1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <net/mac80211.h> 20 #include <net/ieee80211_radiotap.h> 21 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "led.h" 25 #include "mesh.h" 26 #include "wep.h" 27 #include "wpa.h" 28 #include "tkip.h" 29 #include "wme.h" 30 31 /* 32 * monitor mode reception 33 * 34 * This function cleans up the SKB, i.e. it removes all the stuff 35 * only useful for monitoring. 36 */ 37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 38 struct sk_buff *skb) 39 { 40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 41 if (likely(skb->len > FCS_LEN)) 42 skb_trim(skb, skb->len - FCS_LEN); 43 else { 44 /* driver bug */ 45 WARN_ON(1); 46 dev_kfree_skb(skb); 47 skb = NULL; 48 } 49 } 50 51 return skb; 52 } 53 54 static inline int should_drop_frame(struct sk_buff *skb, 55 int present_fcs_len) 56 { 57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 59 60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 61 return 1; 62 if (unlikely(skb->len < 16 + present_fcs_len)) 63 return 1; 64 if (ieee80211_is_ctl(hdr->frame_control) && 65 !ieee80211_is_pspoll(hdr->frame_control) && 66 !ieee80211_is_back_req(hdr->frame_control)) 67 return 1; 68 return 0; 69 } 70 71 static int 72 ieee80211_rx_radiotap_len(struct ieee80211_local *local, 73 struct ieee80211_rx_status *status) 74 { 75 int len; 76 77 /* always present fields */ 78 len = sizeof(struct ieee80211_radiotap_header) + 9; 79 80 if (status->flag & RX_FLAG_TSFT) 81 len += 8; 82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 83 len += 1; 84 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) 85 len += 1; 86 87 if (len & 1) /* padding for RX_FLAGS if necessary */ 88 len++; 89 90 return len; 91 } 92 93 /* 94 * ieee80211_add_rx_radiotap_header - add radiotap header 95 * 96 * add a radiotap header containing all the fields which the hardware provided. 97 */ 98 static void 99 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 100 struct sk_buff *skb, 101 struct ieee80211_rate *rate, 102 int rtap_len) 103 { 104 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 105 struct ieee80211_radiotap_header *rthdr; 106 unsigned char *pos; 107 u16 rx_flags = 0; 108 109 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 110 memset(rthdr, 0, rtap_len); 111 112 /* radiotap header, set always present flags */ 113 rthdr->it_present = 114 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 115 (1 << IEEE80211_RADIOTAP_CHANNEL) | 116 (1 << IEEE80211_RADIOTAP_ANTENNA) | 117 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 118 rthdr->it_len = cpu_to_le16(rtap_len); 119 120 pos = (unsigned char *)(rthdr+1); 121 122 /* the order of the following fields is important */ 123 124 /* IEEE80211_RADIOTAP_TSFT */ 125 if (status->flag & RX_FLAG_TSFT) { 126 put_unaligned_le64(status->mactime, pos); 127 rthdr->it_present |= 128 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 129 pos += 8; 130 } 131 132 /* IEEE80211_RADIOTAP_FLAGS */ 133 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 134 *pos |= IEEE80211_RADIOTAP_F_FCS; 135 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 136 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 137 if (status->flag & RX_FLAG_SHORTPRE) 138 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 139 pos++; 140 141 /* IEEE80211_RADIOTAP_RATE */ 142 if (status->flag & RX_FLAG_HT) { 143 /* 144 * TODO: add following information into radiotap header once 145 * suitable fields are defined for it: 146 * - MCS index (status->rate_idx) 147 * - HT40 (status->flag & RX_FLAG_40MHZ) 148 * - short-GI (status->flag & RX_FLAG_SHORT_GI) 149 */ 150 *pos = 0; 151 } else { 152 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 153 *pos = rate->bitrate / 5; 154 } 155 pos++; 156 157 /* IEEE80211_RADIOTAP_CHANNEL */ 158 put_unaligned_le16(status->freq, pos); 159 pos += 2; 160 if (status->band == IEEE80211_BAND_5GHZ) 161 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 162 pos); 163 else if (status->flag & RX_FLAG_HT) 164 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 165 pos); 166 else if (rate->flags & IEEE80211_RATE_ERP_G) 167 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 168 pos); 169 else 170 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 171 pos); 172 pos += 2; 173 174 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 175 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) { 176 *pos = status->signal; 177 rthdr->it_present |= 178 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 179 pos++; 180 } 181 182 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */ 183 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) { 184 *pos = status->noise; 185 rthdr->it_present |= 186 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE); 187 pos++; 188 } 189 190 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 191 192 /* IEEE80211_RADIOTAP_ANTENNA */ 193 *pos = status->antenna; 194 pos++; 195 196 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 197 198 /* IEEE80211_RADIOTAP_RX_FLAGS */ 199 /* ensure 2 byte alignment for the 2 byte field as required */ 200 if ((pos - (u8 *)rthdr) & 1) 201 pos++; 202 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 203 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 204 put_unaligned_le16(rx_flags, pos); 205 pos += 2; 206 } 207 208 /* 209 * This function copies a received frame to all monitor interfaces and 210 * returns a cleaned-up SKB that no longer includes the FCS nor the 211 * radiotap header the driver might have added. 212 */ 213 static struct sk_buff * 214 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 215 struct ieee80211_rate *rate) 216 { 217 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 218 struct ieee80211_sub_if_data *sdata; 219 int needed_headroom = 0; 220 struct sk_buff *skb, *skb2; 221 struct net_device *prev_dev = NULL; 222 int present_fcs_len = 0; 223 224 /* 225 * First, we may need to make a copy of the skb because 226 * (1) we need to modify it for radiotap (if not present), and 227 * (2) the other RX handlers will modify the skb we got. 228 * 229 * We don't need to, of course, if we aren't going to return 230 * the SKB because it has a bad FCS/PLCP checksum. 231 */ 232 233 /* room for the radiotap header based on driver features */ 234 needed_headroom = ieee80211_rx_radiotap_len(local, status); 235 236 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 237 present_fcs_len = FCS_LEN; 238 239 if (!local->monitors) { 240 if (should_drop_frame(origskb, present_fcs_len)) { 241 dev_kfree_skb(origskb); 242 return NULL; 243 } 244 245 return remove_monitor_info(local, origskb); 246 } 247 248 if (should_drop_frame(origskb, present_fcs_len)) { 249 /* only need to expand headroom if necessary */ 250 skb = origskb; 251 origskb = NULL; 252 253 /* 254 * This shouldn't trigger often because most devices have an 255 * RX header they pull before we get here, and that should 256 * be big enough for our radiotap information. We should 257 * probably export the length to drivers so that we can have 258 * them allocate enough headroom to start with. 259 */ 260 if (skb_headroom(skb) < needed_headroom && 261 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 262 dev_kfree_skb(skb); 263 return NULL; 264 } 265 } else { 266 /* 267 * Need to make a copy and possibly remove radiotap header 268 * and FCS from the original. 269 */ 270 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 271 272 origskb = remove_monitor_info(local, origskb); 273 274 if (!skb) 275 return origskb; 276 } 277 278 /* prepend radiotap information */ 279 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom); 280 281 skb_reset_mac_header(skb); 282 skb->ip_summed = CHECKSUM_UNNECESSARY; 283 skb->pkt_type = PACKET_OTHERHOST; 284 skb->protocol = htons(ETH_P_802_2); 285 286 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 287 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 288 continue; 289 290 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 291 continue; 292 293 if (!ieee80211_sdata_running(sdata)) 294 continue; 295 296 if (prev_dev) { 297 skb2 = skb_clone(skb, GFP_ATOMIC); 298 if (skb2) { 299 skb2->dev = prev_dev; 300 netif_rx(skb2); 301 } 302 } 303 304 prev_dev = sdata->dev; 305 sdata->dev->stats.rx_packets++; 306 sdata->dev->stats.rx_bytes += skb->len; 307 } 308 309 if (prev_dev) { 310 skb->dev = prev_dev; 311 netif_rx(skb); 312 } else 313 dev_kfree_skb(skb); 314 315 return origskb; 316 } 317 318 319 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 320 { 321 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 322 int tid; 323 324 /* does the frame have a qos control field? */ 325 if (ieee80211_is_data_qos(hdr->frame_control)) { 326 u8 *qc = ieee80211_get_qos_ctl(hdr); 327 /* frame has qos control */ 328 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 329 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT) 330 rx->flags |= IEEE80211_RX_AMSDU; 331 else 332 rx->flags &= ~IEEE80211_RX_AMSDU; 333 } else { 334 /* 335 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 336 * 337 * Sequence numbers for management frames, QoS data 338 * frames with a broadcast/multicast address in the 339 * Address 1 field, and all non-QoS data frames sent 340 * by QoS STAs are assigned using an additional single 341 * modulo-4096 counter, [...] 342 * 343 * We also use that counter for non-QoS STAs. 344 */ 345 tid = NUM_RX_DATA_QUEUES - 1; 346 } 347 348 rx->queue = tid; 349 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 350 * For now, set skb->priority to 0 for other cases. */ 351 rx->skb->priority = (tid > 7) ? 0 : tid; 352 } 353 354 /** 355 * DOC: Packet alignment 356 * 357 * Drivers always need to pass packets that are aligned to two-byte boundaries 358 * to the stack. 359 * 360 * Additionally, should, if possible, align the payload data in a way that 361 * guarantees that the contained IP header is aligned to a four-byte 362 * boundary. In the case of regular frames, this simply means aligning the 363 * payload to a four-byte boundary (because either the IP header is directly 364 * contained, or IV/RFC1042 headers that have a length divisible by four are 365 * in front of it). If the payload data is not properly aligned and the 366 * architecture doesn't support efficient unaligned operations, mac80211 367 * will align the data. 368 * 369 * With A-MSDU frames, however, the payload data address must yield two modulo 370 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 371 * push the IP header further back to a multiple of four again. Thankfully, the 372 * specs were sane enough this time around to require padding each A-MSDU 373 * subframe to a length that is a multiple of four. 374 * 375 * Padding like Atheros hardware adds which is inbetween the 802.11 header and 376 * the payload is not supported, the driver is required to move the 802.11 377 * header to be directly in front of the payload in that case. 378 */ 379 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 380 { 381 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 382 WARN_ONCE((unsigned long)rx->skb->data & 1, 383 "unaligned packet at 0x%p\n", rx->skb->data); 384 #endif 385 } 386 387 388 /* rx handlers */ 389 390 static ieee80211_rx_result debug_noinline 391 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx) 392 { 393 struct ieee80211_local *local = rx->local; 394 struct sk_buff *skb = rx->skb; 395 396 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning))) 397 return ieee80211_scan_rx(rx->sdata, skb); 398 399 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) && 400 (rx->flags & IEEE80211_RX_IN_SCAN))) { 401 /* drop all the other packets during a software scan anyway */ 402 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED) 403 dev_kfree_skb(skb); 404 return RX_QUEUED; 405 } 406 407 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) { 408 /* scanning finished during invoking of handlers */ 409 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); 410 return RX_DROP_UNUSABLE; 411 } 412 413 return RX_CONTINUE; 414 } 415 416 417 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 418 { 419 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 420 421 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 422 return 0; 423 424 return ieee80211_is_robust_mgmt_frame(hdr); 425 } 426 427 428 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 429 { 430 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 431 432 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 433 return 0; 434 435 return ieee80211_is_robust_mgmt_frame(hdr); 436 } 437 438 439 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 440 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 441 { 442 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 443 struct ieee80211_mmie *mmie; 444 445 if (skb->len < 24 + sizeof(*mmie) || 446 !is_multicast_ether_addr(hdr->da)) 447 return -1; 448 449 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 450 return -1; /* not a robust management frame */ 451 452 mmie = (struct ieee80211_mmie *) 453 (skb->data + skb->len - sizeof(*mmie)); 454 if (mmie->element_id != WLAN_EID_MMIE || 455 mmie->length != sizeof(*mmie) - 2) 456 return -1; 457 458 return le16_to_cpu(mmie->key_id); 459 } 460 461 462 static ieee80211_rx_result 463 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 464 { 465 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 466 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 467 char *dev_addr = rx->sdata->vif.addr; 468 469 if (ieee80211_is_data(hdr->frame_control)) { 470 if (is_multicast_ether_addr(hdr->addr1)) { 471 if (ieee80211_has_tods(hdr->frame_control) || 472 !ieee80211_has_fromds(hdr->frame_control)) 473 return RX_DROP_MONITOR; 474 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0) 475 return RX_DROP_MONITOR; 476 } else { 477 if (!ieee80211_has_a4(hdr->frame_control)) 478 return RX_DROP_MONITOR; 479 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0) 480 return RX_DROP_MONITOR; 481 } 482 } 483 484 /* If there is not an established peer link and this is not a peer link 485 * establisment frame, beacon or probe, drop the frame. 486 */ 487 488 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) { 489 struct ieee80211_mgmt *mgmt; 490 491 if (!ieee80211_is_mgmt(hdr->frame_control)) 492 return RX_DROP_MONITOR; 493 494 if (ieee80211_is_action(hdr->frame_control)) { 495 mgmt = (struct ieee80211_mgmt *)hdr; 496 if (mgmt->u.action.category != MESH_PLINK_CATEGORY) 497 return RX_DROP_MONITOR; 498 return RX_CONTINUE; 499 } 500 501 if (ieee80211_is_probe_req(hdr->frame_control) || 502 ieee80211_is_probe_resp(hdr->frame_control) || 503 ieee80211_is_beacon(hdr->frame_control)) 504 return RX_CONTINUE; 505 506 return RX_DROP_MONITOR; 507 508 } 509 510 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l)) 511 512 if (ieee80211_is_data(hdr->frame_control) && 513 is_multicast_ether_addr(hdr->addr1) && 514 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata)) 515 return RX_DROP_MONITOR; 516 #undef msh_h_get 517 518 return RX_CONTINUE; 519 } 520 521 #define SEQ_MODULO 0x1000 522 #define SEQ_MASK 0xfff 523 524 static inline int seq_less(u16 sq1, u16 sq2) 525 { 526 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 527 } 528 529 static inline u16 seq_inc(u16 sq) 530 { 531 return (sq + 1) & SEQ_MASK; 532 } 533 534 static inline u16 seq_sub(u16 sq1, u16 sq2) 535 { 536 return (sq1 - sq2) & SEQ_MASK; 537 } 538 539 540 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw, 541 struct tid_ampdu_rx *tid_agg_rx, 542 int index, 543 struct sk_buff_head *frames) 544 { 545 struct ieee80211_supported_band *sband; 546 struct ieee80211_rate *rate = NULL; 547 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 548 struct ieee80211_rx_status *status; 549 550 if (!skb) 551 goto no_frame; 552 553 status = IEEE80211_SKB_RXCB(skb); 554 555 /* release the reordered frames to stack */ 556 sband = hw->wiphy->bands[status->band]; 557 if (!(status->flag & RX_FLAG_HT)) 558 rate = &sband->bitrates[status->rate_idx]; 559 tid_agg_rx->stored_mpdu_num--; 560 tid_agg_rx->reorder_buf[index] = NULL; 561 __skb_queue_tail(frames, skb); 562 563 no_frame: 564 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 565 } 566 567 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw, 568 struct tid_ampdu_rx *tid_agg_rx, 569 u16 head_seq_num, 570 struct sk_buff_head *frames) 571 { 572 int index; 573 574 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 575 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 576 tid_agg_rx->buf_size; 577 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames); 578 } 579 } 580 581 /* 582 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 583 * the skb was added to the buffer longer than this time ago, the earlier 584 * frames that have not yet been received are assumed to be lost and the skb 585 * can be released for processing. This may also release other skb's from the 586 * reorder buffer if there are no additional gaps between the frames. 587 */ 588 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 589 590 /* 591 * As this function belongs to the RX path it must be under 592 * rcu_read_lock protection. It returns false if the frame 593 * can be processed immediately, true if it was consumed. 594 */ 595 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 596 struct tid_ampdu_rx *tid_agg_rx, 597 struct sk_buff *skb, 598 struct sk_buff_head *frames) 599 { 600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 601 u16 sc = le16_to_cpu(hdr->seq_ctrl); 602 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 603 u16 head_seq_num, buf_size; 604 int index; 605 606 buf_size = tid_agg_rx->buf_size; 607 head_seq_num = tid_agg_rx->head_seq_num; 608 609 /* frame with out of date sequence number */ 610 if (seq_less(mpdu_seq_num, head_seq_num)) { 611 dev_kfree_skb(skb); 612 return true; 613 } 614 615 /* 616 * If frame the sequence number exceeds our buffering window 617 * size release some previous frames to make room for this one. 618 */ 619 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 620 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 621 /* release stored frames up to new head to stack */ 622 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num, 623 frames); 624 } 625 626 /* Now the new frame is always in the range of the reordering buffer */ 627 628 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 629 630 /* check if we already stored this frame */ 631 if (tid_agg_rx->reorder_buf[index]) { 632 dev_kfree_skb(skb); 633 return true; 634 } 635 636 /* 637 * If the current MPDU is in the right order and nothing else 638 * is stored we can process it directly, no need to buffer it. 639 */ 640 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 641 tid_agg_rx->stored_mpdu_num == 0) { 642 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 643 return false; 644 } 645 646 /* put the frame in the reordering buffer */ 647 tid_agg_rx->reorder_buf[index] = skb; 648 tid_agg_rx->reorder_time[index] = jiffies; 649 tid_agg_rx->stored_mpdu_num++; 650 /* release the buffer until next missing frame */ 651 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 652 tid_agg_rx->buf_size; 653 if (!tid_agg_rx->reorder_buf[index] && 654 tid_agg_rx->stored_mpdu_num > 1) { 655 /* 656 * No buffers ready to be released, but check whether any 657 * frames in the reorder buffer have timed out. 658 */ 659 int j; 660 int skipped = 1; 661 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 662 j = (j + 1) % tid_agg_rx->buf_size) { 663 if (!tid_agg_rx->reorder_buf[j]) { 664 skipped++; 665 continue; 666 } 667 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] + 668 HT_RX_REORDER_BUF_TIMEOUT)) 669 break; 670 671 #ifdef CONFIG_MAC80211_HT_DEBUG 672 if (net_ratelimit()) 673 printk(KERN_DEBUG "%s: release an RX reorder " 674 "frame due to timeout on earlier " 675 "frames\n", 676 wiphy_name(hw->wiphy)); 677 #endif 678 ieee80211_release_reorder_frame(hw, tid_agg_rx, 679 j, frames); 680 681 /* 682 * Increment the head seq# also for the skipped slots. 683 */ 684 tid_agg_rx->head_seq_num = 685 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 686 skipped = 0; 687 } 688 } else while (tid_agg_rx->reorder_buf[index]) { 689 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames); 690 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 691 tid_agg_rx->buf_size; 692 } 693 694 return true; 695 } 696 697 /* 698 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 699 * true if the MPDU was buffered, false if it should be processed. 700 */ 701 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 702 struct sk_buff_head *frames) 703 { 704 struct sk_buff *skb = rx->skb; 705 struct ieee80211_local *local = rx->local; 706 struct ieee80211_hw *hw = &local->hw; 707 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 708 struct sta_info *sta = rx->sta; 709 struct tid_ampdu_rx *tid_agg_rx; 710 u16 sc; 711 int tid; 712 713 if (!ieee80211_is_data_qos(hdr->frame_control)) 714 goto dont_reorder; 715 716 /* 717 * filter the QoS data rx stream according to 718 * STA/TID and check if this STA/TID is on aggregation 719 */ 720 721 if (!sta) 722 goto dont_reorder; 723 724 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 725 726 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL) 727 goto dont_reorder; 728 729 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid]; 730 731 /* qos null data frames are excluded */ 732 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 733 goto dont_reorder; 734 735 /* new, potentially un-ordered, ampdu frame - process it */ 736 737 /* reset session timer */ 738 if (tid_agg_rx->timeout) 739 mod_timer(&tid_agg_rx->session_timer, 740 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 741 742 /* if this mpdu is fragmented - terminate rx aggregation session */ 743 sc = le16_to_cpu(hdr->seq_ctrl); 744 if (sc & IEEE80211_SCTL_FRAG) { 745 ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->sta.addr, 746 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP); 747 dev_kfree_skb(skb); 748 return; 749 } 750 751 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames)) 752 return; 753 754 dont_reorder: 755 __skb_queue_tail(frames, skb); 756 } 757 758 static ieee80211_rx_result debug_noinline 759 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 760 { 761 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 762 763 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 764 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 765 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 766 rx->sta->last_seq_ctrl[rx->queue] == 767 hdr->seq_ctrl)) { 768 if (rx->flags & IEEE80211_RX_RA_MATCH) { 769 rx->local->dot11FrameDuplicateCount++; 770 rx->sta->num_duplicates++; 771 } 772 return RX_DROP_MONITOR; 773 } else 774 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl; 775 } 776 777 if (unlikely(rx->skb->len < 16)) { 778 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 779 return RX_DROP_MONITOR; 780 } 781 782 /* Drop disallowed frame classes based on STA auth/assoc state; 783 * IEEE 802.11, Chap 5.5. 784 * 785 * mac80211 filters only based on association state, i.e. it drops 786 * Class 3 frames from not associated stations. hostapd sends 787 * deauth/disassoc frames when needed. In addition, hostapd is 788 * responsible for filtering on both auth and assoc states. 789 */ 790 791 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 792 return ieee80211_rx_mesh_check(rx); 793 794 if (unlikely((ieee80211_is_data(hdr->frame_control) || 795 ieee80211_is_pspoll(hdr->frame_control)) && 796 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 797 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) { 798 if ((!ieee80211_has_fromds(hdr->frame_control) && 799 !ieee80211_has_tods(hdr->frame_control) && 800 ieee80211_is_data(hdr->frame_control)) || 801 !(rx->flags & IEEE80211_RX_RA_MATCH)) { 802 /* Drop IBSS frames and frames for other hosts 803 * silently. */ 804 return RX_DROP_MONITOR; 805 } 806 807 return RX_DROP_MONITOR; 808 } 809 810 return RX_CONTINUE; 811 } 812 813 814 static ieee80211_rx_result debug_noinline 815 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 816 { 817 struct sk_buff *skb = rx->skb; 818 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 819 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 820 int keyidx; 821 int hdrlen; 822 ieee80211_rx_result result = RX_DROP_UNUSABLE; 823 struct ieee80211_key *stakey = NULL; 824 int mmie_keyidx = -1; 825 826 /* 827 * Key selection 101 828 * 829 * There are four types of keys: 830 * - GTK (group keys) 831 * - IGTK (group keys for management frames) 832 * - PTK (pairwise keys) 833 * - STK (station-to-station pairwise keys) 834 * 835 * When selecting a key, we have to distinguish between multicast 836 * (including broadcast) and unicast frames, the latter can only 837 * use PTKs and STKs while the former always use GTKs and IGTKs. 838 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 839 * unicast frames can also use key indices like GTKs. Hence, if we 840 * don't have a PTK/STK we check the key index for a WEP key. 841 * 842 * Note that in a regular BSS, multicast frames are sent by the 843 * AP only, associated stations unicast the frame to the AP first 844 * which then multicasts it on their behalf. 845 * 846 * There is also a slight problem in IBSS mode: GTKs are negotiated 847 * with each station, that is something we don't currently handle. 848 * The spec seems to expect that one negotiates the same key with 849 * every station but there's no such requirement; VLANs could be 850 * possible. 851 */ 852 853 /* 854 * No point in finding a key and decrypting if the frame is neither 855 * addressed to us nor a multicast frame. 856 */ 857 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 858 return RX_CONTINUE; 859 860 /* start without a key */ 861 rx->key = NULL; 862 863 if (rx->sta) 864 stakey = rcu_dereference(rx->sta->key); 865 866 if (!ieee80211_has_protected(hdr->frame_control)) 867 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 868 869 if (!is_multicast_ether_addr(hdr->addr1) && stakey) { 870 rx->key = stakey; 871 /* Skip decryption if the frame is not protected. */ 872 if (!ieee80211_has_protected(hdr->frame_control)) 873 return RX_CONTINUE; 874 } else if (mmie_keyidx >= 0) { 875 /* Broadcast/multicast robust management frame / BIP */ 876 if ((status->flag & RX_FLAG_DECRYPTED) && 877 (status->flag & RX_FLAG_IV_STRIPPED)) 878 return RX_CONTINUE; 879 880 if (mmie_keyidx < NUM_DEFAULT_KEYS || 881 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 882 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 883 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 884 } else if (!ieee80211_has_protected(hdr->frame_control)) { 885 /* 886 * The frame was not protected, so skip decryption. However, we 887 * need to set rx->key if there is a key that could have been 888 * used so that the frame may be dropped if encryption would 889 * have been expected. 890 */ 891 struct ieee80211_key *key = NULL; 892 if (ieee80211_is_mgmt(hdr->frame_control) && 893 is_multicast_ether_addr(hdr->addr1) && 894 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 895 rx->key = key; 896 else if ((key = rcu_dereference(rx->sdata->default_key))) 897 rx->key = key; 898 return RX_CONTINUE; 899 } else { 900 /* 901 * The device doesn't give us the IV so we won't be 902 * able to look up the key. That's ok though, we 903 * don't need to decrypt the frame, we just won't 904 * be able to keep statistics accurate. 905 * Except for key threshold notifications, should 906 * we somehow allow the driver to tell us which key 907 * the hardware used if this flag is set? 908 */ 909 if ((status->flag & RX_FLAG_DECRYPTED) && 910 (status->flag & RX_FLAG_IV_STRIPPED)) 911 return RX_CONTINUE; 912 913 hdrlen = ieee80211_hdrlen(hdr->frame_control); 914 915 if (rx->skb->len < 8 + hdrlen) 916 return RX_DROP_UNUSABLE; /* TODO: count this? */ 917 918 /* 919 * no need to call ieee80211_wep_get_keyidx, 920 * it verifies a bunch of things we've done already 921 */ 922 keyidx = rx->skb->data[hdrlen + 3] >> 6; 923 924 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 925 926 /* 927 * RSNA-protected unicast frames should always be sent with 928 * pairwise or station-to-station keys, but for WEP we allow 929 * using a key index as well. 930 */ 931 if (rx->key && rx->key->conf.alg != ALG_WEP && 932 !is_multicast_ether_addr(hdr->addr1)) 933 rx->key = NULL; 934 } 935 936 if (rx->key) { 937 rx->key->tx_rx_count++; 938 /* TODO: add threshold stuff again */ 939 } else { 940 return RX_DROP_MONITOR; 941 } 942 943 /* Check for weak IVs if possible */ 944 if (rx->sta && rx->key->conf.alg == ALG_WEP && 945 ieee80211_is_data(hdr->frame_control) && 946 (!(status->flag & RX_FLAG_IV_STRIPPED) || 947 !(status->flag & RX_FLAG_DECRYPTED)) && 948 ieee80211_wep_is_weak_iv(rx->skb, rx->key)) 949 rx->sta->wep_weak_iv_count++; 950 951 switch (rx->key->conf.alg) { 952 case ALG_WEP: 953 result = ieee80211_crypto_wep_decrypt(rx); 954 break; 955 case ALG_TKIP: 956 result = ieee80211_crypto_tkip_decrypt(rx); 957 break; 958 case ALG_CCMP: 959 result = ieee80211_crypto_ccmp_decrypt(rx); 960 break; 961 case ALG_AES_CMAC: 962 result = ieee80211_crypto_aes_cmac_decrypt(rx); 963 break; 964 } 965 966 /* either the frame has been decrypted or will be dropped */ 967 status->flag |= RX_FLAG_DECRYPTED; 968 969 return result; 970 } 971 972 static ieee80211_rx_result debug_noinline 973 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 974 { 975 struct ieee80211_local *local; 976 struct ieee80211_hdr *hdr; 977 struct sk_buff *skb; 978 979 local = rx->local; 980 skb = rx->skb; 981 hdr = (struct ieee80211_hdr *) skb->data; 982 983 if (!local->pspolling) 984 return RX_CONTINUE; 985 986 if (!ieee80211_has_fromds(hdr->frame_control)) 987 /* this is not from AP */ 988 return RX_CONTINUE; 989 990 if (!ieee80211_is_data(hdr->frame_control)) 991 return RX_CONTINUE; 992 993 if (!ieee80211_has_moredata(hdr->frame_control)) { 994 /* AP has no more frames buffered for us */ 995 local->pspolling = false; 996 return RX_CONTINUE; 997 } 998 999 /* more data bit is set, let's request a new frame from the AP */ 1000 ieee80211_send_pspoll(local, rx->sdata); 1001 1002 return RX_CONTINUE; 1003 } 1004 1005 static void ap_sta_ps_start(struct sta_info *sta) 1006 { 1007 struct ieee80211_sub_if_data *sdata = sta->sdata; 1008 struct ieee80211_local *local = sdata->local; 1009 1010 atomic_inc(&sdata->bss->num_sta_ps); 1011 set_sta_flags(sta, WLAN_STA_PS_STA); 1012 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1013 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1014 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n", 1015 sdata->name, sta->sta.addr, sta->sta.aid); 1016 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1017 } 1018 1019 static void ap_sta_ps_end(struct sta_info *sta) 1020 { 1021 struct ieee80211_sub_if_data *sdata = sta->sdata; 1022 1023 atomic_dec(&sdata->bss->num_sta_ps); 1024 1025 clear_sta_flags(sta, WLAN_STA_PS_STA); 1026 1027 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1028 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n", 1029 sdata->name, sta->sta.addr, sta->sta.aid); 1030 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1031 1032 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) { 1033 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1034 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n", 1035 sdata->name, sta->sta.addr, sta->sta.aid); 1036 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1037 return; 1038 } 1039 1040 ieee80211_sta_ps_deliver_wakeup(sta); 1041 } 1042 1043 static ieee80211_rx_result debug_noinline 1044 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1045 { 1046 struct sta_info *sta = rx->sta; 1047 struct sk_buff *skb = rx->skb; 1048 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1049 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1050 1051 if (!sta) 1052 return RX_CONTINUE; 1053 1054 /* 1055 * Update last_rx only for IBSS packets which are for the current 1056 * BSSID to avoid keeping the current IBSS network alive in cases 1057 * where other STAs start using different BSSID. 1058 */ 1059 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1060 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1061 NL80211_IFTYPE_ADHOC); 1062 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) 1063 sta->last_rx = jiffies; 1064 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1065 /* 1066 * Mesh beacons will update last_rx when if they are found to 1067 * match the current local configuration when processed. 1068 */ 1069 sta->last_rx = jiffies; 1070 } 1071 1072 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 1073 return RX_CONTINUE; 1074 1075 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1076 ieee80211_sta_rx_notify(rx->sdata, hdr); 1077 1078 sta->rx_fragments++; 1079 sta->rx_bytes += rx->skb->len; 1080 sta->last_signal = status->signal; 1081 sta->last_noise = status->noise; 1082 1083 /* 1084 * Change STA power saving mode only at the end of a frame 1085 * exchange sequence. 1086 */ 1087 if (!ieee80211_has_morefrags(hdr->frame_control) && 1088 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1089 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1090 if (test_sta_flags(sta, WLAN_STA_PS_STA)) { 1091 /* 1092 * Ignore doze->wake transitions that are 1093 * indicated by non-data frames, the standard 1094 * is unclear here, but for example going to 1095 * PS mode and then scanning would cause a 1096 * doze->wake transition for the probe request, 1097 * and that is clearly undesirable. 1098 */ 1099 if (ieee80211_is_data(hdr->frame_control) && 1100 !ieee80211_has_pm(hdr->frame_control)) 1101 ap_sta_ps_end(sta); 1102 } else { 1103 if (ieee80211_has_pm(hdr->frame_control)) 1104 ap_sta_ps_start(sta); 1105 } 1106 } 1107 1108 /* 1109 * Drop (qos-)data::nullfunc frames silently, since they 1110 * are used only to control station power saving mode. 1111 */ 1112 if (ieee80211_is_nullfunc(hdr->frame_control) || 1113 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1114 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1115 1116 /* 1117 * If we receive a 4-addr nullfunc frame from a STA 1118 * that was not moved to a 4-addr STA vlan yet, drop 1119 * the frame to the monitor interface, to make sure 1120 * that hostapd sees it 1121 */ 1122 if (ieee80211_has_a4(hdr->frame_control) && 1123 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1124 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1125 !rx->sdata->u.vlan.sta))) 1126 return RX_DROP_MONITOR; 1127 /* 1128 * Update counter and free packet here to avoid 1129 * counting this as a dropped packed. 1130 */ 1131 sta->rx_packets++; 1132 dev_kfree_skb(rx->skb); 1133 return RX_QUEUED; 1134 } 1135 1136 return RX_CONTINUE; 1137 } /* ieee80211_rx_h_sta_process */ 1138 1139 static inline struct ieee80211_fragment_entry * 1140 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1141 unsigned int frag, unsigned int seq, int rx_queue, 1142 struct sk_buff **skb) 1143 { 1144 struct ieee80211_fragment_entry *entry; 1145 int idx; 1146 1147 idx = sdata->fragment_next; 1148 entry = &sdata->fragments[sdata->fragment_next++]; 1149 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1150 sdata->fragment_next = 0; 1151 1152 if (!skb_queue_empty(&entry->skb_list)) { 1153 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1154 struct ieee80211_hdr *hdr = 1155 (struct ieee80211_hdr *) entry->skb_list.next->data; 1156 printk(KERN_DEBUG "%s: RX reassembly removed oldest " 1157 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " 1158 "addr1=%pM addr2=%pM\n", 1159 sdata->name, idx, 1160 jiffies - entry->first_frag_time, entry->seq, 1161 entry->last_frag, hdr->addr1, hdr->addr2); 1162 #endif 1163 __skb_queue_purge(&entry->skb_list); 1164 } 1165 1166 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1167 *skb = NULL; 1168 entry->first_frag_time = jiffies; 1169 entry->seq = seq; 1170 entry->rx_queue = rx_queue; 1171 entry->last_frag = frag; 1172 entry->ccmp = 0; 1173 entry->extra_len = 0; 1174 1175 return entry; 1176 } 1177 1178 static inline struct ieee80211_fragment_entry * 1179 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1180 unsigned int frag, unsigned int seq, 1181 int rx_queue, struct ieee80211_hdr *hdr) 1182 { 1183 struct ieee80211_fragment_entry *entry; 1184 int i, idx; 1185 1186 idx = sdata->fragment_next; 1187 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1188 struct ieee80211_hdr *f_hdr; 1189 1190 idx--; 1191 if (idx < 0) 1192 idx = IEEE80211_FRAGMENT_MAX - 1; 1193 1194 entry = &sdata->fragments[idx]; 1195 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1196 entry->rx_queue != rx_queue || 1197 entry->last_frag + 1 != frag) 1198 continue; 1199 1200 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1201 1202 /* 1203 * Check ftype and addresses are equal, else check next fragment 1204 */ 1205 if (((hdr->frame_control ^ f_hdr->frame_control) & 1206 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1207 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || 1208 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) 1209 continue; 1210 1211 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1212 __skb_queue_purge(&entry->skb_list); 1213 continue; 1214 } 1215 return entry; 1216 } 1217 1218 return NULL; 1219 } 1220 1221 static ieee80211_rx_result debug_noinline 1222 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1223 { 1224 struct ieee80211_hdr *hdr; 1225 u16 sc; 1226 __le16 fc; 1227 unsigned int frag, seq; 1228 struct ieee80211_fragment_entry *entry; 1229 struct sk_buff *skb; 1230 1231 hdr = (struct ieee80211_hdr *)rx->skb->data; 1232 fc = hdr->frame_control; 1233 sc = le16_to_cpu(hdr->seq_ctrl); 1234 frag = sc & IEEE80211_SCTL_FRAG; 1235 1236 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1237 (rx->skb)->len < 24 || 1238 is_multicast_ether_addr(hdr->addr1))) { 1239 /* not fragmented */ 1240 goto out; 1241 } 1242 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1243 1244 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1245 1246 if (frag == 0) { 1247 /* This is the first fragment of a new frame. */ 1248 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1249 rx->queue, &(rx->skb)); 1250 if (rx->key && rx->key->conf.alg == ALG_CCMP && 1251 ieee80211_has_protected(fc)) { 1252 /* Store CCMP PN so that we can verify that the next 1253 * fragment has a sequential PN value. */ 1254 entry->ccmp = 1; 1255 memcpy(entry->last_pn, 1256 rx->key->u.ccmp.rx_pn[rx->queue], 1257 CCMP_PN_LEN); 1258 } 1259 return RX_QUEUED; 1260 } 1261 1262 /* This is a fragment for a frame that should already be pending in 1263 * fragment cache. Add this fragment to the end of the pending entry. 1264 */ 1265 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr); 1266 if (!entry) { 1267 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1268 return RX_DROP_MONITOR; 1269 } 1270 1271 /* Verify that MPDUs within one MSDU have sequential PN values. 1272 * (IEEE 802.11i, 8.3.3.4.5) */ 1273 if (entry->ccmp) { 1274 int i; 1275 u8 pn[CCMP_PN_LEN], *rpn; 1276 if (!rx->key || rx->key->conf.alg != ALG_CCMP) 1277 return RX_DROP_UNUSABLE; 1278 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1279 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1280 pn[i]++; 1281 if (pn[i]) 1282 break; 1283 } 1284 rpn = rx->key->u.ccmp.rx_pn[rx->queue]; 1285 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1286 return RX_DROP_UNUSABLE; 1287 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1288 } 1289 1290 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1291 __skb_queue_tail(&entry->skb_list, rx->skb); 1292 entry->last_frag = frag; 1293 entry->extra_len += rx->skb->len; 1294 if (ieee80211_has_morefrags(fc)) { 1295 rx->skb = NULL; 1296 return RX_QUEUED; 1297 } 1298 1299 rx->skb = __skb_dequeue(&entry->skb_list); 1300 if (skb_tailroom(rx->skb) < entry->extra_len) { 1301 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1302 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1303 GFP_ATOMIC))) { 1304 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1305 __skb_queue_purge(&entry->skb_list); 1306 return RX_DROP_UNUSABLE; 1307 } 1308 } 1309 while ((skb = __skb_dequeue(&entry->skb_list))) { 1310 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1311 dev_kfree_skb(skb); 1312 } 1313 1314 /* Complete frame has been reassembled - process it now */ 1315 rx->flags |= IEEE80211_RX_FRAGMENTED; 1316 1317 out: 1318 if (rx->sta) 1319 rx->sta->rx_packets++; 1320 if (is_multicast_ether_addr(hdr->addr1)) 1321 rx->local->dot11MulticastReceivedFrameCount++; 1322 else 1323 ieee80211_led_rx(rx->local); 1324 return RX_CONTINUE; 1325 } 1326 1327 static ieee80211_rx_result debug_noinline 1328 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx) 1329 { 1330 struct ieee80211_sub_if_data *sdata = rx->sdata; 1331 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control; 1332 1333 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) || 1334 !(rx->flags & IEEE80211_RX_RA_MATCH))) 1335 return RX_CONTINUE; 1336 1337 if ((sdata->vif.type != NL80211_IFTYPE_AP) && 1338 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 1339 return RX_DROP_UNUSABLE; 1340 1341 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER)) 1342 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1343 else 1344 set_sta_flags(rx->sta, WLAN_STA_PSPOLL); 1345 1346 /* Free PS Poll skb here instead of returning RX_DROP that would 1347 * count as an dropped frame. */ 1348 dev_kfree_skb(rx->skb); 1349 1350 return RX_QUEUED; 1351 } 1352 1353 static ieee80211_rx_result debug_noinline 1354 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx) 1355 { 1356 u8 *data = rx->skb->data; 1357 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data; 1358 1359 if (!ieee80211_is_data_qos(hdr->frame_control)) 1360 return RX_CONTINUE; 1361 1362 /* remove the qos control field, update frame type and meta-data */ 1363 memmove(data + IEEE80211_QOS_CTL_LEN, data, 1364 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN); 1365 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN); 1366 /* change frame type to non QOS */ 1367 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1368 1369 return RX_CONTINUE; 1370 } 1371 1372 static int 1373 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1374 { 1375 if (unlikely(!rx->sta || 1376 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED))) 1377 return -EACCES; 1378 1379 return 0; 1380 } 1381 1382 static int 1383 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1384 { 1385 struct sk_buff *skb = rx->skb; 1386 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1387 1388 /* 1389 * Pass through unencrypted frames if the hardware has 1390 * decrypted them already. 1391 */ 1392 if (status->flag & RX_FLAG_DECRYPTED) 1393 return 0; 1394 1395 /* Drop unencrypted frames if key is set. */ 1396 if (unlikely(!ieee80211_has_protected(fc) && 1397 !ieee80211_is_nullfunc(fc) && 1398 ieee80211_is_data(fc) && 1399 (rx->key || rx->sdata->drop_unencrypted))) 1400 return -EACCES; 1401 1402 return 0; 1403 } 1404 1405 static int 1406 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1407 { 1408 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1409 __le16 fc = hdr->frame_control; 1410 int res; 1411 1412 res = ieee80211_drop_unencrypted(rx, fc); 1413 if (unlikely(res)) 1414 return res; 1415 1416 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) { 1417 if (unlikely(ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1418 rx->key)) 1419 return -EACCES; 1420 /* BIP does not use Protected field, so need to check MMIE */ 1421 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1422 ieee80211_get_mmie_keyidx(rx->skb) < 0 && 1423 rx->key)) 1424 return -EACCES; 1425 /* 1426 * When using MFP, Action frames are not allowed prior to 1427 * having configured keys. 1428 */ 1429 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1430 ieee80211_is_robust_mgmt_frame( 1431 (struct ieee80211_hdr *) rx->skb->data))) 1432 return -EACCES; 1433 } 1434 1435 return 0; 1436 } 1437 1438 static int 1439 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx) 1440 { 1441 struct ieee80211_sub_if_data *sdata = rx->sdata; 1442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1443 1444 if (ieee80211_has_a4(hdr->frame_control) && 1445 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1446 return -1; 1447 1448 if (is_multicast_ether_addr(hdr->addr1) && 1449 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) || 1450 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr))) 1451 return -1; 1452 1453 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1454 } 1455 1456 /* 1457 * requires that rx->skb is a frame with ethernet header 1458 */ 1459 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1460 { 1461 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1462 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1463 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1464 1465 /* 1466 * Allow EAPOL frames to us/the PAE group address regardless 1467 * of whether the frame was encrypted or not. 1468 */ 1469 if (ehdr->h_proto == htons(ETH_P_PAE) && 1470 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 || 1471 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) 1472 return true; 1473 1474 if (ieee80211_802_1x_port_control(rx) || 1475 ieee80211_drop_unencrypted(rx, fc)) 1476 return false; 1477 1478 return true; 1479 } 1480 1481 /* 1482 * requires that rx->skb is a frame with ethernet header 1483 */ 1484 static void 1485 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1486 { 1487 struct ieee80211_sub_if_data *sdata = rx->sdata; 1488 struct net_device *dev = sdata->dev; 1489 struct sk_buff *skb, *xmit_skb; 1490 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1491 struct sta_info *dsta; 1492 1493 skb = rx->skb; 1494 xmit_skb = NULL; 1495 1496 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1497 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1498 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1499 (rx->flags & IEEE80211_RX_RA_MATCH) && 1500 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1501 if (is_multicast_ether_addr(ehdr->h_dest)) { 1502 /* 1503 * send multicast frames both to higher layers in 1504 * local net stack and back to the wireless medium 1505 */ 1506 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1507 if (!xmit_skb && net_ratelimit()) 1508 printk(KERN_DEBUG "%s: failed to clone " 1509 "multicast frame\n", dev->name); 1510 } else { 1511 dsta = sta_info_get(sdata, skb->data); 1512 if (dsta) { 1513 /* 1514 * The destination station is associated to 1515 * this AP (in this VLAN), so send the frame 1516 * directly to it and do not pass it to local 1517 * net stack. 1518 */ 1519 xmit_skb = skb; 1520 skb = NULL; 1521 } 1522 } 1523 } 1524 1525 if (skb) { 1526 int align __maybe_unused; 1527 1528 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1529 /* 1530 * 'align' will only take the values 0 or 2 here 1531 * since all frames are required to be aligned 1532 * to 2-byte boundaries when being passed to 1533 * mac80211. That also explains the __skb_push() 1534 * below. 1535 */ 1536 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1537 if (align) { 1538 if (WARN_ON(skb_headroom(skb) < 3)) { 1539 dev_kfree_skb(skb); 1540 skb = NULL; 1541 } else { 1542 u8 *data = skb->data; 1543 size_t len = skb_headlen(skb); 1544 skb->data -= align; 1545 memmove(skb->data, data, len); 1546 skb_set_tail_pointer(skb, len); 1547 } 1548 } 1549 #endif 1550 1551 if (skb) { 1552 /* deliver to local stack */ 1553 skb->protocol = eth_type_trans(skb, dev); 1554 memset(skb->cb, 0, sizeof(skb->cb)); 1555 netif_rx(skb); 1556 } 1557 } 1558 1559 if (xmit_skb) { 1560 /* send to wireless media */ 1561 xmit_skb->protocol = htons(ETH_P_802_3); 1562 skb_reset_network_header(xmit_skb); 1563 skb_reset_mac_header(xmit_skb); 1564 dev_queue_xmit(xmit_skb); 1565 } 1566 } 1567 1568 static ieee80211_rx_result debug_noinline 1569 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1570 { 1571 struct net_device *dev = rx->sdata->dev; 1572 struct sk_buff *skb = rx->skb; 1573 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1574 __le16 fc = hdr->frame_control; 1575 struct sk_buff_head frame_list; 1576 1577 if (unlikely(!ieee80211_is_data(fc))) 1578 return RX_CONTINUE; 1579 1580 if (unlikely(!ieee80211_is_data_present(fc))) 1581 return RX_DROP_MONITOR; 1582 1583 if (!(rx->flags & IEEE80211_RX_AMSDU)) 1584 return RX_CONTINUE; 1585 1586 if (ieee80211_has_a4(hdr->frame_control) && 1587 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1588 !rx->sdata->u.vlan.sta) 1589 return RX_DROP_UNUSABLE; 1590 1591 if (is_multicast_ether_addr(hdr->addr1) && 1592 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1593 rx->sdata->u.vlan.sta) || 1594 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1595 rx->sdata->u.mgd.use_4addr))) 1596 return RX_DROP_UNUSABLE; 1597 1598 skb->dev = dev; 1599 __skb_queue_head_init(&frame_list); 1600 1601 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1602 rx->sdata->vif.type, 1603 rx->local->hw.extra_tx_headroom); 1604 1605 while (!skb_queue_empty(&frame_list)) { 1606 rx->skb = __skb_dequeue(&frame_list); 1607 1608 if (!ieee80211_frame_allowed(rx, fc)) { 1609 dev_kfree_skb(rx->skb); 1610 continue; 1611 } 1612 dev->stats.rx_packets++; 1613 dev->stats.rx_bytes += rx->skb->len; 1614 1615 ieee80211_deliver_skb(rx); 1616 } 1617 1618 return RX_QUEUED; 1619 } 1620 1621 #ifdef CONFIG_MAC80211_MESH 1622 static ieee80211_rx_result 1623 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1624 { 1625 struct ieee80211_hdr *hdr; 1626 struct ieee80211s_hdr *mesh_hdr; 1627 unsigned int hdrlen; 1628 struct sk_buff *skb = rx->skb, *fwd_skb; 1629 struct ieee80211_local *local = rx->local; 1630 struct ieee80211_sub_if_data *sdata = rx->sdata; 1631 1632 hdr = (struct ieee80211_hdr *) skb->data; 1633 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1634 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1635 1636 if (!ieee80211_is_data(hdr->frame_control)) 1637 return RX_CONTINUE; 1638 1639 if (!mesh_hdr->ttl) 1640 /* illegal frame */ 1641 return RX_DROP_MONITOR; 1642 1643 if (mesh_hdr->flags & MESH_FLAGS_AE) { 1644 struct mesh_path *mppath; 1645 char *proxied_addr; 1646 char *mpp_addr; 1647 1648 if (is_multicast_ether_addr(hdr->addr1)) { 1649 mpp_addr = hdr->addr3; 1650 proxied_addr = mesh_hdr->eaddr1; 1651 } else { 1652 mpp_addr = hdr->addr4; 1653 proxied_addr = mesh_hdr->eaddr2; 1654 } 1655 1656 rcu_read_lock(); 1657 mppath = mpp_path_lookup(proxied_addr, sdata); 1658 if (!mppath) { 1659 mpp_path_add(proxied_addr, mpp_addr, sdata); 1660 } else { 1661 spin_lock_bh(&mppath->state_lock); 1662 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0) 1663 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 1664 spin_unlock_bh(&mppath->state_lock); 1665 } 1666 rcu_read_unlock(); 1667 } 1668 1669 /* Frame has reached destination. Don't forward */ 1670 if (!is_multicast_ether_addr(hdr->addr1) && 1671 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0) 1672 return RX_CONTINUE; 1673 1674 mesh_hdr->ttl--; 1675 1676 if (rx->flags & IEEE80211_RX_RA_MATCH) { 1677 if (!mesh_hdr->ttl) 1678 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh, 1679 dropped_frames_ttl); 1680 else { 1681 struct ieee80211_hdr *fwd_hdr; 1682 struct ieee80211_tx_info *info; 1683 1684 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1685 1686 if (!fwd_skb && net_ratelimit()) 1687 printk(KERN_DEBUG "%s: failed to clone mesh frame\n", 1688 sdata->name); 1689 1690 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1691 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 1692 info = IEEE80211_SKB_CB(fwd_skb); 1693 memset(info, 0, sizeof(*info)); 1694 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1695 info->control.vif = &rx->sdata->vif; 1696 skb_set_queue_mapping(skb, 1697 ieee80211_select_queue(rx->sdata, fwd_skb)); 1698 ieee80211_set_qos_hdr(local, skb); 1699 if (is_multicast_ether_addr(fwd_hdr->addr1)) 1700 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1701 fwded_mcast); 1702 else { 1703 int err; 1704 /* 1705 * Save TA to addr1 to send TA a path error if a 1706 * suitable next hop is not found 1707 */ 1708 memcpy(fwd_hdr->addr1, fwd_hdr->addr2, 1709 ETH_ALEN); 1710 err = mesh_nexthop_lookup(fwd_skb, sdata); 1711 /* Failed to immediately resolve next hop: 1712 * fwded frame was dropped or will be added 1713 * later to the pending skb queue. */ 1714 if (err) 1715 return RX_DROP_MONITOR; 1716 1717 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1718 fwded_unicast); 1719 } 1720 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh, 1721 fwded_frames); 1722 ieee80211_add_pending_skb(local, fwd_skb); 1723 } 1724 } 1725 1726 if (is_multicast_ether_addr(hdr->addr1) || 1727 sdata->dev->flags & IFF_PROMISC) 1728 return RX_CONTINUE; 1729 else 1730 return RX_DROP_MONITOR; 1731 } 1732 #endif 1733 1734 static ieee80211_rx_result debug_noinline 1735 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 1736 { 1737 struct ieee80211_sub_if_data *sdata = rx->sdata; 1738 struct ieee80211_local *local = rx->local; 1739 struct net_device *dev = sdata->dev; 1740 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1741 __le16 fc = hdr->frame_control; 1742 int err; 1743 1744 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 1745 return RX_CONTINUE; 1746 1747 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 1748 return RX_DROP_MONITOR; 1749 1750 /* 1751 * Allow the cooked monitor interface of an AP to see 4-addr frames so 1752 * that a 4-addr station can be detected and moved into a separate VLAN 1753 */ 1754 if (ieee80211_has_a4(hdr->frame_control) && 1755 sdata->vif.type == NL80211_IFTYPE_AP) 1756 return RX_DROP_MONITOR; 1757 1758 err = __ieee80211_data_to_8023(rx); 1759 if (unlikely(err)) 1760 return RX_DROP_UNUSABLE; 1761 1762 if (!ieee80211_frame_allowed(rx, fc)) 1763 return RX_DROP_MONITOR; 1764 1765 rx->skb->dev = dev; 1766 1767 dev->stats.rx_packets++; 1768 dev->stats.rx_bytes += rx->skb->len; 1769 1770 if (ieee80211_is_data(hdr->frame_control) && 1771 !is_multicast_ether_addr(hdr->addr1) && 1772 local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) { 1773 mod_timer(&local->dynamic_ps_timer, jiffies + 1774 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 1775 } 1776 1777 ieee80211_deliver_skb(rx); 1778 1779 return RX_QUEUED; 1780 } 1781 1782 static ieee80211_rx_result debug_noinline 1783 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 1784 { 1785 struct ieee80211_local *local = rx->local; 1786 struct ieee80211_hw *hw = &local->hw; 1787 struct sk_buff *skb = rx->skb; 1788 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 1789 struct tid_ampdu_rx *tid_agg_rx; 1790 u16 start_seq_num; 1791 u16 tid; 1792 1793 if (likely(!ieee80211_is_ctl(bar->frame_control))) 1794 return RX_CONTINUE; 1795 1796 if (ieee80211_is_back_req(bar->frame_control)) { 1797 if (!rx->sta) 1798 return RX_DROP_MONITOR; 1799 tid = le16_to_cpu(bar->control) >> 12; 1800 if (rx->sta->ampdu_mlme.tid_state_rx[tid] 1801 != HT_AGG_STATE_OPERATIONAL) 1802 return RX_DROP_MONITOR; 1803 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid]; 1804 1805 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4; 1806 1807 /* reset session timer */ 1808 if (tid_agg_rx->timeout) 1809 mod_timer(&tid_agg_rx->session_timer, 1810 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 1811 1812 /* release stored frames up to start of BAR */ 1813 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num, 1814 frames); 1815 kfree_skb(skb); 1816 return RX_QUEUED; 1817 } 1818 1819 return RX_CONTINUE; 1820 } 1821 1822 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 1823 struct ieee80211_mgmt *mgmt, 1824 size_t len) 1825 { 1826 struct ieee80211_local *local = sdata->local; 1827 struct sk_buff *skb; 1828 struct ieee80211_mgmt *resp; 1829 1830 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) { 1831 /* Not to own unicast address */ 1832 return; 1833 } 1834 1835 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 || 1836 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) { 1837 /* Not from the current AP or not associated yet. */ 1838 return; 1839 } 1840 1841 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 1842 /* Too short SA Query request frame */ 1843 return; 1844 } 1845 1846 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 1847 if (skb == NULL) 1848 return; 1849 1850 skb_reserve(skb, local->hw.extra_tx_headroom); 1851 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 1852 memset(resp, 0, 24); 1853 memcpy(resp->da, mgmt->sa, ETH_ALEN); 1854 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 1855 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 1856 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1857 IEEE80211_STYPE_ACTION); 1858 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 1859 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 1860 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 1861 memcpy(resp->u.action.u.sa_query.trans_id, 1862 mgmt->u.action.u.sa_query.trans_id, 1863 WLAN_SA_QUERY_TR_ID_LEN); 1864 1865 ieee80211_tx_skb(sdata, skb); 1866 } 1867 1868 static ieee80211_rx_result debug_noinline 1869 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 1870 { 1871 struct ieee80211_local *local = rx->local; 1872 struct ieee80211_sub_if_data *sdata = rx->sdata; 1873 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 1874 struct sk_buff *nskb; 1875 struct ieee80211_rx_status *status; 1876 int len = rx->skb->len; 1877 1878 if (!ieee80211_is_action(mgmt->frame_control)) 1879 return RX_CONTINUE; 1880 1881 /* drop too small frames */ 1882 if (len < IEEE80211_MIN_ACTION_SIZE) 1883 return RX_DROP_UNUSABLE; 1884 1885 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) 1886 return RX_DROP_UNUSABLE; 1887 1888 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 1889 return RX_DROP_UNUSABLE; 1890 1891 if (ieee80211_drop_unencrypted_mgmt(rx)) 1892 return RX_DROP_UNUSABLE; 1893 1894 switch (mgmt->u.action.category) { 1895 case WLAN_CATEGORY_BACK: 1896 /* 1897 * The aggregation code is not prepared to handle 1898 * anything but STA/AP due to the BSSID handling; 1899 * IBSS could work in the code but isn't supported 1900 * by drivers or the standard. 1901 */ 1902 if (sdata->vif.type != NL80211_IFTYPE_STATION && 1903 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1904 sdata->vif.type != NL80211_IFTYPE_AP) 1905 break; 1906 1907 /* verify action_code is present */ 1908 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 1909 break; 1910 1911 switch (mgmt->u.action.u.addba_req.action_code) { 1912 case WLAN_ACTION_ADDBA_REQ: 1913 if (len < (IEEE80211_MIN_ACTION_SIZE + 1914 sizeof(mgmt->u.action.u.addba_req))) 1915 return RX_DROP_MONITOR; 1916 ieee80211_process_addba_request(local, rx->sta, mgmt, len); 1917 goto handled; 1918 case WLAN_ACTION_ADDBA_RESP: 1919 if (len < (IEEE80211_MIN_ACTION_SIZE + 1920 sizeof(mgmt->u.action.u.addba_resp))) 1921 break; 1922 ieee80211_process_addba_resp(local, rx->sta, mgmt, len); 1923 goto handled; 1924 case WLAN_ACTION_DELBA: 1925 if (len < (IEEE80211_MIN_ACTION_SIZE + 1926 sizeof(mgmt->u.action.u.delba))) 1927 break; 1928 ieee80211_process_delba(sdata, rx->sta, mgmt, len); 1929 goto handled; 1930 } 1931 break; 1932 case WLAN_CATEGORY_SPECTRUM_MGMT: 1933 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 1934 break; 1935 1936 if (sdata->vif.type != NL80211_IFTYPE_STATION) 1937 break; 1938 1939 /* verify action_code is present */ 1940 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 1941 break; 1942 1943 switch (mgmt->u.action.u.measurement.action_code) { 1944 case WLAN_ACTION_SPCT_MSR_REQ: 1945 if (len < (IEEE80211_MIN_ACTION_SIZE + 1946 sizeof(mgmt->u.action.u.measurement))) 1947 break; 1948 ieee80211_process_measurement_req(sdata, mgmt, len); 1949 goto handled; 1950 case WLAN_ACTION_SPCT_CHL_SWITCH: 1951 if (len < (IEEE80211_MIN_ACTION_SIZE + 1952 sizeof(mgmt->u.action.u.chan_switch))) 1953 break; 1954 1955 if (sdata->vif.type != NL80211_IFTYPE_STATION) 1956 break; 1957 1958 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN)) 1959 break; 1960 1961 return ieee80211_sta_rx_mgmt(sdata, rx->skb); 1962 } 1963 break; 1964 case WLAN_CATEGORY_SA_QUERY: 1965 if (len < (IEEE80211_MIN_ACTION_SIZE + 1966 sizeof(mgmt->u.action.u.sa_query))) 1967 break; 1968 1969 switch (mgmt->u.action.u.sa_query.action) { 1970 case WLAN_ACTION_SA_QUERY_REQUEST: 1971 if (sdata->vif.type != NL80211_IFTYPE_STATION) 1972 break; 1973 ieee80211_process_sa_query_req(sdata, mgmt, len); 1974 goto handled; 1975 } 1976 break; 1977 case MESH_PLINK_CATEGORY: 1978 case MESH_PATH_SEL_CATEGORY: 1979 if (ieee80211_vif_is_mesh(&sdata->vif)) 1980 return ieee80211_mesh_rx_mgmt(sdata, rx->skb); 1981 break; 1982 } 1983 1984 /* 1985 * For AP mode, hostapd is responsible for handling any action 1986 * frames that we didn't handle, including returning unknown 1987 * ones. For all other modes we will return them to the sender, 1988 * setting the 0x80 bit in the action category, as required by 1989 * 802.11-2007 7.3.1.11. 1990 */ 1991 if (sdata->vif.type == NL80211_IFTYPE_AP || 1992 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1993 return RX_DROP_MONITOR; 1994 1995 /* 1996 * Getting here means the kernel doesn't know how to handle 1997 * it, but maybe userspace does ... include returned frames 1998 * so userspace can register for those to know whether ones 1999 * it transmitted were processed or returned. 2000 */ 2001 status = IEEE80211_SKB_RXCB(rx->skb); 2002 2003 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2004 cfg80211_rx_action(rx->sdata->dev, status->freq, 2005 rx->skb->data, rx->skb->len, 2006 GFP_ATOMIC)) 2007 goto handled; 2008 2009 /* do not return rejected action frames */ 2010 if (mgmt->u.action.category & 0x80) 2011 return RX_DROP_UNUSABLE; 2012 2013 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2014 GFP_ATOMIC); 2015 if (nskb) { 2016 struct ieee80211_mgmt *mgmt = (void *)nskb->data; 2017 2018 mgmt->u.action.category |= 0x80; 2019 memcpy(mgmt->da, mgmt->sa, ETH_ALEN); 2020 memcpy(mgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2021 2022 memset(nskb->cb, 0, sizeof(nskb->cb)); 2023 2024 ieee80211_tx_skb(rx->sdata, nskb); 2025 } 2026 2027 handled: 2028 if (rx->sta) 2029 rx->sta->rx_packets++; 2030 dev_kfree_skb(rx->skb); 2031 return RX_QUEUED; 2032 } 2033 2034 static ieee80211_rx_result debug_noinline 2035 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2036 { 2037 struct ieee80211_sub_if_data *sdata = rx->sdata; 2038 ieee80211_rx_result rxs; 2039 2040 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 2041 return RX_DROP_MONITOR; 2042 2043 if (ieee80211_drop_unencrypted_mgmt(rx)) 2044 return RX_DROP_UNUSABLE; 2045 2046 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb); 2047 if (rxs != RX_CONTINUE) 2048 return rxs; 2049 2050 if (ieee80211_vif_is_mesh(&sdata->vif)) 2051 return ieee80211_mesh_rx_mgmt(sdata, rx->skb); 2052 2053 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2054 return ieee80211_ibss_rx_mgmt(sdata, rx->skb); 2055 2056 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2057 return ieee80211_sta_rx_mgmt(sdata, rx->skb); 2058 2059 return RX_DROP_MONITOR; 2060 } 2061 2062 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr, 2063 struct ieee80211_rx_data *rx) 2064 { 2065 int keyidx; 2066 unsigned int hdrlen; 2067 2068 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2069 if (rx->skb->len >= hdrlen + 4) 2070 keyidx = rx->skb->data[hdrlen + 3] >> 6; 2071 else 2072 keyidx = -1; 2073 2074 if (!rx->sta) { 2075 /* 2076 * Some hardware seem to generate incorrect Michael MIC 2077 * reports; ignore them to avoid triggering countermeasures. 2078 */ 2079 return; 2080 } 2081 2082 if (!ieee80211_has_protected(hdr->frame_control)) 2083 return; 2084 2085 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) { 2086 /* 2087 * APs with pairwise keys should never receive Michael MIC 2088 * errors for non-zero keyidx because these are reserved for 2089 * group keys and only the AP is sending real multicast 2090 * frames in the BSS. 2091 */ 2092 return; 2093 } 2094 2095 if (!ieee80211_is_data(hdr->frame_control) && 2096 !ieee80211_is_auth(hdr->frame_control)) 2097 return; 2098 2099 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL, 2100 GFP_ATOMIC); 2101 } 2102 2103 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2104 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2105 struct ieee80211_rate *rate) 2106 { 2107 struct ieee80211_sub_if_data *sdata; 2108 struct ieee80211_local *local = rx->local; 2109 struct ieee80211_rtap_hdr { 2110 struct ieee80211_radiotap_header hdr; 2111 u8 flags; 2112 u8 rate_or_pad; 2113 __le16 chan_freq; 2114 __le16 chan_flags; 2115 } __attribute__ ((packed)) *rthdr; 2116 struct sk_buff *skb = rx->skb, *skb2; 2117 struct net_device *prev_dev = NULL; 2118 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2119 2120 if (status->flag & RX_FLAG_INTERNAL_CMTR) 2121 goto out_free_skb; 2122 2123 if (skb_headroom(skb) < sizeof(*rthdr) && 2124 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) 2125 goto out_free_skb; 2126 2127 rthdr = (void *)skb_push(skb, sizeof(*rthdr)); 2128 memset(rthdr, 0, sizeof(*rthdr)); 2129 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); 2130 rthdr->hdr.it_present = 2131 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 2132 (1 << IEEE80211_RADIOTAP_CHANNEL)); 2133 2134 if (rate) { 2135 rthdr->rate_or_pad = rate->bitrate / 5; 2136 rthdr->hdr.it_present |= 2137 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 2138 } 2139 rthdr->chan_freq = cpu_to_le16(status->freq); 2140 2141 if (status->band == IEEE80211_BAND_5GHZ) 2142 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM | 2143 IEEE80211_CHAN_5GHZ); 2144 else 2145 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN | 2146 IEEE80211_CHAN_2GHZ); 2147 2148 skb_set_mac_header(skb, 0); 2149 skb->ip_summed = CHECKSUM_UNNECESSARY; 2150 skb->pkt_type = PACKET_OTHERHOST; 2151 skb->protocol = htons(ETH_P_802_2); 2152 2153 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2154 if (!ieee80211_sdata_running(sdata)) 2155 continue; 2156 2157 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2158 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2159 continue; 2160 2161 if (prev_dev) { 2162 skb2 = skb_clone(skb, GFP_ATOMIC); 2163 if (skb2) { 2164 skb2->dev = prev_dev; 2165 netif_rx(skb2); 2166 } 2167 } 2168 2169 prev_dev = sdata->dev; 2170 sdata->dev->stats.rx_packets++; 2171 sdata->dev->stats.rx_bytes += skb->len; 2172 } 2173 2174 if (prev_dev) { 2175 skb->dev = prev_dev; 2176 netif_rx(skb); 2177 skb = NULL; 2178 } else 2179 goto out_free_skb; 2180 2181 status->flag |= RX_FLAG_INTERNAL_CMTR; 2182 return; 2183 2184 out_free_skb: 2185 dev_kfree_skb(skb); 2186 } 2187 2188 2189 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata, 2190 struct ieee80211_rx_data *rx, 2191 struct sk_buff *skb, 2192 struct ieee80211_rate *rate) 2193 { 2194 struct sk_buff_head reorder_release; 2195 ieee80211_rx_result res = RX_DROP_MONITOR; 2196 2197 __skb_queue_head_init(&reorder_release); 2198 2199 rx->skb = skb; 2200 rx->sdata = sdata; 2201 2202 #define CALL_RXH(rxh) \ 2203 do { \ 2204 res = rxh(rx); \ 2205 if (res != RX_CONTINUE) \ 2206 goto rxh_next; \ 2207 } while (0); 2208 2209 /* 2210 * NB: the rxh_next label works even if we jump 2211 * to it from here because then the list will 2212 * be empty, which is a trivial check 2213 */ 2214 CALL_RXH(ieee80211_rx_h_passive_scan) 2215 CALL_RXH(ieee80211_rx_h_check) 2216 2217 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 2218 2219 while ((skb = __skb_dequeue(&reorder_release))) { 2220 /* 2221 * all the other fields are valid across frames 2222 * that belong to an aMPDU since they are on the 2223 * same TID from the same station 2224 */ 2225 rx->skb = skb; 2226 2227 CALL_RXH(ieee80211_rx_h_decrypt) 2228 CALL_RXH(ieee80211_rx_h_check_more_data) 2229 CALL_RXH(ieee80211_rx_h_sta_process) 2230 CALL_RXH(ieee80211_rx_h_defragment) 2231 CALL_RXH(ieee80211_rx_h_ps_poll) 2232 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2233 /* must be after MMIC verify so header is counted in MPDU mic */ 2234 CALL_RXH(ieee80211_rx_h_remove_qos_control) 2235 CALL_RXH(ieee80211_rx_h_amsdu) 2236 #ifdef CONFIG_MAC80211_MESH 2237 if (ieee80211_vif_is_mesh(&sdata->vif)) 2238 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2239 #endif 2240 CALL_RXH(ieee80211_rx_h_data) 2241 2242 /* special treatment -- needs the queue */ 2243 res = ieee80211_rx_h_ctrl(rx, &reorder_release); 2244 if (res != RX_CONTINUE) 2245 goto rxh_next; 2246 2247 CALL_RXH(ieee80211_rx_h_action) 2248 CALL_RXH(ieee80211_rx_h_mgmt) 2249 2250 #undef CALL_RXH 2251 2252 rxh_next: 2253 switch (res) { 2254 case RX_DROP_MONITOR: 2255 I802_DEBUG_INC(sdata->local->rx_handlers_drop); 2256 if (rx->sta) 2257 rx->sta->rx_dropped++; 2258 /* fall through */ 2259 case RX_CONTINUE: 2260 ieee80211_rx_cooked_monitor(rx, rate); 2261 break; 2262 case RX_DROP_UNUSABLE: 2263 I802_DEBUG_INC(sdata->local->rx_handlers_drop); 2264 if (rx->sta) 2265 rx->sta->rx_dropped++; 2266 dev_kfree_skb(rx->skb); 2267 break; 2268 case RX_QUEUED: 2269 I802_DEBUG_INC(sdata->local->rx_handlers_queued); 2270 break; 2271 } 2272 } 2273 } 2274 2275 /* main receive path */ 2276 2277 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata, 2278 struct ieee80211_rx_data *rx, 2279 struct ieee80211_hdr *hdr) 2280 { 2281 struct sk_buff *skb = rx->skb; 2282 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2283 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2284 int multicast = is_multicast_ether_addr(hdr->addr1); 2285 2286 switch (sdata->vif.type) { 2287 case NL80211_IFTYPE_STATION: 2288 if (!bssid && !sdata->u.mgd.use_4addr) 2289 return 0; 2290 if (!multicast && 2291 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) { 2292 if (!(sdata->dev->flags & IFF_PROMISC)) 2293 return 0; 2294 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2295 } 2296 break; 2297 case NL80211_IFTYPE_ADHOC: 2298 if (!bssid) 2299 return 0; 2300 if (ieee80211_is_beacon(hdr->frame_control)) { 2301 return 1; 2302 } 2303 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2304 if (!(rx->flags & IEEE80211_RX_IN_SCAN)) 2305 return 0; 2306 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2307 } else if (!multicast && 2308 compare_ether_addr(sdata->vif.addr, 2309 hdr->addr1) != 0) { 2310 if (!(sdata->dev->flags & IFF_PROMISC)) 2311 return 0; 2312 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2313 } else if (!rx->sta) { 2314 int rate_idx; 2315 if (status->flag & RX_FLAG_HT) 2316 rate_idx = 0; /* TODO: HT rates */ 2317 else 2318 rate_idx = status->rate_idx; 2319 rx->sta = ieee80211_ibss_add_sta(sdata, bssid, 2320 hdr->addr2, BIT(rate_idx), GFP_ATOMIC); 2321 } 2322 break; 2323 case NL80211_IFTYPE_MESH_POINT: 2324 if (!multicast && 2325 compare_ether_addr(sdata->vif.addr, 2326 hdr->addr1) != 0) { 2327 if (!(sdata->dev->flags & IFF_PROMISC)) 2328 return 0; 2329 2330 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2331 } 2332 break; 2333 case NL80211_IFTYPE_AP_VLAN: 2334 case NL80211_IFTYPE_AP: 2335 if (!bssid) { 2336 if (compare_ether_addr(sdata->vif.addr, 2337 hdr->addr1)) 2338 return 0; 2339 } else if (!ieee80211_bssid_match(bssid, 2340 sdata->vif.addr)) { 2341 if (!(rx->flags & IEEE80211_RX_IN_SCAN)) 2342 return 0; 2343 rx->flags &= ~IEEE80211_RX_RA_MATCH; 2344 } 2345 break; 2346 case NL80211_IFTYPE_WDS: 2347 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2348 return 0; 2349 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) 2350 return 0; 2351 break; 2352 case NL80211_IFTYPE_MONITOR: 2353 case NL80211_IFTYPE_UNSPECIFIED: 2354 case __NL80211_IFTYPE_AFTER_LAST: 2355 /* should never get here */ 2356 WARN_ON(1); 2357 break; 2358 } 2359 2360 return 1; 2361 } 2362 2363 /* 2364 * This is the actual Rx frames handler. as it blongs to Rx path it must 2365 * be called with rcu_read_lock protection. 2366 */ 2367 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 2368 struct sk_buff *skb, 2369 struct ieee80211_rate *rate) 2370 { 2371 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2372 struct ieee80211_local *local = hw_to_local(hw); 2373 struct ieee80211_sub_if_data *sdata; 2374 struct ieee80211_hdr *hdr; 2375 struct ieee80211_rx_data rx; 2376 int prepares; 2377 struct ieee80211_sub_if_data *prev = NULL; 2378 struct sk_buff *skb_new; 2379 struct sta_info *sta, *tmp; 2380 bool found_sta = false; 2381 2382 hdr = (struct ieee80211_hdr *)skb->data; 2383 memset(&rx, 0, sizeof(rx)); 2384 rx.skb = skb; 2385 rx.local = local; 2386 2387 if (ieee80211_is_data(hdr->frame_control) || ieee80211_is_mgmt(hdr->frame_control)) 2388 local->dot11ReceivedFragmentCount++; 2389 2390 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) || 2391 test_bit(SCAN_OFF_CHANNEL, &local->scanning))) 2392 rx.flags |= IEEE80211_RX_IN_SCAN; 2393 2394 ieee80211_parse_qos(&rx); 2395 ieee80211_verify_alignment(&rx); 2396 2397 if (ieee80211_is_data(hdr->frame_control)) { 2398 for_each_sta_info(local, hdr->addr2, sta, tmp) { 2399 rx.sta = sta; 2400 found_sta = true; 2401 rx.sdata = sta->sdata; 2402 2403 rx.flags |= IEEE80211_RX_RA_MATCH; 2404 prepares = prepare_for_handlers(rx.sdata, &rx, hdr); 2405 if (prepares) { 2406 if (status->flag & RX_FLAG_MMIC_ERROR) { 2407 if (rx.flags & IEEE80211_RX_RA_MATCH) 2408 ieee80211_rx_michael_mic_report(hdr, &rx); 2409 } else 2410 prev = rx.sdata; 2411 } 2412 } 2413 } 2414 if (!found_sta) { 2415 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2416 if (!ieee80211_sdata_running(sdata)) 2417 continue; 2418 2419 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 2420 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 2421 continue; 2422 2423 /* 2424 * frame is destined for this interface, but if it's 2425 * not also for the previous one we handle that after 2426 * the loop to avoid copying the SKB once too much 2427 */ 2428 2429 if (!prev) { 2430 prev = sdata; 2431 continue; 2432 } 2433 2434 rx.sta = sta_info_get_bss(prev, hdr->addr2); 2435 2436 rx.flags |= IEEE80211_RX_RA_MATCH; 2437 prepares = prepare_for_handlers(prev, &rx, hdr); 2438 2439 if (!prepares) 2440 goto next; 2441 2442 if (status->flag & RX_FLAG_MMIC_ERROR) { 2443 rx.sdata = prev; 2444 if (rx.flags & IEEE80211_RX_RA_MATCH) 2445 ieee80211_rx_michael_mic_report(hdr, 2446 &rx); 2447 goto next; 2448 } 2449 2450 /* 2451 * frame was destined for the previous interface 2452 * so invoke RX handlers for it 2453 */ 2454 2455 skb_new = skb_copy(skb, GFP_ATOMIC); 2456 if (!skb_new) { 2457 if (net_ratelimit()) 2458 printk(KERN_DEBUG "%s: failed to copy " 2459 "multicast frame for %s\n", 2460 wiphy_name(local->hw.wiphy), 2461 prev->name); 2462 goto next; 2463 } 2464 ieee80211_invoke_rx_handlers(prev, &rx, skb_new, rate); 2465 next: 2466 prev = sdata; 2467 } 2468 2469 if (prev) { 2470 rx.sta = sta_info_get_bss(prev, hdr->addr2); 2471 2472 rx.flags |= IEEE80211_RX_RA_MATCH; 2473 prepares = prepare_for_handlers(prev, &rx, hdr); 2474 2475 if (!prepares) 2476 prev = NULL; 2477 } 2478 } 2479 if (prev) 2480 ieee80211_invoke_rx_handlers(prev, &rx, skb, rate); 2481 else 2482 dev_kfree_skb(skb); 2483 } 2484 2485 /* 2486 * This is the receive path handler. It is called by a low level driver when an 2487 * 802.11 MPDU is received from the hardware. 2488 */ 2489 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 2490 { 2491 struct ieee80211_local *local = hw_to_local(hw); 2492 struct ieee80211_rate *rate = NULL; 2493 struct ieee80211_supported_band *sband; 2494 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2495 2496 WARN_ON_ONCE(softirq_count() == 0); 2497 2498 if (WARN_ON(status->band < 0 || 2499 status->band >= IEEE80211_NUM_BANDS)) 2500 goto drop; 2501 2502 sband = local->hw.wiphy->bands[status->band]; 2503 if (WARN_ON(!sband)) 2504 goto drop; 2505 2506 /* 2507 * If we're suspending, it is possible although not too likely 2508 * that we'd be receiving frames after having already partially 2509 * quiesced the stack. We can't process such frames then since 2510 * that might, for example, cause stations to be added or other 2511 * driver callbacks be invoked. 2512 */ 2513 if (unlikely(local->quiescing || local->suspended)) 2514 goto drop; 2515 2516 /* 2517 * The same happens when we're not even started, 2518 * but that's worth a warning. 2519 */ 2520 if (WARN_ON(!local->started)) 2521 goto drop; 2522 2523 if (status->flag & RX_FLAG_HT) { 2524 /* 2525 * rate_idx is MCS index, which can be [0-76] as documented on: 2526 * 2527 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 2528 * 2529 * Anything else would be some sort of driver or hardware error. 2530 * The driver should catch hardware errors. 2531 */ 2532 if (WARN((status->rate_idx < 0 || 2533 status->rate_idx > 76), 2534 "Rate marked as an HT rate but passed " 2535 "status->rate_idx is not " 2536 "an MCS index [0-76]: %d (0x%02x)\n", 2537 status->rate_idx, 2538 status->rate_idx)) 2539 goto drop; 2540 } else { 2541 if (WARN_ON(status->rate_idx < 0 || 2542 status->rate_idx >= sband->n_bitrates)) 2543 goto drop; 2544 rate = &sband->bitrates[status->rate_idx]; 2545 } 2546 2547 /* 2548 * key references and virtual interfaces are protected using RCU 2549 * and this requires that we are in a read-side RCU section during 2550 * receive processing 2551 */ 2552 rcu_read_lock(); 2553 2554 /* 2555 * Frames with failed FCS/PLCP checksum are not returned, 2556 * all other frames are returned without radiotap header 2557 * if it was previously present. 2558 * Also, frames with less than 16 bytes are dropped. 2559 */ 2560 skb = ieee80211_rx_monitor(local, skb, rate); 2561 if (!skb) { 2562 rcu_read_unlock(); 2563 return; 2564 } 2565 2566 __ieee80211_rx_handle_packet(hw, skb, rate); 2567 2568 rcu_read_unlock(); 2569 2570 return; 2571 drop: 2572 kfree_skb(skb); 2573 } 2574 EXPORT_SYMBOL(ieee80211_rx); 2575 2576 /* This is a version of the rx handler that can be called from hard irq 2577 * context. Post the skb on the queue and schedule the tasklet */ 2578 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 2579 { 2580 struct ieee80211_local *local = hw_to_local(hw); 2581 2582 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 2583 2584 skb->pkt_type = IEEE80211_RX_MSG; 2585 skb_queue_tail(&local->skb_queue, skb); 2586 tasklet_schedule(&local->tasklet); 2587 } 2588 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 2589