xref: /linux/net/mac80211/rx.c (revision 9e7c9b8eb719835638ee74d93dccc2173581324c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2022 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25 
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35 
36 /*
37  * monitor mode reception
38  *
39  * This function cleans up the SKB, i.e. it removes all the stuff
40  * only useful for monitoring.
41  */
42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 					   unsigned int present_fcs_len,
44 					   unsigned int rtap_space)
45 {
46 	struct ieee80211_hdr *hdr;
47 	unsigned int hdrlen;
48 	__le16 fc;
49 
50 	if (present_fcs_len)
51 		__pskb_trim(skb, skb->len - present_fcs_len);
52 	__pskb_pull(skb, rtap_space);
53 
54 	hdr = (void *)skb->data;
55 	fc = hdr->frame_control;
56 
57 	/*
58 	 * Remove the HT-Control field (if present) on management
59 	 * frames after we've sent the frame to monitoring. We
60 	 * (currently) don't need it, and don't properly parse
61 	 * frames with it present, due to the assumption of a
62 	 * fixed management header length.
63 	 */
64 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 		return skb;
66 
67 	hdrlen = ieee80211_hdrlen(fc);
68 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69 
70 	if (!pskb_may_pull(skb, hdrlen)) {
71 		dev_kfree_skb(skb);
72 		return NULL;
73 	}
74 
75 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 		hdrlen - IEEE80211_HT_CTL_LEN);
77 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78 
79 	return skb;
80 }
81 
82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 				     unsigned int rtap_space)
84 {
85 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 	struct ieee80211_hdr *hdr;
87 
88 	hdr = (void *)(skb->data + rtap_space);
89 
90 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 			    RX_FLAG_FAILED_PLCP_CRC |
92 			    RX_FLAG_ONLY_MONITOR |
93 			    RX_FLAG_NO_PSDU))
94 		return true;
95 
96 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 		return true;
98 
99 	if (ieee80211_is_ctl(hdr->frame_control) &&
100 	    !ieee80211_is_pspoll(hdr->frame_control) &&
101 	    !ieee80211_is_back_req(hdr->frame_control))
102 		return true;
103 
104 	return false;
105 }
106 
107 static int
108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 			     struct ieee80211_rx_status *status,
110 			     struct sk_buff *skb)
111 {
112 	int len;
113 
114 	/* always present fields */
115 	len = sizeof(struct ieee80211_radiotap_header) + 8;
116 
117 	/* allocate extra bitmaps */
118 	if (status->chains)
119 		len += 4 * hweight8(status->chains);
120 	/* vendor presence bitmap */
121 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 		len += 4;
123 
124 	if (ieee80211_have_rx_timestamp(status)) {
125 		len = ALIGN(len, 8);
126 		len += 8;
127 	}
128 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 		len += 1;
130 
131 	/* antenna field, if we don't have per-chain info */
132 	if (!status->chains)
133 		len += 1;
134 
135 	/* padding for RX_FLAGS if necessary */
136 	len = ALIGN(len, 2);
137 
138 	if (status->encoding == RX_ENC_HT) /* HT info */
139 		len += 3;
140 
141 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 		len = ALIGN(len, 4);
143 		len += 8;
144 	}
145 
146 	if (status->encoding == RX_ENC_VHT) {
147 		len = ALIGN(len, 2);
148 		len += 12;
149 	}
150 
151 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 		len = ALIGN(len, 8);
153 		len += 12;
154 	}
155 
156 	if (status->encoding == RX_ENC_HE &&
157 	    status->flag & RX_FLAG_RADIOTAP_HE) {
158 		len = ALIGN(len, 2);
159 		len += 12;
160 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 	}
162 
163 	if (status->encoding == RX_ENC_HE &&
164 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 		len = ALIGN(len, 2);
166 		len += 12;
167 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 	}
169 
170 	if (status->flag & RX_FLAG_NO_PSDU)
171 		len += 1;
172 
173 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 		len = ALIGN(len, 2);
175 		len += 4;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 	}
178 
179 	if (status->chains) {
180 		/* antenna and antenna signal fields */
181 		len += 2 * hweight8(status->chains);
182 	}
183 
184 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 		struct ieee80211_vendor_radiotap *rtap;
186 		int vendor_data_offset = 0;
187 
188 		/*
189 		 * The position to look at depends on the existence (or non-
190 		 * existence) of other elements, so take that into account...
191 		 */
192 		if (status->flag & RX_FLAG_RADIOTAP_HE)
193 			vendor_data_offset +=
194 				sizeof(struct ieee80211_radiotap_he);
195 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 			vendor_data_offset +=
197 				sizeof(struct ieee80211_radiotap_he_mu);
198 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 			vendor_data_offset +=
200 				sizeof(struct ieee80211_radiotap_lsig);
201 
202 		rtap = (void *)&skb->data[vendor_data_offset];
203 
204 		/* alignment for fixed 6-byte vendor data header */
205 		len = ALIGN(len, 2);
206 		/* vendor data header */
207 		len += 6;
208 		if (WARN_ON(rtap->align == 0))
209 			rtap->align = 1;
210 		len = ALIGN(len, rtap->align);
211 		len += rtap->len + rtap->pad;
212 	}
213 
214 	return len;
215 }
216 
217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 					   struct sta_info *sta,
219 					   struct sk_buff *skb)
220 {
221 	skb_queue_tail(&sdata->skb_queue, skb);
222 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
223 	if (sta)
224 		sta->deflink.rx_stats.packets++;
225 }
226 
227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
228 					 struct sta_info *sta,
229 					 struct sk_buff *skb)
230 {
231 	skb->protocol = 0;
232 	__ieee80211_queue_skb_to_iface(sdata, sta, skb);
233 }
234 
235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
236 					 struct sk_buff *skb,
237 					 int rtap_space)
238 {
239 	struct {
240 		struct ieee80211_hdr_3addr hdr;
241 		u8 category;
242 		u8 action_code;
243 	} __packed __aligned(2) action;
244 
245 	if (!sdata)
246 		return;
247 
248 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
249 
250 	if (skb->len < rtap_space + sizeof(action) +
251 		       VHT_MUMIMO_GROUPS_DATA_LEN)
252 		return;
253 
254 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
255 		return;
256 
257 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
258 
259 	if (!ieee80211_is_action(action.hdr.frame_control))
260 		return;
261 
262 	if (action.category != WLAN_CATEGORY_VHT)
263 		return;
264 
265 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
266 		return;
267 
268 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
269 		return;
270 
271 	skb = skb_copy(skb, GFP_ATOMIC);
272 	if (!skb)
273 		return;
274 
275 	ieee80211_queue_skb_to_iface(sdata, NULL, skb);
276 }
277 
278 /*
279  * ieee80211_add_rx_radiotap_header - add radiotap header
280  *
281  * add a radiotap header containing all the fields which the hardware provided.
282  */
283 static void
284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
285 				 struct sk_buff *skb,
286 				 struct ieee80211_rate *rate,
287 				 int rtap_len, bool has_fcs)
288 {
289 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
290 	struct ieee80211_radiotap_header *rthdr;
291 	unsigned char *pos;
292 	__le32 *it_present;
293 	u32 it_present_val;
294 	u16 rx_flags = 0;
295 	u16 channel_flags = 0;
296 	int mpdulen, chain;
297 	unsigned long chains = status->chains;
298 	struct ieee80211_vendor_radiotap rtap = {};
299 	struct ieee80211_radiotap_he he = {};
300 	struct ieee80211_radiotap_he_mu he_mu = {};
301 	struct ieee80211_radiotap_lsig lsig = {};
302 
303 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
304 		he = *(struct ieee80211_radiotap_he *)skb->data;
305 		skb_pull(skb, sizeof(he));
306 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
307 	}
308 
309 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
310 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
311 		skb_pull(skb, sizeof(he_mu));
312 	}
313 
314 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
315 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
316 		skb_pull(skb, sizeof(lsig));
317 	}
318 
319 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
320 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
321 		/* rtap.len and rtap.pad are undone immediately */
322 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
323 	}
324 
325 	mpdulen = skb->len;
326 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
327 		mpdulen += FCS_LEN;
328 
329 	rthdr = skb_push(skb, rtap_len);
330 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
331 	it_present = &rthdr->it_present;
332 
333 	/* radiotap header, set always present flags */
334 	rthdr->it_len = cpu_to_le16(rtap_len);
335 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
336 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
337 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
338 
339 	if (!status->chains)
340 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
341 
342 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
343 		it_present_val |=
344 			BIT(IEEE80211_RADIOTAP_EXT) |
345 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
346 		put_unaligned_le32(it_present_val, it_present);
347 		it_present++;
348 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
349 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
350 	}
351 
352 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
353 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
354 				  BIT(IEEE80211_RADIOTAP_EXT);
355 		put_unaligned_le32(it_present_val, it_present);
356 		it_present++;
357 		it_present_val = rtap.present;
358 	}
359 
360 	put_unaligned_le32(it_present_val, it_present);
361 
362 	/* This references through an offset into it_optional[] rather
363 	 * than via it_present otherwise later uses of pos will cause
364 	 * the compiler to think we have walked past the end of the
365 	 * struct member.
366 	 */
367 	pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
368 
369 	/* the order of the following fields is important */
370 
371 	/* IEEE80211_RADIOTAP_TSFT */
372 	if (ieee80211_have_rx_timestamp(status)) {
373 		/* padding */
374 		while ((pos - (u8 *)rthdr) & 7)
375 			*pos++ = 0;
376 		put_unaligned_le64(
377 			ieee80211_calculate_rx_timestamp(local, status,
378 							 mpdulen, 0),
379 			pos);
380 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
381 		pos += 8;
382 	}
383 
384 	/* IEEE80211_RADIOTAP_FLAGS */
385 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
386 		*pos |= IEEE80211_RADIOTAP_F_FCS;
387 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
388 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
389 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
390 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
391 	pos++;
392 
393 	/* IEEE80211_RADIOTAP_RATE */
394 	if (!rate || status->encoding != RX_ENC_LEGACY) {
395 		/*
396 		 * Without rate information don't add it. If we have,
397 		 * MCS information is a separate field in radiotap,
398 		 * added below. The byte here is needed as padding
399 		 * for the channel though, so initialise it to 0.
400 		 */
401 		*pos = 0;
402 	} else {
403 		int shift = 0;
404 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
405 		if (status->bw == RATE_INFO_BW_10)
406 			shift = 1;
407 		else if (status->bw == RATE_INFO_BW_5)
408 			shift = 2;
409 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
410 	}
411 	pos++;
412 
413 	/* IEEE80211_RADIOTAP_CHANNEL */
414 	/* TODO: frequency offset in KHz */
415 	put_unaligned_le16(status->freq, pos);
416 	pos += 2;
417 	if (status->bw == RATE_INFO_BW_10)
418 		channel_flags |= IEEE80211_CHAN_HALF;
419 	else if (status->bw == RATE_INFO_BW_5)
420 		channel_flags |= IEEE80211_CHAN_QUARTER;
421 
422 	if (status->band == NL80211_BAND_5GHZ ||
423 	    status->band == NL80211_BAND_6GHZ)
424 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
425 	else if (status->encoding != RX_ENC_LEGACY)
426 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
428 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
429 	else if (rate)
430 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
431 	else
432 		channel_flags |= IEEE80211_CHAN_2GHZ;
433 	put_unaligned_le16(channel_flags, pos);
434 	pos += 2;
435 
436 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
437 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
438 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
439 		*pos = status->signal;
440 		rthdr->it_present |=
441 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
442 		pos++;
443 	}
444 
445 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446 
447 	if (!status->chains) {
448 		/* IEEE80211_RADIOTAP_ANTENNA */
449 		*pos = status->antenna;
450 		pos++;
451 	}
452 
453 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454 
455 	/* IEEE80211_RADIOTAP_RX_FLAGS */
456 	/* ensure 2 byte alignment for the 2 byte field as required */
457 	if ((pos - (u8 *)rthdr) & 1)
458 		*pos++ = 0;
459 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
460 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
461 	put_unaligned_le16(rx_flags, pos);
462 	pos += 2;
463 
464 	if (status->encoding == RX_ENC_HT) {
465 		unsigned int stbc;
466 
467 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
468 		*pos = local->hw.radiotap_mcs_details;
469 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
470 			*pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT;
471 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
472 			*pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC;
473 		pos++;
474 		*pos = 0;
475 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
476 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
477 		if (status->bw == RATE_INFO_BW_40)
478 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
479 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
480 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
481 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
482 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
483 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
484 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
485 		pos++;
486 		*pos++ = status->rate_idx;
487 	}
488 
489 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
490 		u16 flags = 0;
491 
492 		/* ensure 4 byte alignment */
493 		while ((pos - (u8 *)rthdr) & 3)
494 			pos++;
495 		rthdr->it_present |=
496 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
497 		put_unaligned_le32(status->ampdu_reference, pos);
498 		pos += 4;
499 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
500 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
501 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
502 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
503 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
504 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
505 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
506 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
507 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
508 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
509 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
510 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
511 		put_unaligned_le16(flags, pos);
512 		pos += 2;
513 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
514 			*pos++ = status->ampdu_delimiter_crc;
515 		else
516 			*pos++ = 0;
517 		*pos++ = 0;
518 	}
519 
520 	if (status->encoding == RX_ENC_VHT) {
521 		u16 known = local->hw.radiotap_vht_details;
522 
523 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
524 		put_unaligned_le16(known, pos);
525 		pos += 2;
526 		/* flags */
527 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
528 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
529 		/* in VHT, STBC is binary */
530 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
531 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
532 		if (status->enc_flags & RX_ENC_FLAG_BF)
533 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
534 		pos++;
535 		/* bandwidth */
536 		switch (status->bw) {
537 		case RATE_INFO_BW_80:
538 			*pos++ = 4;
539 			break;
540 		case RATE_INFO_BW_160:
541 			*pos++ = 11;
542 			break;
543 		case RATE_INFO_BW_40:
544 			*pos++ = 1;
545 			break;
546 		default:
547 			*pos++ = 0;
548 		}
549 		/* MCS/NSS */
550 		*pos = (status->rate_idx << 4) | status->nss;
551 		pos += 4;
552 		/* coding field */
553 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
554 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
555 		pos++;
556 		/* group ID */
557 		pos++;
558 		/* partial_aid */
559 		pos += 2;
560 	}
561 
562 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
563 		u16 accuracy = 0;
564 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
565 
566 		rthdr->it_present |=
567 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
568 
569 		/* ensure 8 byte alignment */
570 		while ((pos - (u8 *)rthdr) & 7)
571 			pos++;
572 
573 		put_unaligned_le64(status->device_timestamp, pos);
574 		pos += sizeof(u64);
575 
576 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
577 			accuracy = local->hw.radiotap_timestamp.accuracy;
578 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
579 		}
580 		put_unaligned_le16(accuracy, pos);
581 		pos += sizeof(u16);
582 
583 		*pos++ = local->hw.radiotap_timestamp.units_pos;
584 		*pos++ = flags;
585 	}
586 
587 	if (status->encoding == RX_ENC_HE &&
588 	    status->flag & RX_FLAG_RADIOTAP_HE) {
589 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
590 
591 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
592 			he.data6 |= HE_PREP(DATA6_NSTS,
593 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
594 						      status->enc_flags));
595 			he.data3 |= HE_PREP(DATA3_STBC, 1);
596 		} else {
597 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
598 		}
599 
600 #define CHECK_GI(s) \
601 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
602 		     (int)NL80211_RATE_INFO_HE_GI_##s)
603 
604 		CHECK_GI(0_8);
605 		CHECK_GI(1_6);
606 		CHECK_GI(3_2);
607 
608 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
609 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
610 		he.data3 |= HE_PREP(DATA3_CODING,
611 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
612 
613 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
614 
615 		switch (status->bw) {
616 		case RATE_INFO_BW_20:
617 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
618 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
619 			break;
620 		case RATE_INFO_BW_40:
621 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
622 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
623 			break;
624 		case RATE_INFO_BW_80:
625 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
626 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
627 			break;
628 		case RATE_INFO_BW_160:
629 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
630 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
631 			break;
632 		case RATE_INFO_BW_HE_RU:
633 #define CHECK_RU_ALLOC(s) \
634 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
635 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
636 
637 			CHECK_RU_ALLOC(26);
638 			CHECK_RU_ALLOC(52);
639 			CHECK_RU_ALLOC(106);
640 			CHECK_RU_ALLOC(242);
641 			CHECK_RU_ALLOC(484);
642 			CHECK_RU_ALLOC(996);
643 			CHECK_RU_ALLOC(2x996);
644 
645 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
646 					    status->he_ru + 4);
647 			break;
648 		default:
649 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
650 		}
651 
652 		/* ensure 2 byte alignment */
653 		while ((pos - (u8 *)rthdr) & 1)
654 			pos++;
655 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
656 		memcpy(pos, &he, sizeof(he));
657 		pos += sizeof(he);
658 	}
659 
660 	if (status->encoding == RX_ENC_HE &&
661 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
662 		/* ensure 2 byte alignment */
663 		while ((pos - (u8 *)rthdr) & 1)
664 			pos++;
665 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
666 		memcpy(pos, &he_mu, sizeof(he_mu));
667 		pos += sizeof(he_mu);
668 	}
669 
670 	if (status->flag & RX_FLAG_NO_PSDU) {
671 		rthdr->it_present |=
672 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
673 		*pos++ = status->zero_length_psdu_type;
674 	}
675 
676 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
677 		/* ensure 2 byte alignment */
678 		while ((pos - (u8 *)rthdr) & 1)
679 			pos++;
680 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
681 		memcpy(pos, &lsig, sizeof(lsig));
682 		pos += sizeof(lsig);
683 	}
684 
685 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
686 		*pos++ = status->chain_signal[chain];
687 		*pos++ = chain;
688 	}
689 
690 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
691 		/* ensure 2 byte alignment for the vendor field as required */
692 		if ((pos - (u8 *)rthdr) & 1)
693 			*pos++ = 0;
694 		*pos++ = rtap.oui[0];
695 		*pos++ = rtap.oui[1];
696 		*pos++ = rtap.oui[2];
697 		*pos++ = rtap.subns;
698 		put_unaligned_le16(rtap.len, pos);
699 		pos += 2;
700 		/* align the actual payload as requested */
701 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
702 			*pos++ = 0;
703 		/* data (and possible padding) already follows */
704 	}
705 }
706 
707 static struct sk_buff *
708 ieee80211_make_monitor_skb(struct ieee80211_local *local,
709 			   struct sk_buff **origskb,
710 			   struct ieee80211_rate *rate,
711 			   int rtap_space, bool use_origskb)
712 {
713 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
714 	int rt_hdrlen, needed_headroom;
715 	struct sk_buff *skb;
716 
717 	/* room for the radiotap header based on driver features */
718 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
719 	needed_headroom = rt_hdrlen - rtap_space;
720 
721 	if (use_origskb) {
722 		/* only need to expand headroom if necessary */
723 		skb = *origskb;
724 		*origskb = NULL;
725 
726 		/*
727 		 * This shouldn't trigger often because most devices have an
728 		 * RX header they pull before we get here, and that should
729 		 * be big enough for our radiotap information. We should
730 		 * probably export the length to drivers so that we can have
731 		 * them allocate enough headroom to start with.
732 		 */
733 		if (skb_headroom(skb) < needed_headroom &&
734 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
735 			dev_kfree_skb(skb);
736 			return NULL;
737 		}
738 	} else {
739 		/*
740 		 * Need to make a copy and possibly remove radiotap header
741 		 * and FCS from the original.
742 		 */
743 		skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
744 				      0, GFP_ATOMIC);
745 
746 		if (!skb)
747 			return NULL;
748 	}
749 
750 	/* prepend radiotap information */
751 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
752 
753 	skb_reset_mac_header(skb);
754 	skb->ip_summed = CHECKSUM_UNNECESSARY;
755 	skb->pkt_type = PACKET_OTHERHOST;
756 	skb->protocol = htons(ETH_P_802_2);
757 
758 	return skb;
759 }
760 
761 /*
762  * This function copies a received frame to all monitor interfaces and
763  * returns a cleaned-up SKB that no longer includes the FCS nor the
764  * radiotap header the driver might have added.
765  */
766 static struct sk_buff *
767 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
768 		     struct ieee80211_rate *rate)
769 {
770 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
771 	struct ieee80211_sub_if_data *sdata;
772 	struct sk_buff *monskb = NULL;
773 	int present_fcs_len = 0;
774 	unsigned int rtap_space = 0;
775 	struct ieee80211_sub_if_data *monitor_sdata =
776 		rcu_dereference(local->monitor_sdata);
777 	bool only_monitor = false;
778 	unsigned int min_head_len;
779 
780 	if (status->flag & RX_FLAG_RADIOTAP_HE)
781 		rtap_space += sizeof(struct ieee80211_radiotap_he);
782 
783 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
784 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
785 
786 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
787 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
788 
789 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
790 		struct ieee80211_vendor_radiotap *rtap =
791 			(void *)(origskb->data + rtap_space);
792 
793 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
794 	}
795 
796 	min_head_len = rtap_space;
797 
798 	/*
799 	 * First, we may need to make a copy of the skb because
800 	 *  (1) we need to modify it for radiotap (if not present), and
801 	 *  (2) the other RX handlers will modify the skb we got.
802 	 *
803 	 * We don't need to, of course, if we aren't going to return
804 	 * the SKB because it has a bad FCS/PLCP checksum.
805 	 */
806 
807 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
808 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
809 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
810 				/* driver bug */
811 				WARN_ON(1);
812 				dev_kfree_skb(origskb);
813 				return NULL;
814 			}
815 			present_fcs_len = FCS_LEN;
816 		}
817 
818 		/* also consider the hdr->frame_control */
819 		min_head_len += 2;
820 	}
821 
822 	/* ensure that the expected data elements are in skb head */
823 	if (!pskb_may_pull(origskb, min_head_len)) {
824 		dev_kfree_skb(origskb);
825 		return NULL;
826 	}
827 
828 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
829 
830 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
831 		if (only_monitor) {
832 			dev_kfree_skb(origskb);
833 			return NULL;
834 		}
835 
836 		return ieee80211_clean_skb(origskb, present_fcs_len,
837 					   rtap_space);
838 	}
839 
840 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
841 
842 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
843 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
844 						 &local->mon_list);
845 
846 		if (!monskb)
847 			monskb = ieee80211_make_monitor_skb(local, &origskb,
848 							    rate, rtap_space,
849 							    only_monitor &&
850 							    last_monitor);
851 
852 		if (monskb) {
853 			struct sk_buff *skb;
854 
855 			if (last_monitor) {
856 				skb = monskb;
857 				monskb = NULL;
858 			} else {
859 				skb = skb_clone(monskb, GFP_ATOMIC);
860 			}
861 
862 			if (skb) {
863 				skb->dev = sdata->dev;
864 				dev_sw_netstats_rx_add(skb->dev, skb->len);
865 				netif_receive_skb(skb);
866 			}
867 		}
868 
869 		if (last_monitor)
870 			break;
871 	}
872 
873 	/* this happens if last_monitor was erroneously false */
874 	dev_kfree_skb(monskb);
875 
876 	/* ditto */
877 	if (!origskb)
878 		return NULL;
879 
880 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
881 }
882 
883 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
884 {
885 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
886 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
887 	int tid, seqno_idx, security_idx;
888 
889 	/* does the frame have a qos control field? */
890 	if (ieee80211_is_data_qos(hdr->frame_control)) {
891 		u8 *qc = ieee80211_get_qos_ctl(hdr);
892 		/* frame has qos control */
893 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
894 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
895 			status->rx_flags |= IEEE80211_RX_AMSDU;
896 
897 		seqno_idx = tid;
898 		security_idx = tid;
899 	} else {
900 		/*
901 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
902 		 *
903 		 *	Sequence numbers for management frames, QoS data
904 		 *	frames with a broadcast/multicast address in the
905 		 *	Address 1 field, and all non-QoS data frames sent
906 		 *	by QoS STAs are assigned using an additional single
907 		 *	modulo-4096 counter, [...]
908 		 *
909 		 * We also use that counter for non-QoS STAs.
910 		 */
911 		seqno_idx = IEEE80211_NUM_TIDS;
912 		security_idx = 0;
913 		if (ieee80211_is_mgmt(hdr->frame_control))
914 			security_idx = IEEE80211_NUM_TIDS;
915 		tid = 0;
916 	}
917 
918 	rx->seqno_idx = seqno_idx;
919 	rx->security_idx = security_idx;
920 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
921 	 * For now, set skb->priority to 0 for other cases. */
922 	rx->skb->priority = (tid > 7) ? 0 : tid;
923 }
924 
925 /**
926  * DOC: Packet alignment
927  *
928  * Drivers always need to pass packets that are aligned to two-byte boundaries
929  * to the stack.
930  *
931  * Additionally, should, if possible, align the payload data in a way that
932  * guarantees that the contained IP header is aligned to a four-byte
933  * boundary. In the case of regular frames, this simply means aligning the
934  * payload to a four-byte boundary (because either the IP header is directly
935  * contained, or IV/RFC1042 headers that have a length divisible by four are
936  * in front of it).  If the payload data is not properly aligned and the
937  * architecture doesn't support efficient unaligned operations, mac80211
938  * will align the data.
939  *
940  * With A-MSDU frames, however, the payload data address must yield two modulo
941  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
942  * push the IP header further back to a multiple of four again. Thankfully, the
943  * specs were sane enough this time around to require padding each A-MSDU
944  * subframe to a length that is a multiple of four.
945  *
946  * Padding like Atheros hardware adds which is between the 802.11 header and
947  * the payload is not supported, the driver is required to move the 802.11
948  * header to be directly in front of the payload in that case.
949  */
950 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
951 {
952 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
953 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
954 #endif
955 }
956 
957 
958 /* rx handlers */
959 
960 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
961 {
962 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
963 
964 	if (is_multicast_ether_addr(hdr->addr1))
965 		return 0;
966 
967 	return ieee80211_is_robust_mgmt_frame(skb);
968 }
969 
970 
971 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
972 {
973 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
974 
975 	if (!is_multicast_ether_addr(hdr->addr1))
976 		return 0;
977 
978 	return ieee80211_is_robust_mgmt_frame(skb);
979 }
980 
981 
982 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
983 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
984 {
985 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
986 	struct ieee80211_mmie *mmie;
987 	struct ieee80211_mmie_16 *mmie16;
988 
989 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
990 		return -1;
991 
992 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
993 	    !ieee80211_is_beacon(hdr->frame_control))
994 		return -1; /* not a robust management frame */
995 
996 	mmie = (struct ieee80211_mmie *)
997 		(skb->data + skb->len - sizeof(*mmie));
998 	if (mmie->element_id == WLAN_EID_MMIE &&
999 	    mmie->length == sizeof(*mmie) - 2)
1000 		return le16_to_cpu(mmie->key_id);
1001 
1002 	mmie16 = (struct ieee80211_mmie_16 *)
1003 		(skb->data + skb->len - sizeof(*mmie16));
1004 	if (skb->len >= 24 + sizeof(*mmie16) &&
1005 	    mmie16->element_id == WLAN_EID_MMIE &&
1006 	    mmie16->length == sizeof(*mmie16) - 2)
1007 		return le16_to_cpu(mmie16->key_id);
1008 
1009 	return -1;
1010 }
1011 
1012 static int ieee80211_get_keyid(struct sk_buff *skb)
1013 {
1014 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1015 	__le16 fc = hdr->frame_control;
1016 	int hdrlen = ieee80211_hdrlen(fc);
1017 	u8 keyid;
1018 
1019 	/* WEP, TKIP, CCMP and GCMP */
1020 	if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN))
1021 		return -EINVAL;
1022 
1023 	skb_copy_bits(skb, hdrlen + 3, &keyid, 1);
1024 
1025 	keyid >>= 6;
1026 
1027 	return keyid;
1028 }
1029 
1030 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1031 {
1032 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1033 	char *dev_addr = rx->sdata->vif.addr;
1034 
1035 	if (ieee80211_is_data(hdr->frame_control)) {
1036 		if (is_multicast_ether_addr(hdr->addr1)) {
1037 			if (ieee80211_has_tods(hdr->frame_control) ||
1038 			    !ieee80211_has_fromds(hdr->frame_control))
1039 				return RX_DROP_MONITOR;
1040 			if (ether_addr_equal(hdr->addr3, dev_addr))
1041 				return RX_DROP_MONITOR;
1042 		} else {
1043 			if (!ieee80211_has_a4(hdr->frame_control))
1044 				return RX_DROP_MONITOR;
1045 			if (ether_addr_equal(hdr->addr4, dev_addr))
1046 				return RX_DROP_MONITOR;
1047 		}
1048 	}
1049 
1050 	/* If there is not an established peer link and this is not a peer link
1051 	 * establisment frame, beacon or probe, drop the frame.
1052 	 */
1053 
1054 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1055 		struct ieee80211_mgmt *mgmt;
1056 
1057 		if (!ieee80211_is_mgmt(hdr->frame_control))
1058 			return RX_DROP_MONITOR;
1059 
1060 		if (ieee80211_is_action(hdr->frame_control)) {
1061 			u8 category;
1062 
1063 			/* make sure category field is present */
1064 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1065 				return RX_DROP_MONITOR;
1066 
1067 			mgmt = (struct ieee80211_mgmt *)hdr;
1068 			category = mgmt->u.action.category;
1069 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1070 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1071 				return RX_DROP_MONITOR;
1072 			return RX_CONTINUE;
1073 		}
1074 
1075 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1076 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1077 		    ieee80211_is_beacon(hdr->frame_control) ||
1078 		    ieee80211_is_auth(hdr->frame_control))
1079 			return RX_CONTINUE;
1080 
1081 		return RX_DROP_MONITOR;
1082 	}
1083 
1084 	return RX_CONTINUE;
1085 }
1086 
1087 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1088 					      int index)
1089 {
1090 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1091 	struct sk_buff *tail = skb_peek_tail(frames);
1092 	struct ieee80211_rx_status *status;
1093 
1094 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1095 		return true;
1096 
1097 	if (!tail)
1098 		return false;
1099 
1100 	status = IEEE80211_SKB_RXCB(tail);
1101 	if (status->flag & RX_FLAG_AMSDU_MORE)
1102 		return false;
1103 
1104 	return true;
1105 }
1106 
1107 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1108 					    struct tid_ampdu_rx *tid_agg_rx,
1109 					    int index,
1110 					    struct sk_buff_head *frames)
1111 {
1112 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1113 	struct sk_buff *skb;
1114 	struct ieee80211_rx_status *status;
1115 
1116 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1117 
1118 	if (skb_queue_empty(skb_list))
1119 		goto no_frame;
1120 
1121 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1122 		__skb_queue_purge(skb_list);
1123 		goto no_frame;
1124 	}
1125 
1126 	/* release frames from the reorder ring buffer */
1127 	tid_agg_rx->stored_mpdu_num--;
1128 	while ((skb = __skb_dequeue(skb_list))) {
1129 		status = IEEE80211_SKB_RXCB(skb);
1130 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1131 		__skb_queue_tail(frames, skb);
1132 	}
1133 
1134 no_frame:
1135 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1136 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1137 }
1138 
1139 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1140 					     struct tid_ampdu_rx *tid_agg_rx,
1141 					     u16 head_seq_num,
1142 					     struct sk_buff_head *frames)
1143 {
1144 	int index;
1145 
1146 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1147 
1148 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1149 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1150 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1151 						frames);
1152 	}
1153 }
1154 
1155 /*
1156  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1157  * the skb was added to the buffer longer than this time ago, the earlier
1158  * frames that have not yet been received are assumed to be lost and the skb
1159  * can be released for processing. This may also release other skb's from the
1160  * reorder buffer if there are no additional gaps between the frames.
1161  *
1162  * Callers must hold tid_agg_rx->reorder_lock.
1163  */
1164 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1165 
1166 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1167 					  struct tid_ampdu_rx *tid_agg_rx,
1168 					  struct sk_buff_head *frames)
1169 {
1170 	int index, i, j;
1171 
1172 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1173 
1174 	/* release the buffer until next missing frame */
1175 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1176 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1177 	    tid_agg_rx->stored_mpdu_num) {
1178 		/*
1179 		 * No buffers ready to be released, but check whether any
1180 		 * frames in the reorder buffer have timed out.
1181 		 */
1182 		int skipped = 1;
1183 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1184 		     j = (j + 1) % tid_agg_rx->buf_size) {
1185 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1186 				skipped++;
1187 				continue;
1188 			}
1189 			if (skipped &&
1190 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1191 					HT_RX_REORDER_BUF_TIMEOUT))
1192 				goto set_release_timer;
1193 
1194 			/* don't leave incomplete A-MSDUs around */
1195 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1196 			     i = (i + 1) % tid_agg_rx->buf_size)
1197 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1198 
1199 			ht_dbg_ratelimited(sdata,
1200 					   "release an RX reorder frame due to timeout on earlier frames\n");
1201 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1202 							frames);
1203 
1204 			/*
1205 			 * Increment the head seq# also for the skipped slots.
1206 			 */
1207 			tid_agg_rx->head_seq_num =
1208 				(tid_agg_rx->head_seq_num +
1209 				 skipped) & IEEE80211_SN_MASK;
1210 			skipped = 0;
1211 		}
1212 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1213 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1214 						frames);
1215 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1216 	}
1217 
1218 	if (tid_agg_rx->stored_mpdu_num) {
1219 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1220 
1221 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1222 		     j = (j + 1) % tid_agg_rx->buf_size) {
1223 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1224 				break;
1225 		}
1226 
1227  set_release_timer:
1228 
1229 		if (!tid_agg_rx->removed)
1230 			mod_timer(&tid_agg_rx->reorder_timer,
1231 				  tid_agg_rx->reorder_time[j] + 1 +
1232 				  HT_RX_REORDER_BUF_TIMEOUT);
1233 	} else {
1234 		del_timer(&tid_agg_rx->reorder_timer);
1235 	}
1236 }
1237 
1238 /*
1239  * As this function belongs to the RX path it must be under
1240  * rcu_read_lock protection. It returns false if the frame
1241  * can be processed immediately, true if it was consumed.
1242  */
1243 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1244 					     struct tid_ampdu_rx *tid_agg_rx,
1245 					     struct sk_buff *skb,
1246 					     struct sk_buff_head *frames)
1247 {
1248 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1249 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1250 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1251 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1252 	u16 head_seq_num, buf_size;
1253 	int index;
1254 	bool ret = true;
1255 
1256 	spin_lock(&tid_agg_rx->reorder_lock);
1257 
1258 	/*
1259 	 * Offloaded BA sessions have no known starting sequence number so pick
1260 	 * one from first Rxed frame for this tid after BA was started.
1261 	 */
1262 	if (unlikely(tid_agg_rx->auto_seq)) {
1263 		tid_agg_rx->auto_seq = false;
1264 		tid_agg_rx->ssn = mpdu_seq_num;
1265 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1266 	}
1267 
1268 	buf_size = tid_agg_rx->buf_size;
1269 	head_seq_num = tid_agg_rx->head_seq_num;
1270 
1271 	/*
1272 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1273 	 * be reordered.
1274 	 */
1275 	if (unlikely(!tid_agg_rx->started)) {
1276 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1277 			ret = false;
1278 			goto out;
1279 		}
1280 		tid_agg_rx->started = true;
1281 	}
1282 
1283 	/* frame with out of date sequence number */
1284 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1285 		dev_kfree_skb(skb);
1286 		goto out;
1287 	}
1288 
1289 	/*
1290 	 * If frame the sequence number exceeds our buffering window
1291 	 * size release some previous frames to make room for this one.
1292 	 */
1293 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1294 		head_seq_num = ieee80211_sn_inc(
1295 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1296 		/* release stored frames up to new head to stack */
1297 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1298 						 head_seq_num, frames);
1299 	}
1300 
1301 	/* Now the new frame is always in the range of the reordering buffer */
1302 
1303 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1304 
1305 	/* check if we already stored this frame */
1306 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1307 		dev_kfree_skb(skb);
1308 		goto out;
1309 	}
1310 
1311 	/*
1312 	 * If the current MPDU is in the right order and nothing else
1313 	 * is stored we can process it directly, no need to buffer it.
1314 	 * If it is first but there's something stored, we may be able
1315 	 * to release frames after this one.
1316 	 */
1317 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1318 	    tid_agg_rx->stored_mpdu_num == 0) {
1319 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1320 			tid_agg_rx->head_seq_num =
1321 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1322 		ret = false;
1323 		goto out;
1324 	}
1325 
1326 	/* put the frame in the reordering buffer */
1327 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1328 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1329 		tid_agg_rx->reorder_time[index] = jiffies;
1330 		tid_agg_rx->stored_mpdu_num++;
1331 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1332 	}
1333 
1334  out:
1335 	spin_unlock(&tid_agg_rx->reorder_lock);
1336 	return ret;
1337 }
1338 
1339 /*
1340  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1341  * true if the MPDU was buffered, false if it should be processed.
1342  */
1343 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1344 				       struct sk_buff_head *frames)
1345 {
1346 	struct sk_buff *skb = rx->skb;
1347 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1348 	struct sta_info *sta = rx->sta;
1349 	struct tid_ampdu_rx *tid_agg_rx;
1350 	u16 sc;
1351 	u8 tid, ack_policy;
1352 
1353 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1354 	    is_multicast_ether_addr(hdr->addr1))
1355 		goto dont_reorder;
1356 
1357 	/*
1358 	 * filter the QoS data rx stream according to
1359 	 * STA/TID and check if this STA/TID is on aggregation
1360 	 */
1361 
1362 	if (!sta)
1363 		goto dont_reorder;
1364 
1365 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1366 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1367 	tid = ieee80211_get_tid(hdr);
1368 
1369 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1370 	if (!tid_agg_rx) {
1371 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1372 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1373 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1374 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1375 					     WLAN_BACK_RECIPIENT,
1376 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1377 		goto dont_reorder;
1378 	}
1379 
1380 	/* qos null data frames are excluded */
1381 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1382 		goto dont_reorder;
1383 
1384 	/* not part of a BA session */
1385 	if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1386 		goto dont_reorder;
1387 
1388 	/* new, potentially un-ordered, ampdu frame - process it */
1389 
1390 	/* reset session timer */
1391 	if (tid_agg_rx->timeout)
1392 		tid_agg_rx->last_rx = jiffies;
1393 
1394 	/* if this mpdu is fragmented - terminate rx aggregation session */
1395 	sc = le16_to_cpu(hdr->seq_ctrl);
1396 	if (sc & IEEE80211_SCTL_FRAG) {
1397 		ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb);
1398 		return;
1399 	}
1400 
1401 	/*
1402 	 * No locking needed -- we will only ever process one
1403 	 * RX packet at a time, and thus own tid_agg_rx. All
1404 	 * other code manipulating it needs to (and does) make
1405 	 * sure that we cannot get to it any more before doing
1406 	 * anything with it.
1407 	 */
1408 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1409 					     frames))
1410 		return;
1411 
1412  dont_reorder:
1413 	__skb_queue_tail(frames, skb);
1414 }
1415 
1416 static ieee80211_rx_result debug_noinline
1417 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1418 {
1419 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1420 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1421 
1422 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1423 		return RX_CONTINUE;
1424 
1425 	/*
1426 	 * Drop duplicate 802.11 retransmissions
1427 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1428 	 */
1429 
1430 	if (rx->skb->len < 24)
1431 		return RX_CONTINUE;
1432 
1433 	if (ieee80211_is_ctl(hdr->frame_control) ||
1434 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1435 	    is_multicast_ether_addr(hdr->addr1))
1436 		return RX_CONTINUE;
1437 
1438 	if (!rx->sta)
1439 		return RX_CONTINUE;
1440 
1441 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1442 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1443 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1444 		rx->sta->deflink.rx_stats.num_duplicates++;
1445 		return RX_DROP_UNUSABLE;
1446 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1447 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1448 	}
1449 
1450 	return RX_CONTINUE;
1451 }
1452 
1453 static ieee80211_rx_result debug_noinline
1454 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1455 {
1456 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1457 
1458 	/* Drop disallowed frame classes based on STA auth/assoc state;
1459 	 * IEEE 802.11, Chap 5.5.
1460 	 *
1461 	 * mac80211 filters only based on association state, i.e. it drops
1462 	 * Class 3 frames from not associated stations. hostapd sends
1463 	 * deauth/disassoc frames when needed. In addition, hostapd is
1464 	 * responsible for filtering on both auth and assoc states.
1465 	 */
1466 
1467 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1468 		return ieee80211_rx_mesh_check(rx);
1469 
1470 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1471 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1472 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1473 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1474 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1475 		/*
1476 		 * accept port control frames from the AP even when it's not
1477 		 * yet marked ASSOC to prevent a race where we don't set the
1478 		 * assoc bit quickly enough before it sends the first frame
1479 		 */
1480 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1481 		    ieee80211_is_data_present(hdr->frame_control)) {
1482 			unsigned int hdrlen;
1483 			__be16 ethertype;
1484 
1485 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1486 
1487 			if (rx->skb->len < hdrlen + 8)
1488 				return RX_DROP_MONITOR;
1489 
1490 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1491 			if (ethertype == rx->sdata->control_port_protocol)
1492 				return RX_CONTINUE;
1493 		}
1494 
1495 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1496 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1497 					       hdr->addr2,
1498 					       GFP_ATOMIC))
1499 			return RX_DROP_UNUSABLE;
1500 
1501 		return RX_DROP_MONITOR;
1502 	}
1503 
1504 	return RX_CONTINUE;
1505 }
1506 
1507 
1508 static ieee80211_rx_result debug_noinline
1509 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1510 {
1511 	struct ieee80211_local *local;
1512 	struct ieee80211_hdr *hdr;
1513 	struct sk_buff *skb;
1514 
1515 	local = rx->local;
1516 	skb = rx->skb;
1517 	hdr = (struct ieee80211_hdr *) skb->data;
1518 
1519 	if (!local->pspolling)
1520 		return RX_CONTINUE;
1521 
1522 	if (!ieee80211_has_fromds(hdr->frame_control))
1523 		/* this is not from AP */
1524 		return RX_CONTINUE;
1525 
1526 	if (!ieee80211_is_data(hdr->frame_control))
1527 		return RX_CONTINUE;
1528 
1529 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1530 		/* AP has no more frames buffered for us */
1531 		local->pspolling = false;
1532 		return RX_CONTINUE;
1533 	}
1534 
1535 	/* more data bit is set, let's request a new frame from the AP */
1536 	ieee80211_send_pspoll(local, rx->sdata);
1537 
1538 	return RX_CONTINUE;
1539 }
1540 
1541 static void sta_ps_start(struct sta_info *sta)
1542 {
1543 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1544 	struct ieee80211_local *local = sdata->local;
1545 	struct ps_data *ps;
1546 	int tid;
1547 
1548 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1549 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1550 		ps = &sdata->bss->ps;
1551 	else
1552 		return;
1553 
1554 	atomic_inc(&ps->num_sta_ps);
1555 	set_sta_flag(sta, WLAN_STA_PS_STA);
1556 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1557 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1558 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1559 	       sta->sta.addr, sta->sta.aid);
1560 
1561 	ieee80211_clear_fast_xmit(sta);
1562 
1563 	if (!sta->sta.txq[0])
1564 		return;
1565 
1566 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1567 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1568 		struct txq_info *txqi = to_txq_info(txq);
1569 
1570 		spin_lock(&local->active_txq_lock[txq->ac]);
1571 		if (!list_empty(&txqi->schedule_order))
1572 			list_del_init(&txqi->schedule_order);
1573 		spin_unlock(&local->active_txq_lock[txq->ac]);
1574 
1575 		if (txq_has_queue(txq))
1576 			set_bit(tid, &sta->txq_buffered_tids);
1577 		else
1578 			clear_bit(tid, &sta->txq_buffered_tids);
1579 	}
1580 }
1581 
1582 static void sta_ps_end(struct sta_info *sta)
1583 {
1584 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1585 	       sta->sta.addr, sta->sta.aid);
1586 
1587 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1588 		/*
1589 		 * Clear the flag only if the other one is still set
1590 		 * so that the TX path won't start TX'ing new frames
1591 		 * directly ... In the case that the driver flag isn't
1592 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1593 		 */
1594 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1595 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1596 		       sta->sta.addr, sta->sta.aid);
1597 		return;
1598 	}
1599 
1600 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1601 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1602 	ieee80211_sta_ps_deliver_wakeup(sta);
1603 }
1604 
1605 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1606 {
1607 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1608 	bool in_ps;
1609 
1610 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1611 
1612 	/* Don't let the same PS state be set twice */
1613 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1614 	if ((start && in_ps) || (!start && !in_ps))
1615 		return -EINVAL;
1616 
1617 	if (start)
1618 		sta_ps_start(sta);
1619 	else
1620 		sta_ps_end(sta);
1621 
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1625 
1626 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1627 {
1628 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1629 
1630 	if (test_sta_flag(sta, WLAN_STA_SP))
1631 		return;
1632 
1633 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1634 		ieee80211_sta_ps_deliver_poll_response(sta);
1635 	else
1636 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1637 }
1638 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1639 
1640 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1641 {
1642 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1643 	int ac = ieee80211_ac_from_tid(tid);
1644 
1645 	/*
1646 	 * If this AC is not trigger-enabled do nothing unless the
1647 	 * driver is calling us after it already checked.
1648 	 *
1649 	 * NB: This could/should check a separate bitmap of trigger-
1650 	 * enabled queues, but for now we only implement uAPSD w/o
1651 	 * TSPEC changes to the ACs, so they're always the same.
1652 	 */
1653 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1654 	    tid != IEEE80211_NUM_TIDS)
1655 		return;
1656 
1657 	/* if we are in a service period, do nothing */
1658 	if (test_sta_flag(sta, WLAN_STA_SP))
1659 		return;
1660 
1661 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1662 		ieee80211_sta_ps_deliver_uapsd(sta);
1663 	else
1664 		set_sta_flag(sta, WLAN_STA_UAPSD);
1665 }
1666 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1667 
1668 static ieee80211_rx_result debug_noinline
1669 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1670 {
1671 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1672 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1673 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1674 
1675 	if (!rx->sta)
1676 		return RX_CONTINUE;
1677 
1678 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1679 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1680 		return RX_CONTINUE;
1681 
1682 	/*
1683 	 * The device handles station powersave, so don't do anything about
1684 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1685 	 * it to mac80211 since they're handled.)
1686 	 */
1687 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1688 		return RX_CONTINUE;
1689 
1690 	/*
1691 	 * Don't do anything if the station isn't already asleep. In
1692 	 * the uAPSD case, the station will probably be marked asleep,
1693 	 * in the PS-Poll case the station must be confused ...
1694 	 */
1695 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1696 		return RX_CONTINUE;
1697 
1698 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1699 		ieee80211_sta_pspoll(&rx->sta->sta);
1700 
1701 		/* Free PS Poll skb here instead of returning RX_DROP that would
1702 		 * count as an dropped frame. */
1703 		dev_kfree_skb(rx->skb);
1704 
1705 		return RX_QUEUED;
1706 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1707 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1708 		   ieee80211_has_pm(hdr->frame_control) &&
1709 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1710 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1711 		u8 tid = ieee80211_get_tid(hdr);
1712 
1713 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1714 	}
1715 
1716 	return RX_CONTINUE;
1717 }
1718 
1719 static ieee80211_rx_result debug_noinline
1720 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1721 {
1722 	struct sta_info *sta = rx->sta;
1723 	struct sk_buff *skb = rx->skb;
1724 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1725 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1726 	int i;
1727 
1728 	if (!sta)
1729 		return RX_CONTINUE;
1730 
1731 	/*
1732 	 * Update last_rx only for IBSS packets which are for the current
1733 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1734 	 * current IBSS network alive in cases where other STAs start
1735 	 * using different BSSID. This will also give the station another
1736 	 * chance to restart the authentication/authorization in case
1737 	 * something went wrong the first time.
1738 	 */
1739 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1740 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1741 						NL80211_IFTYPE_ADHOC);
1742 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1743 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1744 			sta->deflink.rx_stats.last_rx = jiffies;
1745 			if (ieee80211_is_data(hdr->frame_control) &&
1746 			    !is_multicast_ether_addr(hdr->addr1))
1747 				sta->deflink.rx_stats.last_rate =
1748 					sta_stats_encode_rate(status);
1749 		}
1750 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1751 		sta->deflink.rx_stats.last_rx = jiffies;
1752 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1753 		   !is_multicast_ether_addr(hdr->addr1)) {
1754 		/*
1755 		 * Mesh beacons will update last_rx when if they are found to
1756 		 * match the current local configuration when processed.
1757 		 */
1758 		sta->deflink.rx_stats.last_rx = jiffies;
1759 		if (ieee80211_is_data(hdr->frame_control))
1760 			sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status);
1761 	}
1762 
1763 	sta->deflink.rx_stats.fragments++;
1764 
1765 	u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp);
1766 	sta->deflink.rx_stats.bytes += rx->skb->len;
1767 	u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp);
1768 
1769 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1770 		sta->deflink.rx_stats.last_signal = status->signal;
1771 		ewma_signal_add(&sta->deflink.rx_stats_avg.signal,
1772 				-status->signal);
1773 	}
1774 
1775 	if (status->chains) {
1776 		sta->deflink.rx_stats.chains = status->chains;
1777 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1778 			int signal = status->chain_signal[i];
1779 
1780 			if (!(status->chains & BIT(i)))
1781 				continue;
1782 
1783 			sta->deflink.rx_stats.chain_signal_last[i] = signal;
1784 			ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i],
1785 					-signal);
1786 		}
1787 	}
1788 
1789 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1790 		return RX_CONTINUE;
1791 
1792 	/*
1793 	 * Change STA power saving mode only at the end of a frame
1794 	 * exchange sequence, and only for a data or management
1795 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1796 	 */
1797 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1798 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1799 	    !is_multicast_ether_addr(hdr->addr1) &&
1800 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1801 	     ieee80211_is_data(hdr->frame_control)) &&
1802 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1803 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1804 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1805 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1806 			if (!ieee80211_has_pm(hdr->frame_control))
1807 				sta_ps_end(sta);
1808 		} else {
1809 			if (ieee80211_has_pm(hdr->frame_control))
1810 				sta_ps_start(sta);
1811 		}
1812 	}
1813 
1814 	/* mesh power save support */
1815 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1816 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1817 
1818 	/*
1819 	 * Drop (qos-)data::nullfunc frames silently, since they
1820 	 * are used only to control station power saving mode.
1821 	 */
1822 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1823 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1824 
1825 		/*
1826 		 * If we receive a 4-addr nullfunc frame from a STA
1827 		 * that was not moved to a 4-addr STA vlan yet send
1828 		 * the event to userspace and for older hostapd drop
1829 		 * the frame to the monitor interface.
1830 		 */
1831 		if (ieee80211_has_a4(hdr->frame_control) &&
1832 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1833 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1834 		      !rx->sdata->u.vlan.sta))) {
1835 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1836 				cfg80211_rx_unexpected_4addr_frame(
1837 					rx->sdata->dev, sta->sta.addr,
1838 					GFP_ATOMIC);
1839 			return RX_DROP_MONITOR;
1840 		}
1841 		/*
1842 		 * Update counter and free packet here to avoid
1843 		 * counting this as a dropped packed.
1844 		 */
1845 		sta->deflink.rx_stats.packets++;
1846 		dev_kfree_skb(rx->skb);
1847 		return RX_QUEUED;
1848 	}
1849 
1850 	return RX_CONTINUE;
1851 } /* ieee80211_rx_h_sta_process */
1852 
1853 static struct ieee80211_key *
1854 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1855 {
1856 	struct ieee80211_key *key = NULL;
1857 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1858 	int idx2;
1859 
1860 	/* Make sure key gets set if either BIGTK key index is set so that
1861 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1862 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1863 	 * index (i.e., a key that we do not have).
1864 	 */
1865 
1866 	if (idx < 0) {
1867 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1868 		idx2 = idx + 1;
1869 	} else {
1870 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1871 			idx2 = idx + 1;
1872 		else
1873 			idx2 = idx - 1;
1874 	}
1875 
1876 	if (rx->sta)
1877 		key = rcu_dereference(rx->sta->deflink.gtk[idx]);
1878 	if (!key)
1879 		key = rcu_dereference(sdata->deflink.gtk[idx]);
1880 	if (!key && rx->sta)
1881 		key = rcu_dereference(rx->sta->deflink.gtk[idx2]);
1882 	if (!key)
1883 		key = rcu_dereference(sdata->deflink.gtk[idx2]);
1884 
1885 	return key;
1886 }
1887 
1888 static ieee80211_rx_result debug_noinline
1889 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1890 {
1891 	struct sk_buff *skb = rx->skb;
1892 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1893 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1894 	int keyidx;
1895 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1896 	struct ieee80211_key *sta_ptk = NULL;
1897 	struct ieee80211_key *ptk_idx = NULL;
1898 	int mmie_keyidx = -1;
1899 	__le16 fc;
1900 
1901 	if (ieee80211_is_ext(hdr->frame_control))
1902 		return RX_CONTINUE;
1903 
1904 	/*
1905 	 * Key selection 101
1906 	 *
1907 	 * There are five types of keys:
1908 	 *  - GTK (group keys)
1909 	 *  - IGTK (group keys for management frames)
1910 	 *  - BIGTK (group keys for Beacon frames)
1911 	 *  - PTK (pairwise keys)
1912 	 *  - STK (station-to-station pairwise keys)
1913 	 *
1914 	 * When selecting a key, we have to distinguish between multicast
1915 	 * (including broadcast) and unicast frames, the latter can only
1916 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1917 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1918 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1919 	 * don't have a PTK/STK we check the key index for a WEP key.
1920 	 *
1921 	 * Note that in a regular BSS, multicast frames are sent by the
1922 	 * AP only, associated stations unicast the frame to the AP first
1923 	 * which then multicasts it on their behalf.
1924 	 *
1925 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1926 	 * with each station, that is something we don't currently handle.
1927 	 * The spec seems to expect that one negotiates the same key with
1928 	 * every station but there's no such requirement; VLANs could be
1929 	 * possible.
1930 	 */
1931 
1932 	/* start without a key */
1933 	rx->key = NULL;
1934 	fc = hdr->frame_control;
1935 
1936 	if (rx->sta) {
1937 		int keyid = rx->sta->ptk_idx;
1938 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1939 
1940 		if (ieee80211_has_protected(fc) &&
1941 		    !(status->flag & RX_FLAG_IV_STRIPPED)) {
1942 			keyid = ieee80211_get_keyid(rx->skb);
1943 
1944 			if (unlikely(keyid < 0))
1945 				return RX_DROP_UNUSABLE;
1946 
1947 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1948 		}
1949 	}
1950 
1951 	if (!ieee80211_has_protected(fc))
1952 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1953 
1954 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1955 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1956 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1957 		    (status->flag & RX_FLAG_IV_STRIPPED))
1958 			return RX_CONTINUE;
1959 		/* Skip decryption if the frame is not protected. */
1960 		if (!ieee80211_has_protected(fc))
1961 			return RX_CONTINUE;
1962 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1963 		/* Broadcast/multicast robust management frame / BIP */
1964 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1965 		    (status->flag & RX_FLAG_IV_STRIPPED))
1966 			return RX_CONTINUE;
1967 
1968 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1969 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1970 		    NUM_DEFAULT_BEACON_KEYS) {
1971 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1972 						     skb->data,
1973 						     skb->len);
1974 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1975 		}
1976 
1977 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1978 		if (!rx->key)
1979 			return RX_CONTINUE; /* Beacon protection not in use */
1980 	} else if (mmie_keyidx >= 0) {
1981 		/* Broadcast/multicast robust management frame / BIP */
1982 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1983 		    (status->flag & RX_FLAG_IV_STRIPPED))
1984 			return RX_CONTINUE;
1985 
1986 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1987 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1988 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1989 		if (rx->sta) {
1990 			if (ieee80211_is_group_privacy_action(skb) &&
1991 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1992 				return RX_DROP_MONITOR;
1993 
1994 			rx->key = rcu_dereference(rx->sta->deflink.gtk[mmie_keyidx]);
1995 		}
1996 		if (!rx->key)
1997 			rx->key = rcu_dereference(rx->sdata->deflink.gtk[mmie_keyidx]);
1998 	} else if (!ieee80211_has_protected(fc)) {
1999 		/*
2000 		 * The frame was not protected, so skip decryption. However, we
2001 		 * need to set rx->key if there is a key that could have been
2002 		 * used so that the frame may be dropped if encryption would
2003 		 * have been expected.
2004 		 */
2005 		struct ieee80211_key *key = NULL;
2006 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2007 		int i;
2008 
2009 		if (ieee80211_is_beacon(fc)) {
2010 			key = ieee80211_rx_get_bigtk(rx, -1);
2011 		} else if (ieee80211_is_mgmt(fc) &&
2012 			   is_multicast_ether_addr(hdr->addr1)) {
2013 			key = rcu_dereference(rx->sdata->deflink.default_mgmt_key);
2014 		} else {
2015 			if (rx->sta) {
2016 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2017 					key = rcu_dereference(rx->sta->deflink.gtk[i]);
2018 					if (key)
2019 						break;
2020 				}
2021 			}
2022 			if (!key) {
2023 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2024 					key = rcu_dereference(sdata->deflink.gtk[i]);
2025 					if (key)
2026 						break;
2027 				}
2028 			}
2029 		}
2030 		if (key)
2031 			rx->key = key;
2032 		return RX_CONTINUE;
2033 	} else {
2034 		/*
2035 		 * The device doesn't give us the IV so we won't be
2036 		 * able to look up the key. That's ok though, we
2037 		 * don't need to decrypt the frame, we just won't
2038 		 * be able to keep statistics accurate.
2039 		 * Except for key threshold notifications, should
2040 		 * we somehow allow the driver to tell us which key
2041 		 * the hardware used if this flag is set?
2042 		 */
2043 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2044 		    (status->flag & RX_FLAG_IV_STRIPPED))
2045 			return RX_CONTINUE;
2046 
2047 		keyidx = ieee80211_get_keyid(rx->skb);
2048 
2049 		if (unlikely(keyidx < 0))
2050 			return RX_DROP_UNUSABLE;
2051 
2052 		/* check per-station GTK first, if multicast packet */
2053 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2054 			rx->key = rcu_dereference(rx->sta->deflink.gtk[keyidx]);
2055 
2056 		/* if not found, try default key */
2057 		if (!rx->key) {
2058 			if (is_multicast_ether_addr(hdr->addr1))
2059 				rx->key = rcu_dereference(rx->sdata->deflink.gtk[keyidx]);
2060 			if (!rx->key)
2061 				rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2062 
2063 			/*
2064 			 * RSNA-protected unicast frames should always be
2065 			 * sent with pairwise or station-to-station keys,
2066 			 * but for WEP we allow using a key index as well.
2067 			 */
2068 			if (rx->key &&
2069 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2070 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2071 			    !is_multicast_ether_addr(hdr->addr1))
2072 				rx->key = NULL;
2073 		}
2074 	}
2075 
2076 	if (rx->key) {
2077 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2078 			return RX_DROP_MONITOR;
2079 
2080 		/* TODO: add threshold stuff again */
2081 	} else {
2082 		return RX_DROP_MONITOR;
2083 	}
2084 
2085 	switch (rx->key->conf.cipher) {
2086 	case WLAN_CIPHER_SUITE_WEP40:
2087 	case WLAN_CIPHER_SUITE_WEP104:
2088 		result = ieee80211_crypto_wep_decrypt(rx);
2089 		break;
2090 	case WLAN_CIPHER_SUITE_TKIP:
2091 		result = ieee80211_crypto_tkip_decrypt(rx);
2092 		break;
2093 	case WLAN_CIPHER_SUITE_CCMP:
2094 		result = ieee80211_crypto_ccmp_decrypt(
2095 			rx, IEEE80211_CCMP_MIC_LEN);
2096 		break;
2097 	case WLAN_CIPHER_SUITE_CCMP_256:
2098 		result = ieee80211_crypto_ccmp_decrypt(
2099 			rx, IEEE80211_CCMP_256_MIC_LEN);
2100 		break;
2101 	case WLAN_CIPHER_SUITE_AES_CMAC:
2102 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2103 		break;
2104 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2105 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2106 		break;
2107 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2108 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2109 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2110 		break;
2111 	case WLAN_CIPHER_SUITE_GCMP:
2112 	case WLAN_CIPHER_SUITE_GCMP_256:
2113 		result = ieee80211_crypto_gcmp_decrypt(rx);
2114 		break;
2115 	default:
2116 		result = RX_DROP_UNUSABLE;
2117 	}
2118 
2119 	/* the hdr variable is invalid after the decrypt handlers */
2120 
2121 	/* either the frame has been decrypted or will be dropped */
2122 	status->flag |= RX_FLAG_DECRYPTED;
2123 
2124 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2125 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2126 					     skb->data, skb->len);
2127 
2128 	return result;
2129 }
2130 
2131 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2132 {
2133 	int i;
2134 
2135 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2136 		skb_queue_head_init(&cache->entries[i].skb_list);
2137 }
2138 
2139 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2140 {
2141 	int i;
2142 
2143 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2144 		__skb_queue_purge(&cache->entries[i].skb_list);
2145 }
2146 
2147 static inline struct ieee80211_fragment_entry *
2148 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2149 			 unsigned int frag, unsigned int seq, int rx_queue,
2150 			 struct sk_buff **skb)
2151 {
2152 	struct ieee80211_fragment_entry *entry;
2153 
2154 	entry = &cache->entries[cache->next++];
2155 	if (cache->next >= IEEE80211_FRAGMENT_MAX)
2156 		cache->next = 0;
2157 
2158 	__skb_queue_purge(&entry->skb_list);
2159 
2160 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2161 	*skb = NULL;
2162 	entry->first_frag_time = jiffies;
2163 	entry->seq = seq;
2164 	entry->rx_queue = rx_queue;
2165 	entry->last_frag = frag;
2166 	entry->check_sequential_pn = false;
2167 	entry->extra_len = 0;
2168 
2169 	return entry;
2170 }
2171 
2172 static inline struct ieee80211_fragment_entry *
2173 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2174 			  unsigned int frag, unsigned int seq,
2175 			  int rx_queue, struct ieee80211_hdr *hdr)
2176 {
2177 	struct ieee80211_fragment_entry *entry;
2178 	int i, idx;
2179 
2180 	idx = cache->next;
2181 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2182 		struct ieee80211_hdr *f_hdr;
2183 		struct sk_buff *f_skb;
2184 
2185 		idx--;
2186 		if (idx < 0)
2187 			idx = IEEE80211_FRAGMENT_MAX - 1;
2188 
2189 		entry = &cache->entries[idx];
2190 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2191 		    entry->rx_queue != rx_queue ||
2192 		    entry->last_frag + 1 != frag)
2193 			continue;
2194 
2195 		f_skb = __skb_peek(&entry->skb_list);
2196 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2197 
2198 		/*
2199 		 * Check ftype and addresses are equal, else check next fragment
2200 		 */
2201 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2202 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2203 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2204 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2205 			continue;
2206 
2207 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2208 			__skb_queue_purge(&entry->skb_list);
2209 			continue;
2210 		}
2211 		return entry;
2212 	}
2213 
2214 	return NULL;
2215 }
2216 
2217 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2218 {
2219 	return rx->key &&
2220 		(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2221 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2222 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2223 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2224 		ieee80211_has_protected(fc);
2225 }
2226 
2227 static ieee80211_rx_result debug_noinline
2228 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2229 {
2230 	struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2231 	struct ieee80211_hdr *hdr;
2232 	u16 sc;
2233 	__le16 fc;
2234 	unsigned int frag, seq;
2235 	struct ieee80211_fragment_entry *entry;
2236 	struct sk_buff *skb;
2237 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2238 
2239 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2240 	fc = hdr->frame_control;
2241 
2242 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2243 		return RX_CONTINUE;
2244 
2245 	sc = le16_to_cpu(hdr->seq_ctrl);
2246 	frag = sc & IEEE80211_SCTL_FRAG;
2247 
2248 	if (rx->sta)
2249 		cache = &rx->sta->frags;
2250 
2251 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2252 		goto out;
2253 
2254 	if (is_multicast_ether_addr(hdr->addr1))
2255 		return RX_DROP_MONITOR;
2256 
2257 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2258 
2259 	if (skb_linearize(rx->skb))
2260 		return RX_DROP_UNUSABLE;
2261 
2262 	/*
2263 	 *  skb_linearize() might change the skb->data and
2264 	 *  previously cached variables (in this case, hdr) need to
2265 	 *  be refreshed with the new data.
2266 	 */
2267 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2268 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2269 
2270 	if (frag == 0) {
2271 		/* This is the first fragment of a new frame. */
2272 		entry = ieee80211_reassemble_add(cache, frag, seq,
2273 						 rx->seqno_idx, &(rx->skb));
2274 		if (requires_sequential_pn(rx, fc)) {
2275 			int queue = rx->security_idx;
2276 
2277 			/* Store CCMP/GCMP PN so that we can verify that the
2278 			 * next fragment has a sequential PN value.
2279 			 */
2280 			entry->check_sequential_pn = true;
2281 			entry->is_protected = true;
2282 			entry->key_color = rx->key->color;
2283 			memcpy(entry->last_pn,
2284 			       rx->key->u.ccmp.rx_pn[queue],
2285 			       IEEE80211_CCMP_PN_LEN);
2286 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2287 					      u.ccmp.rx_pn) !=
2288 				     offsetof(struct ieee80211_key,
2289 					      u.gcmp.rx_pn));
2290 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2291 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2292 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2293 				     IEEE80211_GCMP_PN_LEN);
2294 		} else if (rx->key &&
2295 			   (ieee80211_has_protected(fc) ||
2296 			    (status->flag & RX_FLAG_DECRYPTED))) {
2297 			entry->is_protected = true;
2298 			entry->key_color = rx->key->color;
2299 		}
2300 		return RX_QUEUED;
2301 	}
2302 
2303 	/* This is a fragment for a frame that should already be pending in
2304 	 * fragment cache. Add this fragment to the end of the pending entry.
2305 	 */
2306 	entry = ieee80211_reassemble_find(cache, frag, seq,
2307 					  rx->seqno_idx, hdr);
2308 	if (!entry) {
2309 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2310 		return RX_DROP_MONITOR;
2311 	}
2312 
2313 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2314 	 *  MPDU PN values are not incrementing in steps of 1."
2315 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2316 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2317 	 */
2318 	if (entry->check_sequential_pn) {
2319 		int i;
2320 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2321 
2322 		if (!requires_sequential_pn(rx, fc))
2323 			return RX_DROP_UNUSABLE;
2324 
2325 		/* Prevent mixed key and fragment cache attacks */
2326 		if (entry->key_color != rx->key->color)
2327 			return RX_DROP_UNUSABLE;
2328 
2329 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2330 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2331 			pn[i]++;
2332 			if (pn[i])
2333 				break;
2334 		}
2335 
2336 		rpn = rx->ccm_gcm.pn;
2337 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2338 			return RX_DROP_UNUSABLE;
2339 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2340 	} else if (entry->is_protected &&
2341 		   (!rx->key ||
2342 		    (!ieee80211_has_protected(fc) &&
2343 		     !(status->flag & RX_FLAG_DECRYPTED)) ||
2344 		    rx->key->color != entry->key_color)) {
2345 		/* Drop this as a mixed key or fragment cache attack, even
2346 		 * if for TKIP Michael MIC should protect us, and WEP is a
2347 		 * lost cause anyway.
2348 		 */
2349 		return RX_DROP_UNUSABLE;
2350 	} else if (entry->is_protected && rx->key &&
2351 		   entry->key_color != rx->key->color &&
2352 		   (status->flag & RX_FLAG_DECRYPTED)) {
2353 		return RX_DROP_UNUSABLE;
2354 	}
2355 
2356 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2357 	__skb_queue_tail(&entry->skb_list, rx->skb);
2358 	entry->last_frag = frag;
2359 	entry->extra_len += rx->skb->len;
2360 	if (ieee80211_has_morefrags(fc)) {
2361 		rx->skb = NULL;
2362 		return RX_QUEUED;
2363 	}
2364 
2365 	rx->skb = __skb_dequeue(&entry->skb_list);
2366 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2367 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2368 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2369 					      GFP_ATOMIC))) {
2370 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2371 			__skb_queue_purge(&entry->skb_list);
2372 			return RX_DROP_UNUSABLE;
2373 		}
2374 	}
2375 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2376 		skb_put_data(rx->skb, skb->data, skb->len);
2377 		dev_kfree_skb(skb);
2378 	}
2379 
2380  out:
2381 	ieee80211_led_rx(rx->local);
2382 	if (rx->sta)
2383 		rx->sta->deflink.rx_stats.packets++;
2384 	return RX_CONTINUE;
2385 }
2386 
2387 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2388 {
2389 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2390 		return -EACCES;
2391 
2392 	return 0;
2393 }
2394 
2395 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2396 {
2397 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2398 	struct sk_buff *skb = rx->skb;
2399 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2400 
2401 	/*
2402 	 * Pass through unencrypted frames if the hardware has
2403 	 * decrypted them already.
2404 	 */
2405 	if (status->flag & RX_FLAG_DECRYPTED)
2406 		return 0;
2407 
2408 	/* check mesh EAPOL frames first */
2409 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2410 		     ieee80211_is_data(fc))) {
2411 		struct ieee80211s_hdr *mesh_hdr;
2412 		u16 hdr_len = ieee80211_hdrlen(fc);
2413 		u16 ethertype_offset;
2414 		__be16 ethertype;
2415 
2416 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2417 			goto drop_check;
2418 
2419 		/* make sure fixed part of mesh header is there, also checks skb len */
2420 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2421 			goto drop_check;
2422 
2423 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2424 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2425 				   sizeof(rfc1042_header);
2426 
2427 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2428 		    ethertype == rx->sdata->control_port_protocol)
2429 			return 0;
2430 	}
2431 
2432 drop_check:
2433 	/* Drop unencrypted frames if key is set. */
2434 	if (unlikely(!ieee80211_has_protected(fc) &&
2435 		     !ieee80211_is_any_nullfunc(fc) &&
2436 		     ieee80211_is_data(fc) && rx->key))
2437 		return -EACCES;
2438 
2439 	return 0;
2440 }
2441 
2442 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2443 {
2444 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2445 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2446 	__le16 fc = hdr->frame_control;
2447 
2448 	/*
2449 	 * Pass through unencrypted frames if the hardware has
2450 	 * decrypted them already.
2451 	 */
2452 	if (status->flag & RX_FLAG_DECRYPTED)
2453 		return 0;
2454 
2455 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2456 		if (unlikely(!ieee80211_has_protected(fc) &&
2457 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2458 			     rx->key)) {
2459 			if (ieee80211_is_deauth(fc) ||
2460 			    ieee80211_is_disassoc(fc))
2461 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2462 							     rx->skb->data,
2463 							     rx->skb->len);
2464 			return -EACCES;
2465 		}
2466 		/* BIP does not use Protected field, so need to check MMIE */
2467 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2468 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2469 			if (ieee80211_is_deauth(fc) ||
2470 			    ieee80211_is_disassoc(fc))
2471 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2472 							     rx->skb->data,
2473 							     rx->skb->len);
2474 			return -EACCES;
2475 		}
2476 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2477 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2478 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2479 						     rx->skb->data,
2480 						     rx->skb->len);
2481 			return -EACCES;
2482 		}
2483 		/*
2484 		 * When using MFP, Action frames are not allowed prior to
2485 		 * having configured keys.
2486 		 */
2487 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2488 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2489 			return -EACCES;
2490 	}
2491 
2492 	return 0;
2493 }
2494 
2495 static int
2496 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2497 {
2498 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2499 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2500 	bool check_port_control = false;
2501 	struct ethhdr *ehdr;
2502 	int ret;
2503 
2504 	*port_control = false;
2505 	if (ieee80211_has_a4(hdr->frame_control) &&
2506 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2507 		return -1;
2508 
2509 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2510 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2511 
2512 		if (!sdata->u.mgd.use_4addr)
2513 			return -1;
2514 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2515 			check_port_control = true;
2516 	}
2517 
2518 	if (is_multicast_ether_addr(hdr->addr1) &&
2519 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2520 		return -1;
2521 
2522 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2523 	if (ret < 0)
2524 		return ret;
2525 
2526 	ehdr = (struct ethhdr *) rx->skb->data;
2527 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2528 		*port_control = true;
2529 	else if (check_port_control)
2530 		return -1;
2531 
2532 	return 0;
2533 }
2534 
2535 /*
2536  * requires that rx->skb is a frame with ethernet header
2537  */
2538 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2539 {
2540 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2541 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2542 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2543 
2544 	/*
2545 	 * Allow EAPOL frames to us/the PAE group address regardless of
2546 	 * whether the frame was encrypted or not, and always disallow
2547 	 * all other destination addresses for them.
2548 	 */
2549 	if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2550 		return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2551 		       ether_addr_equal(ehdr->h_dest, pae_group_addr);
2552 
2553 	if (ieee80211_802_1x_port_control(rx) ||
2554 	    ieee80211_drop_unencrypted(rx, fc))
2555 		return false;
2556 
2557 	return true;
2558 }
2559 
2560 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2561 						 struct ieee80211_rx_data *rx)
2562 {
2563 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2564 	struct net_device *dev = sdata->dev;
2565 
2566 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2567 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2568 		      !sdata->control_port_no_preauth)) &&
2569 		     sdata->control_port_over_nl80211)) {
2570 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2571 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2572 
2573 		cfg80211_rx_control_port(dev, skb, noencrypt);
2574 		dev_kfree_skb(skb);
2575 	} else {
2576 		struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2577 
2578 		memset(skb->cb, 0, sizeof(skb->cb));
2579 
2580 		/*
2581 		 * 802.1X over 802.11 requires that the authenticator address
2582 		 * be used for EAPOL frames. However, 802.1X allows the use of
2583 		 * the PAE group address instead. If the interface is part of
2584 		 * a bridge and we pass the frame with the PAE group address,
2585 		 * then the bridge will forward it to the network (even if the
2586 		 * client was not associated yet), which isn't supposed to
2587 		 * happen.
2588 		 * To avoid that, rewrite the destination address to our own
2589 		 * address, so that the authenticator (e.g. hostapd) will see
2590 		 * the frame, but bridge won't forward it anywhere else. Note
2591 		 * that due to earlier filtering, the only other address can
2592 		 * be the PAE group address, unless the hardware allowed them
2593 		 * through in 802.3 offloaded mode.
2594 		 */
2595 		if (unlikely(skb->protocol == sdata->control_port_protocol &&
2596 			     !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2597 			ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2598 
2599 		/* deliver to local stack */
2600 		if (rx->list)
2601 			list_add_tail(&skb->list, rx->list);
2602 		else
2603 			netif_receive_skb(skb);
2604 	}
2605 }
2606 
2607 /*
2608  * requires that rx->skb is a frame with ethernet header
2609  */
2610 static void
2611 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2612 {
2613 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2614 	struct net_device *dev = sdata->dev;
2615 	struct sk_buff *skb, *xmit_skb;
2616 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2617 	struct sta_info *dsta;
2618 
2619 	skb = rx->skb;
2620 	xmit_skb = NULL;
2621 
2622 	dev_sw_netstats_rx_add(dev, skb->len);
2623 
2624 	if (rx->sta) {
2625 		/* The seqno index has the same property as needed
2626 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2627 		 * for non-QoS-data frames. Here we know it's a data
2628 		 * frame, so count MSDUs.
2629 		 */
2630 		u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp);
2631 		rx->sta->deflink.rx_stats.msdu[rx->seqno_idx]++;
2632 		u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp);
2633 	}
2634 
2635 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2636 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2637 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2638 	    ehdr->h_proto != rx->sdata->control_port_protocol &&
2639 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2640 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2641 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2642 			/*
2643 			 * send multicast frames both to higher layers in
2644 			 * local net stack and back to the wireless medium
2645 			 */
2646 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2647 			if (!xmit_skb)
2648 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2649 						    dev->name);
2650 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2651 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2652 			dsta = sta_info_get(sdata, ehdr->h_dest);
2653 			if (dsta) {
2654 				/*
2655 				 * The destination station is associated to
2656 				 * this AP (in this VLAN), so send the frame
2657 				 * directly to it and do not pass it to local
2658 				 * net stack.
2659 				 */
2660 				xmit_skb = skb;
2661 				skb = NULL;
2662 			}
2663 		}
2664 	}
2665 
2666 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2667 	if (skb) {
2668 		/* 'align' will only take the values 0 or 2 here since all
2669 		 * frames are required to be aligned to 2-byte boundaries
2670 		 * when being passed to mac80211; the code here works just
2671 		 * as well if that isn't true, but mac80211 assumes it can
2672 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2673 		 */
2674 		int align;
2675 
2676 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2677 		if (align) {
2678 			if (WARN_ON(skb_headroom(skb) < 3)) {
2679 				dev_kfree_skb(skb);
2680 				skb = NULL;
2681 			} else {
2682 				u8 *data = skb->data;
2683 				size_t len = skb_headlen(skb);
2684 				skb->data -= align;
2685 				memmove(skb->data, data, len);
2686 				skb_set_tail_pointer(skb, len);
2687 			}
2688 		}
2689 	}
2690 #endif
2691 
2692 	if (skb) {
2693 		skb->protocol = eth_type_trans(skb, dev);
2694 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2695 	}
2696 
2697 	if (xmit_skb) {
2698 		/*
2699 		 * Send to wireless media and increase priority by 256 to
2700 		 * keep the received priority instead of reclassifying
2701 		 * the frame (see cfg80211_classify8021d).
2702 		 */
2703 		xmit_skb->priority += 256;
2704 		xmit_skb->protocol = htons(ETH_P_802_3);
2705 		skb_reset_network_header(xmit_skb);
2706 		skb_reset_mac_header(xmit_skb);
2707 		dev_queue_xmit(xmit_skb);
2708 	}
2709 }
2710 
2711 static ieee80211_rx_result debug_noinline
2712 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2713 {
2714 	struct net_device *dev = rx->sdata->dev;
2715 	struct sk_buff *skb = rx->skb;
2716 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2717 	__le16 fc = hdr->frame_control;
2718 	struct sk_buff_head frame_list;
2719 	struct ethhdr ethhdr;
2720 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2721 
2722 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2723 		check_da = NULL;
2724 		check_sa = NULL;
2725 	} else switch (rx->sdata->vif.type) {
2726 		case NL80211_IFTYPE_AP:
2727 		case NL80211_IFTYPE_AP_VLAN:
2728 			check_da = NULL;
2729 			break;
2730 		case NL80211_IFTYPE_STATION:
2731 			if (!rx->sta ||
2732 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2733 				check_sa = NULL;
2734 			break;
2735 		case NL80211_IFTYPE_MESH_POINT:
2736 			check_sa = NULL;
2737 			break;
2738 		default:
2739 			break;
2740 	}
2741 
2742 	skb->dev = dev;
2743 	__skb_queue_head_init(&frame_list);
2744 
2745 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2746 					  rx->sdata->vif.addr,
2747 					  rx->sdata->vif.type,
2748 					  data_offset, true))
2749 		return RX_DROP_UNUSABLE;
2750 
2751 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2752 				 rx->sdata->vif.type,
2753 				 rx->local->hw.extra_tx_headroom,
2754 				 check_da, check_sa);
2755 
2756 	while (!skb_queue_empty(&frame_list)) {
2757 		rx->skb = __skb_dequeue(&frame_list);
2758 
2759 		if (!ieee80211_frame_allowed(rx, fc)) {
2760 			dev_kfree_skb(rx->skb);
2761 			continue;
2762 		}
2763 
2764 		ieee80211_deliver_skb(rx);
2765 	}
2766 
2767 	return RX_QUEUED;
2768 }
2769 
2770 static ieee80211_rx_result debug_noinline
2771 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2772 {
2773 	struct sk_buff *skb = rx->skb;
2774 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2775 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2776 	__le16 fc = hdr->frame_control;
2777 
2778 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2779 		return RX_CONTINUE;
2780 
2781 	if (unlikely(!ieee80211_is_data(fc)))
2782 		return RX_CONTINUE;
2783 
2784 	if (unlikely(!ieee80211_is_data_present(fc)))
2785 		return RX_DROP_MONITOR;
2786 
2787 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2788 		switch (rx->sdata->vif.type) {
2789 		case NL80211_IFTYPE_AP_VLAN:
2790 			if (!rx->sdata->u.vlan.sta)
2791 				return RX_DROP_UNUSABLE;
2792 			break;
2793 		case NL80211_IFTYPE_STATION:
2794 			if (!rx->sdata->u.mgd.use_4addr)
2795 				return RX_DROP_UNUSABLE;
2796 			break;
2797 		default:
2798 			return RX_DROP_UNUSABLE;
2799 		}
2800 	}
2801 
2802 	if (is_multicast_ether_addr(hdr->addr1))
2803 		return RX_DROP_UNUSABLE;
2804 
2805 	if (rx->key) {
2806 		/*
2807 		 * We should not receive A-MSDUs on pre-HT connections,
2808 		 * and HT connections cannot use old ciphers. Thus drop
2809 		 * them, as in those cases we couldn't even have SPP
2810 		 * A-MSDUs or such.
2811 		 */
2812 		switch (rx->key->conf.cipher) {
2813 		case WLAN_CIPHER_SUITE_WEP40:
2814 		case WLAN_CIPHER_SUITE_WEP104:
2815 		case WLAN_CIPHER_SUITE_TKIP:
2816 			return RX_DROP_UNUSABLE;
2817 		default:
2818 			break;
2819 		}
2820 	}
2821 
2822 	return __ieee80211_rx_h_amsdu(rx, 0);
2823 }
2824 
2825 #ifdef CONFIG_MAC80211_MESH
2826 static ieee80211_rx_result
2827 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2828 {
2829 	struct ieee80211_hdr *fwd_hdr, *hdr;
2830 	struct ieee80211_tx_info *info;
2831 	struct ieee80211s_hdr *mesh_hdr;
2832 	struct sk_buff *skb = rx->skb, *fwd_skb;
2833 	struct ieee80211_local *local = rx->local;
2834 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2835 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2836 	u16 ac, q, hdrlen;
2837 	int tailroom = 0;
2838 
2839 	hdr = (struct ieee80211_hdr *) skb->data;
2840 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2841 
2842 	/* make sure fixed part of mesh header is there, also checks skb len */
2843 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2844 		return RX_DROP_MONITOR;
2845 
2846 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2847 
2848 	/* make sure full mesh header is there, also checks skb len */
2849 	if (!pskb_may_pull(rx->skb,
2850 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2851 		return RX_DROP_MONITOR;
2852 
2853 	/* reload pointers */
2854 	hdr = (struct ieee80211_hdr *) skb->data;
2855 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2856 
2857 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2858 		return RX_DROP_MONITOR;
2859 
2860 	/* frame is in RMC, don't forward */
2861 	if (ieee80211_is_data(hdr->frame_control) &&
2862 	    is_multicast_ether_addr(hdr->addr1) &&
2863 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2864 		return RX_DROP_MONITOR;
2865 
2866 	if (!ieee80211_is_data(hdr->frame_control))
2867 		return RX_CONTINUE;
2868 
2869 	if (!mesh_hdr->ttl)
2870 		return RX_DROP_MONITOR;
2871 
2872 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2873 		struct mesh_path *mppath;
2874 		char *proxied_addr;
2875 		char *mpp_addr;
2876 
2877 		if (is_multicast_ether_addr(hdr->addr1)) {
2878 			mpp_addr = hdr->addr3;
2879 			proxied_addr = mesh_hdr->eaddr1;
2880 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2881 			    MESH_FLAGS_AE_A5_A6) {
2882 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2883 			mpp_addr = hdr->addr4;
2884 			proxied_addr = mesh_hdr->eaddr2;
2885 		} else {
2886 			return RX_DROP_MONITOR;
2887 		}
2888 
2889 		rcu_read_lock();
2890 		mppath = mpp_path_lookup(sdata, proxied_addr);
2891 		if (!mppath) {
2892 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2893 		} else {
2894 			spin_lock_bh(&mppath->state_lock);
2895 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2896 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2897 			mppath->exp_time = jiffies;
2898 			spin_unlock_bh(&mppath->state_lock);
2899 		}
2900 		rcu_read_unlock();
2901 	}
2902 
2903 	/* Frame has reached destination.  Don't forward */
2904 	if (!is_multicast_ether_addr(hdr->addr1) &&
2905 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2906 		return RX_CONTINUE;
2907 
2908 	ac = ieee802_1d_to_ac[skb->priority];
2909 	q = sdata->vif.hw_queue[ac];
2910 	if (ieee80211_queue_stopped(&local->hw, q)) {
2911 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2912 		return RX_DROP_MONITOR;
2913 	}
2914 	skb_set_queue_mapping(skb, ac);
2915 
2916 	if (!--mesh_hdr->ttl) {
2917 		if (!is_multicast_ether_addr(hdr->addr1))
2918 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2919 						     dropped_frames_ttl);
2920 		goto out;
2921 	}
2922 
2923 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2924 		goto out;
2925 
2926 	if (sdata->crypto_tx_tailroom_needed_cnt)
2927 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2928 
2929 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2930 				       IEEE80211_ENCRYPT_HEADROOM,
2931 				  tailroom, GFP_ATOMIC);
2932 	if (!fwd_skb)
2933 		goto out;
2934 
2935 	fwd_skb->dev = sdata->dev;
2936 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2937 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2938 	info = IEEE80211_SKB_CB(fwd_skb);
2939 	memset(info, 0, sizeof(*info));
2940 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2941 	info->control.vif = &rx->sdata->vif;
2942 	info->control.jiffies = jiffies;
2943 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2944 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2945 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2946 		/* update power mode indication when forwarding */
2947 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2948 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2949 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2950 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2951 	} else {
2952 		/* unable to resolve next hop */
2953 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2954 				   fwd_hdr->addr3, 0,
2955 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2956 				   fwd_hdr->addr2);
2957 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2958 		kfree_skb(fwd_skb);
2959 		return RX_DROP_MONITOR;
2960 	}
2961 
2962 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2963 	ieee80211_add_pending_skb(local, fwd_skb);
2964  out:
2965 	if (is_multicast_ether_addr(hdr->addr1))
2966 		return RX_CONTINUE;
2967 	return RX_DROP_MONITOR;
2968 }
2969 #endif
2970 
2971 static ieee80211_rx_result debug_noinline
2972 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2973 {
2974 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2975 	struct ieee80211_local *local = rx->local;
2976 	struct net_device *dev = sdata->dev;
2977 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2978 	__le16 fc = hdr->frame_control;
2979 	bool port_control;
2980 	int err;
2981 
2982 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2983 		return RX_CONTINUE;
2984 
2985 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2986 		return RX_DROP_MONITOR;
2987 
2988 	/*
2989 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2990 	 * also drop the frame to cooked monitor interfaces.
2991 	 */
2992 	if (ieee80211_has_a4(hdr->frame_control) &&
2993 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2994 		if (rx->sta &&
2995 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2996 			cfg80211_rx_unexpected_4addr_frame(
2997 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2998 		return RX_DROP_MONITOR;
2999 	}
3000 
3001 	err = __ieee80211_data_to_8023(rx, &port_control);
3002 	if (unlikely(err))
3003 		return RX_DROP_UNUSABLE;
3004 
3005 	if (!ieee80211_frame_allowed(rx, fc))
3006 		return RX_DROP_MONITOR;
3007 
3008 	/* directly handle TDLS channel switch requests/responses */
3009 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3010 						cpu_to_be16(ETH_P_TDLS))) {
3011 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3012 
3013 		if (pskb_may_pull(rx->skb,
3014 				  offsetof(struct ieee80211_tdls_data, u)) &&
3015 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3016 		    tf->category == WLAN_CATEGORY_TDLS &&
3017 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3018 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3019 			rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3020 			__ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3021 			return RX_QUEUED;
3022 		}
3023 	}
3024 
3025 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3026 	    unlikely(port_control) && sdata->bss) {
3027 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3028 				     u.ap);
3029 		dev = sdata->dev;
3030 		rx->sdata = sdata;
3031 	}
3032 
3033 	rx->skb->dev = dev;
3034 
3035 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3036 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3037 	    !is_multicast_ether_addr(
3038 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
3039 	    (!local->scanning &&
3040 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3041 		mod_timer(&local->dynamic_ps_timer, jiffies +
3042 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3043 
3044 	ieee80211_deliver_skb(rx);
3045 
3046 	return RX_QUEUED;
3047 }
3048 
3049 static ieee80211_rx_result debug_noinline
3050 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3051 {
3052 	struct sk_buff *skb = rx->skb;
3053 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3054 	struct tid_ampdu_rx *tid_agg_rx;
3055 	u16 start_seq_num;
3056 	u16 tid;
3057 
3058 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
3059 		return RX_CONTINUE;
3060 
3061 	if (ieee80211_is_back_req(bar->frame_control)) {
3062 		struct {
3063 			__le16 control, start_seq_num;
3064 		} __packed bar_data;
3065 		struct ieee80211_event event = {
3066 			.type = BAR_RX_EVENT,
3067 		};
3068 
3069 		if (!rx->sta)
3070 			return RX_DROP_MONITOR;
3071 
3072 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3073 				  &bar_data, sizeof(bar_data)))
3074 			return RX_DROP_MONITOR;
3075 
3076 		tid = le16_to_cpu(bar_data.control) >> 12;
3077 
3078 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3079 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3080 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3081 					     WLAN_BACK_RECIPIENT,
3082 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
3083 
3084 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3085 		if (!tid_agg_rx)
3086 			return RX_DROP_MONITOR;
3087 
3088 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3089 		event.u.ba.tid = tid;
3090 		event.u.ba.ssn = start_seq_num;
3091 		event.u.ba.sta = &rx->sta->sta;
3092 
3093 		/* reset session timer */
3094 		if (tid_agg_rx->timeout)
3095 			mod_timer(&tid_agg_rx->session_timer,
3096 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3097 
3098 		spin_lock(&tid_agg_rx->reorder_lock);
3099 		/* release stored frames up to start of BAR */
3100 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3101 						 start_seq_num, frames);
3102 		spin_unlock(&tid_agg_rx->reorder_lock);
3103 
3104 		drv_event_callback(rx->local, rx->sdata, &event);
3105 
3106 		kfree_skb(skb);
3107 		return RX_QUEUED;
3108 	}
3109 
3110 	/*
3111 	 * After this point, we only want management frames,
3112 	 * so we can drop all remaining control frames to
3113 	 * cooked monitor interfaces.
3114 	 */
3115 	return RX_DROP_MONITOR;
3116 }
3117 
3118 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3119 					   struct ieee80211_mgmt *mgmt,
3120 					   size_t len)
3121 {
3122 	struct ieee80211_local *local = sdata->local;
3123 	struct sk_buff *skb;
3124 	struct ieee80211_mgmt *resp;
3125 
3126 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3127 		/* Not to own unicast address */
3128 		return;
3129 	}
3130 
3131 	if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) ||
3132 	    !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) {
3133 		/* Not from the current AP or not associated yet. */
3134 		return;
3135 	}
3136 
3137 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3138 		/* Too short SA Query request frame */
3139 		return;
3140 	}
3141 
3142 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3143 	if (skb == NULL)
3144 		return;
3145 
3146 	skb_reserve(skb, local->hw.extra_tx_headroom);
3147 	resp = skb_put_zero(skb, 24);
3148 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3149 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3150 	memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN);
3151 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3152 					  IEEE80211_STYPE_ACTION);
3153 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3154 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3155 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3156 	memcpy(resp->u.action.u.sa_query.trans_id,
3157 	       mgmt->u.action.u.sa_query.trans_id,
3158 	       WLAN_SA_QUERY_TR_ID_LEN);
3159 
3160 	ieee80211_tx_skb(sdata, skb);
3161 }
3162 
3163 static void
3164 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx)
3165 {
3166 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3167 	const struct element *ie;
3168 	size_t baselen;
3169 
3170 	if (!wiphy_ext_feature_isset(rx->local->hw.wiphy,
3171 				     NL80211_EXT_FEATURE_BSS_COLOR))
3172 		return;
3173 
3174 	if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION))
3175 		return;
3176 
3177 	if (rx->sdata->vif.bss_conf.csa_active)
3178 		return;
3179 
3180 	baselen = mgmt->u.beacon.variable - rx->skb->data;
3181 	if (baselen > rx->skb->len)
3182 		return;
3183 
3184 	ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
3185 				    mgmt->u.beacon.variable,
3186 				    rx->skb->len - baselen);
3187 	if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) &&
3188 	    ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) {
3189 		struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf;
3190 		const struct ieee80211_he_operation *he_oper;
3191 		u8 color;
3192 
3193 		he_oper = (void *)(ie->data + 1);
3194 		if (le32_get_bits(he_oper->he_oper_params,
3195 				  IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED))
3196 			return;
3197 
3198 		color = le32_get_bits(he_oper->he_oper_params,
3199 				      IEEE80211_HE_OPERATION_BSS_COLOR_MASK);
3200 		if (color == bss_conf->he_bss_color.color)
3201 			ieeee80211_obss_color_collision_notify(&rx->sdata->vif,
3202 							       BIT_ULL(color),
3203 							       GFP_ATOMIC);
3204 	}
3205 }
3206 
3207 static ieee80211_rx_result debug_noinline
3208 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3209 {
3210 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3211 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3212 
3213 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3214 		return RX_CONTINUE;
3215 
3216 	/*
3217 	 * From here on, look only at management frames.
3218 	 * Data and control frames are already handled,
3219 	 * and unknown (reserved) frames are useless.
3220 	 */
3221 	if (rx->skb->len < 24)
3222 		return RX_DROP_MONITOR;
3223 
3224 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3225 		return RX_DROP_MONITOR;
3226 
3227 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3228 	    ieee80211_is_beacon(mgmt->frame_control) &&
3229 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3230 		int sig = 0;
3231 
3232 		/* sw bss color collision detection */
3233 		ieee80211_rx_check_bss_color_collision(rx);
3234 
3235 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3236 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3237 			sig = status->signal;
3238 
3239 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3240 						rx->skb->data, rx->skb->len,
3241 						ieee80211_rx_status_to_khz(status),
3242 						sig);
3243 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3244 	}
3245 
3246 	if (ieee80211_drop_unencrypted_mgmt(rx))
3247 		return RX_DROP_UNUSABLE;
3248 
3249 	return RX_CONTINUE;
3250 }
3251 
3252 static bool
3253 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3254 {
3255 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3256 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3257 
3258 	/* TWT actions are only supported in AP for the moment */
3259 	if (sdata->vif.type != NL80211_IFTYPE_AP)
3260 		return false;
3261 
3262 	if (!rx->local->ops->add_twt_setup)
3263 		return false;
3264 
3265 	if (!sdata->vif.bss_conf.twt_responder)
3266 		return false;
3267 
3268 	if (!rx->sta)
3269 		return false;
3270 
3271 	switch (mgmt->u.action.u.s1g.action_code) {
3272 	case WLAN_S1G_TWT_SETUP: {
3273 		struct ieee80211_twt_setup *twt;
3274 
3275 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3276 				   1 + /* action code */
3277 				   sizeof(struct ieee80211_twt_setup) +
3278 				   2 /* TWT req_type agrt */)
3279 			break;
3280 
3281 		twt = (void *)mgmt->u.action.u.s1g.variable;
3282 		if (twt->element_id != WLAN_EID_S1G_TWT)
3283 			break;
3284 
3285 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3286 				   4 + /* action code + token + tlv */
3287 				   twt->length)
3288 			break;
3289 
3290 		return true; /* queue the frame */
3291 	}
3292 	case WLAN_S1G_TWT_TEARDOWN:
3293 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3294 			break;
3295 
3296 		return true; /* queue the frame */
3297 	default:
3298 		break;
3299 	}
3300 
3301 	return false;
3302 }
3303 
3304 static ieee80211_rx_result debug_noinline
3305 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3306 {
3307 	struct ieee80211_local *local = rx->local;
3308 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3309 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3310 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3311 	int len = rx->skb->len;
3312 
3313 	if (!ieee80211_is_action(mgmt->frame_control))
3314 		return RX_CONTINUE;
3315 
3316 	/* drop too small frames */
3317 	if (len < IEEE80211_MIN_ACTION_SIZE)
3318 		return RX_DROP_UNUSABLE;
3319 
3320 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3321 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3322 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3323 		return RX_DROP_UNUSABLE;
3324 
3325 	switch (mgmt->u.action.category) {
3326 	case WLAN_CATEGORY_HT:
3327 		/* reject HT action frames from stations not supporting HT */
3328 		if (!rx->sta->sta.deflink.ht_cap.ht_supported)
3329 			goto invalid;
3330 
3331 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3332 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3333 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3334 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3335 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3336 			break;
3337 
3338 		/* verify action & smps_control/chanwidth are present */
3339 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3340 			goto invalid;
3341 
3342 		switch (mgmt->u.action.u.ht_smps.action) {
3343 		case WLAN_HT_ACTION_SMPS: {
3344 			struct ieee80211_supported_band *sband;
3345 			enum ieee80211_smps_mode smps_mode;
3346 			struct sta_opmode_info sta_opmode = {};
3347 
3348 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3349 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3350 				goto handled;
3351 
3352 			/* convert to HT capability */
3353 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3354 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3355 				smps_mode = IEEE80211_SMPS_OFF;
3356 				break;
3357 			case WLAN_HT_SMPS_CONTROL_STATIC:
3358 				smps_mode = IEEE80211_SMPS_STATIC;
3359 				break;
3360 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3361 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3362 				break;
3363 			default:
3364 				goto invalid;
3365 			}
3366 
3367 			/* if no change do nothing */
3368 			if (rx->sta->sta.smps_mode == smps_mode)
3369 				goto handled;
3370 			rx->sta->sta.smps_mode = smps_mode;
3371 			sta_opmode.smps_mode =
3372 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3373 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3374 
3375 			sband = rx->local->hw.wiphy->bands[status->band];
3376 
3377 			rate_control_rate_update(local, sband, rx->sta, 0,
3378 						 IEEE80211_RC_SMPS_CHANGED);
3379 			cfg80211_sta_opmode_change_notify(sdata->dev,
3380 							  rx->sta->addr,
3381 							  &sta_opmode,
3382 							  GFP_ATOMIC);
3383 			goto handled;
3384 		}
3385 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3386 			struct ieee80211_supported_band *sband;
3387 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3388 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3389 			struct sta_opmode_info sta_opmode = {};
3390 
3391 			/* If it doesn't support 40 MHz it can't change ... */
3392 			if (!(rx->sta->sta.deflink.ht_cap.cap &
3393 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3394 				goto handled;
3395 
3396 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3397 				max_bw = IEEE80211_STA_RX_BW_20;
3398 			else
3399 				max_bw = ieee80211_sta_cap_rx_bw(&rx->sta->deflink);
3400 
3401 			/* set cur_max_bandwidth and recalc sta bw */
3402 			rx->sta->deflink.cur_max_bandwidth = max_bw;
3403 			new_bw = ieee80211_sta_cur_vht_bw(&rx->sta->deflink);
3404 
3405 			if (rx->sta->sta.deflink.bandwidth == new_bw)
3406 				goto handled;
3407 
3408 			rx->sta->sta.deflink.bandwidth = new_bw;
3409 			sband = rx->local->hw.wiphy->bands[status->band];
3410 			sta_opmode.bw =
3411 				ieee80211_sta_rx_bw_to_chan_width(&rx->sta->deflink);
3412 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3413 
3414 			rate_control_rate_update(local, sband, rx->sta, 0,
3415 						 IEEE80211_RC_BW_CHANGED);
3416 			cfg80211_sta_opmode_change_notify(sdata->dev,
3417 							  rx->sta->addr,
3418 							  &sta_opmode,
3419 							  GFP_ATOMIC);
3420 			goto handled;
3421 		}
3422 		default:
3423 			goto invalid;
3424 		}
3425 
3426 		break;
3427 	case WLAN_CATEGORY_PUBLIC:
3428 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3429 			goto invalid;
3430 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3431 			break;
3432 		if (!rx->sta)
3433 			break;
3434 		if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid))
3435 			break;
3436 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3437 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3438 			break;
3439 		if (len < offsetof(struct ieee80211_mgmt,
3440 				   u.action.u.ext_chan_switch.variable))
3441 			goto invalid;
3442 		goto queue;
3443 	case WLAN_CATEGORY_VHT:
3444 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3445 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3446 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3447 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3448 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3449 			break;
3450 
3451 		/* verify action code is present */
3452 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3453 			goto invalid;
3454 
3455 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3456 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3457 			/* verify opmode is present */
3458 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3459 				goto invalid;
3460 			goto queue;
3461 		}
3462 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3463 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3464 				goto invalid;
3465 			goto queue;
3466 		}
3467 		default:
3468 			break;
3469 		}
3470 		break;
3471 	case WLAN_CATEGORY_BACK:
3472 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3473 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3474 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3475 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3476 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3477 			break;
3478 
3479 		/* verify action_code is present */
3480 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3481 			break;
3482 
3483 		switch (mgmt->u.action.u.addba_req.action_code) {
3484 		case WLAN_ACTION_ADDBA_REQ:
3485 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3486 				   sizeof(mgmt->u.action.u.addba_req)))
3487 				goto invalid;
3488 			break;
3489 		case WLAN_ACTION_ADDBA_RESP:
3490 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3491 				   sizeof(mgmt->u.action.u.addba_resp)))
3492 				goto invalid;
3493 			break;
3494 		case WLAN_ACTION_DELBA:
3495 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3496 				   sizeof(mgmt->u.action.u.delba)))
3497 				goto invalid;
3498 			break;
3499 		default:
3500 			goto invalid;
3501 		}
3502 
3503 		goto queue;
3504 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3505 		/* verify action_code is present */
3506 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3507 			break;
3508 
3509 		switch (mgmt->u.action.u.measurement.action_code) {
3510 		case WLAN_ACTION_SPCT_MSR_REQ:
3511 			if (status->band != NL80211_BAND_5GHZ)
3512 				break;
3513 
3514 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3515 				   sizeof(mgmt->u.action.u.measurement)))
3516 				break;
3517 
3518 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3519 				break;
3520 
3521 			ieee80211_process_measurement_req(sdata, mgmt, len);
3522 			goto handled;
3523 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3524 			u8 *bssid;
3525 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3526 				   sizeof(mgmt->u.action.u.chan_switch)))
3527 				break;
3528 
3529 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3530 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3531 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3532 				break;
3533 
3534 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3535 				bssid = sdata->deflink.u.mgd.bssid;
3536 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3537 				bssid = sdata->u.ibss.bssid;
3538 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3539 				bssid = mgmt->sa;
3540 			else
3541 				break;
3542 
3543 			if (!ether_addr_equal(mgmt->bssid, bssid))
3544 				break;
3545 
3546 			goto queue;
3547 			}
3548 		}
3549 		break;
3550 	case WLAN_CATEGORY_SELF_PROTECTED:
3551 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3552 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3553 			break;
3554 
3555 		switch (mgmt->u.action.u.self_prot.action_code) {
3556 		case WLAN_SP_MESH_PEERING_OPEN:
3557 		case WLAN_SP_MESH_PEERING_CLOSE:
3558 		case WLAN_SP_MESH_PEERING_CONFIRM:
3559 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3560 				goto invalid;
3561 			if (sdata->u.mesh.user_mpm)
3562 				/* userspace handles this frame */
3563 				break;
3564 			goto queue;
3565 		case WLAN_SP_MGK_INFORM:
3566 		case WLAN_SP_MGK_ACK:
3567 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3568 				goto invalid;
3569 			break;
3570 		}
3571 		break;
3572 	case WLAN_CATEGORY_MESH_ACTION:
3573 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3574 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3575 			break;
3576 
3577 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3578 			break;
3579 		if (mesh_action_is_path_sel(mgmt) &&
3580 		    !mesh_path_sel_is_hwmp(sdata))
3581 			break;
3582 		goto queue;
3583 	case WLAN_CATEGORY_S1G:
3584 		switch (mgmt->u.action.u.s1g.action_code) {
3585 		case WLAN_S1G_TWT_SETUP:
3586 		case WLAN_S1G_TWT_TEARDOWN:
3587 			if (ieee80211_process_rx_twt_action(rx))
3588 				goto queue;
3589 			break;
3590 		default:
3591 			break;
3592 		}
3593 		break;
3594 	}
3595 
3596 	return RX_CONTINUE;
3597 
3598  invalid:
3599 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3600 	/* will return in the next handlers */
3601 	return RX_CONTINUE;
3602 
3603  handled:
3604 	if (rx->sta)
3605 		rx->sta->deflink.rx_stats.packets++;
3606 	dev_kfree_skb(rx->skb);
3607 	return RX_QUEUED;
3608 
3609  queue:
3610 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3611 	return RX_QUEUED;
3612 }
3613 
3614 static ieee80211_rx_result debug_noinline
3615 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3616 {
3617 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3618 	int sig = 0;
3619 
3620 	/* skip known-bad action frames and return them in the next handler */
3621 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3622 		return RX_CONTINUE;
3623 
3624 	/*
3625 	 * Getting here means the kernel doesn't know how to handle
3626 	 * it, but maybe userspace does ... include returned frames
3627 	 * so userspace can register for those to know whether ones
3628 	 * it transmitted were processed or returned.
3629 	 */
3630 
3631 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3632 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3633 		sig = status->signal;
3634 
3635 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3636 				 ieee80211_rx_status_to_khz(status), sig,
3637 				 rx->skb->data, rx->skb->len, 0)) {
3638 		if (rx->sta)
3639 			rx->sta->deflink.rx_stats.packets++;
3640 		dev_kfree_skb(rx->skb);
3641 		return RX_QUEUED;
3642 	}
3643 
3644 	return RX_CONTINUE;
3645 }
3646 
3647 static ieee80211_rx_result debug_noinline
3648 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3649 {
3650 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3651 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3652 	int len = rx->skb->len;
3653 
3654 	if (!ieee80211_is_action(mgmt->frame_control))
3655 		return RX_CONTINUE;
3656 
3657 	switch (mgmt->u.action.category) {
3658 	case WLAN_CATEGORY_SA_QUERY:
3659 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3660 			   sizeof(mgmt->u.action.u.sa_query)))
3661 			break;
3662 
3663 		switch (mgmt->u.action.u.sa_query.action) {
3664 		case WLAN_ACTION_SA_QUERY_REQUEST:
3665 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3666 				break;
3667 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3668 			goto handled;
3669 		}
3670 		break;
3671 	}
3672 
3673 	return RX_CONTINUE;
3674 
3675  handled:
3676 	if (rx->sta)
3677 		rx->sta->deflink.rx_stats.packets++;
3678 	dev_kfree_skb(rx->skb);
3679 	return RX_QUEUED;
3680 }
3681 
3682 static ieee80211_rx_result debug_noinline
3683 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3684 {
3685 	struct ieee80211_local *local = rx->local;
3686 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3687 	struct sk_buff *nskb;
3688 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3689 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3690 
3691 	if (!ieee80211_is_action(mgmt->frame_control))
3692 		return RX_CONTINUE;
3693 
3694 	/*
3695 	 * For AP mode, hostapd is responsible for handling any action
3696 	 * frames that we didn't handle, including returning unknown
3697 	 * ones. For all other modes we will return them to the sender,
3698 	 * setting the 0x80 bit in the action category, as required by
3699 	 * 802.11-2012 9.24.4.
3700 	 * Newer versions of hostapd shall also use the management frame
3701 	 * registration mechanisms, but older ones still use cooked
3702 	 * monitor interfaces so push all frames there.
3703 	 */
3704 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3705 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3706 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3707 		return RX_DROP_MONITOR;
3708 
3709 	if (is_multicast_ether_addr(mgmt->da))
3710 		return RX_DROP_MONITOR;
3711 
3712 	/* do not return rejected action frames */
3713 	if (mgmt->u.action.category & 0x80)
3714 		return RX_DROP_UNUSABLE;
3715 
3716 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3717 			       GFP_ATOMIC);
3718 	if (nskb) {
3719 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3720 
3721 		nmgmt->u.action.category |= 0x80;
3722 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3723 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3724 
3725 		memset(nskb->cb, 0, sizeof(nskb->cb));
3726 
3727 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3728 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3729 
3730 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3731 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3732 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3733 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3734 				info->hw_queue =
3735 					local->hw.offchannel_tx_hw_queue;
3736 		}
3737 
3738 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3739 					    status->band);
3740 	}
3741 	dev_kfree_skb(rx->skb);
3742 	return RX_QUEUED;
3743 }
3744 
3745 static ieee80211_rx_result debug_noinline
3746 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3747 {
3748 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3749 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3750 
3751 	if (!ieee80211_is_ext(hdr->frame_control))
3752 		return RX_CONTINUE;
3753 
3754 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3755 		return RX_DROP_MONITOR;
3756 
3757 	/* for now only beacons are ext, so queue them */
3758 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3759 
3760 	return RX_QUEUED;
3761 }
3762 
3763 static ieee80211_rx_result debug_noinline
3764 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3765 {
3766 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3767 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3768 	__le16 stype;
3769 
3770 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3771 
3772 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3773 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3774 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3775 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3776 		return RX_DROP_MONITOR;
3777 
3778 	switch (stype) {
3779 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3780 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3781 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3782 		/* process for all: mesh, mlme, ibss */
3783 		break;
3784 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3785 		if (is_multicast_ether_addr(mgmt->da) &&
3786 		    !is_broadcast_ether_addr(mgmt->da))
3787 			return RX_DROP_MONITOR;
3788 
3789 		/* process only for station/IBSS */
3790 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3791 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3792 			return RX_DROP_MONITOR;
3793 		break;
3794 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3795 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3796 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3797 		if (is_multicast_ether_addr(mgmt->da) &&
3798 		    !is_broadcast_ether_addr(mgmt->da))
3799 			return RX_DROP_MONITOR;
3800 
3801 		/* process only for station */
3802 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3803 			return RX_DROP_MONITOR;
3804 		break;
3805 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3806 		/* process only for ibss and mesh */
3807 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3808 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3809 			return RX_DROP_MONITOR;
3810 		break;
3811 	default:
3812 		return RX_DROP_MONITOR;
3813 	}
3814 
3815 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3816 
3817 	return RX_QUEUED;
3818 }
3819 
3820 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3821 					struct ieee80211_rate *rate)
3822 {
3823 	struct ieee80211_sub_if_data *sdata;
3824 	struct ieee80211_local *local = rx->local;
3825 	struct sk_buff *skb = rx->skb, *skb2;
3826 	struct net_device *prev_dev = NULL;
3827 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3828 	int needed_headroom;
3829 
3830 	/*
3831 	 * If cooked monitor has been processed already, then
3832 	 * don't do it again. If not, set the flag.
3833 	 */
3834 	if (rx->flags & IEEE80211_RX_CMNTR)
3835 		goto out_free_skb;
3836 	rx->flags |= IEEE80211_RX_CMNTR;
3837 
3838 	/* If there are no cooked monitor interfaces, just free the SKB */
3839 	if (!local->cooked_mntrs)
3840 		goto out_free_skb;
3841 
3842 	/* vendor data is long removed here */
3843 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3844 	/* room for the radiotap header based on driver features */
3845 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3846 
3847 	if (skb_headroom(skb) < needed_headroom &&
3848 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3849 		goto out_free_skb;
3850 
3851 	/* prepend radiotap information */
3852 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3853 					 false);
3854 
3855 	skb_reset_mac_header(skb);
3856 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3857 	skb->pkt_type = PACKET_OTHERHOST;
3858 	skb->protocol = htons(ETH_P_802_2);
3859 
3860 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3861 		if (!ieee80211_sdata_running(sdata))
3862 			continue;
3863 
3864 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3865 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3866 			continue;
3867 
3868 		if (prev_dev) {
3869 			skb2 = skb_clone(skb, GFP_ATOMIC);
3870 			if (skb2) {
3871 				skb2->dev = prev_dev;
3872 				netif_receive_skb(skb2);
3873 			}
3874 		}
3875 
3876 		prev_dev = sdata->dev;
3877 		dev_sw_netstats_rx_add(sdata->dev, skb->len);
3878 	}
3879 
3880 	if (prev_dev) {
3881 		skb->dev = prev_dev;
3882 		netif_receive_skb(skb);
3883 		return;
3884 	}
3885 
3886  out_free_skb:
3887 	dev_kfree_skb(skb);
3888 }
3889 
3890 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3891 					 ieee80211_rx_result res)
3892 {
3893 	switch (res) {
3894 	case RX_DROP_MONITOR:
3895 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3896 		if (rx->sta)
3897 			rx->sta->deflink.rx_stats.dropped++;
3898 		fallthrough;
3899 	case RX_CONTINUE: {
3900 		struct ieee80211_rate *rate = NULL;
3901 		struct ieee80211_supported_band *sband;
3902 		struct ieee80211_rx_status *status;
3903 
3904 		status = IEEE80211_SKB_RXCB((rx->skb));
3905 
3906 		sband = rx->local->hw.wiphy->bands[status->band];
3907 		if (status->encoding == RX_ENC_LEGACY)
3908 			rate = &sband->bitrates[status->rate_idx];
3909 
3910 		ieee80211_rx_cooked_monitor(rx, rate);
3911 		break;
3912 		}
3913 	case RX_DROP_UNUSABLE:
3914 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3915 		if (rx->sta)
3916 			rx->sta->deflink.rx_stats.dropped++;
3917 		dev_kfree_skb(rx->skb);
3918 		break;
3919 	case RX_QUEUED:
3920 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3921 		break;
3922 	}
3923 }
3924 
3925 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3926 				  struct sk_buff_head *frames)
3927 {
3928 	ieee80211_rx_result res = RX_DROP_MONITOR;
3929 	struct sk_buff *skb;
3930 
3931 #define CALL_RXH(rxh)			\
3932 	do {				\
3933 		res = rxh(rx);		\
3934 		if (res != RX_CONTINUE)	\
3935 			goto rxh_next;  \
3936 	} while (0)
3937 
3938 	/* Lock here to avoid hitting all of the data used in the RX
3939 	 * path (e.g. key data, station data, ...) concurrently when
3940 	 * a frame is released from the reorder buffer due to timeout
3941 	 * from the timer, potentially concurrently with RX from the
3942 	 * driver.
3943 	 */
3944 	spin_lock_bh(&rx->local->rx_path_lock);
3945 
3946 	while ((skb = __skb_dequeue(frames))) {
3947 		/*
3948 		 * all the other fields are valid across frames
3949 		 * that belong to an aMPDU since they are on the
3950 		 * same TID from the same station
3951 		 */
3952 		rx->skb = skb;
3953 
3954 		CALL_RXH(ieee80211_rx_h_check_more_data);
3955 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3956 		CALL_RXH(ieee80211_rx_h_sta_process);
3957 		CALL_RXH(ieee80211_rx_h_decrypt);
3958 		CALL_RXH(ieee80211_rx_h_defragment);
3959 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3960 		/* must be after MMIC verify so header is counted in MPDU mic */
3961 #ifdef CONFIG_MAC80211_MESH
3962 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3963 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3964 #endif
3965 		CALL_RXH(ieee80211_rx_h_amsdu);
3966 		CALL_RXH(ieee80211_rx_h_data);
3967 
3968 		/* special treatment -- needs the queue */
3969 		res = ieee80211_rx_h_ctrl(rx, frames);
3970 		if (res != RX_CONTINUE)
3971 			goto rxh_next;
3972 
3973 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3974 		CALL_RXH(ieee80211_rx_h_action);
3975 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3976 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3977 		CALL_RXH(ieee80211_rx_h_action_return);
3978 		CALL_RXH(ieee80211_rx_h_ext);
3979 		CALL_RXH(ieee80211_rx_h_mgmt);
3980 
3981  rxh_next:
3982 		ieee80211_rx_handlers_result(rx, res);
3983 
3984 #undef CALL_RXH
3985 	}
3986 
3987 	spin_unlock_bh(&rx->local->rx_path_lock);
3988 }
3989 
3990 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3991 {
3992 	struct sk_buff_head reorder_release;
3993 	ieee80211_rx_result res = RX_DROP_MONITOR;
3994 
3995 	__skb_queue_head_init(&reorder_release);
3996 
3997 #define CALL_RXH(rxh)			\
3998 	do {				\
3999 		res = rxh(rx);		\
4000 		if (res != RX_CONTINUE)	\
4001 			goto rxh_next;  \
4002 	} while (0)
4003 
4004 	CALL_RXH(ieee80211_rx_h_check_dup);
4005 	CALL_RXH(ieee80211_rx_h_check);
4006 
4007 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
4008 
4009 	ieee80211_rx_handlers(rx, &reorder_release);
4010 	return;
4011 
4012  rxh_next:
4013 	ieee80211_rx_handlers_result(rx, res);
4014 
4015 #undef CALL_RXH
4016 }
4017 
4018 /*
4019  * This function makes calls into the RX path, therefore
4020  * it has to be invoked under RCU read lock.
4021  */
4022 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
4023 {
4024 	struct sk_buff_head frames;
4025 	struct ieee80211_rx_data rx = {
4026 		.sta = sta,
4027 		.sdata = sta->sdata,
4028 		.local = sta->local,
4029 		/* This is OK -- must be QoS data frame */
4030 		.security_idx = tid,
4031 		.seqno_idx = tid,
4032 	};
4033 	struct tid_ampdu_rx *tid_agg_rx;
4034 
4035 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4036 	if (!tid_agg_rx)
4037 		return;
4038 
4039 	__skb_queue_head_init(&frames);
4040 
4041 	spin_lock(&tid_agg_rx->reorder_lock);
4042 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4043 	spin_unlock(&tid_agg_rx->reorder_lock);
4044 
4045 	if (!skb_queue_empty(&frames)) {
4046 		struct ieee80211_event event = {
4047 			.type = BA_FRAME_TIMEOUT,
4048 			.u.ba.tid = tid,
4049 			.u.ba.sta = &sta->sta,
4050 		};
4051 		drv_event_callback(rx.local, rx.sdata, &event);
4052 	}
4053 
4054 	ieee80211_rx_handlers(&rx, &frames);
4055 }
4056 
4057 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4058 					  u16 ssn, u64 filtered,
4059 					  u16 received_mpdus)
4060 {
4061 	struct sta_info *sta;
4062 	struct tid_ampdu_rx *tid_agg_rx;
4063 	struct sk_buff_head frames;
4064 	struct ieee80211_rx_data rx = {
4065 		/* This is OK -- must be QoS data frame */
4066 		.security_idx = tid,
4067 		.seqno_idx = tid,
4068 	};
4069 	int i, diff;
4070 
4071 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4072 		return;
4073 
4074 	__skb_queue_head_init(&frames);
4075 
4076 	sta = container_of(pubsta, struct sta_info, sta);
4077 
4078 	rx.sta = sta;
4079 	rx.sdata = sta->sdata;
4080 	rx.local = sta->local;
4081 
4082 	rcu_read_lock();
4083 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4084 	if (!tid_agg_rx)
4085 		goto out;
4086 
4087 	spin_lock_bh(&tid_agg_rx->reorder_lock);
4088 
4089 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4090 		int release;
4091 
4092 		/* release all frames in the reorder buffer */
4093 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4094 			   IEEE80211_SN_MODULO;
4095 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4096 						 release, &frames);
4097 		/* update ssn to match received ssn */
4098 		tid_agg_rx->head_seq_num = ssn;
4099 	} else {
4100 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4101 						 &frames);
4102 	}
4103 
4104 	/* handle the case that received ssn is behind the mac ssn.
4105 	 * it can be tid_agg_rx->buf_size behind and still be valid */
4106 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4107 	if (diff >= tid_agg_rx->buf_size) {
4108 		tid_agg_rx->reorder_buf_filtered = 0;
4109 		goto release;
4110 	}
4111 	filtered = filtered >> diff;
4112 	ssn += diff;
4113 
4114 	/* update bitmap */
4115 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
4116 		int index = (ssn + i) % tid_agg_rx->buf_size;
4117 
4118 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4119 		if (filtered & BIT_ULL(i))
4120 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4121 	}
4122 
4123 	/* now process also frames that the filter marking released */
4124 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4125 
4126 release:
4127 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
4128 
4129 	ieee80211_rx_handlers(&rx, &frames);
4130 
4131  out:
4132 	rcu_read_unlock();
4133 }
4134 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4135 
4136 /* main receive path */
4137 
4138 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr)
4139 {
4140 	return ether_addr_equal(raddr, addr) ||
4141 	       is_broadcast_ether_addr(raddr);
4142 }
4143 
4144 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4145 {
4146 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4147 	struct sk_buff *skb = rx->skb;
4148 	struct ieee80211_hdr *hdr = (void *)skb->data;
4149 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4150 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4151 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4152 			 ieee80211_is_s1g_beacon(hdr->frame_control);
4153 
4154 	switch (sdata->vif.type) {
4155 	case NL80211_IFTYPE_STATION:
4156 		if (!bssid && !sdata->u.mgd.use_4addr)
4157 			return false;
4158 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4159 			return false;
4160 		if (multicast)
4161 			return true;
4162 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4163 	case NL80211_IFTYPE_ADHOC:
4164 		if (!bssid)
4165 			return false;
4166 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4167 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4168 		    !is_valid_ether_addr(hdr->addr2))
4169 			return false;
4170 		if (ieee80211_is_beacon(hdr->frame_control))
4171 			return true;
4172 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4173 			return false;
4174 		if (!multicast &&
4175 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4176 			return false;
4177 		if (!rx->sta) {
4178 			int rate_idx;
4179 			if (status->encoding != RX_ENC_LEGACY)
4180 				rate_idx = 0; /* TODO: HT/VHT rates */
4181 			else
4182 				rate_idx = status->rate_idx;
4183 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4184 						 BIT(rate_idx));
4185 		}
4186 		return true;
4187 	case NL80211_IFTYPE_OCB:
4188 		if (!bssid)
4189 			return false;
4190 		if (!ieee80211_is_data_present(hdr->frame_control))
4191 			return false;
4192 		if (!is_broadcast_ether_addr(bssid))
4193 			return false;
4194 		if (!multicast &&
4195 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4196 			return false;
4197 		if (!rx->sta) {
4198 			int rate_idx;
4199 			if (status->encoding != RX_ENC_LEGACY)
4200 				rate_idx = 0; /* TODO: HT rates */
4201 			else
4202 				rate_idx = status->rate_idx;
4203 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4204 						BIT(rate_idx));
4205 		}
4206 		return true;
4207 	case NL80211_IFTYPE_MESH_POINT:
4208 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4209 			return false;
4210 		if (multicast)
4211 			return true;
4212 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4213 	case NL80211_IFTYPE_AP_VLAN:
4214 	case NL80211_IFTYPE_AP:
4215 		if (!bssid)
4216 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4217 
4218 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4219 			/*
4220 			 * Accept public action frames even when the
4221 			 * BSSID doesn't match, this is used for P2P
4222 			 * and location updates. Note that mac80211
4223 			 * itself never looks at these frames.
4224 			 */
4225 			if (!multicast &&
4226 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4227 				return false;
4228 			if (ieee80211_is_public_action(hdr, skb->len))
4229 				return true;
4230 			return ieee80211_is_beacon(hdr->frame_control);
4231 		}
4232 
4233 		if (!ieee80211_has_tods(hdr->frame_control)) {
4234 			/* ignore data frames to TDLS-peers */
4235 			if (ieee80211_is_data(hdr->frame_control))
4236 				return false;
4237 			/* ignore action frames to TDLS-peers */
4238 			if (ieee80211_is_action(hdr->frame_control) &&
4239 			    !is_broadcast_ether_addr(bssid) &&
4240 			    !ether_addr_equal(bssid, hdr->addr1))
4241 				return false;
4242 		}
4243 
4244 		/*
4245 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4246 		 * the BSSID - we've checked that already but may have accepted
4247 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4248 		 *
4249 		 * It also says:
4250 		 *	The BSSID of the Data frame is determined as follows:
4251 		 *	a) If the STA is contained within an AP or is associated
4252 		 *	   with an AP, the BSSID is the address currently in use
4253 		 *	   by the STA contained in the AP.
4254 		 *
4255 		 * So we should not accept data frames with an address that's
4256 		 * multicast.
4257 		 *
4258 		 * Accepting it also opens a security problem because stations
4259 		 * could encrypt it with the GTK and inject traffic that way.
4260 		 */
4261 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4262 			return false;
4263 
4264 		return true;
4265 	case NL80211_IFTYPE_P2P_DEVICE:
4266 		return ieee80211_is_public_action(hdr, skb->len) ||
4267 		       ieee80211_is_probe_req(hdr->frame_control) ||
4268 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4269 		       ieee80211_is_beacon(hdr->frame_control);
4270 	case NL80211_IFTYPE_NAN:
4271 		/* Currently no frames on NAN interface are allowed */
4272 		return false;
4273 	default:
4274 		break;
4275 	}
4276 
4277 	WARN_ON_ONCE(1);
4278 	return false;
4279 }
4280 
4281 void ieee80211_check_fast_rx(struct sta_info *sta)
4282 {
4283 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4284 	struct ieee80211_local *local = sdata->local;
4285 	struct ieee80211_key *key;
4286 	struct ieee80211_fast_rx fastrx = {
4287 		.dev = sdata->dev,
4288 		.vif_type = sdata->vif.type,
4289 		.control_port_protocol = sdata->control_port_protocol,
4290 	}, *old, *new = NULL;
4291 	bool set_offload = false;
4292 	bool assign = false;
4293 	bool offload;
4294 
4295 	/* use sparse to check that we don't return without updating */
4296 	__acquire(check_fast_rx);
4297 
4298 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4299 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4300 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4301 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4302 
4303 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4304 
4305 	/* fast-rx doesn't do reordering */
4306 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4307 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4308 		goto clear;
4309 
4310 	switch (sdata->vif.type) {
4311 	case NL80211_IFTYPE_STATION:
4312 		if (sta->sta.tdls) {
4313 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4314 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4315 			fastrx.expected_ds_bits = 0;
4316 		} else {
4317 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4318 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4319 			fastrx.expected_ds_bits =
4320 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4321 		}
4322 
4323 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4324 			fastrx.expected_ds_bits |=
4325 				cpu_to_le16(IEEE80211_FCTL_TODS);
4326 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4327 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4328 		}
4329 
4330 		if (!sdata->u.mgd.powersave)
4331 			break;
4332 
4333 		/* software powersave is a huge mess, avoid all of it */
4334 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4335 			goto clear;
4336 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4337 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4338 			goto clear;
4339 		break;
4340 	case NL80211_IFTYPE_AP_VLAN:
4341 	case NL80211_IFTYPE_AP:
4342 		/* parallel-rx requires this, at least with calls to
4343 		 * ieee80211_sta_ps_transition()
4344 		 */
4345 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4346 			goto clear;
4347 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4348 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4349 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4350 
4351 		fastrx.internal_forward =
4352 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4353 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4354 			 !sdata->u.vlan.sta);
4355 
4356 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4357 		    sdata->u.vlan.sta) {
4358 			fastrx.expected_ds_bits |=
4359 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4360 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4361 			fastrx.internal_forward = 0;
4362 		}
4363 
4364 		break;
4365 	default:
4366 		goto clear;
4367 	}
4368 
4369 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4370 		goto clear;
4371 
4372 	rcu_read_lock();
4373 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4374 	if (!key)
4375 		key = rcu_dereference(sdata->default_unicast_key);
4376 	if (key) {
4377 		switch (key->conf.cipher) {
4378 		case WLAN_CIPHER_SUITE_TKIP:
4379 			/* we don't want to deal with MMIC in fast-rx */
4380 			goto clear_rcu;
4381 		case WLAN_CIPHER_SUITE_CCMP:
4382 		case WLAN_CIPHER_SUITE_CCMP_256:
4383 		case WLAN_CIPHER_SUITE_GCMP:
4384 		case WLAN_CIPHER_SUITE_GCMP_256:
4385 			break;
4386 		default:
4387 			/* We also don't want to deal with
4388 			 * WEP or cipher scheme.
4389 			 */
4390 			goto clear_rcu;
4391 		}
4392 
4393 		fastrx.key = true;
4394 		fastrx.icv_len = key->conf.icv_len;
4395 	}
4396 
4397 	assign = true;
4398  clear_rcu:
4399 	rcu_read_unlock();
4400  clear:
4401 	__release(check_fast_rx);
4402 
4403 	if (assign)
4404 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4405 
4406 	offload = assign &&
4407 		  (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4408 
4409 	if (offload)
4410 		set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4411 	else
4412 		set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4413 
4414 	if (set_offload)
4415 		drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4416 
4417 	spin_lock_bh(&sta->lock);
4418 	old = rcu_dereference_protected(sta->fast_rx, true);
4419 	rcu_assign_pointer(sta->fast_rx, new);
4420 	spin_unlock_bh(&sta->lock);
4421 
4422 	if (old)
4423 		kfree_rcu(old, rcu_head);
4424 }
4425 
4426 void ieee80211_clear_fast_rx(struct sta_info *sta)
4427 {
4428 	struct ieee80211_fast_rx *old;
4429 
4430 	spin_lock_bh(&sta->lock);
4431 	old = rcu_dereference_protected(sta->fast_rx, true);
4432 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4433 	spin_unlock_bh(&sta->lock);
4434 
4435 	if (old)
4436 		kfree_rcu(old, rcu_head);
4437 }
4438 
4439 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4440 {
4441 	struct ieee80211_local *local = sdata->local;
4442 	struct sta_info *sta;
4443 
4444 	lockdep_assert_held(&local->sta_mtx);
4445 
4446 	list_for_each_entry(sta, &local->sta_list, list) {
4447 		if (sdata != sta->sdata &&
4448 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4449 			continue;
4450 		ieee80211_check_fast_rx(sta);
4451 	}
4452 }
4453 
4454 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4455 {
4456 	struct ieee80211_local *local = sdata->local;
4457 
4458 	mutex_lock(&local->sta_mtx);
4459 	__ieee80211_check_fast_rx_iface(sdata);
4460 	mutex_unlock(&local->sta_mtx);
4461 }
4462 
4463 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4464 			      struct ieee80211_fast_rx *fast_rx,
4465 			      int orig_len)
4466 {
4467 	struct ieee80211_sta_rx_stats *stats;
4468 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4469 	struct sta_info *sta = rx->sta;
4470 	struct sk_buff *skb = rx->skb;
4471 	void *sa = skb->data + ETH_ALEN;
4472 	void *da = skb->data;
4473 
4474 	stats = &sta->deflink.rx_stats;
4475 	if (fast_rx->uses_rss)
4476 		stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats);
4477 
4478 	/* statistics part of ieee80211_rx_h_sta_process() */
4479 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4480 		stats->last_signal = status->signal;
4481 		if (!fast_rx->uses_rss)
4482 			ewma_signal_add(&sta->deflink.rx_stats_avg.signal,
4483 					-status->signal);
4484 	}
4485 
4486 	if (status->chains) {
4487 		int i;
4488 
4489 		stats->chains = status->chains;
4490 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4491 			int signal = status->chain_signal[i];
4492 
4493 			if (!(status->chains & BIT(i)))
4494 				continue;
4495 
4496 			stats->chain_signal_last[i] = signal;
4497 			if (!fast_rx->uses_rss)
4498 				ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i],
4499 						-signal);
4500 		}
4501 	}
4502 	/* end of statistics */
4503 
4504 	stats->last_rx = jiffies;
4505 	stats->last_rate = sta_stats_encode_rate(status);
4506 
4507 	stats->fragments++;
4508 	stats->packets++;
4509 
4510 	skb->dev = fast_rx->dev;
4511 
4512 	dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4513 
4514 	/* The seqno index has the same property as needed
4515 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4516 	 * for non-QoS-data frames. Here we know it's a data
4517 	 * frame, so count MSDUs.
4518 	 */
4519 	u64_stats_update_begin(&stats->syncp);
4520 	stats->msdu[rx->seqno_idx]++;
4521 	stats->bytes += orig_len;
4522 	u64_stats_update_end(&stats->syncp);
4523 
4524 	if (fast_rx->internal_forward) {
4525 		struct sk_buff *xmit_skb = NULL;
4526 		if (is_multicast_ether_addr(da)) {
4527 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4528 		} else if (!ether_addr_equal(da, sa) &&
4529 			   sta_info_get(rx->sdata, da)) {
4530 			xmit_skb = skb;
4531 			skb = NULL;
4532 		}
4533 
4534 		if (xmit_skb) {
4535 			/*
4536 			 * Send to wireless media and increase priority by 256
4537 			 * to keep the received priority instead of
4538 			 * reclassifying the frame (see cfg80211_classify8021d).
4539 			 */
4540 			xmit_skb->priority += 256;
4541 			xmit_skb->protocol = htons(ETH_P_802_3);
4542 			skb_reset_network_header(xmit_skb);
4543 			skb_reset_mac_header(xmit_skb);
4544 			dev_queue_xmit(xmit_skb);
4545 		}
4546 
4547 		if (!skb)
4548 			return;
4549 	}
4550 
4551 	/* deliver to local stack */
4552 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4553 	ieee80211_deliver_skb_to_local_stack(skb, rx);
4554 }
4555 
4556 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4557 				     struct ieee80211_fast_rx *fast_rx)
4558 {
4559 	struct sk_buff *skb = rx->skb;
4560 	struct ieee80211_hdr *hdr = (void *)skb->data;
4561 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4562 	struct sta_info *sta = rx->sta;
4563 	int orig_len = skb->len;
4564 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4565 	int snap_offs = hdrlen;
4566 	struct {
4567 		u8 snap[sizeof(rfc1042_header)];
4568 		__be16 proto;
4569 	} *payload __aligned(2);
4570 	struct {
4571 		u8 da[ETH_ALEN];
4572 		u8 sa[ETH_ALEN];
4573 	} addrs __aligned(2);
4574 	struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats;
4575 
4576 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4577 	 * to a common data structure; drivers can implement that per queue
4578 	 * but we don't have that information in mac80211
4579 	 */
4580 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4581 		return false;
4582 
4583 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4584 
4585 	/* If using encryption, we also need to have:
4586 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4587 	 *  - DECRYPTED: necessary for PN_VALIDATED
4588 	 */
4589 	if (fast_rx->key &&
4590 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4591 		return false;
4592 
4593 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4594 		return false;
4595 
4596 	if (unlikely(ieee80211_is_frag(hdr)))
4597 		return false;
4598 
4599 	/* Since our interface address cannot be multicast, this
4600 	 * implicitly also rejects multicast frames without the
4601 	 * explicit check.
4602 	 *
4603 	 * We shouldn't get any *data* frames not addressed to us
4604 	 * (AP mode will accept multicast *management* frames), but
4605 	 * punting here will make it go through the full checks in
4606 	 * ieee80211_accept_frame().
4607 	 */
4608 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4609 		return false;
4610 
4611 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4612 					      IEEE80211_FCTL_TODS)) !=
4613 	    fast_rx->expected_ds_bits)
4614 		return false;
4615 
4616 	/* assign the key to drop unencrypted frames (later)
4617 	 * and strip the IV/MIC if necessary
4618 	 */
4619 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4620 		/* GCMP header length is the same */
4621 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4622 	}
4623 
4624 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4625 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4626 			goto drop;
4627 
4628 		payload = (void *)(skb->data + snap_offs);
4629 
4630 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4631 			return false;
4632 
4633 		/* Don't handle these here since they require special code.
4634 		 * Accept AARP and IPX even though they should come with a
4635 		 * bridge-tunnel header - but if we get them this way then
4636 		 * there's little point in discarding them.
4637 		 */
4638 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4639 			     payload->proto == fast_rx->control_port_protocol))
4640 			return false;
4641 	}
4642 
4643 	/* after this point, don't punt to the slowpath! */
4644 
4645 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4646 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4647 		goto drop;
4648 
4649 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4650 		goto drop;
4651 
4652 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4653 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4654 		    RX_QUEUED)
4655 			goto drop;
4656 
4657 		return true;
4658 	}
4659 
4660 	/* do the header conversion - first grab the addresses */
4661 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4662 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4663 	skb_postpull_rcsum(skb, skb->data + snap_offs,
4664 			   sizeof(rfc1042_header) + 2);
4665 	/* remove the SNAP but leave the ethertype */
4666 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4667 	/* push the addresses in front */
4668 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4669 
4670 	ieee80211_rx_8023(rx, fast_rx, orig_len);
4671 
4672 	return true;
4673  drop:
4674 	dev_kfree_skb(skb);
4675 	if (fast_rx->uses_rss)
4676 		stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats);
4677 
4678 	stats->dropped++;
4679 	return true;
4680 }
4681 
4682 /*
4683  * This function returns whether or not the SKB
4684  * was destined for RX processing or not, which,
4685  * if consume is true, is equivalent to whether
4686  * or not the skb was consumed.
4687  */
4688 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4689 					    struct sk_buff *skb, bool consume)
4690 {
4691 	struct ieee80211_local *local = rx->local;
4692 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4693 
4694 	rx->skb = skb;
4695 
4696 	/* See if we can do fast-rx; if we have to copy we already lost,
4697 	 * so punt in that case. We should never have to deliver a data
4698 	 * frame to multiple interfaces anyway.
4699 	 *
4700 	 * We skip the ieee80211_accept_frame() call and do the necessary
4701 	 * checking inside ieee80211_invoke_fast_rx().
4702 	 */
4703 	if (consume && rx->sta) {
4704 		struct ieee80211_fast_rx *fast_rx;
4705 
4706 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4707 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4708 			return true;
4709 	}
4710 
4711 	if (!ieee80211_accept_frame(rx))
4712 		return false;
4713 
4714 	if (!consume) {
4715 		skb = skb_copy(skb, GFP_ATOMIC);
4716 		if (!skb) {
4717 			if (net_ratelimit())
4718 				wiphy_debug(local->hw.wiphy,
4719 					"failed to copy skb for %s\n",
4720 					sdata->name);
4721 			return true;
4722 		}
4723 
4724 		rx->skb = skb;
4725 	}
4726 
4727 	ieee80211_invoke_rx_handlers(rx);
4728 	return true;
4729 }
4730 
4731 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4732 				       struct ieee80211_sta *pubsta,
4733 				       struct sk_buff *skb,
4734 				       struct list_head *list)
4735 {
4736 	struct ieee80211_local *local = hw_to_local(hw);
4737 	struct ieee80211_fast_rx *fast_rx;
4738 	struct ieee80211_rx_data rx;
4739 
4740 	memset(&rx, 0, sizeof(rx));
4741 	rx.skb = skb;
4742 	rx.local = local;
4743 	rx.list = list;
4744 
4745 	I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4746 
4747 	/* drop frame if too short for header */
4748 	if (skb->len < sizeof(struct ethhdr))
4749 		goto drop;
4750 
4751 	if (!pubsta)
4752 		goto drop;
4753 
4754 	rx.sta = container_of(pubsta, struct sta_info, sta);
4755 	rx.sdata = rx.sta->sdata;
4756 
4757 	fast_rx = rcu_dereference(rx.sta->fast_rx);
4758 	if (!fast_rx)
4759 		goto drop;
4760 
4761 	ieee80211_rx_8023(&rx, fast_rx, skb->len);
4762 	return;
4763 
4764 drop:
4765 	dev_kfree_skb(skb);
4766 }
4767 
4768 /*
4769  * This is the actual Rx frames handler. as it belongs to Rx path it must
4770  * be called with rcu_read_lock protection.
4771  */
4772 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4773 					 struct ieee80211_sta *pubsta,
4774 					 struct sk_buff *skb,
4775 					 struct list_head *list)
4776 {
4777 	struct ieee80211_local *local = hw_to_local(hw);
4778 	struct ieee80211_sub_if_data *sdata;
4779 	struct ieee80211_hdr *hdr;
4780 	__le16 fc;
4781 	struct ieee80211_rx_data rx;
4782 	struct ieee80211_sub_if_data *prev;
4783 	struct rhlist_head *tmp;
4784 	int err = 0;
4785 
4786 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4787 	memset(&rx, 0, sizeof(rx));
4788 	rx.skb = skb;
4789 	rx.local = local;
4790 	rx.list = list;
4791 
4792 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4793 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4794 
4795 	if (ieee80211_is_mgmt(fc)) {
4796 		/* drop frame if too short for header */
4797 		if (skb->len < ieee80211_hdrlen(fc))
4798 			err = -ENOBUFS;
4799 		else
4800 			err = skb_linearize(skb);
4801 	} else {
4802 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4803 	}
4804 
4805 	if (err) {
4806 		dev_kfree_skb(skb);
4807 		return;
4808 	}
4809 
4810 	hdr = (struct ieee80211_hdr *)skb->data;
4811 	ieee80211_parse_qos(&rx);
4812 	ieee80211_verify_alignment(&rx);
4813 
4814 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4815 		     ieee80211_is_beacon(hdr->frame_control) ||
4816 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4817 		ieee80211_scan_rx(local, skb);
4818 
4819 	if (ieee80211_is_data(fc)) {
4820 		struct sta_info *sta, *prev_sta;
4821 
4822 		if (pubsta) {
4823 			rx.sta = container_of(pubsta, struct sta_info, sta);
4824 			rx.sdata = rx.sta->sdata;
4825 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4826 				return;
4827 			goto out;
4828 		}
4829 
4830 		prev_sta = NULL;
4831 
4832 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4833 			if (!prev_sta) {
4834 				prev_sta = sta;
4835 				continue;
4836 			}
4837 
4838 			rx.sta = prev_sta;
4839 			rx.sdata = prev_sta->sdata;
4840 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4841 
4842 			prev_sta = sta;
4843 		}
4844 
4845 		if (prev_sta) {
4846 			rx.sta = prev_sta;
4847 			rx.sdata = prev_sta->sdata;
4848 
4849 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4850 				return;
4851 			goto out;
4852 		}
4853 	}
4854 
4855 	prev = NULL;
4856 
4857 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4858 		if (!ieee80211_sdata_running(sdata))
4859 			continue;
4860 
4861 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4862 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4863 			continue;
4864 
4865 		/*
4866 		 * frame is destined for this interface, but if it's
4867 		 * not also for the previous one we handle that after
4868 		 * the loop to avoid copying the SKB once too much
4869 		 */
4870 
4871 		if (!prev) {
4872 			prev = sdata;
4873 			continue;
4874 		}
4875 
4876 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4877 		rx.sdata = prev;
4878 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4879 
4880 		prev = sdata;
4881 	}
4882 
4883 	if (prev) {
4884 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4885 		rx.sdata = prev;
4886 
4887 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4888 			return;
4889 	}
4890 
4891  out:
4892 	dev_kfree_skb(skb);
4893 }
4894 
4895 /*
4896  * This is the receive path handler. It is called by a low level driver when an
4897  * 802.11 MPDU is received from the hardware.
4898  */
4899 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4900 		       struct sk_buff *skb, struct list_head *list)
4901 {
4902 	struct ieee80211_local *local = hw_to_local(hw);
4903 	struct ieee80211_rate *rate = NULL;
4904 	struct ieee80211_supported_band *sband;
4905 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4906 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
4907 
4908 	WARN_ON_ONCE(softirq_count() == 0);
4909 
4910 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4911 		goto drop;
4912 
4913 	sband = local->hw.wiphy->bands[status->band];
4914 	if (WARN_ON(!sband))
4915 		goto drop;
4916 
4917 	/*
4918 	 * If we're suspending, it is possible although not too likely
4919 	 * that we'd be receiving frames after having already partially
4920 	 * quiesced the stack. We can't process such frames then since
4921 	 * that might, for example, cause stations to be added or other
4922 	 * driver callbacks be invoked.
4923 	 */
4924 	if (unlikely(local->quiescing || local->suspended))
4925 		goto drop;
4926 
4927 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4928 	if (unlikely(local->in_reconfig))
4929 		goto drop;
4930 
4931 	/*
4932 	 * The same happens when we're not even started,
4933 	 * but that's worth a warning.
4934 	 */
4935 	if (WARN_ON(!local->started))
4936 		goto drop;
4937 
4938 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4939 		/*
4940 		 * Validate the rate, unless a PLCP error means that
4941 		 * we probably can't have a valid rate here anyway.
4942 		 */
4943 
4944 		switch (status->encoding) {
4945 		case RX_ENC_HT:
4946 			/*
4947 			 * rate_idx is MCS index, which can be [0-76]
4948 			 * as documented on:
4949 			 *
4950 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4951 			 *
4952 			 * Anything else would be some sort of driver or
4953 			 * hardware error. The driver should catch hardware
4954 			 * errors.
4955 			 */
4956 			if (WARN(status->rate_idx > 76,
4957 				 "Rate marked as an HT rate but passed "
4958 				 "status->rate_idx is not "
4959 				 "an MCS index [0-76]: %d (0x%02x)\n",
4960 				 status->rate_idx,
4961 				 status->rate_idx))
4962 				goto drop;
4963 			break;
4964 		case RX_ENC_VHT:
4965 			if (WARN_ONCE(status->rate_idx > 11 ||
4966 				      !status->nss ||
4967 				      status->nss > 8,
4968 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4969 				      status->rate_idx, status->nss))
4970 				goto drop;
4971 			break;
4972 		case RX_ENC_HE:
4973 			if (WARN_ONCE(status->rate_idx > 11 ||
4974 				      !status->nss ||
4975 				      status->nss > 8,
4976 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4977 				      status->rate_idx, status->nss))
4978 				goto drop;
4979 			break;
4980 		default:
4981 			WARN_ON_ONCE(1);
4982 			fallthrough;
4983 		case RX_ENC_LEGACY:
4984 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4985 				goto drop;
4986 			rate = &sband->bitrates[status->rate_idx];
4987 		}
4988 	}
4989 
4990 	status->rx_flags = 0;
4991 
4992 	kcov_remote_start_common(skb_get_kcov_handle(skb));
4993 
4994 	/*
4995 	 * Frames with failed FCS/PLCP checksum are not returned,
4996 	 * all other frames are returned without radiotap header
4997 	 * if it was previously present.
4998 	 * Also, frames with less than 16 bytes are dropped.
4999 	 */
5000 	if (!(status->flag & RX_FLAG_8023))
5001 		skb = ieee80211_rx_monitor(local, skb, rate);
5002 	if (skb) {
5003 		if ((status->flag & RX_FLAG_8023) ||
5004 			ieee80211_is_data_present(hdr->frame_control))
5005 			ieee80211_tpt_led_trig_rx(local, skb->len);
5006 
5007 		if (status->flag & RX_FLAG_8023)
5008 			__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
5009 		else
5010 			__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
5011 	}
5012 
5013 	kcov_remote_stop();
5014 	return;
5015  drop:
5016 	kfree_skb(skb);
5017 }
5018 EXPORT_SYMBOL(ieee80211_rx_list);
5019 
5020 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
5021 		       struct sk_buff *skb, struct napi_struct *napi)
5022 {
5023 	struct sk_buff *tmp;
5024 	LIST_HEAD(list);
5025 
5026 
5027 	/*
5028 	 * key references and virtual interfaces are protected using RCU
5029 	 * and this requires that we are in a read-side RCU section during
5030 	 * receive processing
5031 	 */
5032 	rcu_read_lock();
5033 	ieee80211_rx_list(hw, pubsta, skb, &list);
5034 	rcu_read_unlock();
5035 
5036 	if (!napi) {
5037 		netif_receive_skb_list(&list);
5038 		return;
5039 	}
5040 
5041 	list_for_each_entry_safe(skb, tmp, &list, list) {
5042 		skb_list_del_init(skb);
5043 		napi_gro_receive(napi, skb);
5044 	}
5045 }
5046 EXPORT_SYMBOL(ieee80211_rx_napi);
5047 
5048 /* This is a version of the rx handler that can be called from hard irq
5049  * context. Post the skb on the queue and schedule the tasklet */
5050 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5051 {
5052 	struct ieee80211_local *local = hw_to_local(hw);
5053 
5054 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5055 
5056 	skb->pkt_type = IEEE80211_RX_MSG;
5057 	skb_queue_tail(&local->skb_queue, skb);
5058 	tasklet_schedule(&local->tasklet);
5059 }
5060 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5061