xref: /linux/net/mac80211/rx.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "led.h"
31 #include "mesh.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "rate.h"
37 
38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 {
40 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 
42 	u64_stats_update_begin(&tstats->syncp);
43 	tstats->rx_packets++;
44 	tstats->rx_bytes += len;
45 	u64_stats_update_end(&tstats->syncp);
46 }
47 
48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			       enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_mgmt(fc)) {
68 		if (len < 24) /* drop incorrect hdr len (mgmt) */
69 			return NULL;
70 		return hdr->addr3;
71 	}
72 
73 	if (ieee80211_is_ctl(fc)) {
74 		if (ieee80211_is_pspoll(fc))
75 			return hdr->addr1;
76 
77 		if (ieee80211_is_back_req(fc)) {
78 			switch (type) {
79 			case NL80211_IFTYPE_STATION:
80 				return hdr->addr2;
81 			case NL80211_IFTYPE_AP:
82 			case NL80211_IFTYPE_AP_VLAN:
83 				return hdr->addr1;
84 			default:
85 				break; /* fall through to the return */
86 			}
87 		}
88 	}
89 
90 	return NULL;
91 }
92 
93 /*
94  * monitor mode reception
95  *
96  * This function cleans up the SKB, i.e. it removes all the stuff
97  * only useful for monitoring.
98  */
99 static void remove_monitor_info(struct sk_buff *skb,
100 				unsigned int present_fcs_len,
101 				unsigned int rtap_space)
102 {
103 	if (present_fcs_len)
104 		__pskb_trim(skb, skb->len - present_fcs_len);
105 	__pskb_pull(skb, rtap_space);
106 }
107 
108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
109 				     unsigned int rtap_space)
110 {
111 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
112 	struct ieee80211_hdr *hdr;
113 
114 	hdr = (void *)(skb->data + rtap_space);
115 
116 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
117 			    RX_FLAG_FAILED_PLCP_CRC |
118 			    RX_FLAG_ONLY_MONITOR |
119 			    RX_FLAG_NO_PSDU))
120 		return true;
121 
122 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
123 		return true;
124 
125 	if (ieee80211_is_ctl(hdr->frame_control) &&
126 	    !ieee80211_is_pspoll(hdr->frame_control) &&
127 	    !ieee80211_is_back_req(hdr->frame_control))
128 		return true;
129 
130 	return false;
131 }
132 
133 static int
134 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
135 			     struct ieee80211_rx_status *status,
136 			     struct sk_buff *skb)
137 {
138 	int len;
139 
140 	/* always present fields */
141 	len = sizeof(struct ieee80211_radiotap_header) + 8;
142 
143 	/* allocate extra bitmaps */
144 	if (status->chains)
145 		len += 4 * hweight8(status->chains);
146 	/* vendor presence bitmap */
147 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
148 		len += 4;
149 
150 	if (ieee80211_have_rx_timestamp(status)) {
151 		len = ALIGN(len, 8);
152 		len += 8;
153 	}
154 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
155 		len += 1;
156 
157 	/* antenna field, if we don't have per-chain info */
158 	if (!status->chains)
159 		len += 1;
160 
161 	/* padding for RX_FLAGS if necessary */
162 	len = ALIGN(len, 2);
163 
164 	if (status->encoding == RX_ENC_HT) /* HT info */
165 		len += 3;
166 
167 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
168 		len = ALIGN(len, 4);
169 		len += 8;
170 	}
171 
172 	if (status->encoding == RX_ENC_VHT) {
173 		len = ALIGN(len, 2);
174 		len += 12;
175 	}
176 
177 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
178 		len = ALIGN(len, 8);
179 		len += 12;
180 	}
181 
182 	if (status->encoding == RX_ENC_HE &&
183 	    status->flag & RX_FLAG_RADIOTAP_HE) {
184 		len = ALIGN(len, 2);
185 		len += 12;
186 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
187 	}
188 
189 	if (status->encoding == RX_ENC_HE &&
190 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
191 		len = ALIGN(len, 2);
192 		len += 12;
193 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
194 	}
195 
196 	if (status->flag & RX_FLAG_NO_PSDU)
197 		len += 1;
198 
199 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
200 		len = ALIGN(len, 2);
201 		len += 4;
202 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
203 	}
204 
205 	if (status->chains) {
206 		/* antenna and antenna signal fields */
207 		len += 2 * hweight8(status->chains);
208 	}
209 
210 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
211 		struct ieee80211_vendor_radiotap *rtap;
212 		int vendor_data_offset = 0;
213 
214 		/*
215 		 * The position to look at depends on the existence (or non-
216 		 * existence) of other elements, so take that into account...
217 		 */
218 		if (status->flag & RX_FLAG_RADIOTAP_HE)
219 			vendor_data_offset +=
220 				sizeof(struct ieee80211_radiotap_he);
221 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
222 			vendor_data_offset +=
223 				sizeof(struct ieee80211_radiotap_he_mu);
224 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
225 			vendor_data_offset +=
226 				sizeof(struct ieee80211_radiotap_lsig);
227 
228 		rtap = (void *)&skb->data[vendor_data_offset];
229 
230 		/* alignment for fixed 6-byte vendor data header */
231 		len = ALIGN(len, 2);
232 		/* vendor data header */
233 		len += 6;
234 		if (WARN_ON(rtap->align == 0))
235 			rtap->align = 1;
236 		len = ALIGN(len, rtap->align);
237 		len += rtap->len + rtap->pad;
238 	}
239 
240 	return len;
241 }
242 
243 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
244 					 struct sk_buff *skb,
245 					 int rtap_space)
246 {
247 	struct {
248 		struct ieee80211_hdr_3addr hdr;
249 		u8 category;
250 		u8 action_code;
251 	} __packed __aligned(2) action;
252 
253 	if (!sdata)
254 		return;
255 
256 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
257 
258 	if (skb->len < rtap_space + sizeof(action) +
259 		       VHT_MUMIMO_GROUPS_DATA_LEN)
260 		return;
261 
262 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
263 		return;
264 
265 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
266 
267 	if (!ieee80211_is_action(action.hdr.frame_control))
268 		return;
269 
270 	if (action.category != WLAN_CATEGORY_VHT)
271 		return;
272 
273 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
274 		return;
275 
276 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
277 		return;
278 
279 	skb = skb_copy(skb, GFP_ATOMIC);
280 	if (!skb)
281 		return;
282 
283 	skb_queue_tail(&sdata->skb_queue, skb);
284 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
285 }
286 
287 /*
288  * ieee80211_add_rx_radiotap_header - add radiotap header
289  *
290  * add a radiotap header containing all the fields which the hardware provided.
291  */
292 static void
293 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
294 				 struct sk_buff *skb,
295 				 struct ieee80211_rate *rate,
296 				 int rtap_len, bool has_fcs)
297 {
298 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
299 	struct ieee80211_radiotap_header *rthdr;
300 	unsigned char *pos;
301 	__le32 *it_present;
302 	u32 it_present_val;
303 	u16 rx_flags = 0;
304 	u16 channel_flags = 0;
305 	int mpdulen, chain;
306 	unsigned long chains = status->chains;
307 	struct ieee80211_vendor_radiotap rtap = {};
308 	struct ieee80211_radiotap_he he = {};
309 	struct ieee80211_radiotap_he_mu he_mu = {};
310 	struct ieee80211_radiotap_lsig lsig = {};
311 
312 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
313 		he = *(struct ieee80211_radiotap_he *)skb->data;
314 		skb_pull(skb, sizeof(he));
315 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
316 	}
317 
318 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
319 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
320 		skb_pull(skb, sizeof(he_mu));
321 	}
322 
323 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
324 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
325 		skb_pull(skb, sizeof(lsig));
326 	}
327 
328 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
329 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
330 		/* rtap.len and rtap.pad are undone immediately */
331 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
332 	}
333 
334 	mpdulen = skb->len;
335 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
336 		mpdulen += FCS_LEN;
337 
338 	rthdr = skb_push(skb, rtap_len);
339 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
340 	it_present = &rthdr->it_present;
341 
342 	/* radiotap header, set always present flags */
343 	rthdr->it_len = cpu_to_le16(rtap_len);
344 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
345 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
346 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
347 
348 	if (!status->chains)
349 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
350 
351 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
352 		it_present_val |=
353 			BIT(IEEE80211_RADIOTAP_EXT) |
354 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
355 		put_unaligned_le32(it_present_val, it_present);
356 		it_present++;
357 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
358 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
359 	}
360 
361 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
362 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
363 				  BIT(IEEE80211_RADIOTAP_EXT);
364 		put_unaligned_le32(it_present_val, it_present);
365 		it_present++;
366 		it_present_val = rtap.present;
367 	}
368 
369 	put_unaligned_le32(it_present_val, it_present);
370 
371 	pos = (void *)(it_present + 1);
372 
373 	/* the order of the following fields is important */
374 
375 	/* IEEE80211_RADIOTAP_TSFT */
376 	if (ieee80211_have_rx_timestamp(status)) {
377 		/* padding */
378 		while ((pos - (u8 *)rthdr) & 7)
379 			*pos++ = 0;
380 		put_unaligned_le64(
381 			ieee80211_calculate_rx_timestamp(local, status,
382 							 mpdulen, 0),
383 			pos);
384 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
385 		pos += 8;
386 	}
387 
388 	/* IEEE80211_RADIOTAP_FLAGS */
389 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
390 		*pos |= IEEE80211_RADIOTAP_F_FCS;
391 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
392 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
393 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
394 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
395 	pos++;
396 
397 	/* IEEE80211_RADIOTAP_RATE */
398 	if (!rate || status->encoding != RX_ENC_LEGACY) {
399 		/*
400 		 * Without rate information don't add it. If we have,
401 		 * MCS information is a separate field in radiotap,
402 		 * added below. The byte here is needed as padding
403 		 * for the channel though, so initialise it to 0.
404 		 */
405 		*pos = 0;
406 	} else {
407 		int shift = 0;
408 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
409 		if (status->bw == RATE_INFO_BW_10)
410 			shift = 1;
411 		else if (status->bw == RATE_INFO_BW_5)
412 			shift = 2;
413 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
414 	}
415 	pos++;
416 
417 	/* IEEE80211_RADIOTAP_CHANNEL */
418 	put_unaligned_le16(status->freq, pos);
419 	pos += 2;
420 	if (status->bw == RATE_INFO_BW_10)
421 		channel_flags |= IEEE80211_CHAN_HALF;
422 	else if (status->bw == RATE_INFO_BW_5)
423 		channel_flags |= IEEE80211_CHAN_QUARTER;
424 
425 	if (status->band == NL80211_BAND_5GHZ)
426 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
427 	else if (status->encoding != RX_ENC_LEGACY)
428 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
429 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
430 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
431 	else if (rate)
432 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
433 	else
434 		channel_flags |= IEEE80211_CHAN_2GHZ;
435 	put_unaligned_le16(channel_flags, pos);
436 	pos += 2;
437 
438 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
439 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
440 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
441 		*pos = status->signal;
442 		rthdr->it_present |=
443 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
444 		pos++;
445 	}
446 
447 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
448 
449 	if (!status->chains) {
450 		/* IEEE80211_RADIOTAP_ANTENNA */
451 		*pos = status->antenna;
452 		pos++;
453 	}
454 
455 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
456 
457 	/* IEEE80211_RADIOTAP_RX_FLAGS */
458 	/* ensure 2 byte alignment for the 2 byte field as required */
459 	if ((pos - (u8 *)rthdr) & 1)
460 		*pos++ = 0;
461 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
462 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
463 	put_unaligned_le16(rx_flags, pos);
464 	pos += 2;
465 
466 	if (status->encoding == RX_ENC_HT) {
467 		unsigned int stbc;
468 
469 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
470 		*pos++ = local->hw.radiotap_mcs_details;
471 		*pos = 0;
472 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
473 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
474 		if (status->bw == RATE_INFO_BW_40)
475 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
476 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
477 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
478 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
479 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
480 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
481 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
482 		pos++;
483 		*pos++ = status->rate_idx;
484 	}
485 
486 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
487 		u16 flags = 0;
488 
489 		/* ensure 4 byte alignment */
490 		while ((pos - (u8 *)rthdr) & 3)
491 			pos++;
492 		rthdr->it_present |=
493 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
494 		put_unaligned_le32(status->ampdu_reference, pos);
495 		pos += 4;
496 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
497 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
498 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
499 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
500 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
501 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
502 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
503 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
504 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
505 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
506 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
507 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
508 		put_unaligned_le16(flags, pos);
509 		pos += 2;
510 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
511 			*pos++ = status->ampdu_delimiter_crc;
512 		else
513 			*pos++ = 0;
514 		*pos++ = 0;
515 	}
516 
517 	if (status->encoding == RX_ENC_VHT) {
518 		u16 known = local->hw.radiotap_vht_details;
519 
520 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
521 		put_unaligned_le16(known, pos);
522 		pos += 2;
523 		/* flags */
524 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
525 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
526 		/* in VHT, STBC is binary */
527 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
528 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
529 		if (status->enc_flags & RX_ENC_FLAG_BF)
530 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
531 		pos++;
532 		/* bandwidth */
533 		switch (status->bw) {
534 		case RATE_INFO_BW_80:
535 			*pos++ = 4;
536 			break;
537 		case RATE_INFO_BW_160:
538 			*pos++ = 11;
539 			break;
540 		case RATE_INFO_BW_40:
541 			*pos++ = 1;
542 			break;
543 		default:
544 			*pos++ = 0;
545 		}
546 		/* MCS/NSS */
547 		*pos = (status->rate_idx << 4) | status->nss;
548 		pos += 4;
549 		/* coding field */
550 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
551 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
552 		pos++;
553 		/* group ID */
554 		pos++;
555 		/* partial_aid */
556 		pos += 2;
557 	}
558 
559 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
560 		u16 accuracy = 0;
561 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
562 
563 		rthdr->it_present |=
564 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
565 
566 		/* ensure 8 byte alignment */
567 		while ((pos - (u8 *)rthdr) & 7)
568 			pos++;
569 
570 		put_unaligned_le64(status->device_timestamp, pos);
571 		pos += sizeof(u64);
572 
573 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
574 			accuracy = local->hw.radiotap_timestamp.accuracy;
575 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
576 		}
577 		put_unaligned_le16(accuracy, pos);
578 		pos += sizeof(u16);
579 
580 		*pos++ = local->hw.radiotap_timestamp.units_pos;
581 		*pos++ = flags;
582 	}
583 
584 	if (status->encoding == RX_ENC_HE &&
585 	    status->flag & RX_FLAG_RADIOTAP_HE) {
586 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
587 
588 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
589 			he.data6 |= HE_PREP(DATA6_NSTS,
590 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
591 						      status->enc_flags));
592 			he.data3 |= HE_PREP(DATA3_STBC, 1);
593 		} else {
594 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
595 		}
596 
597 #define CHECK_GI(s) \
598 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
599 		     (int)NL80211_RATE_INFO_HE_GI_##s)
600 
601 		CHECK_GI(0_8);
602 		CHECK_GI(1_6);
603 		CHECK_GI(3_2);
604 
605 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
606 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
607 		he.data3 |= HE_PREP(DATA3_CODING,
608 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
609 
610 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
611 
612 		switch (status->bw) {
613 		case RATE_INFO_BW_20:
614 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
615 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
616 			break;
617 		case RATE_INFO_BW_40:
618 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
619 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
620 			break;
621 		case RATE_INFO_BW_80:
622 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
623 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
624 			break;
625 		case RATE_INFO_BW_160:
626 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
627 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
628 			break;
629 		case RATE_INFO_BW_HE_RU:
630 #define CHECK_RU_ALLOC(s) \
631 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
632 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
633 
634 			CHECK_RU_ALLOC(26);
635 			CHECK_RU_ALLOC(52);
636 			CHECK_RU_ALLOC(106);
637 			CHECK_RU_ALLOC(242);
638 			CHECK_RU_ALLOC(484);
639 			CHECK_RU_ALLOC(996);
640 			CHECK_RU_ALLOC(2x996);
641 
642 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
643 					    status->he_ru + 4);
644 			break;
645 		default:
646 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
647 		}
648 
649 		/* ensure 2 byte alignment */
650 		while ((pos - (u8 *)rthdr) & 1)
651 			pos++;
652 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
653 		memcpy(pos, &he, sizeof(he));
654 		pos += sizeof(he);
655 	}
656 
657 	if (status->encoding == RX_ENC_HE &&
658 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
659 		/* ensure 2 byte alignment */
660 		while ((pos - (u8 *)rthdr) & 1)
661 			pos++;
662 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
663 		memcpy(pos, &he_mu, sizeof(he_mu));
664 		pos += sizeof(he_mu);
665 	}
666 
667 	if (status->flag & RX_FLAG_NO_PSDU) {
668 		rthdr->it_present |=
669 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
670 		*pos++ = status->zero_length_psdu_type;
671 	}
672 
673 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
674 		/* ensure 2 byte alignment */
675 		while ((pos - (u8 *)rthdr) & 1)
676 			pos++;
677 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
678 		memcpy(pos, &lsig, sizeof(lsig));
679 		pos += sizeof(lsig);
680 	}
681 
682 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
683 		*pos++ = status->chain_signal[chain];
684 		*pos++ = chain;
685 	}
686 
687 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
688 		/* ensure 2 byte alignment for the vendor field as required */
689 		if ((pos - (u8 *)rthdr) & 1)
690 			*pos++ = 0;
691 		*pos++ = rtap.oui[0];
692 		*pos++ = rtap.oui[1];
693 		*pos++ = rtap.oui[2];
694 		*pos++ = rtap.subns;
695 		put_unaligned_le16(rtap.len, pos);
696 		pos += 2;
697 		/* align the actual payload as requested */
698 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
699 			*pos++ = 0;
700 		/* data (and possible padding) already follows */
701 	}
702 }
703 
704 static struct sk_buff *
705 ieee80211_make_monitor_skb(struct ieee80211_local *local,
706 			   struct sk_buff **origskb,
707 			   struct ieee80211_rate *rate,
708 			   int rtap_space, bool use_origskb)
709 {
710 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
711 	int rt_hdrlen, needed_headroom;
712 	struct sk_buff *skb;
713 
714 	/* room for the radiotap header based on driver features */
715 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
716 	needed_headroom = rt_hdrlen - rtap_space;
717 
718 	if (use_origskb) {
719 		/* only need to expand headroom if necessary */
720 		skb = *origskb;
721 		*origskb = NULL;
722 
723 		/*
724 		 * This shouldn't trigger often because most devices have an
725 		 * RX header they pull before we get here, and that should
726 		 * be big enough for our radiotap information. We should
727 		 * probably export the length to drivers so that we can have
728 		 * them allocate enough headroom to start with.
729 		 */
730 		if (skb_headroom(skb) < needed_headroom &&
731 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
732 			dev_kfree_skb(skb);
733 			return NULL;
734 		}
735 	} else {
736 		/*
737 		 * Need to make a copy and possibly remove radiotap header
738 		 * and FCS from the original.
739 		 */
740 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
741 
742 		if (!skb)
743 			return NULL;
744 	}
745 
746 	/* prepend radiotap information */
747 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
748 
749 	skb_reset_mac_header(skb);
750 	skb->ip_summed = CHECKSUM_UNNECESSARY;
751 	skb->pkt_type = PACKET_OTHERHOST;
752 	skb->protocol = htons(ETH_P_802_2);
753 
754 	return skb;
755 }
756 
757 /*
758  * This function copies a received frame to all monitor interfaces and
759  * returns a cleaned-up SKB that no longer includes the FCS nor the
760  * radiotap header the driver might have added.
761  */
762 static struct sk_buff *
763 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
764 		     struct ieee80211_rate *rate)
765 {
766 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
767 	struct ieee80211_sub_if_data *sdata;
768 	struct sk_buff *monskb = NULL;
769 	int present_fcs_len = 0;
770 	unsigned int rtap_space = 0;
771 	struct ieee80211_sub_if_data *monitor_sdata =
772 		rcu_dereference(local->monitor_sdata);
773 	bool only_monitor = false;
774 	unsigned int min_head_len;
775 
776 	if (status->flag & RX_FLAG_RADIOTAP_HE)
777 		rtap_space += sizeof(struct ieee80211_radiotap_he);
778 
779 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
780 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
781 
782 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
783 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
784 
785 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
786 		struct ieee80211_vendor_radiotap *rtap =
787 			(void *)(origskb->data + rtap_space);
788 
789 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
790 	}
791 
792 	min_head_len = rtap_space;
793 
794 	/*
795 	 * First, we may need to make a copy of the skb because
796 	 *  (1) we need to modify it for radiotap (if not present), and
797 	 *  (2) the other RX handlers will modify the skb we got.
798 	 *
799 	 * We don't need to, of course, if we aren't going to return
800 	 * the SKB because it has a bad FCS/PLCP checksum.
801 	 */
802 
803 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
804 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
805 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
806 				/* driver bug */
807 				WARN_ON(1);
808 				dev_kfree_skb(origskb);
809 				return NULL;
810 			}
811 			present_fcs_len = FCS_LEN;
812 		}
813 
814 		/* also consider the hdr->frame_control */
815 		min_head_len += 2;
816 	}
817 
818 	/* ensure that the expected data elements are in skb head */
819 	if (!pskb_may_pull(origskb, min_head_len)) {
820 		dev_kfree_skb(origskb);
821 		return NULL;
822 	}
823 
824 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
825 
826 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
827 		if (only_monitor) {
828 			dev_kfree_skb(origskb);
829 			return NULL;
830 		}
831 
832 		remove_monitor_info(origskb, present_fcs_len, rtap_space);
833 		return origskb;
834 	}
835 
836 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
837 
838 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
839 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
840 						 &local->mon_list);
841 
842 		if (!monskb)
843 			monskb = ieee80211_make_monitor_skb(local, &origskb,
844 							    rate, rtap_space,
845 							    only_monitor &&
846 							    last_monitor);
847 
848 		if (monskb) {
849 			struct sk_buff *skb;
850 
851 			if (last_monitor) {
852 				skb = monskb;
853 				monskb = NULL;
854 			} else {
855 				skb = skb_clone(monskb, GFP_ATOMIC);
856 			}
857 
858 			if (skb) {
859 				skb->dev = sdata->dev;
860 				ieee80211_rx_stats(skb->dev, skb->len);
861 				netif_receive_skb(skb);
862 			}
863 		}
864 
865 		if (last_monitor)
866 			break;
867 	}
868 
869 	/* this happens if last_monitor was erroneously false */
870 	dev_kfree_skb(monskb);
871 
872 	/* ditto */
873 	if (!origskb)
874 		return NULL;
875 
876 	remove_monitor_info(origskb, present_fcs_len, rtap_space);
877 	return origskb;
878 }
879 
880 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
881 {
882 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
883 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
884 	int tid, seqno_idx, security_idx;
885 
886 	/* does the frame have a qos control field? */
887 	if (ieee80211_is_data_qos(hdr->frame_control)) {
888 		u8 *qc = ieee80211_get_qos_ctl(hdr);
889 		/* frame has qos control */
890 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
891 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
892 			status->rx_flags |= IEEE80211_RX_AMSDU;
893 
894 		seqno_idx = tid;
895 		security_idx = tid;
896 	} else {
897 		/*
898 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
899 		 *
900 		 *	Sequence numbers for management frames, QoS data
901 		 *	frames with a broadcast/multicast address in the
902 		 *	Address 1 field, and all non-QoS data frames sent
903 		 *	by QoS STAs are assigned using an additional single
904 		 *	modulo-4096 counter, [...]
905 		 *
906 		 * We also use that counter for non-QoS STAs.
907 		 */
908 		seqno_idx = IEEE80211_NUM_TIDS;
909 		security_idx = 0;
910 		if (ieee80211_is_mgmt(hdr->frame_control))
911 			security_idx = IEEE80211_NUM_TIDS;
912 		tid = 0;
913 	}
914 
915 	rx->seqno_idx = seqno_idx;
916 	rx->security_idx = security_idx;
917 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
918 	 * For now, set skb->priority to 0 for other cases. */
919 	rx->skb->priority = (tid > 7) ? 0 : tid;
920 }
921 
922 /**
923  * DOC: Packet alignment
924  *
925  * Drivers always need to pass packets that are aligned to two-byte boundaries
926  * to the stack.
927  *
928  * Additionally, should, if possible, align the payload data in a way that
929  * guarantees that the contained IP header is aligned to a four-byte
930  * boundary. In the case of regular frames, this simply means aligning the
931  * payload to a four-byte boundary (because either the IP header is directly
932  * contained, or IV/RFC1042 headers that have a length divisible by four are
933  * in front of it).  If the payload data is not properly aligned and the
934  * architecture doesn't support efficient unaligned operations, mac80211
935  * will align the data.
936  *
937  * With A-MSDU frames, however, the payload data address must yield two modulo
938  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
939  * push the IP header further back to a multiple of four again. Thankfully, the
940  * specs were sane enough this time around to require padding each A-MSDU
941  * subframe to a length that is a multiple of four.
942  *
943  * Padding like Atheros hardware adds which is between the 802.11 header and
944  * the payload is not supported, the driver is required to move the 802.11
945  * header to be directly in front of the payload in that case.
946  */
947 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
948 {
949 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
950 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
951 #endif
952 }
953 
954 
955 /* rx handlers */
956 
957 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
958 {
959 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
960 
961 	if (is_multicast_ether_addr(hdr->addr1))
962 		return 0;
963 
964 	return ieee80211_is_robust_mgmt_frame(skb);
965 }
966 
967 
968 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
969 {
970 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
971 
972 	if (!is_multicast_ether_addr(hdr->addr1))
973 		return 0;
974 
975 	return ieee80211_is_robust_mgmt_frame(skb);
976 }
977 
978 
979 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
980 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
981 {
982 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
983 	struct ieee80211_mmie *mmie;
984 	struct ieee80211_mmie_16 *mmie16;
985 
986 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
987 		return -1;
988 
989 	if (!ieee80211_is_robust_mgmt_frame(skb))
990 		return -1; /* not a robust management frame */
991 
992 	mmie = (struct ieee80211_mmie *)
993 		(skb->data + skb->len - sizeof(*mmie));
994 	if (mmie->element_id == WLAN_EID_MMIE &&
995 	    mmie->length == sizeof(*mmie) - 2)
996 		return le16_to_cpu(mmie->key_id);
997 
998 	mmie16 = (struct ieee80211_mmie_16 *)
999 		(skb->data + skb->len - sizeof(*mmie16));
1000 	if (skb->len >= 24 + sizeof(*mmie16) &&
1001 	    mmie16->element_id == WLAN_EID_MMIE &&
1002 	    mmie16->length == sizeof(*mmie16) - 2)
1003 		return le16_to_cpu(mmie16->key_id);
1004 
1005 	return -1;
1006 }
1007 
1008 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
1009 				  struct sk_buff *skb)
1010 {
1011 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1012 	__le16 fc;
1013 	int hdrlen;
1014 	u8 keyid;
1015 
1016 	fc = hdr->frame_control;
1017 	hdrlen = ieee80211_hdrlen(fc);
1018 
1019 	if (skb->len < hdrlen + cs->hdr_len)
1020 		return -EINVAL;
1021 
1022 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
1023 	keyid &= cs->key_idx_mask;
1024 	keyid >>= cs->key_idx_shift;
1025 
1026 	return keyid;
1027 }
1028 
1029 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1030 {
1031 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1032 	char *dev_addr = rx->sdata->vif.addr;
1033 
1034 	if (ieee80211_is_data(hdr->frame_control)) {
1035 		if (is_multicast_ether_addr(hdr->addr1)) {
1036 			if (ieee80211_has_tods(hdr->frame_control) ||
1037 			    !ieee80211_has_fromds(hdr->frame_control))
1038 				return RX_DROP_MONITOR;
1039 			if (ether_addr_equal(hdr->addr3, dev_addr))
1040 				return RX_DROP_MONITOR;
1041 		} else {
1042 			if (!ieee80211_has_a4(hdr->frame_control))
1043 				return RX_DROP_MONITOR;
1044 			if (ether_addr_equal(hdr->addr4, dev_addr))
1045 				return RX_DROP_MONITOR;
1046 		}
1047 	}
1048 
1049 	/* If there is not an established peer link and this is not a peer link
1050 	 * establisment frame, beacon or probe, drop the frame.
1051 	 */
1052 
1053 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1054 		struct ieee80211_mgmt *mgmt;
1055 
1056 		if (!ieee80211_is_mgmt(hdr->frame_control))
1057 			return RX_DROP_MONITOR;
1058 
1059 		if (ieee80211_is_action(hdr->frame_control)) {
1060 			u8 category;
1061 
1062 			/* make sure category field is present */
1063 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1064 				return RX_DROP_MONITOR;
1065 
1066 			mgmt = (struct ieee80211_mgmt *)hdr;
1067 			category = mgmt->u.action.category;
1068 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1069 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1070 				return RX_DROP_MONITOR;
1071 			return RX_CONTINUE;
1072 		}
1073 
1074 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1075 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1076 		    ieee80211_is_beacon(hdr->frame_control) ||
1077 		    ieee80211_is_auth(hdr->frame_control))
1078 			return RX_CONTINUE;
1079 
1080 		return RX_DROP_MONITOR;
1081 	}
1082 
1083 	return RX_CONTINUE;
1084 }
1085 
1086 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1087 					      int index)
1088 {
1089 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1090 	struct sk_buff *tail = skb_peek_tail(frames);
1091 	struct ieee80211_rx_status *status;
1092 
1093 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1094 		return true;
1095 
1096 	if (!tail)
1097 		return false;
1098 
1099 	status = IEEE80211_SKB_RXCB(tail);
1100 	if (status->flag & RX_FLAG_AMSDU_MORE)
1101 		return false;
1102 
1103 	return true;
1104 }
1105 
1106 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1107 					    struct tid_ampdu_rx *tid_agg_rx,
1108 					    int index,
1109 					    struct sk_buff_head *frames)
1110 {
1111 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1112 	struct sk_buff *skb;
1113 	struct ieee80211_rx_status *status;
1114 
1115 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1116 
1117 	if (skb_queue_empty(skb_list))
1118 		goto no_frame;
1119 
1120 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1121 		__skb_queue_purge(skb_list);
1122 		goto no_frame;
1123 	}
1124 
1125 	/* release frames from the reorder ring buffer */
1126 	tid_agg_rx->stored_mpdu_num--;
1127 	while ((skb = __skb_dequeue(skb_list))) {
1128 		status = IEEE80211_SKB_RXCB(skb);
1129 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1130 		__skb_queue_tail(frames, skb);
1131 	}
1132 
1133 no_frame:
1134 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1135 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1136 }
1137 
1138 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1139 					     struct tid_ampdu_rx *tid_agg_rx,
1140 					     u16 head_seq_num,
1141 					     struct sk_buff_head *frames)
1142 {
1143 	int index;
1144 
1145 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1146 
1147 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1148 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1149 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1150 						frames);
1151 	}
1152 }
1153 
1154 /*
1155  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1156  * the skb was added to the buffer longer than this time ago, the earlier
1157  * frames that have not yet been received are assumed to be lost and the skb
1158  * can be released for processing. This may also release other skb's from the
1159  * reorder buffer if there are no additional gaps between the frames.
1160  *
1161  * Callers must hold tid_agg_rx->reorder_lock.
1162  */
1163 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1164 
1165 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1166 					  struct tid_ampdu_rx *tid_agg_rx,
1167 					  struct sk_buff_head *frames)
1168 {
1169 	int index, i, j;
1170 
1171 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1172 
1173 	/* release the buffer until next missing frame */
1174 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1175 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1176 	    tid_agg_rx->stored_mpdu_num) {
1177 		/*
1178 		 * No buffers ready to be released, but check whether any
1179 		 * frames in the reorder buffer have timed out.
1180 		 */
1181 		int skipped = 1;
1182 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1183 		     j = (j + 1) % tid_agg_rx->buf_size) {
1184 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1185 				skipped++;
1186 				continue;
1187 			}
1188 			if (skipped &&
1189 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1190 					HT_RX_REORDER_BUF_TIMEOUT))
1191 				goto set_release_timer;
1192 
1193 			/* don't leave incomplete A-MSDUs around */
1194 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1195 			     i = (i + 1) % tid_agg_rx->buf_size)
1196 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1197 
1198 			ht_dbg_ratelimited(sdata,
1199 					   "release an RX reorder frame due to timeout on earlier frames\n");
1200 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1201 							frames);
1202 
1203 			/*
1204 			 * Increment the head seq# also for the skipped slots.
1205 			 */
1206 			tid_agg_rx->head_seq_num =
1207 				(tid_agg_rx->head_seq_num +
1208 				 skipped) & IEEE80211_SN_MASK;
1209 			skipped = 0;
1210 		}
1211 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1212 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1213 						frames);
1214 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1215 	}
1216 
1217 	if (tid_agg_rx->stored_mpdu_num) {
1218 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1219 
1220 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1221 		     j = (j + 1) % tid_agg_rx->buf_size) {
1222 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1223 				break;
1224 		}
1225 
1226  set_release_timer:
1227 
1228 		if (!tid_agg_rx->removed)
1229 			mod_timer(&tid_agg_rx->reorder_timer,
1230 				  tid_agg_rx->reorder_time[j] + 1 +
1231 				  HT_RX_REORDER_BUF_TIMEOUT);
1232 	} else {
1233 		del_timer(&tid_agg_rx->reorder_timer);
1234 	}
1235 }
1236 
1237 /*
1238  * As this function belongs to the RX path it must be under
1239  * rcu_read_lock protection. It returns false if the frame
1240  * can be processed immediately, true if it was consumed.
1241  */
1242 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1243 					     struct tid_ampdu_rx *tid_agg_rx,
1244 					     struct sk_buff *skb,
1245 					     struct sk_buff_head *frames)
1246 {
1247 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1248 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1249 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1250 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1251 	u16 head_seq_num, buf_size;
1252 	int index;
1253 	bool ret = true;
1254 
1255 	spin_lock(&tid_agg_rx->reorder_lock);
1256 
1257 	/*
1258 	 * Offloaded BA sessions have no known starting sequence number so pick
1259 	 * one from first Rxed frame for this tid after BA was started.
1260 	 */
1261 	if (unlikely(tid_agg_rx->auto_seq)) {
1262 		tid_agg_rx->auto_seq = false;
1263 		tid_agg_rx->ssn = mpdu_seq_num;
1264 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1265 	}
1266 
1267 	buf_size = tid_agg_rx->buf_size;
1268 	head_seq_num = tid_agg_rx->head_seq_num;
1269 
1270 	/*
1271 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1272 	 * be reordered.
1273 	 */
1274 	if (unlikely(!tid_agg_rx->started)) {
1275 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1276 			ret = false;
1277 			goto out;
1278 		}
1279 		tid_agg_rx->started = true;
1280 	}
1281 
1282 	/* frame with out of date sequence number */
1283 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1284 		dev_kfree_skb(skb);
1285 		goto out;
1286 	}
1287 
1288 	/*
1289 	 * If frame the sequence number exceeds our buffering window
1290 	 * size release some previous frames to make room for this one.
1291 	 */
1292 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1293 		head_seq_num = ieee80211_sn_inc(
1294 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1295 		/* release stored frames up to new head to stack */
1296 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1297 						 head_seq_num, frames);
1298 	}
1299 
1300 	/* Now the new frame is always in the range of the reordering buffer */
1301 
1302 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1303 
1304 	/* check if we already stored this frame */
1305 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1306 		dev_kfree_skb(skb);
1307 		goto out;
1308 	}
1309 
1310 	/*
1311 	 * If the current MPDU is in the right order and nothing else
1312 	 * is stored we can process it directly, no need to buffer it.
1313 	 * If it is first but there's something stored, we may be able
1314 	 * to release frames after this one.
1315 	 */
1316 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1317 	    tid_agg_rx->stored_mpdu_num == 0) {
1318 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1319 			tid_agg_rx->head_seq_num =
1320 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1321 		ret = false;
1322 		goto out;
1323 	}
1324 
1325 	/* put the frame in the reordering buffer */
1326 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1327 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1328 		tid_agg_rx->reorder_time[index] = jiffies;
1329 		tid_agg_rx->stored_mpdu_num++;
1330 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1331 	}
1332 
1333  out:
1334 	spin_unlock(&tid_agg_rx->reorder_lock);
1335 	return ret;
1336 }
1337 
1338 /*
1339  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1340  * true if the MPDU was buffered, false if it should be processed.
1341  */
1342 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1343 				       struct sk_buff_head *frames)
1344 {
1345 	struct sk_buff *skb = rx->skb;
1346 	struct ieee80211_local *local = rx->local;
1347 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1348 	struct sta_info *sta = rx->sta;
1349 	struct tid_ampdu_rx *tid_agg_rx;
1350 	u16 sc;
1351 	u8 tid, ack_policy;
1352 
1353 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1354 	    is_multicast_ether_addr(hdr->addr1))
1355 		goto dont_reorder;
1356 
1357 	/*
1358 	 * filter the QoS data rx stream according to
1359 	 * STA/TID and check if this STA/TID is on aggregation
1360 	 */
1361 
1362 	if (!sta)
1363 		goto dont_reorder;
1364 
1365 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1366 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1367 	tid = ieee80211_get_tid(hdr);
1368 
1369 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1370 	if (!tid_agg_rx) {
1371 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1372 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1373 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1374 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1375 					     WLAN_BACK_RECIPIENT,
1376 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1377 		goto dont_reorder;
1378 	}
1379 
1380 	/* qos null data frames are excluded */
1381 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1382 		goto dont_reorder;
1383 
1384 	/* not part of a BA session */
1385 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1386 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1387 		goto dont_reorder;
1388 
1389 	/* new, potentially un-ordered, ampdu frame - process it */
1390 
1391 	/* reset session timer */
1392 	if (tid_agg_rx->timeout)
1393 		tid_agg_rx->last_rx = jiffies;
1394 
1395 	/* if this mpdu is fragmented - terminate rx aggregation session */
1396 	sc = le16_to_cpu(hdr->seq_ctrl);
1397 	if (sc & IEEE80211_SCTL_FRAG) {
1398 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1399 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1400 		return;
1401 	}
1402 
1403 	/*
1404 	 * No locking needed -- we will only ever process one
1405 	 * RX packet at a time, and thus own tid_agg_rx. All
1406 	 * other code manipulating it needs to (and does) make
1407 	 * sure that we cannot get to it any more before doing
1408 	 * anything with it.
1409 	 */
1410 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1411 					     frames))
1412 		return;
1413 
1414  dont_reorder:
1415 	__skb_queue_tail(frames, skb);
1416 }
1417 
1418 static ieee80211_rx_result debug_noinline
1419 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1420 {
1421 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1422 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1423 
1424 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1425 		return RX_CONTINUE;
1426 
1427 	/*
1428 	 * Drop duplicate 802.11 retransmissions
1429 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1430 	 */
1431 
1432 	if (rx->skb->len < 24)
1433 		return RX_CONTINUE;
1434 
1435 	if (ieee80211_is_ctl(hdr->frame_control) ||
1436 	    ieee80211_is_nullfunc(hdr->frame_control) ||
1437 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1438 	    is_multicast_ether_addr(hdr->addr1))
1439 		return RX_CONTINUE;
1440 
1441 	if (!rx->sta)
1442 		return RX_CONTINUE;
1443 
1444 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1445 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1446 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1447 		rx->sta->rx_stats.num_duplicates++;
1448 		return RX_DROP_UNUSABLE;
1449 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1450 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1451 	}
1452 
1453 	return RX_CONTINUE;
1454 }
1455 
1456 static ieee80211_rx_result debug_noinline
1457 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1458 {
1459 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1460 
1461 	/* Drop disallowed frame classes based on STA auth/assoc state;
1462 	 * IEEE 802.11, Chap 5.5.
1463 	 *
1464 	 * mac80211 filters only based on association state, i.e. it drops
1465 	 * Class 3 frames from not associated stations. hostapd sends
1466 	 * deauth/disassoc frames when needed. In addition, hostapd is
1467 	 * responsible for filtering on both auth and assoc states.
1468 	 */
1469 
1470 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1471 		return ieee80211_rx_mesh_check(rx);
1472 
1473 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1474 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1475 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1476 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1477 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1478 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1479 		/*
1480 		 * accept port control frames from the AP even when it's not
1481 		 * yet marked ASSOC to prevent a race where we don't set the
1482 		 * assoc bit quickly enough before it sends the first frame
1483 		 */
1484 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1485 		    ieee80211_is_data_present(hdr->frame_control)) {
1486 			unsigned int hdrlen;
1487 			__be16 ethertype;
1488 
1489 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1490 
1491 			if (rx->skb->len < hdrlen + 8)
1492 				return RX_DROP_MONITOR;
1493 
1494 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1495 			if (ethertype == rx->sdata->control_port_protocol)
1496 				return RX_CONTINUE;
1497 		}
1498 
1499 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1500 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1501 					       hdr->addr2,
1502 					       GFP_ATOMIC))
1503 			return RX_DROP_UNUSABLE;
1504 
1505 		return RX_DROP_MONITOR;
1506 	}
1507 
1508 	return RX_CONTINUE;
1509 }
1510 
1511 
1512 static ieee80211_rx_result debug_noinline
1513 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1514 {
1515 	struct ieee80211_local *local;
1516 	struct ieee80211_hdr *hdr;
1517 	struct sk_buff *skb;
1518 
1519 	local = rx->local;
1520 	skb = rx->skb;
1521 	hdr = (struct ieee80211_hdr *) skb->data;
1522 
1523 	if (!local->pspolling)
1524 		return RX_CONTINUE;
1525 
1526 	if (!ieee80211_has_fromds(hdr->frame_control))
1527 		/* this is not from AP */
1528 		return RX_CONTINUE;
1529 
1530 	if (!ieee80211_is_data(hdr->frame_control))
1531 		return RX_CONTINUE;
1532 
1533 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1534 		/* AP has no more frames buffered for us */
1535 		local->pspolling = false;
1536 		return RX_CONTINUE;
1537 	}
1538 
1539 	/* more data bit is set, let's request a new frame from the AP */
1540 	ieee80211_send_pspoll(local, rx->sdata);
1541 
1542 	return RX_CONTINUE;
1543 }
1544 
1545 static void sta_ps_start(struct sta_info *sta)
1546 {
1547 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1548 	struct ieee80211_local *local = sdata->local;
1549 	struct ps_data *ps;
1550 	int tid;
1551 
1552 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1553 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1554 		ps = &sdata->bss->ps;
1555 	else
1556 		return;
1557 
1558 	atomic_inc(&ps->num_sta_ps);
1559 	set_sta_flag(sta, WLAN_STA_PS_STA);
1560 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1561 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1562 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1563 	       sta->sta.addr, sta->sta.aid);
1564 
1565 	ieee80211_clear_fast_xmit(sta);
1566 
1567 	if (!sta->sta.txq[0])
1568 		return;
1569 
1570 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1571 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1572 		struct txq_info *txqi = to_txq_info(txq);
1573 
1574 		spin_lock(&local->active_txq_lock[txq->ac]);
1575 		if (!list_empty(&txqi->schedule_order))
1576 			list_del_init(&txqi->schedule_order);
1577 		spin_unlock(&local->active_txq_lock[txq->ac]);
1578 
1579 		if (txq_has_queue(txq))
1580 			set_bit(tid, &sta->txq_buffered_tids);
1581 		else
1582 			clear_bit(tid, &sta->txq_buffered_tids);
1583 	}
1584 }
1585 
1586 static void sta_ps_end(struct sta_info *sta)
1587 {
1588 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1589 	       sta->sta.addr, sta->sta.aid);
1590 
1591 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1592 		/*
1593 		 * Clear the flag only if the other one is still set
1594 		 * so that the TX path won't start TX'ing new frames
1595 		 * directly ... In the case that the driver flag isn't
1596 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1597 		 */
1598 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1599 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1600 		       sta->sta.addr, sta->sta.aid);
1601 		return;
1602 	}
1603 
1604 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1605 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1606 	ieee80211_sta_ps_deliver_wakeup(sta);
1607 }
1608 
1609 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1610 {
1611 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1612 	bool in_ps;
1613 
1614 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1615 
1616 	/* Don't let the same PS state be set twice */
1617 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1618 	if ((start && in_ps) || (!start && !in_ps))
1619 		return -EINVAL;
1620 
1621 	if (start)
1622 		sta_ps_start(sta);
1623 	else
1624 		sta_ps_end(sta);
1625 
1626 	return 0;
1627 }
1628 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1629 
1630 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1631 {
1632 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1633 
1634 	if (test_sta_flag(sta, WLAN_STA_SP))
1635 		return;
1636 
1637 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1638 		ieee80211_sta_ps_deliver_poll_response(sta);
1639 	else
1640 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1641 }
1642 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1643 
1644 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1645 {
1646 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1647 	int ac = ieee80211_ac_from_tid(tid);
1648 
1649 	/*
1650 	 * If this AC is not trigger-enabled do nothing unless the
1651 	 * driver is calling us after it already checked.
1652 	 *
1653 	 * NB: This could/should check a separate bitmap of trigger-
1654 	 * enabled queues, but for now we only implement uAPSD w/o
1655 	 * TSPEC changes to the ACs, so they're always the same.
1656 	 */
1657 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1658 	    tid != IEEE80211_NUM_TIDS)
1659 		return;
1660 
1661 	/* if we are in a service period, do nothing */
1662 	if (test_sta_flag(sta, WLAN_STA_SP))
1663 		return;
1664 
1665 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1666 		ieee80211_sta_ps_deliver_uapsd(sta);
1667 	else
1668 		set_sta_flag(sta, WLAN_STA_UAPSD);
1669 }
1670 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1671 
1672 static ieee80211_rx_result debug_noinline
1673 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1674 {
1675 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1676 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1677 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1678 
1679 	if (!rx->sta)
1680 		return RX_CONTINUE;
1681 
1682 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1683 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1684 		return RX_CONTINUE;
1685 
1686 	/*
1687 	 * The device handles station powersave, so don't do anything about
1688 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1689 	 * it to mac80211 since they're handled.)
1690 	 */
1691 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1692 		return RX_CONTINUE;
1693 
1694 	/*
1695 	 * Don't do anything if the station isn't already asleep. In
1696 	 * the uAPSD case, the station will probably be marked asleep,
1697 	 * in the PS-Poll case the station must be confused ...
1698 	 */
1699 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1700 		return RX_CONTINUE;
1701 
1702 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1703 		ieee80211_sta_pspoll(&rx->sta->sta);
1704 
1705 		/* Free PS Poll skb here instead of returning RX_DROP that would
1706 		 * count as an dropped frame. */
1707 		dev_kfree_skb(rx->skb);
1708 
1709 		return RX_QUEUED;
1710 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1711 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1712 		   ieee80211_has_pm(hdr->frame_control) &&
1713 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1714 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1715 		u8 tid = ieee80211_get_tid(hdr);
1716 
1717 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1718 	}
1719 
1720 	return RX_CONTINUE;
1721 }
1722 
1723 static ieee80211_rx_result debug_noinline
1724 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1725 {
1726 	struct sta_info *sta = rx->sta;
1727 	struct sk_buff *skb = rx->skb;
1728 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1729 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1730 	int i;
1731 
1732 	if (!sta)
1733 		return RX_CONTINUE;
1734 
1735 	/*
1736 	 * Update last_rx only for IBSS packets which are for the current
1737 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1738 	 * current IBSS network alive in cases where other STAs start
1739 	 * using different BSSID. This will also give the station another
1740 	 * chance to restart the authentication/authorization in case
1741 	 * something went wrong the first time.
1742 	 */
1743 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1744 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1745 						NL80211_IFTYPE_ADHOC);
1746 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1747 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1748 			sta->rx_stats.last_rx = jiffies;
1749 			if (ieee80211_is_data(hdr->frame_control) &&
1750 			    !is_multicast_ether_addr(hdr->addr1))
1751 				sta->rx_stats.last_rate =
1752 					sta_stats_encode_rate(status);
1753 		}
1754 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1755 		sta->rx_stats.last_rx = jiffies;
1756 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1757 		/*
1758 		 * Mesh beacons will update last_rx when if they are found to
1759 		 * match the current local configuration when processed.
1760 		 */
1761 		sta->rx_stats.last_rx = jiffies;
1762 		if (ieee80211_is_data(hdr->frame_control))
1763 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1764 	}
1765 
1766 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1767 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1768 
1769 	sta->rx_stats.fragments++;
1770 
1771 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1772 	sta->rx_stats.bytes += rx->skb->len;
1773 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1774 
1775 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1776 		sta->rx_stats.last_signal = status->signal;
1777 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1778 	}
1779 
1780 	if (status->chains) {
1781 		sta->rx_stats.chains = status->chains;
1782 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1783 			int signal = status->chain_signal[i];
1784 
1785 			if (!(status->chains & BIT(i)))
1786 				continue;
1787 
1788 			sta->rx_stats.chain_signal_last[i] = signal;
1789 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1790 					-signal);
1791 		}
1792 	}
1793 
1794 	/*
1795 	 * Change STA power saving mode only at the end of a frame
1796 	 * exchange sequence, and only for a data or management
1797 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1798 	 */
1799 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1800 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1801 	    !is_multicast_ether_addr(hdr->addr1) &&
1802 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1803 	     ieee80211_is_data(hdr->frame_control)) &&
1804 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1805 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1806 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1807 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1808 			if (!ieee80211_has_pm(hdr->frame_control))
1809 				sta_ps_end(sta);
1810 		} else {
1811 			if (ieee80211_has_pm(hdr->frame_control))
1812 				sta_ps_start(sta);
1813 		}
1814 	}
1815 
1816 	/* mesh power save support */
1817 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1818 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1819 
1820 	/*
1821 	 * Drop (qos-)data::nullfunc frames silently, since they
1822 	 * are used only to control station power saving mode.
1823 	 */
1824 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1825 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1826 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1827 
1828 		/*
1829 		 * If we receive a 4-addr nullfunc frame from a STA
1830 		 * that was not moved to a 4-addr STA vlan yet send
1831 		 * the event to userspace and for older hostapd drop
1832 		 * the frame to the monitor interface.
1833 		 */
1834 		if (ieee80211_has_a4(hdr->frame_control) &&
1835 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1836 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1837 		      !rx->sdata->u.vlan.sta))) {
1838 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1839 				cfg80211_rx_unexpected_4addr_frame(
1840 					rx->sdata->dev, sta->sta.addr,
1841 					GFP_ATOMIC);
1842 			return RX_DROP_MONITOR;
1843 		}
1844 		/*
1845 		 * Update counter and free packet here to avoid
1846 		 * counting this as a dropped packed.
1847 		 */
1848 		sta->rx_stats.packets++;
1849 		dev_kfree_skb(rx->skb);
1850 		return RX_QUEUED;
1851 	}
1852 
1853 	return RX_CONTINUE;
1854 } /* ieee80211_rx_h_sta_process */
1855 
1856 static ieee80211_rx_result debug_noinline
1857 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1858 {
1859 	struct sk_buff *skb = rx->skb;
1860 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1861 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1862 	int keyidx;
1863 	int hdrlen;
1864 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1865 	struct ieee80211_key *sta_ptk = NULL;
1866 	int mmie_keyidx = -1;
1867 	__le16 fc;
1868 	const struct ieee80211_cipher_scheme *cs = NULL;
1869 
1870 	/*
1871 	 * Key selection 101
1872 	 *
1873 	 * There are four types of keys:
1874 	 *  - GTK (group keys)
1875 	 *  - IGTK (group keys for management frames)
1876 	 *  - PTK (pairwise keys)
1877 	 *  - STK (station-to-station pairwise keys)
1878 	 *
1879 	 * When selecting a key, we have to distinguish between multicast
1880 	 * (including broadcast) and unicast frames, the latter can only
1881 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1882 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1883 	 * unicast frames can also use key indices like GTKs. Hence, if we
1884 	 * don't have a PTK/STK we check the key index for a WEP key.
1885 	 *
1886 	 * Note that in a regular BSS, multicast frames are sent by the
1887 	 * AP only, associated stations unicast the frame to the AP first
1888 	 * which then multicasts it on their behalf.
1889 	 *
1890 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1891 	 * with each station, that is something we don't currently handle.
1892 	 * The spec seems to expect that one negotiates the same key with
1893 	 * every station but there's no such requirement; VLANs could be
1894 	 * possible.
1895 	 */
1896 
1897 	/* start without a key */
1898 	rx->key = NULL;
1899 	fc = hdr->frame_control;
1900 
1901 	if (rx->sta) {
1902 		int keyid = rx->sta->ptk_idx;
1903 
1904 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1905 			cs = rx->sta->cipher_scheme;
1906 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1907 			if (unlikely(keyid < 0))
1908 				return RX_DROP_UNUSABLE;
1909 		}
1910 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1911 	}
1912 
1913 	if (!ieee80211_has_protected(fc))
1914 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1915 
1916 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1917 		rx->key = sta_ptk;
1918 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1919 		    (status->flag & RX_FLAG_IV_STRIPPED))
1920 			return RX_CONTINUE;
1921 		/* Skip decryption if the frame is not protected. */
1922 		if (!ieee80211_has_protected(fc))
1923 			return RX_CONTINUE;
1924 	} else if (mmie_keyidx >= 0) {
1925 		/* Broadcast/multicast robust management frame / BIP */
1926 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1927 		    (status->flag & RX_FLAG_IV_STRIPPED))
1928 			return RX_CONTINUE;
1929 
1930 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1931 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1932 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1933 		if (rx->sta) {
1934 			if (ieee80211_is_group_privacy_action(skb) &&
1935 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1936 				return RX_DROP_MONITOR;
1937 
1938 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1939 		}
1940 		if (!rx->key)
1941 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1942 	} else if (!ieee80211_has_protected(fc)) {
1943 		/*
1944 		 * The frame was not protected, so skip decryption. However, we
1945 		 * need to set rx->key if there is a key that could have been
1946 		 * used so that the frame may be dropped if encryption would
1947 		 * have been expected.
1948 		 */
1949 		struct ieee80211_key *key = NULL;
1950 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1951 		int i;
1952 
1953 		if (ieee80211_is_mgmt(fc) &&
1954 		    is_multicast_ether_addr(hdr->addr1) &&
1955 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1956 			rx->key = key;
1957 		else {
1958 			if (rx->sta) {
1959 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1960 					key = rcu_dereference(rx->sta->gtk[i]);
1961 					if (key)
1962 						break;
1963 				}
1964 			}
1965 			if (!key) {
1966 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1967 					key = rcu_dereference(sdata->keys[i]);
1968 					if (key)
1969 						break;
1970 				}
1971 			}
1972 			if (key)
1973 				rx->key = key;
1974 		}
1975 		return RX_CONTINUE;
1976 	} else {
1977 		u8 keyid;
1978 
1979 		/*
1980 		 * The device doesn't give us the IV so we won't be
1981 		 * able to look up the key. That's ok though, we
1982 		 * don't need to decrypt the frame, we just won't
1983 		 * be able to keep statistics accurate.
1984 		 * Except for key threshold notifications, should
1985 		 * we somehow allow the driver to tell us which key
1986 		 * the hardware used if this flag is set?
1987 		 */
1988 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1989 		    (status->flag & RX_FLAG_IV_STRIPPED))
1990 			return RX_CONTINUE;
1991 
1992 		hdrlen = ieee80211_hdrlen(fc);
1993 
1994 		if (cs) {
1995 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1996 
1997 			if (unlikely(keyidx < 0))
1998 				return RX_DROP_UNUSABLE;
1999 		} else {
2000 			if (rx->skb->len < 8 + hdrlen)
2001 				return RX_DROP_UNUSABLE; /* TODO: count this? */
2002 			/*
2003 			 * no need to call ieee80211_wep_get_keyidx,
2004 			 * it verifies a bunch of things we've done already
2005 			 */
2006 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
2007 			keyidx = keyid >> 6;
2008 		}
2009 
2010 		/* check per-station GTK first, if multicast packet */
2011 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2012 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2013 
2014 		/* if not found, try default key */
2015 		if (!rx->key) {
2016 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2017 
2018 			/*
2019 			 * RSNA-protected unicast frames should always be
2020 			 * sent with pairwise or station-to-station keys,
2021 			 * but for WEP we allow using a key index as well.
2022 			 */
2023 			if (rx->key &&
2024 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2025 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2026 			    !is_multicast_ether_addr(hdr->addr1))
2027 				rx->key = NULL;
2028 		}
2029 	}
2030 
2031 	if (rx->key) {
2032 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2033 			return RX_DROP_MONITOR;
2034 
2035 		/* TODO: add threshold stuff again */
2036 	} else {
2037 		return RX_DROP_MONITOR;
2038 	}
2039 
2040 	switch (rx->key->conf.cipher) {
2041 	case WLAN_CIPHER_SUITE_WEP40:
2042 	case WLAN_CIPHER_SUITE_WEP104:
2043 		result = ieee80211_crypto_wep_decrypt(rx);
2044 		break;
2045 	case WLAN_CIPHER_SUITE_TKIP:
2046 		result = ieee80211_crypto_tkip_decrypt(rx);
2047 		break;
2048 	case WLAN_CIPHER_SUITE_CCMP:
2049 		result = ieee80211_crypto_ccmp_decrypt(
2050 			rx, IEEE80211_CCMP_MIC_LEN);
2051 		break;
2052 	case WLAN_CIPHER_SUITE_CCMP_256:
2053 		result = ieee80211_crypto_ccmp_decrypt(
2054 			rx, IEEE80211_CCMP_256_MIC_LEN);
2055 		break;
2056 	case WLAN_CIPHER_SUITE_AES_CMAC:
2057 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2058 		break;
2059 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2060 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2061 		break;
2062 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2063 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2064 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2065 		break;
2066 	case WLAN_CIPHER_SUITE_GCMP:
2067 	case WLAN_CIPHER_SUITE_GCMP_256:
2068 		result = ieee80211_crypto_gcmp_decrypt(rx);
2069 		break;
2070 	default:
2071 		result = ieee80211_crypto_hw_decrypt(rx);
2072 	}
2073 
2074 	/* the hdr variable is invalid after the decrypt handlers */
2075 
2076 	/* either the frame has been decrypted or will be dropped */
2077 	status->flag |= RX_FLAG_DECRYPTED;
2078 
2079 	return result;
2080 }
2081 
2082 static inline struct ieee80211_fragment_entry *
2083 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2084 			 unsigned int frag, unsigned int seq, int rx_queue,
2085 			 struct sk_buff **skb)
2086 {
2087 	struct ieee80211_fragment_entry *entry;
2088 
2089 	entry = &sdata->fragments[sdata->fragment_next++];
2090 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2091 		sdata->fragment_next = 0;
2092 
2093 	if (!skb_queue_empty(&entry->skb_list))
2094 		__skb_queue_purge(&entry->skb_list);
2095 
2096 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2097 	*skb = NULL;
2098 	entry->first_frag_time = jiffies;
2099 	entry->seq = seq;
2100 	entry->rx_queue = rx_queue;
2101 	entry->last_frag = frag;
2102 	entry->check_sequential_pn = false;
2103 	entry->extra_len = 0;
2104 
2105 	return entry;
2106 }
2107 
2108 static inline struct ieee80211_fragment_entry *
2109 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2110 			  unsigned int frag, unsigned int seq,
2111 			  int rx_queue, struct ieee80211_hdr *hdr)
2112 {
2113 	struct ieee80211_fragment_entry *entry;
2114 	int i, idx;
2115 
2116 	idx = sdata->fragment_next;
2117 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2118 		struct ieee80211_hdr *f_hdr;
2119 		struct sk_buff *f_skb;
2120 
2121 		idx--;
2122 		if (idx < 0)
2123 			idx = IEEE80211_FRAGMENT_MAX - 1;
2124 
2125 		entry = &sdata->fragments[idx];
2126 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2127 		    entry->rx_queue != rx_queue ||
2128 		    entry->last_frag + 1 != frag)
2129 			continue;
2130 
2131 		f_skb = __skb_peek(&entry->skb_list);
2132 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2133 
2134 		/*
2135 		 * Check ftype and addresses are equal, else check next fragment
2136 		 */
2137 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2138 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2139 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2140 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2141 			continue;
2142 
2143 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2144 			__skb_queue_purge(&entry->skb_list);
2145 			continue;
2146 		}
2147 		return entry;
2148 	}
2149 
2150 	return NULL;
2151 }
2152 
2153 static ieee80211_rx_result debug_noinline
2154 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2155 {
2156 	struct ieee80211_hdr *hdr;
2157 	u16 sc;
2158 	__le16 fc;
2159 	unsigned int frag, seq;
2160 	struct ieee80211_fragment_entry *entry;
2161 	struct sk_buff *skb;
2162 
2163 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2164 	fc = hdr->frame_control;
2165 
2166 	if (ieee80211_is_ctl(fc))
2167 		return RX_CONTINUE;
2168 
2169 	sc = le16_to_cpu(hdr->seq_ctrl);
2170 	frag = sc & IEEE80211_SCTL_FRAG;
2171 
2172 	if (is_multicast_ether_addr(hdr->addr1)) {
2173 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2174 		goto out_no_led;
2175 	}
2176 
2177 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2178 		goto out;
2179 
2180 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2181 
2182 	if (skb_linearize(rx->skb))
2183 		return RX_DROP_UNUSABLE;
2184 
2185 	/*
2186 	 *  skb_linearize() might change the skb->data and
2187 	 *  previously cached variables (in this case, hdr) need to
2188 	 *  be refreshed with the new data.
2189 	 */
2190 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2191 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2192 
2193 	if (frag == 0) {
2194 		/* This is the first fragment of a new frame. */
2195 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2196 						 rx->seqno_idx, &(rx->skb));
2197 		if (rx->key &&
2198 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2199 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2200 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2201 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2202 		    ieee80211_has_protected(fc)) {
2203 			int queue = rx->security_idx;
2204 
2205 			/* Store CCMP/GCMP PN so that we can verify that the
2206 			 * next fragment has a sequential PN value.
2207 			 */
2208 			entry->check_sequential_pn = true;
2209 			memcpy(entry->last_pn,
2210 			       rx->key->u.ccmp.rx_pn[queue],
2211 			       IEEE80211_CCMP_PN_LEN);
2212 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2213 					      u.ccmp.rx_pn) !=
2214 				     offsetof(struct ieee80211_key,
2215 					      u.gcmp.rx_pn));
2216 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2217 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2218 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2219 				     IEEE80211_GCMP_PN_LEN);
2220 		}
2221 		return RX_QUEUED;
2222 	}
2223 
2224 	/* This is a fragment for a frame that should already be pending in
2225 	 * fragment cache. Add this fragment to the end of the pending entry.
2226 	 */
2227 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2228 					  rx->seqno_idx, hdr);
2229 	if (!entry) {
2230 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2231 		return RX_DROP_MONITOR;
2232 	}
2233 
2234 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2235 	 *  MPDU PN values are not incrementing in steps of 1."
2236 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2237 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2238 	 */
2239 	if (entry->check_sequential_pn) {
2240 		int i;
2241 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2242 		int queue;
2243 
2244 		if (!rx->key ||
2245 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2246 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2247 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2248 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2249 			return RX_DROP_UNUSABLE;
2250 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2251 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2252 			pn[i]++;
2253 			if (pn[i])
2254 				break;
2255 		}
2256 		queue = rx->security_idx;
2257 		rpn = rx->key->u.ccmp.rx_pn[queue];
2258 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2259 			return RX_DROP_UNUSABLE;
2260 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2261 	}
2262 
2263 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2264 	__skb_queue_tail(&entry->skb_list, rx->skb);
2265 	entry->last_frag = frag;
2266 	entry->extra_len += rx->skb->len;
2267 	if (ieee80211_has_morefrags(fc)) {
2268 		rx->skb = NULL;
2269 		return RX_QUEUED;
2270 	}
2271 
2272 	rx->skb = __skb_dequeue(&entry->skb_list);
2273 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2274 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2275 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2276 					      GFP_ATOMIC))) {
2277 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2278 			__skb_queue_purge(&entry->skb_list);
2279 			return RX_DROP_UNUSABLE;
2280 		}
2281 	}
2282 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2283 		skb_put_data(rx->skb, skb->data, skb->len);
2284 		dev_kfree_skb(skb);
2285 	}
2286 
2287  out:
2288 	ieee80211_led_rx(rx->local);
2289  out_no_led:
2290 	if (rx->sta)
2291 		rx->sta->rx_stats.packets++;
2292 	return RX_CONTINUE;
2293 }
2294 
2295 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2296 {
2297 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2298 		return -EACCES;
2299 
2300 	return 0;
2301 }
2302 
2303 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2304 {
2305 	struct sk_buff *skb = rx->skb;
2306 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2307 
2308 	/*
2309 	 * Pass through unencrypted frames if the hardware has
2310 	 * decrypted them already.
2311 	 */
2312 	if (status->flag & RX_FLAG_DECRYPTED)
2313 		return 0;
2314 
2315 	/* Drop unencrypted frames if key is set. */
2316 	if (unlikely(!ieee80211_has_protected(fc) &&
2317 		     !ieee80211_is_nullfunc(fc) &&
2318 		     ieee80211_is_data(fc) && rx->key))
2319 		return -EACCES;
2320 
2321 	return 0;
2322 }
2323 
2324 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2325 {
2326 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2327 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2328 	__le16 fc = hdr->frame_control;
2329 
2330 	/*
2331 	 * Pass through unencrypted frames if the hardware has
2332 	 * decrypted them already.
2333 	 */
2334 	if (status->flag & RX_FLAG_DECRYPTED)
2335 		return 0;
2336 
2337 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2338 		if (unlikely(!ieee80211_has_protected(fc) &&
2339 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2340 			     rx->key)) {
2341 			if (ieee80211_is_deauth(fc) ||
2342 			    ieee80211_is_disassoc(fc))
2343 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2344 							     rx->skb->data,
2345 							     rx->skb->len);
2346 			return -EACCES;
2347 		}
2348 		/* BIP does not use Protected field, so need to check MMIE */
2349 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2350 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2351 			if (ieee80211_is_deauth(fc) ||
2352 			    ieee80211_is_disassoc(fc))
2353 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2354 							     rx->skb->data,
2355 							     rx->skb->len);
2356 			return -EACCES;
2357 		}
2358 		/*
2359 		 * When using MFP, Action frames are not allowed prior to
2360 		 * having configured keys.
2361 		 */
2362 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2363 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2364 			return -EACCES;
2365 	}
2366 
2367 	return 0;
2368 }
2369 
2370 static int
2371 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2372 {
2373 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2374 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2375 	bool check_port_control = false;
2376 	struct ethhdr *ehdr;
2377 	int ret;
2378 
2379 	*port_control = false;
2380 	if (ieee80211_has_a4(hdr->frame_control) &&
2381 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2382 		return -1;
2383 
2384 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2385 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2386 
2387 		if (!sdata->u.mgd.use_4addr)
2388 			return -1;
2389 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2390 			check_port_control = true;
2391 	}
2392 
2393 	if (is_multicast_ether_addr(hdr->addr1) &&
2394 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2395 		return -1;
2396 
2397 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2398 	if (ret < 0)
2399 		return ret;
2400 
2401 	ehdr = (struct ethhdr *) rx->skb->data;
2402 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2403 		*port_control = true;
2404 	else if (check_port_control)
2405 		return -1;
2406 
2407 	return 0;
2408 }
2409 
2410 /*
2411  * requires that rx->skb is a frame with ethernet header
2412  */
2413 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2414 {
2415 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2416 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2417 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2418 
2419 	/*
2420 	 * Allow EAPOL frames to us/the PAE group address regardless
2421 	 * of whether the frame was encrypted or not.
2422 	 */
2423 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2424 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2425 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2426 		return true;
2427 
2428 	if (ieee80211_802_1x_port_control(rx) ||
2429 	    ieee80211_drop_unencrypted(rx, fc))
2430 		return false;
2431 
2432 	return true;
2433 }
2434 
2435 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2436 						 struct ieee80211_rx_data *rx)
2437 {
2438 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2439 	struct net_device *dev = sdata->dev;
2440 
2441 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2442 		      skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2443 		     sdata->control_port_over_nl80211)) {
2444 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2445 		bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2446 
2447 		cfg80211_rx_control_port(dev, skb, noencrypt);
2448 		dev_kfree_skb(skb);
2449 	} else {
2450 		/* deliver to local stack */
2451 		if (rx->napi)
2452 			napi_gro_receive(rx->napi, skb);
2453 		else
2454 			netif_receive_skb(skb);
2455 	}
2456 }
2457 
2458 /*
2459  * requires that rx->skb is a frame with ethernet header
2460  */
2461 static void
2462 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2463 {
2464 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2465 	struct net_device *dev = sdata->dev;
2466 	struct sk_buff *skb, *xmit_skb;
2467 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2468 	struct sta_info *dsta;
2469 
2470 	skb = rx->skb;
2471 	xmit_skb = NULL;
2472 
2473 	ieee80211_rx_stats(dev, skb->len);
2474 
2475 	if (rx->sta) {
2476 		/* The seqno index has the same property as needed
2477 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2478 		 * for non-QoS-data frames. Here we know it's a data
2479 		 * frame, so count MSDUs.
2480 		 */
2481 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2482 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2483 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2484 	}
2485 
2486 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2487 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2488 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2489 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2490 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2491 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2492 			/*
2493 			 * send multicast frames both to higher layers in
2494 			 * local net stack and back to the wireless medium
2495 			 */
2496 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2497 			if (!xmit_skb)
2498 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2499 						    dev->name);
2500 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2501 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2502 			dsta = sta_info_get(sdata, ehdr->h_dest);
2503 			if (dsta) {
2504 				/*
2505 				 * The destination station is associated to
2506 				 * this AP (in this VLAN), so send the frame
2507 				 * directly to it and do not pass it to local
2508 				 * net stack.
2509 				 */
2510 				xmit_skb = skb;
2511 				skb = NULL;
2512 			}
2513 		}
2514 	}
2515 
2516 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2517 	if (skb) {
2518 		/* 'align' will only take the values 0 or 2 here since all
2519 		 * frames are required to be aligned to 2-byte boundaries
2520 		 * when being passed to mac80211; the code here works just
2521 		 * as well if that isn't true, but mac80211 assumes it can
2522 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2523 		 */
2524 		int align;
2525 
2526 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2527 		if (align) {
2528 			if (WARN_ON(skb_headroom(skb) < 3)) {
2529 				dev_kfree_skb(skb);
2530 				skb = NULL;
2531 			} else {
2532 				u8 *data = skb->data;
2533 				size_t len = skb_headlen(skb);
2534 				skb->data -= align;
2535 				memmove(skb->data, data, len);
2536 				skb_set_tail_pointer(skb, len);
2537 			}
2538 		}
2539 	}
2540 #endif
2541 
2542 	if (skb) {
2543 		skb->protocol = eth_type_trans(skb, dev);
2544 		memset(skb->cb, 0, sizeof(skb->cb));
2545 
2546 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2547 	}
2548 
2549 	if (xmit_skb) {
2550 		/*
2551 		 * Send to wireless media and increase priority by 256 to
2552 		 * keep the received priority instead of reclassifying
2553 		 * the frame (see cfg80211_classify8021d).
2554 		 */
2555 		xmit_skb->priority += 256;
2556 		xmit_skb->protocol = htons(ETH_P_802_3);
2557 		skb_reset_network_header(xmit_skb);
2558 		skb_reset_mac_header(xmit_skb);
2559 		dev_queue_xmit(xmit_skb);
2560 	}
2561 }
2562 
2563 static ieee80211_rx_result debug_noinline
2564 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2565 {
2566 	struct net_device *dev = rx->sdata->dev;
2567 	struct sk_buff *skb = rx->skb;
2568 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2569 	__le16 fc = hdr->frame_control;
2570 	struct sk_buff_head frame_list;
2571 	struct ethhdr ethhdr;
2572 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2573 
2574 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2575 		check_da = NULL;
2576 		check_sa = NULL;
2577 	} else switch (rx->sdata->vif.type) {
2578 		case NL80211_IFTYPE_AP:
2579 		case NL80211_IFTYPE_AP_VLAN:
2580 			check_da = NULL;
2581 			break;
2582 		case NL80211_IFTYPE_STATION:
2583 			if (!rx->sta ||
2584 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2585 				check_sa = NULL;
2586 			break;
2587 		case NL80211_IFTYPE_MESH_POINT:
2588 			check_sa = NULL;
2589 			break;
2590 		default:
2591 			break;
2592 	}
2593 
2594 	skb->dev = dev;
2595 	__skb_queue_head_init(&frame_list);
2596 
2597 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2598 					  rx->sdata->vif.addr,
2599 					  rx->sdata->vif.type,
2600 					  data_offset))
2601 		return RX_DROP_UNUSABLE;
2602 
2603 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2604 				 rx->sdata->vif.type,
2605 				 rx->local->hw.extra_tx_headroom,
2606 				 check_da, check_sa);
2607 
2608 	while (!skb_queue_empty(&frame_list)) {
2609 		rx->skb = __skb_dequeue(&frame_list);
2610 
2611 		if (!ieee80211_frame_allowed(rx, fc)) {
2612 			dev_kfree_skb(rx->skb);
2613 			continue;
2614 		}
2615 
2616 		ieee80211_deliver_skb(rx);
2617 	}
2618 
2619 	return RX_QUEUED;
2620 }
2621 
2622 static ieee80211_rx_result debug_noinline
2623 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2624 {
2625 	struct sk_buff *skb = rx->skb;
2626 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2627 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2628 	__le16 fc = hdr->frame_control;
2629 
2630 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2631 		return RX_CONTINUE;
2632 
2633 	if (unlikely(!ieee80211_is_data(fc)))
2634 		return RX_CONTINUE;
2635 
2636 	if (unlikely(!ieee80211_is_data_present(fc)))
2637 		return RX_DROP_MONITOR;
2638 
2639 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2640 		switch (rx->sdata->vif.type) {
2641 		case NL80211_IFTYPE_AP_VLAN:
2642 			if (!rx->sdata->u.vlan.sta)
2643 				return RX_DROP_UNUSABLE;
2644 			break;
2645 		case NL80211_IFTYPE_STATION:
2646 			if (!rx->sdata->u.mgd.use_4addr)
2647 				return RX_DROP_UNUSABLE;
2648 			break;
2649 		default:
2650 			return RX_DROP_UNUSABLE;
2651 		}
2652 	}
2653 
2654 	if (is_multicast_ether_addr(hdr->addr1))
2655 		return RX_DROP_UNUSABLE;
2656 
2657 	return __ieee80211_rx_h_amsdu(rx, 0);
2658 }
2659 
2660 #ifdef CONFIG_MAC80211_MESH
2661 static ieee80211_rx_result
2662 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2663 {
2664 	struct ieee80211_hdr *fwd_hdr, *hdr;
2665 	struct ieee80211_tx_info *info;
2666 	struct ieee80211s_hdr *mesh_hdr;
2667 	struct sk_buff *skb = rx->skb, *fwd_skb;
2668 	struct ieee80211_local *local = rx->local;
2669 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2670 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2671 	u16 ac, q, hdrlen;
2672 	int tailroom = 0;
2673 
2674 	hdr = (struct ieee80211_hdr *) skb->data;
2675 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2676 
2677 	/* make sure fixed part of mesh header is there, also checks skb len */
2678 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2679 		return RX_DROP_MONITOR;
2680 
2681 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2682 
2683 	/* make sure full mesh header is there, also checks skb len */
2684 	if (!pskb_may_pull(rx->skb,
2685 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2686 		return RX_DROP_MONITOR;
2687 
2688 	/* reload pointers */
2689 	hdr = (struct ieee80211_hdr *) skb->data;
2690 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2691 
2692 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2693 		return RX_DROP_MONITOR;
2694 
2695 	/* frame is in RMC, don't forward */
2696 	if (ieee80211_is_data(hdr->frame_control) &&
2697 	    is_multicast_ether_addr(hdr->addr1) &&
2698 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2699 		return RX_DROP_MONITOR;
2700 
2701 	if (!ieee80211_is_data(hdr->frame_control))
2702 		return RX_CONTINUE;
2703 
2704 	if (!mesh_hdr->ttl)
2705 		return RX_DROP_MONITOR;
2706 
2707 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2708 		struct mesh_path *mppath;
2709 		char *proxied_addr;
2710 		char *mpp_addr;
2711 
2712 		if (is_multicast_ether_addr(hdr->addr1)) {
2713 			mpp_addr = hdr->addr3;
2714 			proxied_addr = mesh_hdr->eaddr1;
2715 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2716 			    MESH_FLAGS_AE_A5_A6) {
2717 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2718 			mpp_addr = hdr->addr4;
2719 			proxied_addr = mesh_hdr->eaddr2;
2720 		} else {
2721 			return RX_DROP_MONITOR;
2722 		}
2723 
2724 		rcu_read_lock();
2725 		mppath = mpp_path_lookup(sdata, proxied_addr);
2726 		if (!mppath) {
2727 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2728 		} else {
2729 			spin_lock_bh(&mppath->state_lock);
2730 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2731 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2732 			mppath->exp_time = jiffies;
2733 			spin_unlock_bh(&mppath->state_lock);
2734 		}
2735 		rcu_read_unlock();
2736 	}
2737 
2738 	/* Frame has reached destination.  Don't forward */
2739 	if (!is_multicast_ether_addr(hdr->addr1) &&
2740 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2741 		return RX_CONTINUE;
2742 
2743 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2744 	q = sdata->vif.hw_queue[ac];
2745 	if (ieee80211_queue_stopped(&local->hw, q)) {
2746 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2747 		return RX_DROP_MONITOR;
2748 	}
2749 	skb_set_queue_mapping(skb, q);
2750 
2751 	if (!--mesh_hdr->ttl) {
2752 		if (!is_multicast_ether_addr(hdr->addr1))
2753 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2754 						     dropped_frames_ttl);
2755 		goto out;
2756 	}
2757 
2758 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2759 		goto out;
2760 
2761 	if (sdata->crypto_tx_tailroom_needed_cnt)
2762 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2763 
2764 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2765 				       sdata->encrypt_headroom,
2766 				  tailroom, GFP_ATOMIC);
2767 	if (!fwd_skb)
2768 		goto out;
2769 
2770 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2771 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2772 	info = IEEE80211_SKB_CB(fwd_skb);
2773 	memset(info, 0, sizeof(*info));
2774 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2775 	info->control.vif = &rx->sdata->vif;
2776 	info->control.jiffies = jiffies;
2777 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2778 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2779 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2780 		/* update power mode indication when forwarding */
2781 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2782 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2783 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2784 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2785 	} else {
2786 		/* unable to resolve next hop */
2787 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2788 				   fwd_hdr->addr3, 0,
2789 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2790 				   fwd_hdr->addr2);
2791 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2792 		kfree_skb(fwd_skb);
2793 		return RX_DROP_MONITOR;
2794 	}
2795 
2796 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2797 	ieee80211_add_pending_skb(local, fwd_skb);
2798  out:
2799 	if (is_multicast_ether_addr(hdr->addr1))
2800 		return RX_CONTINUE;
2801 	return RX_DROP_MONITOR;
2802 }
2803 #endif
2804 
2805 static ieee80211_rx_result debug_noinline
2806 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2807 {
2808 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2809 	struct ieee80211_local *local = rx->local;
2810 	struct net_device *dev = sdata->dev;
2811 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2812 	__le16 fc = hdr->frame_control;
2813 	bool port_control;
2814 	int err;
2815 
2816 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2817 		return RX_CONTINUE;
2818 
2819 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2820 		return RX_DROP_MONITOR;
2821 
2822 	/*
2823 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2824 	 * also drop the frame to cooked monitor interfaces.
2825 	 */
2826 	if (ieee80211_has_a4(hdr->frame_control) &&
2827 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2828 		if (rx->sta &&
2829 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2830 			cfg80211_rx_unexpected_4addr_frame(
2831 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2832 		return RX_DROP_MONITOR;
2833 	}
2834 
2835 	err = __ieee80211_data_to_8023(rx, &port_control);
2836 	if (unlikely(err))
2837 		return RX_DROP_UNUSABLE;
2838 
2839 	if (!ieee80211_frame_allowed(rx, fc))
2840 		return RX_DROP_MONITOR;
2841 
2842 	/* directly handle TDLS channel switch requests/responses */
2843 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2844 						cpu_to_be16(ETH_P_TDLS))) {
2845 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2846 
2847 		if (pskb_may_pull(rx->skb,
2848 				  offsetof(struct ieee80211_tdls_data, u)) &&
2849 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2850 		    tf->category == WLAN_CATEGORY_TDLS &&
2851 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2852 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2853 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2854 			schedule_work(&local->tdls_chsw_work);
2855 			if (rx->sta)
2856 				rx->sta->rx_stats.packets++;
2857 
2858 			return RX_QUEUED;
2859 		}
2860 	}
2861 
2862 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2863 	    unlikely(port_control) && sdata->bss) {
2864 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2865 				     u.ap);
2866 		dev = sdata->dev;
2867 		rx->sdata = sdata;
2868 	}
2869 
2870 	rx->skb->dev = dev;
2871 
2872 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2873 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2874 	    !is_multicast_ether_addr(
2875 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2876 	    (!local->scanning &&
2877 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2878 		mod_timer(&local->dynamic_ps_timer, jiffies +
2879 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2880 
2881 	ieee80211_deliver_skb(rx);
2882 
2883 	return RX_QUEUED;
2884 }
2885 
2886 static ieee80211_rx_result debug_noinline
2887 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2888 {
2889 	struct sk_buff *skb = rx->skb;
2890 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2891 	struct tid_ampdu_rx *tid_agg_rx;
2892 	u16 start_seq_num;
2893 	u16 tid;
2894 
2895 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2896 		return RX_CONTINUE;
2897 
2898 	if (ieee80211_is_back_req(bar->frame_control)) {
2899 		struct {
2900 			__le16 control, start_seq_num;
2901 		} __packed bar_data;
2902 		struct ieee80211_event event = {
2903 			.type = BAR_RX_EVENT,
2904 		};
2905 
2906 		if (!rx->sta)
2907 			return RX_DROP_MONITOR;
2908 
2909 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2910 				  &bar_data, sizeof(bar_data)))
2911 			return RX_DROP_MONITOR;
2912 
2913 		tid = le16_to_cpu(bar_data.control) >> 12;
2914 
2915 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2916 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2917 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2918 					     WLAN_BACK_RECIPIENT,
2919 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2920 
2921 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2922 		if (!tid_agg_rx)
2923 			return RX_DROP_MONITOR;
2924 
2925 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2926 		event.u.ba.tid = tid;
2927 		event.u.ba.ssn = start_seq_num;
2928 		event.u.ba.sta = &rx->sta->sta;
2929 
2930 		/* reset session timer */
2931 		if (tid_agg_rx->timeout)
2932 			mod_timer(&tid_agg_rx->session_timer,
2933 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2934 
2935 		spin_lock(&tid_agg_rx->reorder_lock);
2936 		/* release stored frames up to start of BAR */
2937 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2938 						 start_seq_num, frames);
2939 		spin_unlock(&tid_agg_rx->reorder_lock);
2940 
2941 		drv_event_callback(rx->local, rx->sdata, &event);
2942 
2943 		kfree_skb(skb);
2944 		return RX_QUEUED;
2945 	}
2946 
2947 	/*
2948 	 * After this point, we only want management frames,
2949 	 * so we can drop all remaining control frames to
2950 	 * cooked monitor interfaces.
2951 	 */
2952 	return RX_DROP_MONITOR;
2953 }
2954 
2955 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2956 					   struct ieee80211_mgmt *mgmt,
2957 					   size_t len)
2958 {
2959 	struct ieee80211_local *local = sdata->local;
2960 	struct sk_buff *skb;
2961 	struct ieee80211_mgmt *resp;
2962 
2963 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2964 		/* Not to own unicast address */
2965 		return;
2966 	}
2967 
2968 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2969 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2970 		/* Not from the current AP or not associated yet. */
2971 		return;
2972 	}
2973 
2974 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2975 		/* Too short SA Query request frame */
2976 		return;
2977 	}
2978 
2979 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2980 	if (skb == NULL)
2981 		return;
2982 
2983 	skb_reserve(skb, local->hw.extra_tx_headroom);
2984 	resp = skb_put_zero(skb, 24);
2985 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2986 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2987 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2988 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2989 					  IEEE80211_STYPE_ACTION);
2990 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2991 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2992 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2993 	memcpy(resp->u.action.u.sa_query.trans_id,
2994 	       mgmt->u.action.u.sa_query.trans_id,
2995 	       WLAN_SA_QUERY_TR_ID_LEN);
2996 
2997 	ieee80211_tx_skb(sdata, skb);
2998 }
2999 
3000 static ieee80211_rx_result debug_noinline
3001 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3002 {
3003 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3004 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3005 
3006 	/*
3007 	 * From here on, look only at management frames.
3008 	 * Data and control frames are already handled,
3009 	 * and unknown (reserved) frames are useless.
3010 	 */
3011 	if (rx->skb->len < 24)
3012 		return RX_DROP_MONITOR;
3013 
3014 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3015 		return RX_DROP_MONITOR;
3016 
3017 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3018 	    ieee80211_is_beacon(mgmt->frame_control) &&
3019 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3020 		int sig = 0;
3021 
3022 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3023 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3024 			sig = status->signal;
3025 
3026 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
3027 					    rx->skb->data, rx->skb->len,
3028 					    status->freq, sig);
3029 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3030 	}
3031 
3032 	if (ieee80211_drop_unencrypted_mgmt(rx))
3033 		return RX_DROP_UNUSABLE;
3034 
3035 	return RX_CONTINUE;
3036 }
3037 
3038 static ieee80211_rx_result debug_noinline
3039 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3040 {
3041 	struct ieee80211_local *local = rx->local;
3042 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3043 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3044 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3045 	int len = rx->skb->len;
3046 
3047 	if (!ieee80211_is_action(mgmt->frame_control))
3048 		return RX_CONTINUE;
3049 
3050 	/* drop too small frames */
3051 	if (len < IEEE80211_MIN_ACTION_SIZE)
3052 		return RX_DROP_UNUSABLE;
3053 
3054 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3055 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3056 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3057 		return RX_DROP_UNUSABLE;
3058 
3059 	switch (mgmt->u.action.category) {
3060 	case WLAN_CATEGORY_HT:
3061 		/* reject HT action frames from stations not supporting HT */
3062 		if (!rx->sta->sta.ht_cap.ht_supported)
3063 			goto invalid;
3064 
3065 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3066 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3067 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3068 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3069 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3070 			break;
3071 
3072 		/* verify action & smps_control/chanwidth are present */
3073 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3074 			goto invalid;
3075 
3076 		switch (mgmt->u.action.u.ht_smps.action) {
3077 		case WLAN_HT_ACTION_SMPS: {
3078 			struct ieee80211_supported_band *sband;
3079 			enum ieee80211_smps_mode smps_mode;
3080 			struct sta_opmode_info sta_opmode = {};
3081 
3082 			/* convert to HT capability */
3083 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3084 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3085 				smps_mode = IEEE80211_SMPS_OFF;
3086 				break;
3087 			case WLAN_HT_SMPS_CONTROL_STATIC:
3088 				smps_mode = IEEE80211_SMPS_STATIC;
3089 				break;
3090 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3091 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3092 				break;
3093 			default:
3094 				goto invalid;
3095 			}
3096 
3097 			/* if no change do nothing */
3098 			if (rx->sta->sta.smps_mode == smps_mode)
3099 				goto handled;
3100 			rx->sta->sta.smps_mode = smps_mode;
3101 			sta_opmode.smps_mode =
3102 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3103 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3104 
3105 			sband = rx->local->hw.wiphy->bands[status->band];
3106 
3107 			rate_control_rate_update(local, sband, rx->sta,
3108 						 IEEE80211_RC_SMPS_CHANGED);
3109 			cfg80211_sta_opmode_change_notify(sdata->dev,
3110 							  rx->sta->addr,
3111 							  &sta_opmode,
3112 							  GFP_ATOMIC);
3113 			goto handled;
3114 		}
3115 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3116 			struct ieee80211_supported_band *sband;
3117 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3118 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3119 			struct sta_opmode_info sta_opmode = {};
3120 
3121 			/* If it doesn't support 40 MHz it can't change ... */
3122 			if (!(rx->sta->sta.ht_cap.cap &
3123 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3124 				goto handled;
3125 
3126 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3127 				max_bw = IEEE80211_STA_RX_BW_20;
3128 			else
3129 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3130 
3131 			/* set cur_max_bandwidth and recalc sta bw */
3132 			rx->sta->cur_max_bandwidth = max_bw;
3133 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3134 
3135 			if (rx->sta->sta.bandwidth == new_bw)
3136 				goto handled;
3137 
3138 			rx->sta->sta.bandwidth = new_bw;
3139 			sband = rx->local->hw.wiphy->bands[status->band];
3140 			sta_opmode.bw =
3141 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3142 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3143 
3144 			rate_control_rate_update(local, sband, rx->sta,
3145 						 IEEE80211_RC_BW_CHANGED);
3146 			cfg80211_sta_opmode_change_notify(sdata->dev,
3147 							  rx->sta->addr,
3148 							  &sta_opmode,
3149 							  GFP_ATOMIC);
3150 			goto handled;
3151 		}
3152 		default:
3153 			goto invalid;
3154 		}
3155 
3156 		break;
3157 	case WLAN_CATEGORY_PUBLIC:
3158 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3159 			goto invalid;
3160 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3161 			break;
3162 		if (!rx->sta)
3163 			break;
3164 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3165 			break;
3166 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3167 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3168 			break;
3169 		if (len < offsetof(struct ieee80211_mgmt,
3170 				   u.action.u.ext_chan_switch.variable))
3171 			goto invalid;
3172 		goto queue;
3173 	case WLAN_CATEGORY_VHT:
3174 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3175 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3176 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3177 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3178 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3179 			break;
3180 
3181 		/* verify action code is present */
3182 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3183 			goto invalid;
3184 
3185 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3186 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3187 			/* verify opmode is present */
3188 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3189 				goto invalid;
3190 			goto queue;
3191 		}
3192 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3193 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3194 				goto invalid;
3195 			goto queue;
3196 		}
3197 		default:
3198 			break;
3199 		}
3200 		break;
3201 	case WLAN_CATEGORY_BACK:
3202 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3203 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3204 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3205 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3206 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3207 			break;
3208 
3209 		/* verify action_code is present */
3210 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3211 			break;
3212 
3213 		switch (mgmt->u.action.u.addba_req.action_code) {
3214 		case WLAN_ACTION_ADDBA_REQ:
3215 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3216 				   sizeof(mgmt->u.action.u.addba_req)))
3217 				goto invalid;
3218 			break;
3219 		case WLAN_ACTION_ADDBA_RESP:
3220 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3221 				   sizeof(mgmt->u.action.u.addba_resp)))
3222 				goto invalid;
3223 			break;
3224 		case WLAN_ACTION_DELBA:
3225 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3226 				   sizeof(mgmt->u.action.u.delba)))
3227 				goto invalid;
3228 			break;
3229 		default:
3230 			goto invalid;
3231 		}
3232 
3233 		goto queue;
3234 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3235 		/* verify action_code is present */
3236 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3237 			break;
3238 
3239 		switch (mgmt->u.action.u.measurement.action_code) {
3240 		case WLAN_ACTION_SPCT_MSR_REQ:
3241 			if (status->band != NL80211_BAND_5GHZ)
3242 				break;
3243 
3244 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3245 				   sizeof(mgmt->u.action.u.measurement)))
3246 				break;
3247 
3248 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3249 				break;
3250 
3251 			ieee80211_process_measurement_req(sdata, mgmt, len);
3252 			goto handled;
3253 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3254 			u8 *bssid;
3255 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3256 				   sizeof(mgmt->u.action.u.chan_switch)))
3257 				break;
3258 
3259 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3260 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3261 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3262 				break;
3263 
3264 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3265 				bssid = sdata->u.mgd.bssid;
3266 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3267 				bssid = sdata->u.ibss.bssid;
3268 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3269 				bssid = mgmt->sa;
3270 			else
3271 				break;
3272 
3273 			if (!ether_addr_equal(mgmt->bssid, bssid))
3274 				break;
3275 
3276 			goto queue;
3277 			}
3278 		}
3279 		break;
3280 	case WLAN_CATEGORY_SA_QUERY:
3281 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3282 			   sizeof(mgmt->u.action.u.sa_query)))
3283 			break;
3284 
3285 		switch (mgmt->u.action.u.sa_query.action) {
3286 		case WLAN_ACTION_SA_QUERY_REQUEST:
3287 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3288 				break;
3289 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3290 			goto handled;
3291 		}
3292 		break;
3293 	case WLAN_CATEGORY_SELF_PROTECTED:
3294 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3295 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3296 			break;
3297 
3298 		switch (mgmt->u.action.u.self_prot.action_code) {
3299 		case WLAN_SP_MESH_PEERING_OPEN:
3300 		case WLAN_SP_MESH_PEERING_CLOSE:
3301 		case WLAN_SP_MESH_PEERING_CONFIRM:
3302 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3303 				goto invalid;
3304 			if (sdata->u.mesh.user_mpm)
3305 				/* userspace handles this frame */
3306 				break;
3307 			goto queue;
3308 		case WLAN_SP_MGK_INFORM:
3309 		case WLAN_SP_MGK_ACK:
3310 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3311 				goto invalid;
3312 			break;
3313 		}
3314 		break;
3315 	case WLAN_CATEGORY_MESH_ACTION:
3316 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3317 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3318 			break;
3319 
3320 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3321 			break;
3322 		if (mesh_action_is_path_sel(mgmt) &&
3323 		    !mesh_path_sel_is_hwmp(sdata))
3324 			break;
3325 		goto queue;
3326 	}
3327 
3328 	return RX_CONTINUE;
3329 
3330  invalid:
3331 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3332 	/* will return in the next handlers */
3333 	return RX_CONTINUE;
3334 
3335  handled:
3336 	if (rx->sta)
3337 		rx->sta->rx_stats.packets++;
3338 	dev_kfree_skb(rx->skb);
3339 	return RX_QUEUED;
3340 
3341  queue:
3342 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3343 	ieee80211_queue_work(&local->hw, &sdata->work);
3344 	if (rx->sta)
3345 		rx->sta->rx_stats.packets++;
3346 	return RX_QUEUED;
3347 }
3348 
3349 static ieee80211_rx_result debug_noinline
3350 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3351 {
3352 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3353 	int sig = 0;
3354 
3355 	/* skip known-bad action frames and return them in the next handler */
3356 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3357 		return RX_CONTINUE;
3358 
3359 	/*
3360 	 * Getting here means the kernel doesn't know how to handle
3361 	 * it, but maybe userspace does ... include returned frames
3362 	 * so userspace can register for those to know whether ones
3363 	 * it transmitted were processed or returned.
3364 	 */
3365 
3366 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3367 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3368 		sig = status->signal;
3369 
3370 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3371 			     rx->skb->data, rx->skb->len, 0)) {
3372 		if (rx->sta)
3373 			rx->sta->rx_stats.packets++;
3374 		dev_kfree_skb(rx->skb);
3375 		return RX_QUEUED;
3376 	}
3377 
3378 	return RX_CONTINUE;
3379 }
3380 
3381 static ieee80211_rx_result debug_noinline
3382 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3383 {
3384 	struct ieee80211_local *local = rx->local;
3385 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3386 	struct sk_buff *nskb;
3387 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3388 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3389 
3390 	if (!ieee80211_is_action(mgmt->frame_control))
3391 		return RX_CONTINUE;
3392 
3393 	/*
3394 	 * For AP mode, hostapd is responsible for handling any action
3395 	 * frames that we didn't handle, including returning unknown
3396 	 * ones. For all other modes we will return them to the sender,
3397 	 * setting the 0x80 bit in the action category, as required by
3398 	 * 802.11-2012 9.24.4.
3399 	 * Newer versions of hostapd shall also use the management frame
3400 	 * registration mechanisms, but older ones still use cooked
3401 	 * monitor interfaces so push all frames there.
3402 	 */
3403 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3404 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3405 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3406 		return RX_DROP_MONITOR;
3407 
3408 	if (is_multicast_ether_addr(mgmt->da))
3409 		return RX_DROP_MONITOR;
3410 
3411 	/* do not return rejected action frames */
3412 	if (mgmt->u.action.category & 0x80)
3413 		return RX_DROP_UNUSABLE;
3414 
3415 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3416 			       GFP_ATOMIC);
3417 	if (nskb) {
3418 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3419 
3420 		nmgmt->u.action.category |= 0x80;
3421 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3422 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3423 
3424 		memset(nskb->cb, 0, sizeof(nskb->cb));
3425 
3426 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3427 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3428 
3429 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3430 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3431 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3432 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3433 				info->hw_queue =
3434 					local->hw.offchannel_tx_hw_queue;
3435 		}
3436 
3437 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3438 					    status->band, 0);
3439 	}
3440 	dev_kfree_skb(rx->skb);
3441 	return RX_QUEUED;
3442 }
3443 
3444 static ieee80211_rx_result debug_noinline
3445 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3446 {
3447 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3448 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3449 	__le16 stype;
3450 
3451 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3452 
3453 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3454 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3455 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3456 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3457 		return RX_DROP_MONITOR;
3458 
3459 	switch (stype) {
3460 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3461 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3462 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3463 		/* process for all: mesh, mlme, ibss */
3464 		break;
3465 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3466 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3467 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3468 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3469 		if (is_multicast_ether_addr(mgmt->da) &&
3470 		    !is_broadcast_ether_addr(mgmt->da))
3471 			return RX_DROP_MONITOR;
3472 
3473 		/* process only for station */
3474 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3475 			return RX_DROP_MONITOR;
3476 		break;
3477 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3478 		/* process only for ibss and mesh */
3479 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3480 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3481 			return RX_DROP_MONITOR;
3482 		break;
3483 	default:
3484 		return RX_DROP_MONITOR;
3485 	}
3486 
3487 	/* queue up frame and kick off work to process it */
3488 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3489 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3490 	if (rx->sta)
3491 		rx->sta->rx_stats.packets++;
3492 
3493 	return RX_QUEUED;
3494 }
3495 
3496 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3497 					struct ieee80211_rate *rate)
3498 {
3499 	struct ieee80211_sub_if_data *sdata;
3500 	struct ieee80211_local *local = rx->local;
3501 	struct sk_buff *skb = rx->skb, *skb2;
3502 	struct net_device *prev_dev = NULL;
3503 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3504 	int needed_headroom;
3505 
3506 	/*
3507 	 * If cooked monitor has been processed already, then
3508 	 * don't do it again. If not, set the flag.
3509 	 */
3510 	if (rx->flags & IEEE80211_RX_CMNTR)
3511 		goto out_free_skb;
3512 	rx->flags |= IEEE80211_RX_CMNTR;
3513 
3514 	/* If there are no cooked monitor interfaces, just free the SKB */
3515 	if (!local->cooked_mntrs)
3516 		goto out_free_skb;
3517 
3518 	/* vendor data is long removed here */
3519 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3520 	/* room for the radiotap header based on driver features */
3521 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3522 
3523 	if (skb_headroom(skb) < needed_headroom &&
3524 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3525 		goto out_free_skb;
3526 
3527 	/* prepend radiotap information */
3528 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3529 					 false);
3530 
3531 	skb_reset_mac_header(skb);
3532 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3533 	skb->pkt_type = PACKET_OTHERHOST;
3534 	skb->protocol = htons(ETH_P_802_2);
3535 
3536 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3537 		if (!ieee80211_sdata_running(sdata))
3538 			continue;
3539 
3540 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3541 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3542 			continue;
3543 
3544 		if (prev_dev) {
3545 			skb2 = skb_clone(skb, GFP_ATOMIC);
3546 			if (skb2) {
3547 				skb2->dev = prev_dev;
3548 				netif_receive_skb(skb2);
3549 			}
3550 		}
3551 
3552 		prev_dev = sdata->dev;
3553 		ieee80211_rx_stats(sdata->dev, skb->len);
3554 	}
3555 
3556 	if (prev_dev) {
3557 		skb->dev = prev_dev;
3558 		netif_receive_skb(skb);
3559 		return;
3560 	}
3561 
3562  out_free_skb:
3563 	dev_kfree_skb(skb);
3564 }
3565 
3566 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3567 					 ieee80211_rx_result res)
3568 {
3569 	switch (res) {
3570 	case RX_DROP_MONITOR:
3571 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3572 		if (rx->sta)
3573 			rx->sta->rx_stats.dropped++;
3574 		/* fall through */
3575 	case RX_CONTINUE: {
3576 		struct ieee80211_rate *rate = NULL;
3577 		struct ieee80211_supported_band *sband;
3578 		struct ieee80211_rx_status *status;
3579 
3580 		status = IEEE80211_SKB_RXCB((rx->skb));
3581 
3582 		sband = rx->local->hw.wiphy->bands[status->band];
3583 		if (status->encoding == RX_ENC_LEGACY)
3584 			rate = &sband->bitrates[status->rate_idx];
3585 
3586 		ieee80211_rx_cooked_monitor(rx, rate);
3587 		break;
3588 		}
3589 	case RX_DROP_UNUSABLE:
3590 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3591 		if (rx->sta)
3592 			rx->sta->rx_stats.dropped++;
3593 		dev_kfree_skb(rx->skb);
3594 		break;
3595 	case RX_QUEUED:
3596 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3597 		break;
3598 	}
3599 }
3600 
3601 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3602 				  struct sk_buff_head *frames)
3603 {
3604 	ieee80211_rx_result res = RX_DROP_MONITOR;
3605 	struct sk_buff *skb;
3606 
3607 #define CALL_RXH(rxh)			\
3608 	do {				\
3609 		res = rxh(rx);		\
3610 		if (res != RX_CONTINUE)	\
3611 			goto rxh_next;  \
3612 	} while (0)
3613 
3614 	/* Lock here to avoid hitting all of the data used in the RX
3615 	 * path (e.g. key data, station data, ...) concurrently when
3616 	 * a frame is released from the reorder buffer due to timeout
3617 	 * from the timer, potentially concurrently with RX from the
3618 	 * driver.
3619 	 */
3620 	spin_lock_bh(&rx->local->rx_path_lock);
3621 
3622 	while ((skb = __skb_dequeue(frames))) {
3623 		/*
3624 		 * all the other fields are valid across frames
3625 		 * that belong to an aMPDU since they are on the
3626 		 * same TID from the same station
3627 		 */
3628 		rx->skb = skb;
3629 
3630 		CALL_RXH(ieee80211_rx_h_check_more_data);
3631 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3632 		CALL_RXH(ieee80211_rx_h_sta_process);
3633 		CALL_RXH(ieee80211_rx_h_decrypt);
3634 		CALL_RXH(ieee80211_rx_h_defragment);
3635 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3636 		/* must be after MMIC verify so header is counted in MPDU mic */
3637 #ifdef CONFIG_MAC80211_MESH
3638 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3639 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3640 #endif
3641 		CALL_RXH(ieee80211_rx_h_amsdu);
3642 		CALL_RXH(ieee80211_rx_h_data);
3643 
3644 		/* special treatment -- needs the queue */
3645 		res = ieee80211_rx_h_ctrl(rx, frames);
3646 		if (res != RX_CONTINUE)
3647 			goto rxh_next;
3648 
3649 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3650 		CALL_RXH(ieee80211_rx_h_action);
3651 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3652 		CALL_RXH(ieee80211_rx_h_action_return);
3653 		CALL_RXH(ieee80211_rx_h_mgmt);
3654 
3655  rxh_next:
3656 		ieee80211_rx_handlers_result(rx, res);
3657 
3658 #undef CALL_RXH
3659 	}
3660 
3661 	spin_unlock_bh(&rx->local->rx_path_lock);
3662 }
3663 
3664 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3665 {
3666 	struct sk_buff_head reorder_release;
3667 	ieee80211_rx_result res = RX_DROP_MONITOR;
3668 
3669 	__skb_queue_head_init(&reorder_release);
3670 
3671 #define CALL_RXH(rxh)			\
3672 	do {				\
3673 		res = rxh(rx);		\
3674 		if (res != RX_CONTINUE)	\
3675 			goto rxh_next;  \
3676 	} while (0)
3677 
3678 	CALL_RXH(ieee80211_rx_h_check_dup);
3679 	CALL_RXH(ieee80211_rx_h_check);
3680 
3681 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3682 
3683 	ieee80211_rx_handlers(rx, &reorder_release);
3684 	return;
3685 
3686  rxh_next:
3687 	ieee80211_rx_handlers_result(rx, res);
3688 
3689 #undef CALL_RXH
3690 }
3691 
3692 /*
3693  * This function makes calls into the RX path, therefore
3694  * it has to be invoked under RCU read lock.
3695  */
3696 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3697 {
3698 	struct sk_buff_head frames;
3699 	struct ieee80211_rx_data rx = {
3700 		.sta = sta,
3701 		.sdata = sta->sdata,
3702 		.local = sta->local,
3703 		/* This is OK -- must be QoS data frame */
3704 		.security_idx = tid,
3705 		.seqno_idx = tid,
3706 		.napi = NULL, /* must be NULL to not have races */
3707 	};
3708 	struct tid_ampdu_rx *tid_agg_rx;
3709 
3710 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3711 	if (!tid_agg_rx)
3712 		return;
3713 
3714 	__skb_queue_head_init(&frames);
3715 
3716 	spin_lock(&tid_agg_rx->reorder_lock);
3717 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3718 	spin_unlock(&tid_agg_rx->reorder_lock);
3719 
3720 	if (!skb_queue_empty(&frames)) {
3721 		struct ieee80211_event event = {
3722 			.type = BA_FRAME_TIMEOUT,
3723 			.u.ba.tid = tid,
3724 			.u.ba.sta = &sta->sta,
3725 		};
3726 		drv_event_callback(rx.local, rx.sdata, &event);
3727 	}
3728 
3729 	ieee80211_rx_handlers(&rx, &frames);
3730 }
3731 
3732 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3733 					  u16 ssn, u64 filtered,
3734 					  u16 received_mpdus)
3735 {
3736 	struct sta_info *sta;
3737 	struct tid_ampdu_rx *tid_agg_rx;
3738 	struct sk_buff_head frames;
3739 	struct ieee80211_rx_data rx = {
3740 		/* This is OK -- must be QoS data frame */
3741 		.security_idx = tid,
3742 		.seqno_idx = tid,
3743 	};
3744 	int i, diff;
3745 
3746 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3747 		return;
3748 
3749 	__skb_queue_head_init(&frames);
3750 
3751 	sta = container_of(pubsta, struct sta_info, sta);
3752 
3753 	rx.sta = sta;
3754 	rx.sdata = sta->sdata;
3755 	rx.local = sta->local;
3756 
3757 	rcu_read_lock();
3758 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3759 	if (!tid_agg_rx)
3760 		goto out;
3761 
3762 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3763 
3764 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3765 		int release;
3766 
3767 		/* release all frames in the reorder buffer */
3768 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3769 			   IEEE80211_SN_MODULO;
3770 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3771 						 release, &frames);
3772 		/* update ssn to match received ssn */
3773 		tid_agg_rx->head_seq_num = ssn;
3774 	} else {
3775 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3776 						 &frames);
3777 	}
3778 
3779 	/* handle the case that received ssn is behind the mac ssn.
3780 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3781 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3782 	if (diff >= tid_agg_rx->buf_size) {
3783 		tid_agg_rx->reorder_buf_filtered = 0;
3784 		goto release;
3785 	}
3786 	filtered = filtered >> diff;
3787 	ssn += diff;
3788 
3789 	/* update bitmap */
3790 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3791 		int index = (ssn + i) % tid_agg_rx->buf_size;
3792 
3793 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3794 		if (filtered & BIT_ULL(i))
3795 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3796 	}
3797 
3798 	/* now process also frames that the filter marking released */
3799 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3800 
3801 release:
3802 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3803 
3804 	ieee80211_rx_handlers(&rx, &frames);
3805 
3806  out:
3807 	rcu_read_unlock();
3808 }
3809 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3810 
3811 /* main receive path */
3812 
3813 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3814 {
3815 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3816 	struct sk_buff *skb = rx->skb;
3817 	struct ieee80211_hdr *hdr = (void *)skb->data;
3818 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3819 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3820 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3821 
3822 	switch (sdata->vif.type) {
3823 	case NL80211_IFTYPE_STATION:
3824 		if (!bssid && !sdata->u.mgd.use_4addr)
3825 			return false;
3826 		if (multicast)
3827 			return true;
3828 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3829 	case NL80211_IFTYPE_ADHOC:
3830 		if (!bssid)
3831 			return false;
3832 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3833 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3834 			return false;
3835 		if (ieee80211_is_beacon(hdr->frame_control))
3836 			return true;
3837 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3838 			return false;
3839 		if (!multicast &&
3840 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3841 			return false;
3842 		if (!rx->sta) {
3843 			int rate_idx;
3844 			if (status->encoding != RX_ENC_LEGACY)
3845 				rate_idx = 0; /* TODO: HT/VHT rates */
3846 			else
3847 				rate_idx = status->rate_idx;
3848 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3849 						 BIT(rate_idx));
3850 		}
3851 		return true;
3852 	case NL80211_IFTYPE_OCB:
3853 		if (!bssid)
3854 			return false;
3855 		if (!ieee80211_is_data_present(hdr->frame_control))
3856 			return false;
3857 		if (!is_broadcast_ether_addr(bssid))
3858 			return false;
3859 		if (!multicast &&
3860 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3861 			return false;
3862 		if (!rx->sta) {
3863 			int rate_idx;
3864 			if (status->encoding != RX_ENC_LEGACY)
3865 				rate_idx = 0; /* TODO: HT rates */
3866 			else
3867 				rate_idx = status->rate_idx;
3868 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3869 						BIT(rate_idx));
3870 		}
3871 		return true;
3872 	case NL80211_IFTYPE_MESH_POINT:
3873 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3874 			return false;
3875 		if (multicast)
3876 			return true;
3877 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3878 	case NL80211_IFTYPE_AP_VLAN:
3879 	case NL80211_IFTYPE_AP:
3880 		if (!bssid)
3881 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3882 
3883 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3884 			/*
3885 			 * Accept public action frames even when the
3886 			 * BSSID doesn't match, this is used for P2P
3887 			 * and location updates. Note that mac80211
3888 			 * itself never looks at these frames.
3889 			 */
3890 			if (!multicast &&
3891 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3892 				return false;
3893 			if (ieee80211_is_public_action(hdr, skb->len))
3894 				return true;
3895 			return ieee80211_is_beacon(hdr->frame_control);
3896 		}
3897 
3898 		if (!ieee80211_has_tods(hdr->frame_control)) {
3899 			/* ignore data frames to TDLS-peers */
3900 			if (ieee80211_is_data(hdr->frame_control))
3901 				return false;
3902 			/* ignore action frames to TDLS-peers */
3903 			if (ieee80211_is_action(hdr->frame_control) &&
3904 			    !is_broadcast_ether_addr(bssid) &&
3905 			    !ether_addr_equal(bssid, hdr->addr1))
3906 				return false;
3907 		}
3908 
3909 		/*
3910 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3911 		 * the BSSID - we've checked that already but may have accepted
3912 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3913 		 *
3914 		 * It also says:
3915 		 *	The BSSID of the Data frame is determined as follows:
3916 		 *	a) If the STA is contained within an AP or is associated
3917 		 *	   with an AP, the BSSID is the address currently in use
3918 		 *	   by the STA contained in the AP.
3919 		 *
3920 		 * So we should not accept data frames with an address that's
3921 		 * multicast.
3922 		 *
3923 		 * Accepting it also opens a security problem because stations
3924 		 * could encrypt it with the GTK and inject traffic that way.
3925 		 */
3926 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3927 			return false;
3928 
3929 		return true;
3930 	case NL80211_IFTYPE_WDS:
3931 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3932 			return false;
3933 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3934 	case NL80211_IFTYPE_P2P_DEVICE:
3935 		return ieee80211_is_public_action(hdr, skb->len) ||
3936 		       ieee80211_is_probe_req(hdr->frame_control) ||
3937 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3938 		       ieee80211_is_beacon(hdr->frame_control);
3939 	case NL80211_IFTYPE_NAN:
3940 		/* Currently no frames on NAN interface are allowed */
3941 		return false;
3942 	default:
3943 		break;
3944 	}
3945 
3946 	WARN_ON_ONCE(1);
3947 	return false;
3948 }
3949 
3950 void ieee80211_check_fast_rx(struct sta_info *sta)
3951 {
3952 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3953 	struct ieee80211_local *local = sdata->local;
3954 	struct ieee80211_key *key;
3955 	struct ieee80211_fast_rx fastrx = {
3956 		.dev = sdata->dev,
3957 		.vif_type = sdata->vif.type,
3958 		.control_port_protocol = sdata->control_port_protocol,
3959 	}, *old, *new = NULL;
3960 	bool assign = false;
3961 
3962 	/* use sparse to check that we don't return without updating */
3963 	__acquire(check_fast_rx);
3964 
3965 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3966 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3967 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3968 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3969 
3970 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3971 
3972 	/* fast-rx doesn't do reordering */
3973 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3974 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3975 		goto clear;
3976 
3977 	switch (sdata->vif.type) {
3978 	case NL80211_IFTYPE_STATION:
3979 		if (sta->sta.tdls) {
3980 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3981 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3982 			fastrx.expected_ds_bits = 0;
3983 		} else {
3984 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3985 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3986 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3987 			fastrx.expected_ds_bits =
3988 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3989 		}
3990 
3991 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3992 			fastrx.expected_ds_bits |=
3993 				cpu_to_le16(IEEE80211_FCTL_TODS);
3994 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3995 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3996 		}
3997 
3998 		if (!sdata->u.mgd.powersave)
3999 			break;
4000 
4001 		/* software powersave is a huge mess, avoid all of it */
4002 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4003 			goto clear;
4004 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4005 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4006 			goto clear;
4007 		break;
4008 	case NL80211_IFTYPE_AP_VLAN:
4009 	case NL80211_IFTYPE_AP:
4010 		/* parallel-rx requires this, at least with calls to
4011 		 * ieee80211_sta_ps_transition()
4012 		 */
4013 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4014 			goto clear;
4015 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4016 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4017 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4018 
4019 		fastrx.internal_forward =
4020 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4021 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4022 			 !sdata->u.vlan.sta);
4023 
4024 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4025 		    sdata->u.vlan.sta) {
4026 			fastrx.expected_ds_bits |=
4027 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4028 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4029 			fastrx.internal_forward = 0;
4030 		}
4031 
4032 		break;
4033 	default:
4034 		goto clear;
4035 	}
4036 
4037 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4038 		goto clear;
4039 
4040 	rcu_read_lock();
4041 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4042 	if (key) {
4043 		switch (key->conf.cipher) {
4044 		case WLAN_CIPHER_SUITE_TKIP:
4045 			/* we don't want to deal with MMIC in fast-rx */
4046 			goto clear_rcu;
4047 		case WLAN_CIPHER_SUITE_CCMP:
4048 		case WLAN_CIPHER_SUITE_CCMP_256:
4049 		case WLAN_CIPHER_SUITE_GCMP:
4050 		case WLAN_CIPHER_SUITE_GCMP_256:
4051 			break;
4052 		default:
4053 			/* we also don't want to deal with WEP or cipher scheme
4054 			 * since those require looking up the key idx in the
4055 			 * frame, rather than assuming the PTK is used
4056 			 * (we need to revisit this once we implement the real
4057 			 * PTK index, which is now valid in the spec, but we
4058 			 * haven't implemented that part yet)
4059 			 */
4060 			goto clear_rcu;
4061 		}
4062 
4063 		fastrx.key = true;
4064 		fastrx.icv_len = key->conf.icv_len;
4065 	}
4066 
4067 	assign = true;
4068  clear_rcu:
4069 	rcu_read_unlock();
4070  clear:
4071 	__release(check_fast_rx);
4072 
4073 	if (assign)
4074 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4075 
4076 	spin_lock_bh(&sta->lock);
4077 	old = rcu_dereference_protected(sta->fast_rx, true);
4078 	rcu_assign_pointer(sta->fast_rx, new);
4079 	spin_unlock_bh(&sta->lock);
4080 
4081 	if (old)
4082 		kfree_rcu(old, rcu_head);
4083 }
4084 
4085 void ieee80211_clear_fast_rx(struct sta_info *sta)
4086 {
4087 	struct ieee80211_fast_rx *old;
4088 
4089 	spin_lock_bh(&sta->lock);
4090 	old = rcu_dereference_protected(sta->fast_rx, true);
4091 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4092 	spin_unlock_bh(&sta->lock);
4093 
4094 	if (old)
4095 		kfree_rcu(old, rcu_head);
4096 }
4097 
4098 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4099 {
4100 	struct ieee80211_local *local = sdata->local;
4101 	struct sta_info *sta;
4102 
4103 	lockdep_assert_held(&local->sta_mtx);
4104 
4105 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
4106 		if (sdata != sta->sdata &&
4107 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4108 			continue;
4109 		ieee80211_check_fast_rx(sta);
4110 	}
4111 }
4112 
4113 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4114 {
4115 	struct ieee80211_local *local = sdata->local;
4116 
4117 	mutex_lock(&local->sta_mtx);
4118 	__ieee80211_check_fast_rx_iface(sdata);
4119 	mutex_unlock(&local->sta_mtx);
4120 }
4121 
4122 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4123 				     struct ieee80211_fast_rx *fast_rx)
4124 {
4125 	struct sk_buff *skb = rx->skb;
4126 	struct ieee80211_hdr *hdr = (void *)skb->data;
4127 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4128 	struct sta_info *sta = rx->sta;
4129 	int orig_len = skb->len;
4130 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4131 	int snap_offs = hdrlen;
4132 	struct {
4133 		u8 snap[sizeof(rfc1042_header)];
4134 		__be16 proto;
4135 	} *payload __aligned(2);
4136 	struct {
4137 		u8 da[ETH_ALEN];
4138 		u8 sa[ETH_ALEN];
4139 	} addrs __aligned(2);
4140 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4141 
4142 	if (fast_rx->uses_rss)
4143 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4144 
4145 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4146 	 * to a common data structure; drivers can implement that per queue
4147 	 * but we don't have that information in mac80211
4148 	 */
4149 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4150 		return false;
4151 
4152 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4153 
4154 	/* If using encryption, we also need to have:
4155 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4156 	 *  - DECRYPTED: necessary for PN_VALIDATED
4157 	 */
4158 	if (fast_rx->key &&
4159 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4160 		return false;
4161 
4162 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4163 		return false;
4164 
4165 	if (unlikely(ieee80211_is_frag(hdr)))
4166 		return false;
4167 
4168 	/* Since our interface address cannot be multicast, this
4169 	 * implicitly also rejects multicast frames without the
4170 	 * explicit check.
4171 	 *
4172 	 * We shouldn't get any *data* frames not addressed to us
4173 	 * (AP mode will accept multicast *management* frames), but
4174 	 * punting here will make it go through the full checks in
4175 	 * ieee80211_accept_frame().
4176 	 */
4177 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4178 		return false;
4179 
4180 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4181 					      IEEE80211_FCTL_TODS)) !=
4182 	    fast_rx->expected_ds_bits)
4183 		return false;
4184 
4185 	/* assign the key to drop unencrypted frames (later)
4186 	 * and strip the IV/MIC if necessary
4187 	 */
4188 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4189 		/* GCMP header length is the same */
4190 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4191 	}
4192 
4193 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4194 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4195 			goto drop;
4196 
4197 		payload = (void *)(skb->data + snap_offs);
4198 
4199 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4200 			return false;
4201 
4202 		/* Don't handle these here since they require special code.
4203 		 * Accept AARP and IPX even though they should come with a
4204 		 * bridge-tunnel header - but if we get them this way then
4205 		 * there's little point in discarding them.
4206 		 */
4207 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4208 			     payload->proto == fast_rx->control_port_protocol))
4209 			return false;
4210 	}
4211 
4212 	/* after this point, don't punt to the slowpath! */
4213 
4214 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4215 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4216 		goto drop;
4217 
4218 	if (unlikely(fast_rx->sta_notify)) {
4219 		ieee80211_sta_rx_notify(rx->sdata, hdr);
4220 		fast_rx->sta_notify = false;
4221 	}
4222 
4223 	/* statistics part of ieee80211_rx_h_sta_process() */
4224 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4225 		stats->last_signal = status->signal;
4226 		if (!fast_rx->uses_rss)
4227 			ewma_signal_add(&sta->rx_stats_avg.signal,
4228 					-status->signal);
4229 	}
4230 
4231 	if (status->chains) {
4232 		int i;
4233 
4234 		stats->chains = status->chains;
4235 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4236 			int signal = status->chain_signal[i];
4237 
4238 			if (!(status->chains & BIT(i)))
4239 				continue;
4240 
4241 			stats->chain_signal_last[i] = signal;
4242 			if (!fast_rx->uses_rss)
4243 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4244 						-signal);
4245 		}
4246 	}
4247 	/* end of statistics */
4248 
4249 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4250 		goto drop;
4251 
4252 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4253 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4254 		    RX_QUEUED)
4255 			goto drop;
4256 
4257 		return true;
4258 	}
4259 
4260 	stats->last_rx = jiffies;
4261 	stats->last_rate = sta_stats_encode_rate(status);
4262 
4263 	stats->fragments++;
4264 	stats->packets++;
4265 
4266 	/* do the header conversion - first grab the addresses */
4267 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4268 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4269 	/* remove the SNAP but leave the ethertype */
4270 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4271 	/* push the addresses in front */
4272 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4273 
4274 	skb->dev = fast_rx->dev;
4275 
4276 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4277 
4278 	/* The seqno index has the same property as needed
4279 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4280 	 * for non-QoS-data frames. Here we know it's a data
4281 	 * frame, so count MSDUs.
4282 	 */
4283 	u64_stats_update_begin(&stats->syncp);
4284 	stats->msdu[rx->seqno_idx]++;
4285 	stats->bytes += orig_len;
4286 	u64_stats_update_end(&stats->syncp);
4287 
4288 	if (fast_rx->internal_forward) {
4289 		struct sk_buff *xmit_skb = NULL;
4290 		if (is_multicast_ether_addr(addrs.da)) {
4291 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4292 		} else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4293 			   sta_info_get(rx->sdata, addrs.da)) {
4294 			xmit_skb = skb;
4295 			skb = NULL;
4296 		}
4297 
4298 		if (xmit_skb) {
4299 			/*
4300 			 * Send to wireless media and increase priority by 256
4301 			 * to keep the received priority instead of
4302 			 * reclassifying the frame (see cfg80211_classify8021d).
4303 			 */
4304 			xmit_skb->priority += 256;
4305 			xmit_skb->protocol = htons(ETH_P_802_3);
4306 			skb_reset_network_header(xmit_skb);
4307 			skb_reset_mac_header(xmit_skb);
4308 			dev_queue_xmit(xmit_skb);
4309 		}
4310 
4311 		if (!skb)
4312 			return true;
4313 	}
4314 
4315 	/* deliver to local stack */
4316 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4317 	memset(skb->cb, 0, sizeof(skb->cb));
4318 	if (rx->napi)
4319 		napi_gro_receive(rx->napi, skb);
4320 	else
4321 		netif_receive_skb(skb);
4322 
4323 	return true;
4324  drop:
4325 	dev_kfree_skb(skb);
4326 	stats->dropped++;
4327 	return true;
4328 }
4329 
4330 /*
4331  * This function returns whether or not the SKB
4332  * was destined for RX processing or not, which,
4333  * if consume is true, is equivalent to whether
4334  * or not the skb was consumed.
4335  */
4336 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4337 					    struct sk_buff *skb, bool consume)
4338 {
4339 	struct ieee80211_local *local = rx->local;
4340 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4341 
4342 	rx->skb = skb;
4343 
4344 	/* See if we can do fast-rx; if we have to copy we already lost,
4345 	 * so punt in that case. We should never have to deliver a data
4346 	 * frame to multiple interfaces anyway.
4347 	 *
4348 	 * We skip the ieee80211_accept_frame() call and do the necessary
4349 	 * checking inside ieee80211_invoke_fast_rx().
4350 	 */
4351 	if (consume && rx->sta) {
4352 		struct ieee80211_fast_rx *fast_rx;
4353 
4354 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4355 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4356 			return true;
4357 	}
4358 
4359 	if (!ieee80211_accept_frame(rx))
4360 		return false;
4361 
4362 	if (!consume) {
4363 		skb = skb_copy(skb, GFP_ATOMIC);
4364 		if (!skb) {
4365 			if (net_ratelimit())
4366 				wiphy_debug(local->hw.wiphy,
4367 					"failed to copy skb for %s\n",
4368 					sdata->name);
4369 			return true;
4370 		}
4371 
4372 		rx->skb = skb;
4373 	}
4374 
4375 	ieee80211_invoke_rx_handlers(rx);
4376 	return true;
4377 }
4378 
4379 /*
4380  * This is the actual Rx frames handler. as it belongs to Rx path it must
4381  * be called with rcu_read_lock protection.
4382  */
4383 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4384 					 struct ieee80211_sta *pubsta,
4385 					 struct sk_buff *skb,
4386 					 struct napi_struct *napi)
4387 {
4388 	struct ieee80211_local *local = hw_to_local(hw);
4389 	struct ieee80211_sub_if_data *sdata;
4390 	struct ieee80211_hdr *hdr;
4391 	__le16 fc;
4392 	struct ieee80211_rx_data rx;
4393 	struct ieee80211_sub_if_data *prev;
4394 	struct rhlist_head *tmp;
4395 	int err = 0;
4396 
4397 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4398 	memset(&rx, 0, sizeof(rx));
4399 	rx.skb = skb;
4400 	rx.local = local;
4401 	rx.napi = napi;
4402 
4403 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4404 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4405 
4406 	if (ieee80211_is_mgmt(fc)) {
4407 		/* drop frame if too short for header */
4408 		if (skb->len < ieee80211_hdrlen(fc))
4409 			err = -ENOBUFS;
4410 		else
4411 			err = skb_linearize(skb);
4412 	} else {
4413 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4414 	}
4415 
4416 	if (err) {
4417 		dev_kfree_skb(skb);
4418 		return;
4419 	}
4420 
4421 	hdr = (struct ieee80211_hdr *)skb->data;
4422 	ieee80211_parse_qos(&rx);
4423 	ieee80211_verify_alignment(&rx);
4424 
4425 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4426 		     ieee80211_is_beacon(hdr->frame_control)))
4427 		ieee80211_scan_rx(local, skb);
4428 
4429 	if (ieee80211_is_data(fc)) {
4430 		struct sta_info *sta, *prev_sta;
4431 
4432 		if (pubsta) {
4433 			rx.sta = container_of(pubsta, struct sta_info, sta);
4434 			rx.sdata = rx.sta->sdata;
4435 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4436 				return;
4437 			goto out;
4438 		}
4439 
4440 		prev_sta = NULL;
4441 
4442 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4443 			if (!prev_sta) {
4444 				prev_sta = sta;
4445 				continue;
4446 			}
4447 
4448 			rx.sta = prev_sta;
4449 			rx.sdata = prev_sta->sdata;
4450 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4451 
4452 			prev_sta = sta;
4453 		}
4454 
4455 		if (prev_sta) {
4456 			rx.sta = prev_sta;
4457 			rx.sdata = prev_sta->sdata;
4458 
4459 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4460 				return;
4461 			goto out;
4462 		}
4463 	}
4464 
4465 	prev = NULL;
4466 
4467 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4468 		if (!ieee80211_sdata_running(sdata))
4469 			continue;
4470 
4471 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4472 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4473 			continue;
4474 
4475 		/*
4476 		 * frame is destined for this interface, but if it's
4477 		 * not also for the previous one we handle that after
4478 		 * the loop to avoid copying the SKB once too much
4479 		 */
4480 
4481 		if (!prev) {
4482 			prev = sdata;
4483 			continue;
4484 		}
4485 
4486 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4487 		rx.sdata = prev;
4488 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4489 
4490 		prev = sdata;
4491 	}
4492 
4493 	if (prev) {
4494 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4495 		rx.sdata = prev;
4496 
4497 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4498 			return;
4499 	}
4500 
4501  out:
4502 	dev_kfree_skb(skb);
4503 }
4504 
4505 /*
4506  * This is the receive path handler. It is called by a low level driver when an
4507  * 802.11 MPDU is received from the hardware.
4508  */
4509 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4510 		       struct sk_buff *skb, struct napi_struct *napi)
4511 {
4512 	struct ieee80211_local *local = hw_to_local(hw);
4513 	struct ieee80211_rate *rate = NULL;
4514 	struct ieee80211_supported_band *sband;
4515 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4516 
4517 	WARN_ON_ONCE(softirq_count() == 0);
4518 
4519 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4520 		goto drop;
4521 
4522 	sband = local->hw.wiphy->bands[status->band];
4523 	if (WARN_ON(!sband))
4524 		goto drop;
4525 
4526 	/*
4527 	 * If we're suspending, it is possible although not too likely
4528 	 * that we'd be receiving frames after having already partially
4529 	 * quiesced the stack. We can't process such frames then since
4530 	 * that might, for example, cause stations to be added or other
4531 	 * driver callbacks be invoked.
4532 	 */
4533 	if (unlikely(local->quiescing || local->suspended))
4534 		goto drop;
4535 
4536 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4537 	if (unlikely(local->in_reconfig))
4538 		goto drop;
4539 
4540 	/*
4541 	 * The same happens when we're not even started,
4542 	 * but that's worth a warning.
4543 	 */
4544 	if (WARN_ON(!local->started))
4545 		goto drop;
4546 
4547 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4548 		/*
4549 		 * Validate the rate, unless a PLCP error means that
4550 		 * we probably can't have a valid rate here anyway.
4551 		 */
4552 
4553 		switch (status->encoding) {
4554 		case RX_ENC_HT:
4555 			/*
4556 			 * rate_idx is MCS index, which can be [0-76]
4557 			 * as documented on:
4558 			 *
4559 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4560 			 *
4561 			 * Anything else would be some sort of driver or
4562 			 * hardware error. The driver should catch hardware
4563 			 * errors.
4564 			 */
4565 			if (WARN(status->rate_idx > 76,
4566 				 "Rate marked as an HT rate but passed "
4567 				 "status->rate_idx is not "
4568 				 "an MCS index [0-76]: %d (0x%02x)\n",
4569 				 status->rate_idx,
4570 				 status->rate_idx))
4571 				goto drop;
4572 			break;
4573 		case RX_ENC_VHT:
4574 			if (WARN_ONCE(status->rate_idx > 9 ||
4575 				      !status->nss ||
4576 				      status->nss > 8,
4577 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4578 				      status->rate_idx, status->nss))
4579 				goto drop;
4580 			break;
4581 		case RX_ENC_HE:
4582 			if (WARN_ONCE(status->rate_idx > 11 ||
4583 				      !status->nss ||
4584 				      status->nss > 8,
4585 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4586 				      status->rate_idx, status->nss))
4587 				goto drop;
4588 			break;
4589 		default:
4590 			WARN_ON_ONCE(1);
4591 			/* fall through */
4592 		case RX_ENC_LEGACY:
4593 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4594 				goto drop;
4595 			rate = &sband->bitrates[status->rate_idx];
4596 		}
4597 	}
4598 
4599 	status->rx_flags = 0;
4600 
4601 	/*
4602 	 * key references and virtual interfaces are protected using RCU
4603 	 * and this requires that we are in a read-side RCU section during
4604 	 * receive processing
4605 	 */
4606 	rcu_read_lock();
4607 
4608 	/*
4609 	 * Frames with failed FCS/PLCP checksum are not returned,
4610 	 * all other frames are returned without radiotap header
4611 	 * if it was previously present.
4612 	 * Also, frames with less than 16 bytes are dropped.
4613 	 */
4614 	skb = ieee80211_rx_monitor(local, skb, rate);
4615 	if (!skb) {
4616 		rcu_read_unlock();
4617 		return;
4618 	}
4619 
4620 	ieee80211_tpt_led_trig_rx(local,
4621 			((struct ieee80211_hdr *)skb->data)->frame_control,
4622 			skb->len);
4623 
4624 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4625 
4626 	rcu_read_unlock();
4627 
4628 	return;
4629  drop:
4630 	kfree_skb(skb);
4631 }
4632 EXPORT_SYMBOL(ieee80211_rx_napi);
4633 
4634 /* This is a version of the rx handler that can be called from hard irq
4635  * context. Post the skb on the queue and schedule the tasklet */
4636 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4637 {
4638 	struct ieee80211_local *local = hw_to_local(hw);
4639 
4640 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4641 
4642 	skb->pkt_type = IEEE80211_RX_MSG;
4643 	skb_queue_tail(&local->skb_queue, skb);
4644 	tasklet_schedule(&local->tasklet);
4645 }
4646 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4647