1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/jiffies.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/skbuff.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <linux/bitops.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 38 { 39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 40 41 u64_stats_update_begin(&tstats->syncp); 42 tstats->rx_packets++; 43 tstats->rx_bytes += len; 44 u64_stats_update_end(&tstats->syncp); 45 } 46 47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 48 enum nl80211_iftype type) 49 { 50 __le16 fc = hdr->frame_control; 51 52 if (ieee80211_is_data(fc)) { 53 if (len < 24) /* drop incorrect hdr len (data) */ 54 return NULL; 55 56 if (ieee80211_has_a4(fc)) 57 return NULL; 58 if (ieee80211_has_tods(fc)) 59 return hdr->addr1; 60 if (ieee80211_has_fromds(fc)) 61 return hdr->addr2; 62 63 return hdr->addr3; 64 } 65 66 if (ieee80211_is_mgmt(fc)) { 67 if (len < 24) /* drop incorrect hdr len (mgmt) */ 68 return NULL; 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_ctl(fc)) { 73 if (ieee80211_is_pspoll(fc)) 74 return hdr->addr1; 75 76 if (ieee80211_is_back_req(fc)) { 77 switch (type) { 78 case NL80211_IFTYPE_STATION: 79 return hdr->addr2; 80 case NL80211_IFTYPE_AP: 81 case NL80211_IFTYPE_AP_VLAN: 82 return hdr->addr1; 83 default: 84 break; /* fall through to the return */ 85 } 86 } 87 } 88 89 return NULL; 90 } 91 92 /* 93 * monitor mode reception 94 * 95 * This function cleans up the SKB, i.e. it removes all the stuff 96 * only useful for monitoring. 97 */ 98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 99 struct sk_buff *skb, 100 unsigned int rtap_vendor_space) 101 { 102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 103 if (likely(skb->len > FCS_LEN)) 104 __pskb_trim(skb, skb->len - FCS_LEN); 105 else { 106 /* driver bug */ 107 WARN_ON(1); 108 dev_kfree_skb(skb); 109 return NULL; 110 } 111 } 112 113 __pskb_pull(skb, rtap_vendor_space); 114 115 return skb; 116 } 117 118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 119 unsigned int rtap_vendor_space) 120 { 121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 122 struct ieee80211_hdr *hdr; 123 124 hdr = (void *)(skb->data + rtap_vendor_space); 125 126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 127 RX_FLAG_FAILED_PLCP_CRC | 128 RX_FLAG_ONLY_MONITOR)) 129 return true; 130 131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 132 return true; 133 134 if (ieee80211_is_ctl(hdr->frame_control) && 135 !ieee80211_is_pspoll(hdr->frame_control) && 136 !ieee80211_is_back_req(hdr->frame_control)) 137 return true; 138 139 return false; 140 } 141 142 static int 143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 144 struct ieee80211_rx_status *status, 145 struct sk_buff *skb) 146 { 147 int len; 148 149 /* always present fields */ 150 len = sizeof(struct ieee80211_radiotap_header) + 8; 151 152 /* allocate extra bitmaps */ 153 if (status->chains) 154 len += 4 * hweight8(status->chains); 155 156 if (ieee80211_have_rx_timestamp(status)) { 157 len = ALIGN(len, 8); 158 len += 8; 159 } 160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 161 len += 1; 162 163 /* antenna field, if we don't have per-chain info */ 164 if (!status->chains) 165 len += 1; 166 167 /* padding for RX_FLAGS if necessary */ 168 len = ALIGN(len, 2); 169 170 if (status->flag & RX_FLAG_HT) /* HT info */ 171 len += 3; 172 173 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 174 len = ALIGN(len, 4); 175 len += 8; 176 } 177 178 if (status->flag & RX_FLAG_VHT) { 179 len = ALIGN(len, 2); 180 len += 12; 181 } 182 183 if (local->hw.radiotap_timestamp.units_pos >= 0) { 184 len = ALIGN(len, 8); 185 len += 12; 186 } 187 188 if (status->chains) { 189 /* antenna and antenna signal fields */ 190 len += 2 * hweight8(status->chains); 191 } 192 193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 194 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 195 196 /* vendor presence bitmap */ 197 len += 4; 198 /* alignment for fixed 6-byte vendor data header */ 199 len = ALIGN(len, 2); 200 /* vendor data header */ 201 len += 6; 202 if (WARN_ON(rtap->align == 0)) 203 rtap->align = 1; 204 len = ALIGN(len, rtap->align); 205 len += rtap->len + rtap->pad; 206 } 207 208 return len; 209 } 210 211 /* 212 * ieee80211_add_rx_radiotap_header - add radiotap header 213 * 214 * add a radiotap header containing all the fields which the hardware provided. 215 */ 216 static void 217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 218 struct sk_buff *skb, 219 struct ieee80211_rate *rate, 220 int rtap_len, bool has_fcs) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 struct ieee80211_radiotap_header *rthdr; 224 unsigned char *pos; 225 __le32 *it_present; 226 u32 it_present_val; 227 u16 rx_flags = 0; 228 u16 channel_flags = 0; 229 int mpdulen, chain; 230 unsigned long chains = status->chains; 231 struct ieee80211_vendor_radiotap rtap = {}; 232 233 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 234 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 235 /* rtap.len and rtap.pad are undone immediately */ 236 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 237 } 238 239 mpdulen = skb->len; 240 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 241 mpdulen += FCS_LEN; 242 243 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 244 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 245 it_present = &rthdr->it_present; 246 247 /* radiotap header, set always present flags */ 248 rthdr->it_len = cpu_to_le16(rtap_len); 249 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 250 BIT(IEEE80211_RADIOTAP_CHANNEL) | 251 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 252 253 if (!status->chains) 254 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 255 256 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 257 it_present_val |= 258 BIT(IEEE80211_RADIOTAP_EXT) | 259 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 260 put_unaligned_le32(it_present_val, it_present); 261 it_present++; 262 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 263 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 264 } 265 266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 267 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 268 BIT(IEEE80211_RADIOTAP_EXT); 269 put_unaligned_le32(it_present_val, it_present); 270 it_present++; 271 it_present_val = rtap.present; 272 } 273 274 put_unaligned_le32(it_present_val, it_present); 275 276 pos = (void *)(it_present + 1); 277 278 /* the order of the following fields is important */ 279 280 /* IEEE80211_RADIOTAP_TSFT */ 281 if (ieee80211_have_rx_timestamp(status)) { 282 /* padding */ 283 while ((pos - (u8 *)rthdr) & 7) 284 *pos++ = 0; 285 put_unaligned_le64( 286 ieee80211_calculate_rx_timestamp(local, status, 287 mpdulen, 0), 288 pos); 289 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 290 pos += 8; 291 } 292 293 /* IEEE80211_RADIOTAP_FLAGS */ 294 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 295 *pos |= IEEE80211_RADIOTAP_F_FCS; 296 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 297 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 298 if (status->flag & RX_FLAG_SHORTPRE) 299 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 300 pos++; 301 302 /* IEEE80211_RADIOTAP_RATE */ 303 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 304 /* 305 * Without rate information don't add it. If we have, 306 * MCS information is a separate field in radiotap, 307 * added below. The byte here is needed as padding 308 * for the channel though, so initialise it to 0. 309 */ 310 *pos = 0; 311 } else { 312 int shift = 0; 313 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 314 if (status->flag & RX_FLAG_10MHZ) 315 shift = 1; 316 else if (status->flag & RX_FLAG_5MHZ) 317 shift = 2; 318 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 319 } 320 pos++; 321 322 /* IEEE80211_RADIOTAP_CHANNEL */ 323 put_unaligned_le16(status->freq, pos); 324 pos += 2; 325 if (status->flag & RX_FLAG_10MHZ) 326 channel_flags |= IEEE80211_CHAN_HALF; 327 else if (status->flag & RX_FLAG_5MHZ) 328 channel_flags |= IEEE80211_CHAN_QUARTER; 329 330 if (status->band == NL80211_BAND_5GHZ) 331 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 332 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 333 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 334 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 335 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 336 else if (rate) 337 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 338 else 339 channel_flags |= IEEE80211_CHAN_2GHZ; 340 put_unaligned_le16(channel_flags, pos); 341 pos += 2; 342 343 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 344 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 345 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 346 *pos = status->signal; 347 rthdr->it_present |= 348 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 349 pos++; 350 } 351 352 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 353 354 if (!status->chains) { 355 /* IEEE80211_RADIOTAP_ANTENNA */ 356 *pos = status->antenna; 357 pos++; 358 } 359 360 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 361 362 /* IEEE80211_RADIOTAP_RX_FLAGS */ 363 /* ensure 2 byte alignment for the 2 byte field as required */ 364 if ((pos - (u8 *)rthdr) & 1) 365 *pos++ = 0; 366 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 367 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 368 put_unaligned_le16(rx_flags, pos); 369 pos += 2; 370 371 if (status->flag & RX_FLAG_HT) { 372 unsigned int stbc; 373 374 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 375 *pos++ = local->hw.radiotap_mcs_details; 376 *pos = 0; 377 if (status->flag & RX_FLAG_SHORT_GI) 378 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 379 if (status->flag & RX_FLAG_40MHZ) 380 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 381 if (status->flag & RX_FLAG_HT_GF) 382 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 383 if (status->flag & RX_FLAG_LDPC) 384 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 385 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 386 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 387 pos++; 388 *pos++ = status->rate_idx; 389 } 390 391 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 392 u16 flags = 0; 393 394 /* ensure 4 byte alignment */ 395 while ((pos - (u8 *)rthdr) & 3) 396 pos++; 397 rthdr->it_present |= 398 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 399 put_unaligned_le32(status->ampdu_reference, pos); 400 pos += 4; 401 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 402 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 403 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 404 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 405 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 406 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 407 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 408 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 409 put_unaligned_le16(flags, pos); 410 pos += 2; 411 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 412 *pos++ = status->ampdu_delimiter_crc; 413 else 414 *pos++ = 0; 415 *pos++ = 0; 416 } 417 418 if (status->flag & RX_FLAG_VHT) { 419 u16 known = local->hw.radiotap_vht_details; 420 421 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 422 put_unaligned_le16(known, pos); 423 pos += 2; 424 /* flags */ 425 if (status->flag & RX_FLAG_SHORT_GI) 426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 427 /* in VHT, STBC is binary */ 428 if (status->flag & RX_FLAG_STBC_MASK) 429 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 430 if (status->vht_flag & RX_VHT_FLAG_BF) 431 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 432 pos++; 433 /* bandwidth */ 434 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 435 *pos++ = 4; 436 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 437 *pos++ = 11; 438 else if (status->flag & RX_FLAG_40MHZ) 439 *pos++ = 1; 440 else /* 20 MHz */ 441 *pos++ = 0; 442 /* MCS/NSS */ 443 *pos = (status->rate_idx << 4) | status->vht_nss; 444 pos += 4; 445 /* coding field */ 446 if (status->flag & RX_FLAG_LDPC) 447 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 448 pos++; 449 /* group ID */ 450 pos++; 451 /* partial_aid */ 452 pos += 2; 453 } 454 455 if (local->hw.radiotap_timestamp.units_pos >= 0) { 456 u16 accuracy = 0; 457 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 458 459 rthdr->it_present |= 460 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 461 462 /* ensure 8 byte alignment */ 463 while ((pos - (u8 *)rthdr) & 7) 464 pos++; 465 466 put_unaligned_le64(status->device_timestamp, pos); 467 pos += sizeof(u64); 468 469 if (local->hw.radiotap_timestamp.accuracy >= 0) { 470 accuracy = local->hw.radiotap_timestamp.accuracy; 471 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 472 } 473 put_unaligned_le16(accuracy, pos); 474 pos += sizeof(u16); 475 476 *pos++ = local->hw.radiotap_timestamp.units_pos; 477 *pos++ = flags; 478 } 479 480 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 481 *pos++ = status->chain_signal[chain]; 482 *pos++ = chain; 483 } 484 485 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 486 /* ensure 2 byte alignment for the vendor field as required */ 487 if ((pos - (u8 *)rthdr) & 1) 488 *pos++ = 0; 489 *pos++ = rtap.oui[0]; 490 *pos++ = rtap.oui[1]; 491 *pos++ = rtap.oui[2]; 492 *pos++ = rtap.subns; 493 put_unaligned_le16(rtap.len, pos); 494 pos += 2; 495 /* align the actual payload as requested */ 496 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 497 *pos++ = 0; 498 /* data (and possible padding) already follows */ 499 } 500 } 501 502 /* 503 * This function copies a received frame to all monitor interfaces and 504 * returns a cleaned-up SKB that no longer includes the FCS nor the 505 * radiotap header the driver might have added. 506 */ 507 static struct sk_buff * 508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 509 struct ieee80211_rate *rate) 510 { 511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 512 struct ieee80211_sub_if_data *sdata; 513 int rt_hdrlen, needed_headroom; 514 struct sk_buff *skb, *skb2; 515 struct net_device *prev_dev = NULL; 516 int present_fcs_len = 0; 517 unsigned int rtap_vendor_space = 0; 518 struct ieee80211_mgmt *mgmt; 519 struct ieee80211_sub_if_data *monitor_sdata = 520 rcu_dereference(local->monitor_sdata); 521 522 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 523 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 524 525 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 526 } 527 528 /* 529 * First, we may need to make a copy of the skb because 530 * (1) we need to modify it for radiotap (if not present), and 531 * (2) the other RX handlers will modify the skb we got. 532 * 533 * We don't need to, of course, if we aren't going to return 534 * the SKB because it has a bad FCS/PLCP checksum. 535 */ 536 537 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 538 present_fcs_len = FCS_LEN; 539 540 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 541 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 542 dev_kfree_skb(origskb); 543 return NULL; 544 } 545 546 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 547 if (should_drop_frame(origskb, present_fcs_len, 548 rtap_vendor_space)) { 549 dev_kfree_skb(origskb); 550 return NULL; 551 } 552 553 return remove_monitor_info(local, origskb, rtap_vendor_space); 554 } 555 556 /* room for the radiotap header based on driver features */ 557 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 558 needed_headroom = rt_hdrlen - rtap_vendor_space; 559 560 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 561 /* only need to expand headroom if necessary */ 562 skb = origskb; 563 origskb = NULL; 564 565 /* 566 * This shouldn't trigger often because most devices have an 567 * RX header they pull before we get here, and that should 568 * be big enough for our radiotap information. We should 569 * probably export the length to drivers so that we can have 570 * them allocate enough headroom to start with. 571 */ 572 if (skb_headroom(skb) < needed_headroom && 573 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 574 dev_kfree_skb(skb); 575 return NULL; 576 } 577 } else { 578 /* 579 * Need to make a copy and possibly remove radiotap header 580 * and FCS from the original. 581 */ 582 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 583 584 origskb = remove_monitor_info(local, origskb, 585 rtap_vendor_space); 586 587 if (!skb) 588 return origskb; 589 } 590 591 /* prepend radiotap information */ 592 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 593 594 skb_reset_mac_header(skb); 595 skb->ip_summed = CHECKSUM_UNNECESSARY; 596 skb->pkt_type = PACKET_OTHERHOST; 597 skb->protocol = htons(ETH_P_802_2); 598 599 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 600 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 601 continue; 602 603 if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) 604 continue; 605 606 if (!ieee80211_sdata_running(sdata)) 607 continue; 608 609 if (prev_dev) { 610 skb2 = skb_clone(skb, GFP_ATOMIC); 611 if (skb2) { 612 skb2->dev = prev_dev; 613 netif_receive_skb(skb2); 614 } 615 } 616 617 prev_dev = sdata->dev; 618 ieee80211_rx_stats(sdata->dev, skb->len); 619 } 620 621 mgmt = (void *)skb->data; 622 if (monitor_sdata && 623 skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN && 624 ieee80211_is_action(mgmt->frame_control) && 625 mgmt->u.action.category == WLAN_CATEGORY_VHT && 626 mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT && 627 is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) && 628 ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) { 629 struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC); 630 631 if (mu_skb) { 632 mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 633 skb_queue_tail(&monitor_sdata->skb_queue, mu_skb); 634 ieee80211_queue_work(&local->hw, &monitor_sdata->work); 635 } 636 } 637 638 if (prev_dev) { 639 skb->dev = prev_dev; 640 netif_receive_skb(skb); 641 } else 642 dev_kfree_skb(skb); 643 644 return origskb; 645 } 646 647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 648 { 649 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 650 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 651 int tid, seqno_idx, security_idx; 652 653 /* does the frame have a qos control field? */ 654 if (ieee80211_is_data_qos(hdr->frame_control)) { 655 u8 *qc = ieee80211_get_qos_ctl(hdr); 656 /* frame has qos control */ 657 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 658 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 659 status->rx_flags |= IEEE80211_RX_AMSDU; 660 661 seqno_idx = tid; 662 security_idx = tid; 663 } else { 664 /* 665 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 666 * 667 * Sequence numbers for management frames, QoS data 668 * frames with a broadcast/multicast address in the 669 * Address 1 field, and all non-QoS data frames sent 670 * by QoS STAs are assigned using an additional single 671 * modulo-4096 counter, [...] 672 * 673 * We also use that counter for non-QoS STAs. 674 */ 675 seqno_idx = IEEE80211_NUM_TIDS; 676 security_idx = 0; 677 if (ieee80211_is_mgmt(hdr->frame_control)) 678 security_idx = IEEE80211_NUM_TIDS; 679 tid = 0; 680 } 681 682 rx->seqno_idx = seqno_idx; 683 rx->security_idx = security_idx; 684 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 685 * For now, set skb->priority to 0 for other cases. */ 686 rx->skb->priority = (tid > 7) ? 0 : tid; 687 } 688 689 /** 690 * DOC: Packet alignment 691 * 692 * Drivers always need to pass packets that are aligned to two-byte boundaries 693 * to the stack. 694 * 695 * Additionally, should, if possible, align the payload data in a way that 696 * guarantees that the contained IP header is aligned to a four-byte 697 * boundary. In the case of regular frames, this simply means aligning the 698 * payload to a four-byte boundary (because either the IP header is directly 699 * contained, or IV/RFC1042 headers that have a length divisible by four are 700 * in front of it). If the payload data is not properly aligned and the 701 * architecture doesn't support efficient unaligned operations, mac80211 702 * will align the data. 703 * 704 * With A-MSDU frames, however, the payload data address must yield two modulo 705 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 706 * push the IP header further back to a multiple of four again. Thankfully, the 707 * specs were sane enough this time around to require padding each A-MSDU 708 * subframe to a length that is a multiple of four. 709 * 710 * Padding like Atheros hardware adds which is between the 802.11 header and 711 * the payload is not supported, the driver is required to move the 802.11 712 * header to be directly in front of the payload in that case. 713 */ 714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 715 { 716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 717 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 718 #endif 719 } 720 721 722 /* rx handlers */ 723 724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 725 { 726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 727 728 if (is_multicast_ether_addr(hdr->addr1)) 729 return 0; 730 731 return ieee80211_is_robust_mgmt_frame(skb); 732 } 733 734 735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 736 { 737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 738 739 if (!is_multicast_ether_addr(hdr->addr1)) 740 return 0; 741 742 return ieee80211_is_robust_mgmt_frame(skb); 743 } 744 745 746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 748 { 749 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 750 struct ieee80211_mmie *mmie; 751 struct ieee80211_mmie_16 *mmie16; 752 753 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 754 return -1; 755 756 if (!ieee80211_is_robust_mgmt_frame(skb)) 757 return -1; /* not a robust management frame */ 758 759 mmie = (struct ieee80211_mmie *) 760 (skb->data + skb->len - sizeof(*mmie)); 761 if (mmie->element_id == WLAN_EID_MMIE && 762 mmie->length == sizeof(*mmie) - 2) 763 return le16_to_cpu(mmie->key_id); 764 765 mmie16 = (struct ieee80211_mmie_16 *) 766 (skb->data + skb->len - sizeof(*mmie16)); 767 if (skb->len >= 24 + sizeof(*mmie16) && 768 mmie16->element_id == WLAN_EID_MMIE && 769 mmie16->length == sizeof(*mmie16) - 2) 770 return le16_to_cpu(mmie16->key_id); 771 772 return -1; 773 } 774 775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 776 struct sk_buff *skb) 777 { 778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 779 __le16 fc; 780 int hdrlen; 781 u8 keyid; 782 783 fc = hdr->frame_control; 784 hdrlen = ieee80211_hdrlen(fc); 785 786 if (skb->len < hdrlen + cs->hdr_len) 787 return -EINVAL; 788 789 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 790 keyid &= cs->key_idx_mask; 791 keyid >>= cs->key_idx_shift; 792 793 return keyid; 794 } 795 796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 797 { 798 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 799 char *dev_addr = rx->sdata->vif.addr; 800 801 if (ieee80211_is_data(hdr->frame_control)) { 802 if (is_multicast_ether_addr(hdr->addr1)) { 803 if (ieee80211_has_tods(hdr->frame_control) || 804 !ieee80211_has_fromds(hdr->frame_control)) 805 return RX_DROP_MONITOR; 806 if (ether_addr_equal(hdr->addr3, dev_addr)) 807 return RX_DROP_MONITOR; 808 } else { 809 if (!ieee80211_has_a4(hdr->frame_control)) 810 return RX_DROP_MONITOR; 811 if (ether_addr_equal(hdr->addr4, dev_addr)) 812 return RX_DROP_MONITOR; 813 } 814 } 815 816 /* If there is not an established peer link and this is not a peer link 817 * establisment frame, beacon or probe, drop the frame. 818 */ 819 820 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 821 struct ieee80211_mgmt *mgmt; 822 823 if (!ieee80211_is_mgmt(hdr->frame_control)) 824 return RX_DROP_MONITOR; 825 826 if (ieee80211_is_action(hdr->frame_control)) { 827 u8 category; 828 829 /* make sure category field is present */ 830 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 831 return RX_DROP_MONITOR; 832 833 mgmt = (struct ieee80211_mgmt *)hdr; 834 category = mgmt->u.action.category; 835 if (category != WLAN_CATEGORY_MESH_ACTION && 836 category != WLAN_CATEGORY_SELF_PROTECTED) 837 return RX_DROP_MONITOR; 838 return RX_CONTINUE; 839 } 840 841 if (ieee80211_is_probe_req(hdr->frame_control) || 842 ieee80211_is_probe_resp(hdr->frame_control) || 843 ieee80211_is_beacon(hdr->frame_control) || 844 ieee80211_is_auth(hdr->frame_control)) 845 return RX_CONTINUE; 846 847 return RX_DROP_MONITOR; 848 } 849 850 return RX_CONTINUE; 851 } 852 853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 854 int index) 855 { 856 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 857 struct sk_buff *tail = skb_peek_tail(frames); 858 struct ieee80211_rx_status *status; 859 860 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 861 return true; 862 863 if (!tail) 864 return false; 865 866 status = IEEE80211_SKB_RXCB(tail); 867 if (status->flag & RX_FLAG_AMSDU_MORE) 868 return false; 869 870 return true; 871 } 872 873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 874 struct tid_ampdu_rx *tid_agg_rx, 875 int index, 876 struct sk_buff_head *frames) 877 { 878 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 879 struct sk_buff *skb; 880 struct ieee80211_rx_status *status; 881 882 lockdep_assert_held(&tid_agg_rx->reorder_lock); 883 884 if (skb_queue_empty(skb_list)) 885 goto no_frame; 886 887 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 888 __skb_queue_purge(skb_list); 889 goto no_frame; 890 } 891 892 /* release frames from the reorder ring buffer */ 893 tid_agg_rx->stored_mpdu_num--; 894 while ((skb = __skb_dequeue(skb_list))) { 895 status = IEEE80211_SKB_RXCB(skb); 896 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 897 __skb_queue_tail(frames, skb); 898 } 899 900 no_frame: 901 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 902 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 903 } 904 905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 906 struct tid_ampdu_rx *tid_agg_rx, 907 u16 head_seq_num, 908 struct sk_buff_head *frames) 909 { 910 int index; 911 912 lockdep_assert_held(&tid_agg_rx->reorder_lock); 913 914 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 915 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 916 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 917 frames); 918 } 919 } 920 921 /* 922 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 923 * the skb was added to the buffer longer than this time ago, the earlier 924 * frames that have not yet been received are assumed to be lost and the skb 925 * can be released for processing. This may also release other skb's from the 926 * reorder buffer if there are no additional gaps between the frames. 927 * 928 * Callers must hold tid_agg_rx->reorder_lock. 929 */ 930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 931 932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 933 struct tid_ampdu_rx *tid_agg_rx, 934 struct sk_buff_head *frames) 935 { 936 int index, i, j; 937 938 lockdep_assert_held(&tid_agg_rx->reorder_lock); 939 940 /* release the buffer until next missing frame */ 941 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 943 tid_agg_rx->stored_mpdu_num) { 944 /* 945 * No buffers ready to be released, but check whether any 946 * frames in the reorder buffer have timed out. 947 */ 948 int skipped = 1; 949 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 950 j = (j + 1) % tid_agg_rx->buf_size) { 951 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 952 skipped++; 953 continue; 954 } 955 if (skipped && 956 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 957 HT_RX_REORDER_BUF_TIMEOUT)) 958 goto set_release_timer; 959 960 /* don't leave incomplete A-MSDUs around */ 961 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 962 i = (i + 1) % tid_agg_rx->buf_size) 963 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 964 965 ht_dbg_ratelimited(sdata, 966 "release an RX reorder frame due to timeout on earlier frames\n"); 967 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 968 frames); 969 970 /* 971 * Increment the head seq# also for the skipped slots. 972 */ 973 tid_agg_rx->head_seq_num = 974 (tid_agg_rx->head_seq_num + 975 skipped) & IEEE80211_SN_MASK; 976 skipped = 0; 977 } 978 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 979 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 980 frames); 981 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 982 } 983 984 if (tid_agg_rx->stored_mpdu_num) { 985 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 986 987 for (; j != (index - 1) % tid_agg_rx->buf_size; 988 j = (j + 1) % tid_agg_rx->buf_size) { 989 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 990 break; 991 } 992 993 set_release_timer: 994 995 if (!tid_agg_rx->removed) 996 mod_timer(&tid_agg_rx->reorder_timer, 997 tid_agg_rx->reorder_time[j] + 1 + 998 HT_RX_REORDER_BUF_TIMEOUT); 999 } else { 1000 del_timer(&tid_agg_rx->reorder_timer); 1001 } 1002 } 1003 1004 /* 1005 * As this function belongs to the RX path it must be under 1006 * rcu_read_lock protection. It returns false if the frame 1007 * can be processed immediately, true if it was consumed. 1008 */ 1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1010 struct tid_ampdu_rx *tid_agg_rx, 1011 struct sk_buff *skb, 1012 struct sk_buff_head *frames) 1013 { 1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1016 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1017 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1018 u16 head_seq_num, buf_size; 1019 int index; 1020 bool ret = true; 1021 1022 spin_lock(&tid_agg_rx->reorder_lock); 1023 1024 /* 1025 * Offloaded BA sessions have no known starting sequence number so pick 1026 * one from first Rxed frame for this tid after BA was started. 1027 */ 1028 if (unlikely(tid_agg_rx->auto_seq)) { 1029 tid_agg_rx->auto_seq = false; 1030 tid_agg_rx->ssn = mpdu_seq_num; 1031 tid_agg_rx->head_seq_num = mpdu_seq_num; 1032 } 1033 1034 buf_size = tid_agg_rx->buf_size; 1035 head_seq_num = tid_agg_rx->head_seq_num; 1036 1037 /* 1038 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1039 * be reordered. 1040 */ 1041 if (unlikely(!tid_agg_rx->started)) { 1042 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1043 ret = false; 1044 goto out; 1045 } 1046 tid_agg_rx->started = true; 1047 } 1048 1049 /* frame with out of date sequence number */ 1050 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1051 dev_kfree_skb(skb); 1052 goto out; 1053 } 1054 1055 /* 1056 * If frame the sequence number exceeds our buffering window 1057 * size release some previous frames to make room for this one. 1058 */ 1059 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1060 head_seq_num = ieee80211_sn_inc( 1061 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1062 /* release stored frames up to new head to stack */ 1063 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1064 head_seq_num, frames); 1065 } 1066 1067 /* Now the new frame is always in the range of the reordering buffer */ 1068 1069 index = mpdu_seq_num % tid_agg_rx->buf_size; 1070 1071 /* check if we already stored this frame */ 1072 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1073 dev_kfree_skb(skb); 1074 goto out; 1075 } 1076 1077 /* 1078 * If the current MPDU is in the right order and nothing else 1079 * is stored we can process it directly, no need to buffer it. 1080 * If it is first but there's something stored, we may be able 1081 * to release frames after this one. 1082 */ 1083 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1084 tid_agg_rx->stored_mpdu_num == 0) { 1085 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1086 tid_agg_rx->head_seq_num = 1087 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1088 ret = false; 1089 goto out; 1090 } 1091 1092 /* put the frame in the reordering buffer */ 1093 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1094 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1095 tid_agg_rx->reorder_time[index] = jiffies; 1096 tid_agg_rx->stored_mpdu_num++; 1097 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1098 } 1099 1100 out: 1101 spin_unlock(&tid_agg_rx->reorder_lock); 1102 return ret; 1103 } 1104 1105 /* 1106 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1107 * true if the MPDU was buffered, false if it should be processed. 1108 */ 1109 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1110 struct sk_buff_head *frames) 1111 { 1112 struct sk_buff *skb = rx->skb; 1113 struct ieee80211_local *local = rx->local; 1114 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1115 struct sta_info *sta = rx->sta; 1116 struct tid_ampdu_rx *tid_agg_rx; 1117 u16 sc; 1118 u8 tid, ack_policy; 1119 1120 if (!ieee80211_is_data_qos(hdr->frame_control) || 1121 is_multicast_ether_addr(hdr->addr1)) 1122 goto dont_reorder; 1123 1124 /* 1125 * filter the QoS data rx stream according to 1126 * STA/TID and check if this STA/TID is on aggregation 1127 */ 1128 1129 if (!sta) 1130 goto dont_reorder; 1131 1132 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1133 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1134 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1135 1136 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1137 if (!tid_agg_rx) { 1138 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1139 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1140 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1141 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1142 WLAN_BACK_RECIPIENT, 1143 WLAN_REASON_QSTA_REQUIRE_SETUP); 1144 goto dont_reorder; 1145 } 1146 1147 /* qos null data frames are excluded */ 1148 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1149 goto dont_reorder; 1150 1151 /* not part of a BA session */ 1152 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1153 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1154 goto dont_reorder; 1155 1156 /* new, potentially un-ordered, ampdu frame - process it */ 1157 1158 /* reset session timer */ 1159 if (tid_agg_rx->timeout) 1160 tid_agg_rx->last_rx = jiffies; 1161 1162 /* if this mpdu is fragmented - terminate rx aggregation session */ 1163 sc = le16_to_cpu(hdr->seq_ctrl); 1164 if (sc & IEEE80211_SCTL_FRAG) { 1165 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1166 skb_queue_tail(&rx->sdata->skb_queue, skb); 1167 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1168 return; 1169 } 1170 1171 /* 1172 * No locking needed -- we will only ever process one 1173 * RX packet at a time, and thus own tid_agg_rx. All 1174 * other code manipulating it needs to (and does) make 1175 * sure that we cannot get to it any more before doing 1176 * anything with it. 1177 */ 1178 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1179 frames)) 1180 return; 1181 1182 dont_reorder: 1183 __skb_queue_tail(frames, skb); 1184 } 1185 1186 static ieee80211_rx_result debug_noinline 1187 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1188 { 1189 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1190 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1191 1192 if (status->flag & RX_FLAG_DUP_VALIDATED) 1193 return RX_CONTINUE; 1194 1195 /* 1196 * Drop duplicate 802.11 retransmissions 1197 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1198 */ 1199 1200 if (rx->skb->len < 24) 1201 return RX_CONTINUE; 1202 1203 if (ieee80211_is_ctl(hdr->frame_control) || 1204 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1205 is_multicast_ether_addr(hdr->addr1)) 1206 return RX_CONTINUE; 1207 1208 if (!rx->sta) 1209 return RX_CONTINUE; 1210 1211 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1212 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1213 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1214 rx->sta->rx_stats.num_duplicates++; 1215 return RX_DROP_UNUSABLE; 1216 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1217 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1218 } 1219 1220 return RX_CONTINUE; 1221 } 1222 1223 static ieee80211_rx_result debug_noinline 1224 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1225 { 1226 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1227 1228 /* Drop disallowed frame classes based on STA auth/assoc state; 1229 * IEEE 802.11, Chap 5.5. 1230 * 1231 * mac80211 filters only based on association state, i.e. it drops 1232 * Class 3 frames from not associated stations. hostapd sends 1233 * deauth/disassoc frames when needed. In addition, hostapd is 1234 * responsible for filtering on both auth and assoc states. 1235 */ 1236 1237 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1238 return ieee80211_rx_mesh_check(rx); 1239 1240 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1241 ieee80211_is_pspoll(hdr->frame_control)) && 1242 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1243 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1244 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1245 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1246 /* 1247 * accept port control frames from the AP even when it's not 1248 * yet marked ASSOC to prevent a race where we don't set the 1249 * assoc bit quickly enough before it sends the first frame 1250 */ 1251 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1252 ieee80211_is_data_present(hdr->frame_control)) { 1253 unsigned int hdrlen; 1254 __be16 ethertype; 1255 1256 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1257 1258 if (rx->skb->len < hdrlen + 8) 1259 return RX_DROP_MONITOR; 1260 1261 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1262 if (ethertype == rx->sdata->control_port_protocol) 1263 return RX_CONTINUE; 1264 } 1265 1266 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1267 cfg80211_rx_spurious_frame(rx->sdata->dev, 1268 hdr->addr2, 1269 GFP_ATOMIC)) 1270 return RX_DROP_UNUSABLE; 1271 1272 return RX_DROP_MONITOR; 1273 } 1274 1275 return RX_CONTINUE; 1276 } 1277 1278 1279 static ieee80211_rx_result debug_noinline 1280 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1281 { 1282 struct ieee80211_local *local; 1283 struct ieee80211_hdr *hdr; 1284 struct sk_buff *skb; 1285 1286 local = rx->local; 1287 skb = rx->skb; 1288 hdr = (struct ieee80211_hdr *) skb->data; 1289 1290 if (!local->pspolling) 1291 return RX_CONTINUE; 1292 1293 if (!ieee80211_has_fromds(hdr->frame_control)) 1294 /* this is not from AP */ 1295 return RX_CONTINUE; 1296 1297 if (!ieee80211_is_data(hdr->frame_control)) 1298 return RX_CONTINUE; 1299 1300 if (!ieee80211_has_moredata(hdr->frame_control)) { 1301 /* AP has no more frames buffered for us */ 1302 local->pspolling = false; 1303 return RX_CONTINUE; 1304 } 1305 1306 /* more data bit is set, let's request a new frame from the AP */ 1307 ieee80211_send_pspoll(local, rx->sdata); 1308 1309 return RX_CONTINUE; 1310 } 1311 1312 static void sta_ps_start(struct sta_info *sta) 1313 { 1314 struct ieee80211_sub_if_data *sdata = sta->sdata; 1315 struct ieee80211_local *local = sdata->local; 1316 struct ps_data *ps; 1317 int tid; 1318 1319 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1320 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1321 ps = &sdata->bss->ps; 1322 else 1323 return; 1324 1325 atomic_inc(&ps->num_sta_ps); 1326 set_sta_flag(sta, WLAN_STA_PS_STA); 1327 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1328 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1329 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1330 sta->sta.addr, sta->sta.aid); 1331 1332 ieee80211_clear_fast_xmit(sta); 1333 1334 if (!sta->sta.txq[0]) 1335 return; 1336 1337 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1338 if (txq_has_queue(sta->sta.txq[tid])) 1339 set_bit(tid, &sta->txq_buffered_tids); 1340 else 1341 clear_bit(tid, &sta->txq_buffered_tids); 1342 } 1343 } 1344 1345 static void sta_ps_end(struct sta_info *sta) 1346 { 1347 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1348 sta->sta.addr, sta->sta.aid); 1349 1350 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1351 /* 1352 * Clear the flag only if the other one is still set 1353 * so that the TX path won't start TX'ing new frames 1354 * directly ... In the case that the driver flag isn't 1355 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1356 */ 1357 clear_sta_flag(sta, WLAN_STA_PS_STA); 1358 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1359 sta->sta.addr, sta->sta.aid); 1360 return; 1361 } 1362 1363 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1364 clear_sta_flag(sta, WLAN_STA_PS_STA); 1365 ieee80211_sta_ps_deliver_wakeup(sta); 1366 } 1367 1368 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1369 { 1370 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1371 bool in_ps; 1372 1373 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1374 1375 /* Don't let the same PS state be set twice */ 1376 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1377 if ((start && in_ps) || (!start && !in_ps)) 1378 return -EINVAL; 1379 1380 if (start) 1381 sta_ps_start(sta); 1382 else 1383 sta_ps_end(sta); 1384 1385 return 0; 1386 } 1387 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1388 1389 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1390 { 1391 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1392 1393 if (test_sta_flag(sta, WLAN_STA_SP)) 1394 return; 1395 1396 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1397 ieee80211_sta_ps_deliver_poll_response(sta); 1398 else 1399 set_sta_flag(sta, WLAN_STA_PSPOLL); 1400 } 1401 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1402 1403 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1404 { 1405 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1406 int ac = ieee80211_ac_from_tid(tid); 1407 1408 /* 1409 * If this AC is not trigger-enabled do nothing unless the 1410 * driver is calling us after it already checked. 1411 * 1412 * NB: This could/should check a separate bitmap of trigger- 1413 * enabled queues, but for now we only implement uAPSD w/o 1414 * TSPEC changes to the ACs, so they're always the same. 1415 */ 1416 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1417 tid != IEEE80211_NUM_TIDS) 1418 return; 1419 1420 /* if we are in a service period, do nothing */ 1421 if (test_sta_flag(sta, WLAN_STA_SP)) 1422 return; 1423 1424 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1425 ieee80211_sta_ps_deliver_uapsd(sta); 1426 else 1427 set_sta_flag(sta, WLAN_STA_UAPSD); 1428 } 1429 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1430 1431 static ieee80211_rx_result debug_noinline 1432 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1433 { 1434 struct ieee80211_sub_if_data *sdata = rx->sdata; 1435 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1436 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1437 1438 if (!rx->sta) 1439 return RX_CONTINUE; 1440 1441 if (sdata->vif.type != NL80211_IFTYPE_AP && 1442 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1443 return RX_CONTINUE; 1444 1445 /* 1446 * The device handles station powersave, so don't do anything about 1447 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1448 * it to mac80211 since they're handled.) 1449 */ 1450 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1451 return RX_CONTINUE; 1452 1453 /* 1454 * Don't do anything if the station isn't already asleep. In 1455 * the uAPSD case, the station will probably be marked asleep, 1456 * in the PS-Poll case the station must be confused ... 1457 */ 1458 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1459 return RX_CONTINUE; 1460 1461 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1462 ieee80211_sta_pspoll(&rx->sta->sta); 1463 1464 /* Free PS Poll skb here instead of returning RX_DROP that would 1465 * count as an dropped frame. */ 1466 dev_kfree_skb(rx->skb); 1467 1468 return RX_QUEUED; 1469 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1470 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1471 ieee80211_has_pm(hdr->frame_control) && 1472 (ieee80211_is_data_qos(hdr->frame_control) || 1473 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1474 u8 tid; 1475 1476 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1477 1478 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1479 } 1480 1481 return RX_CONTINUE; 1482 } 1483 1484 static ieee80211_rx_result debug_noinline 1485 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1486 { 1487 struct sta_info *sta = rx->sta; 1488 struct sk_buff *skb = rx->skb; 1489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1490 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1491 int i; 1492 1493 if (!sta) 1494 return RX_CONTINUE; 1495 1496 /* 1497 * Update last_rx only for IBSS packets which are for the current 1498 * BSSID and for station already AUTHORIZED to avoid keeping the 1499 * current IBSS network alive in cases where other STAs start 1500 * using different BSSID. This will also give the station another 1501 * chance to restart the authentication/authorization in case 1502 * something went wrong the first time. 1503 */ 1504 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1505 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1506 NL80211_IFTYPE_ADHOC); 1507 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1508 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1509 sta->rx_stats.last_rx = jiffies; 1510 if (ieee80211_is_data(hdr->frame_control) && 1511 !is_multicast_ether_addr(hdr->addr1)) 1512 sta->rx_stats.last_rate = 1513 sta_stats_encode_rate(status); 1514 } 1515 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1516 sta->rx_stats.last_rx = jiffies; 1517 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1518 /* 1519 * Mesh beacons will update last_rx when if they are found to 1520 * match the current local configuration when processed. 1521 */ 1522 sta->rx_stats.last_rx = jiffies; 1523 if (ieee80211_is_data(hdr->frame_control)) 1524 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1525 } 1526 1527 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1528 ieee80211_sta_rx_notify(rx->sdata, hdr); 1529 1530 sta->rx_stats.fragments++; 1531 1532 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1533 sta->rx_stats.bytes += rx->skb->len; 1534 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1535 1536 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1537 sta->rx_stats.last_signal = status->signal; 1538 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1539 } 1540 1541 if (status->chains) { 1542 sta->rx_stats.chains = status->chains; 1543 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1544 int signal = status->chain_signal[i]; 1545 1546 if (!(status->chains & BIT(i))) 1547 continue; 1548 1549 sta->rx_stats.chain_signal_last[i] = signal; 1550 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1551 -signal); 1552 } 1553 } 1554 1555 /* 1556 * Change STA power saving mode only at the end of a frame 1557 * exchange sequence. 1558 */ 1559 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1560 !ieee80211_has_morefrags(hdr->frame_control) && 1561 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1562 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1563 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1564 /* PM bit is only checked in frames where it isn't reserved, 1565 * in AP mode it's reserved in non-bufferable management frames 1566 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1567 */ 1568 (!ieee80211_is_mgmt(hdr->frame_control) || 1569 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1570 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1571 if (!ieee80211_has_pm(hdr->frame_control)) 1572 sta_ps_end(sta); 1573 } else { 1574 if (ieee80211_has_pm(hdr->frame_control)) 1575 sta_ps_start(sta); 1576 } 1577 } 1578 1579 /* mesh power save support */ 1580 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1581 ieee80211_mps_rx_h_sta_process(sta, hdr); 1582 1583 /* 1584 * Drop (qos-)data::nullfunc frames silently, since they 1585 * are used only to control station power saving mode. 1586 */ 1587 if (ieee80211_is_nullfunc(hdr->frame_control) || 1588 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1589 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1590 1591 /* 1592 * If we receive a 4-addr nullfunc frame from a STA 1593 * that was not moved to a 4-addr STA vlan yet send 1594 * the event to userspace and for older hostapd drop 1595 * the frame to the monitor interface. 1596 */ 1597 if (ieee80211_has_a4(hdr->frame_control) && 1598 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1599 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1600 !rx->sdata->u.vlan.sta))) { 1601 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1602 cfg80211_rx_unexpected_4addr_frame( 1603 rx->sdata->dev, sta->sta.addr, 1604 GFP_ATOMIC); 1605 return RX_DROP_MONITOR; 1606 } 1607 /* 1608 * Update counter and free packet here to avoid 1609 * counting this as a dropped packed. 1610 */ 1611 sta->rx_stats.packets++; 1612 dev_kfree_skb(rx->skb); 1613 return RX_QUEUED; 1614 } 1615 1616 return RX_CONTINUE; 1617 } /* ieee80211_rx_h_sta_process */ 1618 1619 static ieee80211_rx_result debug_noinline 1620 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1621 { 1622 struct sk_buff *skb = rx->skb; 1623 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1624 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1625 int keyidx; 1626 int hdrlen; 1627 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1628 struct ieee80211_key *sta_ptk = NULL; 1629 int mmie_keyidx = -1; 1630 __le16 fc; 1631 const struct ieee80211_cipher_scheme *cs = NULL; 1632 1633 /* 1634 * Key selection 101 1635 * 1636 * There are four types of keys: 1637 * - GTK (group keys) 1638 * - IGTK (group keys for management frames) 1639 * - PTK (pairwise keys) 1640 * - STK (station-to-station pairwise keys) 1641 * 1642 * When selecting a key, we have to distinguish between multicast 1643 * (including broadcast) and unicast frames, the latter can only 1644 * use PTKs and STKs while the former always use GTKs and IGTKs. 1645 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1646 * unicast frames can also use key indices like GTKs. Hence, if we 1647 * don't have a PTK/STK we check the key index for a WEP key. 1648 * 1649 * Note that in a regular BSS, multicast frames are sent by the 1650 * AP only, associated stations unicast the frame to the AP first 1651 * which then multicasts it on their behalf. 1652 * 1653 * There is also a slight problem in IBSS mode: GTKs are negotiated 1654 * with each station, that is something we don't currently handle. 1655 * The spec seems to expect that one negotiates the same key with 1656 * every station but there's no such requirement; VLANs could be 1657 * possible. 1658 */ 1659 1660 /* start without a key */ 1661 rx->key = NULL; 1662 fc = hdr->frame_control; 1663 1664 if (rx->sta) { 1665 int keyid = rx->sta->ptk_idx; 1666 1667 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1668 cs = rx->sta->cipher_scheme; 1669 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1670 if (unlikely(keyid < 0)) 1671 return RX_DROP_UNUSABLE; 1672 } 1673 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1674 } 1675 1676 if (!ieee80211_has_protected(fc)) 1677 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1678 1679 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1680 rx->key = sta_ptk; 1681 if ((status->flag & RX_FLAG_DECRYPTED) && 1682 (status->flag & RX_FLAG_IV_STRIPPED)) 1683 return RX_CONTINUE; 1684 /* Skip decryption if the frame is not protected. */ 1685 if (!ieee80211_has_protected(fc)) 1686 return RX_CONTINUE; 1687 } else if (mmie_keyidx >= 0) { 1688 /* Broadcast/multicast robust management frame / BIP */ 1689 if ((status->flag & RX_FLAG_DECRYPTED) && 1690 (status->flag & RX_FLAG_IV_STRIPPED)) 1691 return RX_CONTINUE; 1692 1693 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1694 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1695 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1696 if (rx->sta) { 1697 if (ieee80211_is_group_privacy_action(skb) && 1698 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1699 return RX_DROP_MONITOR; 1700 1701 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1702 } 1703 if (!rx->key) 1704 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1705 } else if (!ieee80211_has_protected(fc)) { 1706 /* 1707 * The frame was not protected, so skip decryption. However, we 1708 * need to set rx->key if there is a key that could have been 1709 * used so that the frame may be dropped if encryption would 1710 * have been expected. 1711 */ 1712 struct ieee80211_key *key = NULL; 1713 struct ieee80211_sub_if_data *sdata = rx->sdata; 1714 int i; 1715 1716 if (ieee80211_is_mgmt(fc) && 1717 is_multicast_ether_addr(hdr->addr1) && 1718 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1719 rx->key = key; 1720 else { 1721 if (rx->sta) { 1722 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1723 key = rcu_dereference(rx->sta->gtk[i]); 1724 if (key) 1725 break; 1726 } 1727 } 1728 if (!key) { 1729 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1730 key = rcu_dereference(sdata->keys[i]); 1731 if (key) 1732 break; 1733 } 1734 } 1735 if (key) 1736 rx->key = key; 1737 } 1738 return RX_CONTINUE; 1739 } else { 1740 u8 keyid; 1741 1742 /* 1743 * The device doesn't give us the IV so we won't be 1744 * able to look up the key. That's ok though, we 1745 * don't need to decrypt the frame, we just won't 1746 * be able to keep statistics accurate. 1747 * Except for key threshold notifications, should 1748 * we somehow allow the driver to tell us which key 1749 * the hardware used if this flag is set? 1750 */ 1751 if ((status->flag & RX_FLAG_DECRYPTED) && 1752 (status->flag & RX_FLAG_IV_STRIPPED)) 1753 return RX_CONTINUE; 1754 1755 hdrlen = ieee80211_hdrlen(fc); 1756 1757 if (cs) { 1758 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1759 1760 if (unlikely(keyidx < 0)) 1761 return RX_DROP_UNUSABLE; 1762 } else { 1763 if (rx->skb->len < 8 + hdrlen) 1764 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1765 /* 1766 * no need to call ieee80211_wep_get_keyidx, 1767 * it verifies a bunch of things we've done already 1768 */ 1769 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1770 keyidx = keyid >> 6; 1771 } 1772 1773 /* check per-station GTK first, if multicast packet */ 1774 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1775 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1776 1777 /* if not found, try default key */ 1778 if (!rx->key) { 1779 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1780 1781 /* 1782 * RSNA-protected unicast frames should always be 1783 * sent with pairwise or station-to-station keys, 1784 * but for WEP we allow using a key index as well. 1785 */ 1786 if (rx->key && 1787 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1788 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1789 !is_multicast_ether_addr(hdr->addr1)) 1790 rx->key = NULL; 1791 } 1792 } 1793 1794 if (rx->key) { 1795 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1796 return RX_DROP_MONITOR; 1797 1798 /* TODO: add threshold stuff again */ 1799 } else { 1800 return RX_DROP_MONITOR; 1801 } 1802 1803 switch (rx->key->conf.cipher) { 1804 case WLAN_CIPHER_SUITE_WEP40: 1805 case WLAN_CIPHER_SUITE_WEP104: 1806 result = ieee80211_crypto_wep_decrypt(rx); 1807 break; 1808 case WLAN_CIPHER_SUITE_TKIP: 1809 result = ieee80211_crypto_tkip_decrypt(rx); 1810 break; 1811 case WLAN_CIPHER_SUITE_CCMP: 1812 result = ieee80211_crypto_ccmp_decrypt( 1813 rx, IEEE80211_CCMP_MIC_LEN); 1814 break; 1815 case WLAN_CIPHER_SUITE_CCMP_256: 1816 result = ieee80211_crypto_ccmp_decrypt( 1817 rx, IEEE80211_CCMP_256_MIC_LEN); 1818 break; 1819 case WLAN_CIPHER_SUITE_AES_CMAC: 1820 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1821 break; 1822 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1823 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1824 break; 1825 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1826 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1827 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1828 break; 1829 case WLAN_CIPHER_SUITE_GCMP: 1830 case WLAN_CIPHER_SUITE_GCMP_256: 1831 result = ieee80211_crypto_gcmp_decrypt(rx); 1832 break; 1833 default: 1834 result = ieee80211_crypto_hw_decrypt(rx); 1835 } 1836 1837 /* the hdr variable is invalid after the decrypt handlers */ 1838 1839 /* either the frame has been decrypted or will be dropped */ 1840 status->flag |= RX_FLAG_DECRYPTED; 1841 1842 return result; 1843 } 1844 1845 static inline struct ieee80211_fragment_entry * 1846 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1847 unsigned int frag, unsigned int seq, int rx_queue, 1848 struct sk_buff **skb) 1849 { 1850 struct ieee80211_fragment_entry *entry; 1851 1852 entry = &sdata->fragments[sdata->fragment_next++]; 1853 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1854 sdata->fragment_next = 0; 1855 1856 if (!skb_queue_empty(&entry->skb_list)) 1857 __skb_queue_purge(&entry->skb_list); 1858 1859 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1860 *skb = NULL; 1861 entry->first_frag_time = jiffies; 1862 entry->seq = seq; 1863 entry->rx_queue = rx_queue; 1864 entry->last_frag = frag; 1865 entry->check_sequential_pn = false; 1866 entry->extra_len = 0; 1867 1868 return entry; 1869 } 1870 1871 static inline struct ieee80211_fragment_entry * 1872 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1873 unsigned int frag, unsigned int seq, 1874 int rx_queue, struct ieee80211_hdr *hdr) 1875 { 1876 struct ieee80211_fragment_entry *entry; 1877 int i, idx; 1878 1879 idx = sdata->fragment_next; 1880 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1881 struct ieee80211_hdr *f_hdr; 1882 1883 idx--; 1884 if (idx < 0) 1885 idx = IEEE80211_FRAGMENT_MAX - 1; 1886 1887 entry = &sdata->fragments[idx]; 1888 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1889 entry->rx_queue != rx_queue || 1890 entry->last_frag + 1 != frag) 1891 continue; 1892 1893 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1894 1895 /* 1896 * Check ftype and addresses are equal, else check next fragment 1897 */ 1898 if (((hdr->frame_control ^ f_hdr->frame_control) & 1899 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1900 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1901 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1902 continue; 1903 1904 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1905 __skb_queue_purge(&entry->skb_list); 1906 continue; 1907 } 1908 return entry; 1909 } 1910 1911 return NULL; 1912 } 1913 1914 static ieee80211_rx_result debug_noinline 1915 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1916 { 1917 struct ieee80211_hdr *hdr; 1918 u16 sc; 1919 __le16 fc; 1920 unsigned int frag, seq; 1921 struct ieee80211_fragment_entry *entry; 1922 struct sk_buff *skb; 1923 1924 hdr = (struct ieee80211_hdr *)rx->skb->data; 1925 fc = hdr->frame_control; 1926 1927 if (ieee80211_is_ctl(fc)) 1928 return RX_CONTINUE; 1929 1930 sc = le16_to_cpu(hdr->seq_ctrl); 1931 frag = sc & IEEE80211_SCTL_FRAG; 1932 1933 if (is_multicast_ether_addr(hdr->addr1)) { 1934 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1935 goto out_no_led; 1936 } 1937 1938 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1939 goto out; 1940 1941 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1942 1943 if (skb_linearize(rx->skb)) 1944 return RX_DROP_UNUSABLE; 1945 1946 /* 1947 * skb_linearize() might change the skb->data and 1948 * previously cached variables (in this case, hdr) need to 1949 * be refreshed with the new data. 1950 */ 1951 hdr = (struct ieee80211_hdr *)rx->skb->data; 1952 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1953 1954 if (frag == 0) { 1955 /* This is the first fragment of a new frame. */ 1956 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1957 rx->seqno_idx, &(rx->skb)); 1958 if (rx->key && 1959 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1960 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 1961 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 1962 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 1963 ieee80211_has_protected(fc)) { 1964 int queue = rx->security_idx; 1965 1966 /* Store CCMP/GCMP PN so that we can verify that the 1967 * next fragment has a sequential PN value. 1968 */ 1969 entry->check_sequential_pn = true; 1970 memcpy(entry->last_pn, 1971 rx->key->u.ccmp.rx_pn[queue], 1972 IEEE80211_CCMP_PN_LEN); 1973 BUILD_BUG_ON(offsetof(struct ieee80211_key, 1974 u.ccmp.rx_pn) != 1975 offsetof(struct ieee80211_key, 1976 u.gcmp.rx_pn)); 1977 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 1978 sizeof(rx->key->u.gcmp.rx_pn[queue])); 1979 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 1980 IEEE80211_GCMP_PN_LEN); 1981 } 1982 return RX_QUEUED; 1983 } 1984 1985 /* This is a fragment for a frame that should already be pending in 1986 * fragment cache. Add this fragment to the end of the pending entry. 1987 */ 1988 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1989 rx->seqno_idx, hdr); 1990 if (!entry) { 1991 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1992 return RX_DROP_MONITOR; 1993 } 1994 1995 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 1996 * MPDU PN values are not incrementing in steps of 1." 1997 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 1998 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 1999 */ 2000 if (entry->check_sequential_pn) { 2001 int i; 2002 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2003 int queue; 2004 2005 if (!rx->key || 2006 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2007 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2008 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2009 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2010 return RX_DROP_UNUSABLE; 2011 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2012 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2013 pn[i]++; 2014 if (pn[i]) 2015 break; 2016 } 2017 queue = rx->security_idx; 2018 rpn = rx->key->u.ccmp.rx_pn[queue]; 2019 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2020 return RX_DROP_UNUSABLE; 2021 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2022 } 2023 2024 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2025 __skb_queue_tail(&entry->skb_list, rx->skb); 2026 entry->last_frag = frag; 2027 entry->extra_len += rx->skb->len; 2028 if (ieee80211_has_morefrags(fc)) { 2029 rx->skb = NULL; 2030 return RX_QUEUED; 2031 } 2032 2033 rx->skb = __skb_dequeue(&entry->skb_list); 2034 if (skb_tailroom(rx->skb) < entry->extra_len) { 2035 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2036 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2037 GFP_ATOMIC))) { 2038 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2039 __skb_queue_purge(&entry->skb_list); 2040 return RX_DROP_UNUSABLE; 2041 } 2042 } 2043 while ((skb = __skb_dequeue(&entry->skb_list))) { 2044 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 2045 dev_kfree_skb(skb); 2046 } 2047 2048 out: 2049 ieee80211_led_rx(rx->local); 2050 out_no_led: 2051 if (rx->sta) 2052 rx->sta->rx_stats.packets++; 2053 return RX_CONTINUE; 2054 } 2055 2056 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2057 { 2058 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2059 return -EACCES; 2060 2061 return 0; 2062 } 2063 2064 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2065 { 2066 struct sk_buff *skb = rx->skb; 2067 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2068 2069 /* 2070 * Pass through unencrypted frames if the hardware has 2071 * decrypted them already. 2072 */ 2073 if (status->flag & RX_FLAG_DECRYPTED) 2074 return 0; 2075 2076 /* Drop unencrypted frames if key is set. */ 2077 if (unlikely(!ieee80211_has_protected(fc) && 2078 !ieee80211_is_nullfunc(fc) && 2079 ieee80211_is_data(fc) && rx->key)) 2080 return -EACCES; 2081 2082 return 0; 2083 } 2084 2085 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2086 { 2087 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2088 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2089 __le16 fc = hdr->frame_control; 2090 2091 /* 2092 * Pass through unencrypted frames if the hardware has 2093 * decrypted them already. 2094 */ 2095 if (status->flag & RX_FLAG_DECRYPTED) 2096 return 0; 2097 2098 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2099 if (unlikely(!ieee80211_has_protected(fc) && 2100 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2101 rx->key)) { 2102 if (ieee80211_is_deauth(fc) || 2103 ieee80211_is_disassoc(fc)) 2104 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2105 rx->skb->data, 2106 rx->skb->len); 2107 return -EACCES; 2108 } 2109 /* BIP does not use Protected field, so need to check MMIE */ 2110 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2111 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2112 if (ieee80211_is_deauth(fc) || 2113 ieee80211_is_disassoc(fc)) 2114 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2115 rx->skb->data, 2116 rx->skb->len); 2117 return -EACCES; 2118 } 2119 /* 2120 * When using MFP, Action frames are not allowed prior to 2121 * having configured keys. 2122 */ 2123 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2124 ieee80211_is_robust_mgmt_frame(rx->skb))) 2125 return -EACCES; 2126 } 2127 2128 return 0; 2129 } 2130 2131 static int 2132 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2133 { 2134 struct ieee80211_sub_if_data *sdata = rx->sdata; 2135 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2136 bool check_port_control = false; 2137 struct ethhdr *ehdr; 2138 int ret; 2139 2140 *port_control = false; 2141 if (ieee80211_has_a4(hdr->frame_control) && 2142 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2143 return -1; 2144 2145 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2146 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2147 2148 if (!sdata->u.mgd.use_4addr) 2149 return -1; 2150 else 2151 check_port_control = true; 2152 } 2153 2154 if (is_multicast_ether_addr(hdr->addr1) && 2155 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2156 return -1; 2157 2158 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2159 if (ret < 0) 2160 return ret; 2161 2162 ehdr = (struct ethhdr *) rx->skb->data; 2163 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2164 *port_control = true; 2165 else if (check_port_control) 2166 return -1; 2167 2168 return 0; 2169 } 2170 2171 /* 2172 * requires that rx->skb is a frame with ethernet header 2173 */ 2174 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2175 { 2176 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2177 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2178 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2179 2180 /* 2181 * Allow EAPOL frames to us/the PAE group address regardless 2182 * of whether the frame was encrypted or not. 2183 */ 2184 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2185 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2186 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2187 return true; 2188 2189 if (ieee80211_802_1x_port_control(rx) || 2190 ieee80211_drop_unencrypted(rx, fc)) 2191 return false; 2192 2193 return true; 2194 } 2195 2196 /* 2197 * requires that rx->skb is a frame with ethernet header 2198 */ 2199 static void 2200 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2201 { 2202 struct ieee80211_sub_if_data *sdata = rx->sdata; 2203 struct net_device *dev = sdata->dev; 2204 struct sk_buff *skb, *xmit_skb; 2205 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2206 struct sta_info *dsta; 2207 2208 skb = rx->skb; 2209 xmit_skb = NULL; 2210 2211 ieee80211_rx_stats(dev, skb->len); 2212 2213 if (rx->sta) { 2214 /* The seqno index has the same property as needed 2215 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2216 * for non-QoS-data frames. Here we know it's a data 2217 * frame, so count MSDUs. 2218 */ 2219 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2220 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2221 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2222 } 2223 2224 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2225 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2226 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2227 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2228 if (is_multicast_ether_addr(ehdr->h_dest) && 2229 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2230 /* 2231 * send multicast frames both to higher layers in 2232 * local net stack and back to the wireless medium 2233 */ 2234 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2235 if (!xmit_skb) 2236 net_info_ratelimited("%s: failed to clone multicast frame\n", 2237 dev->name); 2238 } else if (!is_multicast_ether_addr(ehdr->h_dest)) { 2239 dsta = sta_info_get(sdata, skb->data); 2240 if (dsta) { 2241 /* 2242 * The destination station is associated to 2243 * this AP (in this VLAN), so send the frame 2244 * directly to it and do not pass it to local 2245 * net stack. 2246 */ 2247 xmit_skb = skb; 2248 skb = NULL; 2249 } 2250 } 2251 } 2252 2253 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2254 if (skb) { 2255 /* 'align' will only take the values 0 or 2 here since all 2256 * frames are required to be aligned to 2-byte boundaries 2257 * when being passed to mac80211; the code here works just 2258 * as well if that isn't true, but mac80211 assumes it can 2259 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2260 */ 2261 int align; 2262 2263 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2264 if (align) { 2265 if (WARN_ON(skb_headroom(skb) < 3)) { 2266 dev_kfree_skb(skb); 2267 skb = NULL; 2268 } else { 2269 u8 *data = skb->data; 2270 size_t len = skb_headlen(skb); 2271 skb->data -= align; 2272 memmove(skb->data, data, len); 2273 skb_set_tail_pointer(skb, len); 2274 } 2275 } 2276 } 2277 #endif 2278 2279 if (skb) { 2280 /* deliver to local stack */ 2281 skb->protocol = eth_type_trans(skb, dev); 2282 memset(skb->cb, 0, sizeof(skb->cb)); 2283 if (rx->napi) 2284 napi_gro_receive(rx->napi, skb); 2285 else 2286 netif_receive_skb(skb); 2287 } 2288 2289 if (xmit_skb) { 2290 /* 2291 * Send to wireless media and increase priority by 256 to 2292 * keep the received priority instead of reclassifying 2293 * the frame (see cfg80211_classify8021d). 2294 */ 2295 xmit_skb->priority += 256; 2296 xmit_skb->protocol = htons(ETH_P_802_3); 2297 skb_reset_network_header(xmit_skb); 2298 skb_reset_mac_header(xmit_skb); 2299 dev_queue_xmit(xmit_skb); 2300 } 2301 } 2302 2303 static ieee80211_rx_result debug_noinline 2304 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2305 { 2306 struct net_device *dev = rx->sdata->dev; 2307 struct sk_buff *skb = rx->skb; 2308 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2309 __le16 fc = hdr->frame_control; 2310 struct sk_buff_head frame_list; 2311 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2312 struct ethhdr ethhdr; 2313 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2314 2315 if (unlikely(!ieee80211_is_data(fc))) 2316 return RX_CONTINUE; 2317 2318 if (unlikely(!ieee80211_is_data_present(fc))) 2319 return RX_DROP_MONITOR; 2320 2321 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2322 return RX_CONTINUE; 2323 2324 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2325 switch (rx->sdata->vif.type) { 2326 case NL80211_IFTYPE_AP_VLAN: 2327 if (!rx->sdata->u.vlan.sta) 2328 return RX_DROP_UNUSABLE; 2329 break; 2330 case NL80211_IFTYPE_STATION: 2331 if (!rx->sdata->u.mgd.use_4addr) 2332 return RX_DROP_UNUSABLE; 2333 break; 2334 default: 2335 return RX_DROP_UNUSABLE; 2336 } 2337 check_da = NULL; 2338 check_sa = NULL; 2339 } else switch (rx->sdata->vif.type) { 2340 case NL80211_IFTYPE_AP: 2341 case NL80211_IFTYPE_AP_VLAN: 2342 check_da = NULL; 2343 break; 2344 case NL80211_IFTYPE_STATION: 2345 if (!rx->sta || 2346 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2347 check_sa = NULL; 2348 break; 2349 case NL80211_IFTYPE_MESH_POINT: 2350 check_sa = NULL; 2351 break; 2352 default: 2353 break; 2354 } 2355 2356 if (is_multicast_ether_addr(hdr->addr1)) 2357 return RX_DROP_UNUSABLE; 2358 2359 skb->dev = dev; 2360 __skb_queue_head_init(&frame_list); 2361 2362 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2363 rx->sdata->vif.addr, 2364 rx->sdata->vif.type)) 2365 return RX_DROP_UNUSABLE; 2366 2367 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2368 rx->sdata->vif.type, 2369 rx->local->hw.extra_tx_headroom, 2370 check_da, check_sa); 2371 2372 while (!skb_queue_empty(&frame_list)) { 2373 rx->skb = __skb_dequeue(&frame_list); 2374 2375 if (!ieee80211_frame_allowed(rx, fc)) { 2376 dev_kfree_skb(rx->skb); 2377 continue; 2378 } 2379 2380 ieee80211_deliver_skb(rx); 2381 } 2382 2383 return RX_QUEUED; 2384 } 2385 2386 #ifdef CONFIG_MAC80211_MESH 2387 static ieee80211_rx_result 2388 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2389 { 2390 struct ieee80211_hdr *fwd_hdr, *hdr; 2391 struct ieee80211_tx_info *info; 2392 struct ieee80211s_hdr *mesh_hdr; 2393 struct sk_buff *skb = rx->skb, *fwd_skb; 2394 struct ieee80211_local *local = rx->local; 2395 struct ieee80211_sub_if_data *sdata = rx->sdata; 2396 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2397 u16 ac, q, hdrlen; 2398 2399 hdr = (struct ieee80211_hdr *) skb->data; 2400 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2401 2402 /* make sure fixed part of mesh header is there, also checks skb len */ 2403 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2404 return RX_DROP_MONITOR; 2405 2406 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2407 2408 /* make sure full mesh header is there, also checks skb len */ 2409 if (!pskb_may_pull(rx->skb, 2410 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2411 return RX_DROP_MONITOR; 2412 2413 /* reload pointers */ 2414 hdr = (struct ieee80211_hdr *) skb->data; 2415 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2416 2417 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2418 return RX_DROP_MONITOR; 2419 2420 /* frame is in RMC, don't forward */ 2421 if (ieee80211_is_data(hdr->frame_control) && 2422 is_multicast_ether_addr(hdr->addr1) && 2423 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2424 return RX_DROP_MONITOR; 2425 2426 if (!ieee80211_is_data(hdr->frame_control)) 2427 return RX_CONTINUE; 2428 2429 if (!mesh_hdr->ttl) 2430 return RX_DROP_MONITOR; 2431 2432 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2433 struct mesh_path *mppath; 2434 char *proxied_addr; 2435 char *mpp_addr; 2436 2437 if (is_multicast_ether_addr(hdr->addr1)) { 2438 mpp_addr = hdr->addr3; 2439 proxied_addr = mesh_hdr->eaddr1; 2440 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2441 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2442 mpp_addr = hdr->addr4; 2443 proxied_addr = mesh_hdr->eaddr2; 2444 } else { 2445 return RX_DROP_MONITOR; 2446 } 2447 2448 rcu_read_lock(); 2449 mppath = mpp_path_lookup(sdata, proxied_addr); 2450 if (!mppath) { 2451 mpp_path_add(sdata, proxied_addr, mpp_addr); 2452 } else { 2453 spin_lock_bh(&mppath->state_lock); 2454 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2455 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2456 mppath->exp_time = jiffies; 2457 spin_unlock_bh(&mppath->state_lock); 2458 } 2459 rcu_read_unlock(); 2460 } 2461 2462 /* Frame has reached destination. Don't forward */ 2463 if (!is_multicast_ether_addr(hdr->addr1) && 2464 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2465 return RX_CONTINUE; 2466 2467 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2468 q = sdata->vif.hw_queue[ac]; 2469 if (ieee80211_queue_stopped(&local->hw, q)) { 2470 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2471 return RX_DROP_MONITOR; 2472 } 2473 skb_set_queue_mapping(skb, q); 2474 2475 if (!--mesh_hdr->ttl) { 2476 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2477 goto out; 2478 } 2479 2480 if (!ifmsh->mshcfg.dot11MeshForwarding) 2481 goto out; 2482 2483 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2484 sdata->encrypt_headroom, 0, GFP_ATOMIC); 2485 if (!fwd_skb) { 2486 net_info_ratelimited("%s: failed to clone mesh frame\n", 2487 sdata->name); 2488 goto out; 2489 } 2490 2491 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2492 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2493 info = IEEE80211_SKB_CB(fwd_skb); 2494 memset(info, 0, sizeof(*info)); 2495 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2496 info->control.vif = &rx->sdata->vif; 2497 info->control.jiffies = jiffies; 2498 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2499 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2500 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2501 /* update power mode indication when forwarding */ 2502 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2503 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2504 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2505 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2506 } else { 2507 /* unable to resolve next hop */ 2508 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2509 fwd_hdr->addr3, 0, 2510 WLAN_REASON_MESH_PATH_NOFORWARD, 2511 fwd_hdr->addr2); 2512 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2513 kfree_skb(fwd_skb); 2514 return RX_DROP_MONITOR; 2515 } 2516 2517 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2518 ieee80211_add_pending_skb(local, fwd_skb); 2519 out: 2520 if (is_multicast_ether_addr(hdr->addr1)) 2521 return RX_CONTINUE; 2522 return RX_DROP_MONITOR; 2523 } 2524 #endif 2525 2526 static ieee80211_rx_result debug_noinline 2527 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2528 { 2529 struct ieee80211_sub_if_data *sdata = rx->sdata; 2530 struct ieee80211_local *local = rx->local; 2531 struct net_device *dev = sdata->dev; 2532 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2533 __le16 fc = hdr->frame_control; 2534 bool port_control; 2535 int err; 2536 2537 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2538 return RX_CONTINUE; 2539 2540 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2541 return RX_DROP_MONITOR; 2542 2543 /* 2544 * Send unexpected-4addr-frame event to hostapd. For older versions, 2545 * also drop the frame to cooked monitor interfaces. 2546 */ 2547 if (ieee80211_has_a4(hdr->frame_control) && 2548 sdata->vif.type == NL80211_IFTYPE_AP) { 2549 if (rx->sta && 2550 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2551 cfg80211_rx_unexpected_4addr_frame( 2552 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2553 return RX_DROP_MONITOR; 2554 } 2555 2556 err = __ieee80211_data_to_8023(rx, &port_control); 2557 if (unlikely(err)) 2558 return RX_DROP_UNUSABLE; 2559 2560 if (!ieee80211_frame_allowed(rx, fc)) 2561 return RX_DROP_MONITOR; 2562 2563 /* directly handle TDLS channel switch requests/responses */ 2564 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2565 cpu_to_be16(ETH_P_TDLS))) { 2566 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2567 2568 if (pskb_may_pull(rx->skb, 2569 offsetof(struct ieee80211_tdls_data, u)) && 2570 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2571 tf->category == WLAN_CATEGORY_TDLS && 2572 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2573 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2574 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2575 schedule_work(&local->tdls_chsw_work); 2576 if (rx->sta) 2577 rx->sta->rx_stats.packets++; 2578 2579 return RX_QUEUED; 2580 } 2581 } 2582 2583 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2584 unlikely(port_control) && sdata->bss) { 2585 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2586 u.ap); 2587 dev = sdata->dev; 2588 rx->sdata = sdata; 2589 } 2590 2591 rx->skb->dev = dev; 2592 2593 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2594 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2595 !is_multicast_ether_addr( 2596 ((struct ethhdr *)rx->skb->data)->h_dest) && 2597 (!local->scanning && 2598 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2599 mod_timer(&local->dynamic_ps_timer, jiffies + 2600 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2601 2602 ieee80211_deliver_skb(rx); 2603 2604 return RX_QUEUED; 2605 } 2606 2607 static ieee80211_rx_result debug_noinline 2608 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2609 { 2610 struct sk_buff *skb = rx->skb; 2611 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2612 struct tid_ampdu_rx *tid_agg_rx; 2613 u16 start_seq_num; 2614 u16 tid; 2615 2616 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2617 return RX_CONTINUE; 2618 2619 if (ieee80211_is_back_req(bar->frame_control)) { 2620 struct { 2621 __le16 control, start_seq_num; 2622 } __packed bar_data; 2623 struct ieee80211_event event = { 2624 .type = BAR_RX_EVENT, 2625 }; 2626 2627 if (!rx->sta) 2628 return RX_DROP_MONITOR; 2629 2630 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2631 &bar_data, sizeof(bar_data))) 2632 return RX_DROP_MONITOR; 2633 2634 tid = le16_to_cpu(bar_data.control) >> 12; 2635 2636 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2637 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2638 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2639 WLAN_BACK_RECIPIENT, 2640 WLAN_REASON_QSTA_REQUIRE_SETUP); 2641 2642 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2643 if (!tid_agg_rx) 2644 return RX_DROP_MONITOR; 2645 2646 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2647 event.u.ba.tid = tid; 2648 event.u.ba.ssn = start_seq_num; 2649 event.u.ba.sta = &rx->sta->sta; 2650 2651 /* reset session timer */ 2652 if (tid_agg_rx->timeout) 2653 mod_timer(&tid_agg_rx->session_timer, 2654 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2655 2656 spin_lock(&tid_agg_rx->reorder_lock); 2657 /* release stored frames up to start of BAR */ 2658 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2659 start_seq_num, frames); 2660 spin_unlock(&tid_agg_rx->reorder_lock); 2661 2662 drv_event_callback(rx->local, rx->sdata, &event); 2663 2664 kfree_skb(skb); 2665 return RX_QUEUED; 2666 } 2667 2668 /* 2669 * After this point, we only want management frames, 2670 * so we can drop all remaining control frames to 2671 * cooked monitor interfaces. 2672 */ 2673 return RX_DROP_MONITOR; 2674 } 2675 2676 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2677 struct ieee80211_mgmt *mgmt, 2678 size_t len) 2679 { 2680 struct ieee80211_local *local = sdata->local; 2681 struct sk_buff *skb; 2682 struct ieee80211_mgmt *resp; 2683 2684 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2685 /* Not to own unicast address */ 2686 return; 2687 } 2688 2689 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2690 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2691 /* Not from the current AP or not associated yet. */ 2692 return; 2693 } 2694 2695 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2696 /* Too short SA Query request frame */ 2697 return; 2698 } 2699 2700 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2701 if (skb == NULL) 2702 return; 2703 2704 skb_reserve(skb, local->hw.extra_tx_headroom); 2705 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2706 memset(resp, 0, 24); 2707 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2708 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2709 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2710 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2711 IEEE80211_STYPE_ACTION); 2712 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2713 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2714 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2715 memcpy(resp->u.action.u.sa_query.trans_id, 2716 mgmt->u.action.u.sa_query.trans_id, 2717 WLAN_SA_QUERY_TR_ID_LEN); 2718 2719 ieee80211_tx_skb(sdata, skb); 2720 } 2721 2722 static ieee80211_rx_result debug_noinline 2723 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2724 { 2725 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2726 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2727 2728 /* 2729 * From here on, look only at management frames. 2730 * Data and control frames are already handled, 2731 * and unknown (reserved) frames are useless. 2732 */ 2733 if (rx->skb->len < 24) 2734 return RX_DROP_MONITOR; 2735 2736 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2737 return RX_DROP_MONITOR; 2738 2739 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2740 ieee80211_is_beacon(mgmt->frame_control) && 2741 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2742 int sig = 0; 2743 2744 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2745 sig = status->signal; 2746 2747 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2748 rx->skb->data, rx->skb->len, 2749 status->freq, sig); 2750 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2751 } 2752 2753 if (ieee80211_drop_unencrypted_mgmt(rx)) 2754 return RX_DROP_UNUSABLE; 2755 2756 return RX_CONTINUE; 2757 } 2758 2759 static ieee80211_rx_result debug_noinline 2760 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2761 { 2762 struct ieee80211_local *local = rx->local; 2763 struct ieee80211_sub_if_data *sdata = rx->sdata; 2764 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2766 int len = rx->skb->len; 2767 2768 if (!ieee80211_is_action(mgmt->frame_control)) 2769 return RX_CONTINUE; 2770 2771 /* drop too small frames */ 2772 if (len < IEEE80211_MIN_ACTION_SIZE) 2773 return RX_DROP_UNUSABLE; 2774 2775 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2776 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2777 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2778 return RX_DROP_UNUSABLE; 2779 2780 switch (mgmt->u.action.category) { 2781 case WLAN_CATEGORY_HT: 2782 /* reject HT action frames from stations not supporting HT */ 2783 if (!rx->sta->sta.ht_cap.ht_supported) 2784 goto invalid; 2785 2786 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2787 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2788 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2789 sdata->vif.type != NL80211_IFTYPE_AP && 2790 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2791 break; 2792 2793 /* verify action & smps_control/chanwidth are present */ 2794 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2795 goto invalid; 2796 2797 switch (mgmt->u.action.u.ht_smps.action) { 2798 case WLAN_HT_ACTION_SMPS: { 2799 struct ieee80211_supported_band *sband; 2800 enum ieee80211_smps_mode smps_mode; 2801 2802 /* convert to HT capability */ 2803 switch (mgmt->u.action.u.ht_smps.smps_control) { 2804 case WLAN_HT_SMPS_CONTROL_DISABLED: 2805 smps_mode = IEEE80211_SMPS_OFF; 2806 break; 2807 case WLAN_HT_SMPS_CONTROL_STATIC: 2808 smps_mode = IEEE80211_SMPS_STATIC; 2809 break; 2810 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2811 smps_mode = IEEE80211_SMPS_DYNAMIC; 2812 break; 2813 default: 2814 goto invalid; 2815 } 2816 2817 /* if no change do nothing */ 2818 if (rx->sta->sta.smps_mode == smps_mode) 2819 goto handled; 2820 rx->sta->sta.smps_mode = smps_mode; 2821 2822 sband = rx->local->hw.wiphy->bands[status->band]; 2823 2824 rate_control_rate_update(local, sband, rx->sta, 2825 IEEE80211_RC_SMPS_CHANGED); 2826 goto handled; 2827 } 2828 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2829 struct ieee80211_supported_band *sband; 2830 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2831 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2832 2833 /* If it doesn't support 40 MHz it can't change ... */ 2834 if (!(rx->sta->sta.ht_cap.cap & 2835 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2836 goto handled; 2837 2838 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2839 max_bw = IEEE80211_STA_RX_BW_20; 2840 else 2841 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2842 2843 /* set cur_max_bandwidth and recalc sta bw */ 2844 rx->sta->cur_max_bandwidth = max_bw; 2845 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2846 2847 if (rx->sta->sta.bandwidth == new_bw) 2848 goto handled; 2849 2850 rx->sta->sta.bandwidth = new_bw; 2851 sband = rx->local->hw.wiphy->bands[status->band]; 2852 2853 rate_control_rate_update(local, sband, rx->sta, 2854 IEEE80211_RC_BW_CHANGED); 2855 goto handled; 2856 } 2857 default: 2858 goto invalid; 2859 } 2860 2861 break; 2862 case WLAN_CATEGORY_PUBLIC: 2863 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2864 goto invalid; 2865 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2866 break; 2867 if (!rx->sta) 2868 break; 2869 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2870 break; 2871 if (mgmt->u.action.u.ext_chan_switch.action_code != 2872 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2873 break; 2874 if (len < offsetof(struct ieee80211_mgmt, 2875 u.action.u.ext_chan_switch.variable)) 2876 goto invalid; 2877 goto queue; 2878 case WLAN_CATEGORY_VHT: 2879 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2880 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2881 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2882 sdata->vif.type != NL80211_IFTYPE_AP && 2883 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2884 break; 2885 2886 /* verify action code is present */ 2887 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2888 goto invalid; 2889 2890 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2891 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2892 /* verify opmode is present */ 2893 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2894 goto invalid; 2895 goto queue; 2896 } 2897 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2898 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2899 goto invalid; 2900 goto queue; 2901 } 2902 default: 2903 break; 2904 } 2905 break; 2906 case WLAN_CATEGORY_BACK: 2907 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2908 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2909 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2910 sdata->vif.type != NL80211_IFTYPE_AP && 2911 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2912 break; 2913 2914 /* verify action_code is present */ 2915 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2916 break; 2917 2918 switch (mgmt->u.action.u.addba_req.action_code) { 2919 case WLAN_ACTION_ADDBA_REQ: 2920 if (len < (IEEE80211_MIN_ACTION_SIZE + 2921 sizeof(mgmt->u.action.u.addba_req))) 2922 goto invalid; 2923 break; 2924 case WLAN_ACTION_ADDBA_RESP: 2925 if (len < (IEEE80211_MIN_ACTION_SIZE + 2926 sizeof(mgmt->u.action.u.addba_resp))) 2927 goto invalid; 2928 break; 2929 case WLAN_ACTION_DELBA: 2930 if (len < (IEEE80211_MIN_ACTION_SIZE + 2931 sizeof(mgmt->u.action.u.delba))) 2932 goto invalid; 2933 break; 2934 default: 2935 goto invalid; 2936 } 2937 2938 goto queue; 2939 case WLAN_CATEGORY_SPECTRUM_MGMT: 2940 /* verify action_code is present */ 2941 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2942 break; 2943 2944 switch (mgmt->u.action.u.measurement.action_code) { 2945 case WLAN_ACTION_SPCT_MSR_REQ: 2946 if (status->band != NL80211_BAND_5GHZ) 2947 break; 2948 2949 if (len < (IEEE80211_MIN_ACTION_SIZE + 2950 sizeof(mgmt->u.action.u.measurement))) 2951 break; 2952 2953 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2954 break; 2955 2956 ieee80211_process_measurement_req(sdata, mgmt, len); 2957 goto handled; 2958 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2959 u8 *bssid; 2960 if (len < (IEEE80211_MIN_ACTION_SIZE + 2961 sizeof(mgmt->u.action.u.chan_switch))) 2962 break; 2963 2964 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2965 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2966 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2967 break; 2968 2969 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2970 bssid = sdata->u.mgd.bssid; 2971 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2972 bssid = sdata->u.ibss.bssid; 2973 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2974 bssid = mgmt->sa; 2975 else 2976 break; 2977 2978 if (!ether_addr_equal(mgmt->bssid, bssid)) 2979 break; 2980 2981 goto queue; 2982 } 2983 } 2984 break; 2985 case WLAN_CATEGORY_SA_QUERY: 2986 if (len < (IEEE80211_MIN_ACTION_SIZE + 2987 sizeof(mgmt->u.action.u.sa_query))) 2988 break; 2989 2990 switch (mgmt->u.action.u.sa_query.action) { 2991 case WLAN_ACTION_SA_QUERY_REQUEST: 2992 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2993 break; 2994 ieee80211_process_sa_query_req(sdata, mgmt, len); 2995 goto handled; 2996 } 2997 break; 2998 case WLAN_CATEGORY_SELF_PROTECTED: 2999 if (len < (IEEE80211_MIN_ACTION_SIZE + 3000 sizeof(mgmt->u.action.u.self_prot.action_code))) 3001 break; 3002 3003 switch (mgmt->u.action.u.self_prot.action_code) { 3004 case WLAN_SP_MESH_PEERING_OPEN: 3005 case WLAN_SP_MESH_PEERING_CLOSE: 3006 case WLAN_SP_MESH_PEERING_CONFIRM: 3007 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3008 goto invalid; 3009 if (sdata->u.mesh.user_mpm) 3010 /* userspace handles this frame */ 3011 break; 3012 goto queue; 3013 case WLAN_SP_MGK_INFORM: 3014 case WLAN_SP_MGK_ACK: 3015 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3016 goto invalid; 3017 break; 3018 } 3019 break; 3020 case WLAN_CATEGORY_MESH_ACTION: 3021 if (len < (IEEE80211_MIN_ACTION_SIZE + 3022 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3023 break; 3024 3025 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3026 break; 3027 if (mesh_action_is_path_sel(mgmt) && 3028 !mesh_path_sel_is_hwmp(sdata)) 3029 break; 3030 goto queue; 3031 } 3032 3033 return RX_CONTINUE; 3034 3035 invalid: 3036 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3037 /* will return in the next handlers */ 3038 return RX_CONTINUE; 3039 3040 handled: 3041 if (rx->sta) 3042 rx->sta->rx_stats.packets++; 3043 dev_kfree_skb(rx->skb); 3044 return RX_QUEUED; 3045 3046 queue: 3047 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3048 skb_queue_tail(&sdata->skb_queue, rx->skb); 3049 ieee80211_queue_work(&local->hw, &sdata->work); 3050 if (rx->sta) 3051 rx->sta->rx_stats.packets++; 3052 return RX_QUEUED; 3053 } 3054 3055 static ieee80211_rx_result debug_noinline 3056 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3057 { 3058 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3059 int sig = 0; 3060 3061 /* skip known-bad action frames and return them in the next handler */ 3062 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3063 return RX_CONTINUE; 3064 3065 /* 3066 * Getting here means the kernel doesn't know how to handle 3067 * it, but maybe userspace does ... include returned frames 3068 * so userspace can register for those to know whether ones 3069 * it transmitted were processed or returned. 3070 */ 3071 3072 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 3073 sig = status->signal; 3074 3075 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3076 rx->skb->data, rx->skb->len, 0)) { 3077 if (rx->sta) 3078 rx->sta->rx_stats.packets++; 3079 dev_kfree_skb(rx->skb); 3080 return RX_QUEUED; 3081 } 3082 3083 return RX_CONTINUE; 3084 } 3085 3086 static ieee80211_rx_result debug_noinline 3087 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3088 { 3089 struct ieee80211_local *local = rx->local; 3090 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3091 struct sk_buff *nskb; 3092 struct ieee80211_sub_if_data *sdata = rx->sdata; 3093 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3094 3095 if (!ieee80211_is_action(mgmt->frame_control)) 3096 return RX_CONTINUE; 3097 3098 /* 3099 * For AP mode, hostapd is responsible for handling any action 3100 * frames that we didn't handle, including returning unknown 3101 * ones. For all other modes we will return them to the sender, 3102 * setting the 0x80 bit in the action category, as required by 3103 * 802.11-2012 9.24.4. 3104 * Newer versions of hostapd shall also use the management frame 3105 * registration mechanisms, but older ones still use cooked 3106 * monitor interfaces so push all frames there. 3107 */ 3108 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3109 (sdata->vif.type == NL80211_IFTYPE_AP || 3110 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3111 return RX_DROP_MONITOR; 3112 3113 if (is_multicast_ether_addr(mgmt->da)) 3114 return RX_DROP_MONITOR; 3115 3116 /* do not return rejected action frames */ 3117 if (mgmt->u.action.category & 0x80) 3118 return RX_DROP_UNUSABLE; 3119 3120 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3121 GFP_ATOMIC); 3122 if (nskb) { 3123 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3124 3125 nmgmt->u.action.category |= 0x80; 3126 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3127 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3128 3129 memset(nskb->cb, 0, sizeof(nskb->cb)); 3130 3131 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3132 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3133 3134 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3135 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3136 IEEE80211_TX_CTL_NO_CCK_RATE; 3137 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3138 info->hw_queue = 3139 local->hw.offchannel_tx_hw_queue; 3140 } 3141 3142 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3143 status->band); 3144 } 3145 dev_kfree_skb(rx->skb); 3146 return RX_QUEUED; 3147 } 3148 3149 static ieee80211_rx_result debug_noinline 3150 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3151 { 3152 struct ieee80211_sub_if_data *sdata = rx->sdata; 3153 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3154 __le16 stype; 3155 3156 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3157 3158 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3159 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3160 sdata->vif.type != NL80211_IFTYPE_OCB && 3161 sdata->vif.type != NL80211_IFTYPE_STATION) 3162 return RX_DROP_MONITOR; 3163 3164 switch (stype) { 3165 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3166 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3167 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3168 /* process for all: mesh, mlme, ibss */ 3169 break; 3170 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3171 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3172 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3173 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3174 if (is_multicast_ether_addr(mgmt->da) && 3175 !is_broadcast_ether_addr(mgmt->da)) 3176 return RX_DROP_MONITOR; 3177 3178 /* process only for station */ 3179 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3180 return RX_DROP_MONITOR; 3181 break; 3182 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3183 /* process only for ibss and mesh */ 3184 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3185 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3186 return RX_DROP_MONITOR; 3187 break; 3188 default: 3189 return RX_DROP_MONITOR; 3190 } 3191 3192 /* queue up frame and kick off work to process it */ 3193 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3194 skb_queue_tail(&sdata->skb_queue, rx->skb); 3195 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3196 if (rx->sta) 3197 rx->sta->rx_stats.packets++; 3198 3199 return RX_QUEUED; 3200 } 3201 3202 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3203 struct ieee80211_rate *rate) 3204 { 3205 struct ieee80211_sub_if_data *sdata; 3206 struct ieee80211_local *local = rx->local; 3207 struct sk_buff *skb = rx->skb, *skb2; 3208 struct net_device *prev_dev = NULL; 3209 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3210 int needed_headroom; 3211 3212 /* 3213 * If cooked monitor has been processed already, then 3214 * don't do it again. If not, set the flag. 3215 */ 3216 if (rx->flags & IEEE80211_RX_CMNTR) 3217 goto out_free_skb; 3218 rx->flags |= IEEE80211_RX_CMNTR; 3219 3220 /* If there are no cooked monitor interfaces, just free the SKB */ 3221 if (!local->cooked_mntrs) 3222 goto out_free_skb; 3223 3224 /* vendor data is long removed here */ 3225 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3226 /* room for the radiotap header based on driver features */ 3227 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3228 3229 if (skb_headroom(skb) < needed_headroom && 3230 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3231 goto out_free_skb; 3232 3233 /* prepend radiotap information */ 3234 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3235 false); 3236 3237 skb_reset_mac_header(skb); 3238 skb->ip_summed = CHECKSUM_UNNECESSARY; 3239 skb->pkt_type = PACKET_OTHERHOST; 3240 skb->protocol = htons(ETH_P_802_2); 3241 3242 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3243 if (!ieee80211_sdata_running(sdata)) 3244 continue; 3245 3246 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3247 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3248 continue; 3249 3250 if (prev_dev) { 3251 skb2 = skb_clone(skb, GFP_ATOMIC); 3252 if (skb2) { 3253 skb2->dev = prev_dev; 3254 netif_receive_skb(skb2); 3255 } 3256 } 3257 3258 prev_dev = sdata->dev; 3259 ieee80211_rx_stats(sdata->dev, skb->len); 3260 } 3261 3262 if (prev_dev) { 3263 skb->dev = prev_dev; 3264 netif_receive_skb(skb); 3265 return; 3266 } 3267 3268 out_free_skb: 3269 dev_kfree_skb(skb); 3270 } 3271 3272 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3273 ieee80211_rx_result res) 3274 { 3275 switch (res) { 3276 case RX_DROP_MONITOR: 3277 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3278 if (rx->sta) 3279 rx->sta->rx_stats.dropped++; 3280 /* fall through */ 3281 case RX_CONTINUE: { 3282 struct ieee80211_rate *rate = NULL; 3283 struct ieee80211_supported_band *sband; 3284 struct ieee80211_rx_status *status; 3285 3286 status = IEEE80211_SKB_RXCB((rx->skb)); 3287 3288 sband = rx->local->hw.wiphy->bands[status->band]; 3289 if (!(status->flag & RX_FLAG_HT) && 3290 !(status->flag & RX_FLAG_VHT)) 3291 rate = &sband->bitrates[status->rate_idx]; 3292 3293 ieee80211_rx_cooked_monitor(rx, rate); 3294 break; 3295 } 3296 case RX_DROP_UNUSABLE: 3297 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3298 if (rx->sta) 3299 rx->sta->rx_stats.dropped++; 3300 dev_kfree_skb(rx->skb); 3301 break; 3302 case RX_QUEUED: 3303 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3304 break; 3305 } 3306 } 3307 3308 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3309 struct sk_buff_head *frames) 3310 { 3311 ieee80211_rx_result res = RX_DROP_MONITOR; 3312 struct sk_buff *skb; 3313 3314 #define CALL_RXH(rxh) \ 3315 do { \ 3316 res = rxh(rx); \ 3317 if (res != RX_CONTINUE) \ 3318 goto rxh_next; \ 3319 } while (0) 3320 3321 /* Lock here to avoid hitting all of the data used in the RX 3322 * path (e.g. key data, station data, ...) concurrently when 3323 * a frame is released from the reorder buffer due to timeout 3324 * from the timer, potentially concurrently with RX from the 3325 * driver. 3326 */ 3327 spin_lock_bh(&rx->local->rx_path_lock); 3328 3329 while ((skb = __skb_dequeue(frames))) { 3330 /* 3331 * all the other fields are valid across frames 3332 * that belong to an aMPDU since they are on the 3333 * same TID from the same station 3334 */ 3335 rx->skb = skb; 3336 3337 CALL_RXH(ieee80211_rx_h_check_more_data); 3338 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3339 CALL_RXH(ieee80211_rx_h_sta_process); 3340 CALL_RXH(ieee80211_rx_h_decrypt); 3341 CALL_RXH(ieee80211_rx_h_defragment); 3342 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3343 /* must be after MMIC verify so header is counted in MPDU mic */ 3344 #ifdef CONFIG_MAC80211_MESH 3345 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3346 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3347 #endif 3348 CALL_RXH(ieee80211_rx_h_amsdu); 3349 CALL_RXH(ieee80211_rx_h_data); 3350 3351 /* special treatment -- needs the queue */ 3352 res = ieee80211_rx_h_ctrl(rx, frames); 3353 if (res != RX_CONTINUE) 3354 goto rxh_next; 3355 3356 CALL_RXH(ieee80211_rx_h_mgmt_check); 3357 CALL_RXH(ieee80211_rx_h_action); 3358 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3359 CALL_RXH(ieee80211_rx_h_action_return); 3360 CALL_RXH(ieee80211_rx_h_mgmt); 3361 3362 rxh_next: 3363 ieee80211_rx_handlers_result(rx, res); 3364 3365 #undef CALL_RXH 3366 } 3367 3368 spin_unlock_bh(&rx->local->rx_path_lock); 3369 } 3370 3371 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3372 { 3373 struct sk_buff_head reorder_release; 3374 ieee80211_rx_result res = RX_DROP_MONITOR; 3375 3376 __skb_queue_head_init(&reorder_release); 3377 3378 #define CALL_RXH(rxh) \ 3379 do { \ 3380 res = rxh(rx); \ 3381 if (res != RX_CONTINUE) \ 3382 goto rxh_next; \ 3383 } while (0) 3384 3385 CALL_RXH(ieee80211_rx_h_check_dup); 3386 CALL_RXH(ieee80211_rx_h_check); 3387 3388 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3389 3390 ieee80211_rx_handlers(rx, &reorder_release); 3391 return; 3392 3393 rxh_next: 3394 ieee80211_rx_handlers_result(rx, res); 3395 3396 #undef CALL_RXH 3397 } 3398 3399 /* 3400 * This function makes calls into the RX path, therefore 3401 * it has to be invoked under RCU read lock. 3402 */ 3403 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3404 { 3405 struct sk_buff_head frames; 3406 struct ieee80211_rx_data rx = { 3407 .sta = sta, 3408 .sdata = sta->sdata, 3409 .local = sta->local, 3410 /* This is OK -- must be QoS data frame */ 3411 .security_idx = tid, 3412 .seqno_idx = tid, 3413 .napi = NULL, /* must be NULL to not have races */ 3414 }; 3415 struct tid_ampdu_rx *tid_agg_rx; 3416 3417 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3418 if (!tid_agg_rx) 3419 return; 3420 3421 __skb_queue_head_init(&frames); 3422 3423 spin_lock(&tid_agg_rx->reorder_lock); 3424 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3425 spin_unlock(&tid_agg_rx->reorder_lock); 3426 3427 if (!skb_queue_empty(&frames)) { 3428 struct ieee80211_event event = { 3429 .type = BA_FRAME_TIMEOUT, 3430 .u.ba.tid = tid, 3431 .u.ba.sta = &sta->sta, 3432 }; 3433 drv_event_callback(rx.local, rx.sdata, &event); 3434 } 3435 3436 ieee80211_rx_handlers(&rx, &frames); 3437 } 3438 3439 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3440 u16 ssn, u64 filtered, 3441 u16 received_mpdus) 3442 { 3443 struct sta_info *sta; 3444 struct tid_ampdu_rx *tid_agg_rx; 3445 struct sk_buff_head frames; 3446 struct ieee80211_rx_data rx = { 3447 /* This is OK -- must be QoS data frame */ 3448 .security_idx = tid, 3449 .seqno_idx = tid, 3450 }; 3451 int i, diff; 3452 3453 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3454 return; 3455 3456 __skb_queue_head_init(&frames); 3457 3458 sta = container_of(pubsta, struct sta_info, sta); 3459 3460 rx.sta = sta; 3461 rx.sdata = sta->sdata; 3462 rx.local = sta->local; 3463 3464 rcu_read_lock(); 3465 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3466 if (!tid_agg_rx) 3467 goto out; 3468 3469 spin_lock_bh(&tid_agg_rx->reorder_lock); 3470 3471 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3472 int release; 3473 3474 /* release all frames in the reorder buffer */ 3475 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3476 IEEE80211_SN_MODULO; 3477 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3478 release, &frames); 3479 /* update ssn to match received ssn */ 3480 tid_agg_rx->head_seq_num = ssn; 3481 } else { 3482 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3483 &frames); 3484 } 3485 3486 /* handle the case that received ssn is behind the mac ssn. 3487 * it can be tid_agg_rx->buf_size behind and still be valid */ 3488 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3489 if (diff >= tid_agg_rx->buf_size) { 3490 tid_agg_rx->reorder_buf_filtered = 0; 3491 goto release; 3492 } 3493 filtered = filtered >> diff; 3494 ssn += diff; 3495 3496 /* update bitmap */ 3497 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3498 int index = (ssn + i) % tid_agg_rx->buf_size; 3499 3500 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3501 if (filtered & BIT_ULL(i)) 3502 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3503 } 3504 3505 /* now process also frames that the filter marking released */ 3506 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3507 3508 release: 3509 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3510 3511 ieee80211_rx_handlers(&rx, &frames); 3512 3513 out: 3514 rcu_read_unlock(); 3515 } 3516 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3517 3518 /* main receive path */ 3519 3520 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3521 { 3522 struct ieee80211_sub_if_data *sdata = rx->sdata; 3523 struct sk_buff *skb = rx->skb; 3524 struct ieee80211_hdr *hdr = (void *)skb->data; 3525 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3526 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3527 int multicast = is_multicast_ether_addr(hdr->addr1); 3528 3529 switch (sdata->vif.type) { 3530 case NL80211_IFTYPE_STATION: 3531 if (!bssid && !sdata->u.mgd.use_4addr) 3532 return false; 3533 if (multicast) 3534 return true; 3535 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3536 case NL80211_IFTYPE_ADHOC: 3537 if (!bssid) 3538 return false; 3539 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3540 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3541 return false; 3542 if (ieee80211_is_beacon(hdr->frame_control)) 3543 return true; 3544 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3545 return false; 3546 if (!multicast && 3547 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3548 return false; 3549 if (!rx->sta) { 3550 int rate_idx; 3551 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3552 rate_idx = 0; /* TODO: HT/VHT rates */ 3553 else 3554 rate_idx = status->rate_idx; 3555 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3556 BIT(rate_idx)); 3557 } 3558 return true; 3559 case NL80211_IFTYPE_OCB: 3560 if (!bssid) 3561 return false; 3562 if (!ieee80211_is_data_present(hdr->frame_control)) 3563 return false; 3564 if (!is_broadcast_ether_addr(bssid)) 3565 return false; 3566 if (!multicast && 3567 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3568 return false; 3569 if (!rx->sta) { 3570 int rate_idx; 3571 if (status->flag & RX_FLAG_HT) 3572 rate_idx = 0; /* TODO: HT rates */ 3573 else 3574 rate_idx = status->rate_idx; 3575 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3576 BIT(rate_idx)); 3577 } 3578 return true; 3579 case NL80211_IFTYPE_MESH_POINT: 3580 if (multicast) 3581 return true; 3582 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3583 case NL80211_IFTYPE_AP_VLAN: 3584 case NL80211_IFTYPE_AP: 3585 if (!bssid) 3586 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3587 3588 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3589 /* 3590 * Accept public action frames even when the 3591 * BSSID doesn't match, this is used for P2P 3592 * and location updates. Note that mac80211 3593 * itself never looks at these frames. 3594 */ 3595 if (!multicast && 3596 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3597 return false; 3598 if (ieee80211_is_public_action(hdr, skb->len)) 3599 return true; 3600 return ieee80211_is_beacon(hdr->frame_control); 3601 } 3602 3603 if (!ieee80211_has_tods(hdr->frame_control)) { 3604 /* ignore data frames to TDLS-peers */ 3605 if (ieee80211_is_data(hdr->frame_control)) 3606 return false; 3607 /* ignore action frames to TDLS-peers */ 3608 if (ieee80211_is_action(hdr->frame_control) && 3609 !is_broadcast_ether_addr(bssid) && 3610 !ether_addr_equal(bssid, hdr->addr1)) 3611 return false; 3612 } 3613 return true; 3614 case NL80211_IFTYPE_WDS: 3615 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3616 return false; 3617 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3618 case NL80211_IFTYPE_P2P_DEVICE: 3619 return ieee80211_is_public_action(hdr, skb->len) || 3620 ieee80211_is_probe_req(hdr->frame_control) || 3621 ieee80211_is_probe_resp(hdr->frame_control) || 3622 ieee80211_is_beacon(hdr->frame_control); 3623 case NL80211_IFTYPE_NAN: 3624 /* Currently no frames on NAN interface are allowed */ 3625 return false; 3626 default: 3627 break; 3628 } 3629 3630 WARN_ON_ONCE(1); 3631 return false; 3632 } 3633 3634 void ieee80211_check_fast_rx(struct sta_info *sta) 3635 { 3636 struct ieee80211_sub_if_data *sdata = sta->sdata; 3637 struct ieee80211_local *local = sdata->local; 3638 struct ieee80211_key *key; 3639 struct ieee80211_fast_rx fastrx = { 3640 .dev = sdata->dev, 3641 .vif_type = sdata->vif.type, 3642 .control_port_protocol = sdata->control_port_protocol, 3643 }, *old, *new = NULL; 3644 bool assign = false; 3645 3646 /* use sparse to check that we don't return without updating */ 3647 __acquire(check_fast_rx); 3648 3649 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3650 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3651 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3652 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3653 3654 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3655 3656 /* fast-rx doesn't do reordering */ 3657 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3658 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3659 goto clear; 3660 3661 switch (sdata->vif.type) { 3662 case NL80211_IFTYPE_STATION: 3663 /* 4-addr is harder to deal with, later maybe */ 3664 if (sdata->u.mgd.use_4addr) 3665 goto clear; 3666 /* software powersave is a huge mess, avoid all of it */ 3667 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3668 goto clear; 3669 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3670 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3671 goto clear; 3672 if (sta->sta.tdls) { 3673 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3674 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3675 fastrx.expected_ds_bits = 0; 3676 } else { 3677 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3678 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3679 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3680 fastrx.expected_ds_bits = 3681 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3682 } 3683 break; 3684 case NL80211_IFTYPE_AP_VLAN: 3685 case NL80211_IFTYPE_AP: 3686 /* parallel-rx requires this, at least with calls to 3687 * ieee80211_sta_ps_transition() 3688 */ 3689 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3690 goto clear; 3691 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3692 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3693 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3694 3695 fastrx.internal_forward = 3696 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3697 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3698 !sdata->u.vlan.sta); 3699 break; 3700 default: 3701 goto clear; 3702 } 3703 3704 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3705 goto clear; 3706 3707 rcu_read_lock(); 3708 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3709 if (key) { 3710 switch (key->conf.cipher) { 3711 case WLAN_CIPHER_SUITE_TKIP: 3712 /* we don't want to deal with MMIC in fast-rx */ 3713 goto clear_rcu; 3714 case WLAN_CIPHER_SUITE_CCMP: 3715 case WLAN_CIPHER_SUITE_CCMP_256: 3716 case WLAN_CIPHER_SUITE_GCMP: 3717 case WLAN_CIPHER_SUITE_GCMP_256: 3718 break; 3719 default: 3720 /* we also don't want to deal with WEP or cipher scheme 3721 * since those require looking up the key idx in the 3722 * frame, rather than assuming the PTK is used 3723 * (we need to revisit this once we implement the real 3724 * PTK index, which is now valid in the spec, but we 3725 * haven't implemented that part yet) 3726 */ 3727 goto clear_rcu; 3728 } 3729 3730 fastrx.key = true; 3731 fastrx.icv_len = key->conf.icv_len; 3732 } 3733 3734 assign = true; 3735 clear_rcu: 3736 rcu_read_unlock(); 3737 clear: 3738 __release(check_fast_rx); 3739 3740 if (assign) 3741 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3742 3743 spin_lock_bh(&sta->lock); 3744 old = rcu_dereference_protected(sta->fast_rx, true); 3745 rcu_assign_pointer(sta->fast_rx, new); 3746 spin_unlock_bh(&sta->lock); 3747 3748 if (old) 3749 kfree_rcu(old, rcu_head); 3750 } 3751 3752 void ieee80211_clear_fast_rx(struct sta_info *sta) 3753 { 3754 struct ieee80211_fast_rx *old; 3755 3756 spin_lock_bh(&sta->lock); 3757 old = rcu_dereference_protected(sta->fast_rx, true); 3758 RCU_INIT_POINTER(sta->fast_rx, NULL); 3759 spin_unlock_bh(&sta->lock); 3760 3761 if (old) 3762 kfree_rcu(old, rcu_head); 3763 } 3764 3765 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3766 { 3767 struct ieee80211_local *local = sdata->local; 3768 struct sta_info *sta; 3769 3770 lockdep_assert_held(&local->sta_mtx); 3771 3772 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3773 if (sdata != sta->sdata && 3774 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3775 continue; 3776 ieee80211_check_fast_rx(sta); 3777 } 3778 } 3779 3780 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3781 { 3782 struct ieee80211_local *local = sdata->local; 3783 3784 mutex_lock(&local->sta_mtx); 3785 __ieee80211_check_fast_rx_iface(sdata); 3786 mutex_unlock(&local->sta_mtx); 3787 } 3788 3789 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3790 struct ieee80211_fast_rx *fast_rx) 3791 { 3792 struct sk_buff *skb = rx->skb; 3793 struct ieee80211_hdr *hdr = (void *)skb->data; 3794 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3795 struct sta_info *sta = rx->sta; 3796 int orig_len = skb->len; 3797 int snap_offs = ieee80211_hdrlen(hdr->frame_control); 3798 struct { 3799 u8 snap[sizeof(rfc1042_header)]; 3800 __be16 proto; 3801 } *payload __aligned(2); 3802 struct { 3803 u8 da[ETH_ALEN]; 3804 u8 sa[ETH_ALEN]; 3805 } addrs __aligned(2); 3806 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3807 3808 if (fast_rx->uses_rss) 3809 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3810 3811 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3812 * to a common data structure; drivers can implement that per queue 3813 * but we don't have that information in mac80211 3814 */ 3815 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3816 return false; 3817 3818 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3819 3820 /* If using encryption, we also need to have: 3821 * - PN_VALIDATED: similar, but the implementation is tricky 3822 * - DECRYPTED: necessary for PN_VALIDATED 3823 */ 3824 if (fast_rx->key && 3825 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3826 return false; 3827 3828 /* we don't deal with A-MSDU deaggregation here */ 3829 if (status->rx_flags & IEEE80211_RX_AMSDU) 3830 return false; 3831 3832 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3833 return false; 3834 3835 if (unlikely(ieee80211_is_frag(hdr))) 3836 return false; 3837 3838 /* Since our interface address cannot be multicast, this 3839 * implicitly also rejects multicast frames without the 3840 * explicit check. 3841 * 3842 * We shouldn't get any *data* frames not addressed to us 3843 * (AP mode will accept multicast *management* frames), but 3844 * punting here will make it go through the full checks in 3845 * ieee80211_accept_frame(). 3846 */ 3847 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3848 return false; 3849 3850 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3851 IEEE80211_FCTL_TODS)) != 3852 fast_rx->expected_ds_bits) 3853 goto drop; 3854 3855 /* assign the key to drop unencrypted frames (later) 3856 * and strip the IV/MIC if necessary 3857 */ 3858 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3859 /* GCMP header length is the same */ 3860 snap_offs += IEEE80211_CCMP_HDR_LEN; 3861 } 3862 3863 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3864 goto drop; 3865 payload = (void *)(skb->data + snap_offs); 3866 3867 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 3868 return false; 3869 3870 /* Don't handle these here since they require special code. 3871 * Accept AARP and IPX even though they should come with a 3872 * bridge-tunnel header - but if we get them this way then 3873 * there's little point in discarding them. 3874 */ 3875 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 3876 payload->proto == fast_rx->control_port_protocol)) 3877 return false; 3878 3879 /* after this point, don't punt to the slowpath! */ 3880 3881 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 3882 pskb_trim(skb, skb->len - fast_rx->icv_len)) 3883 goto drop; 3884 3885 if (unlikely(fast_rx->sta_notify)) { 3886 ieee80211_sta_rx_notify(rx->sdata, hdr); 3887 fast_rx->sta_notify = false; 3888 } 3889 3890 /* statistics part of ieee80211_rx_h_sta_process() */ 3891 stats->last_rx = jiffies; 3892 stats->last_rate = sta_stats_encode_rate(status); 3893 3894 stats->fragments++; 3895 stats->packets++; 3896 3897 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 3898 stats->last_signal = status->signal; 3899 if (!fast_rx->uses_rss) 3900 ewma_signal_add(&sta->rx_stats_avg.signal, 3901 -status->signal); 3902 } 3903 3904 if (status->chains) { 3905 int i; 3906 3907 stats->chains = status->chains; 3908 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 3909 int signal = status->chain_signal[i]; 3910 3911 if (!(status->chains & BIT(i))) 3912 continue; 3913 3914 stats->chain_signal_last[i] = signal; 3915 if (!fast_rx->uses_rss) 3916 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 3917 -signal); 3918 } 3919 } 3920 /* end of statistics */ 3921 3922 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 3923 goto drop; 3924 3925 /* do the header conversion - first grab the addresses */ 3926 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 3927 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 3928 /* remove the SNAP but leave the ethertype */ 3929 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 3930 /* push the addresses in front */ 3931 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 3932 3933 skb->dev = fast_rx->dev; 3934 3935 ieee80211_rx_stats(fast_rx->dev, skb->len); 3936 3937 /* The seqno index has the same property as needed 3938 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 3939 * for non-QoS-data frames. Here we know it's a data 3940 * frame, so count MSDUs. 3941 */ 3942 u64_stats_update_begin(&stats->syncp); 3943 stats->msdu[rx->seqno_idx]++; 3944 stats->bytes += orig_len; 3945 u64_stats_update_end(&stats->syncp); 3946 3947 if (fast_rx->internal_forward) { 3948 struct sk_buff *xmit_skb = NULL; 3949 bool multicast = is_multicast_ether_addr(skb->data); 3950 3951 if (multicast) { 3952 xmit_skb = skb_copy(skb, GFP_ATOMIC); 3953 } else if (sta_info_get(rx->sdata, skb->data)) { 3954 xmit_skb = skb; 3955 skb = NULL; 3956 } 3957 3958 if (xmit_skb) { 3959 /* 3960 * Send to wireless media and increase priority by 256 3961 * to keep the received priority instead of 3962 * reclassifying the frame (see cfg80211_classify8021d). 3963 */ 3964 xmit_skb->priority += 256; 3965 xmit_skb->protocol = htons(ETH_P_802_3); 3966 skb_reset_network_header(xmit_skb); 3967 skb_reset_mac_header(xmit_skb); 3968 dev_queue_xmit(xmit_skb); 3969 } 3970 3971 if (!skb) 3972 return true; 3973 } 3974 3975 /* deliver to local stack */ 3976 skb->protocol = eth_type_trans(skb, fast_rx->dev); 3977 memset(skb->cb, 0, sizeof(skb->cb)); 3978 if (rx->napi) 3979 napi_gro_receive(rx->napi, skb); 3980 else 3981 netif_receive_skb(skb); 3982 3983 return true; 3984 drop: 3985 dev_kfree_skb(skb); 3986 stats->dropped++; 3987 return true; 3988 } 3989 3990 /* 3991 * This function returns whether or not the SKB 3992 * was destined for RX processing or not, which, 3993 * if consume is true, is equivalent to whether 3994 * or not the skb was consumed. 3995 */ 3996 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3997 struct sk_buff *skb, bool consume) 3998 { 3999 struct ieee80211_local *local = rx->local; 4000 struct ieee80211_sub_if_data *sdata = rx->sdata; 4001 4002 rx->skb = skb; 4003 4004 /* See if we can do fast-rx; if we have to copy we already lost, 4005 * so punt in that case. We should never have to deliver a data 4006 * frame to multiple interfaces anyway. 4007 * 4008 * We skip the ieee80211_accept_frame() call and do the necessary 4009 * checking inside ieee80211_invoke_fast_rx(). 4010 */ 4011 if (consume && rx->sta) { 4012 struct ieee80211_fast_rx *fast_rx; 4013 4014 fast_rx = rcu_dereference(rx->sta->fast_rx); 4015 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4016 return true; 4017 } 4018 4019 if (!ieee80211_accept_frame(rx)) 4020 return false; 4021 4022 if (!consume) { 4023 skb = skb_copy(skb, GFP_ATOMIC); 4024 if (!skb) { 4025 if (net_ratelimit()) 4026 wiphy_debug(local->hw.wiphy, 4027 "failed to copy skb for %s\n", 4028 sdata->name); 4029 return true; 4030 } 4031 4032 rx->skb = skb; 4033 } 4034 4035 ieee80211_invoke_rx_handlers(rx); 4036 return true; 4037 } 4038 4039 /* 4040 * This is the actual Rx frames handler. as it belongs to Rx path it must 4041 * be called with rcu_read_lock protection. 4042 */ 4043 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4044 struct ieee80211_sta *pubsta, 4045 struct sk_buff *skb, 4046 struct napi_struct *napi) 4047 { 4048 struct ieee80211_local *local = hw_to_local(hw); 4049 struct ieee80211_sub_if_data *sdata; 4050 struct ieee80211_hdr *hdr; 4051 __le16 fc; 4052 struct ieee80211_rx_data rx; 4053 struct ieee80211_sub_if_data *prev; 4054 struct rhlist_head *tmp; 4055 int err = 0; 4056 4057 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4058 memset(&rx, 0, sizeof(rx)); 4059 rx.skb = skb; 4060 rx.local = local; 4061 rx.napi = napi; 4062 4063 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4064 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4065 4066 if (ieee80211_is_mgmt(fc)) { 4067 /* drop frame if too short for header */ 4068 if (skb->len < ieee80211_hdrlen(fc)) 4069 err = -ENOBUFS; 4070 else 4071 err = skb_linearize(skb); 4072 } else { 4073 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4074 } 4075 4076 if (err) { 4077 dev_kfree_skb(skb); 4078 return; 4079 } 4080 4081 hdr = (struct ieee80211_hdr *)skb->data; 4082 ieee80211_parse_qos(&rx); 4083 ieee80211_verify_alignment(&rx); 4084 4085 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4086 ieee80211_is_beacon(hdr->frame_control))) 4087 ieee80211_scan_rx(local, skb); 4088 4089 if (ieee80211_is_data(fc)) { 4090 struct sta_info *sta, *prev_sta; 4091 4092 if (pubsta) { 4093 rx.sta = container_of(pubsta, struct sta_info, sta); 4094 rx.sdata = rx.sta->sdata; 4095 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4096 return; 4097 goto out; 4098 } 4099 4100 prev_sta = NULL; 4101 4102 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4103 if (!prev_sta) { 4104 prev_sta = sta; 4105 continue; 4106 } 4107 4108 rx.sta = prev_sta; 4109 rx.sdata = prev_sta->sdata; 4110 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4111 4112 prev_sta = sta; 4113 } 4114 4115 if (prev_sta) { 4116 rx.sta = prev_sta; 4117 rx.sdata = prev_sta->sdata; 4118 4119 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4120 return; 4121 goto out; 4122 } 4123 } 4124 4125 prev = NULL; 4126 4127 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4128 if (!ieee80211_sdata_running(sdata)) 4129 continue; 4130 4131 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4132 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4133 continue; 4134 4135 /* 4136 * frame is destined for this interface, but if it's 4137 * not also for the previous one we handle that after 4138 * the loop to avoid copying the SKB once too much 4139 */ 4140 4141 if (!prev) { 4142 prev = sdata; 4143 continue; 4144 } 4145 4146 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4147 rx.sdata = prev; 4148 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4149 4150 prev = sdata; 4151 } 4152 4153 if (prev) { 4154 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4155 rx.sdata = prev; 4156 4157 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4158 return; 4159 } 4160 4161 out: 4162 dev_kfree_skb(skb); 4163 } 4164 4165 /* 4166 * This is the receive path handler. It is called by a low level driver when an 4167 * 802.11 MPDU is received from the hardware. 4168 */ 4169 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4170 struct sk_buff *skb, struct napi_struct *napi) 4171 { 4172 struct ieee80211_local *local = hw_to_local(hw); 4173 struct ieee80211_rate *rate = NULL; 4174 struct ieee80211_supported_band *sband; 4175 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4176 4177 WARN_ON_ONCE(softirq_count() == 0); 4178 4179 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4180 goto drop; 4181 4182 sband = local->hw.wiphy->bands[status->band]; 4183 if (WARN_ON(!sband)) 4184 goto drop; 4185 4186 /* 4187 * If we're suspending, it is possible although not too likely 4188 * that we'd be receiving frames after having already partially 4189 * quiesced the stack. We can't process such frames then since 4190 * that might, for example, cause stations to be added or other 4191 * driver callbacks be invoked. 4192 */ 4193 if (unlikely(local->quiescing || local->suspended)) 4194 goto drop; 4195 4196 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4197 if (unlikely(local->in_reconfig)) 4198 goto drop; 4199 4200 /* 4201 * The same happens when we're not even started, 4202 * but that's worth a warning. 4203 */ 4204 if (WARN_ON(!local->started)) 4205 goto drop; 4206 4207 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4208 /* 4209 * Validate the rate, unless a PLCP error means that 4210 * we probably can't have a valid rate here anyway. 4211 */ 4212 4213 if (status->flag & RX_FLAG_HT) { 4214 /* 4215 * rate_idx is MCS index, which can be [0-76] 4216 * as documented on: 4217 * 4218 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4219 * 4220 * Anything else would be some sort of driver or 4221 * hardware error. The driver should catch hardware 4222 * errors. 4223 */ 4224 if (WARN(status->rate_idx > 76, 4225 "Rate marked as an HT rate but passed " 4226 "status->rate_idx is not " 4227 "an MCS index [0-76]: %d (0x%02x)\n", 4228 status->rate_idx, 4229 status->rate_idx)) 4230 goto drop; 4231 } else if (status->flag & RX_FLAG_VHT) { 4232 if (WARN_ONCE(status->rate_idx > 9 || 4233 !status->vht_nss || 4234 status->vht_nss > 8, 4235 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4236 status->rate_idx, status->vht_nss)) 4237 goto drop; 4238 } else { 4239 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4240 goto drop; 4241 rate = &sband->bitrates[status->rate_idx]; 4242 } 4243 } 4244 4245 status->rx_flags = 0; 4246 4247 /* 4248 * key references and virtual interfaces are protected using RCU 4249 * and this requires that we are in a read-side RCU section during 4250 * receive processing 4251 */ 4252 rcu_read_lock(); 4253 4254 /* 4255 * Frames with failed FCS/PLCP checksum are not returned, 4256 * all other frames are returned without radiotap header 4257 * if it was previously present. 4258 * Also, frames with less than 16 bytes are dropped. 4259 */ 4260 skb = ieee80211_rx_monitor(local, skb, rate); 4261 if (!skb) { 4262 rcu_read_unlock(); 4263 return; 4264 } 4265 4266 ieee80211_tpt_led_trig_rx(local, 4267 ((struct ieee80211_hdr *)skb->data)->frame_control, 4268 skb->len); 4269 4270 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4271 4272 rcu_read_unlock(); 4273 4274 return; 4275 drop: 4276 kfree_skb(skb); 4277 } 4278 EXPORT_SYMBOL(ieee80211_rx_napi); 4279 4280 /* This is a version of the rx handler that can be called from hard irq 4281 * context. Post the skb on the queue and schedule the tasklet */ 4282 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4283 { 4284 struct ieee80211_local *local = hw_to_local(hw); 4285 4286 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4287 4288 skb->pkt_type = IEEE80211_RX_MSG; 4289 skb_queue_tail(&local->skb_queue, skb); 4290 tasklet_schedule(&local->tasklet); 4291 } 4292 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4293