hdr; 2353 struct sk_buff *skb = rx->skb, *fwd_skb; 2354 struct ieee80211_local *local = rx->local; 2355 struct ieee80211_sub_if_data *sdata = rx->sdata; 2356 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2357 u16 ac, q, hdrlen; 2358 2359 hdr = (struct ieee80211_hdr *) skb->data; 2360 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2361 2362 /* make sure fixed part of mesh header is there, also checks skb len */ 2363 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2364 return RX_DROP_MONITOR; 2365 2366 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2367 2368 /* make sure full mesh header is there, also checks skb len */ 2369 if (!pskb_may_pull(rx->skb, 2370 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2371 return RX_DROP_MONITOR; 2372 2373 /* reload pointers */ 2374 hdr = (struct ieee80211_hdr *) skb->data; 2375 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2376 2377 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2378 return RX_DROP_MONITOR; 2379 2380 /* frame is in RMC, don't forward */ 2381 if (ieee80211_is_data(hdr->frame_control) && 2382 is_multicast_ether_addr(hdr->addr1) && 2383 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2384 return RX_DROP_MONITOR; 2385 2386 if (!ieee80211_is_data(hdr->frame_control)) 2387 return RX_CONTINUE; 2388 2389 if (!mesh_hdr->ttl) 2390 return RX_DROP_MONITOR; 2391 2392 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2393 struct mesh_path *mppath; 2394 char *proxied_addr; 2395 char *mpp_addr; 2396 2397 if (is_multicast_ether_addr(hdr->addr1)) { 2398 mpp_addr = hdr->addr3; 2399 proxied_addr = mesh_hdr->eaddr1; 2400 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2401 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2402 mpp_addr = hdr->addr4; 2403 proxied_addr = mesh_hdr->eaddr2; 2404 } else { 2405 return RX_DROP_MONITOR; 2406 } 2407 2408 rcu_read_lock(); 2409 mppath = mpp_path_lookup(sdata, proxied_addr); 2410 if (!mppath) { 2411 mpp_path_add(sdata, proxied_addr, mpp_addr); 2412 } else { 2413 spin_lock_bh(&mppath->state_lock); 2414 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2415 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2416 mppath->exp_time = jiffies; 2417 spin_unlock_bh(&mppath->state_lock); 2418 } 2419 rcu_read_unlock(); 2420 } 2421 2422 /* Frame has reached destination. Don't forward */ 2423 if (!is_multicast_ether_addr(hdr->addr1) && 2424 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2425 return RX_CONTINUE; 2426 2427 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2428 q = sdata->vif.hw_queue[ac]; 2429 if (ieee80211_queue_stopped(&local->hw, q)) { 2430 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2431 return RX_DROP_MONITOR; 2432 } 2433 skb_set_queue_mapping(skb, q); 2434 2435 if (!--mesh_hdr->ttl) { 2436 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2437 goto out; 2438 } 2439 2440 if (!ifmsh->mshcfg.dot11MeshForwarding) 2441 goto out; 2442 2443 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2444 if (!fwd_skb) { 2445 net_info_ratelimited("%s: failed to clone mesh frame\n", 2446 sdata->name); 2447 goto out; 2448 } 2449 2450 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2451 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2452 info = IEEE80211_SKB_CB(fwd_skb); 2453 memset(info, 0, sizeof(*info)); 2454 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2455 info->control.vif = &rx->sdata->vif; 2456 info->control.jiffies = jiffies; 2457 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2458 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2459 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2460 /* update power mode indication when forwarding */ 2461 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2462 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2463 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2464 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2465 } else { 2466 /* unable to resolve next hop */ 2467 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2468 fwd_hdr->addr3, 0, 2469 WLAN_REASON_MESH_PATH_NOFORWARD, 2470 fwd_hdr->addr2); 2471 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2472 kfree_skb(fwd_skb); 2473 return RX_DROP_MONITOR; 2474 } 2475 2476 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2477 ieee80211_add_pending_skb(local, fwd_skb); 2478 out: 2479 if (is_multicast_ether_addr(hdr->addr1)) 2480 return RX_CONTINUE; 2481 return RX_DROP_MONITOR; 2482 } 2483 #endif 2484 2485 static ieee80211_rx_result debug_noinline 2486 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2487 { 2488 struct ieee80211_sub_if_data *sdata = rx->sdata; 2489 struct ieee80211_local *local = rx->local; 2490 struct net_device *dev = sdata->dev; 2491 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2492 __le16 fc = hdr->frame_control; 2493 bool port_control; 2494 int err; 2495 2496 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2497 return RX_CONTINUE; 2498 2499 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2500 return RX_DROP_MONITOR; 2501 2502 /* 2503 * Send unexpected-4addr-frame event to hostapd. For older versions, 2504 * also drop the frame to cooked monitor interfaces. 2505 */ 2506 if (ieee80211_has_a4(hdr->frame_control) && 2507 sdata->vif.type == NL80211_IFTYPE_AP) { 2508 if (rx->sta && 2509 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2510 cfg80211_rx_unexpected_4addr_frame( 2511 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2512 return RX_DROP_MONITOR; 2513 } 2514 2515 err = __ieee80211_data_to_8023(rx, &port_control); 2516 if (unlikely(err)) 2517 return RX_DROP_UNUSABLE; 2518 2519 if (!ieee80211_frame_allowed(rx, fc)) 2520 return RX_DROP_MONITOR; 2521 2522 /* directly handle TDLS channel switch requests/responses */ 2523 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2524 cpu_to_be16(ETH_P_TDLS))) { 2525 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2526 2527 if (pskb_may_pull(rx->skb, 2528 offsetof(struct ieee80211_tdls_data, u)) && 2529 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2530 tf->category == WLAN_CATEGORY_TDLS && 2531 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2532 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2533 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2534 schedule_work(&local->tdls_chsw_work); 2535 if (rx->sta) 2536 rx->sta->rx_stats.packets++; 2537 2538 return RX_QUEUED; 2539 } 2540 } 2541 2542 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2543 unlikely(port_control) && sdata->bss) { 2544 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2545 u.ap); 2546 dev = sdata->dev; 2547 rx->sdata = sdata; 2548 } 2549 2550 rx->skb->dev = dev; 2551 2552 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2553 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2554 !is_multicast_ether_addr( 2555 ((struct ethhdr *)rx->skb->data)->h_dest) && 2556 (!local->scanning && 2557 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2558 mod_timer(&local->dynamic_ps_timer, jiffies + 2559 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2560 2561 ieee80211_deliver_skb(rx); 2562 2563 return RX_QUEUED; 2564 } 2565 2566 static ieee80211_rx_result debug_noinline 2567 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2568 { 2569 struct sk_buff *skb = rx->skb; 2570 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2571 struct tid_ampdu_rx *tid_agg_rx; 2572 u16 start_seq_num; 2573 u16 tid; 2574 2575 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2576 return RX_CONTINUE; 2577 2578 if (ieee80211_is_back_req(bar->frame_control)) { 2579 struct { 2580 __le16 control, start_seq_num; 2581 } __packed bar_data; 2582 struct ieee80211_event event = { 2583 .type = BAR_RX_EVENT, 2584 }; 2585 2586 if (!rx->sta) 2587 return RX_DROP_MONITOR; 2588 2589 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2590 &bar_data, sizeof(bar_data))) 2591 return RX_DROP_MONITOR; 2592 2593 tid = le16_to_cpu(bar_data.control) >> 12; 2594 2595 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2596 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2597 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2598 WLAN_BACK_RECIPIENT, 2599 WLAN_REASON_QSTA_REQUIRE_SETUP); 2600 2601 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2602 if (!tid_agg_rx) 2603 return RX_DROP_MONITOR; 2604 2605 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2606 event.u.ba.tid = tid; 2607 event.u.ba.ssn = start_seq_num; 2608 event.u.ba.sta = &rx->sta->sta; 2609 2610 /* reset session timer */ 2611 if (tid_agg_rx->timeout) 2612 mod_timer(&tid_agg_rx->session_timer, 2613 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2614 2615 spin_lock(&tid_agg_rx->reorder_lock); 2616 /* release stored frames up to start of BAR */ 2617 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2618 start_seq_num, frames); 2619 spin_unlock(&tid_agg_rx->reorder_lock); 2620 2621 drv_event_callback(rx->local, rx->sdata, &event); 2622 2623 kfree_skb(skb); 2624 return RX_QUEUED; 2625 } 2626 2627 /* 2628 * After this point, we only want management frames, 2629 * so we can drop all remaining control frames to 2630 * cooked monitor interfaces. 2631 */ 2632 return RX_DROP_MONITOR; 2633 } 2634 2635 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2636 struct ieee80211_mgmt *mgmt, 2637 size_t len) 2638 { 2639 struct ieee80211_local *local = sdata->local; 2640 struct sk_buff *skb; 2641 struct ieee80211_mgmt *resp; 2642 2643 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2644 /* Not to own unicast address */ 2645 return; 2646 } 2647 2648 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2649 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2650 /* Not from the current AP or not associated yet. */ 2651 return; 2652 } 2653 2654 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2655 /* Too short SA Query request frame */ 2656 return; 2657 } 2658 2659 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2660 if (skb == NULL) 2661 return; 2662 2663 skb_reserve(skb, local->hw.extra_tx_headroom); 2664 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2665 memset(resp, 0, 24); 2666 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2667 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2668 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2669 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2670 IEEE80211_STYPE_ACTION); 2671 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2672 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2673 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2674 memcpy(resp->u.action.u.sa_query.trans_id, 2675 mgmt->u.action.u.sa_query.trans_id, 2676 WLAN_SA_QUERY_TR_ID_LEN); 2677 2678 ieee80211_tx_skb(sdata, skb); 2679 } 2680 2681 static ieee80211_rx_result debug_noinline 2682 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2683 { 2684 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2685 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2686 2687 /* 2688 * From here on, look only at management frames. 2689 * Data and control frames are already handled, 2690 * and unknown (reserved) frames are useless. 2691 */ 2692 if (rx->skb->len < 24) 2693 return RX_DROP_MONITOR; 2694 2695 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2696 return RX_DROP_MONITOR; 2697 2698 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2699 ieee80211_is_beacon(mgmt->frame_control) && 2700 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2701 int sig = 0; 2702 2703 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2704 sig = status->signal; 2705 2706 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2707 rx->skb->data, rx->skb->len, 2708 status->freq, sig); 2709 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2710 } 2711 2712 if (ieee80211_drop_unencrypted_mgmt(rx)) 2713 return RX_DROP_UNUSABLE; 2714 2715 return RX_CONTINUE; 2716 } 2717 2718 static ieee80211_rx_result debug_noinline 2719 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2720 { 2721 struct ieee80211_local *local = rx->local; 2722 struct ieee80211_sub_if_data *sdata = rx->sdata; 2723 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2724 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2725 int len = rx->skb->len; 2726 2727 if (!ieee80211_is_action(mgmt->frame_control)) 2728 return RX_CONTINUE; 2729 2730 /* drop too small frames */ 2731 if (len < IEEE80211_MIN_ACTION_SIZE) 2732 return RX_DROP_UNUSABLE; 2733 2734 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2735 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2736 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2737 return RX_DROP_UNUSABLE; 2738 2739 switch (mgmt->u.action.category) { 2740 case WLAN_CATEGORY_HT: 2741 /* reject HT action frames from stations not supporting HT */ 2742 if (!rx->sta->sta.ht_cap.ht_supported) 2743 goto invalid; 2744 2745 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2746 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2747 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2748 sdata->vif.type != NL80211_IFTYPE_AP && 2749 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2750 break; 2751 2752 /* verify action & smps_control/chanwidth are present */ 2753 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2754 goto invalid; 2755 2756 switch (mgmt->u.action.u.ht_smps.action) { 2757 case WLAN_HT_ACTION_SMPS: { 2758 struct ieee80211_supported_band *sband; 2759 enum ieee80211_smps_mode smps_mode; 2760 2761 /* convert to HT capability */ 2762 switch (mgmt->u.action.u.ht_smps.smps_control) { 2763 case WLAN_HT_SMPS_CONTROL_DISABLED: 2764 smps_mode = IEEE80211_SMPS_OFF; 2765 break; 2766 case WLAN_HT_SMPS_CONTROL_STATIC: 2767 smps_mode = IEEE80211_SMPS_STATIC; 2768 break; 2769 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2770 smps_mode = IEEE80211_SMPS_DYNAMIC; 2771 break; 2772 default: 2773 goto invalid; 2774 } 2775 2776 /* if no change do nothing */ 2777 if (rx->sta->sta.smps_mode == smps_mode) 2778 goto handled; 2779 rx->sta->sta.smps_mode = smps_mode; 2780 2781 sband = rx->local->hw.wiphy->bands[status->band]; 2782 2783 rate_control_rate_update(local, sband, rx->sta, 2784 IEEE80211_RC_SMPS_CHANGED); 2785 goto handled; 2786 } 2787 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2788 struct ieee80211_supported_band *sband; 2789 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2790 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2791 2792 /* If it doesn't support 40 MHz it can't change ... */ 2793 if (!(rx->sta->sta.ht_cap.cap & 2794 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2795 goto handled; 2796 2797 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2798 max_bw = IEEE80211_STA_RX_BW_20; 2799 else 2800 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2801 2802 /* set cur_max_bandwidth and recalc sta bw */ 2803 rx->sta->cur_max_bandwidth = max_bw; 2804 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2805 2806 if (rx->sta->sta.bandwidth == new_bw) 2807 goto handled; 2808 2809 rx->sta->sta.bandwidth = new_bw; 2810 sband = rx->local->hw.wiphy->bands[status->band]; 2811 2812 rate_control_rate_update(local, sband, rx->sta, 2813 IEEE80211_RC_BW_CHANGED); 2814 goto handled; 2815 } 2816 default: 2817 goto invalid; 2818 } 2819 2820 break; 2821 case WLAN_CATEGORY_PUBLIC: 2822 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2823 goto invalid; 2824 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2825 break; 2826 if (!rx->sta) 2827 break; 2828 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2829 break; 2830 if (mgmt->u.action.u.ext_chan_switch.action_code != 2831 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2832 break; 2833 if (len < offsetof(struct ieee80211_mgmt, 2834 u.action.u.ext_chan_switch.variable)) 2835 goto invalid; 2836 goto queue; 2837 case WLAN_CATEGORY_VHT: 2838 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2839 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2840 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2841 sdata->vif.type != NL80211_IFTYPE_AP && 2842 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2843 break; 2844 2845 /* verify action code is present */ 2846 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2847 goto invalid; 2848 2849 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2850 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2851 u8 opmode; 2852 2853 /* verify opmode is present */ 2854 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2855 goto invalid; 2856 2857 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2858 2859 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2860 opmode, status->band); 2861 goto handled; 2862 } 2863 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2864 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2865 goto invalid; 2866 goto queue; 2867 } 2868 default: 2869 break; 2870 } 2871 break; 2872 case WLAN_CATEGORY_BACK: 2873 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2874 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2875 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2876 sdata->vif.type != NL80211_IFTYPE_AP && 2877 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2878 break; 2879 2880 /* verify action_code is present */ 2881 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2882 break; 2883 2884 switch (mgmt->u.action.u.addba_req.action_code) { 2885 case WLAN_ACTION_ADDBA_REQ: 2886 if (len < (IEEE80211_MIN_ACTION_SIZE + 2887 sizeof(mgmt->u.action.u.addba_req))) 2888 goto invalid; 2889 break; 2890 case WLAN_ACTION_ADDBA_RESP: 2891 if (len < (IEEE80211_MIN_ACTION_SIZE + 2892 sizeof(mgmt->u.action.u.addba_resp))) 2893 goto invalid; 2894 break; 2895 case WLAN_ACTION_DELBA: 2896 if (len < (IEEE80211_MIN_ACTION_SIZE + 2897 sizeof(mgmt->u.action.u.delba))) 2898 goto invalid; 2899 break; 2900 default: 2901 goto invalid; 2902 } 2903 2904 goto queue; 2905 case WLAN_CATEGORY_SPECTRUM_MGMT: 2906 /* verify action_code is present */ 2907 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2908 break; 2909 2910 switch (mgmt->u.action.u.measurement.action_code) { 2911 case WLAN_ACTION_SPCT_MSR_REQ: 2912 if (status->band != NL80211_BAND_5GHZ) 2913 break; 2914 2915 if (len < (IEEE80211_MIN_ACTION_SIZE + 2916 sizeof(mgmt->u.action.u.measurement))) 2917 break; 2918 2919 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2920 break; 2921 2922 ieee80211_process_measurement_req(sdata, mgmt, len); 2923 goto handled; 2924 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2925 u8 *bssid; 2926 if (len < (IEEE80211_MIN_ACTION_SIZE + 2927 sizeof(mgmt->u.action.u.chan_switch))) 2928 break; 2929 2930 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2931 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2932 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2933 break; 2934 2935 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2936 bssid = sdata->u.mgd.bssid; 2937 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2938 bssid = sdata->u.ibss.bssid; 2939 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2940 bssid = mgmt->sa; 2941 else 2942 break; 2943 2944 if (!ether_addr_equal(mgmt->bssid, bssid)) 2945 break; 2946 2947 goto queue; 2948 } 2949 } 2950 break; 2951 case WLAN_CATEGORY_SA_QUERY: 2952 if (len < (IEEE80211_MIN_ACTION_SIZE + 2953 sizeof(mgmt->u.action.u.sa_query))) 2954 break; 2955 2956 switch (mgmt->u.action.u.sa_query.action) { 2957 case WLAN_ACTION_SA_QUERY_REQUEST: 2958 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2959 break; 2960 ieee80211_process_sa_query_req(sdata, mgmt, len); 2961 goto handled; 2962 } 2963 break; 2964 case WLAN_CATEGORY_SELF_PROTECTED: 2965 if (len < (IEEE80211_MIN_ACTION_SIZE + 2966 sizeof(mgmt->u.action.u.self_prot.action_code))) 2967 break; 2968 2969 switch (mgmt->u.action.u.self_prot.action_code) { 2970 case WLAN_SP_MESH_PEERING_OPEN: 2971 case WLAN_SP_MESH_PEERING_CLOSE: 2972 case WLAN_SP_MESH_PEERING_CONFIRM: 2973 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2974 goto invalid; 2975 if (sdata->u.mesh.user_mpm) 2976 /* userspace handles this frame */ 2977 break; 2978 goto queue; 2979 case WLAN_SP_MGK_INFORM: 2980 case WLAN_SP_MGK_ACK: 2981 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2982 goto invalid; 2983 break; 2984 } 2985 break; 2986 case WLAN_CATEGORY_MESH_ACTION: 2987 if (len < (IEEE80211_MIN_ACTION_SIZE + 2988 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2989 break; 2990 2991 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2992 break; 2993 if (mesh_action_is_path_sel(mgmt) && 2994 !mesh_path_sel_is_hwmp(sdata)) 2995 break; 2996 goto queue; 2997 } 2998 2999 return RX_CONTINUE; 3000 3001 invalid: 3002 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3003 /* will return in the next handlers */ 3004 return RX_CONTINUE; 3005 3006 handled: 3007 if (rx->sta) 3008 rx->sta->rx_stats.packets++; 3009 dev_kfree_skb(rx->skb); 3010 return RX_QUEUED; 3011 3012 queue: 3013 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3014 skb_queue_tail(&sdata->skb_queue, rx->skb); 3015 ieee80211_queue_work(&local->hw, &sdata->work); 3016 if (rx->sta) 3017 rx->sta->rx_stats.packets++; 3018 return RX_QUEUED; 3019 } 3020 3021 static ieee80211_rx_result debug_noinline 3022 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3023 { 3024 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3025 int sig = 0; 3026 3027 /* skip known-bad action frames and return them in the next handler */ 3028 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3029 return RX_CONTINUE; 3030 3031 /* 3032 * Getting here means the kernel doesn't know how to handle 3033 * it, but maybe userspace does ... include returned frames 3034 * so userspace can register for those to know whether ones 3035 * it transmitted were processed or returned. 3036 */ 3037 3038 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 3039 sig = status->signal; 3040 3041 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3042 rx->skb->data, rx->skb->len, 0)) { 3043 if (rx->sta) 3044 rx->sta->rx_stats.packets++; 3045 dev_kfree_skb(rx->skb); 3046 return RX_QUEUED; 3047 } 3048 3049 return RX_CONTINUE; 3050 } 3051 3052 static ieee80211_rx_result debug_noinline 3053 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3054 { 3055 struct ieee80211_local *local = rx->local; 3056 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3057 struct sk_buff *nskb; 3058 struct ieee80211_sub_if_data *sdata = rx->sdata; 3059 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3060 3061 if (!ieee80211_is_action(mgmt->frame_control)) 3062 return RX_CONTINUE; 3063 3064 /* 3065 * For AP mode, hostapd is responsible for handling any action 3066 * frames that we didn't handle, including returning unknown 3067 * ones. For all other modes we will return them to the sender, 3068 * setting the 0x80 bit in the action category, as required by 3069 * 802.11-2012 9.24.4. 3070 * Newer versions of hostapd shall also use the management frame 3071 * registration mechanisms, but older ones still use cooked 3072 * monitor interfaces so push all frames there. 3073 */ 3074 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3075 (sdata->vif.type == NL80211_IFTYPE_AP || 3076 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3077 return RX_DROP_MONITOR; 3078 3079 if (is_multicast_ether_addr(mgmt->da)) 3080 return RX_DROP_MONITOR; 3081 3082 /* do not return rejected action frames */ 3083 if (mgmt->u.action.category & 0x80) 3084 return RX_DROP_UNUSABLE; 3085 3086 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3087 GFP_ATOMIC); 3088 if (nskb) { 3089 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3090 3091 nmgmt->u.action.category |= 0x80; 3092 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3093 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3094 3095 memset(nskb->cb, 0, sizeof(nskb->cb)); 3096 3097 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3098 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3099 3100 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3101 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3102 IEEE80211_TX_CTL_NO_CCK_RATE; 3103 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3104 info->hw_queue = 3105 local->hw.offchannel_tx_hw_queue; 3106 } 3107 3108 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3109 status->band); 3110 } 3111 dev_kfree_skb(rx->skb); 3112 return RX_QUEUED; 3113 } 3114 3115 static ieee80211_rx_result debug_noinline 3116 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3117 { 3118 struct ieee80211_sub_if_data *sdata = rx->sdata; 3119 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3120 __le16 stype; 3121 3122 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3123 3124 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3125 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3126 sdata->vif.type != NL80211_IFTYPE_OCB && 3127 sdata->vif.type != NL80211_IFTYPE_STATION) 3128 return RX_DROP_MONITOR; 3129 3130 switch (stype) { 3131 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3132 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3133 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3134 /* process for all: mesh, mlme, ibss */ 3135 break; 3136 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3137 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3138 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3139 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3140 if (is_multicast_ether_addr(mgmt->da) && 3141 !is_broadcast_ether_addr(mgmt->da)) 3142 return RX_DROP_MONITOR; 3143 3144 /* process only for station */ 3145 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3146 return RX_DROP_MONITOR; 3147 break; 3148 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3149 /* process only for ibss and mesh */ 3150 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3151 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3152 return RX_DROP_MONITOR; 3153 break; 3154 default: 3155 return RX_DROP_MONITOR; 3156 } 3157 3158 /* queue up frame and kick off work to process it */ 3159 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3160 skb_queue_tail(&sdata->skb_queue, rx->skb); 3161 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3162 if (rx->sta) 3163 rx->sta->rx_stats.packets++; 3164 3165 return RX_QUEUED; 3166 } 3167 3168 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3169 struct ieee80211_rate *rate) 3170 { 3171 struct ieee80211_sub_if_data *sdata; 3172 struct ieee80211_local *local = rx->local; 3173 struct sk_buff *skb = rx->skb, *skb2; 3174 struct net_device *prev_dev = NULL; 3175 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3176 int needed_headroom; 3177 3178 /* 3179 * If cooked monitor has been processed already, then 3180 * don't do it again. If not, set the flag. 3181 */ 3182 if (rx->flags & IEEE80211_RX_CMNTR) 3183 goto out_free_skb; 3184 rx->flags |= IEEE80211_RX_CMNTR; 3185 3186 /* If there are no cooked monitor interfaces, just free the SKB */ 3187 if (!local->cooked_mntrs) 3188 goto out_free_skb; 3189 3190 /* vendor data is long removed here */ 3191 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3192 /* room for the radiotap header based on driver features */ 3193 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3194 3195 if (skb_headroom(skb) < needed_headroom && 3196 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3197 goto out_free_skb; 3198 3199 /* prepend radiotap information */ 3200 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3201 false); 3202 3203 skb_reset_mac_header(skb); 3204 skb->ip_summed = CHECKSUM_UNNECESSARY; 3205 skb->pkt_type = PACKET_OTHERHOST; 3206 skb->protocol = htons(ETH_P_802_2); 3207 3208 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3209 if (!ieee80211_sdata_running(sdata)) 3210 continue; 3211 3212 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3213 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3214 continue; 3215 3216 if (prev_dev) { 3217 skb2 = skb_clone(skb, GFP_ATOMIC); 3218 if (skb2) { 3219 skb2->dev = prev_dev; 3220 netif_receive_skb(skb2); 3221 } 3222 } 3223 3224 prev_dev = sdata->dev; 3225 ieee80211_rx_stats(sdata->dev, skb->len); 3226 } 3227 3228 if (prev_dev) { 3229 skb->dev = prev_dev; 3230 netif_receive_skb(skb); 3231 return; 3232 } 3233 3234 out_free_skb: 3235 dev_kfree_skb(skb); 3236 } 3237 3238 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3239 ieee80211_rx_result res) 3240 { 3241 switch (res) { 3242 case RX_DROP_MONITOR: 3243 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3244 if (rx->sta) 3245 rx->sta->rx_stats.dropped++; 3246 /* fall through */ 3247 case RX_CONTINUE: { 3248 struct ieee80211_rate *rate = NULL; 3249 struct ieee80211_supported_band *sband; 3250 struct ieee80211_rx_status *status; 3251 3252 status = IEEE80211_SKB_RXCB((rx->skb)); 3253 3254 sband = rx->local->hw.wiphy->bands[status->band]; 3255 if (!(status->flag & RX_FLAG_HT) && 3256 !(status->flag & RX_FLAG_VHT)) 3257 rate = &sband->bitrates[status->rate_idx]; 3258 3259 ieee80211_rx_cooked_monitor(rx, rate); 3260 break; 3261 } 3262 case RX_DROP_UNUSABLE: 3263 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3264 if (rx->sta) 3265 rx->sta->rx_stats.dropped++; 3266 dev_kfree_skb(rx->skb); 3267 break; 3268 case RX_QUEUED: 3269 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3270 break; 3271 } 3272 } 3273 3274 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3275 struct sk_buff_head *frames) 3276 { 3277 ieee80211_rx_result res = RX_DROP_MONITOR; 3278 struct sk_buff *skb; 3279 3280 #define CALL_RXH(rxh) \ 3281 do { \ 3282 res = rxh(rx); \ 3283 if (res != RX_CONTINUE) \ 3284 goto rxh_next; \ 3285 } while (0) 3286 3287 /* Lock here to avoid hitting all of the data used in the RX 3288 * path (e.g. key data, station data, ...) concurrently when 3289 * a frame is released from the reorder buffer due to timeout 3290 * from the timer, potentially concurrently with RX from the 3291 * driver. 3292 */ 3293 spin_lock_bh(&rx->local->rx_path_lock); 3294 3295 while ((skb = __skb_dequeue(frames))) { 3296 /* 3297 * all the other fields are valid across frames 3298 * that belong to an aMPDU since they are on the 3299 * same TID from the same station 3300 */ 3301 rx->skb = skb; 3302 3303 CALL_RXH(ieee80211_rx_h_check_more_data); 3304 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3305 CALL_RXH(ieee80211_rx_h_sta_process); 3306 CALL_RXH(ieee80211_rx_h_decrypt); 3307 CALL_RXH(ieee80211_rx_h_defragment); 3308 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3309 /* must be after MMIC verify so header is counted in MPDU mic */ 3310 #ifdef CONFIG_MAC80211_MESH 3311 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3312 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3313 #endif 3314 CALL_RXH(ieee80211_rx_h_amsdu); 3315 CALL_RXH(ieee80211_rx_h_data); 3316 3317 /* special treatment -- needs the queue */ 3318 res = ieee80211_rx_h_ctrl(rx, frames); 3319 if (res != RX_CONTINUE) 3320 goto rxh_next; 3321 3322 CALL_RXH(ieee80211_rx_h_mgmt_check); 3323 CALL_RXH(ieee80211_rx_h_action); 3324 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3325 CALL_RXH(ieee80211_rx_h_action_return); 3326 CALL_RXH(ieee80211_rx_h_mgmt); 3327 3328 rxh_next: 3329 ieee80211_rx_handlers_result(rx, res); 3330 3331 #undef CALL_RXH 3332 } 3333 3334 spin_unlock_bh(&rx->local->rx_path_lock); 3335 } 3336 3337 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3338 { 3339 struct sk_buff_head reorder_release; 3340 ieee80211_rx_result res = RX_DROP_MONITOR; 3341 3342 __skb_queue_head_init(&reorder_release); 3343 3344 #define CALL_RXH(rxh) \ 3345 do { \ 3346 res = rxh(rx); \ 3347 if (res != RX_CONTINUE) \ 3348 goto rxh_next; \ 3349 } while (0) 3350 3351 CALL_RXH(ieee80211_rx_h_check_dup); 3352 CALL_RXH(ieee80211_rx_h_check); 3353 3354 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3355 3356 ieee80211_rx_handlers(rx, &reorder_release); 3357 return; 3358 3359 rxh_next: 3360 ieee80211_rx_handlers_result(rx, res); 3361 3362 #undef CALL_RXH 3363 } 3364 3365 /* 3366 * This function makes calls into the RX path, therefore 3367 * it has to be invoked under RCU read lock. 3368 */ 3369 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3370 { 3371 struct sk_buff_head frames; 3372 struct ieee80211_rx_data rx = { 3373 .sta = sta, 3374 .sdata = sta->sdata, 3375 .local = sta->local, 3376 /* This is OK -- must be QoS data frame */ 3377 .security_idx = tid, 3378 .seqno_idx = tid, 3379 .napi = NULL, /* must be NULL to not have races */ 3380 }; 3381 struct tid_ampdu_rx *tid_agg_rx; 3382 3383 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3384 if (!tid_agg_rx) 3385 return; 3386 3387 __skb_queue_head_init(&frames); 3388 3389 spin_lock(&tid_agg_rx->reorder_lock); 3390 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3391 spin_unlock(&tid_agg_rx->reorder_lock); 3392 3393 if (!skb_queue_empty(&frames)) { 3394 struct ieee80211_event event = { 3395 .type = BA_FRAME_TIMEOUT, 3396 .u.ba.tid = tid, 3397 .u.ba.sta = &sta->sta, 3398 }; 3399 drv_event_callback(rx.local, rx.sdata, &event); 3400 } 3401 3402 ieee80211_rx_handlers(&rx, &frames); 3403 } 3404 3405 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3406 u16 ssn, u64 filtered, 3407 u16 received_mpdus) 3408 { 3409 struct sta_info *sta; 3410 struct tid_ampdu_rx *tid_agg_rx; 3411 struct sk_buff_head frames; 3412 struct ieee80211_rx_data rx = { 3413 /* This is OK -- must be QoS data frame */ 3414 .security_idx = tid, 3415 .seqno_idx = tid, 3416 }; 3417 int i, diff; 3418 3419 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3420 return; 3421 3422 __skb_queue_head_init(&frames); 3423 3424 sta = container_of(pubsta, struct sta_info, sta); 3425 3426 rx.sta = sta; 3427 rx.sdata = sta->sdata; 3428 rx.local = sta->local; 3429 3430 rcu_read_lock(); 3431 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3432 if (!tid_agg_rx) 3433 goto out; 3434 3435 spin_lock_bh(&tid_agg_rx->reorder_lock); 3436 3437 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3438 int release; 3439 3440 /* release all frames in the reorder buffer */ 3441 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3442 IEEE80211_SN_MODULO; 3443 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3444 release, &frames); 3445 /* update ssn to match received ssn */ 3446 tid_agg_rx->head_seq_num = ssn; 3447 } else { 3448 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3449 &frames); 3450 } 3451 3452 /* handle the case that received ssn is behind the mac ssn. 3453 * it can be tid_agg_rx->buf_size behind and still be valid */ 3454 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3455 if (diff >= tid_agg_rx->buf_size) { 3456 tid_agg_rx->reorder_buf_filtered = 0; 3457 goto release; 3458 } 3459 filtered = filtered >> diff; 3460 ssn += diff; 3461 3462 /* update bitmap */ 3463 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3464 int index = (ssn + i) % tid_agg_rx->buf_size; 3465 3466 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3467 if (filtered & BIT_ULL(i)) 3468 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3469 } 3470 3471 /* now process also frames that the filter marking released */ 3472 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3473 3474 release: 3475 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3476 3477 ieee80211_rx_handlers(&rx, &frames); 3478 3479 out: 3480 rcu_read_unlock(); 3481 } 3482 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3483 3484 /* main receive path */ 3485 3486 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3487 { 3488 struct ieee80211_sub_if_data *sdata = rx->sdata; 3489 struct sk_buff *skb = rx->skb; 3490 struct ieee80211_hdr *hdr = (void *)skb->data; 3491 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3492 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3493 int multicast = is_multicast_ether_addr(hdr->addr1); 3494 3495 switch (sdata->vif.type) { 3496 case NL80211_IFTYPE_STATION: 3497 if (!bssid && !sdata->u.mgd.use_4addr) 3498 return false; 3499 if (multicast) 3500 return true; 3501 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3502 case NL80211_IFTYPE_ADHOC: 3503 if (!bssid) 3504 return false; 3505 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3506 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3507 return false; 3508 if (ieee80211_is_beacon(hdr->frame_control)) 3509 return true; 3510 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3511 return false; 3512 if (!multicast && 3513 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3514 return false; 3515 if (!rx->sta) { 3516 int rate_idx; 3517 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3518 rate_idx = 0; /* TODO: HT/VHT rates */ 3519 else 3520 rate_idx = status->rate_idx; 3521 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3522 BIT(rate_idx)); 3523 } 3524 return true; 3525 case NL80211_IFTYPE_OCB: 3526 if (!bssid) 3527 return false; 3528 if (!ieee80211_is_data_present(hdr->frame_control)) 3529 return false; 3530 if (!is_broadcast_ether_addr(bssid)) 3531 return false; 3532 if (!multicast && 3533 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3534 return false; 3535 if (!rx->sta) { 3536 int rate_idx; 3537 if (status->flag & RX_FLAG_HT) 3538 rate_idx = 0; /* TODO: HT rates */ 3539 else 3540 rate_idx = status->rate_idx; 3541 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3542 BIT(rate_idx)); 3543 } 3544 return true; 3545 case NL80211_IFTYPE_MESH_POINT: 3546 if (multicast) 3547 return true; 3548 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3549 case NL80211_IFTYPE_AP_VLAN: 3550 case NL80211_IFTYPE_AP: 3551 if (!bssid) 3552 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3553 3554 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3555 /* 3556 * Accept public action frames even when the 3557 * BSSID doesn't match, this is used for P2P 3558 * and location updates. Note that mac80211 3559 * itself never looks at these frames. 3560 */ 3561 if (!multicast && 3562 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3563 return false; 3564 if (ieee80211_is_public_action(hdr, skb->len)) 3565 return true; 3566 return ieee80211_is_beacon(hdr->frame_control); 3567 } 3568 3569 if (!ieee80211_has_tods(hdr->frame_control)) { 3570 /* ignore data frames to TDLS-peers */ 3571 if (ieee80211_is_data(hdr->frame_control)) 3572 return false; 3573 /* ignore action frames to TDLS-peers */ 3574 if (ieee80211_is_action(hdr->frame_control) && 3575 !is_broadcast_ether_addr(bssid) && 3576 !ether_addr_equal(bssid, hdr->addr1)) 3577 return false; 3578 } 3579 return true; 3580 case NL80211_IFTYPE_WDS: 3581 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3582 return false; 3583 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3584 case NL80211_IFTYPE_P2P_DEVICE: 3585 return ieee80211_is_public_action(hdr, skb->len) || 3586 ieee80211_is_probe_req(hdr->frame_control) || 3587 ieee80211_is_probe_resp(hdr->frame_control) || 3588 ieee80211_is_beacon(hdr->frame_control); 3589 default: 3590 break; 3591 } 3592 3593 WARN_ON_ONCE(1); 3594 return false; 3595 } 3596 3597 void ieee80211_check_fast_rx(struct sta_info *sta) 3598 { 3599 struct ieee80211_sub_if_data *sdata = sta->sdata; 3600 struct ieee80211_local *local = sdata->local; 3601 struct ieee80211_key *key; 3602 struct ieee80211_fast_rx fastrx = { 3603 .dev = sdata->dev, 3604 .vif_type = sdata->vif.type, 3605 .control_port_protocol = sdata->control_port_protocol, 3606 }, *old, *new = NULL; 3607 bool assign = false; 3608 3609 /* use sparse to check that we don't return without updating */ 3610 __acquire(check_fast_rx); 3611 3612 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3613 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3614 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3615 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3616 3617 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3618 3619 /* fast-rx doesn't do reordering */ 3620 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3621 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3622 goto clear; 3623 3624 switch (sdata->vif.type) { 3625 case NL80211_IFTYPE_STATION: 3626 /* 4-addr is harder to deal with, later maybe */ 3627 if (sdata->u.mgd.use_4addr) 3628 goto clear; 3629 /* software powersave is a huge mess, avoid all of it */ 3630 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3631 goto clear; 3632 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3633 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3634 goto clear; 3635 if (sta->sta.tdls) { 3636 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3637 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3638 fastrx.expected_ds_bits = 0; 3639 } else { 3640 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3641 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3642 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3643 fastrx.expected_ds_bits = 3644 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3645 } 3646 break; 3647 case NL80211_IFTYPE_AP_VLAN: 3648 case NL80211_IFTYPE_AP: 3649 /* parallel-rx requires this, at least with calls to 3650 * ieee80211_sta_ps_transition() 3651 */ 3652 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3653 goto clear; 3654 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3655 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3656 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3657 3658 fastrx.internal_forward = 3659 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3660 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3661 !sdata->u.vlan.sta); 3662 break; 3663 default: 3664 goto clear; 3665 } 3666 3667 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3668 goto clear; 3669 3670 rcu_read_lock(); 3671 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3672 if (key) { 3673 switch (key->conf.cipher) { 3674 case WLAN_CIPHER_SUITE_TKIP: 3675 /* we don't want to deal with MMIC in fast-rx */ 3676 goto clear_rcu; 3677 case WLAN_CIPHER_SUITE_CCMP: 3678 case WLAN_CIPHER_SUITE_CCMP_256: 3679 case WLAN_CIPHER_SUITE_GCMP: 3680 case WLAN_CIPHER_SUITE_GCMP_256: 3681 break; 3682 default: 3683 /* we also don't want to deal with WEP or cipher scheme 3684 * since those require looking up the key idx in the 3685 * frame, rather than assuming the PTK is used 3686 * (we need to revisit this once we implement the real 3687 * PTK index, which is now valid in the spec, but we 3688 * haven't implemented that part yet) 3689 */ 3690 goto clear_rcu; 3691 } 3692 3693 fastrx.key = true; 3694 fastrx.icv_len = key->conf.icv_len; 3695 } 3696 3697 assign = true; 3698 clear_rcu: 3699 rcu_read_unlock(); 3700 clear: 3701 __release(check_fast_rx); 3702 3703 if (assign) 3704 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3705 3706 spin_lock_bh(&sta->lock); 3707 old = rcu_dereference_protected(sta->fast_rx, true); 3708 rcu_assign_pointer(sta->fast_rx, new); 3709 spin_unlock_bh(&sta->lock); 3710 3711 if (old) 3712 kfree_rcu(old, rcu_head); 3713 } 3714 3715 void ieee80211_clear_fast_rx(struct sta_info *sta) 3716 { 3717 struct ieee80211_fast_rx *old; 3718 3719 spin_lock_bh(&sta->lock); 3720 old = rcu_dereference_protected(sta->fast_rx, true); 3721 RCU_INIT_POINTER(sta->fast_rx, NULL); 3722 spin_unlock_bh(&sta->lock); 3723 3724 if (old) 3725 kfree_rcu(old, rcu_head); 3726 } 3727 3728 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3729 { 3730 struct ieee80211_local *local = sdata->local; 3731 struct sta_info *sta; 3732 3733 lockdep_assert_held(&local->sta_mtx); 3734 3735 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3736 if (sdata != sta->sdata && 3737 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3738 continue; 3739 ieee80211_check_fast_rx(sta); 3740 } 3741 } 3742 3743 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3744 { 3745 struct ieee80211_local *local = sdata->local; 3746 3747 mutex_lock(&local->sta_mtx); 3748 __ieee80211_check_fast_rx_iface(sdata); 3749 mutex_unlock(&local->sta_mtx); 3750 } 3751 3752 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3753 struct ieee80211_fast_rx *fast_rx) 3754 { 3755 struct sk_buff *skb = rx->skb; 3756 struct ieee80211_hdr *hdr = (void *)skb->data; 3757 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3758 struct sta_info *sta = rx->sta; 3759 int orig_len = skb->len; 3760 int snap_offs = ieee80211_hdrlen(hdr->frame_control); 3761 struct { 3762 u8 snap[sizeof(rfc1042_header)]; 3763 __be16 proto; 3764 } *payload __aligned(2); 3765 struct { 3766 u8 da[ETH_ALEN]; 3767 u8 sa[ETH_ALEN]; 3768 } addrs __aligned(2); 3769 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3770 3771 if (fast_rx->uses_rss) 3772 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3773 3774 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3775 * to a common data structure; drivers can implement that per queue 3776 * but we don't have that information in mac80211 3777 */ 3778 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3779 return false; 3780 3781 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3782 3783 /* If using encryption, we also need to have: 3784 * - PN_VALIDATED: similar, but the implementation is tricky 3785 * - DECRYPTED: necessary for PN_VALIDATED 3786 */ 3787 if (fast_rx->key && 3788 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3789 return false; 3790 3791 /* we don't deal with A-MSDU deaggregation here */ 3792 if (status->rx_flags & IEEE80211_RX_AMSDU) 3793 return false; 3794 3795 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3796 return false; 3797 3798 if (unlikely(ieee80211_is_frag(hdr))) 3799 return false; 3800 3801 /* Since our interface address cannot be multicast, this 3802 * implicitly also rejects multicast frames without the 3803 * explicit check. 3804 * 3805 * We shouldn't get any *data* frames not addressed to us 3806 * (AP mode will accept multicast *management* frames), but 3807 * punting here will make it go through the full checks in 3808 * ieee80211_accept_frame(). 3809 */ 3810 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3811 return false; 3812 3813 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3814 IEEE80211_FCTL_TODS)) != 3815 fast_rx->expected_ds_bits) 3816 goto drop; 3817 3818 /* assign the key to drop unencrypted frames (later) 3819 * and strip the IV/MIC if necessary 3820 */ 3821 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3822 /* GCMP header length is the same */ 3823 snap_offs += IEEE80211_CCMP_HDR_LEN; 3824 } 3825 3826 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3827 goto drop; 3828 payload = (void *)(skb->data + snap_offs); 3829 3830 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 3831 return false; 3832 3833 /* Don't handle these here since they require special code. 3834 * Accept AARP and IPX even though they should come with a 3835 * bridge-tunnel header - but if we get them this way then 3836 * there's little point in discarding them. 3837 */ 3838 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 3839 payload->proto == fast_rx->control_port_protocol)) 3840 return false; 3841 3842 /* after this point, don't punt to the slowpath! */ 3843 3844 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 3845 pskb_trim(skb, skb->len - fast_rx->icv_len)) 3846 goto drop; 3847 3848 if (unlikely(fast_rx->sta_notify)) { 3849 ieee80211_sta_rx_notify(rx->sdata, hdr); 3850 fast_rx->sta_notify = false; 3851 } 3852 3853 /* statistics part of ieee80211_rx_h_sta_process() */ 3854 stats->last_rx = jiffies; 3855 stats->last_rate = sta_stats_encode_rate(status); 3856 3857 stats->fragments++; 3858 3859 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 3860 stats->last_signal = status->signal; 3861 if (!fast_rx->uses_rss) 3862 ewma_signal_add(&sta->rx_stats_avg.signal, 3863 -status->signal); 3864 } 3865 3866 if (status->chains) { 3867 int i; 3868 3869 stats->chains = status->chains; 3870 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 3871 int signal = status->chain_signal[i]; 3872 3873 if (!(status->chains & BIT(i))) 3874 continue; 3875 3876 stats->chain_signal_last[i] = signal; 3877 if (!fast_rx->uses_rss) 3878 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 3879 -signal); 3880 } 3881 } 3882 /* end of statistics */ 3883 3884 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 3885 goto drop; 3886 3887 /* do the header conversion - first grab the addresses */ 3888 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 3889 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 3890 /* remove the SNAP but leave the ethertype */ 3891 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 3892 /* push the addresses in front */ 3893 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 3894 3895 skb->dev = fast_rx->dev; 3896 3897 ieee80211_rx_stats(fast_rx->dev, skb->len); 3898 3899 /* The seqno index has the same property as needed 3900 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 3901 * for non-QoS-data frames. Here we know it's a data 3902 * frame, so count MSDUs. 3903 */ 3904 u64_stats_update_begin(&stats->syncp); 3905 stats->msdu[rx->seqno_idx]++; 3906 stats->bytes += orig_len; 3907 u64_stats_update_end(&stats->syncp); 3908 3909 if (fast_rx->internal_forward) { 3910 struct sta_info *dsta = sta_info_get(rx->sdata, skb->data); 3911 3912 if (dsta) { 3913 /* 3914 * Send to wireless media and increase priority by 256 3915 * to keep the received priority instead of 3916 * reclassifying the frame (see cfg80211_classify8021d). 3917 */ 3918 skb->priority += 256; 3919 skb->protocol = htons(ETH_P_802_3); 3920 skb_reset_network_header(skb); 3921 skb_reset_mac_header(skb); 3922 dev_queue_xmit(skb); 3923 return true; 3924 } 3925 } 3926 3927 /* deliver to local stack */ 3928 skb->protocol = eth_type_trans(skb, fast_rx->dev); 3929 memset(skb->cb, 0, sizeof(skb->cb)); 3930 if (rx->napi) 3931 napi_gro_receive(rx->napi, skb); 3932 else 3933 netif_receive_skb(skb); 3934 3935 return true; 3936 drop: 3937 dev_kfree_skb(skb); 3938 stats->dropped++; 3939 return true; 3940 } 3941 3942 /* 3943 * This function returns whether or not the SKB 3944 * was destined for RX processing or not, which, 3945 * if consume is true, is equivalent to whether 3946 * or not the skb was consumed. 3947 */ 3948 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3949 struct sk_buff *skb, bool consume) 3950 { 3951 struct ieee80211_local *local = rx->local; 3952 struct ieee80211_sub_if_data *sdata = rx->sdata; 3953 3954 rx->skb = skb; 3955 3956 /* See if we can do fast-rx; if we have to copy we already lost, 3957 * so punt in that case. We should never have to deliver a data 3958 * frame to multiple interfaces anyway. 3959 * 3960 * We skip the ieee80211_accept_frame() call and do the necessary 3961 * checking inside ieee80211_invoke_fast_rx(). 3962 */ 3963 if (consume && rx->sta) { 3964 struct ieee80211_fast_rx *fast_rx; 3965 3966 fast_rx = rcu_dereference(rx->sta->fast_rx); 3967 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 3968 return true; 3969 } 3970 3971 if (!ieee80211_accept_frame(rx)) 3972 return false; 3973 3974 if (!consume) { 3975 skb = skb_copy(skb, GFP_ATOMIC); 3976 if (!skb) { 3977 if (net_ratelimit()) 3978 wiphy_debug(local->hw.wiphy, 3979 "failed to copy skb for %s\n", 3980 sdata->name); 3981 return true; 3982 } 3983 3984 rx->skb = skb; 3985 } 3986 3987 ieee80211_invoke_rx_handlers(rx); 3988 return true; 3989 } 3990 3991 /* 3992 * This is the actual Rx frames handler. as it belongs to Rx path it must 3993 * be called with rcu_read_lock protection. 3994 */ 3995 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3996 struct ieee80211_sta *pubsta, 3997 struct sk_buff *skb, 3998 struct napi_struct *napi) 3999 { 4000 struct ieee80211_local *local = hw_to_local(hw); 4001 struct ieee80211_sub_if_data *sdata; 4002 struct ieee80211_hdr *hdr; 4003 __le16 fc; 4004 struct ieee80211_rx_data rx; 4005 struct ieee80211_sub_if_data *prev; 4006 struct rhlist_head *tmp; 4007 int err = 0; 4008 4009 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4010 memset(&rx, 0, sizeof(rx)); 4011 rx.skb = skb; 4012 rx.local = local; 4013 rx.napi = napi; 4014 4015 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4016 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4017 4018 if (ieee80211_is_mgmt(fc)) { 4019 /* drop frame if too short for header */ 4020 if (skb->len < ieee80211_hdrlen(fc)) 4021 err = -ENOBUFS; 4022 else 4023 err = skb_linearize(skb); 4024 } else { 4025 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4026 } 4027 4028 if (err) { 4029 dev_kfree_skb(skb); 4030 return; 4031 } 4032 4033 hdr = (struct ieee80211_hdr *)skb->data; 4034 ieee80211_parse_qos(&rx); 4035 ieee80211_verify_alignment(&rx); 4036 4037 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4038 ieee80211_is_beacon(hdr->frame_control))) 4039 ieee80211_scan_rx(local, skb); 4040 4041 if (pubsta) { 4042 rx.sta = container_of(pubsta, struct sta_info, sta); 4043 rx.sdata = rx.sta->sdata; 4044 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4045 return; 4046 goto out; 4047 } else if (ieee80211_is_data(fc)) { 4048 struct sta_info *sta, *prev_sta; 4049 4050 prev_sta = NULL; 4051 4052 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4053 if (!prev_sta) { 4054 prev_sta = sta; 4055 continue; 4056 } 4057 4058 rx.sta = prev_sta; 4059 rx.sdata = prev_sta->sdata; 4060 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4061 4062 prev_sta = sta; 4063 } 4064 4065 if (prev_sta) { 4066 rx.sta = prev_sta; 4067 rx.sdata = prev_sta->sdata; 4068 4069 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4070 return; 4071 goto out; 4072 } 4073 } 4074 4075 prev = NULL; 4076 4077 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4078 if (!ieee80211_sdata_running(sdata)) 4079 continue; 4080 4081 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4082 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4083 continue; 4084 4085 /* 4086 * frame is destined for this interface, but if it's 4087 * not also for the previous one we handle that after 4088 * the loop to avoid copying the SKB once too much 4089 */ 4090 4091 if (!prev) { 4092 prev = sdata; 4093 continue; 4094 } 4095 4096 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4097 rx.sdata = prev; 4098 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4099 4100 prev = sdata; 4101 } 4102 4103 if (prev) { 4104 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4105 rx.sdata = prev; 4106 4107 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4108 return; 4109 } 4110 4111 out: 4112 dev_kfree_skb(skb); 4113 } 4114 4115 /* 4116 * This is the receive path handler. It is called by a low level driver when an 4117 * 802.11 MPDU is received from the hardware. 4118 */ 4119 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4120 struct sk_buff *skb, struct napi_struct *napi) 4121 { 4122 struct ieee80211_local *local = hw_to_local(hw); 4123 struct ieee80211_rate *rate = NULL; 4124 struct ieee80211_supported_band *sband; 4125 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4126 4127 WARN_ON_ONCE(softirq_count() == 0); 4128 4129 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4130 goto drop; 4131 4132 sband = local->hw.wiphy->bands[status->band]; 4133 if (WARN_ON(!sband)) 4134 goto drop; 4135 4136 /* 4137 * If we're suspending, it is possible although not too likely 4138 * that we'd be receiving frames after having already partially 4139 * quiesced the stack. We can't process such frames then since 4140 * that might, for example, cause stations to be added or other 4141 * driver callbacks be invoked. 4142 */ 4143 if (unlikely(local->quiescing || local->suspended)) 4144 goto drop; 4145 4146 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4147 if (unlikely(local->in_reconfig)) 4148 goto drop; 4149 4150 /* 4151 * The same happens when we're not even started, 4152 * but that's worth a warning. 4153 */ 4154 if (WARN_ON(!local->started)) 4155 goto drop; 4156 4157 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4158 /* 4159 * Validate the rate, unless a PLCP error means that 4160 * we probably can't have a valid rate here anyway. 4161 */ 4162 4163 if (status->flag & RX_FLAG_HT) { 4164 /* 4165 * rate_idx is MCS index, which can be [0-76] 4166 * as documented on: 4167 * 4168 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4169 * 4170 * Anything else would be some sort of driver or 4171 * hardware error. The driver should catch hardware 4172 * errors. 4173 */ 4174 if (WARN(status->rate_idx > 76, 4175 "Rate marked as an HT rate but passed " 4176 "status->rate_idx is not " 4177 "an MCS index [0-76]: %d (0x%02x)\n", 4178 status->rate_idx, 4179 status->rate_idx)) 4180 goto drop; 4181 } else if (status->flag & RX_FLAG_VHT) { 4182 if (WARN_ONCE(status->rate_idx > 9 || 4183 !status->vht_nss || 4184 status->vht_nss > 8, 4185 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4186 status->rate_idx, status->vht_nss)) 4187 goto drop; 4188 } else { 4189 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4190 goto drop; 4191 rate = &sband->bitrates[status->rate_idx]; 4192 } 4193 } 4194 4195 status->rx_flags = 0; 4196 4197 /* 4198 * key references and virtual interfaces are protected using RCU 4199 * and this requires that we are in a read-side RCU section during 4200 * receive processing 4201 */ 4202 rcu_read_lock(); 4203 4204 /* 4205 * Frames with failed FCS/PLCP checksum are not returned, 4206 * all other frames are returned without radiotap header 4207 * if it was previously present. 4208 * Also, frames with less than 16 bytes are dropped. 4209 */ 4210 skb = ieee80211_rx_monitor(local, skb, rate); 4211 if (!skb) { 4212 rcu_read_unlock(); 4213 return; 4214 } 4215 4216 ieee80211_tpt_led_trig_rx(local, 4217 ((struct ieee80211_hdr *)skb->data)->frame_control, 4218 skb->len); 4219 4220 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4221 4222 rcu_read_unlock(); 4223 4224 return; 4225 drop: 4226 kfree_skb(skb); 4227 } 4228 EXPORT_SYMBOL(ieee80211_rx_napi); 4229 4230 /* This is a version of the rx handler that can be called from hard irq 4231 * context. Post the skb on the queue and schedule the tasklet */ 4232 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4233 { 4234 struct ieee80211_local *local = hw_to_local(hw); 4235 4236 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4237 4238 skb->pkt_type = IEEE80211_RX_MSG; 4239 skb_queue_tail(&local->skb_queue, skb); 4240 tasklet_schedule(&local->tasklet); 4241 } 4242 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4243