1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 /* 46 * monitor mode reception 47 * 48 * This function cleans up the SKB, i.e. it removes all the stuff 49 * only useful for monitoring. 50 */ 51 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 52 unsigned int present_fcs_len, 53 unsigned int rtap_space) 54 { 55 struct ieee80211_hdr *hdr; 56 unsigned int hdrlen; 57 __le16 fc; 58 59 if (present_fcs_len) 60 __pskb_trim(skb, skb->len - present_fcs_len); 61 __pskb_pull(skb, rtap_space); 62 63 hdr = (void *)skb->data; 64 fc = hdr->frame_control; 65 66 /* 67 * Remove the HT-Control field (if present) on management 68 * frames after we've sent the frame to monitoring. We 69 * (currently) don't need it, and don't properly parse 70 * frames with it present, due to the assumption of a 71 * fixed management header length. 72 */ 73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 74 return skb; 75 76 hdrlen = ieee80211_hdrlen(fc); 77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 78 79 if (!pskb_may_pull(skb, hdrlen)) { 80 dev_kfree_skb(skb); 81 return NULL; 82 } 83 84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 85 hdrlen - IEEE80211_HT_CTL_LEN); 86 __pskb_pull(skb, IEEE80211_HT_CTL_LEN); 87 88 return skb; 89 } 90 91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 92 unsigned int rtap_space) 93 { 94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 95 struct ieee80211_hdr *hdr; 96 97 hdr = (void *)(skb->data + rtap_space); 98 99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 100 RX_FLAG_FAILED_PLCP_CRC | 101 RX_FLAG_ONLY_MONITOR | 102 RX_FLAG_NO_PSDU)) 103 return true; 104 105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 106 return true; 107 108 if (ieee80211_is_ctl(hdr->frame_control) && 109 !ieee80211_is_pspoll(hdr->frame_control) && 110 !ieee80211_is_back_req(hdr->frame_control)) 111 return true; 112 113 return false; 114 } 115 116 static int 117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 118 struct ieee80211_rx_status *status, 119 struct sk_buff *skb) 120 { 121 int len; 122 123 /* always present fields */ 124 len = sizeof(struct ieee80211_radiotap_header) + 8; 125 126 /* allocate extra bitmaps */ 127 if (status->chains) 128 len += 4 * hweight8(status->chains); 129 /* vendor presence bitmap */ 130 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 131 len += 4; 132 133 if (ieee80211_have_rx_timestamp(status)) { 134 len = ALIGN(len, 8); 135 len += 8; 136 } 137 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 138 len += 1; 139 140 /* antenna field, if we don't have per-chain info */ 141 if (!status->chains) 142 len += 1; 143 144 /* padding for RX_FLAGS if necessary */ 145 len = ALIGN(len, 2); 146 147 if (status->encoding == RX_ENC_HT) /* HT info */ 148 len += 3; 149 150 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 151 len = ALIGN(len, 4); 152 len += 8; 153 } 154 155 if (status->encoding == RX_ENC_VHT) { 156 len = ALIGN(len, 2); 157 len += 12; 158 } 159 160 if (local->hw.radiotap_timestamp.units_pos >= 0) { 161 len = ALIGN(len, 8); 162 len += 12; 163 } 164 165 if (status->encoding == RX_ENC_HE && 166 status->flag & RX_FLAG_RADIOTAP_HE) { 167 len = ALIGN(len, 2); 168 len += 12; 169 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 170 } 171 172 if (status->encoding == RX_ENC_HE && 173 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 174 len = ALIGN(len, 2); 175 len += 12; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 177 } 178 179 if (status->flag & RX_FLAG_NO_PSDU) 180 len += 1; 181 182 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 183 len = ALIGN(len, 2); 184 len += 4; 185 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 186 } 187 188 if (status->chains) { 189 /* antenna and antenna signal fields */ 190 len += 2 * hweight8(status->chains); 191 } 192 193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 194 struct ieee80211_vendor_radiotap *rtap; 195 int vendor_data_offset = 0; 196 197 /* 198 * The position to look at depends on the existence (or non- 199 * existence) of other elements, so take that into account... 200 */ 201 if (status->flag & RX_FLAG_RADIOTAP_HE) 202 vendor_data_offset += 203 sizeof(struct ieee80211_radiotap_he); 204 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 205 vendor_data_offset += 206 sizeof(struct ieee80211_radiotap_he_mu); 207 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 208 vendor_data_offset += 209 sizeof(struct ieee80211_radiotap_lsig); 210 211 rtap = (void *)&skb->data[vendor_data_offset]; 212 213 /* alignment for fixed 6-byte vendor data header */ 214 len = ALIGN(len, 2); 215 /* vendor data header */ 216 len += 6; 217 if (WARN_ON(rtap->align == 0)) 218 rtap->align = 1; 219 len = ALIGN(len, rtap->align); 220 len += rtap->len + rtap->pad; 221 } 222 223 return len; 224 } 225 226 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 227 struct sk_buff *skb, 228 int rtap_space) 229 { 230 struct { 231 struct ieee80211_hdr_3addr hdr; 232 u8 category; 233 u8 action_code; 234 } __packed __aligned(2) action; 235 236 if (!sdata) 237 return; 238 239 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 240 241 if (skb->len < rtap_space + sizeof(action) + 242 VHT_MUMIMO_GROUPS_DATA_LEN) 243 return; 244 245 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 246 return; 247 248 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 249 250 if (!ieee80211_is_action(action.hdr.frame_control)) 251 return; 252 253 if (action.category != WLAN_CATEGORY_VHT) 254 return; 255 256 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 257 return; 258 259 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 260 return; 261 262 skb = skb_copy(skb, GFP_ATOMIC); 263 if (!skb) 264 return; 265 266 skb_queue_tail(&sdata->skb_queue, skb); 267 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 268 } 269 270 /* 271 * ieee80211_add_rx_radiotap_header - add radiotap header 272 * 273 * add a radiotap header containing all the fields which the hardware provided. 274 */ 275 static void 276 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 277 struct sk_buff *skb, 278 struct ieee80211_rate *rate, 279 int rtap_len, bool has_fcs) 280 { 281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 282 struct ieee80211_radiotap_header *rthdr; 283 unsigned char *pos; 284 __le32 *it_present; 285 u32 it_present_val; 286 u16 rx_flags = 0; 287 u16 channel_flags = 0; 288 int mpdulen, chain; 289 unsigned long chains = status->chains; 290 struct ieee80211_vendor_radiotap rtap = {}; 291 struct ieee80211_radiotap_he he = {}; 292 struct ieee80211_radiotap_he_mu he_mu = {}; 293 struct ieee80211_radiotap_lsig lsig = {}; 294 295 if (status->flag & RX_FLAG_RADIOTAP_HE) { 296 he = *(struct ieee80211_radiotap_he *)skb->data; 297 skb_pull(skb, sizeof(he)); 298 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 299 } 300 301 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 302 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 303 skb_pull(skb, sizeof(he_mu)); 304 } 305 306 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 307 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 308 skb_pull(skb, sizeof(lsig)); 309 } 310 311 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 312 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 313 /* rtap.len and rtap.pad are undone immediately */ 314 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 315 } 316 317 mpdulen = skb->len; 318 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 319 mpdulen += FCS_LEN; 320 321 rthdr = skb_push(skb, rtap_len); 322 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 323 it_present = &rthdr->it_present; 324 325 /* radiotap header, set always present flags */ 326 rthdr->it_len = cpu_to_le16(rtap_len); 327 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 328 BIT(IEEE80211_RADIOTAP_CHANNEL) | 329 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 330 331 if (!status->chains) 332 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 333 334 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 335 it_present_val |= 336 BIT(IEEE80211_RADIOTAP_EXT) | 337 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 338 put_unaligned_le32(it_present_val, it_present); 339 it_present++; 340 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 341 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 342 } 343 344 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 345 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 346 BIT(IEEE80211_RADIOTAP_EXT); 347 put_unaligned_le32(it_present_val, it_present); 348 it_present++; 349 it_present_val = rtap.present; 350 } 351 352 put_unaligned_le32(it_present_val, it_present); 353 354 pos = (void *)(it_present + 1); 355 356 /* the order of the following fields is important */ 357 358 /* IEEE80211_RADIOTAP_TSFT */ 359 if (ieee80211_have_rx_timestamp(status)) { 360 /* padding */ 361 while ((pos - (u8 *)rthdr) & 7) 362 *pos++ = 0; 363 put_unaligned_le64( 364 ieee80211_calculate_rx_timestamp(local, status, 365 mpdulen, 0), 366 pos); 367 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 368 pos += 8; 369 } 370 371 /* IEEE80211_RADIOTAP_FLAGS */ 372 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 373 *pos |= IEEE80211_RADIOTAP_F_FCS; 374 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 375 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 376 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 377 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 378 pos++; 379 380 /* IEEE80211_RADIOTAP_RATE */ 381 if (!rate || status->encoding != RX_ENC_LEGACY) { 382 /* 383 * Without rate information don't add it. If we have, 384 * MCS information is a separate field in radiotap, 385 * added below. The byte here is needed as padding 386 * for the channel though, so initialise it to 0. 387 */ 388 *pos = 0; 389 } else { 390 int shift = 0; 391 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 392 if (status->bw == RATE_INFO_BW_10) 393 shift = 1; 394 else if (status->bw == RATE_INFO_BW_5) 395 shift = 2; 396 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 397 } 398 pos++; 399 400 /* IEEE80211_RADIOTAP_CHANNEL */ 401 /* TODO: frequency offset in KHz */ 402 put_unaligned_le16(status->freq, pos); 403 pos += 2; 404 if (status->bw == RATE_INFO_BW_10) 405 channel_flags |= IEEE80211_CHAN_HALF; 406 else if (status->bw == RATE_INFO_BW_5) 407 channel_flags |= IEEE80211_CHAN_QUARTER; 408 409 if (status->band == NL80211_BAND_5GHZ || 410 status->band == NL80211_BAND_6GHZ) 411 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 412 else if (status->encoding != RX_ENC_LEGACY) 413 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 414 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 415 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 416 else if (rate) 417 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 418 else 419 channel_flags |= IEEE80211_CHAN_2GHZ; 420 put_unaligned_le16(channel_flags, pos); 421 pos += 2; 422 423 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 424 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 425 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 426 *pos = status->signal; 427 rthdr->it_present |= 428 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 429 pos++; 430 } 431 432 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 433 434 if (!status->chains) { 435 /* IEEE80211_RADIOTAP_ANTENNA */ 436 *pos = status->antenna; 437 pos++; 438 } 439 440 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 441 442 /* IEEE80211_RADIOTAP_RX_FLAGS */ 443 /* ensure 2 byte alignment for the 2 byte field as required */ 444 if ((pos - (u8 *)rthdr) & 1) 445 *pos++ = 0; 446 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 447 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 448 put_unaligned_le16(rx_flags, pos); 449 pos += 2; 450 451 if (status->encoding == RX_ENC_HT) { 452 unsigned int stbc; 453 454 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 455 *pos++ = local->hw.radiotap_mcs_details; 456 *pos = 0; 457 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 458 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 459 if (status->bw == RATE_INFO_BW_40) 460 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 461 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 462 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 463 if (status->enc_flags & RX_ENC_FLAG_LDPC) 464 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 465 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 466 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 467 pos++; 468 *pos++ = status->rate_idx; 469 } 470 471 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 472 u16 flags = 0; 473 474 /* ensure 4 byte alignment */ 475 while ((pos - (u8 *)rthdr) & 3) 476 pos++; 477 rthdr->it_present |= 478 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 479 put_unaligned_le32(status->ampdu_reference, pos); 480 pos += 4; 481 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 482 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 483 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 484 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 485 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 486 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 487 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 488 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 489 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 490 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 491 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 492 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 493 put_unaligned_le16(flags, pos); 494 pos += 2; 495 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 496 *pos++ = status->ampdu_delimiter_crc; 497 else 498 *pos++ = 0; 499 *pos++ = 0; 500 } 501 502 if (status->encoding == RX_ENC_VHT) { 503 u16 known = local->hw.radiotap_vht_details; 504 505 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 506 put_unaligned_le16(known, pos); 507 pos += 2; 508 /* flags */ 509 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 510 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 511 /* in VHT, STBC is binary */ 512 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 513 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 514 if (status->enc_flags & RX_ENC_FLAG_BF) 515 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 516 pos++; 517 /* bandwidth */ 518 switch (status->bw) { 519 case RATE_INFO_BW_80: 520 *pos++ = 4; 521 break; 522 case RATE_INFO_BW_160: 523 *pos++ = 11; 524 break; 525 case RATE_INFO_BW_40: 526 *pos++ = 1; 527 break; 528 default: 529 *pos++ = 0; 530 } 531 /* MCS/NSS */ 532 *pos = (status->rate_idx << 4) | status->nss; 533 pos += 4; 534 /* coding field */ 535 if (status->enc_flags & RX_ENC_FLAG_LDPC) 536 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 537 pos++; 538 /* group ID */ 539 pos++; 540 /* partial_aid */ 541 pos += 2; 542 } 543 544 if (local->hw.radiotap_timestamp.units_pos >= 0) { 545 u16 accuracy = 0; 546 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 547 548 rthdr->it_present |= 549 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 550 551 /* ensure 8 byte alignment */ 552 while ((pos - (u8 *)rthdr) & 7) 553 pos++; 554 555 put_unaligned_le64(status->device_timestamp, pos); 556 pos += sizeof(u64); 557 558 if (local->hw.radiotap_timestamp.accuracy >= 0) { 559 accuracy = local->hw.radiotap_timestamp.accuracy; 560 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 561 } 562 put_unaligned_le16(accuracy, pos); 563 pos += sizeof(u16); 564 565 *pos++ = local->hw.radiotap_timestamp.units_pos; 566 *pos++ = flags; 567 } 568 569 if (status->encoding == RX_ENC_HE && 570 status->flag & RX_FLAG_RADIOTAP_HE) { 571 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 572 573 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 574 he.data6 |= HE_PREP(DATA6_NSTS, 575 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 576 status->enc_flags)); 577 he.data3 |= HE_PREP(DATA3_STBC, 1); 578 } else { 579 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 580 } 581 582 #define CHECK_GI(s) \ 583 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 584 (int)NL80211_RATE_INFO_HE_GI_##s) 585 586 CHECK_GI(0_8); 587 CHECK_GI(1_6); 588 CHECK_GI(3_2); 589 590 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 591 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 592 he.data3 |= HE_PREP(DATA3_CODING, 593 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 594 595 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 596 597 switch (status->bw) { 598 case RATE_INFO_BW_20: 599 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 600 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 601 break; 602 case RATE_INFO_BW_40: 603 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 604 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 605 break; 606 case RATE_INFO_BW_80: 607 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 608 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 609 break; 610 case RATE_INFO_BW_160: 611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 613 break; 614 case RATE_INFO_BW_HE_RU: 615 #define CHECK_RU_ALLOC(s) \ 616 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 617 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 618 619 CHECK_RU_ALLOC(26); 620 CHECK_RU_ALLOC(52); 621 CHECK_RU_ALLOC(106); 622 CHECK_RU_ALLOC(242); 623 CHECK_RU_ALLOC(484); 624 CHECK_RU_ALLOC(996); 625 CHECK_RU_ALLOC(2x996); 626 627 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 628 status->he_ru + 4); 629 break; 630 default: 631 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 632 } 633 634 /* ensure 2 byte alignment */ 635 while ((pos - (u8 *)rthdr) & 1) 636 pos++; 637 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 638 memcpy(pos, &he, sizeof(he)); 639 pos += sizeof(he); 640 } 641 642 if (status->encoding == RX_ENC_HE && 643 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 644 /* ensure 2 byte alignment */ 645 while ((pos - (u8 *)rthdr) & 1) 646 pos++; 647 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 648 memcpy(pos, &he_mu, sizeof(he_mu)); 649 pos += sizeof(he_mu); 650 } 651 652 if (status->flag & RX_FLAG_NO_PSDU) { 653 rthdr->it_present |= 654 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 655 *pos++ = status->zero_length_psdu_type; 656 } 657 658 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 659 /* ensure 2 byte alignment */ 660 while ((pos - (u8 *)rthdr) & 1) 661 pos++; 662 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 663 memcpy(pos, &lsig, sizeof(lsig)); 664 pos += sizeof(lsig); 665 } 666 667 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 668 *pos++ = status->chain_signal[chain]; 669 *pos++ = chain; 670 } 671 672 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 673 /* ensure 2 byte alignment for the vendor field as required */ 674 if ((pos - (u8 *)rthdr) & 1) 675 *pos++ = 0; 676 *pos++ = rtap.oui[0]; 677 *pos++ = rtap.oui[1]; 678 *pos++ = rtap.oui[2]; 679 *pos++ = rtap.subns; 680 put_unaligned_le16(rtap.len, pos); 681 pos += 2; 682 /* align the actual payload as requested */ 683 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 684 *pos++ = 0; 685 /* data (and possible padding) already follows */ 686 } 687 } 688 689 static struct sk_buff * 690 ieee80211_make_monitor_skb(struct ieee80211_local *local, 691 struct sk_buff **origskb, 692 struct ieee80211_rate *rate, 693 int rtap_space, bool use_origskb) 694 { 695 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 696 int rt_hdrlen, needed_headroom; 697 struct sk_buff *skb; 698 699 /* room for the radiotap header based on driver features */ 700 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 701 needed_headroom = rt_hdrlen - rtap_space; 702 703 if (use_origskb) { 704 /* only need to expand headroom if necessary */ 705 skb = *origskb; 706 *origskb = NULL; 707 708 /* 709 * This shouldn't trigger often because most devices have an 710 * RX header they pull before we get here, and that should 711 * be big enough for our radiotap information. We should 712 * probably export the length to drivers so that we can have 713 * them allocate enough headroom to start with. 714 */ 715 if (skb_headroom(skb) < needed_headroom && 716 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 717 dev_kfree_skb(skb); 718 return NULL; 719 } 720 } else { 721 /* 722 * Need to make a copy and possibly remove radiotap header 723 * and FCS from the original. 724 */ 725 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 726 727 if (!skb) 728 return NULL; 729 } 730 731 /* prepend radiotap information */ 732 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 733 734 skb_reset_mac_header(skb); 735 skb->ip_summed = CHECKSUM_UNNECESSARY; 736 skb->pkt_type = PACKET_OTHERHOST; 737 skb->protocol = htons(ETH_P_802_2); 738 739 return skb; 740 } 741 742 /* 743 * This function copies a received frame to all monitor interfaces and 744 * returns a cleaned-up SKB that no longer includes the FCS nor the 745 * radiotap header the driver might have added. 746 */ 747 static struct sk_buff * 748 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 749 struct ieee80211_rate *rate) 750 { 751 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 752 struct ieee80211_sub_if_data *sdata; 753 struct sk_buff *monskb = NULL; 754 int present_fcs_len = 0; 755 unsigned int rtap_space = 0; 756 struct ieee80211_sub_if_data *monitor_sdata = 757 rcu_dereference(local->monitor_sdata); 758 bool only_monitor = false; 759 unsigned int min_head_len; 760 761 if (status->flag & RX_FLAG_RADIOTAP_HE) 762 rtap_space += sizeof(struct ieee80211_radiotap_he); 763 764 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 765 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 766 767 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 768 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 769 770 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 771 struct ieee80211_vendor_radiotap *rtap = 772 (void *)(origskb->data + rtap_space); 773 774 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 775 } 776 777 min_head_len = rtap_space; 778 779 /* 780 * First, we may need to make a copy of the skb because 781 * (1) we need to modify it for radiotap (if not present), and 782 * (2) the other RX handlers will modify the skb we got. 783 * 784 * We don't need to, of course, if we aren't going to return 785 * the SKB because it has a bad FCS/PLCP checksum. 786 */ 787 788 if (!(status->flag & RX_FLAG_NO_PSDU)) { 789 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 790 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 791 /* driver bug */ 792 WARN_ON(1); 793 dev_kfree_skb(origskb); 794 return NULL; 795 } 796 present_fcs_len = FCS_LEN; 797 } 798 799 /* also consider the hdr->frame_control */ 800 min_head_len += 2; 801 } 802 803 /* ensure that the expected data elements are in skb head */ 804 if (!pskb_may_pull(origskb, min_head_len)) { 805 dev_kfree_skb(origskb); 806 return NULL; 807 } 808 809 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 810 811 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 812 if (only_monitor) { 813 dev_kfree_skb(origskb); 814 return NULL; 815 } 816 817 return ieee80211_clean_skb(origskb, present_fcs_len, 818 rtap_space); 819 } 820 821 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 822 823 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 824 bool last_monitor = list_is_last(&sdata->u.mntr.list, 825 &local->mon_list); 826 827 if (!monskb) 828 monskb = ieee80211_make_monitor_skb(local, &origskb, 829 rate, rtap_space, 830 only_monitor && 831 last_monitor); 832 833 if (monskb) { 834 struct sk_buff *skb; 835 836 if (last_monitor) { 837 skb = monskb; 838 monskb = NULL; 839 } else { 840 skb = skb_clone(monskb, GFP_ATOMIC); 841 } 842 843 if (skb) { 844 skb->dev = sdata->dev; 845 ieee80211_rx_stats(skb->dev, skb->len); 846 netif_receive_skb(skb); 847 } 848 } 849 850 if (last_monitor) 851 break; 852 } 853 854 /* this happens if last_monitor was erroneously false */ 855 dev_kfree_skb(monskb); 856 857 /* ditto */ 858 if (!origskb) 859 return NULL; 860 861 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 862 } 863 864 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 865 { 866 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 867 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 868 int tid, seqno_idx, security_idx; 869 870 /* does the frame have a qos control field? */ 871 if (ieee80211_is_data_qos(hdr->frame_control)) { 872 u8 *qc = ieee80211_get_qos_ctl(hdr); 873 /* frame has qos control */ 874 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 875 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 876 status->rx_flags |= IEEE80211_RX_AMSDU; 877 878 seqno_idx = tid; 879 security_idx = tid; 880 } else { 881 /* 882 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 883 * 884 * Sequence numbers for management frames, QoS data 885 * frames with a broadcast/multicast address in the 886 * Address 1 field, and all non-QoS data frames sent 887 * by QoS STAs are assigned using an additional single 888 * modulo-4096 counter, [...] 889 * 890 * We also use that counter for non-QoS STAs. 891 */ 892 seqno_idx = IEEE80211_NUM_TIDS; 893 security_idx = 0; 894 if (ieee80211_is_mgmt(hdr->frame_control)) 895 security_idx = IEEE80211_NUM_TIDS; 896 tid = 0; 897 } 898 899 rx->seqno_idx = seqno_idx; 900 rx->security_idx = security_idx; 901 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 902 * For now, set skb->priority to 0 for other cases. */ 903 rx->skb->priority = (tid > 7) ? 0 : tid; 904 } 905 906 /** 907 * DOC: Packet alignment 908 * 909 * Drivers always need to pass packets that are aligned to two-byte boundaries 910 * to the stack. 911 * 912 * Additionally, should, if possible, align the payload data in a way that 913 * guarantees that the contained IP header is aligned to a four-byte 914 * boundary. In the case of regular frames, this simply means aligning the 915 * payload to a four-byte boundary (because either the IP header is directly 916 * contained, or IV/RFC1042 headers that have a length divisible by four are 917 * in front of it). If the payload data is not properly aligned and the 918 * architecture doesn't support efficient unaligned operations, mac80211 919 * will align the data. 920 * 921 * With A-MSDU frames, however, the payload data address must yield two modulo 922 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 923 * push the IP header further back to a multiple of four again. Thankfully, the 924 * specs were sane enough this time around to require padding each A-MSDU 925 * subframe to a length that is a multiple of four. 926 * 927 * Padding like Atheros hardware adds which is between the 802.11 header and 928 * the payload is not supported, the driver is required to move the 802.11 929 * header to be directly in front of the payload in that case. 930 */ 931 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 932 { 933 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 934 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 935 #endif 936 } 937 938 939 /* rx handlers */ 940 941 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 942 { 943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 944 945 if (is_multicast_ether_addr(hdr->addr1)) 946 return 0; 947 948 return ieee80211_is_robust_mgmt_frame(skb); 949 } 950 951 952 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 953 { 954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 955 956 if (!is_multicast_ether_addr(hdr->addr1)) 957 return 0; 958 959 return ieee80211_is_robust_mgmt_frame(skb); 960 } 961 962 963 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 964 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 965 { 966 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 967 struct ieee80211_mmie *mmie; 968 struct ieee80211_mmie_16 *mmie16; 969 970 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 971 return -1; 972 973 if (!ieee80211_is_robust_mgmt_frame(skb) && 974 !ieee80211_is_beacon(hdr->frame_control)) 975 return -1; /* not a robust management frame */ 976 977 mmie = (struct ieee80211_mmie *) 978 (skb->data + skb->len - sizeof(*mmie)); 979 if (mmie->element_id == WLAN_EID_MMIE && 980 mmie->length == sizeof(*mmie) - 2) 981 return le16_to_cpu(mmie->key_id); 982 983 mmie16 = (struct ieee80211_mmie_16 *) 984 (skb->data + skb->len - sizeof(*mmie16)); 985 if (skb->len >= 24 + sizeof(*mmie16) && 986 mmie16->element_id == WLAN_EID_MMIE && 987 mmie16->length == sizeof(*mmie16) - 2) 988 return le16_to_cpu(mmie16->key_id); 989 990 return -1; 991 } 992 993 static int ieee80211_get_keyid(struct sk_buff *skb, 994 const struct ieee80211_cipher_scheme *cs) 995 { 996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 997 __le16 fc; 998 int hdrlen; 999 int minlen; 1000 u8 key_idx_off; 1001 u8 key_idx_shift; 1002 u8 keyid; 1003 1004 fc = hdr->frame_control; 1005 hdrlen = ieee80211_hdrlen(fc); 1006 1007 if (cs) { 1008 minlen = hdrlen + cs->hdr_len; 1009 key_idx_off = hdrlen + cs->key_idx_off; 1010 key_idx_shift = cs->key_idx_shift; 1011 } else { 1012 /* WEP, TKIP, CCMP and GCMP */ 1013 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1014 key_idx_off = hdrlen + 3; 1015 key_idx_shift = 6; 1016 } 1017 1018 if (unlikely(skb->len < minlen)) 1019 return -EINVAL; 1020 1021 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1022 1023 if (cs) 1024 keyid &= cs->key_idx_mask; 1025 keyid >>= key_idx_shift; 1026 1027 /* cs could use more than the usual two bits for the keyid */ 1028 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1029 return -EINVAL; 1030 1031 return keyid; 1032 } 1033 1034 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1035 { 1036 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1037 char *dev_addr = rx->sdata->vif.addr; 1038 1039 if (ieee80211_is_data(hdr->frame_control)) { 1040 if (is_multicast_ether_addr(hdr->addr1)) { 1041 if (ieee80211_has_tods(hdr->frame_control) || 1042 !ieee80211_has_fromds(hdr->frame_control)) 1043 return RX_DROP_MONITOR; 1044 if (ether_addr_equal(hdr->addr3, dev_addr)) 1045 return RX_DROP_MONITOR; 1046 } else { 1047 if (!ieee80211_has_a4(hdr->frame_control)) 1048 return RX_DROP_MONITOR; 1049 if (ether_addr_equal(hdr->addr4, dev_addr)) 1050 return RX_DROP_MONITOR; 1051 } 1052 } 1053 1054 /* If there is not an established peer link and this is not a peer link 1055 * establisment frame, beacon or probe, drop the frame. 1056 */ 1057 1058 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1059 struct ieee80211_mgmt *mgmt; 1060 1061 if (!ieee80211_is_mgmt(hdr->frame_control)) 1062 return RX_DROP_MONITOR; 1063 1064 if (ieee80211_is_action(hdr->frame_control)) { 1065 u8 category; 1066 1067 /* make sure category field is present */ 1068 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1069 return RX_DROP_MONITOR; 1070 1071 mgmt = (struct ieee80211_mgmt *)hdr; 1072 category = mgmt->u.action.category; 1073 if (category != WLAN_CATEGORY_MESH_ACTION && 1074 category != WLAN_CATEGORY_SELF_PROTECTED) 1075 return RX_DROP_MONITOR; 1076 return RX_CONTINUE; 1077 } 1078 1079 if (ieee80211_is_probe_req(hdr->frame_control) || 1080 ieee80211_is_probe_resp(hdr->frame_control) || 1081 ieee80211_is_beacon(hdr->frame_control) || 1082 ieee80211_is_auth(hdr->frame_control)) 1083 return RX_CONTINUE; 1084 1085 return RX_DROP_MONITOR; 1086 } 1087 1088 return RX_CONTINUE; 1089 } 1090 1091 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1092 int index) 1093 { 1094 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1095 struct sk_buff *tail = skb_peek_tail(frames); 1096 struct ieee80211_rx_status *status; 1097 1098 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1099 return true; 1100 1101 if (!tail) 1102 return false; 1103 1104 status = IEEE80211_SKB_RXCB(tail); 1105 if (status->flag & RX_FLAG_AMSDU_MORE) 1106 return false; 1107 1108 return true; 1109 } 1110 1111 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1112 struct tid_ampdu_rx *tid_agg_rx, 1113 int index, 1114 struct sk_buff_head *frames) 1115 { 1116 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1117 struct sk_buff *skb; 1118 struct ieee80211_rx_status *status; 1119 1120 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1121 1122 if (skb_queue_empty(skb_list)) 1123 goto no_frame; 1124 1125 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1126 __skb_queue_purge(skb_list); 1127 goto no_frame; 1128 } 1129 1130 /* release frames from the reorder ring buffer */ 1131 tid_agg_rx->stored_mpdu_num--; 1132 while ((skb = __skb_dequeue(skb_list))) { 1133 status = IEEE80211_SKB_RXCB(skb); 1134 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1135 __skb_queue_tail(frames, skb); 1136 } 1137 1138 no_frame: 1139 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1140 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1141 } 1142 1143 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1144 struct tid_ampdu_rx *tid_agg_rx, 1145 u16 head_seq_num, 1146 struct sk_buff_head *frames) 1147 { 1148 int index; 1149 1150 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1151 1152 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1153 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1154 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1155 frames); 1156 } 1157 } 1158 1159 /* 1160 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1161 * the skb was added to the buffer longer than this time ago, the earlier 1162 * frames that have not yet been received are assumed to be lost and the skb 1163 * can be released for processing. This may also release other skb's from the 1164 * reorder buffer if there are no additional gaps between the frames. 1165 * 1166 * Callers must hold tid_agg_rx->reorder_lock. 1167 */ 1168 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1169 1170 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1171 struct tid_ampdu_rx *tid_agg_rx, 1172 struct sk_buff_head *frames) 1173 { 1174 int index, i, j; 1175 1176 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1177 1178 /* release the buffer until next missing frame */ 1179 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1180 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1181 tid_agg_rx->stored_mpdu_num) { 1182 /* 1183 * No buffers ready to be released, but check whether any 1184 * frames in the reorder buffer have timed out. 1185 */ 1186 int skipped = 1; 1187 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1188 j = (j + 1) % tid_agg_rx->buf_size) { 1189 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1190 skipped++; 1191 continue; 1192 } 1193 if (skipped && 1194 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1195 HT_RX_REORDER_BUF_TIMEOUT)) 1196 goto set_release_timer; 1197 1198 /* don't leave incomplete A-MSDUs around */ 1199 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1200 i = (i + 1) % tid_agg_rx->buf_size) 1201 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1202 1203 ht_dbg_ratelimited(sdata, 1204 "release an RX reorder frame due to timeout on earlier frames\n"); 1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1206 frames); 1207 1208 /* 1209 * Increment the head seq# also for the skipped slots. 1210 */ 1211 tid_agg_rx->head_seq_num = 1212 (tid_agg_rx->head_seq_num + 1213 skipped) & IEEE80211_SN_MASK; 1214 skipped = 0; 1215 } 1216 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1218 frames); 1219 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1220 } 1221 1222 if (tid_agg_rx->stored_mpdu_num) { 1223 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1224 1225 for (; j != (index - 1) % tid_agg_rx->buf_size; 1226 j = (j + 1) % tid_agg_rx->buf_size) { 1227 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1228 break; 1229 } 1230 1231 set_release_timer: 1232 1233 if (!tid_agg_rx->removed) 1234 mod_timer(&tid_agg_rx->reorder_timer, 1235 tid_agg_rx->reorder_time[j] + 1 + 1236 HT_RX_REORDER_BUF_TIMEOUT); 1237 } else { 1238 del_timer(&tid_agg_rx->reorder_timer); 1239 } 1240 } 1241 1242 /* 1243 * As this function belongs to the RX path it must be under 1244 * rcu_read_lock protection. It returns false if the frame 1245 * can be processed immediately, true if it was consumed. 1246 */ 1247 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1248 struct tid_ampdu_rx *tid_agg_rx, 1249 struct sk_buff *skb, 1250 struct sk_buff_head *frames) 1251 { 1252 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1254 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1255 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1256 u16 head_seq_num, buf_size; 1257 int index; 1258 bool ret = true; 1259 1260 spin_lock(&tid_agg_rx->reorder_lock); 1261 1262 /* 1263 * Offloaded BA sessions have no known starting sequence number so pick 1264 * one from first Rxed frame for this tid after BA was started. 1265 */ 1266 if (unlikely(tid_agg_rx->auto_seq)) { 1267 tid_agg_rx->auto_seq = false; 1268 tid_agg_rx->ssn = mpdu_seq_num; 1269 tid_agg_rx->head_seq_num = mpdu_seq_num; 1270 } 1271 1272 buf_size = tid_agg_rx->buf_size; 1273 head_seq_num = tid_agg_rx->head_seq_num; 1274 1275 /* 1276 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1277 * be reordered. 1278 */ 1279 if (unlikely(!tid_agg_rx->started)) { 1280 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1281 ret = false; 1282 goto out; 1283 } 1284 tid_agg_rx->started = true; 1285 } 1286 1287 /* frame with out of date sequence number */ 1288 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1289 dev_kfree_skb(skb); 1290 goto out; 1291 } 1292 1293 /* 1294 * If frame the sequence number exceeds our buffering window 1295 * size release some previous frames to make room for this one. 1296 */ 1297 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1298 head_seq_num = ieee80211_sn_inc( 1299 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1300 /* release stored frames up to new head to stack */ 1301 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1302 head_seq_num, frames); 1303 } 1304 1305 /* Now the new frame is always in the range of the reordering buffer */ 1306 1307 index = mpdu_seq_num % tid_agg_rx->buf_size; 1308 1309 /* check if we already stored this frame */ 1310 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1311 dev_kfree_skb(skb); 1312 goto out; 1313 } 1314 1315 /* 1316 * If the current MPDU is in the right order and nothing else 1317 * is stored we can process it directly, no need to buffer it. 1318 * If it is first but there's something stored, we may be able 1319 * to release frames after this one. 1320 */ 1321 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1322 tid_agg_rx->stored_mpdu_num == 0) { 1323 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1324 tid_agg_rx->head_seq_num = 1325 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1326 ret = false; 1327 goto out; 1328 } 1329 1330 /* put the frame in the reordering buffer */ 1331 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1332 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1333 tid_agg_rx->reorder_time[index] = jiffies; 1334 tid_agg_rx->stored_mpdu_num++; 1335 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1336 } 1337 1338 out: 1339 spin_unlock(&tid_agg_rx->reorder_lock); 1340 return ret; 1341 } 1342 1343 /* 1344 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1345 * true if the MPDU was buffered, false if it should be processed. 1346 */ 1347 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1348 struct sk_buff_head *frames) 1349 { 1350 struct sk_buff *skb = rx->skb; 1351 struct ieee80211_local *local = rx->local; 1352 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1353 struct sta_info *sta = rx->sta; 1354 struct tid_ampdu_rx *tid_agg_rx; 1355 u16 sc; 1356 u8 tid, ack_policy; 1357 1358 if (!ieee80211_is_data_qos(hdr->frame_control) || 1359 is_multicast_ether_addr(hdr->addr1)) 1360 goto dont_reorder; 1361 1362 /* 1363 * filter the QoS data rx stream according to 1364 * STA/TID and check if this STA/TID is on aggregation 1365 */ 1366 1367 if (!sta) 1368 goto dont_reorder; 1369 1370 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1371 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1372 tid = ieee80211_get_tid(hdr); 1373 1374 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1375 if (!tid_agg_rx) { 1376 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1377 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1378 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1379 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1380 WLAN_BACK_RECIPIENT, 1381 WLAN_REASON_QSTA_REQUIRE_SETUP); 1382 goto dont_reorder; 1383 } 1384 1385 /* qos null data frames are excluded */ 1386 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1387 goto dont_reorder; 1388 1389 /* not part of a BA session */ 1390 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1391 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1392 goto dont_reorder; 1393 1394 /* new, potentially un-ordered, ampdu frame - process it */ 1395 1396 /* reset session timer */ 1397 if (tid_agg_rx->timeout) 1398 tid_agg_rx->last_rx = jiffies; 1399 1400 /* if this mpdu is fragmented - terminate rx aggregation session */ 1401 sc = le16_to_cpu(hdr->seq_ctrl); 1402 if (sc & IEEE80211_SCTL_FRAG) { 1403 skb_queue_tail(&rx->sdata->skb_queue, skb); 1404 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1405 return; 1406 } 1407 1408 /* 1409 * No locking needed -- we will only ever process one 1410 * RX packet at a time, and thus own tid_agg_rx. All 1411 * other code manipulating it needs to (and does) make 1412 * sure that we cannot get to it any more before doing 1413 * anything with it. 1414 */ 1415 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1416 frames)) 1417 return; 1418 1419 dont_reorder: 1420 __skb_queue_tail(frames, skb); 1421 } 1422 1423 static ieee80211_rx_result debug_noinline 1424 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1425 { 1426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1427 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1428 1429 if (status->flag & RX_FLAG_DUP_VALIDATED) 1430 return RX_CONTINUE; 1431 1432 /* 1433 * Drop duplicate 802.11 retransmissions 1434 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1435 */ 1436 1437 if (rx->skb->len < 24) 1438 return RX_CONTINUE; 1439 1440 if (ieee80211_is_ctl(hdr->frame_control) || 1441 ieee80211_is_any_nullfunc(hdr->frame_control) || 1442 is_multicast_ether_addr(hdr->addr1)) 1443 return RX_CONTINUE; 1444 1445 if (!rx->sta) 1446 return RX_CONTINUE; 1447 1448 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1449 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1450 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1451 rx->sta->rx_stats.num_duplicates++; 1452 return RX_DROP_UNUSABLE; 1453 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1454 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1455 } 1456 1457 return RX_CONTINUE; 1458 } 1459 1460 static ieee80211_rx_result debug_noinline 1461 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1462 { 1463 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1464 1465 /* Drop disallowed frame classes based on STA auth/assoc state; 1466 * IEEE 802.11, Chap 5.5. 1467 * 1468 * mac80211 filters only based on association state, i.e. it drops 1469 * Class 3 frames from not associated stations. hostapd sends 1470 * deauth/disassoc frames when needed. In addition, hostapd is 1471 * responsible for filtering on both auth and assoc states. 1472 */ 1473 1474 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1475 return ieee80211_rx_mesh_check(rx); 1476 1477 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1478 ieee80211_is_pspoll(hdr->frame_control)) && 1479 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1480 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1481 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1482 /* 1483 * accept port control frames from the AP even when it's not 1484 * yet marked ASSOC to prevent a race where we don't set the 1485 * assoc bit quickly enough before it sends the first frame 1486 */ 1487 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1488 ieee80211_is_data_present(hdr->frame_control)) { 1489 unsigned int hdrlen; 1490 __be16 ethertype; 1491 1492 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1493 1494 if (rx->skb->len < hdrlen + 8) 1495 return RX_DROP_MONITOR; 1496 1497 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1498 if (ethertype == rx->sdata->control_port_protocol) 1499 return RX_CONTINUE; 1500 } 1501 1502 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1503 cfg80211_rx_spurious_frame(rx->sdata->dev, 1504 hdr->addr2, 1505 GFP_ATOMIC)) 1506 return RX_DROP_UNUSABLE; 1507 1508 return RX_DROP_MONITOR; 1509 } 1510 1511 return RX_CONTINUE; 1512 } 1513 1514 1515 static ieee80211_rx_result debug_noinline 1516 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1517 { 1518 struct ieee80211_local *local; 1519 struct ieee80211_hdr *hdr; 1520 struct sk_buff *skb; 1521 1522 local = rx->local; 1523 skb = rx->skb; 1524 hdr = (struct ieee80211_hdr *) skb->data; 1525 1526 if (!local->pspolling) 1527 return RX_CONTINUE; 1528 1529 if (!ieee80211_has_fromds(hdr->frame_control)) 1530 /* this is not from AP */ 1531 return RX_CONTINUE; 1532 1533 if (!ieee80211_is_data(hdr->frame_control)) 1534 return RX_CONTINUE; 1535 1536 if (!ieee80211_has_moredata(hdr->frame_control)) { 1537 /* AP has no more frames buffered for us */ 1538 local->pspolling = false; 1539 return RX_CONTINUE; 1540 } 1541 1542 /* more data bit is set, let's request a new frame from the AP */ 1543 ieee80211_send_pspoll(local, rx->sdata); 1544 1545 return RX_CONTINUE; 1546 } 1547 1548 static void sta_ps_start(struct sta_info *sta) 1549 { 1550 struct ieee80211_sub_if_data *sdata = sta->sdata; 1551 struct ieee80211_local *local = sdata->local; 1552 struct ps_data *ps; 1553 int tid; 1554 1555 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1556 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1557 ps = &sdata->bss->ps; 1558 else 1559 return; 1560 1561 atomic_inc(&ps->num_sta_ps); 1562 set_sta_flag(sta, WLAN_STA_PS_STA); 1563 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1564 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1565 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1566 sta->sta.addr, sta->sta.aid); 1567 1568 ieee80211_clear_fast_xmit(sta); 1569 1570 if (!sta->sta.txq[0]) 1571 return; 1572 1573 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1574 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1575 struct txq_info *txqi = to_txq_info(txq); 1576 1577 spin_lock(&local->active_txq_lock[txq->ac]); 1578 if (!list_empty(&txqi->schedule_order)) 1579 list_del_init(&txqi->schedule_order); 1580 spin_unlock(&local->active_txq_lock[txq->ac]); 1581 1582 if (txq_has_queue(txq)) 1583 set_bit(tid, &sta->txq_buffered_tids); 1584 else 1585 clear_bit(tid, &sta->txq_buffered_tids); 1586 } 1587 } 1588 1589 static void sta_ps_end(struct sta_info *sta) 1590 { 1591 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1592 sta->sta.addr, sta->sta.aid); 1593 1594 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1595 /* 1596 * Clear the flag only if the other one is still set 1597 * so that the TX path won't start TX'ing new frames 1598 * directly ... In the case that the driver flag isn't 1599 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1600 */ 1601 clear_sta_flag(sta, WLAN_STA_PS_STA); 1602 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1603 sta->sta.addr, sta->sta.aid); 1604 return; 1605 } 1606 1607 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1608 clear_sta_flag(sta, WLAN_STA_PS_STA); 1609 ieee80211_sta_ps_deliver_wakeup(sta); 1610 } 1611 1612 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1613 { 1614 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1615 bool in_ps; 1616 1617 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1618 1619 /* Don't let the same PS state be set twice */ 1620 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1621 if ((start && in_ps) || (!start && !in_ps)) 1622 return -EINVAL; 1623 1624 if (start) 1625 sta_ps_start(sta); 1626 else 1627 sta_ps_end(sta); 1628 1629 return 0; 1630 } 1631 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1632 1633 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1634 { 1635 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1636 1637 if (test_sta_flag(sta, WLAN_STA_SP)) 1638 return; 1639 1640 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1641 ieee80211_sta_ps_deliver_poll_response(sta); 1642 else 1643 set_sta_flag(sta, WLAN_STA_PSPOLL); 1644 } 1645 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1646 1647 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1648 { 1649 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1650 int ac = ieee80211_ac_from_tid(tid); 1651 1652 /* 1653 * If this AC is not trigger-enabled do nothing unless the 1654 * driver is calling us after it already checked. 1655 * 1656 * NB: This could/should check a separate bitmap of trigger- 1657 * enabled queues, but for now we only implement uAPSD w/o 1658 * TSPEC changes to the ACs, so they're always the same. 1659 */ 1660 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1661 tid != IEEE80211_NUM_TIDS) 1662 return; 1663 1664 /* if we are in a service period, do nothing */ 1665 if (test_sta_flag(sta, WLAN_STA_SP)) 1666 return; 1667 1668 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1669 ieee80211_sta_ps_deliver_uapsd(sta); 1670 else 1671 set_sta_flag(sta, WLAN_STA_UAPSD); 1672 } 1673 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1674 1675 static ieee80211_rx_result debug_noinline 1676 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1677 { 1678 struct ieee80211_sub_if_data *sdata = rx->sdata; 1679 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1680 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1681 1682 if (!rx->sta) 1683 return RX_CONTINUE; 1684 1685 if (sdata->vif.type != NL80211_IFTYPE_AP && 1686 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1687 return RX_CONTINUE; 1688 1689 /* 1690 * The device handles station powersave, so don't do anything about 1691 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1692 * it to mac80211 since they're handled.) 1693 */ 1694 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1695 return RX_CONTINUE; 1696 1697 /* 1698 * Don't do anything if the station isn't already asleep. In 1699 * the uAPSD case, the station will probably be marked asleep, 1700 * in the PS-Poll case the station must be confused ... 1701 */ 1702 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1703 return RX_CONTINUE; 1704 1705 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1706 ieee80211_sta_pspoll(&rx->sta->sta); 1707 1708 /* Free PS Poll skb here instead of returning RX_DROP that would 1709 * count as an dropped frame. */ 1710 dev_kfree_skb(rx->skb); 1711 1712 return RX_QUEUED; 1713 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1714 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1715 ieee80211_has_pm(hdr->frame_control) && 1716 (ieee80211_is_data_qos(hdr->frame_control) || 1717 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1718 u8 tid = ieee80211_get_tid(hdr); 1719 1720 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1721 } 1722 1723 return RX_CONTINUE; 1724 } 1725 1726 static ieee80211_rx_result debug_noinline 1727 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1728 { 1729 struct sta_info *sta = rx->sta; 1730 struct sk_buff *skb = rx->skb; 1731 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1732 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1733 int i; 1734 1735 if (!sta) 1736 return RX_CONTINUE; 1737 1738 /* 1739 * Update last_rx only for IBSS packets which are for the current 1740 * BSSID and for station already AUTHORIZED to avoid keeping the 1741 * current IBSS network alive in cases where other STAs start 1742 * using different BSSID. This will also give the station another 1743 * chance to restart the authentication/authorization in case 1744 * something went wrong the first time. 1745 */ 1746 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1747 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1748 NL80211_IFTYPE_ADHOC); 1749 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1750 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1751 sta->rx_stats.last_rx = jiffies; 1752 if (ieee80211_is_data(hdr->frame_control) && 1753 !is_multicast_ether_addr(hdr->addr1)) 1754 sta->rx_stats.last_rate = 1755 sta_stats_encode_rate(status); 1756 } 1757 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1758 sta->rx_stats.last_rx = jiffies; 1759 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1760 is_multicast_ether_addr(hdr->addr1)) { 1761 /* 1762 * Mesh beacons will update last_rx when if they are found to 1763 * match the current local configuration when processed. 1764 */ 1765 sta->rx_stats.last_rx = jiffies; 1766 if (ieee80211_is_data(hdr->frame_control)) 1767 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1768 } 1769 1770 sta->rx_stats.fragments++; 1771 1772 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1773 sta->rx_stats.bytes += rx->skb->len; 1774 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1775 1776 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1777 sta->rx_stats.last_signal = status->signal; 1778 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1779 } 1780 1781 if (status->chains) { 1782 sta->rx_stats.chains = status->chains; 1783 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1784 int signal = status->chain_signal[i]; 1785 1786 if (!(status->chains & BIT(i))) 1787 continue; 1788 1789 sta->rx_stats.chain_signal_last[i] = signal; 1790 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1791 -signal); 1792 } 1793 } 1794 1795 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1796 return RX_CONTINUE; 1797 1798 /* 1799 * Change STA power saving mode only at the end of a frame 1800 * exchange sequence, and only for a data or management 1801 * frame as specified in IEEE 802.11-2016 11.2.3.2 1802 */ 1803 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1804 !ieee80211_has_morefrags(hdr->frame_control) && 1805 !is_multicast_ether_addr(hdr->addr1) && 1806 (ieee80211_is_mgmt(hdr->frame_control) || 1807 ieee80211_is_data(hdr->frame_control)) && 1808 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1809 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1810 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1811 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1812 if (!ieee80211_has_pm(hdr->frame_control)) 1813 sta_ps_end(sta); 1814 } else { 1815 if (ieee80211_has_pm(hdr->frame_control)) 1816 sta_ps_start(sta); 1817 } 1818 } 1819 1820 /* mesh power save support */ 1821 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1822 ieee80211_mps_rx_h_sta_process(sta, hdr); 1823 1824 /* 1825 * Drop (qos-)data::nullfunc frames silently, since they 1826 * are used only to control station power saving mode. 1827 */ 1828 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1829 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1830 1831 /* 1832 * If we receive a 4-addr nullfunc frame from a STA 1833 * that was not moved to a 4-addr STA vlan yet send 1834 * the event to userspace and for older hostapd drop 1835 * the frame to the monitor interface. 1836 */ 1837 if (ieee80211_has_a4(hdr->frame_control) && 1838 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1839 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1840 !rx->sdata->u.vlan.sta))) { 1841 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1842 cfg80211_rx_unexpected_4addr_frame( 1843 rx->sdata->dev, sta->sta.addr, 1844 GFP_ATOMIC); 1845 return RX_DROP_MONITOR; 1846 } 1847 /* 1848 * Update counter and free packet here to avoid 1849 * counting this as a dropped packed. 1850 */ 1851 sta->rx_stats.packets++; 1852 dev_kfree_skb(rx->skb); 1853 return RX_QUEUED; 1854 } 1855 1856 return RX_CONTINUE; 1857 } /* ieee80211_rx_h_sta_process */ 1858 1859 static struct ieee80211_key * 1860 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1861 { 1862 struct ieee80211_key *key = NULL; 1863 struct ieee80211_sub_if_data *sdata = rx->sdata; 1864 int idx2; 1865 1866 /* Make sure key gets set if either BIGTK key index is set so that 1867 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1868 * Beacon frames and Beacon frames that claim to use another BIGTK key 1869 * index (i.e., a key that we do not have). 1870 */ 1871 1872 if (idx < 0) { 1873 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1874 idx2 = idx + 1; 1875 } else { 1876 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1877 idx2 = idx + 1; 1878 else 1879 idx2 = idx - 1; 1880 } 1881 1882 if (rx->sta) 1883 key = rcu_dereference(rx->sta->gtk[idx]); 1884 if (!key) 1885 key = rcu_dereference(sdata->keys[idx]); 1886 if (!key && rx->sta) 1887 key = rcu_dereference(rx->sta->gtk[idx2]); 1888 if (!key) 1889 key = rcu_dereference(sdata->keys[idx2]); 1890 1891 return key; 1892 } 1893 1894 static ieee80211_rx_result debug_noinline 1895 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1896 { 1897 struct sk_buff *skb = rx->skb; 1898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1899 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1900 int keyidx; 1901 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1902 struct ieee80211_key *sta_ptk = NULL; 1903 struct ieee80211_key *ptk_idx = NULL; 1904 int mmie_keyidx = -1; 1905 __le16 fc; 1906 const struct ieee80211_cipher_scheme *cs = NULL; 1907 1908 if (ieee80211_is_ext(hdr->frame_control)) 1909 return RX_CONTINUE; 1910 1911 /* 1912 * Key selection 101 1913 * 1914 * There are five types of keys: 1915 * - GTK (group keys) 1916 * - IGTK (group keys for management frames) 1917 * - BIGTK (group keys for Beacon frames) 1918 * - PTK (pairwise keys) 1919 * - STK (station-to-station pairwise keys) 1920 * 1921 * When selecting a key, we have to distinguish between multicast 1922 * (including broadcast) and unicast frames, the latter can only 1923 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1924 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1925 * then unicast frames can also use key indices like GTKs. Hence, if we 1926 * don't have a PTK/STK we check the key index for a WEP key. 1927 * 1928 * Note that in a regular BSS, multicast frames are sent by the 1929 * AP only, associated stations unicast the frame to the AP first 1930 * which then multicasts it on their behalf. 1931 * 1932 * There is also a slight problem in IBSS mode: GTKs are negotiated 1933 * with each station, that is something we don't currently handle. 1934 * The spec seems to expect that one negotiates the same key with 1935 * every station but there's no such requirement; VLANs could be 1936 * possible. 1937 */ 1938 1939 /* start without a key */ 1940 rx->key = NULL; 1941 fc = hdr->frame_control; 1942 1943 if (rx->sta) { 1944 int keyid = rx->sta->ptk_idx; 1945 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1946 1947 if (ieee80211_has_protected(fc)) { 1948 cs = rx->sta->cipher_scheme; 1949 keyid = ieee80211_get_keyid(rx->skb, cs); 1950 1951 if (unlikely(keyid < 0)) 1952 return RX_DROP_UNUSABLE; 1953 1954 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1955 } 1956 } 1957 1958 if (!ieee80211_has_protected(fc)) 1959 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1960 1961 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1962 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1963 if ((status->flag & RX_FLAG_DECRYPTED) && 1964 (status->flag & RX_FLAG_IV_STRIPPED)) 1965 return RX_CONTINUE; 1966 /* Skip decryption if the frame is not protected. */ 1967 if (!ieee80211_has_protected(fc)) 1968 return RX_CONTINUE; 1969 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1970 /* Broadcast/multicast robust management frame / BIP */ 1971 if ((status->flag & RX_FLAG_DECRYPTED) && 1972 (status->flag & RX_FLAG_IV_STRIPPED)) 1973 return RX_CONTINUE; 1974 1975 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1976 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1977 NUM_DEFAULT_BEACON_KEYS) { 1978 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1979 skb->data, 1980 skb->len); 1981 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1982 } 1983 1984 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1985 if (!rx->key) 1986 return RX_CONTINUE; /* Beacon protection not in use */ 1987 } else if (mmie_keyidx >= 0) { 1988 /* Broadcast/multicast robust management frame / BIP */ 1989 if ((status->flag & RX_FLAG_DECRYPTED) && 1990 (status->flag & RX_FLAG_IV_STRIPPED)) 1991 return RX_CONTINUE; 1992 1993 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1994 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1995 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1996 if (rx->sta) { 1997 if (ieee80211_is_group_privacy_action(skb) && 1998 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1999 return RX_DROP_MONITOR; 2000 2001 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2002 } 2003 if (!rx->key) 2004 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2005 } else if (!ieee80211_has_protected(fc)) { 2006 /* 2007 * The frame was not protected, so skip decryption. However, we 2008 * need to set rx->key if there is a key that could have been 2009 * used so that the frame may be dropped if encryption would 2010 * have been expected. 2011 */ 2012 struct ieee80211_key *key = NULL; 2013 struct ieee80211_sub_if_data *sdata = rx->sdata; 2014 int i; 2015 2016 if (ieee80211_is_beacon(fc)) { 2017 key = ieee80211_rx_get_bigtk(rx, -1); 2018 } else if (ieee80211_is_mgmt(fc) && 2019 is_multicast_ether_addr(hdr->addr1)) { 2020 key = rcu_dereference(rx->sdata->default_mgmt_key); 2021 } else { 2022 if (rx->sta) { 2023 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2024 key = rcu_dereference(rx->sta->gtk[i]); 2025 if (key) 2026 break; 2027 } 2028 } 2029 if (!key) { 2030 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2031 key = rcu_dereference(sdata->keys[i]); 2032 if (key) 2033 break; 2034 } 2035 } 2036 } 2037 if (key) 2038 rx->key = key; 2039 return RX_CONTINUE; 2040 } else { 2041 /* 2042 * The device doesn't give us the IV so we won't be 2043 * able to look up the key. That's ok though, we 2044 * don't need to decrypt the frame, we just won't 2045 * be able to keep statistics accurate. 2046 * Except for key threshold notifications, should 2047 * we somehow allow the driver to tell us which key 2048 * the hardware used if this flag is set? 2049 */ 2050 if ((status->flag & RX_FLAG_DECRYPTED) && 2051 (status->flag & RX_FLAG_IV_STRIPPED)) 2052 return RX_CONTINUE; 2053 2054 keyidx = ieee80211_get_keyid(rx->skb, cs); 2055 2056 if (unlikely(keyidx < 0)) 2057 return RX_DROP_UNUSABLE; 2058 2059 /* check per-station GTK first, if multicast packet */ 2060 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2061 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2062 2063 /* if not found, try default key */ 2064 if (!rx->key) { 2065 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2066 2067 /* 2068 * RSNA-protected unicast frames should always be 2069 * sent with pairwise or station-to-station keys, 2070 * but for WEP we allow using a key index as well. 2071 */ 2072 if (rx->key && 2073 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2074 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2075 !is_multicast_ether_addr(hdr->addr1)) 2076 rx->key = NULL; 2077 } 2078 } 2079 2080 if (rx->key) { 2081 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2082 return RX_DROP_MONITOR; 2083 2084 /* TODO: add threshold stuff again */ 2085 } else { 2086 return RX_DROP_MONITOR; 2087 } 2088 2089 switch (rx->key->conf.cipher) { 2090 case WLAN_CIPHER_SUITE_WEP40: 2091 case WLAN_CIPHER_SUITE_WEP104: 2092 result = ieee80211_crypto_wep_decrypt(rx); 2093 break; 2094 case WLAN_CIPHER_SUITE_TKIP: 2095 result = ieee80211_crypto_tkip_decrypt(rx); 2096 break; 2097 case WLAN_CIPHER_SUITE_CCMP: 2098 result = ieee80211_crypto_ccmp_decrypt( 2099 rx, IEEE80211_CCMP_MIC_LEN); 2100 break; 2101 case WLAN_CIPHER_SUITE_CCMP_256: 2102 result = ieee80211_crypto_ccmp_decrypt( 2103 rx, IEEE80211_CCMP_256_MIC_LEN); 2104 break; 2105 case WLAN_CIPHER_SUITE_AES_CMAC: 2106 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2107 break; 2108 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2109 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2110 break; 2111 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2112 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2113 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2114 break; 2115 case WLAN_CIPHER_SUITE_GCMP: 2116 case WLAN_CIPHER_SUITE_GCMP_256: 2117 result = ieee80211_crypto_gcmp_decrypt(rx); 2118 break; 2119 default: 2120 result = ieee80211_crypto_hw_decrypt(rx); 2121 } 2122 2123 /* the hdr variable is invalid after the decrypt handlers */ 2124 2125 /* either the frame has been decrypted or will be dropped */ 2126 status->flag |= RX_FLAG_DECRYPTED; 2127 2128 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE)) 2129 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2130 skb->data, skb->len); 2131 2132 return result; 2133 } 2134 2135 static inline struct ieee80211_fragment_entry * 2136 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2137 unsigned int frag, unsigned int seq, int rx_queue, 2138 struct sk_buff **skb) 2139 { 2140 struct ieee80211_fragment_entry *entry; 2141 2142 entry = &sdata->fragments[sdata->fragment_next++]; 2143 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2144 sdata->fragment_next = 0; 2145 2146 if (!skb_queue_empty(&entry->skb_list)) 2147 __skb_queue_purge(&entry->skb_list); 2148 2149 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2150 *skb = NULL; 2151 entry->first_frag_time = jiffies; 2152 entry->seq = seq; 2153 entry->rx_queue = rx_queue; 2154 entry->last_frag = frag; 2155 entry->check_sequential_pn = false; 2156 entry->extra_len = 0; 2157 2158 return entry; 2159 } 2160 2161 static inline struct ieee80211_fragment_entry * 2162 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2163 unsigned int frag, unsigned int seq, 2164 int rx_queue, struct ieee80211_hdr *hdr) 2165 { 2166 struct ieee80211_fragment_entry *entry; 2167 int i, idx; 2168 2169 idx = sdata->fragment_next; 2170 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2171 struct ieee80211_hdr *f_hdr; 2172 struct sk_buff *f_skb; 2173 2174 idx--; 2175 if (idx < 0) 2176 idx = IEEE80211_FRAGMENT_MAX - 1; 2177 2178 entry = &sdata->fragments[idx]; 2179 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2180 entry->rx_queue != rx_queue || 2181 entry->last_frag + 1 != frag) 2182 continue; 2183 2184 f_skb = __skb_peek(&entry->skb_list); 2185 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2186 2187 /* 2188 * Check ftype and addresses are equal, else check next fragment 2189 */ 2190 if (((hdr->frame_control ^ f_hdr->frame_control) & 2191 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2192 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2193 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2194 continue; 2195 2196 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2197 __skb_queue_purge(&entry->skb_list); 2198 continue; 2199 } 2200 return entry; 2201 } 2202 2203 return NULL; 2204 } 2205 2206 static ieee80211_rx_result debug_noinline 2207 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2208 { 2209 struct ieee80211_hdr *hdr; 2210 u16 sc; 2211 __le16 fc; 2212 unsigned int frag, seq; 2213 struct ieee80211_fragment_entry *entry; 2214 struct sk_buff *skb; 2215 2216 hdr = (struct ieee80211_hdr *)rx->skb->data; 2217 fc = hdr->frame_control; 2218 2219 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2220 return RX_CONTINUE; 2221 2222 sc = le16_to_cpu(hdr->seq_ctrl); 2223 frag = sc & IEEE80211_SCTL_FRAG; 2224 2225 if (is_multicast_ether_addr(hdr->addr1)) { 2226 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2227 goto out_no_led; 2228 } 2229 2230 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2231 goto out; 2232 2233 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2234 2235 if (skb_linearize(rx->skb)) 2236 return RX_DROP_UNUSABLE; 2237 2238 /* 2239 * skb_linearize() might change the skb->data and 2240 * previously cached variables (in this case, hdr) need to 2241 * be refreshed with the new data. 2242 */ 2243 hdr = (struct ieee80211_hdr *)rx->skb->data; 2244 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2245 2246 if (frag == 0) { 2247 /* This is the first fragment of a new frame. */ 2248 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2249 rx->seqno_idx, &(rx->skb)); 2250 if (rx->key && 2251 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2252 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2253 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2254 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2255 ieee80211_has_protected(fc)) { 2256 int queue = rx->security_idx; 2257 2258 /* Store CCMP/GCMP PN so that we can verify that the 2259 * next fragment has a sequential PN value. 2260 */ 2261 entry->check_sequential_pn = true; 2262 memcpy(entry->last_pn, 2263 rx->key->u.ccmp.rx_pn[queue], 2264 IEEE80211_CCMP_PN_LEN); 2265 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2266 u.ccmp.rx_pn) != 2267 offsetof(struct ieee80211_key, 2268 u.gcmp.rx_pn)); 2269 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2270 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2271 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2272 IEEE80211_GCMP_PN_LEN); 2273 } 2274 return RX_QUEUED; 2275 } 2276 2277 /* This is a fragment for a frame that should already be pending in 2278 * fragment cache. Add this fragment to the end of the pending entry. 2279 */ 2280 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2281 rx->seqno_idx, hdr); 2282 if (!entry) { 2283 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2284 return RX_DROP_MONITOR; 2285 } 2286 2287 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2288 * MPDU PN values are not incrementing in steps of 1." 2289 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2290 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2291 */ 2292 if (entry->check_sequential_pn) { 2293 int i; 2294 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2295 int queue; 2296 2297 if (!rx->key || 2298 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2299 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2300 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2301 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2302 return RX_DROP_UNUSABLE; 2303 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2304 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2305 pn[i]++; 2306 if (pn[i]) 2307 break; 2308 } 2309 queue = rx->security_idx; 2310 rpn = rx->key->u.ccmp.rx_pn[queue]; 2311 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2312 return RX_DROP_UNUSABLE; 2313 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2314 } 2315 2316 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2317 __skb_queue_tail(&entry->skb_list, rx->skb); 2318 entry->last_frag = frag; 2319 entry->extra_len += rx->skb->len; 2320 if (ieee80211_has_morefrags(fc)) { 2321 rx->skb = NULL; 2322 return RX_QUEUED; 2323 } 2324 2325 rx->skb = __skb_dequeue(&entry->skb_list); 2326 if (skb_tailroom(rx->skb) < entry->extra_len) { 2327 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2328 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2329 GFP_ATOMIC))) { 2330 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2331 __skb_queue_purge(&entry->skb_list); 2332 return RX_DROP_UNUSABLE; 2333 } 2334 } 2335 while ((skb = __skb_dequeue(&entry->skb_list))) { 2336 skb_put_data(rx->skb, skb->data, skb->len); 2337 dev_kfree_skb(skb); 2338 } 2339 2340 out: 2341 ieee80211_led_rx(rx->local); 2342 out_no_led: 2343 if (rx->sta) 2344 rx->sta->rx_stats.packets++; 2345 return RX_CONTINUE; 2346 } 2347 2348 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2349 { 2350 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2351 return -EACCES; 2352 2353 return 0; 2354 } 2355 2356 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2357 { 2358 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2359 struct sk_buff *skb = rx->skb; 2360 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2361 2362 /* 2363 * Pass through unencrypted frames if the hardware has 2364 * decrypted them already. 2365 */ 2366 if (status->flag & RX_FLAG_DECRYPTED) 2367 return 0; 2368 2369 /* check mesh EAPOL frames first */ 2370 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2371 ieee80211_is_data(fc))) { 2372 struct ieee80211s_hdr *mesh_hdr; 2373 u16 hdr_len = ieee80211_hdrlen(fc); 2374 u16 ethertype_offset; 2375 __be16 ethertype; 2376 2377 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2378 goto drop_check; 2379 2380 /* make sure fixed part of mesh header is there, also checks skb len */ 2381 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2382 goto drop_check; 2383 2384 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2385 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2386 sizeof(rfc1042_header); 2387 2388 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2389 ethertype == rx->sdata->control_port_protocol) 2390 return 0; 2391 } 2392 2393 drop_check: 2394 /* Drop unencrypted frames if key is set. */ 2395 if (unlikely(!ieee80211_has_protected(fc) && 2396 !ieee80211_is_any_nullfunc(fc) && 2397 ieee80211_is_data(fc) && rx->key)) 2398 return -EACCES; 2399 2400 return 0; 2401 } 2402 2403 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2404 { 2405 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2406 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2407 __le16 fc = hdr->frame_control; 2408 2409 /* 2410 * Pass through unencrypted frames if the hardware has 2411 * decrypted them already. 2412 */ 2413 if (status->flag & RX_FLAG_DECRYPTED) 2414 return 0; 2415 2416 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2417 if (unlikely(!ieee80211_has_protected(fc) && 2418 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2419 rx->key)) { 2420 if (ieee80211_is_deauth(fc) || 2421 ieee80211_is_disassoc(fc)) 2422 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2423 rx->skb->data, 2424 rx->skb->len); 2425 return -EACCES; 2426 } 2427 /* BIP does not use Protected field, so need to check MMIE */ 2428 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2429 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2430 if (ieee80211_is_deauth(fc) || 2431 ieee80211_is_disassoc(fc)) 2432 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2433 rx->skb->data, 2434 rx->skb->len); 2435 return -EACCES; 2436 } 2437 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2438 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2439 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2440 rx->skb->data, 2441 rx->skb->len); 2442 return -EACCES; 2443 } 2444 /* 2445 * When using MFP, Action frames are not allowed prior to 2446 * having configured keys. 2447 */ 2448 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2449 ieee80211_is_robust_mgmt_frame(rx->skb))) 2450 return -EACCES; 2451 } 2452 2453 return 0; 2454 } 2455 2456 static int 2457 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2458 { 2459 struct ieee80211_sub_if_data *sdata = rx->sdata; 2460 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2461 bool check_port_control = false; 2462 struct ethhdr *ehdr; 2463 int ret; 2464 2465 *port_control = false; 2466 if (ieee80211_has_a4(hdr->frame_control) && 2467 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2468 return -1; 2469 2470 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2471 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2472 2473 if (!sdata->u.mgd.use_4addr) 2474 return -1; 2475 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2476 check_port_control = true; 2477 } 2478 2479 if (is_multicast_ether_addr(hdr->addr1) && 2480 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2481 return -1; 2482 2483 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2484 if (ret < 0) 2485 return ret; 2486 2487 ehdr = (struct ethhdr *) rx->skb->data; 2488 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2489 *port_control = true; 2490 else if (check_port_control) 2491 return -1; 2492 2493 return 0; 2494 } 2495 2496 /* 2497 * requires that rx->skb is a frame with ethernet header 2498 */ 2499 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2500 { 2501 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2502 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2503 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2504 2505 /* 2506 * Allow EAPOL frames to us/the PAE group address regardless 2507 * of whether the frame was encrypted or not. 2508 */ 2509 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2510 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2511 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2512 return true; 2513 2514 if (ieee80211_802_1x_port_control(rx) || 2515 ieee80211_drop_unencrypted(rx, fc)) 2516 return false; 2517 2518 return true; 2519 } 2520 2521 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2522 struct ieee80211_rx_data *rx) 2523 { 2524 struct ieee80211_sub_if_data *sdata = rx->sdata; 2525 struct net_device *dev = sdata->dev; 2526 2527 if (unlikely((skb->protocol == sdata->control_port_protocol || 2528 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2529 !sdata->control_port_no_preauth)) && 2530 sdata->control_port_over_nl80211)) { 2531 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2532 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2533 2534 cfg80211_rx_control_port(dev, skb, noencrypt); 2535 dev_kfree_skb(skb); 2536 } else { 2537 memset(skb->cb, 0, sizeof(skb->cb)); 2538 2539 /* deliver to local stack */ 2540 if (rx->list) 2541 list_add_tail(&skb->list, rx->list); 2542 else 2543 netif_receive_skb(skb); 2544 } 2545 } 2546 2547 /* 2548 * requires that rx->skb is a frame with ethernet header 2549 */ 2550 static void 2551 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2552 { 2553 struct ieee80211_sub_if_data *sdata = rx->sdata; 2554 struct net_device *dev = sdata->dev; 2555 struct sk_buff *skb, *xmit_skb; 2556 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2557 struct sta_info *dsta; 2558 2559 skb = rx->skb; 2560 xmit_skb = NULL; 2561 2562 ieee80211_rx_stats(dev, skb->len); 2563 2564 if (rx->sta) { 2565 /* The seqno index has the same property as needed 2566 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2567 * for non-QoS-data frames. Here we know it's a data 2568 * frame, so count MSDUs. 2569 */ 2570 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2571 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2572 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2573 } 2574 2575 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2576 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2577 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2578 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2579 if (is_multicast_ether_addr(ehdr->h_dest) && 2580 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2581 /* 2582 * send multicast frames both to higher layers in 2583 * local net stack and back to the wireless medium 2584 */ 2585 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2586 if (!xmit_skb) 2587 net_info_ratelimited("%s: failed to clone multicast frame\n", 2588 dev->name); 2589 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2590 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2591 dsta = sta_info_get(sdata, ehdr->h_dest); 2592 if (dsta) { 2593 /* 2594 * The destination station is associated to 2595 * this AP (in this VLAN), so send the frame 2596 * directly to it and do not pass it to local 2597 * net stack. 2598 */ 2599 xmit_skb = skb; 2600 skb = NULL; 2601 } 2602 } 2603 } 2604 2605 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2606 if (skb) { 2607 /* 'align' will only take the values 0 or 2 here since all 2608 * frames are required to be aligned to 2-byte boundaries 2609 * when being passed to mac80211; the code here works just 2610 * as well if that isn't true, but mac80211 assumes it can 2611 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2612 */ 2613 int align; 2614 2615 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2616 if (align) { 2617 if (WARN_ON(skb_headroom(skb) < 3)) { 2618 dev_kfree_skb(skb); 2619 skb = NULL; 2620 } else { 2621 u8 *data = skb->data; 2622 size_t len = skb_headlen(skb); 2623 skb->data -= align; 2624 memmove(skb->data, data, len); 2625 skb_set_tail_pointer(skb, len); 2626 } 2627 } 2628 } 2629 #endif 2630 2631 if (skb) { 2632 skb->protocol = eth_type_trans(skb, dev); 2633 ieee80211_deliver_skb_to_local_stack(skb, rx); 2634 } 2635 2636 if (xmit_skb) { 2637 /* 2638 * Send to wireless media and increase priority by 256 to 2639 * keep the received priority instead of reclassifying 2640 * the frame (see cfg80211_classify8021d). 2641 */ 2642 xmit_skb->priority += 256; 2643 xmit_skb->protocol = htons(ETH_P_802_3); 2644 skb_reset_network_header(xmit_skb); 2645 skb_reset_mac_header(xmit_skb); 2646 dev_queue_xmit(xmit_skb); 2647 } 2648 } 2649 2650 static ieee80211_rx_result debug_noinline 2651 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2652 { 2653 struct net_device *dev = rx->sdata->dev; 2654 struct sk_buff *skb = rx->skb; 2655 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2656 __le16 fc = hdr->frame_control; 2657 struct sk_buff_head frame_list; 2658 struct ethhdr ethhdr; 2659 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2660 2661 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2662 check_da = NULL; 2663 check_sa = NULL; 2664 } else switch (rx->sdata->vif.type) { 2665 case NL80211_IFTYPE_AP: 2666 case NL80211_IFTYPE_AP_VLAN: 2667 check_da = NULL; 2668 break; 2669 case NL80211_IFTYPE_STATION: 2670 if (!rx->sta || 2671 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2672 check_sa = NULL; 2673 break; 2674 case NL80211_IFTYPE_MESH_POINT: 2675 check_sa = NULL; 2676 break; 2677 default: 2678 break; 2679 } 2680 2681 skb->dev = dev; 2682 __skb_queue_head_init(&frame_list); 2683 2684 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2685 rx->sdata->vif.addr, 2686 rx->sdata->vif.type, 2687 data_offset)) 2688 return RX_DROP_UNUSABLE; 2689 2690 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2691 rx->sdata->vif.type, 2692 rx->local->hw.extra_tx_headroom, 2693 check_da, check_sa); 2694 2695 while (!skb_queue_empty(&frame_list)) { 2696 rx->skb = __skb_dequeue(&frame_list); 2697 2698 if (!ieee80211_frame_allowed(rx, fc)) { 2699 dev_kfree_skb(rx->skb); 2700 continue; 2701 } 2702 2703 ieee80211_deliver_skb(rx); 2704 } 2705 2706 return RX_QUEUED; 2707 } 2708 2709 static ieee80211_rx_result debug_noinline 2710 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2711 { 2712 struct sk_buff *skb = rx->skb; 2713 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2714 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2715 __le16 fc = hdr->frame_control; 2716 2717 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2718 return RX_CONTINUE; 2719 2720 if (unlikely(!ieee80211_is_data(fc))) 2721 return RX_CONTINUE; 2722 2723 if (unlikely(!ieee80211_is_data_present(fc))) 2724 return RX_DROP_MONITOR; 2725 2726 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2727 switch (rx->sdata->vif.type) { 2728 case NL80211_IFTYPE_AP_VLAN: 2729 if (!rx->sdata->u.vlan.sta) 2730 return RX_DROP_UNUSABLE; 2731 break; 2732 case NL80211_IFTYPE_STATION: 2733 if (!rx->sdata->u.mgd.use_4addr) 2734 return RX_DROP_UNUSABLE; 2735 break; 2736 default: 2737 return RX_DROP_UNUSABLE; 2738 } 2739 } 2740 2741 if (is_multicast_ether_addr(hdr->addr1)) 2742 return RX_DROP_UNUSABLE; 2743 2744 return __ieee80211_rx_h_amsdu(rx, 0); 2745 } 2746 2747 #ifdef CONFIG_MAC80211_MESH 2748 static ieee80211_rx_result 2749 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2750 { 2751 struct ieee80211_hdr *fwd_hdr, *hdr; 2752 struct ieee80211_tx_info *info; 2753 struct ieee80211s_hdr *mesh_hdr; 2754 struct sk_buff *skb = rx->skb, *fwd_skb; 2755 struct ieee80211_local *local = rx->local; 2756 struct ieee80211_sub_if_data *sdata = rx->sdata; 2757 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2758 u16 ac, q, hdrlen; 2759 int tailroom = 0; 2760 2761 hdr = (struct ieee80211_hdr *) skb->data; 2762 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2763 2764 /* make sure fixed part of mesh header is there, also checks skb len */ 2765 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2766 return RX_DROP_MONITOR; 2767 2768 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2769 2770 /* make sure full mesh header is there, also checks skb len */ 2771 if (!pskb_may_pull(rx->skb, 2772 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2773 return RX_DROP_MONITOR; 2774 2775 /* reload pointers */ 2776 hdr = (struct ieee80211_hdr *) skb->data; 2777 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2778 2779 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2780 return RX_DROP_MONITOR; 2781 2782 /* frame is in RMC, don't forward */ 2783 if (ieee80211_is_data(hdr->frame_control) && 2784 is_multicast_ether_addr(hdr->addr1) && 2785 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2786 return RX_DROP_MONITOR; 2787 2788 if (!ieee80211_is_data(hdr->frame_control)) 2789 return RX_CONTINUE; 2790 2791 if (!mesh_hdr->ttl) 2792 return RX_DROP_MONITOR; 2793 2794 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2795 struct mesh_path *mppath; 2796 char *proxied_addr; 2797 char *mpp_addr; 2798 2799 if (is_multicast_ether_addr(hdr->addr1)) { 2800 mpp_addr = hdr->addr3; 2801 proxied_addr = mesh_hdr->eaddr1; 2802 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2803 MESH_FLAGS_AE_A5_A6) { 2804 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2805 mpp_addr = hdr->addr4; 2806 proxied_addr = mesh_hdr->eaddr2; 2807 } else { 2808 return RX_DROP_MONITOR; 2809 } 2810 2811 rcu_read_lock(); 2812 mppath = mpp_path_lookup(sdata, proxied_addr); 2813 if (!mppath) { 2814 mpp_path_add(sdata, proxied_addr, mpp_addr); 2815 } else { 2816 spin_lock_bh(&mppath->state_lock); 2817 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2818 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2819 mppath->exp_time = jiffies; 2820 spin_unlock_bh(&mppath->state_lock); 2821 } 2822 rcu_read_unlock(); 2823 } 2824 2825 /* Frame has reached destination. Don't forward */ 2826 if (!is_multicast_ether_addr(hdr->addr1) && 2827 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2828 return RX_CONTINUE; 2829 2830 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2831 q = sdata->vif.hw_queue[ac]; 2832 if (ieee80211_queue_stopped(&local->hw, q)) { 2833 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2834 return RX_DROP_MONITOR; 2835 } 2836 skb_set_queue_mapping(skb, q); 2837 2838 if (!--mesh_hdr->ttl) { 2839 if (!is_multicast_ether_addr(hdr->addr1)) 2840 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2841 dropped_frames_ttl); 2842 goto out; 2843 } 2844 2845 if (!ifmsh->mshcfg.dot11MeshForwarding) 2846 goto out; 2847 2848 if (sdata->crypto_tx_tailroom_needed_cnt) 2849 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2850 2851 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2852 sdata->encrypt_headroom, 2853 tailroom, GFP_ATOMIC); 2854 if (!fwd_skb) 2855 goto out; 2856 2857 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2858 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2859 info = IEEE80211_SKB_CB(fwd_skb); 2860 memset(info, 0, sizeof(*info)); 2861 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2862 info->control.vif = &rx->sdata->vif; 2863 info->control.jiffies = jiffies; 2864 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2865 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2866 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2867 /* update power mode indication when forwarding */ 2868 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2869 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2870 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2871 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2872 } else { 2873 /* unable to resolve next hop */ 2874 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2875 fwd_hdr->addr3, 0, 2876 WLAN_REASON_MESH_PATH_NOFORWARD, 2877 fwd_hdr->addr2); 2878 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2879 kfree_skb(fwd_skb); 2880 return RX_DROP_MONITOR; 2881 } 2882 2883 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2884 ieee80211_add_pending_skb(local, fwd_skb); 2885 out: 2886 if (is_multicast_ether_addr(hdr->addr1)) 2887 return RX_CONTINUE; 2888 return RX_DROP_MONITOR; 2889 } 2890 #endif 2891 2892 static ieee80211_rx_result debug_noinline 2893 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2894 { 2895 struct ieee80211_sub_if_data *sdata = rx->sdata; 2896 struct ieee80211_local *local = rx->local; 2897 struct net_device *dev = sdata->dev; 2898 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2899 __le16 fc = hdr->frame_control; 2900 bool port_control; 2901 int err; 2902 2903 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2904 return RX_CONTINUE; 2905 2906 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2907 return RX_DROP_MONITOR; 2908 2909 /* 2910 * Send unexpected-4addr-frame event to hostapd. For older versions, 2911 * also drop the frame to cooked monitor interfaces. 2912 */ 2913 if (ieee80211_has_a4(hdr->frame_control) && 2914 sdata->vif.type == NL80211_IFTYPE_AP) { 2915 if (rx->sta && 2916 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2917 cfg80211_rx_unexpected_4addr_frame( 2918 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2919 return RX_DROP_MONITOR; 2920 } 2921 2922 err = __ieee80211_data_to_8023(rx, &port_control); 2923 if (unlikely(err)) 2924 return RX_DROP_UNUSABLE; 2925 2926 if (!ieee80211_frame_allowed(rx, fc)) 2927 return RX_DROP_MONITOR; 2928 2929 /* directly handle TDLS channel switch requests/responses */ 2930 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2931 cpu_to_be16(ETH_P_TDLS))) { 2932 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2933 2934 if (pskb_may_pull(rx->skb, 2935 offsetof(struct ieee80211_tdls_data, u)) && 2936 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2937 tf->category == WLAN_CATEGORY_TDLS && 2938 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2939 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2940 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2941 schedule_work(&local->tdls_chsw_work); 2942 if (rx->sta) 2943 rx->sta->rx_stats.packets++; 2944 2945 return RX_QUEUED; 2946 } 2947 } 2948 2949 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2950 unlikely(port_control) && sdata->bss) { 2951 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2952 u.ap); 2953 dev = sdata->dev; 2954 rx->sdata = sdata; 2955 } 2956 2957 rx->skb->dev = dev; 2958 2959 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2960 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2961 !is_multicast_ether_addr( 2962 ((struct ethhdr *)rx->skb->data)->h_dest) && 2963 (!local->scanning && 2964 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2965 mod_timer(&local->dynamic_ps_timer, jiffies + 2966 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2967 2968 ieee80211_deliver_skb(rx); 2969 2970 return RX_QUEUED; 2971 } 2972 2973 static ieee80211_rx_result debug_noinline 2974 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2975 { 2976 struct sk_buff *skb = rx->skb; 2977 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2978 struct tid_ampdu_rx *tid_agg_rx; 2979 u16 start_seq_num; 2980 u16 tid; 2981 2982 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2983 return RX_CONTINUE; 2984 2985 if (ieee80211_is_back_req(bar->frame_control)) { 2986 struct { 2987 __le16 control, start_seq_num; 2988 } __packed bar_data; 2989 struct ieee80211_event event = { 2990 .type = BAR_RX_EVENT, 2991 }; 2992 2993 if (!rx->sta) 2994 return RX_DROP_MONITOR; 2995 2996 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2997 &bar_data, sizeof(bar_data))) 2998 return RX_DROP_MONITOR; 2999 3000 tid = le16_to_cpu(bar_data.control) >> 12; 3001 3002 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3003 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3004 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3005 WLAN_BACK_RECIPIENT, 3006 WLAN_REASON_QSTA_REQUIRE_SETUP); 3007 3008 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3009 if (!tid_agg_rx) 3010 return RX_DROP_MONITOR; 3011 3012 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3013 event.u.ba.tid = tid; 3014 event.u.ba.ssn = start_seq_num; 3015 event.u.ba.sta = &rx->sta->sta; 3016 3017 /* reset session timer */ 3018 if (tid_agg_rx->timeout) 3019 mod_timer(&tid_agg_rx->session_timer, 3020 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3021 3022 spin_lock(&tid_agg_rx->reorder_lock); 3023 /* release stored frames up to start of BAR */ 3024 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3025 start_seq_num, frames); 3026 spin_unlock(&tid_agg_rx->reorder_lock); 3027 3028 drv_event_callback(rx->local, rx->sdata, &event); 3029 3030 kfree_skb(skb); 3031 return RX_QUEUED; 3032 } 3033 3034 /* 3035 * After this point, we only want management frames, 3036 * so we can drop all remaining control frames to 3037 * cooked monitor interfaces. 3038 */ 3039 return RX_DROP_MONITOR; 3040 } 3041 3042 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3043 struct ieee80211_mgmt *mgmt, 3044 size_t len) 3045 { 3046 struct ieee80211_local *local = sdata->local; 3047 struct sk_buff *skb; 3048 struct ieee80211_mgmt *resp; 3049 3050 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3051 /* Not to own unicast address */ 3052 return; 3053 } 3054 3055 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3056 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3057 /* Not from the current AP or not associated yet. */ 3058 return; 3059 } 3060 3061 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3062 /* Too short SA Query request frame */ 3063 return; 3064 } 3065 3066 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3067 if (skb == NULL) 3068 return; 3069 3070 skb_reserve(skb, local->hw.extra_tx_headroom); 3071 resp = skb_put_zero(skb, 24); 3072 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3073 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3074 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3075 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3076 IEEE80211_STYPE_ACTION); 3077 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3078 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3079 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3080 memcpy(resp->u.action.u.sa_query.trans_id, 3081 mgmt->u.action.u.sa_query.trans_id, 3082 WLAN_SA_QUERY_TR_ID_LEN); 3083 3084 ieee80211_tx_skb(sdata, skb); 3085 } 3086 3087 static ieee80211_rx_result debug_noinline 3088 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3089 { 3090 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3091 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3092 3093 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3094 return RX_CONTINUE; 3095 3096 /* 3097 * From here on, look only at management frames. 3098 * Data and control frames are already handled, 3099 * and unknown (reserved) frames are useless. 3100 */ 3101 if (rx->skb->len < 24) 3102 return RX_DROP_MONITOR; 3103 3104 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3105 return RX_DROP_MONITOR; 3106 3107 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3108 ieee80211_is_beacon(mgmt->frame_control) && 3109 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3110 int sig = 0; 3111 3112 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3113 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3114 sig = status->signal; 3115 3116 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3117 rx->skb->data, rx->skb->len, 3118 ieee80211_rx_status_to_khz(status), 3119 sig); 3120 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3121 } 3122 3123 if (ieee80211_drop_unencrypted_mgmt(rx)) 3124 return RX_DROP_UNUSABLE; 3125 3126 return RX_CONTINUE; 3127 } 3128 3129 static ieee80211_rx_result debug_noinline 3130 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3131 { 3132 struct ieee80211_local *local = rx->local; 3133 struct ieee80211_sub_if_data *sdata = rx->sdata; 3134 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3135 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3136 int len = rx->skb->len; 3137 3138 if (!ieee80211_is_action(mgmt->frame_control)) 3139 return RX_CONTINUE; 3140 3141 /* drop too small frames */ 3142 if (len < IEEE80211_MIN_ACTION_SIZE) 3143 return RX_DROP_UNUSABLE; 3144 3145 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3146 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3147 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3148 return RX_DROP_UNUSABLE; 3149 3150 switch (mgmt->u.action.category) { 3151 case WLAN_CATEGORY_HT: 3152 /* reject HT action frames from stations not supporting HT */ 3153 if (!rx->sta->sta.ht_cap.ht_supported) 3154 goto invalid; 3155 3156 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3157 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3158 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3159 sdata->vif.type != NL80211_IFTYPE_AP && 3160 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3161 break; 3162 3163 /* verify action & smps_control/chanwidth are present */ 3164 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3165 goto invalid; 3166 3167 switch (mgmt->u.action.u.ht_smps.action) { 3168 case WLAN_HT_ACTION_SMPS: { 3169 struct ieee80211_supported_band *sband; 3170 enum ieee80211_smps_mode smps_mode; 3171 struct sta_opmode_info sta_opmode = {}; 3172 3173 if (sdata->vif.type != NL80211_IFTYPE_AP && 3174 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3175 goto handled; 3176 3177 /* convert to HT capability */ 3178 switch (mgmt->u.action.u.ht_smps.smps_control) { 3179 case WLAN_HT_SMPS_CONTROL_DISABLED: 3180 smps_mode = IEEE80211_SMPS_OFF; 3181 break; 3182 case WLAN_HT_SMPS_CONTROL_STATIC: 3183 smps_mode = IEEE80211_SMPS_STATIC; 3184 break; 3185 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3186 smps_mode = IEEE80211_SMPS_DYNAMIC; 3187 break; 3188 default: 3189 goto invalid; 3190 } 3191 3192 /* if no change do nothing */ 3193 if (rx->sta->sta.smps_mode == smps_mode) 3194 goto handled; 3195 rx->sta->sta.smps_mode = smps_mode; 3196 sta_opmode.smps_mode = 3197 ieee80211_smps_mode_to_smps_mode(smps_mode); 3198 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3199 3200 sband = rx->local->hw.wiphy->bands[status->band]; 3201 3202 rate_control_rate_update(local, sband, rx->sta, 3203 IEEE80211_RC_SMPS_CHANGED); 3204 cfg80211_sta_opmode_change_notify(sdata->dev, 3205 rx->sta->addr, 3206 &sta_opmode, 3207 GFP_ATOMIC); 3208 goto handled; 3209 } 3210 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3211 struct ieee80211_supported_band *sband; 3212 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3213 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3214 struct sta_opmode_info sta_opmode = {}; 3215 3216 /* If it doesn't support 40 MHz it can't change ... */ 3217 if (!(rx->sta->sta.ht_cap.cap & 3218 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3219 goto handled; 3220 3221 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3222 max_bw = IEEE80211_STA_RX_BW_20; 3223 else 3224 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3225 3226 /* set cur_max_bandwidth and recalc sta bw */ 3227 rx->sta->cur_max_bandwidth = max_bw; 3228 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3229 3230 if (rx->sta->sta.bandwidth == new_bw) 3231 goto handled; 3232 3233 rx->sta->sta.bandwidth = new_bw; 3234 sband = rx->local->hw.wiphy->bands[status->band]; 3235 sta_opmode.bw = 3236 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3237 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3238 3239 rate_control_rate_update(local, sband, rx->sta, 3240 IEEE80211_RC_BW_CHANGED); 3241 cfg80211_sta_opmode_change_notify(sdata->dev, 3242 rx->sta->addr, 3243 &sta_opmode, 3244 GFP_ATOMIC); 3245 goto handled; 3246 } 3247 default: 3248 goto invalid; 3249 } 3250 3251 break; 3252 case WLAN_CATEGORY_PUBLIC: 3253 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3254 goto invalid; 3255 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3256 break; 3257 if (!rx->sta) 3258 break; 3259 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3260 break; 3261 if (mgmt->u.action.u.ext_chan_switch.action_code != 3262 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3263 break; 3264 if (len < offsetof(struct ieee80211_mgmt, 3265 u.action.u.ext_chan_switch.variable)) 3266 goto invalid; 3267 goto queue; 3268 case WLAN_CATEGORY_VHT: 3269 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3270 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3271 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3272 sdata->vif.type != NL80211_IFTYPE_AP && 3273 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3274 break; 3275 3276 /* verify action code is present */ 3277 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3278 goto invalid; 3279 3280 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3281 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3282 /* verify opmode is present */ 3283 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3284 goto invalid; 3285 goto queue; 3286 } 3287 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3288 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3289 goto invalid; 3290 goto queue; 3291 } 3292 default: 3293 break; 3294 } 3295 break; 3296 case WLAN_CATEGORY_BACK: 3297 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3298 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3299 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3300 sdata->vif.type != NL80211_IFTYPE_AP && 3301 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3302 break; 3303 3304 /* verify action_code is present */ 3305 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3306 break; 3307 3308 switch (mgmt->u.action.u.addba_req.action_code) { 3309 case WLAN_ACTION_ADDBA_REQ: 3310 if (len < (IEEE80211_MIN_ACTION_SIZE + 3311 sizeof(mgmt->u.action.u.addba_req))) 3312 goto invalid; 3313 break; 3314 case WLAN_ACTION_ADDBA_RESP: 3315 if (len < (IEEE80211_MIN_ACTION_SIZE + 3316 sizeof(mgmt->u.action.u.addba_resp))) 3317 goto invalid; 3318 break; 3319 case WLAN_ACTION_DELBA: 3320 if (len < (IEEE80211_MIN_ACTION_SIZE + 3321 sizeof(mgmt->u.action.u.delba))) 3322 goto invalid; 3323 break; 3324 default: 3325 goto invalid; 3326 } 3327 3328 goto queue; 3329 case WLAN_CATEGORY_SPECTRUM_MGMT: 3330 /* verify action_code is present */ 3331 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3332 break; 3333 3334 switch (mgmt->u.action.u.measurement.action_code) { 3335 case WLAN_ACTION_SPCT_MSR_REQ: 3336 if (status->band != NL80211_BAND_5GHZ) 3337 break; 3338 3339 if (len < (IEEE80211_MIN_ACTION_SIZE + 3340 sizeof(mgmt->u.action.u.measurement))) 3341 break; 3342 3343 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3344 break; 3345 3346 ieee80211_process_measurement_req(sdata, mgmt, len); 3347 goto handled; 3348 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3349 u8 *bssid; 3350 if (len < (IEEE80211_MIN_ACTION_SIZE + 3351 sizeof(mgmt->u.action.u.chan_switch))) 3352 break; 3353 3354 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3355 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3356 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3357 break; 3358 3359 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3360 bssid = sdata->u.mgd.bssid; 3361 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3362 bssid = sdata->u.ibss.bssid; 3363 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3364 bssid = mgmt->sa; 3365 else 3366 break; 3367 3368 if (!ether_addr_equal(mgmt->bssid, bssid)) 3369 break; 3370 3371 goto queue; 3372 } 3373 } 3374 break; 3375 case WLAN_CATEGORY_SELF_PROTECTED: 3376 if (len < (IEEE80211_MIN_ACTION_SIZE + 3377 sizeof(mgmt->u.action.u.self_prot.action_code))) 3378 break; 3379 3380 switch (mgmt->u.action.u.self_prot.action_code) { 3381 case WLAN_SP_MESH_PEERING_OPEN: 3382 case WLAN_SP_MESH_PEERING_CLOSE: 3383 case WLAN_SP_MESH_PEERING_CONFIRM: 3384 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3385 goto invalid; 3386 if (sdata->u.mesh.user_mpm) 3387 /* userspace handles this frame */ 3388 break; 3389 goto queue; 3390 case WLAN_SP_MGK_INFORM: 3391 case WLAN_SP_MGK_ACK: 3392 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3393 goto invalid; 3394 break; 3395 } 3396 break; 3397 case WLAN_CATEGORY_MESH_ACTION: 3398 if (len < (IEEE80211_MIN_ACTION_SIZE + 3399 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3400 break; 3401 3402 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3403 break; 3404 if (mesh_action_is_path_sel(mgmt) && 3405 !mesh_path_sel_is_hwmp(sdata)) 3406 break; 3407 goto queue; 3408 } 3409 3410 return RX_CONTINUE; 3411 3412 invalid: 3413 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3414 /* will return in the next handlers */ 3415 return RX_CONTINUE; 3416 3417 handled: 3418 if (rx->sta) 3419 rx->sta->rx_stats.packets++; 3420 dev_kfree_skb(rx->skb); 3421 return RX_QUEUED; 3422 3423 queue: 3424 skb_queue_tail(&sdata->skb_queue, rx->skb); 3425 ieee80211_queue_work(&local->hw, &sdata->work); 3426 if (rx->sta) 3427 rx->sta->rx_stats.packets++; 3428 return RX_QUEUED; 3429 } 3430 3431 static ieee80211_rx_result debug_noinline 3432 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3433 { 3434 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3435 int sig = 0; 3436 3437 /* skip known-bad action frames and return them in the next handler */ 3438 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3439 return RX_CONTINUE; 3440 3441 /* 3442 * Getting here means the kernel doesn't know how to handle 3443 * it, but maybe userspace does ... include returned frames 3444 * so userspace can register for those to know whether ones 3445 * it transmitted were processed or returned. 3446 */ 3447 3448 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3449 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3450 sig = status->signal; 3451 3452 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev, 3453 ieee80211_rx_status_to_khz(status), sig, 3454 rx->skb->data, rx->skb->len, 0)) { 3455 if (rx->sta) 3456 rx->sta->rx_stats.packets++; 3457 dev_kfree_skb(rx->skb); 3458 return RX_QUEUED; 3459 } 3460 3461 return RX_CONTINUE; 3462 } 3463 3464 static ieee80211_rx_result debug_noinline 3465 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3466 { 3467 struct ieee80211_sub_if_data *sdata = rx->sdata; 3468 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3469 int len = rx->skb->len; 3470 3471 if (!ieee80211_is_action(mgmt->frame_control)) 3472 return RX_CONTINUE; 3473 3474 switch (mgmt->u.action.category) { 3475 case WLAN_CATEGORY_SA_QUERY: 3476 if (len < (IEEE80211_MIN_ACTION_SIZE + 3477 sizeof(mgmt->u.action.u.sa_query))) 3478 break; 3479 3480 switch (mgmt->u.action.u.sa_query.action) { 3481 case WLAN_ACTION_SA_QUERY_REQUEST: 3482 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3483 break; 3484 ieee80211_process_sa_query_req(sdata, mgmt, len); 3485 goto handled; 3486 } 3487 break; 3488 } 3489 3490 return RX_CONTINUE; 3491 3492 handled: 3493 if (rx->sta) 3494 rx->sta->rx_stats.packets++; 3495 dev_kfree_skb(rx->skb); 3496 return RX_QUEUED; 3497 } 3498 3499 static ieee80211_rx_result debug_noinline 3500 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3501 { 3502 struct ieee80211_local *local = rx->local; 3503 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3504 struct sk_buff *nskb; 3505 struct ieee80211_sub_if_data *sdata = rx->sdata; 3506 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3507 3508 if (!ieee80211_is_action(mgmt->frame_control)) 3509 return RX_CONTINUE; 3510 3511 /* 3512 * For AP mode, hostapd is responsible for handling any action 3513 * frames that we didn't handle, including returning unknown 3514 * ones. For all other modes we will return them to the sender, 3515 * setting the 0x80 bit in the action category, as required by 3516 * 802.11-2012 9.24.4. 3517 * Newer versions of hostapd shall also use the management frame 3518 * registration mechanisms, but older ones still use cooked 3519 * monitor interfaces so push all frames there. 3520 */ 3521 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3522 (sdata->vif.type == NL80211_IFTYPE_AP || 3523 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3524 return RX_DROP_MONITOR; 3525 3526 if (is_multicast_ether_addr(mgmt->da)) 3527 return RX_DROP_MONITOR; 3528 3529 /* do not return rejected action frames */ 3530 if (mgmt->u.action.category & 0x80) 3531 return RX_DROP_UNUSABLE; 3532 3533 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3534 GFP_ATOMIC); 3535 if (nskb) { 3536 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3537 3538 nmgmt->u.action.category |= 0x80; 3539 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3540 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3541 3542 memset(nskb->cb, 0, sizeof(nskb->cb)); 3543 3544 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3545 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3546 3547 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3548 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3549 IEEE80211_TX_CTL_NO_CCK_RATE; 3550 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3551 info->hw_queue = 3552 local->hw.offchannel_tx_hw_queue; 3553 } 3554 3555 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3556 status->band); 3557 } 3558 dev_kfree_skb(rx->skb); 3559 return RX_QUEUED; 3560 } 3561 3562 static ieee80211_rx_result debug_noinline 3563 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3564 { 3565 struct ieee80211_sub_if_data *sdata = rx->sdata; 3566 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3567 3568 if (!ieee80211_is_ext(hdr->frame_control)) 3569 return RX_CONTINUE; 3570 3571 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3572 return RX_DROP_MONITOR; 3573 3574 /* for now only beacons are ext, so queue them */ 3575 skb_queue_tail(&sdata->skb_queue, rx->skb); 3576 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3577 if (rx->sta) 3578 rx->sta->rx_stats.packets++; 3579 3580 return RX_QUEUED; 3581 } 3582 3583 static ieee80211_rx_result debug_noinline 3584 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3585 { 3586 struct ieee80211_sub_if_data *sdata = rx->sdata; 3587 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3588 __le16 stype; 3589 3590 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3591 3592 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3593 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3594 sdata->vif.type != NL80211_IFTYPE_OCB && 3595 sdata->vif.type != NL80211_IFTYPE_STATION) 3596 return RX_DROP_MONITOR; 3597 3598 switch (stype) { 3599 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3600 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3601 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3602 /* process for all: mesh, mlme, ibss */ 3603 break; 3604 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3605 if (is_multicast_ether_addr(mgmt->da) && 3606 !is_broadcast_ether_addr(mgmt->da)) 3607 return RX_DROP_MONITOR; 3608 3609 /* process only for station/IBSS */ 3610 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3611 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3612 return RX_DROP_MONITOR; 3613 break; 3614 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3615 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3616 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3617 if (is_multicast_ether_addr(mgmt->da) && 3618 !is_broadcast_ether_addr(mgmt->da)) 3619 return RX_DROP_MONITOR; 3620 3621 /* process only for station */ 3622 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3623 return RX_DROP_MONITOR; 3624 break; 3625 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3626 /* process only for ibss and mesh */ 3627 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3628 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3629 return RX_DROP_MONITOR; 3630 break; 3631 default: 3632 return RX_DROP_MONITOR; 3633 } 3634 3635 /* queue up frame and kick off work to process it */ 3636 skb_queue_tail(&sdata->skb_queue, rx->skb); 3637 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3638 if (rx->sta) 3639 rx->sta->rx_stats.packets++; 3640 3641 return RX_QUEUED; 3642 } 3643 3644 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3645 struct ieee80211_rate *rate) 3646 { 3647 struct ieee80211_sub_if_data *sdata; 3648 struct ieee80211_local *local = rx->local; 3649 struct sk_buff *skb = rx->skb, *skb2; 3650 struct net_device *prev_dev = NULL; 3651 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3652 int needed_headroom; 3653 3654 /* 3655 * If cooked monitor has been processed already, then 3656 * don't do it again. If not, set the flag. 3657 */ 3658 if (rx->flags & IEEE80211_RX_CMNTR) 3659 goto out_free_skb; 3660 rx->flags |= IEEE80211_RX_CMNTR; 3661 3662 /* If there are no cooked monitor interfaces, just free the SKB */ 3663 if (!local->cooked_mntrs) 3664 goto out_free_skb; 3665 3666 /* vendor data is long removed here */ 3667 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3668 /* room for the radiotap header based on driver features */ 3669 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3670 3671 if (skb_headroom(skb) < needed_headroom && 3672 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3673 goto out_free_skb; 3674 3675 /* prepend radiotap information */ 3676 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3677 false); 3678 3679 skb_reset_mac_header(skb); 3680 skb->ip_summed = CHECKSUM_UNNECESSARY; 3681 skb->pkt_type = PACKET_OTHERHOST; 3682 skb->protocol = htons(ETH_P_802_2); 3683 3684 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3685 if (!ieee80211_sdata_running(sdata)) 3686 continue; 3687 3688 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3689 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3690 continue; 3691 3692 if (prev_dev) { 3693 skb2 = skb_clone(skb, GFP_ATOMIC); 3694 if (skb2) { 3695 skb2->dev = prev_dev; 3696 netif_receive_skb(skb2); 3697 } 3698 } 3699 3700 prev_dev = sdata->dev; 3701 ieee80211_rx_stats(sdata->dev, skb->len); 3702 } 3703 3704 if (prev_dev) { 3705 skb->dev = prev_dev; 3706 netif_receive_skb(skb); 3707 return; 3708 } 3709 3710 out_free_skb: 3711 dev_kfree_skb(skb); 3712 } 3713 3714 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3715 ieee80211_rx_result res) 3716 { 3717 switch (res) { 3718 case RX_DROP_MONITOR: 3719 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3720 if (rx->sta) 3721 rx->sta->rx_stats.dropped++; 3722 fallthrough; 3723 case RX_CONTINUE: { 3724 struct ieee80211_rate *rate = NULL; 3725 struct ieee80211_supported_band *sband; 3726 struct ieee80211_rx_status *status; 3727 3728 status = IEEE80211_SKB_RXCB((rx->skb)); 3729 3730 sband = rx->local->hw.wiphy->bands[status->band]; 3731 if (status->encoding == RX_ENC_LEGACY) 3732 rate = &sband->bitrates[status->rate_idx]; 3733 3734 ieee80211_rx_cooked_monitor(rx, rate); 3735 break; 3736 } 3737 case RX_DROP_UNUSABLE: 3738 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3739 if (rx->sta) 3740 rx->sta->rx_stats.dropped++; 3741 dev_kfree_skb(rx->skb); 3742 break; 3743 case RX_QUEUED: 3744 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3745 break; 3746 } 3747 } 3748 3749 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3750 struct sk_buff_head *frames) 3751 { 3752 ieee80211_rx_result res = RX_DROP_MONITOR; 3753 struct sk_buff *skb; 3754 3755 #define CALL_RXH(rxh) \ 3756 do { \ 3757 res = rxh(rx); \ 3758 if (res != RX_CONTINUE) \ 3759 goto rxh_next; \ 3760 } while (0) 3761 3762 /* Lock here to avoid hitting all of the data used in the RX 3763 * path (e.g. key data, station data, ...) concurrently when 3764 * a frame is released from the reorder buffer due to timeout 3765 * from the timer, potentially concurrently with RX from the 3766 * driver. 3767 */ 3768 spin_lock_bh(&rx->local->rx_path_lock); 3769 3770 while ((skb = __skb_dequeue(frames))) { 3771 /* 3772 * all the other fields are valid across frames 3773 * that belong to an aMPDU since they are on the 3774 * same TID from the same station 3775 */ 3776 rx->skb = skb; 3777 3778 CALL_RXH(ieee80211_rx_h_check_more_data); 3779 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3780 CALL_RXH(ieee80211_rx_h_sta_process); 3781 CALL_RXH(ieee80211_rx_h_decrypt); 3782 CALL_RXH(ieee80211_rx_h_defragment); 3783 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3784 /* must be after MMIC verify so header is counted in MPDU mic */ 3785 #ifdef CONFIG_MAC80211_MESH 3786 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3787 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3788 #endif 3789 CALL_RXH(ieee80211_rx_h_amsdu); 3790 CALL_RXH(ieee80211_rx_h_data); 3791 3792 /* special treatment -- needs the queue */ 3793 res = ieee80211_rx_h_ctrl(rx, frames); 3794 if (res != RX_CONTINUE) 3795 goto rxh_next; 3796 3797 CALL_RXH(ieee80211_rx_h_mgmt_check); 3798 CALL_RXH(ieee80211_rx_h_action); 3799 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3800 CALL_RXH(ieee80211_rx_h_action_post_userspace); 3801 CALL_RXH(ieee80211_rx_h_action_return); 3802 CALL_RXH(ieee80211_rx_h_ext); 3803 CALL_RXH(ieee80211_rx_h_mgmt); 3804 3805 rxh_next: 3806 ieee80211_rx_handlers_result(rx, res); 3807 3808 #undef CALL_RXH 3809 } 3810 3811 spin_unlock_bh(&rx->local->rx_path_lock); 3812 } 3813 3814 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3815 { 3816 struct sk_buff_head reorder_release; 3817 ieee80211_rx_result res = RX_DROP_MONITOR; 3818 3819 __skb_queue_head_init(&reorder_release); 3820 3821 #define CALL_RXH(rxh) \ 3822 do { \ 3823 res = rxh(rx); \ 3824 if (res != RX_CONTINUE) \ 3825 goto rxh_next; \ 3826 } while (0) 3827 3828 CALL_RXH(ieee80211_rx_h_check_dup); 3829 CALL_RXH(ieee80211_rx_h_check); 3830 3831 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3832 3833 ieee80211_rx_handlers(rx, &reorder_release); 3834 return; 3835 3836 rxh_next: 3837 ieee80211_rx_handlers_result(rx, res); 3838 3839 #undef CALL_RXH 3840 } 3841 3842 /* 3843 * This function makes calls into the RX path, therefore 3844 * it has to be invoked under RCU read lock. 3845 */ 3846 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3847 { 3848 struct sk_buff_head frames; 3849 struct ieee80211_rx_data rx = { 3850 .sta = sta, 3851 .sdata = sta->sdata, 3852 .local = sta->local, 3853 /* This is OK -- must be QoS data frame */ 3854 .security_idx = tid, 3855 .seqno_idx = tid, 3856 }; 3857 struct tid_ampdu_rx *tid_agg_rx; 3858 3859 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3860 if (!tid_agg_rx) 3861 return; 3862 3863 __skb_queue_head_init(&frames); 3864 3865 spin_lock(&tid_agg_rx->reorder_lock); 3866 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3867 spin_unlock(&tid_agg_rx->reorder_lock); 3868 3869 if (!skb_queue_empty(&frames)) { 3870 struct ieee80211_event event = { 3871 .type = BA_FRAME_TIMEOUT, 3872 .u.ba.tid = tid, 3873 .u.ba.sta = &sta->sta, 3874 }; 3875 drv_event_callback(rx.local, rx.sdata, &event); 3876 } 3877 3878 ieee80211_rx_handlers(&rx, &frames); 3879 } 3880 3881 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3882 u16 ssn, u64 filtered, 3883 u16 received_mpdus) 3884 { 3885 struct sta_info *sta; 3886 struct tid_ampdu_rx *tid_agg_rx; 3887 struct sk_buff_head frames; 3888 struct ieee80211_rx_data rx = { 3889 /* This is OK -- must be QoS data frame */ 3890 .security_idx = tid, 3891 .seqno_idx = tid, 3892 }; 3893 int i, diff; 3894 3895 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3896 return; 3897 3898 __skb_queue_head_init(&frames); 3899 3900 sta = container_of(pubsta, struct sta_info, sta); 3901 3902 rx.sta = sta; 3903 rx.sdata = sta->sdata; 3904 rx.local = sta->local; 3905 3906 rcu_read_lock(); 3907 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3908 if (!tid_agg_rx) 3909 goto out; 3910 3911 spin_lock_bh(&tid_agg_rx->reorder_lock); 3912 3913 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3914 int release; 3915 3916 /* release all frames in the reorder buffer */ 3917 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3918 IEEE80211_SN_MODULO; 3919 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3920 release, &frames); 3921 /* update ssn to match received ssn */ 3922 tid_agg_rx->head_seq_num = ssn; 3923 } else { 3924 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3925 &frames); 3926 } 3927 3928 /* handle the case that received ssn is behind the mac ssn. 3929 * it can be tid_agg_rx->buf_size behind and still be valid */ 3930 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3931 if (diff >= tid_agg_rx->buf_size) { 3932 tid_agg_rx->reorder_buf_filtered = 0; 3933 goto release; 3934 } 3935 filtered = filtered >> diff; 3936 ssn += diff; 3937 3938 /* update bitmap */ 3939 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3940 int index = (ssn + i) % tid_agg_rx->buf_size; 3941 3942 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3943 if (filtered & BIT_ULL(i)) 3944 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3945 } 3946 3947 /* now process also frames that the filter marking released */ 3948 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3949 3950 release: 3951 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3952 3953 ieee80211_rx_handlers(&rx, &frames); 3954 3955 out: 3956 rcu_read_unlock(); 3957 } 3958 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3959 3960 /* main receive path */ 3961 3962 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3963 { 3964 struct ieee80211_sub_if_data *sdata = rx->sdata; 3965 struct sk_buff *skb = rx->skb; 3966 struct ieee80211_hdr *hdr = (void *)skb->data; 3967 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3968 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3969 bool multicast = is_multicast_ether_addr(hdr->addr1) || 3970 ieee80211_is_s1g_beacon(hdr->frame_control); 3971 3972 switch (sdata->vif.type) { 3973 case NL80211_IFTYPE_STATION: 3974 if (!bssid && !sdata->u.mgd.use_4addr) 3975 return false; 3976 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3977 return false; 3978 if (multicast) 3979 return true; 3980 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3981 case NL80211_IFTYPE_ADHOC: 3982 if (!bssid) 3983 return false; 3984 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3985 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3986 return false; 3987 if (ieee80211_is_beacon(hdr->frame_control)) 3988 return true; 3989 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3990 return false; 3991 if (!multicast && 3992 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3993 return false; 3994 if (!rx->sta) { 3995 int rate_idx; 3996 if (status->encoding != RX_ENC_LEGACY) 3997 rate_idx = 0; /* TODO: HT/VHT rates */ 3998 else 3999 rate_idx = status->rate_idx; 4000 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4001 BIT(rate_idx)); 4002 } 4003 return true; 4004 case NL80211_IFTYPE_OCB: 4005 if (!bssid) 4006 return false; 4007 if (!ieee80211_is_data_present(hdr->frame_control)) 4008 return false; 4009 if (!is_broadcast_ether_addr(bssid)) 4010 return false; 4011 if (!multicast && 4012 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4013 return false; 4014 if (!rx->sta) { 4015 int rate_idx; 4016 if (status->encoding != RX_ENC_LEGACY) 4017 rate_idx = 0; /* TODO: HT rates */ 4018 else 4019 rate_idx = status->rate_idx; 4020 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4021 BIT(rate_idx)); 4022 } 4023 return true; 4024 case NL80211_IFTYPE_MESH_POINT: 4025 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4026 return false; 4027 if (multicast) 4028 return true; 4029 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4030 case NL80211_IFTYPE_AP_VLAN: 4031 case NL80211_IFTYPE_AP: 4032 if (!bssid) 4033 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4034 4035 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 4036 /* 4037 * Accept public action frames even when the 4038 * BSSID doesn't match, this is used for P2P 4039 * and location updates. Note that mac80211 4040 * itself never looks at these frames. 4041 */ 4042 if (!multicast && 4043 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4044 return false; 4045 if (ieee80211_is_public_action(hdr, skb->len)) 4046 return true; 4047 return ieee80211_is_beacon(hdr->frame_control); 4048 } 4049 4050 if (!ieee80211_has_tods(hdr->frame_control)) { 4051 /* ignore data frames to TDLS-peers */ 4052 if (ieee80211_is_data(hdr->frame_control)) 4053 return false; 4054 /* ignore action frames to TDLS-peers */ 4055 if (ieee80211_is_action(hdr->frame_control) && 4056 !is_broadcast_ether_addr(bssid) && 4057 !ether_addr_equal(bssid, hdr->addr1)) 4058 return false; 4059 } 4060 4061 /* 4062 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4063 * the BSSID - we've checked that already but may have accepted 4064 * the wildcard (ff:ff:ff:ff:ff:ff). 4065 * 4066 * It also says: 4067 * The BSSID of the Data frame is determined as follows: 4068 * a) If the STA is contained within an AP or is associated 4069 * with an AP, the BSSID is the address currently in use 4070 * by the STA contained in the AP. 4071 * 4072 * So we should not accept data frames with an address that's 4073 * multicast. 4074 * 4075 * Accepting it also opens a security problem because stations 4076 * could encrypt it with the GTK and inject traffic that way. 4077 */ 4078 if (ieee80211_is_data(hdr->frame_control) && multicast) 4079 return false; 4080 4081 return true; 4082 case NL80211_IFTYPE_P2P_DEVICE: 4083 return ieee80211_is_public_action(hdr, skb->len) || 4084 ieee80211_is_probe_req(hdr->frame_control) || 4085 ieee80211_is_probe_resp(hdr->frame_control) || 4086 ieee80211_is_beacon(hdr->frame_control); 4087 case NL80211_IFTYPE_NAN: 4088 /* Currently no frames on NAN interface are allowed */ 4089 return false; 4090 default: 4091 break; 4092 } 4093 4094 WARN_ON_ONCE(1); 4095 return false; 4096 } 4097 4098 void ieee80211_check_fast_rx(struct sta_info *sta) 4099 { 4100 struct ieee80211_sub_if_data *sdata = sta->sdata; 4101 struct ieee80211_local *local = sdata->local; 4102 struct ieee80211_key *key; 4103 struct ieee80211_fast_rx fastrx = { 4104 .dev = sdata->dev, 4105 .vif_type = sdata->vif.type, 4106 .control_port_protocol = sdata->control_port_protocol, 4107 }, *old, *new = NULL; 4108 bool assign = false; 4109 4110 /* use sparse to check that we don't return without updating */ 4111 __acquire(check_fast_rx); 4112 4113 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4114 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4115 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4116 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4117 4118 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4119 4120 /* fast-rx doesn't do reordering */ 4121 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4122 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4123 goto clear; 4124 4125 switch (sdata->vif.type) { 4126 case NL80211_IFTYPE_STATION: 4127 if (sta->sta.tdls) { 4128 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4129 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4130 fastrx.expected_ds_bits = 0; 4131 } else { 4132 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4133 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4134 fastrx.expected_ds_bits = 4135 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4136 } 4137 4138 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4139 fastrx.expected_ds_bits |= 4140 cpu_to_le16(IEEE80211_FCTL_TODS); 4141 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4142 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4143 } 4144 4145 if (!sdata->u.mgd.powersave) 4146 break; 4147 4148 /* software powersave is a huge mess, avoid all of it */ 4149 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4150 goto clear; 4151 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4152 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4153 goto clear; 4154 break; 4155 case NL80211_IFTYPE_AP_VLAN: 4156 case NL80211_IFTYPE_AP: 4157 /* parallel-rx requires this, at least with calls to 4158 * ieee80211_sta_ps_transition() 4159 */ 4160 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4161 goto clear; 4162 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4163 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4164 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4165 4166 fastrx.internal_forward = 4167 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4168 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4169 !sdata->u.vlan.sta); 4170 4171 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4172 sdata->u.vlan.sta) { 4173 fastrx.expected_ds_bits |= 4174 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4175 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4176 fastrx.internal_forward = 0; 4177 } 4178 4179 break; 4180 default: 4181 goto clear; 4182 } 4183 4184 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4185 goto clear; 4186 4187 rcu_read_lock(); 4188 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4189 if (key) { 4190 switch (key->conf.cipher) { 4191 case WLAN_CIPHER_SUITE_TKIP: 4192 /* we don't want to deal with MMIC in fast-rx */ 4193 goto clear_rcu; 4194 case WLAN_CIPHER_SUITE_CCMP: 4195 case WLAN_CIPHER_SUITE_CCMP_256: 4196 case WLAN_CIPHER_SUITE_GCMP: 4197 case WLAN_CIPHER_SUITE_GCMP_256: 4198 break; 4199 default: 4200 /* We also don't want to deal with 4201 * WEP or cipher scheme. 4202 */ 4203 goto clear_rcu; 4204 } 4205 4206 fastrx.key = true; 4207 fastrx.icv_len = key->conf.icv_len; 4208 } 4209 4210 assign = true; 4211 clear_rcu: 4212 rcu_read_unlock(); 4213 clear: 4214 __release(check_fast_rx); 4215 4216 if (assign) 4217 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4218 4219 spin_lock_bh(&sta->lock); 4220 old = rcu_dereference_protected(sta->fast_rx, true); 4221 rcu_assign_pointer(sta->fast_rx, new); 4222 spin_unlock_bh(&sta->lock); 4223 4224 if (old) 4225 kfree_rcu(old, rcu_head); 4226 } 4227 4228 void ieee80211_clear_fast_rx(struct sta_info *sta) 4229 { 4230 struct ieee80211_fast_rx *old; 4231 4232 spin_lock_bh(&sta->lock); 4233 old = rcu_dereference_protected(sta->fast_rx, true); 4234 RCU_INIT_POINTER(sta->fast_rx, NULL); 4235 spin_unlock_bh(&sta->lock); 4236 4237 if (old) 4238 kfree_rcu(old, rcu_head); 4239 } 4240 4241 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4242 { 4243 struct ieee80211_local *local = sdata->local; 4244 struct sta_info *sta; 4245 4246 lockdep_assert_held(&local->sta_mtx); 4247 4248 list_for_each_entry(sta, &local->sta_list, list) { 4249 if (sdata != sta->sdata && 4250 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4251 continue; 4252 ieee80211_check_fast_rx(sta); 4253 } 4254 } 4255 4256 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4257 { 4258 struct ieee80211_local *local = sdata->local; 4259 4260 mutex_lock(&local->sta_mtx); 4261 __ieee80211_check_fast_rx_iface(sdata); 4262 mutex_unlock(&local->sta_mtx); 4263 } 4264 4265 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4266 struct ieee80211_fast_rx *fast_rx) 4267 { 4268 struct sk_buff *skb = rx->skb; 4269 struct ieee80211_hdr *hdr = (void *)skb->data; 4270 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4271 struct sta_info *sta = rx->sta; 4272 int orig_len = skb->len; 4273 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4274 int snap_offs = hdrlen; 4275 struct { 4276 u8 snap[sizeof(rfc1042_header)]; 4277 __be16 proto; 4278 } *payload __aligned(2); 4279 struct { 4280 u8 da[ETH_ALEN]; 4281 u8 sa[ETH_ALEN]; 4282 } addrs __aligned(2); 4283 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4284 4285 if (fast_rx->uses_rss) 4286 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4287 4288 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4289 * to a common data structure; drivers can implement that per queue 4290 * but we don't have that information in mac80211 4291 */ 4292 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4293 return false; 4294 4295 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4296 4297 /* If using encryption, we also need to have: 4298 * - PN_VALIDATED: similar, but the implementation is tricky 4299 * - DECRYPTED: necessary for PN_VALIDATED 4300 */ 4301 if (fast_rx->key && 4302 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4303 return false; 4304 4305 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4306 return false; 4307 4308 if (unlikely(ieee80211_is_frag(hdr))) 4309 return false; 4310 4311 /* Since our interface address cannot be multicast, this 4312 * implicitly also rejects multicast frames without the 4313 * explicit check. 4314 * 4315 * We shouldn't get any *data* frames not addressed to us 4316 * (AP mode will accept multicast *management* frames), but 4317 * punting here will make it go through the full checks in 4318 * ieee80211_accept_frame(). 4319 */ 4320 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4321 return false; 4322 4323 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4324 IEEE80211_FCTL_TODS)) != 4325 fast_rx->expected_ds_bits) 4326 return false; 4327 4328 /* assign the key to drop unencrypted frames (later) 4329 * and strip the IV/MIC if necessary 4330 */ 4331 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4332 /* GCMP header length is the same */ 4333 snap_offs += IEEE80211_CCMP_HDR_LEN; 4334 } 4335 4336 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4337 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4338 goto drop; 4339 4340 payload = (void *)(skb->data + snap_offs); 4341 4342 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4343 return false; 4344 4345 /* Don't handle these here since they require special code. 4346 * Accept AARP and IPX even though they should come with a 4347 * bridge-tunnel header - but if we get them this way then 4348 * there's little point in discarding them. 4349 */ 4350 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4351 payload->proto == fast_rx->control_port_protocol)) 4352 return false; 4353 } 4354 4355 /* after this point, don't punt to the slowpath! */ 4356 4357 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4358 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4359 goto drop; 4360 4361 /* statistics part of ieee80211_rx_h_sta_process() */ 4362 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4363 stats->last_signal = status->signal; 4364 if (!fast_rx->uses_rss) 4365 ewma_signal_add(&sta->rx_stats_avg.signal, 4366 -status->signal); 4367 } 4368 4369 if (status->chains) { 4370 int i; 4371 4372 stats->chains = status->chains; 4373 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4374 int signal = status->chain_signal[i]; 4375 4376 if (!(status->chains & BIT(i))) 4377 continue; 4378 4379 stats->chain_signal_last[i] = signal; 4380 if (!fast_rx->uses_rss) 4381 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4382 -signal); 4383 } 4384 } 4385 /* end of statistics */ 4386 4387 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4388 goto drop; 4389 4390 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4391 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4392 RX_QUEUED) 4393 goto drop; 4394 4395 return true; 4396 } 4397 4398 stats->last_rx = jiffies; 4399 stats->last_rate = sta_stats_encode_rate(status); 4400 4401 stats->fragments++; 4402 stats->packets++; 4403 4404 /* do the header conversion - first grab the addresses */ 4405 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4406 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4407 /* remove the SNAP but leave the ethertype */ 4408 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4409 /* push the addresses in front */ 4410 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4411 4412 skb->dev = fast_rx->dev; 4413 4414 ieee80211_rx_stats(fast_rx->dev, skb->len); 4415 4416 /* The seqno index has the same property as needed 4417 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4418 * for non-QoS-data frames. Here we know it's a data 4419 * frame, so count MSDUs. 4420 */ 4421 u64_stats_update_begin(&stats->syncp); 4422 stats->msdu[rx->seqno_idx]++; 4423 stats->bytes += orig_len; 4424 u64_stats_update_end(&stats->syncp); 4425 4426 if (fast_rx->internal_forward) { 4427 struct sk_buff *xmit_skb = NULL; 4428 if (is_multicast_ether_addr(addrs.da)) { 4429 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4430 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4431 sta_info_get(rx->sdata, addrs.da)) { 4432 xmit_skb = skb; 4433 skb = NULL; 4434 } 4435 4436 if (xmit_skb) { 4437 /* 4438 * Send to wireless media and increase priority by 256 4439 * to keep the received priority instead of 4440 * reclassifying the frame (see cfg80211_classify8021d). 4441 */ 4442 xmit_skb->priority += 256; 4443 xmit_skb->protocol = htons(ETH_P_802_3); 4444 skb_reset_network_header(xmit_skb); 4445 skb_reset_mac_header(xmit_skb); 4446 dev_queue_xmit(xmit_skb); 4447 } 4448 4449 if (!skb) 4450 return true; 4451 } 4452 4453 /* deliver to local stack */ 4454 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4455 memset(skb->cb, 0, sizeof(skb->cb)); 4456 if (rx->list) 4457 list_add_tail(&skb->list, rx->list); 4458 else 4459 netif_receive_skb(skb); 4460 4461 return true; 4462 drop: 4463 dev_kfree_skb(skb); 4464 stats->dropped++; 4465 return true; 4466 } 4467 4468 /* 4469 * This function returns whether or not the SKB 4470 * was destined for RX processing or not, which, 4471 * if consume is true, is equivalent to whether 4472 * or not the skb was consumed. 4473 */ 4474 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4475 struct sk_buff *skb, bool consume) 4476 { 4477 struct ieee80211_local *local = rx->local; 4478 struct ieee80211_sub_if_data *sdata = rx->sdata; 4479 4480 rx->skb = skb; 4481 4482 /* See if we can do fast-rx; if we have to copy we already lost, 4483 * so punt in that case. We should never have to deliver a data 4484 * frame to multiple interfaces anyway. 4485 * 4486 * We skip the ieee80211_accept_frame() call and do the necessary 4487 * checking inside ieee80211_invoke_fast_rx(). 4488 */ 4489 if (consume && rx->sta) { 4490 struct ieee80211_fast_rx *fast_rx; 4491 4492 fast_rx = rcu_dereference(rx->sta->fast_rx); 4493 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4494 return true; 4495 } 4496 4497 if (!ieee80211_accept_frame(rx)) 4498 return false; 4499 4500 if (!consume) { 4501 skb = skb_copy(skb, GFP_ATOMIC); 4502 if (!skb) { 4503 if (net_ratelimit()) 4504 wiphy_debug(local->hw.wiphy, 4505 "failed to copy skb for %s\n", 4506 sdata->name); 4507 return true; 4508 } 4509 4510 rx->skb = skb; 4511 } 4512 4513 ieee80211_invoke_rx_handlers(rx); 4514 return true; 4515 } 4516 4517 /* 4518 * This is the actual Rx frames handler. as it belongs to Rx path it must 4519 * be called with rcu_read_lock protection. 4520 */ 4521 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4522 struct ieee80211_sta *pubsta, 4523 struct sk_buff *skb, 4524 struct list_head *list) 4525 { 4526 struct ieee80211_local *local = hw_to_local(hw); 4527 struct ieee80211_sub_if_data *sdata; 4528 struct ieee80211_hdr *hdr; 4529 __le16 fc; 4530 struct ieee80211_rx_data rx; 4531 struct ieee80211_sub_if_data *prev; 4532 struct rhlist_head *tmp; 4533 int err = 0; 4534 4535 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4536 memset(&rx, 0, sizeof(rx)); 4537 rx.skb = skb; 4538 rx.local = local; 4539 rx.list = list; 4540 4541 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4542 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4543 4544 if (ieee80211_is_mgmt(fc)) { 4545 /* drop frame if too short for header */ 4546 if (skb->len < ieee80211_hdrlen(fc)) 4547 err = -ENOBUFS; 4548 else 4549 err = skb_linearize(skb); 4550 } else { 4551 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4552 } 4553 4554 if (err) { 4555 dev_kfree_skb(skb); 4556 return; 4557 } 4558 4559 hdr = (struct ieee80211_hdr *)skb->data; 4560 ieee80211_parse_qos(&rx); 4561 ieee80211_verify_alignment(&rx); 4562 4563 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4564 ieee80211_is_beacon(hdr->frame_control) || 4565 ieee80211_is_s1g_beacon(hdr->frame_control))) 4566 ieee80211_scan_rx(local, skb); 4567 4568 if (ieee80211_is_data(fc)) { 4569 struct sta_info *sta, *prev_sta; 4570 4571 if (pubsta) { 4572 rx.sta = container_of(pubsta, struct sta_info, sta); 4573 rx.sdata = rx.sta->sdata; 4574 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4575 return; 4576 goto out; 4577 } 4578 4579 prev_sta = NULL; 4580 4581 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4582 if (!prev_sta) { 4583 prev_sta = sta; 4584 continue; 4585 } 4586 4587 rx.sta = prev_sta; 4588 rx.sdata = prev_sta->sdata; 4589 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4590 4591 prev_sta = sta; 4592 } 4593 4594 if (prev_sta) { 4595 rx.sta = prev_sta; 4596 rx.sdata = prev_sta->sdata; 4597 4598 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4599 return; 4600 goto out; 4601 } 4602 } 4603 4604 prev = NULL; 4605 4606 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4607 if (!ieee80211_sdata_running(sdata)) 4608 continue; 4609 4610 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4611 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4612 continue; 4613 4614 /* 4615 * frame is destined for this interface, but if it's 4616 * not also for the previous one we handle that after 4617 * the loop to avoid copying the SKB once too much 4618 */ 4619 4620 if (!prev) { 4621 prev = sdata; 4622 continue; 4623 } 4624 4625 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4626 rx.sdata = prev; 4627 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4628 4629 prev = sdata; 4630 } 4631 4632 if (prev) { 4633 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4634 rx.sdata = prev; 4635 4636 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4637 return; 4638 } 4639 4640 out: 4641 dev_kfree_skb(skb); 4642 } 4643 4644 /* 4645 * This is the receive path handler. It is called by a low level driver when an 4646 * 802.11 MPDU is received from the hardware. 4647 */ 4648 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4649 struct sk_buff *skb, struct list_head *list) 4650 { 4651 struct ieee80211_local *local = hw_to_local(hw); 4652 struct ieee80211_rate *rate = NULL; 4653 struct ieee80211_supported_band *sband; 4654 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4655 4656 WARN_ON_ONCE(softirq_count() == 0); 4657 4658 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4659 goto drop; 4660 4661 sband = local->hw.wiphy->bands[status->band]; 4662 if (WARN_ON(!sband)) 4663 goto drop; 4664 4665 /* 4666 * If we're suspending, it is possible although not too likely 4667 * that we'd be receiving frames after having already partially 4668 * quiesced the stack. We can't process such frames then since 4669 * that might, for example, cause stations to be added or other 4670 * driver callbacks be invoked. 4671 */ 4672 if (unlikely(local->quiescing || local->suspended)) 4673 goto drop; 4674 4675 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4676 if (unlikely(local->in_reconfig)) 4677 goto drop; 4678 4679 /* 4680 * The same happens when we're not even started, 4681 * but that's worth a warning. 4682 */ 4683 if (WARN_ON(!local->started)) 4684 goto drop; 4685 4686 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4687 /* 4688 * Validate the rate, unless a PLCP error means that 4689 * we probably can't have a valid rate here anyway. 4690 */ 4691 4692 switch (status->encoding) { 4693 case RX_ENC_HT: 4694 /* 4695 * rate_idx is MCS index, which can be [0-76] 4696 * as documented on: 4697 * 4698 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 4699 * 4700 * Anything else would be some sort of driver or 4701 * hardware error. The driver should catch hardware 4702 * errors. 4703 */ 4704 if (WARN(status->rate_idx > 76, 4705 "Rate marked as an HT rate but passed " 4706 "status->rate_idx is not " 4707 "an MCS index [0-76]: %d (0x%02x)\n", 4708 status->rate_idx, 4709 status->rate_idx)) 4710 goto drop; 4711 break; 4712 case RX_ENC_VHT: 4713 if (WARN_ONCE(status->rate_idx > 9 || 4714 !status->nss || 4715 status->nss > 8, 4716 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4717 status->rate_idx, status->nss)) 4718 goto drop; 4719 break; 4720 case RX_ENC_HE: 4721 if (WARN_ONCE(status->rate_idx > 11 || 4722 !status->nss || 4723 status->nss > 8, 4724 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4725 status->rate_idx, status->nss)) 4726 goto drop; 4727 break; 4728 default: 4729 WARN_ON_ONCE(1); 4730 fallthrough; 4731 case RX_ENC_LEGACY: 4732 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4733 goto drop; 4734 rate = &sband->bitrates[status->rate_idx]; 4735 } 4736 } 4737 4738 status->rx_flags = 0; 4739 4740 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4741 4742 /* 4743 * Frames with failed FCS/PLCP checksum are not returned, 4744 * all other frames are returned without radiotap header 4745 * if it was previously present. 4746 * Also, frames with less than 16 bytes are dropped. 4747 */ 4748 skb = ieee80211_rx_monitor(local, skb, rate); 4749 if (skb) { 4750 ieee80211_tpt_led_trig_rx(local, 4751 ((struct ieee80211_hdr *)skb->data)->frame_control, 4752 skb->len); 4753 4754 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 4755 } 4756 4757 kcov_remote_stop(); 4758 return; 4759 drop: 4760 kfree_skb(skb); 4761 } 4762 EXPORT_SYMBOL(ieee80211_rx_list); 4763 4764 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4765 struct sk_buff *skb, struct napi_struct *napi) 4766 { 4767 struct sk_buff *tmp; 4768 LIST_HEAD(list); 4769 4770 4771 /* 4772 * key references and virtual interfaces are protected using RCU 4773 * and this requires that we are in a read-side RCU section during 4774 * receive processing 4775 */ 4776 rcu_read_lock(); 4777 ieee80211_rx_list(hw, pubsta, skb, &list); 4778 rcu_read_unlock(); 4779 4780 if (!napi) { 4781 netif_receive_skb_list(&list); 4782 return; 4783 } 4784 4785 list_for_each_entry_safe(skb, tmp, &list, list) { 4786 skb_list_del_init(skb); 4787 napi_gro_receive(napi, skb); 4788 } 4789 } 4790 EXPORT_SYMBOL(ieee80211_rx_napi); 4791 4792 /* This is a version of the rx handler that can be called from hard irq 4793 * context. Post the skb on the queue and schedule the tasklet */ 4794 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4795 { 4796 struct ieee80211_local *local = hw_to_local(hw); 4797 4798 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4799 4800 skb->pkt_type = IEEE80211_RX_MSG; 4801 skb_queue_tail(&local->skb_queue, skb); 4802 tasklet_schedule(&local->tasklet); 4803 } 4804 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4805