xref: /linux/net/mac80211/rx.c (revision 83bce9c2baa51e439480a713119a73d3c8b61083)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 					   struct sk_buff *skb,
100 					   unsigned int rtap_vendor_space)
101 {
102 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 		if (likely(skb->len > FCS_LEN))
104 			__pskb_trim(skb, skb->len - FCS_LEN);
105 		else {
106 			/* driver bug */
107 			WARN_ON(1);
108 			dev_kfree_skb(skb);
109 			return NULL;
110 		}
111 	}
112 
113 	__pskb_pull(skb, rtap_vendor_space);
114 
115 	return skb;
116 }
117 
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 				     unsigned int rtap_vendor_space)
120 {
121 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 	struct ieee80211_hdr *hdr;
123 
124 	hdr = (void *)(skb->data + rtap_vendor_space);
125 
126 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 			    RX_FLAG_FAILED_PLCP_CRC |
128 			    RX_FLAG_ONLY_MONITOR))
129 		return true;
130 
131 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 		return true;
133 
134 	if (ieee80211_is_ctl(hdr->frame_control) &&
135 	    !ieee80211_is_pspoll(hdr->frame_control) &&
136 	    !ieee80211_is_back_req(hdr->frame_control))
137 		return true;
138 
139 	return false;
140 }
141 
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 			     struct ieee80211_rx_status *status,
145 			     struct sk_buff *skb)
146 {
147 	int len;
148 
149 	/* always present fields */
150 	len = sizeof(struct ieee80211_radiotap_header) + 8;
151 
152 	/* allocate extra bitmaps */
153 	if (status->chains)
154 		len += 4 * hweight8(status->chains);
155 
156 	if (ieee80211_have_rx_timestamp(status)) {
157 		len = ALIGN(len, 8);
158 		len += 8;
159 	}
160 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 		len += 1;
162 
163 	/* antenna field, if we don't have per-chain info */
164 	if (!status->chains)
165 		len += 1;
166 
167 	/* padding for RX_FLAGS if necessary */
168 	len = ALIGN(len, 2);
169 
170 	if (status->flag & RX_FLAG_HT) /* HT info */
171 		len += 3;
172 
173 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 		len = ALIGN(len, 4);
175 		len += 8;
176 	}
177 
178 	if (status->flag & RX_FLAG_VHT) {
179 		len = ALIGN(len, 2);
180 		len += 12;
181 	}
182 
183 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
184 		len = ALIGN(len, 8);
185 		len += 12;
186 	}
187 
188 	if (status->chains) {
189 		/* antenna and antenna signal fields */
190 		len += 2 * hweight8(status->chains);
191 	}
192 
193 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
195 
196 		/* vendor presence bitmap */
197 		len += 4;
198 		/* alignment for fixed 6-byte vendor data header */
199 		len = ALIGN(len, 2);
200 		/* vendor data header */
201 		len += 6;
202 		if (WARN_ON(rtap->align == 0))
203 			rtap->align = 1;
204 		len = ALIGN(len, rtap->align);
205 		len += rtap->len + rtap->pad;
206 	}
207 
208 	return len;
209 }
210 
211 /*
212  * ieee80211_add_rx_radiotap_header - add radiotap header
213  *
214  * add a radiotap header containing all the fields which the hardware provided.
215  */
216 static void
217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
218 				 struct sk_buff *skb,
219 				 struct ieee80211_rate *rate,
220 				 int rtap_len, bool has_fcs)
221 {
222 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
223 	struct ieee80211_radiotap_header *rthdr;
224 	unsigned char *pos;
225 	__le32 *it_present;
226 	u32 it_present_val;
227 	u16 rx_flags = 0;
228 	u16 channel_flags = 0;
229 	int mpdulen, chain;
230 	unsigned long chains = status->chains;
231 	struct ieee80211_vendor_radiotap rtap = {};
232 
233 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
234 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
235 		/* rtap.len and rtap.pad are undone immediately */
236 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
237 	}
238 
239 	mpdulen = skb->len;
240 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
241 		mpdulen += FCS_LEN;
242 
243 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
244 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
245 	it_present = &rthdr->it_present;
246 
247 	/* radiotap header, set always present flags */
248 	rthdr->it_len = cpu_to_le16(rtap_len);
249 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
250 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
251 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
252 
253 	if (!status->chains)
254 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
255 
256 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
257 		it_present_val |=
258 			BIT(IEEE80211_RADIOTAP_EXT) |
259 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
260 		put_unaligned_le32(it_present_val, it_present);
261 		it_present++;
262 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
263 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
264 	}
265 
266 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
268 				  BIT(IEEE80211_RADIOTAP_EXT);
269 		put_unaligned_le32(it_present_val, it_present);
270 		it_present++;
271 		it_present_val = rtap.present;
272 	}
273 
274 	put_unaligned_le32(it_present_val, it_present);
275 
276 	pos = (void *)(it_present + 1);
277 
278 	/* the order of the following fields is important */
279 
280 	/* IEEE80211_RADIOTAP_TSFT */
281 	if (ieee80211_have_rx_timestamp(status)) {
282 		/* padding */
283 		while ((pos - (u8 *)rthdr) & 7)
284 			*pos++ = 0;
285 		put_unaligned_le64(
286 			ieee80211_calculate_rx_timestamp(local, status,
287 							 mpdulen, 0),
288 			pos);
289 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
290 		pos += 8;
291 	}
292 
293 	/* IEEE80211_RADIOTAP_FLAGS */
294 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
295 		*pos |= IEEE80211_RADIOTAP_F_FCS;
296 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
297 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
298 	if (status->flag & RX_FLAG_SHORTPRE)
299 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
300 	pos++;
301 
302 	/* IEEE80211_RADIOTAP_RATE */
303 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
304 		/*
305 		 * Without rate information don't add it. If we have,
306 		 * MCS information is a separate field in radiotap,
307 		 * added below. The byte here is needed as padding
308 		 * for the channel though, so initialise it to 0.
309 		 */
310 		*pos = 0;
311 	} else {
312 		int shift = 0;
313 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
314 		if (status->flag & RX_FLAG_10MHZ)
315 			shift = 1;
316 		else if (status->flag & RX_FLAG_5MHZ)
317 			shift = 2;
318 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
319 	}
320 	pos++;
321 
322 	/* IEEE80211_RADIOTAP_CHANNEL */
323 	put_unaligned_le16(status->freq, pos);
324 	pos += 2;
325 	if (status->flag & RX_FLAG_10MHZ)
326 		channel_flags |= IEEE80211_CHAN_HALF;
327 	else if (status->flag & RX_FLAG_5MHZ)
328 		channel_flags |= IEEE80211_CHAN_QUARTER;
329 
330 	if (status->band == NL80211_BAND_5GHZ)
331 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
332 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
333 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
334 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
335 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
336 	else if (rate)
337 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
338 	else
339 		channel_flags |= IEEE80211_CHAN_2GHZ;
340 	put_unaligned_le16(channel_flags, pos);
341 	pos += 2;
342 
343 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
344 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
345 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
346 		*pos = status->signal;
347 		rthdr->it_present |=
348 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
349 		pos++;
350 	}
351 
352 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
353 
354 	if (!status->chains) {
355 		/* IEEE80211_RADIOTAP_ANTENNA */
356 		*pos = status->antenna;
357 		pos++;
358 	}
359 
360 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
361 
362 	/* IEEE80211_RADIOTAP_RX_FLAGS */
363 	/* ensure 2 byte alignment for the 2 byte field as required */
364 	if ((pos - (u8 *)rthdr) & 1)
365 		*pos++ = 0;
366 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
367 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
368 	put_unaligned_le16(rx_flags, pos);
369 	pos += 2;
370 
371 	if (status->flag & RX_FLAG_HT) {
372 		unsigned int stbc;
373 
374 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
375 		*pos++ = local->hw.radiotap_mcs_details;
376 		*pos = 0;
377 		if (status->flag & RX_FLAG_SHORT_GI)
378 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
379 		if (status->flag & RX_FLAG_40MHZ)
380 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
381 		if (status->flag & RX_FLAG_HT_GF)
382 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
383 		if (status->flag & RX_FLAG_LDPC)
384 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
385 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
386 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
387 		pos++;
388 		*pos++ = status->rate_idx;
389 	}
390 
391 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
392 		u16 flags = 0;
393 
394 		/* ensure 4 byte alignment */
395 		while ((pos - (u8 *)rthdr) & 3)
396 			pos++;
397 		rthdr->it_present |=
398 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
399 		put_unaligned_le32(status->ampdu_reference, pos);
400 		pos += 4;
401 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
402 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
403 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
404 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
405 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
406 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
407 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
408 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
409 		put_unaligned_le16(flags, pos);
410 		pos += 2;
411 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
412 			*pos++ = status->ampdu_delimiter_crc;
413 		else
414 			*pos++ = 0;
415 		*pos++ = 0;
416 	}
417 
418 	if (status->flag & RX_FLAG_VHT) {
419 		u16 known = local->hw.radiotap_vht_details;
420 
421 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
422 		put_unaligned_le16(known, pos);
423 		pos += 2;
424 		/* flags */
425 		if (status->flag & RX_FLAG_SHORT_GI)
426 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
427 		/* in VHT, STBC is binary */
428 		if (status->flag & RX_FLAG_STBC_MASK)
429 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
430 		if (status->vht_flag & RX_VHT_FLAG_BF)
431 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
432 		pos++;
433 		/* bandwidth */
434 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
435 			*pos++ = 4;
436 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
437 			*pos++ = 11;
438 		else if (status->flag & RX_FLAG_40MHZ)
439 			*pos++ = 1;
440 		else /* 20 MHz */
441 			*pos++ = 0;
442 		/* MCS/NSS */
443 		*pos = (status->rate_idx << 4) | status->vht_nss;
444 		pos += 4;
445 		/* coding field */
446 		if (status->flag & RX_FLAG_LDPC)
447 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
448 		pos++;
449 		/* group ID */
450 		pos++;
451 		/* partial_aid */
452 		pos += 2;
453 	}
454 
455 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
456 		u16 accuracy = 0;
457 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
458 
459 		rthdr->it_present |=
460 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
461 
462 		/* ensure 8 byte alignment */
463 		while ((pos - (u8 *)rthdr) & 7)
464 			pos++;
465 
466 		put_unaligned_le64(status->device_timestamp, pos);
467 		pos += sizeof(u64);
468 
469 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
470 			accuracy = local->hw.radiotap_timestamp.accuracy;
471 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
472 		}
473 		put_unaligned_le16(accuracy, pos);
474 		pos += sizeof(u16);
475 
476 		*pos++ = local->hw.radiotap_timestamp.units_pos;
477 		*pos++ = flags;
478 	}
479 
480 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
481 		*pos++ = status->chain_signal[chain];
482 		*pos++ = chain;
483 	}
484 
485 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
486 		/* ensure 2 byte alignment for the vendor field as required */
487 		if ((pos - (u8 *)rthdr) & 1)
488 			*pos++ = 0;
489 		*pos++ = rtap.oui[0];
490 		*pos++ = rtap.oui[1];
491 		*pos++ = rtap.oui[2];
492 		*pos++ = rtap.subns;
493 		put_unaligned_le16(rtap.len, pos);
494 		pos += 2;
495 		/* align the actual payload as requested */
496 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
497 			*pos++ = 0;
498 		/* data (and possible padding) already follows */
499 	}
500 }
501 
502 /*
503  * This function copies a received frame to all monitor interfaces and
504  * returns a cleaned-up SKB that no longer includes the FCS nor the
505  * radiotap header the driver might have added.
506  */
507 static struct sk_buff *
508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
509 		     struct ieee80211_rate *rate)
510 {
511 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
512 	struct ieee80211_sub_if_data *sdata;
513 	int rt_hdrlen, needed_headroom;
514 	struct sk_buff *skb, *skb2;
515 	struct net_device *prev_dev = NULL;
516 	int present_fcs_len = 0;
517 	unsigned int rtap_vendor_space = 0;
518 	struct ieee80211_mgmt *mgmt;
519 	struct ieee80211_sub_if_data *monitor_sdata =
520 		rcu_dereference(local->monitor_sdata);
521 
522 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
523 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
524 
525 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
526 	}
527 
528 	/*
529 	 * First, we may need to make a copy of the skb because
530 	 *  (1) we need to modify it for radiotap (if not present), and
531 	 *  (2) the other RX handlers will modify the skb we got.
532 	 *
533 	 * We don't need to, of course, if we aren't going to return
534 	 * the SKB because it has a bad FCS/PLCP checksum.
535 	 */
536 
537 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
538 		present_fcs_len = FCS_LEN;
539 
540 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
541 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
542 		dev_kfree_skb(origskb);
543 		return NULL;
544 	}
545 
546 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
547 		if (should_drop_frame(origskb, present_fcs_len,
548 				      rtap_vendor_space)) {
549 			dev_kfree_skb(origskb);
550 			return NULL;
551 		}
552 
553 		return remove_monitor_info(local, origskb, rtap_vendor_space);
554 	}
555 
556 	/* room for the radiotap header based on driver features */
557 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
558 	needed_headroom = rt_hdrlen - rtap_vendor_space;
559 
560 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
561 		/* only need to expand headroom if necessary */
562 		skb = origskb;
563 		origskb = NULL;
564 
565 		/*
566 		 * This shouldn't trigger often because most devices have an
567 		 * RX header they pull before we get here, and that should
568 		 * be big enough for our radiotap information. We should
569 		 * probably export the length to drivers so that we can have
570 		 * them allocate enough headroom to start with.
571 		 */
572 		if (skb_headroom(skb) < needed_headroom &&
573 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
574 			dev_kfree_skb(skb);
575 			return NULL;
576 		}
577 	} else {
578 		/*
579 		 * Need to make a copy and possibly remove radiotap header
580 		 * and FCS from the original.
581 		 */
582 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
583 
584 		origskb = remove_monitor_info(local, origskb,
585 					      rtap_vendor_space);
586 
587 		if (!skb)
588 			return origskb;
589 	}
590 
591 	/* prepend radiotap information */
592 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
593 
594 	skb_reset_mac_header(skb);
595 	skb->ip_summed = CHECKSUM_UNNECESSARY;
596 	skb->pkt_type = PACKET_OTHERHOST;
597 	skb->protocol = htons(ETH_P_802_2);
598 
599 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
600 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
601 			continue;
602 
603 		if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
604 			continue;
605 
606 		if (!ieee80211_sdata_running(sdata))
607 			continue;
608 
609 		if (prev_dev) {
610 			skb2 = skb_clone(skb, GFP_ATOMIC);
611 			if (skb2) {
612 				skb2->dev = prev_dev;
613 				netif_receive_skb(skb2);
614 			}
615 		}
616 
617 		prev_dev = sdata->dev;
618 		ieee80211_rx_stats(sdata->dev, skb->len);
619 	}
620 
621 	mgmt = (void *)skb->data;
622 	if (monitor_sdata &&
623 	    skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN &&
624 	    ieee80211_is_action(mgmt->frame_control) &&
625 	    mgmt->u.action.category == WLAN_CATEGORY_VHT &&
626 	    mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT &&
627 	    is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) &&
628 	    ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) {
629 		struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC);
630 
631 		if (mu_skb) {
632 			mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
633 			skb_queue_tail(&monitor_sdata->skb_queue, mu_skb);
634 			ieee80211_queue_work(&local->hw, &monitor_sdata->work);
635 		}
636 	}
637 
638 	if (prev_dev) {
639 		skb->dev = prev_dev;
640 		netif_receive_skb(skb);
641 	} else
642 		dev_kfree_skb(skb);
643 
644 	return origskb;
645 }
646 
647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
648 {
649 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
650 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
651 	int tid, seqno_idx, security_idx;
652 
653 	/* does the frame have a qos control field? */
654 	if (ieee80211_is_data_qos(hdr->frame_control)) {
655 		u8 *qc = ieee80211_get_qos_ctl(hdr);
656 		/* frame has qos control */
657 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
658 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
659 			status->rx_flags |= IEEE80211_RX_AMSDU;
660 
661 		seqno_idx = tid;
662 		security_idx = tid;
663 	} else {
664 		/*
665 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
666 		 *
667 		 *	Sequence numbers for management frames, QoS data
668 		 *	frames with a broadcast/multicast address in the
669 		 *	Address 1 field, and all non-QoS data frames sent
670 		 *	by QoS STAs are assigned using an additional single
671 		 *	modulo-4096 counter, [...]
672 		 *
673 		 * We also use that counter for non-QoS STAs.
674 		 */
675 		seqno_idx = IEEE80211_NUM_TIDS;
676 		security_idx = 0;
677 		if (ieee80211_is_mgmt(hdr->frame_control))
678 			security_idx = IEEE80211_NUM_TIDS;
679 		tid = 0;
680 	}
681 
682 	rx->seqno_idx = seqno_idx;
683 	rx->security_idx = security_idx;
684 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
685 	 * For now, set skb->priority to 0 for other cases. */
686 	rx->skb->priority = (tid > 7) ? 0 : tid;
687 }
688 
689 /**
690  * DOC: Packet alignment
691  *
692  * Drivers always need to pass packets that are aligned to two-byte boundaries
693  * to the stack.
694  *
695  * Additionally, should, if possible, align the payload data in a way that
696  * guarantees that the contained IP header is aligned to a four-byte
697  * boundary. In the case of regular frames, this simply means aligning the
698  * payload to a four-byte boundary (because either the IP header is directly
699  * contained, or IV/RFC1042 headers that have a length divisible by four are
700  * in front of it).  If the payload data is not properly aligned and the
701  * architecture doesn't support efficient unaligned operations, mac80211
702  * will align the data.
703  *
704  * With A-MSDU frames, however, the payload data address must yield two modulo
705  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
706  * push the IP header further back to a multiple of four again. Thankfully, the
707  * specs were sane enough this time around to require padding each A-MSDU
708  * subframe to a length that is a multiple of four.
709  *
710  * Padding like Atheros hardware adds which is between the 802.11 header and
711  * the payload is not supported, the driver is required to move the 802.11
712  * header to be directly in front of the payload in that case.
713  */
714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
715 {
716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
717 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
718 #endif
719 }
720 
721 
722 /* rx handlers */
723 
724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
725 {
726 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
727 
728 	if (is_multicast_ether_addr(hdr->addr1))
729 		return 0;
730 
731 	return ieee80211_is_robust_mgmt_frame(skb);
732 }
733 
734 
735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
736 {
737 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
738 
739 	if (!is_multicast_ether_addr(hdr->addr1))
740 		return 0;
741 
742 	return ieee80211_is_robust_mgmt_frame(skb);
743 }
744 
745 
746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
748 {
749 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
750 	struct ieee80211_mmie *mmie;
751 	struct ieee80211_mmie_16 *mmie16;
752 
753 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
754 		return -1;
755 
756 	if (!ieee80211_is_robust_mgmt_frame(skb))
757 		return -1; /* not a robust management frame */
758 
759 	mmie = (struct ieee80211_mmie *)
760 		(skb->data + skb->len - sizeof(*mmie));
761 	if (mmie->element_id == WLAN_EID_MMIE &&
762 	    mmie->length == sizeof(*mmie) - 2)
763 		return le16_to_cpu(mmie->key_id);
764 
765 	mmie16 = (struct ieee80211_mmie_16 *)
766 		(skb->data + skb->len - sizeof(*mmie16));
767 	if (skb->len >= 24 + sizeof(*mmie16) &&
768 	    mmie16->element_id == WLAN_EID_MMIE &&
769 	    mmie16->length == sizeof(*mmie16) - 2)
770 		return le16_to_cpu(mmie16->key_id);
771 
772 	return -1;
773 }
774 
775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
776 				  struct sk_buff *skb)
777 {
778 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
779 	__le16 fc;
780 	int hdrlen;
781 	u8 keyid;
782 
783 	fc = hdr->frame_control;
784 	hdrlen = ieee80211_hdrlen(fc);
785 
786 	if (skb->len < hdrlen + cs->hdr_len)
787 		return -EINVAL;
788 
789 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
790 	keyid &= cs->key_idx_mask;
791 	keyid >>= cs->key_idx_shift;
792 
793 	return keyid;
794 }
795 
796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
797 {
798 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
799 	char *dev_addr = rx->sdata->vif.addr;
800 
801 	if (ieee80211_is_data(hdr->frame_control)) {
802 		if (is_multicast_ether_addr(hdr->addr1)) {
803 			if (ieee80211_has_tods(hdr->frame_control) ||
804 			    !ieee80211_has_fromds(hdr->frame_control))
805 				return RX_DROP_MONITOR;
806 			if (ether_addr_equal(hdr->addr3, dev_addr))
807 				return RX_DROP_MONITOR;
808 		} else {
809 			if (!ieee80211_has_a4(hdr->frame_control))
810 				return RX_DROP_MONITOR;
811 			if (ether_addr_equal(hdr->addr4, dev_addr))
812 				return RX_DROP_MONITOR;
813 		}
814 	}
815 
816 	/* If there is not an established peer link and this is not a peer link
817 	 * establisment frame, beacon or probe, drop the frame.
818 	 */
819 
820 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
821 		struct ieee80211_mgmt *mgmt;
822 
823 		if (!ieee80211_is_mgmt(hdr->frame_control))
824 			return RX_DROP_MONITOR;
825 
826 		if (ieee80211_is_action(hdr->frame_control)) {
827 			u8 category;
828 
829 			/* make sure category field is present */
830 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
831 				return RX_DROP_MONITOR;
832 
833 			mgmt = (struct ieee80211_mgmt *)hdr;
834 			category = mgmt->u.action.category;
835 			if (category != WLAN_CATEGORY_MESH_ACTION &&
836 			    category != WLAN_CATEGORY_SELF_PROTECTED)
837 				return RX_DROP_MONITOR;
838 			return RX_CONTINUE;
839 		}
840 
841 		if (ieee80211_is_probe_req(hdr->frame_control) ||
842 		    ieee80211_is_probe_resp(hdr->frame_control) ||
843 		    ieee80211_is_beacon(hdr->frame_control) ||
844 		    ieee80211_is_auth(hdr->frame_control))
845 			return RX_CONTINUE;
846 
847 		return RX_DROP_MONITOR;
848 	}
849 
850 	return RX_CONTINUE;
851 }
852 
853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
854 					      int index)
855 {
856 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
857 	struct sk_buff *tail = skb_peek_tail(frames);
858 	struct ieee80211_rx_status *status;
859 
860 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
861 		return true;
862 
863 	if (!tail)
864 		return false;
865 
866 	status = IEEE80211_SKB_RXCB(tail);
867 	if (status->flag & RX_FLAG_AMSDU_MORE)
868 		return false;
869 
870 	return true;
871 }
872 
873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
874 					    struct tid_ampdu_rx *tid_agg_rx,
875 					    int index,
876 					    struct sk_buff_head *frames)
877 {
878 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
879 	struct sk_buff *skb;
880 	struct ieee80211_rx_status *status;
881 
882 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
883 
884 	if (skb_queue_empty(skb_list))
885 		goto no_frame;
886 
887 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
888 		__skb_queue_purge(skb_list);
889 		goto no_frame;
890 	}
891 
892 	/* release frames from the reorder ring buffer */
893 	tid_agg_rx->stored_mpdu_num--;
894 	while ((skb = __skb_dequeue(skb_list))) {
895 		status = IEEE80211_SKB_RXCB(skb);
896 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
897 		__skb_queue_tail(frames, skb);
898 	}
899 
900 no_frame:
901 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
902 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
903 }
904 
905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
906 					     struct tid_ampdu_rx *tid_agg_rx,
907 					     u16 head_seq_num,
908 					     struct sk_buff_head *frames)
909 {
910 	int index;
911 
912 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
913 
914 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
915 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
916 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
917 						frames);
918 	}
919 }
920 
921 /*
922  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
923  * the skb was added to the buffer longer than this time ago, the earlier
924  * frames that have not yet been received are assumed to be lost and the skb
925  * can be released for processing. This may also release other skb's from the
926  * reorder buffer if there are no additional gaps between the frames.
927  *
928  * Callers must hold tid_agg_rx->reorder_lock.
929  */
930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
931 
932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
933 					  struct tid_ampdu_rx *tid_agg_rx,
934 					  struct sk_buff_head *frames)
935 {
936 	int index, i, j;
937 
938 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
939 
940 	/* release the buffer until next missing frame */
941 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
942 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
943 	    tid_agg_rx->stored_mpdu_num) {
944 		/*
945 		 * No buffers ready to be released, but check whether any
946 		 * frames in the reorder buffer have timed out.
947 		 */
948 		int skipped = 1;
949 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
950 		     j = (j + 1) % tid_agg_rx->buf_size) {
951 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
952 				skipped++;
953 				continue;
954 			}
955 			if (skipped &&
956 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
957 					HT_RX_REORDER_BUF_TIMEOUT))
958 				goto set_release_timer;
959 
960 			/* don't leave incomplete A-MSDUs around */
961 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
962 			     i = (i + 1) % tid_agg_rx->buf_size)
963 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
964 
965 			ht_dbg_ratelimited(sdata,
966 					   "release an RX reorder frame due to timeout on earlier frames\n");
967 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
968 							frames);
969 
970 			/*
971 			 * Increment the head seq# also for the skipped slots.
972 			 */
973 			tid_agg_rx->head_seq_num =
974 				(tid_agg_rx->head_seq_num +
975 				 skipped) & IEEE80211_SN_MASK;
976 			skipped = 0;
977 		}
978 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
979 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
980 						frames);
981 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
982 	}
983 
984 	if (tid_agg_rx->stored_mpdu_num) {
985 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
986 
987 		for (; j != (index - 1) % tid_agg_rx->buf_size;
988 		     j = (j + 1) % tid_agg_rx->buf_size) {
989 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
990 				break;
991 		}
992 
993  set_release_timer:
994 
995 		if (!tid_agg_rx->removed)
996 			mod_timer(&tid_agg_rx->reorder_timer,
997 				  tid_agg_rx->reorder_time[j] + 1 +
998 				  HT_RX_REORDER_BUF_TIMEOUT);
999 	} else {
1000 		del_timer(&tid_agg_rx->reorder_timer);
1001 	}
1002 }
1003 
1004 /*
1005  * As this function belongs to the RX path it must be under
1006  * rcu_read_lock protection. It returns false if the frame
1007  * can be processed immediately, true if it was consumed.
1008  */
1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1010 					     struct tid_ampdu_rx *tid_agg_rx,
1011 					     struct sk_buff *skb,
1012 					     struct sk_buff_head *frames)
1013 {
1014 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1016 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1017 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1018 	u16 head_seq_num, buf_size;
1019 	int index;
1020 	bool ret = true;
1021 
1022 	spin_lock(&tid_agg_rx->reorder_lock);
1023 
1024 	/*
1025 	 * Offloaded BA sessions have no known starting sequence number so pick
1026 	 * one from first Rxed frame for this tid after BA was started.
1027 	 */
1028 	if (unlikely(tid_agg_rx->auto_seq)) {
1029 		tid_agg_rx->auto_seq = false;
1030 		tid_agg_rx->ssn = mpdu_seq_num;
1031 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1032 	}
1033 
1034 	buf_size = tid_agg_rx->buf_size;
1035 	head_seq_num = tid_agg_rx->head_seq_num;
1036 
1037 	/*
1038 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1039 	 * be reordered.
1040 	 */
1041 	if (unlikely(!tid_agg_rx->started)) {
1042 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1043 			ret = false;
1044 			goto out;
1045 		}
1046 		tid_agg_rx->started = true;
1047 	}
1048 
1049 	/* frame with out of date sequence number */
1050 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1051 		dev_kfree_skb(skb);
1052 		goto out;
1053 	}
1054 
1055 	/*
1056 	 * If frame the sequence number exceeds our buffering window
1057 	 * size release some previous frames to make room for this one.
1058 	 */
1059 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1060 		head_seq_num = ieee80211_sn_inc(
1061 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1062 		/* release stored frames up to new head to stack */
1063 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1064 						 head_seq_num, frames);
1065 	}
1066 
1067 	/* Now the new frame is always in the range of the reordering buffer */
1068 
1069 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1070 
1071 	/* check if we already stored this frame */
1072 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1073 		dev_kfree_skb(skb);
1074 		goto out;
1075 	}
1076 
1077 	/*
1078 	 * If the current MPDU is in the right order and nothing else
1079 	 * is stored we can process it directly, no need to buffer it.
1080 	 * If it is first but there's something stored, we may be able
1081 	 * to release frames after this one.
1082 	 */
1083 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1084 	    tid_agg_rx->stored_mpdu_num == 0) {
1085 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1086 			tid_agg_rx->head_seq_num =
1087 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1088 		ret = false;
1089 		goto out;
1090 	}
1091 
1092 	/* put the frame in the reordering buffer */
1093 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1094 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1095 		tid_agg_rx->reorder_time[index] = jiffies;
1096 		tid_agg_rx->stored_mpdu_num++;
1097 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1098 	}
1099 
1100  out:
1101 	spin_unlock(&tid_agg_rx->reorder_lock);
1102 	return ret;
1103 }
1104 
1105 /*
1106  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1107  * true if the MPDU was buffered, false if it should be processed.
1108  */
1109 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1110 				       struct sk_buff_head *frames)
1111 {
1112 	struct sk_buff *skb = rx->skb;
1113 	struct ieee80211_local *local = rx->local;
1114 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1115 	struct sta_info *sta = rx->sta;
1116 	struct tid_ampdu_rx *tid_agg_rx;
1117 	u16 sc;
1118 	u8 tid, ack_policy;
1119 
1120 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1121 	    is_multicast_ether_addr(hdr->addr1))
1122 		goto dont_reorder;
1123 
1124 	/*
1125 	 * filter the QoS data rx stream according to
1126 	 * STA/TID and check if this STA/TID is on aggregation
1127 	 */
1128 
1129 	if (!sta)
1130 		goto dont_reorder;
1131 
1132 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1133 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1134 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1135 
1136 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1137 	if (!tid_agg_rx) {
1138 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1139 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1140 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1141 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1142 					     WLAN_BACK_RECIPIENT,
1143 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1144 		goto dont_reorder;
1145 	}
1146 
1147 	/* qos null data frames are excluded */
1148 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1149 		goto dont_reorder;
1150 
1151 	/* not part of a BA session */
1152 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1153 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1154 		goto dont_reorder;
1155 
1156 	/* new, potentially un-ordered, ampdu frame - process it */
1157 
1158 	/* reset session timer */
1159 	if (tid_agg_rx->timeout)
1160 		tid_agg_rx->last_rx = jiffies;
1161 
1162 	/* if this mpdu is fragmented - terminate rx aggregation session */
1163 	sc = le16_to_cpu(hdr->seq_ctrl);
1164 	if (sc & IEEE80211_SCTL_FRAG) {
1165 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1166 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1167 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1168 		return;
1169 	}
1170 
1171 	/*
1172 	 * No locking needed -- we will only ever process one
1173 	 * RX packet at a time, and thus own tid_agg_rx. All
1174 	 * other code manipulating it needs to (and does) make
1175 	 * sure that we cannot get to it any more before doing
1176 	 * anything with it.
1177 	 */
1178 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1179 					     frames))
1180 		return;
1181 
1182  dont_reorder:
1183 	__skb_queue_tail(frames, skb);
1184 }
1185 
1186 static ieee80211_rx_result debug_noinline
1187 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1188 {
1189 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1190 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1191 
1192 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1193 		return RX_CONTINUE;
1194 
1195 	/*
1196 	 * Drop duplicate 802.11 retransmissions
1197 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1198 	 */
1199 
1200 	if (rx->skb->len < 24)
1201 		return RX_CONTINUE;
1202 
1203 	if (ieee80211_is_ctl(hdr->frame_control) ||
1204 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1205 	    is_multicast_ether_addr(hdr->addr1))
1206 		return RX_CONTINUE;
1207 
1208 	if (!rx->sta)
1209 		return RX_CONTINUE;
1210 
1211 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1212 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1213 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1214 		rx->sta->rx_stats.num_duplicates++;
1215 		return RX_DROP_UNUSABLE;
1216 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1217 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1218 	}
1219 
1220 	return RX_CONTINUE;
1221 }
1222 
1223 static ieee80211_rx_result debug_noinline
1224 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1225 {
1226 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1227 
1228 	/* Drop disallowed frame classes based on STA auth/assoc state;
1229 	 * IEEE 802.11, Chap 5.5.
1230 	 *
1231 	 * mac80211 filters only based on association state, i.e. it drops
1232 	 * Class 3 frames from not associated stations. hostapd sends
1233 	 * deauth/disassoc frames when needed. In addition, hostapd is
1234 	 * responsible for filtering on both auth and assoc states.
1235 	 */
1236 
1237 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1238 		return ieee80211_rx_mesh_check(rx);
1239 
1240 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1241 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1242 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1243 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1244 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1245 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1246 		/*
1247 		 * accept port control frames from the AP even when it's not
1248 		 * yet marked ASSOC to prevent a race where we don't set the
1249 		 * assoc bit quickly enough before it sends the first frame
1250 		 */
1251 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1252 		    ieee80211_is_data_present(hdr->frame_control)) {
1253 			unsigned int hdrlen;
1254 			__be16 ethertype;
1255 
1256 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1257 
1258 			if (rx->skb->len < hdrlen + 8)
1259 				return RX_DROP_MONITOR;
1260 
1261 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1262 			if (ethertype == rx->sdata->control_port_protocol)
1263 				return RX_CONTINUE;
1264 		}
1265 
1266 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1267 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1268 					       hdr->addr2,
1269 					       GFP_ATOMIC))
1270 			return RX_DROP_UNUSABLE;
1271 
1272 		return RX_DROP_MONITOR;
1273 	}
1274 
1275 	return RX_CONTINUE;
1276 }
1277 
1278 
1279 static ieee80211_rx_result debug_noinline
1280 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1281 {
1282 	struct ieee80211_local *local;
1283 	struct ieee80211_hdr *hdr;
1284 	struct sk_buff *skb;
1285 
1286 	local = rx->local;
1287 	skb = rx->skb;
1288 	hdr = (struct ieee80211_hdr *) skb->data;
1289 
1290 	if (!local->pspolling)
1291 		return RX_CONTINUE;
1292 
1293 	if (!ieee80211_has_fromds(hdr->frame_control))
1294 		/* this is not from AP */
1295 		return RX_CONTINUE;
1296 
1297 	if (!ieee80211_is_data(hdr->frame_control))
1298 		return RX_CONTINUE;
1299 
1300 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1301 		/* AP has no more frames buffered for us */
1302 		local->pspolling = false;
1303 		return RX_CONTINUE;
1304 	}
1305 
1306 	/* more data bit is set, let's request a new frame from the AP */
1307 	ieee80211_send_pspoll(local, rx->sdata);
1308 
1309 	return RX_CONTINUE;
1310 }
1311 
1312 static void sta_ps_start(struct sta_info *sta)
1313 {
1314 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1315 	struct ieee80211_local *local = sdata->local;
1316 	struct ps_data *ps;
1317 	int tid;
1318 
1319 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1320 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1321 		ps = &sdata->bss->ps;
1322 	else
1323 		return;
1324 
1325 	atomic_inc(&ps->num_sta_ps);
1326 	set_sta_flag(sta, WLAN_STA_PS_STA);
1327 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1328 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1329 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1330 	       sta->sta.addr, sta->sta.aid);
1331 
1332 	ieee80211_clear_fast_xmit(sta);
1333 
1334 	if (!sta->sta.txq[0])
1335 		return;
1336 
1337 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1338 		if (txq_has_queue(sta->sta.txq[tid]))
1339 			set_bit(tid, &sta->txq_buffered_tids);
1340 		else
1341 			clear_bit(tid, &sta->txq_buffered_tids);
1342 	}
1343 }
1344 
1345 static void sta_ps_end(struct sta_info *sta)
1346 {
1347 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1348 	       sta->sta.addr, sta->sta.aid);
1349 
1350 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1351 		/*
1352 		 * Clear the flag only if the other one is still set
1353 		 * so that the TX path won't start TX'ing new frames
1354 		 * directly ... In the case that the driver flag isn't
1355 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1356 		 */
1357 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1358 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1359 		       sta->sta.addr, sta->sta.aid);
1360 		return;
1361 	}
1362 
1363 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1364 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1365 	ieee80211_sta_ps_deliver_wakeup(sta);
1366 }
1367 
1368 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1369 {
1370 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1371 	bool in_ps;
1372 
1373 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1374 
1375 	/* Don't let the same PS state be set twice */
1376 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1377 	if ((start && in_ps) || (!start && !in_ps))
1378 		return -EINVAL;
1379 
1380 	if (start)
1381 		sta_ps_start(sta);
1382 	else
1383 		sta_ps_end(sta);
1384 
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1388 
1389 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1390 {
1391 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1392 
1393 	if (test_sta_flag(sta, WLAN_STA_SP))
1394 		return;
1395 
1396 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1397 		ieee80211_sta_ps_deliver_poll_response(sta);
1398 	else
1399 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1400 }
1401 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1402 
1403 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1404 {
1405 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1406 	int ac = ieee80211_ac_from_tid(tid);
1407 
1408 	/*
1409 	 * If this AC is not trigger-enabled do nothing unless the
1410 	 * driver is calling us after it already checked.
1411 	 *
1412 	 * NB: This could/should check a separate bitmap of trigger-
1413 	 * enabled queues, but for now we only implement uAPSD w/o
1414 	 * TSPEC changes to the ACs, so they're always the same.
1415 	 */
1416 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1417 	    tid != IEEE80211_NUM_TIDS)
1418 		return;
1419 
1420 	/* if we are in a service period, do nothing */
1421 	if (test_sta_flag(sta, WLAN_STA_SP))
1422 		return;
1423 
1424 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1425 		ieee80211_sta_ps_deliver_uapsd(sta);
1426 	else
1427 		set_sta_flag(sta, WLAN_STA_UAPSD);
1428 }
1429 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1430 
1431 static ieee80211_rx_result debug_noinline
1432 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1433 {
1434 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1435 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1436 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1437 
1438 	if (!rx->sta)
1439 		return RX_CONTINUE;
1440 
1441 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1442 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1443 		return RX_CONTINUE;
1444 
1445 	/*
1446 	 * The device handles station powersave, so don't do anything about
1447 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1448 	 * it to mac80211 since they're handled.)
1449 	 */
1450 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1451 		return RX_CONTINUE;
1452 
1453 	/*
1454 	 * Don't do anything if the station isn't already asleep. In
1455 	 * the uAPSD case, the station will probably be marked asleep,
1456 	 * in the PS-Poll case the station must be confused ...
1457 	 */
1458 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1459 		return RX_CONTINUE;
1460 
1461 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1462 		ieee80211_sta_pspoll(&rx->sta->sta);
1463 
1464 		/* Free PS Poll skb here instead of returning RX_DROP that would
1465 		 * count as an dropped frame. */
1466 		dev_kfree_skb(rx->skb);
1467 
1468 		return RX_QUEUED;
1469 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1470 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1471 		   ieee80211_has_pm(hdr->frame_control) &&
1472 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1473 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1474 		u8 tid;
1475 
1476 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1477 
1478 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1479 	}
1480 
1481 	return RX_CONTINUE;
1482 }
1483 
1484 static ieee80211_rx_result debug_noinline
1485 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1486 {
1487 	struct sta_info *sta = rx->sta;
1488 	struct sk_buff *skb = rx->skb;
1489 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1490 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1491 	int i;
1492 
1493 	if (!sta)
1494 		return RX_CONTINUE;
1495 
1496 	/*
1497 	 * Update last_rx only for IBSS packets which are for the current
1498 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1499 	 * current IBSS network alive in cases where other STAs start
1500 	 * using different BSSID. This will also give the station another
1501 	 * chance to restart the authentication/authorization in case
1502 	 * something went wrong the first time.
1503 	 */
1504 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1505 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1506 						NL80211_IFTYPE_ADHOC);
1507 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1508 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1509 			sta->rx_stats.last_rx = jiffies;
1510 			if (ieee80211_is_data(hdr->frame_control) &&
1511 			    !is_multicast_ether_addr(hdr->addr1))
1512 				sta->rx_stats.last_rate =
1513 					sta_stats_encode_rate(status);
1514 		}
1515 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1516 		sta->rx_stats.last_rx = jiffies;
1517 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1518 		/*
1519 		 * Mesh beacons will update last_rx when if they are found to
1520 		 * match the current local configuration when processed.
1521 		 */
1522 		sta->rx_stats.last_rx = jiffies;
1523 		if (ieee80211_is_data(hdr->frame_control))
1524 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1525 	}
1526 
1527 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1528 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1529 
1530 	sta->rx_stats.fragments++;
1531 
1532 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1533 	sta->rx_stats.bytes += rx->skb->len;
1534 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1535 
1536 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1537 		sta->rx_stats.last_signal = status->signal;
1538 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1539 	}
1540 
1541 	if (status->chains) {
1542 		sta->rx_stats.chains = status->chains;
1543 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1544 			int signal = status->chain_signal[i];
1545 
1546 			if (!(status->chains & BIT(i)))
1547 				continue;
1548 
1549 			sta->rx_stats.chain_signal_last[i] = signal;
1550 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1551 					-signal);
1552 		}
1553 	}
1554 
1555 	/*
1556 	 * Change STA power saving mode only at the end of a frame
1557 	 * exchange sequence.
1558 	 */
1559 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1560 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1561 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1562 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1563 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1564 	    /* PM bit is only checked in frames where it isn't reserved,
1565 	     * in AP mode it's reserved in non-bufferable management frames
1566 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1567 	     */
1568 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1569 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1570 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1571 			if (!ieee80211_has_pm(hdr->frame_control))
1572 				sta_ps_end(sta);
1573 		} else {
1574 			if (ieee80211_has_pm(hdr->frame_control))
1575 				sta_ps_start(sta);
1576 		}
1577 	}
1578 
1579 	/* mesh power save support */
1580 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1581 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1582 
1583 	/*
1584 	 * Drop (qos-)data::nullfunc frames silently, since they
1585 	 * are used only to control station power saving mode.
1586 	 */
1587 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1588 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1589 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1590 
1591 		/*
1592 		 * If we receive a 4-addr nullfunc frame from a STA
1593 		 * that was not moved to a 4-addr STA vlan yet send
1594 		 * the event to userspace and for older hostapd drop
1595 		 * the frame to the monitor interface.
1596 		 */
1597 		if (ieee80211_has_a4(hdr->frame_control) &&
1598 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1599 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1600 		      !rx->sdata->u.vlan.sta))) {
1601 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1602 				cfg80211_rx_unexpected_4addr_frame(
1603 					rx->sdata->dev, sta->sta.addr,
1604 					GFP_ATOMIC);
1605 			return RX_DROP_MONITOR;
1606 		}
1607 		/*
1608 		 * Update counter and free packet here to avoid
1609 		 * counting this as a dropped packed.
1610 		 */
1611 		sta->rx_stats.packets++;
1612 		dev_kfree_skb(rx->skb);
1613 		return RX_QUEUED;
1614 	}
1615 
1616 	return RX_CONTINUE;
1617 } /* ieee80211_rx_h_sta_process */
1618 
1619 static ieee80211_rx_result debug_noinline
1620 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1621 {
1622 	struct sk_buff *skb = rx->skb;
1623 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1624 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1625 	int keyidx;
1626 	int hdrlen;
1627 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1628 	struct ieee80211_key *sta_ptk = NULL;
1629 	int mmie_keyidx = -1;
1630 	__le16 fc;
1631 	const struct ieee80211_cipher_scheme *cs = NULL;
1632 
1633 	/*
1634 	 * Key selection 101
1635 	 *
1636 	 * There are four types of keys:
1637 	 *  - GTK (group keys)
1638 	 *  - IGTK (group keys for management frames)
1639 	 *  - PTK (pairwise keys)
1640 	 *  - STK (station-to-station pairwise keys)
1641 	 *
1642 	 * When selecting a key, we have to distinguish between multicast
1643 	 * (including broadcast) and unicast frames, the latter can only
1644 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1645 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1646 	 * unicast frames can also use key indices like GTKs. Hence, if we
1647 	 * don't have a PTK/STK we check the key index for a WEP key.
1648 	 *
1649 	 * Note that in a regular BSS, multicast frames are sent by the
1650 	 * AP only, associated stations unicast the frame to the AP first
1651 	 * which then multicasts it on their behalf.
1652 	 *
1653 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1654 	 * with each station, that is something we don't currently handle.
1655 	 * The spec seems to expect that one negotiates the same key with
1656 	 * every station but there's no such requirement; VLANs could be
1657 	 * possible.
1658 	 */
1659 
1660 	/* start without a key */
1661 	rx->key = NULL;
1662 	fc = hdr->frame_control;
1663 
1664 	if (rx->sta) {
1665 		int keyid = rx->sta->ptk_idx;
1666 
1667 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1668 			cs = rx->sta->cipher_scheme;
1669 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1670 			if (unlikely(keyid < 0))
1671 				return RX_DROP_UNUSABLE;
1672 		}
1673 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1674 	}
1675 
1676 	if (!ieee80211_has_protected(fc))
1677 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1678 
1679 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1680 		rx->key = sta_ptk;
1681 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1682 		    (status->flag & RX_FLAG_IV_STRIPPED))
1683 			return RX_CONTINUE;
1684 		/* Skip decryption if the frame is not protected. */
1685 		if (!ieee80211_has_protected(fc))
1686 			return RX_CONTINUE;
1687 	} else if (mmie_keyidx >= 0) {
1688 		/* Broadcast/multicast robust management frame / BIP */
1689 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1690 		    (status->flag & RX_FLAG_IV_STRIPPED))
1691 			return RX_CONTINUE;
1692 
1693 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1694 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1695 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1696 		if (rx->sta) {
1697 			if (ieee80211_is_group_privacy_action(skb) &&
1698 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1699 				return RX_DROP_MONITOR;
1700 
1701 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1702 		}
1703 		if (!rx->key)
1704 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1705 	} else if (!ieee80211_has_protected(fc)) {
1706 		/*
1707 		 * The frame was not protected, so skip decryption. However, we
1708 		 * need to set rx->key if there is a key that could have been
1709 		 * used so that the frame may be dropped if encryption would
1710 		 * have been expected.
1711 		 */
1712 		struct ieee80211_key *key = NULL;
1713 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1714 		int i;
1715 
1716 		if (ieee80211_is_mgmt(fc) &&
1717 		    is_multicast_ether_addr(hdr->addr1) &&
1718 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1719 			rx->key = key;
1720 		else {
1721 			if (rx->sta) {
1722 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1723 					key = rcu_dereference(rx->sta->gtk[i]);
1724 					if (key)
1725 						break;
1726 				}
1727 			}
1728 			if (!key) {
1729 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1730 					key = rcu_dereference(sdata->keys[i]);
1731 					if (key)
1732 						break;
1733 				}
1734 			}
1735 			if (key)
1736 				rx->key = key;
1737 		}
1738 		return RX_CONTINUE;
1739 	} else {
1740 		u8 keyid;
1741 
1742 		/*
1743 		 * The device doesn't give us the IV so we won't be
1744 		 * able to look up the key. That's ok though, we
1745 		 * don't need to decrypt the frame, we just won't
1746 		 * be able to keep statistics accurate.
1747 		 * Except for key threshold notifications, should
1748 		 * we somehow allow the driver to tell us which key
1749 		 * the hardware used if this flag is set?
1750 		 */
1751 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1752 		    (status->flag & RX_FLAG_IV_STRIPPED))
1753 			return RX_CONTINUE;
1754 
1755 		hdrlen = ieee80211_hdrlen(fc);
1756 
1757 		if (cs) {
1758 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1759 
1760 			if (unlikely(keyidx < 0))
1761 				return RX_DROP_UNUSABLE;
1762 		} else {
1763 			if (rx->skb->len < 8 + hdrlen)
1764 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1765 			/*
1766 			 * no need to call ieee80211_wep_get_keyidx,
1767 			 * it verifies a bunch of things we've done already
1768 			 */
1769 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1770 			keyidx = keyid >> 6;
1771 		}
1772 
1773 		/* check per-station GTK first, if multicast packet */
1774 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1775 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1776 
1777 		/* if not found, try default key */
1778 		if (!rx->key) {
1779 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1780 
1781 			/*
1782 			 * RSNA-protected unicast frames should always be
1783 			 * sent with pairwise or station-to-station keys,
1784 			 * but for WEP we allow using a key index as well.
1785 			 */
1786 			if (rx->key &&
1787 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1788 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1789 			    !is_multicast_ether_addr(hdr->addr1))
1790 				rx->key = NULL;
1791 		}
1792 	}
1793 
1794 	if (rx->key) {
1795 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1796 			return RX_DROP_MONITOR;
1797 
1798 		/* TODO: add threshold stuff again */
1799 	} else {
1800 		return RX_DROP_MONITOR;
1801 	}
1802 
1803 	switch (rx->key->conf.cipher) {
1804 	case WLAN_CIPHER_SUITE_WEP40:
1805 	case WLAN_CIPHER_SUITE_WEP104:
1806 		result = ieee80211_crypto_wep_decrypt(rx);
1807 		break;
1808 	case WLAN_CIPHER_SUITE_TKIP:
1809 		result = ieee80211_crypto_tkip_decrypt(rx);
1810 		break;
1811 	case WLAN_CIPHER_SUITE_CCMP:
1812 		result = ieee80211_crypto_ccmp_decrypt(
1813 			rx, IEEE80211_CCMP_MIC_LEN);
1814 		break;
1815 	case WLAN_CIPHER_SUITE_CCMP_256:
1816 		result = ieee80211_crypto_ccmp_decrypt(
1817 			rx, IEEE80211_CCMP_256_MIC_LEN);
1818 		break;
1819 	case WLAN_CIPHER_SUITE_AES_CMAC:
1820 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1821 		break;
1822 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1823 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1824 		break;
1825 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1826 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1827 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1828 		break;
1829 	case WLAN_CIPHER_SUITE_GCMP:
1830 	case WLAN_CIPHER_SUITE_GCMP_256:
1831 		result = ieee80211_crypto_gcmp_decrypt(rx);
1832 		break;
1833 	default:
1834 		result = ieee80211_crypto_hw_decrypt(rx);
1835 	}
1836 
1837 	/* the hdr variable is invalid after the decrypt handlers */
1838 
1839 	/* either the frame has been decrypted or will be dropped */
1840 	status->flag |= RX_FLAG_DECRYPTED;
1841 
1842 	return result;
1843 }
1844 
1845 static inline struct ieee80211_fragment_entry *
1846 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1847 			 unsigned int frag, unsigned int seq, int rx_queue,
1848 			 struct sk_buff **skb)
1849 {
1850 	struct ieee80211_fragment_entry *entry;
1851 
1852 	entry = &sdata->fragments[sdata->fragment_next++];
1853 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1854 		sdata->fragment_next = 0;
1855 
1856 	if (!skb_queue_empty(&entry->skb_list))
1857 		__skb_queue_purge(&entry->skb_list);
1858 
1859 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1860 	*skb = NULL;
1861 	entry->first_frag_time = jiffies;
1862 	entry->seq = seq;
1863 	entry->rx_queue = rx_queue;
1864 	entry->last_frag = frag;
1865 	entry->check_sequential_pn = false;
1866 	entry->extra_len = 0;
1867 
1868 	return entry;
1869 }
1870 
1871 static inline struct ieee80211_fragment_entry *
1872 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1873 			  unsigned int frag, unsigned int seq,
1874 			  int rx_queue, struct ieee80211_hdr *hdr)
1875 {
1876 	struct ieee80211_fragment_entry *entry;
1877 	int i, idx;
1878 
1879 	idx = sdata->fragment_next;
1880 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1881 		struct ieee80211_hdr *f_hdr;
1882 
1883 		idx--;
1884 		if (idx < 0)
1885 			idx = IEEE80211_FRAGMENT_MAX - 1;
1886 
1887 		entry = &sdata->fragments[idx];
1888 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1889 		    entry->rx_queue != rx_queue ||
1890 		    entry->last_frag + 1 != frag)
1891 			continue;
1892 
1893 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1894 
1895 		/*
1896 		 * Check ftype and addresses are equal, else check next fragment
1897 		 */
1898 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1899 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1900 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1901 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1902 			continue;
1903 
1904 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1905 			__skb_queue_purge(&entry->skb_list);
1906 			continue;
1907 		}
1908 		return entry;
1909 	}
1910 
1911 	return NULL;
1912 }
1913 
1914 static ieee80211_rx_result debug_noinline
1915 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1916 {
1917 	struct ieee80211_hdr *hdr;
1918 	u16 sc;
1919 	__le16 fc;
1920 	unsigned int frag, seq;
1921 	struct ieee80211_fragment_entry *entry;
1922 	struct sk_buff *skb;
1923 
1924 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1925 	fc = hdr->frame_control;
1926 
1927 	if (ieee80211_is_ctl(fc))
1928 		return RX_CONTINUE;
1929 
1930 	sc = le16_to_cpu(hdr->seq_ctrl);
1931 	frag = sc & IEEE80211_SCTL_FRAG;
1932 
1933 	if (is_multicast_ether_addr(hdr->addr1)) {
1934 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1935 		goto out_no_led;
1936 	}
1937 
1938 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1939 		goto out;
1940 
1941 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1942 
1943 	if (skb_linearize(rx->skb))
1944 		return RX_DROP_UNUSABLE;
1945 
1946 	/*
1947 	 *  skb_linearize() might change the skb->data and
1948 	 *  previously cached variables (in this case, hdr) need to
1949 	 *  be refreshed with the new data.
1950 	 */
1951 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1952 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1953 
1954 	if (frag == 0) {
1955 		/* This is the first fragment of a new frame. */
1956 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1957 						 rx->seqno_idx, &(rx->skb));
1958 		if (rx->key &&
1959 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1960 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1961 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1962 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1963 		    ieee80211_has_protected(fc)) {
1964 			int queue = rx->security_idx;
1965 
1966 			/* Store CCMP/GCMP PN so that we can verify that the
1967 			 * next fragment has a sequential PN value.
1968 			 */
1969 			entry->check_sequential_pn = true;
1970 			memcpy(entry->last_pn,
1971 			       rx->key->u.ccmp.rx_pn[queue],
1972 			       IEEE80211_CCMP_PN_LEN);
1973 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
1974 					      u.ccmp.rx_pn) !=
1975 				     offsetof(struct ieee80211_key,
1976 					      u.gcmp.rx_pn));
1977 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1978 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
1979 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1980 				     IEEE80211_GCMP_PN_LEN);
1981 		}
1982 		return RX_QUEUED;
1983 	}
1984 
1985 	/* This is a fragment for a frame that should already be pending in
1986 	 * fragment cache. Add this fragment to the end of the pending entry.
1987 	 */
1988 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1989 					  rx->seqno_idx, hdr);
1990 	if (!entry) {
1991 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1992 		return RX_DROP_MONITOR;
1993 	}
1994 
1995 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
1996 	 *  MPDU PN values are not incrementing in steps of 1."
1997 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1998 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1999 	 */
2000 	if (entry->check_sequential_pn) {
2001 		int i;
2002 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2003 		int queue;
2004 
2005 		if (!rx->key ||
2006 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2007 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2008 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2009 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2010 			return RX_DROP_UNUSABLE;
2011 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2012 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2013 			pn[i]++;
2014 			if (pn[i])
2015 				break;
2016 		}
2017 		queue = rx->security_idx;
2018 		rpn = rx->key->u.ccmp.rx_pn[queue];
2019 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2020 			return RX_DROP_UNUSABLE;
2021 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2022 	}
2023 
2024 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2025 	__skb_queue_tail(&entry->skb_list, rx->skb);
2026 	entry->last_frag = frag;
2027 	entry->extra_len += rx->skb->len;
2028 	if (ieee80211_has_morefrags(fc)) {
2029 		rx->skb = NULL;
2030 		return RX_QUEUED;
2031 	}
2032 
2033 	rx->skb = __skb_dequeue(&entry->skb_list);
2034 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2035 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2036 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2037 					      GFP_ATOMIC))) {
2038 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2039 			__skb_queue_purge(&entry->skb_list);
2040 			return RX_DROP_UNUSABLE;
2041 		}
2042 	}
2043 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2044 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2045 		dev_kfree_skb(skb);
2046 	}
2047 
2048  out:
2049 	ieee80211_led_rx(rx->local);
2050  out_no_led:
2051 	if (rx->sta)
2052 		rx->sta->rx_stats.packets++;
2053 	return RX_CONTINUE;
2054 }
2055 
2056 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2057 {
2058 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2059 		return -EACCES;
2060 
2061 	return 0;
2062 }
2063 
2064 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2065 {
2066 	struct sk_buff *skb = rx->skb;
2067 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2068 
2069 	/*
2070 	 * Pass through unencrypted frames if the hardware has
2071 	 * decrypted them already.
2072 	 */
2073 	if (status->flag & RX_FLAG_DECRYPTED)
2074 		return 0;
2075 
2076 	/* Drop unencrypted frames if key is set. */
2077 	if (unlikely(!ieee80211_has_protected(fc) &&
2078 		     !ieee80211_is_nullfunc(fc) &&
2079 		     ieee80211_is_data(fc) && rx->key))
2080 		return -EACCES;
2081 
2082 	return 0;
2083 }
2084 
2085 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2086 {
2087 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2088 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2089 	__le16 fc = hdr->frame_control;
2090 
2091 	/*
2092 	 * Pass through unencrypted frames if the hardware has
2093 	 * decrypted them already.
2094 	 */
2095 	if (status->flag & RX_FLAG_DECRYPTED)
2096 		return 0;
2097 
2098 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2099 		if (unlikely(!ieee80211_has_protected(fc) &&
2100 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2101 			     rx->key)) {
2102 			if (ieee80211_is_deauth(fc) ||
2103 			    ieee80211_is_disassoc(fc))
2104 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2105 							     rx->skb->data,
2106 							     rx->skb->len);
2107 			return -EACCES;
2108 		}
2109 		/* BIP does not use Protected field, so need to check MMIE */
2110 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2111 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2112 			if (ieee80211_is_deauth(fc) ||
2113 			    ieee80211_is_disassoc(fc))
2114 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2115 							     rx->skb->data,
2116 							     rx->skb->len);
2117 			return -EACCES;
2118 		}
2119 		/*
2120 		 * When using MFP, Action frames are not allowed prior to
2121 		 * having configured keys.
2122 		 */
2123 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2124 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2125 			return -EACCES;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static int
2132 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2133 {
2134 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2135 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2136 	bool check_port_control = false;
2137 	struct ethhdr *ehdr;
2138 	int ret;
2139 
2140 	*port_control = false;
2141 	if (ieee80211_has_a4(hdr->frame_control) &&
2142 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2143 		return -1;
2144 
2145 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2146 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2147 
2148 		if (!sdata->u.mgd.use_4addr)
2149 			return -1;
2150 		else
2151 			check_port_control = true;
2152 	}
2153 
2154 	if (is_multicast_ether_addr(hdr->addr1) &&
2155 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2156 		return -1;
2157 
2158 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2159 	if (ret < 0)
2160 		return ret;
2161 
2162 	ehdr = (struct ethhdr *) rx->skb->data;
2163 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2164 		*port_control = true;
2165 	else if (check_port_control)
2166 		return -1;
2167 
2168 	return 0;
2169 }
2170 
2171 /*
2172  * requires that rx->skb is a frame with ethernet header
2173  */
2174 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2175 {
2176 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2177 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2178 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2179 
2180 	/*
2181 	 * Allow EAPOL frames to us/the PAE group address regardless
2182 	 * of whether the frame was encrypted or not.
2183 	 */
2184 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2185 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2186 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2187 		return true;
2188 
2189 	if (ieee80211_802_1x_port_control(rx) ||
2190 	    ieee80211_drop_unencrypted(rx, fc))
2191 		return false;
2192 
2193 	return true;
2194 }
2195 
2196 /*
2197  * requires that rx->skb is a frame with ethernet header
2198  */
2199 static void
2200 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2201 {
2202 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2203 	struct net_device *dev = sdata->dev;
2204 	struct sk_buff *skb, *xmit_skb;
2205 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2206 	struct sta_info *dsta;
2207 
2208 	skb = rx->skb;
2209 	xmit_skb = NULL;
2210 
2211 	ieee80211_rx_stats(dev, skb->len);
2212 
2213 	if (rx->sta) {
2214 		/* The seqno index has the same property as needed
2215 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2216 		 * for non-QoS-data frames. Here we know it's a data
2217 		 * frame, so count MSDUs.
2218 		 */
2219 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2220 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2221 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2222 	}
2223 
2224 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2225 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2226 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2227 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2228 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2229 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2230 			/*
2231 			 * send multicast frames both to higher layers in
2232 			 * local net stack and back to the wireless medium
2233 			 */
2234 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2235 			if (!xmit_skb)
2236 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2237 						    dev->name);
2238 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2239 			dsta = sta_info_get(sdata, skb->data);
2240 			if (dsta) {
2241 				/*
2242 				 * The destination station is associated to
2243 				 * this AP (in this VLAN), so send the frame
2244 				 * directly to it and do not pass it to local
2245 				 * net stack.
2246 				 */
2247 				xmit_skb = skb;
2248 				skb = NULL;
2249 			}
2250 		}
2251 	}
2252 
2253 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2254 	if (skb) {
2255 		/* 'align' will only take the values 0 or 2 here since all
2256 		 * frames are required to be aligned to 2-byte boundaries
2257 		 * when being passed to mac80211; the code here works just
2258 		 * as well if that isn't true, but mac80211 assumes it can
2259 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2260 		 */
2261 		int align;
2262 
2263 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2264 		if (align) {
2265 			if (WARN_ON(skb_headroom(skb) < 3)) {
2266 				dev_kfree_skb(skb);
2267 				skb = NULL;
2268 			} else {
2269 				u8 *data = skb->data;
2270 				size_t len = skb_headlen(skb);
2271 				skb->data -= align;
2272 				memmove(skb->data, data, len);
2273 				skb_set_tail_pointer(skb, len);
2274 			}
2275 		}
2276 	}
2277 #endif
2278 
2279 	if (skb) {
2280 		/* deliver to local stack */
2281 		skb->protocol = eth_type_trans(skb, dev);
2282 		memset(skb->cb, 0, sizeof(skb->cb));
2283 		if (rx->napi)
2284 			napi_gro_receive(rx->napi, skb);
2285 		else
2286 			netif_receive_skb(skb);
2287 	}
2288 
2289 	if (xmit_skb) {
2290 		/*
2291 		 * Send to wireless media and increase priority by 256 to
2292 		 * keep the received priority instead of reclassifying
2293 		 * the frame (see cfg80211_classify8021d).
2294 		 */
2295 		xmit_skb->priority += 256;
2296 		xmit_skb->protocol = htons(ETH_P_802_3);
2297 		skb_reset_network_header(xmit_skb);
2298 		skb_reset_mac_header(xmit_skb);
2299 		dev_queue_xmit(xmit_skb);
2300 	}
2301 }
2302 
2303 static ieee80211_rx_result debug_noinline
2304 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2305 {
2306 	struct net_device *dev = rx->sdata->dev;
2307 	struct sk_buff *skb = rx->skb;
2308 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2309 	__le16 fc = hdr->frame_control;
2310 	struct sk_buff_head frame_list;
2311 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2312 	struct ethhdr ethhdr;
2313 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2314 
2315 	if (unlikely(!ieee80211_is_data(fc)))
2316 		return RX_CONTINUE;
2317 
2318 	if (unlikely(!ieee80211_is_data_present(fc)))
2319 		return RX_DROP_MONITOR;
2320 
2321 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2322 		return RX_CONTINUE;
2323 
2324 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2325 		switch (rx->sdata->vif.type) {
2326 		case NL80211_IFTYPE_AP_VLAN:
2327 			if (!rx->sdata->u.vlan.sta)
2328 				return RX_DROP_UNUSABLE;
2329 			break;
2330 		case NL80211_IFTYPE_STATION:
2331 			if (!rx->sdata->u.mgd.use_4addr)
2332 				return RX_DROP_UNUSABLE;
2333 			break;
2334 		default:
2335 			return RX_DROP_UNUSABLE;
2336 		}
2337 		check_da = NULL;
2338 		check_sa = NULL;
2339 	} else switch (rx->sdata->vif.type) {
2340 		case NL80211_IFTYPE_AP:
2341 		case NL80211_IFTYPE_AP_VLAN:
2342 			check_da = NULL;
2343 			break;
2344 		case NL80211_IFTYPE_STATION:
2345 			if (!rx->sta ||
2346 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2347 				check_sa = NULL;
2348 			break;
2349 		case NL80211_IFTYPE_MESH_POINT:
2350 			check_sa = NULL;
2351 			break;
2352 		default:
2353 			break;
2354 	}
2355 
2356 	if (is_multicast_ether_addr(hdr->addr1))
2357 		return RX_DROP_UNUSABLE;
2358 
2359 	skb->dev = dev;
2360 	__skb_queue_head_init(&frame_list);
2361 
2362 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2363 					  rx->sdata->vif.addr,
2364 					  rx->sdata->vif.type))
2365 		return RX_DROP_UNUSABLE;
2366 
2367 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2368 				 rx->sdata->vif.type,
2369 				 rx->local->hw.extra_tx_headroom,
2370 				 check_da, check_sa);
2371 
2372 	while (!skb_queue_empty(&frame_list)) {
2373 		rx->skb = __skb_dequeue(&frame_list);
2374 
2375 		if (!ieee80211_frame_allowed(rx, fc)) {
2376 			dev_kfree_skb(rx->skb);
2377 			continue;
2378 		}
2379 
2380 		ieee80211_deliver_skb(rx);
2381 	}
2382 
2383 	return RX_QUEUED;
2384 }
2385 
2386 #ifdef CONFIG_MAC80211_MESH
2387 static ieee80211_rx_result
2388 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2389 {
2390 	struct ieee80211_hdr *fwd_hdr, *hdr;
2391 	struct ieee80211_tx_info *info;
2392 	struct ieee80211s_hdr *mesh_hdr;
2393 	struct sk_buff *skb = rx->skb, *fwd_skb;
2394 	struct ieee80211_local *local = rx->local;
2395 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2396 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2397 	u16 ac, q, hdrlen;
2398 
2399 	hdr = (struct ieee80211_hdr *) skb->data;
2400 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2401 
2402 	/* make sure fixed part of mesh header is there, also checks skb len */
2403 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2404 		return RX_DROP_MONITOR;
2405 
2406 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2407 
2408 	/* make sure full mesh header is there, also checks skb len */
2409 	if (!pskb_may_pull(rx->skb,
2410 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2411 		return RX_DROP_MONITOR;
2412 
2413 	/* reload pointers */
2414 	hdr = (struct ieee80211_hdr *) skb->data;
2415 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2416 
2417 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2418 		return RX_DROP_MONITOR;
2419 
2420 	/* frame is in RMC, don't forward */
2421 	if (ieee80211_is_data(hdr->frame_control) &&
2422 	    is_multicast_ether_addr(hdr->addr1) &&
2423 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2424 		return RX_DROP_MONITOR;
2425 
2426 	if (!ieee80211_is_data(hdr->frame_control))
2427 		return RX_CONTINUE;
2428 
2429 	if (!mesh_hdr->ttl)
2430 		return RX_DROP_MONITOR;
2431 
2432 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2433 		struct mesh_path *mppath;
2434 		char *proxied_addr;
2435 		char *mpp_addr;
2436 
2437 		if (is_multicast_ether_addr(hdr->addr1)) {
2438 			mpp_addr = hdr->addr3;
2439 			proxied_addr = mesh_hdr->eaddr1;
2440 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2441 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2442 			mpp_addr = hdr->addr4;
2443 			proxied_addr = mesh_hdr->eaddr2;
2444 		} else {
2445 			return RX_DROP_MONITOR;
2446 		}
2447 
2448 		rcu_read_lock();
2449 		mppath = mpp_path_lookup(sdata, proxied_addr);
2450 		if (!mppath) {
2451 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2452 		} else {
2453 			spin_lock_bh(&mppath->state_lock);
2454 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2455 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2456 			mppath->exp_time = jiffies;
2457 			spin_unlock_bh(&mppath->state_lock);
2458 		}
2459 		rcu_read_unlock();
2460 	}
2461 
2462 	/* Frame has reached destination.  Don't forward */
2463 	if (!is_multicast_ether_addr(hdr->addr1) &&
2464 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2465 		return RX_CONTINUE;
2466 
2467 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2468 	q = sdata->vif.hw_queue[ac];
2469 	if (ieee80211_queue_stopped(&local->hw, q)) {
2470 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2471 		return RX_DROP_MONITOR;
2472 	}
2473 	skb_set_queue_mapping(skb, q);
2474 
2475 	if (!--mesh_hdr->ttl) {
2476 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2477 		goto out;
2478 	}
2479 
2480 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2481 		goto out;
2482 
2483 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2484 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2485 	if (!fwd_skb) {
2486 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2487 				    sdata->name);
2488 		goto out;
2489 	}
2490 
2491 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2492 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2493 	info = IEEE80211_SKB_CB(fwd_skb);
2494 	memset(info, 0, sizeof(*info));
2495 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2496 	info->control.vif = &rx->sdata->vif;
2497 	info->control.jiffies = jiffies;
2498 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2499 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2500 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2501 		/* update power mode indication when forwarding */
2502 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2503 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2504 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2505 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2506 	} else {
2507 		/* unable to resolve next hop */
2508 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2509 				   fwd_hdr->addr3, 0,
2510 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2511 				   fwd_hdr->addr2);
2512 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2513 		kfree_skb(fwd_skb);
2514 		return RX_DROP_MONITOR;
2515 	}
2516 
2517 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2518 	ieee80211_add_pending_skb(local, fwd_skb);
2519  out:
2520 	if (is_multicast_ether_addr(hdr->addr1))
2521 		return RX_CONTINUE;
2522 	return RX_DROP_MONITOR;
2523 }
2524 #endif
2525 
2526 static ieee80211_rx_result debug_noinline
2527 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2528 {
2529 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2530 	struct ieee80211_local *local = rx->local;
2531 	struct net_device *dev = sdata->dev;
2532 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2533 	__le16 fc = hdr->frame_control;
2534 	bool port_control;
2535 	int err;
2536 
2537 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2538 		return RX_CONTINUE;
2539 
2540 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2541 		return RX_DROP_MONITOR;
2542 
2543 	/*
2544 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2545 	 * also drop the frame to cooked monitor interfaces.
2546 	 */
2547 	if (ieee80211_has_a4(hdr->frame_control) &&
2548 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2549 		if (rx->sta &&
2550 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2551 			cfg80211_rx_unexpected_4addr_frame(
2552 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2553 		return RX_DROP_MONITOR;
2554 	}
2555 
2556 	err = __ieee80211_data_to_8023(rx, &port_control);
2557 	if (unlikely(err))
2558 		return RX_DROP_UNUSABLE;
2559 
2560 	if (!ieee80211_frame_allowed(rx, fc))
2561 		return RX_DROP_MONITOR;
2562 
2563 	/* directly handle TDLS channel switch requests/responses */
2564 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2565 						cpu_to_be16(ETH_P_TDLS))) {
2566 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2567 
2568 		if (pskb_may_pull(rx->skb,
2569 				  offsetof(struct ieee80211_tdls_data, u)) &&
2570 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2571 		    tf->category == WLAN_CATEGORY_TDLS &&
2572 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2573 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2574 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2575 			schedule_work(&local->tdls_chsw_work);
2576 			if (rx->sta)
2577 				rx->sta->rx_stats.packets++;
2578 
2579 			return RX_QUEUED;
2580 		}
2581 	}
2582 
2583 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2584 	    unlikely(port_control) && sdata->bss) {
2585 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2586 				     u.ap);
2587 		dev = sdata->dev;
2588 		rx->sdata = sdata;
2589 	}
2590 
2591 	rx->skb->dev = dev;
2592 
2593 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2594 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2595 	    !is_multicast_ether_addr(
2596 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2597 	    (!local->scanning &&
2598 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2599 		mod_timer(&local->dynamic_ps_timer, jiffies +
2600 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2601 
2602 	ieee80211_deliver_skb(rx);
2603 
2604 	return RX_QUEUED;
2605 }
2606 
2607 static ieee80211_rx_result debug_noinline
2608 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2609 {
2610 	struct sk_buff *skb = rx->skb;
2611 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2612 	struct tid_ampdu_rx *tid_agg_rx;
2613 	u16 start_seq_num;
2614 	u16 tid;
2615 
2616 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2617 		return RX_CONTINUE;
2618 
2619 	if (ieee80211_is_back_req(bar->frame_control)) {
2620 		struct {
2621 			__le16 control, start_seq_num;
2622 		} __packed bar_data;
2623 		struct ieee80211_event event = {
2624 			.type = BAR_RX_EVENT,
2625 		};
2626 
2627 		if (!rx->sta)
2628 			return RX_DROP_MONITOR;
2629 
2630 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2631 				  &bar_data, sizeof(bar_data)))
2632 			return RX_DROP_MONITOR;
2633 
2634 		tid = le16_to_cpu(bar_data.control) >> 12;
2635 
2636 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2637 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2638 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2639 					     WLAN_BACK_RECIPIENT,
2640 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2641 
2642 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2643 		if (!tid_agg_rx)
2644 			return RX_DROP_MONITOR;
2645 
2646 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2647 		event.u.ba.tid = tid;
2648 		event.u.ba.ssn = start_seq_num;
2649 		event.u.ba.sta = &rx->sta->sta;
2650 
2651 		/* reset session timer */
2652 		if (tid_agg_rx->timeout)
2653 			mod_timer(&tid_agg_rx->session_timer,
2654 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2655 
2656 		spin_lock(&tid_agg_rx->reorder_lock);
2657 		/* release stored frames up to start of BAR */
2658 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2659 						 start_seq_num, frames);
2660 		spin_unlock(&tid_agg_rx->reorder_lock);
2661 
2662 		drv_event_callback(rx->local, rx->sdata, &event);
2663 
2664 		kfree_skb(skb);
2665 		return RX_QUEUED;
2666 	}
2667 
2668 	/*
2669 	 * After this point, we only want management frames,
2670 	 * so we can drop all remaining control frames to
2671 	 * cooked monitor interfaces.
2672 	 */
2673 	return RX_DROP_MONITOR;
2674 }
2675 
2676 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2677 					   struct ieee80211_mgmt *mgmt,
2678 					   size_t len)
2679 {
2680 	struct ieee80211_local *local = sdata->local;
2681 	struct sk_buff *skb;
2682 	struct ieee80211_mgmt *resp;
2683 
2684 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2685 		/* Not to own unicast address */
2686 		return;
2687 	}
2688 
2689 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2690 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2691 		/* Not from the current AP or not associated yet. */
2692 		return;
2693 	}
2694 
2695 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2696 		/* Too short SA Query request frame */
2697 		return;
2698 	}
2699 
2700 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2701 	if (skb == NULL)
2702 		return;
2703 
2704 	skb_reserve(skb, local->hw.extra_tx_headroom);
2705 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2706 	memset(resp, 0, 24);
2707 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2708 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2709 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2710 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2711 					  IEEE80211_STYPE_ACTION);
2712 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2713 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2714 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2715 	memcpy(resp->u.action.u.sa_query.trans_id,
2716 	       mgmt->u.action.u.sa_query.trans_id,
2717 	       WLAN_SA_QUERY_TR_ID_LEN);
2718 
2719 	ieee80211_tx_skb(sdata, skb);
2720 }
2721 
2722 static ieee80211_rx_result debug_noinline
2723 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2724 {
2725 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2726 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2727 
2728 	/*
2729 	 * From here on, look only at management frames.
2730 	 * Data and control frames are already handled,
2731 	 * and unknown (reserved) frames are useless.
2732 	 */
2733 	if (rx->skb->len < 24)
2734 		return RX_DROP_MONITOR;
2735 
2736 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2737 		return RX_DROP_MONITOR;
2738 
2739 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2740 	    ieee80211_is_beacon(mgmt->frame_control) &&
2741 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2742 		int sig = 0;
2743 
2744 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2745 			sig = status->signal;
2746 
2747 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2748 					    rx->skb->data, rx->skb->len,
2749 					    status->freq, sig);
2750 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2751 	}
2752 
2753 	if (ieee80211_drop_unencrypted_mgmt(rx))
2754 		return RX_DROP_UNUSABLE;
2755 
2756 	return RX_CONTINUE;
2757 }
2758 
2759 static ieee80211_rx_result debug_noinline
2760 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2761 {
2762 	struct ieee80211_local *local = rx->local;
2763 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2764 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2765 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2766 	int len = rx->skb->len;
2767 
2768 	if (!ieee80211_is_action(mgmt->frame_control))
2769 		return RX_CONTINUE;
2770 
2771 	/* drop too small frames */
2772 	if (len < IEEE80211_MIN_ACTION_SIZE)
2773 		return RX_DROP_UNUSABLE;
2774 
2775 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2776 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2777 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2778 		return RX_DROP_UNUSABLE;
2779 
2780 	switch (mgmt->u.action.category) {
2781 	case WLAN_CATEGORY_HT:
2782 		/* reject HT action frames from stations not supporting HT */
2783 		if (!rx->sta->sta.ht_cap.ht_supported)
2784 			goto invalid;
2785 
2786 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2787 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2788 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2789 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2790 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2791 			break;
2792 
2793 		/* verify action & smps_control/chanwidth are present */
2794 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2795 			goto invalid;
2796 
2797 		switch (mgmt->u.action.u.ht_smps.action) {
2798 		case WLAN_HT_ACTION_SMPS: {
2799 			struct ieee80211_supported_band *sband;
2800 			enum ieee80211_smps_mode smps_mode;
2801 
2802 			/* convert to HT capability */
2803 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2804 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2805 				smps_mode = IEEE80211_SMPS_OFF;
2806 				break;
2807 			case WLAN_HT_SMPS_CONTROL_STATIC:
2808 				smps_mode = IEEE80211_SMPS_STATIC;
2809 				break;
2810 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2811 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2812 				break;
2813 			default:
2814 				goto invalid;
2815 			}
2816 
2817 			/* if no change do nothing */
2818 			if (rx->sta->sta.smps_mode == smps_mode)
2819 				goto handled;
2820 			rx->sta->sta.smps_mode = smps_mode;
2821 
2822 			sband = rx->local->hw.wiphy->bands[status->band];
2823 
2824 			rate_control_rate_update(local, sband, rx->sta,
2825 						 IEEE80211_RC_SMPS_CHANGED);
2826 			goto handled;
2827 		}
2828 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2829 			struct ieee80211_supported_band *sband;
2830 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2831 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2832 
2833 			/* If it doesn't support 40 MHz it can't change ... */
2834 			if (!(rx->sta->sta.ht_cap.cap &
2835 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2836 				goto handled;
2837 
2838 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2839 				max_bw = IEEE80211_STA_RX_BW_20;
2840 			else
2841 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2842 
2843 			/* set cur_max_bandwidth and recalc sta bw */
2844 			rx->sta->cur_max_bandwidth = max_bw;
2845 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2846 
2847 			if (rx->sta->sta.bandwidth == new_bw)
2848 				goto handled;
2849 
2850 			rx->sta->sta.bandwidth = new_bw;
2851 			sband = rx->local->hw.wiphy->bands[status->band];
2852 
2853 			rate_control_rate_update(local, sband, rx->sta,
2854 						 IEEE80211_RC_BW_CHANGED);
2855 			goto handled;
2856 		}
2857 		default:
2858 			goto invalid;
2859 		}
2860 
2861 		break;
2862 	case WLAN_CATEGORY_PUBLIC:
2863 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2864 			goto invalid;
2865 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2866 			break;
2867 		if (!rx->sta)
2868 			break;
2869 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2870 			break;
2871 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2872 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2873 			break;
2874 		if (len < offsetof(struct ieee80211_mgmt,
2875 				   u.action.u.ext_chan_switch.variable))
2876 			goto invalid;
2877 		goto queue;
2878 	case WLAN_CATEGORY_VHT:
2879 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2880 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2881 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2882 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2883 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2884 			break;
2885 
2886 		/* verify action code is present */
2887 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2888 			goto invalid;
2889 
2890 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2891 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2892 			/* verify opmode is present */
2893 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2894 				goto invalid;
2895 			goto queue;
2896 		}
2897 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2898 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2899 				goto invalid;
2900 			goto queue;
2901 		}
2902 		default:
2903 			break;
2904 		}
2905 		break;
2906 	case WLAN_CATEGORY_BACK:
2907 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2908 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2909 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2910 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2911 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2912 			break;
2913 
2914 		/* verify action_code is present */
2915 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2916 			break;
2917 
2918 		switch (mgmt->u.action.u.addba_req.action_code) {
2919 		case WLAN_ACTION_ADDBA_REQ:
2920 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2921 				   sizeof(mgmt->u.action.u.addba_req)))
2922 				goto invalid;
2923 			break;
2924 		case WLAN_ACTION_ADDBA_RESP:
2925 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2926 				   sizeof(mgmt->u.action.u.addba_resp)))
2927 				goto invalid;
2928 			break;
2929 		case WLAN_ACTION_DELBA:
2930 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2931 				   sizeof(mgmt->u.action.u.delba)))
2932 				goto invalid;
2933 			break;
2934 		default:
2935 			goto invalid;
2936 		}
2937 
2938 		goto queue;
2939 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2940 		/* verify action_code is present */
2941 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2942 			break;
2943 
2944 		switch (mgmt->u.action.u.measurement.action_code) {
2945 		case WLAN_ACTION_SPCT_MSR_REQ:
2946 			if (status->band != NL80211_BAND_5GHZ)
2947 				break;
2948 
2949 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2950 				   sizeof(mgmt->u.action.u.measurement)))
2951 				break;
2952 
2953 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2954 				break;
2955 
2956 			ieee80211_process_measurement_req(sdata, mgmt, len);
2957 			goto handled;
2958 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2959 			u8 *bssid;
2960 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2961 				   sizeof(mgmt->u.action.u.chan_switch)))
2962 				break;
2963 
2964 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2965 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2966 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2967 				break;
2968 
2969 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2970 				bssid = sdata->u.mgd.bssid;
2971 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2972 				bssid = sdata->u.ibss.bssid;
2973 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2974 				bssid = mgmt->sa;
2975 			else
2976 				break;
2977 
2978 			if (!ether_addr_equal(mgmt->bssid, bssid))
2979 				break;
2980 
2981 			goto queue;
2982 			}
2983 		}
2984 		break;
2985 	case WLAN_CATEGORY_SA_QUERY:
2986 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2987 			   sizeof(mgmt->u.action.u.sa_query)))
2988 			break;
2989 
2990 		switch (mgmt->u.action.u.sa_query.action) {
2991 		case WLAN_ACTION_SA_QUERY_REQUEST:
2992 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2993 				break;
2994 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2995 			goto handled;
2996 		}
2997 		break;
2998 	case WLAN_CATEGORY_SELF_PROTECTED:
2999 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3000 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3001 			break;
3002 
3003 		switch (mgmt->u.action.u.self_prot.action_code) {
3004 		case WLAN_SP_MESH_PEERING_OPEN:
3005 		case WLAN_SP_MESH_PEERING_CLOSE:
3006 		case WLAN_SP_MESH_PEERING_CONFIRM:
3007 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3008 				goto invalid;
3009 			if (sdata->u.mesh.user_mpm)
3010 				/* userspace handles this frame */
3011 				break;
3012 			goto queue;
3013 		case WLAN_SP_MGK_INFORM:
3014 		case WLAN_SP_MGK_ACK:
3015 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3016 				goto invalid;
3017 			break;
3018 		}
3019 		break;
3020 	case WLAN_CATEGORY_MESH_ACTION:
3021 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3022 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3023 			break;
3024 
3025 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3026 			break;
3027 		if (mesh_action_is_path_sel(mgmt) &&
3028 		    !mesh_path_sel_is_hwmp(sdata))
3029 			break;
3030 		goto queue;
3031 	}
3032 
3033 	return RX_CONTINUE;
3034 
3035  invalid:
3036 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3037 	/* will return in the next handlers */
3038 	return RX_CONTINUE;
3039 
3040  handled:
3041 	if (rx->sta)
3042 		rx->sta->rx_stats.packets++;
3043 	dev_kfree_skb(rx->skb);
3044 	return RX_QUEUED;
3045 
3046  queue:
3047 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3048 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3049 	ieee80211_queue_work(&local->hw, &sdata->work);
3050 	if (rx->sta)
3051 		rx->sta->rx_stats.packets++;
3052 	return RX_QUEUED;
3053 }
3054 
3055 static ieee80211_rx_result debug_noinline
3056 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3057 {
3058 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3059 	int sig = 0;
3060 
3061 	/* skip known-bad action frames and return them in the next handler */
3062 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3063 		return RX_CONTINUE;
3064 
3065 	/*
3066 	 * Getting here means the kernel doesn't know how to handle
3067 	 * it, but maybe userspace does ... include returned frames
3068 	 * so userspace can register for those to know whether ones
3069 	 * it transmitted were processed or returned.
3070 	 */
3071 
3072 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3073 		sig = status->signal;
3074 
3075 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3076 			     rx->skb->data, rx->skb->len, 0)) {
3077 		if (rx->sta)
3078 			rx->sta->rx_stats.packets++;
3079 		dev_kfree_skb(rx->skb);
3080 		return RX_QUEUED;
3081 	}
3082 
3083 	return RX_CONTINUE;
3084 }
3085 
3086 static ieee80211_rx_result debug_noinline
3087 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3088 {
3089 	struct ieee80211_local *local = rx->local;
3090 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3091 	struct sk_buff *nskb;
3092 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3093 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3094 
3095 	if (!ieee80211_is_action(mgmt->frame_control))
3096 		return RX_CONTINUE;
3097 
3098 	/*
3099 	 * For AP mode, hostapd is responsible for handling any action
3100 	 * frames that we didn't handle, including returning unknown
3101 	 * ones. For all other modes we will return them to the sender,
3102 	 * setting the 0x80 bit in the action category, as required by
3103 	 * 802.11-2012 9.24.4.
3104 	 * Newer versions of hostapd shall also use the management frame
3105 	 * registration mechanisms, but older ones still use cooked
3106 	 * monitor interfaces so push all frames there.
3107 	 */
3108 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3109 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3110 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3111 		return RX_DROP_MONITOR;
3112 
3113 	if (is_multicast_ether_addr(mgmt->da))
3114 		return RX_DROP_MONITOR;
3115 
3116 	/* do not return rejected action frames */
3117 	if (mgmt->u.action.category & 0x80)
3118 		return RX_DROP_UNUSABLE;
3119 
3120 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3121 			       GFP_ATOMIC);
3122 	if (nskb) {
3123 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3124 
3125 		nmgmt->u.action.category |= 0x80;
3126 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3127 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3128 
3129 		memset(nskb->cb, 0, sizeof(nskb->cb));
3130 
3131 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3132 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3133 
3134 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3135 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3136 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3137 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3138 				info->hw_queue =
3139 					local->hw.offchannel_tx_hw_queue;
3140 		}
3141 
3142 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3143 					    status->band);
3144 	}
3145 	dev_kfree_skb(rx->skb);
3146 	return RX_QUEUED;
3147 }
3148 
3149 static ieee80211_rx_result debug_noinline
3150 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3151 {
3152 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3153 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3154 	__le16 stype;
3155 
3156 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3157 
3158 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3159 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3160 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3161 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3162 		return RX_DROP_MONITOR;
3163 
3164 	switch (stype) {
3165 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3166 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3167 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3168 		/* process for all: mesh, mlme, ibss */
3169 		break;
3170 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3171 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3172 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3173 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3174 		if (is_multicast_ether_addr(mgmt->da) &&
3175 		    !is_broadcast_ether_addr(mgmt->da))
3176 			return RX_DROP_MONITOR;
3177 
3178 		/* process only for station */
3179 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3180 			return RX_DROP_MONITOR;
3181 		break;
3182 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3183 		/* process only for ibss and mesh */
3184 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3185 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3186 			return RX_DROP_MONITOR;
3187 		break;
3188 	default:
3189 		return RX_DROP_MONITOR;
3190 	}
3191 
3192 	/* queue up frame and kick off work to process it */
3193 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3194 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3195 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3196 	if (rx->sta)
3197 		rx->sta->rx_stats.packets++;
3198 
3199 	return RX_QUEUED;
3200 }
3201 
3202 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3203 					struct ieee80211_rate *rate)
3204 {
3205 	struct ieee80211_sub_if_data *sdata;
3206 	struct ieee80211_local *local = rx->local;
3207 	struct sk_buff *skb = rx->skb, *skb2;
3208 	struct net_device *prev_dev = NULL;
3209 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3210 	int needed_headroom;
3211 
3212 	/*
3213 	 * If cooked monitor has been processed already, then
3214 	 * don't do it again. If not, set the flag.
3215 	 */
3216 	if (rx->flags & IEEE80211_RX_CMNTR)
3217 		goto out_free_skb;
3218 	rx->flags |= IEEE80211_RX_CMNTR;
3219 
3220 	/* If there are no cooked monitor interfaces, just free the SKB */
3221 	if (!local->cooked_mntrs)
3222 		goto out_free_skb;
3223 
3224 	/* vendor data is long removed here */
3225 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3226 	/* room for the radiotap header based on driver features */
3227 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3228 
3229 	if (skb_headroom(skb) < needed_headroom &&
3230 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3231 		goto out_free_skb;
3232 
3233 	/* prepend radiotap information */
3234 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3235 					 false);
3236 
3237 	skb_reset_mac_header(skb);
3238 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3239 	skb->pkt_type = PACKET_OTHERHOST;
3240 	skb->protocol = htons(ETH_P_802_2);
3241 
3242 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3243 		if (!ieee80211_sdata_running(sdata))
3244 			continue;
3245 
3246 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3247 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3248 			continue;
3249 
3250 		if (prev_dev) {
3251 			skb2 = skb_clone(skb, GFP_ATOMIC);
3252 			if (skb2) {
3253 				skb2->dev = prev_dev;
3254 				netif_receive_skb(skb2);
3255 			}
3256 		}
3257 
3258 		prev_dev = sdata->dev;
3259 		ieee80211_rx_stats(sdata->dev, skb->len);
3260 	}
3261 
3262 	if (prev_dev) {
3263 		skb->dev = prev_dev;
3264 		netif_receive_skb(skb);
3265 		return;
3266 	}
3267 
3268  out_free_skb:
3269 	dev_kfree_skb(skb);
3270 }
3271 
3272 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3273 					 ieee80211_rx_result res)
3274 {
3275 	switch (res) {
3276 	case RX_DROP_MONITOR:
3277 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3278 		if (rx->sta)
3279 			rx->sta->rx_stats.dropped++;
3280 		/* fall through */
3281 	case RX_CONTINUE: {
3282 		struct ieee80211_rate *rate = NULL;
3283 		struct ieee80211_supported_band *sband;
3284 		struct ieee80211_rx_status *status;
3285 
3286 		status = IEEE80211_SKB_RXCB((rx->skb));
3287 
3288 		sband = rx->local->hw.wiphy->bands[status->band];
3289 		if (!(status->flag & RX_FLAG_HT) &&
3290 		    !(status->flag & RX_FLAG_VHT))
3291 			rate = &sband->bitrates[status->rate_idx];
3292 
3293 		ieee80211_rx_cooked_monitor(rx, rate);
3294 		break;
3295 		}
3296 	case RX_DROP_UNUSABLE:
3297 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3298 		if (rx->sta)
3299 			rx->sta->rx_stats.dropped++;
3300 		dev_kfree_skb(rx->skb);
3301 		break;
3302 	case RX_QUEUED:
3303 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3304 		break;
3305 	}
3306 }
3307 
3308 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3309 				  struct sk_buff_head *frames)
3310 {
3311 	ieee80211_rx_result res = RX_DROP_MONITOR;
3312 	struct sk_buff *skb;
3313 
3314 #define CALL_RXH(rxh)			\
3315 	do {				\
3316 		res = rxh(rx);		\
3317 		if (res != RX_CONTINUE)	\
3318 			goto rxh_next;  \
3319 	} while (0)
3320 
3321 	/* Lock here to avoid hitting all of the data used in the RX
3322 	 * path (e.g. key data, station data, ...) concurrently when
3323 	 * a frame is released from the reorder buffer due to timeout
3324 	 * from the timer, potentially concurrently with RX from the
3325 	 * driver.
3326 	 */
3327 	spin_lock_bh(&rx->local->rx_path_lock);
3328 
3329 	while ((skb = __skb_dequeue(frames))) {
3330 		/*
3331 		 * all the other fields are valid across frames
3332 		 * that belong to an aMPDU since they are on the
3333 		 * same TID from the same station
3334 		 */
3335 		rx->skb = skb;
3336 
3337 		CALL_RXH(ieee80211_rx_h_check_more_data);
3338 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3339 		CALL_RXH(ieee80211_rx_h_sta_process);
3340 		CALL_RXH(ieee80211_rx_h_decrypt);
3341 		CALL_RXH(ieee80211_rx_h_defragment);
3342 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3343 		/* must be after MMIC verify so header is counted in MPDU mic */
3344 #ifdef CONFIG_MAC80211_MESH
3345 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3346 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3347 #endif
3348 		CALL_RXH(ieee80211_rx_h_amsdu);
3349 		CALL_RXH(ieee80211_rx_h_data);
3350 
3351 		/* special treatment -- needs the queue */
3352 		res = ieee80211_rx_h_ctrl(rx, frames);
3353 		if (res != RX_CONTINUE)
3354 			goto rxh_next;
3355 
3356 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3357 		CALL_RXH(ieee80211_rx_h_action);
3358 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3359 		CALL_RXH(ieee80211_rx_h_action_return);
3360 		CALL_RXH(ieee80211_rx_h_mgmt);
3361 
3362  rxh_next:
3363 		ieee80211_rx_handlers_result(rx, res);
3364 
3365 #undef CALL_RXH
3366 	}
3367 
3368 	spin_unlock_bh(&rx->local->rx_path_lock);
3369 }
3370 
3371 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3372 {
3373 	struct sk_buff_head reorder_release;
3374 	ieee80211_rx_result res = RX_DROP_MONITOR;
3375 
3376 	__skb_queue_head_init(&reorder_release);
3377 
3378 #define CALL_RXH(rxh)			\
3379 	do {				\
3380 		res = rxh(rx);		\
3381 		if (res != RX_CONTINUE)	\
3382 			goto rxh_next;  \
3383 	} while (0)
3384 
3385 	CALL_RXH(ieee80211_rx_h_check_dup);
3386 	CALL_RXH(ieee80211_rx_h_check);
3387 
3388 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3389 
3390 	ieee80211_rx_handlers(rx, &reorder_release);
3391 	return;
3392 
3393  rxh_next:
3394 	ieee80211_rx_handlers_result(rx, res);
3395 
3396 #undef CALL_RXH
3397 }
3398 
3399 /*
3400  * This function makes calls into the RX path, therefore
3401  * it has to be invoked under RCU read lock.
3402  */
3403 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3404 {
3405 	struct sk_buff_head frames;
3406 	struct ieee80211_rx_data rx = {
3407 		.sta = sta,
3408 		.sdata = sta->sdata,
3409 		.local = sta->local,
3410 		/* This is OK -- must be QoS data frame */
3411 		.security_idx = tid,
3412 		.seqno_idx = tid,
3413 		.napi = NULL, /* must be NULL to not have races */
3414 	};
3415 	struct tid_ampdu_rx *tid_agg_rx;
3416 
3417 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3418 	if (!tid_agg_rx)
3419 		return;
3420 
3421 	__skb_queue_head_init(&frames);
3422 
3423 	spin_lock(&tid_agg_rx->reorder_lock);
3424 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3425 	spin_unlock(&tid_agg_rx->reorder_lock);
3426 
3427 	if (!skb_queue_empty(&frames)) {
3428 		struct ieee80211_event event = {
3429 			.type = BA_FRAME_TIMEOUT,
3430 			.u.ba.tid = tid,
3431 			.u.ba.sta = &sta->sta,
3432 		};
3433 		drv_event_callback(rx.local, rx.sdata, &event);
3434 	}
3435 
3436 	ieee80211_rx_handlers(&rx, &frames);
3437 }
3438 
3439 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3440 					  u16 ssn, u64 filtered,
3441 					  u16 received_mpdus)
3442 {
3443 	struct sta_info *sta;
3444 	struct tid_ampdu_rx *tid_agg_rx;
3445 	struct sk_buff_head frames;
3446 	struct ieee80211_rx_data rx = {
3447 		/* This is OK -- must be QoS data frame */
3448 		.security_idx = tid,
3449 		.seqno_idx = tid,
3450 	};
3451 	int i, diff;
3452 
3453 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3454 		return;
3455 
3456 	__skb_queue_head_init(&frames);
3457 
3458 	sta = container_of(pubsta, struct sta_info, sta);
3459 
3460 	rx.sta = sta;
3461 	rx.sdata = sta->sdata;
3462 	rx.local = sta->local;
3463 
3464 	rcu_read_lock();
3465 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3466 	if (!tid_agg_rx)
3467 		goto out;
3468 
3469 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3470 
3471 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3472 		int release;
3473 
3474 		/* release all frames in the reorder buffer */
3475 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3476 			   IEEE80211_SN_MODULO;
3477 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3478 						 release, &frames);
3479 		/* update ssn to match received ssn */
3480 		tid_agg_rx->head_seq_num = ssn;
3481 	} else {
3482 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3483 						 &frames);
3484 	}
3485 
3486 	/* handle the case that received ssn is behind the mac ssn.
3487 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3488 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3489 	if (diff >= tid_agg_rx->buf_size) {
3490 		tid_agg_rx->reorder_buf_filtered = 0;
3491 		goto release;
3492 	}
3493 	filtered = filtered >> diff;
3494 	ssn += diff;
3495 
3496 	/* update bitmap */
3497 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3498 		int index = (ssn + i) % tid_agg_rx->buf_size;
3499 
3500 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3501 		if (filtered & BIT_ULL(i))
3502 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3503 	}
3504 
3505 	/* now process also frames that the filter marking released */
3506 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3507 
3508 release:
3509 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3510 
3511 	ieee80211_rx_handlers(&rx, &frames);
3512 
3513  out:
3514 	rcu_read_unlock();
3515 }
3516 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3517 
3518 /* main receive path */
3519 
3520 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3521 {
3522 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3523 	struct sk_buff *skb = rx->skb;
3524 	struct ieee80211_hdr *hdr = (void *)skb->data;
3525 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3526 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3527 	int multicast = is_multicast_ether_addr(hdr->addr1);
3528 
3529 	switch (sdata->vif.type) {
3530 	case NL80211_IFTYPE_STATION:
3531 		if (!bssid && !sdata->u.mgd.use_4addr)
3532 			return false;
3533 		if (multicast)
3534 			return true;
3535 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3536 	case NL80211_IFTYPE_ADHOC:
3537 		if (!bssid)
3538 			return false;
3539 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3540 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3541 			return false;
3542 		if (ieee80211_is_beacon(hdr->frame_control))
3543 			return true;
3544 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3545 			return false;
3546 		if (!multicast &&
3547 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3548 			return false;
3549 		if (!rx->sta) {
3550 			int rate_idx;
3551 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3552 				rate_idx = 0; /* TODO: HT/VHT rates */
3553 			else
3554 				rate_idx = status->rate_idx;
3555 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3556 						 BIT(rate_idx));
3557 		}
3558 		return true;
3559 	case NL80211_IFTYPE_OCB:
3560 		if (!bssid)
3561 			return false;
3562 		if (!ieee80211_is_data_present(hdr->frame_control))
3563 			return false;
3564 		if (!is_broadcast_ether_addr(bssid))
3565 			return false;
3566 		if (!multicast &&
3567 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3568 			return false;
3569 		if (!rx->sta) {
3570 			int rate_idx;
3571 			if (status->flag & RX_FLAG_HT)
3572 				rate_idx = 0; /* TODO: HT rates */
3573 			else
3574 				rate_idx = status->rate_idx;
3575 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3576 						BIT(rate_idx));
3577 		}
3578 		return true;
3579 	case NL80211_IFTYPE_MESH_POINT:
3580 		if (multicast)
3581 			return true;
3582 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3583 	case NL80211_IFTYPE_AP_VLAN:
3584 	case NL80211_IFTYPE_AP:
3585 		if (!bssid)
3586 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3587 
3588 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3589 			/*
3590 			 * Accept public action frames even when the
3591 			 * BSSID doesn't match, this is used for P2P
3592 			 * and location updates. Note that mac80211
3593 			 * itself never looks at these frames.
3594 			 */
3595 			if (!multicast &&
3596 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3597 				return false;
3598 			if (ieee80211_is_public_action(hdr, skb->len))
3599 				return true;
3600 			return ieee80211_is_beacon(hdr->frame_control);
3601 		}
3602 
3603 		if (!ieee80211_has_tods(hdr->frame_control)) {
3604 			/* ignore data frames to TDLS-peers */
3605 			if (ieee80211_is_data(hdr->frame_control))
3606 				return false;
3607 			/* ignore action frames to TDLS-peers */
3608 			if (ieee80211_is_action(hdr->frame_control) &&
3609 			    !is_broadcast_ether_addr(bssid) &&
3610 			    !ether_addr_equal(bssid, hdr->addr1))
3611 				return false;
3612 		}
3613 		return true;
3614 	case NL80211_IFTYPE_WDS:
3615 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3616 			return false;
3617 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3618 	case NL80211_IFTYPE_P2P_DEVICE:
3619 		return ieee80211_is_public_action(hdr, skb->len) ||
3620 		       ieee80211_is_probe_req(hdr->frame_control) ||
3621 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3622 		       ieee80211_is_beacon(hdr->frame_control);
3623 	case NL80211_IFTYPE_NAN:
3624 		/* Currently no frames on NAN interface are allowed */
3625 		return false;
3626 	default:
3627 		break;
3628 	}
3629 
3630 	WARN_ON_ONCE(1);
3631 	return false;
3632 }
3633 
3634 void ieee80211_check_fast_rx(struct sta_info *sta)
3635 {
3636 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3637 	struct ieee80211_local *local = sdata->local;
3638 	struct ieee80211_key *key;
3639 	struct ieee80211_fast_rx fastrx = {
3640 		.dev = sdata->dev,
3641 		.vif_type = sdata->vif.type,
3642 		.control_port_protocol = sdata->control_port_protocol,
3643 	}, *old, *new = NULL;
3644 	bool assign = false;
3645 
3646 	/* use sparse to check that we don't return without updating */
3647 	__acquire(check_fast_rx);
3648 
3649 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3650 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3651 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3652 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3653 
3654 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3655 
3656 	/* fast-rx doesn't do reordering */
3657 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3658 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3659 		goto clear;
3660 
3661 	switch (sdata->vif.type) {
3662 	case NL80211_IFTYPE_STATION:
3663 		/* 4-addr is harder to deal with, later maybe */
3664 		if (sdata->u.mgd.use_4addr)
3665 			goto clear;
3666 		/* software powersave is a huge mess, avoid all of it */
3667 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3668 			goto clear;
3669 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3670 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3671 			goto clear;
3672 		if (sta->sta.tdls) {
3673 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3674 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3675 			fastrx.expected_ds_bits = 0;
3676 		} else {
3677 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3678 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3679 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3680 			fastrx.expected_ds_bits =
3681 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3682 		}
3683 		break;
3684 	case NL80211_IFTYPE_AP_VLAN:
3685 	case NL80211_IFTYPE_AP:
3686 		/* parallel-rx requires this, at least with calls to
3687 		 * ieee80211_sta_ps_transition()
3688 		 */
3689 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3690 			goto clear;
3691 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3692 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3693 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3694 
3695 		fastrx.internal_forward =
3696 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3697 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3698 			 !sdata->u.vlan.sta);
3699 		break;
3700 	default:
3701 		goto clear;
3702 	}
3703 
3704 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3705 		goto clear;
3706 
3707 	rcu_read_lock();
3708 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3709 	if (key) {
3710 		switch (key->conf.cipher) {
3711 		case WLAN_CIPHER_SUITE_TKIP:
3712 			/* we don't want to deal with MMIC in fast-rx */
3713 			goto clear_rcu;
3714 		case WLAN_CIPHER_SUITE_CCMP:
3715 		case WLAN_CIPHER_SUITE_CCMP_256:
3716 		case WLAN_CIPHER_SUITE_GCMP:
3717 		case WLAN_CIPHER_SUITE_GCMP_256:
3718 			break;
3719 		default:
3720 			/* we also don't want to deal with WEP or cipher scheme
3721 			 * since those require looking up the key idx in the
3722 			 * frame, rather than assuming the PTK is used
3723 			 * (we need to revisit this once we implement the real
3724 			 * PTK index, which is now valid in the spec, but we
3725 			 * haven't implemented that part yet)
3726 			 */
3727 			goto clear_rcu;
3728 		}
3729 
3730 		fastrx.key = true;
3731 		fastrx.icv_len = key->conf.icv_len;
3732 	}
3733 
3734 	assign = true;
3735  clear_rcu:
3736 	rcu_read_unlock();
3737  clear:
3738 	__release(check_fast_rx);
3739 
3740 	if (assign)
3741 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3742 
3743 	spin_lock_bh(&sta->lock);
3744 	old = rcu_dereference_protected(sta->fast_rx, true);
3745 	rcu_assign_pointer(sta->fast_rx, new);
3746 	spin_unlock_bh(&sta->lock);
3747 
3748 	if (old)
3749 		kfree_rcu(old, rcu_head);
3750 }
3751 
3752 void ieee80211_clear_fast_rx(struct sta_info *sta)
3753 {
3754 	struct ieee80211_fast_rx *old;
3755 
3756 	spin_lock_bh(&sta->lock);
3757 	old = rcu_dereference_protected(sta->fast_rx, true);
3758 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3759 	spin_unlock_bh(&sta->lock);
3760 
3761 	if (old)
3762 		kfree_rcu(old, rcu_head);
3763 }
3764 
3765 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3766 {
3767 	struct ieee80211_local *local = sdata->local;
3768 	struct sta_info *sta;
3769 
3770 	lockdep_assert_held(&local->sta_mtx);
3771 
3772 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3773 		if (sdata != sta->sdata &&
3774 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3775 			continue;
3776 		ieee80211_check_fast_rx(sta);
3777 	}
3778 }
3779 
3780 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3781 {
3782 	struct ieee80211_local *local = sdata->local;
3783 
3784 	mutex_lock(&local->sta_mtx);
3785 	__ieee80211_check_fast_rx_iface(sdata);
3786 	mutex_unlock(&local->sta_mtx);
3787 }
3788 
3789 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3790 				     struct ieee80211_fast_rx *fast_rx)
3791 {
3792 	struct sk_buff *skb = rx->skb;
3793 	struct ieee80211_hdr *hdr = (void *)skb->data;
3794 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3795 	struct sta_info *sta = rx->sta;
3796 	int orig_len = skb->len;
3797 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3798 	struct {
3799 		u8 snap[sizeof(rfc1042_header)];
3800 		__be16 proto;
3801 	} *payload __aligned(2);
3802 	struct {
3803 		u8 da[ETH_ALEN];
3804 		u8 sa[ETH_ALEN];
3805 	} addrs __aligned(2);
3806 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3807 
3808 	if (fast_rx->uses_rss)
3809 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3810 
3811 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3812 	 * to a common data structure; drivers can implement that per queue
3813 	 * but we don't have that information in mac80211
3814 	 */
3815 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3816 		return false;
3817 
3818 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3819 
3820 	/* If using encryption, we also need to have:
3821 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3822 	 *  - DECRYPTED: necessary for PN_VALIDATED
3823 	 */
3824 	if (fast_rx->key &&
3825 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3826 		return false;
3827 
3828 	/* we don't deal with A-MSDU deaggregation here */
3829 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3830 		return false;
3831 
3832 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3833 		return false;
3834 
3835 	if (unlikely(ieee80211_is_frag(hdr)))
3836 		return false;
3837 
3838 	/* Since our interface address cannot be multicast, this
3839 	 * implicitly also rejects multicast frames without the
3840 	 * explicit check.
3841 	 *
3842 	 * We shouldn't get any *data* frames not addressed to us
3843 	 * (AP mode will accept multicast *management* frames), but
3844 	 * punting here will make it go through the full checks in
3845 	 * ieee80211_accept_frame().
3846 	 */
3847 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3848 		return false;
3849 
3850 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3851 					      IEEE80211_FCTL_TODS)) !=
3852 	    fast_rx->expected_ds_bits)
3853 		goto drop;
3854 
3855 	/* assign the key to drop unencrypted frames (later)
3856 	 * and strip the IV/MIC if necessary
3857 	 */
3858 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3859 		/* GCMP header length is the same */
3860 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3861 	}
3862 
3863 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3864 		goto drop;
3865 	payload = (void *)(skb->data + snap_offs);
3866 
3867 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3868 		return false;
3869 
3870 	/* Don't handle these here since they require special code.
3871 	 * Accept AARP and IPX even though they should come with a
3872 	 * bridge-tunnel header - but if we get them this way then
3873 	 * there's little point in discarding them.
3874 	 */
3875 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3876 		     payload->proto == fast_rx->control_port_protocol))
3877 		return false;
3878 
3879 	/* after this point, don't punt to the slowpath! */
3880 
3881 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3882 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3883 		goto drop;
3884 
3885 	if (unlikely(fast_rx->sta_notify)) {
3886 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3887 		fast_rx->sta_notify = false;
3888 	}
3889 
3890 	/* statistics part of ieee80211_rx_h_sta_process() */
3891 	stats->last_rx = jiffies;
3892 	stats->last_rate = sta_stats_encode_rate(status);
3893 
3894 	stats->fragments++;
3895 	stats->packets++;
3896 
3897 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3898 		stats->last_signal = status->signal;
3899 		if (!fast_rx->uses_rss)
3900 			ewma_signal_add(&sta->rx_stats_avg.signal,
3901 					-status->signal);
3902 	}
3903 
3904 	if (status->chains) {
3905 		int i;
3906 
3907 		stats->chains = status->chains;
3908 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3909 			int signal = status->chain_signal[i];
3910 
3911 			if (!(status->chains & BIT(i)))
3912 				continue;
3913 
3914 			stats->chain_signal_last[i] = signal;
3915 			if (!fast_rx->uses_rss)
3916 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3917 						-signal);
3918 		}
3919 	}
3920 	/* end of statistics */
3921 
3922 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3923 		goto drop;
3924 
3925 	/* do the header conversion - first grab the addresses */
3926 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3927 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3928 	/* remove the SNAP but leave the ethertype */
3929 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3930 	/* push the addresses in front */
3931 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3932 
3933 	skb->dev = fast_rx->dev;
3934 
3935 	ieee80211_rx_stats(fast_rx->dev, skb->len);
3936 
3937 	/* The seqno index has the same property as needed
3938 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3939 	 * for non-QoS-data frames. Here we know it's a data
3940 	 * frame, so count MSDUs.
3941 	 */
3942 	u64_stats_update_begin(&stats->syncp);
3943 	stats->msdu[rx->seqno_idx]++;
3944 	stats->bytes += orig_len;
3945 	u64_stats_update_end(&stats->syncp);
3946 
3947 	if (fast_rx->internal_forward) {
3948 		struct sk_buff *xmit_skb = NULL;
3949 		bool multicast = is_multicast_ether_addr(skb->data);
3950 
3951 		if (multicast) {
3952 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
3953 		} else if (sta_info_get(rx->sdata, skb->data)) {
3954 			xmit_skb = skb;
3955 			skb = NULL;
3956 		}
3957 
3958 		if (xmit_skb) {
3959 			/*
3960 			 * Send to wireless media and increase priority by 256
3961 			 * to keep the received priority instead of
3962 			 * reclassifying the frame (see cfg80211_classify8021d).
3963 			 */
3964 			xmit_skb->priority += 256;
3965 			xmit_skb->protocol = htons(ETH_P_802_3);
3966 			skb_reset_network_header(xmit_skb);
3967 			skb_reset_mac_header(xmit_skb);
3968 			dev_queue_xmit(xmit_skb);
3969 		}
3970 
3971 		if (!skb)
3972 			return true;
3973 	}
3974 
3975 	/* deliver to local stack */
3976 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
3977 	memset(skb->cb, 0, sizeof(skb->cb));
3978 	if (rx->napi)
3979 		napi_gro_receive(rx->napi, skb);
3980 	else
3981 		netif_receive_skb(skb);
3982 
3983 	return true;
3984  drop:
3985 	dev_kfree_skb(skb);
3986 	stats->dropped++;
3987 	return true;
3988 }
3989 
3990 /*
3991  * This function returns whether or not the SKB
3992  * was destined for RX processing or not, which,
3993  * if consume is true, is equivalent to whether
3994  * or not the skb was consumed.
3995  */
3996 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3997 					    struct sk_buff *skb, bool consume)
3998 {
3999 	struct ieee80211_local *local = rx->local;
4000 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4001 
4002 	rx->skb = skb;
4003 
4004 	/* See if we can do fast-rx; if we have to copy we already lost,
4005 	 * so punt in that case. We should never have to deliver a data
4006 	 * frame to multiple interfaces anyway.
4007 	 *
4008 	 * We skip the ieee80211_accept_frame() call and do the necessary
4009 	 * checking inside ieee80211_invoke_fast_rx().
4010 	 */
4011 	if (consume && rx->sta) {
4012 		struct ieee80211_fast_rx *fast_rx;
4013 
4014 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4015 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4016 			return true;
4017 	}
4018 
4019 	if (!ieee80211_accept_frame(rx))
4020 		return false;
4021 
4022 	if (!consume) {
4023 		skb = skb_copy(skb, GFP_ATOMIC);
4024 		if (!skb) {
4025 			if (net_ratelimit())
4026 				wiphy_debug(local->hw.wiphy,
4027 					"failed to copy skb for %s\n",
4028 					sdata->name);
4029 			return true;
4030 		}
4031 
4032 		rx->skb = skb;
4033 	}
4034 
4035 	ieee80211_invoke_rx_handlers(rx);
4036 	return true;
4037 }
4038 
4039 /*
4040  * This is the actual Rx frames handler. as it belongs to Rx path it must
4041  * be called with rcu_read_lock protection.
4042  */
4043 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4044 					 struct ieee80211_sta *pubsta,
4045 					 struct sk_buff *skb,
4046 					 struct napi_struct *napi)
4047 {
4048 	struct ieee80211_local *local = hw_to_local(hw);
4049 	struct ieee80211_sub_if_data *sdata;
4050 	struct ieee80211_hdr *hdr;
4051 	__le16 fc;
4052 	struct ieee80211_rx_data rx;
4053 	struct ieee80211_sub_if_data *prev;
4054 	struct rhlist_head *tmp;
4055 	int err = 0;
4056 
4057 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4058 	memset(&rx, 0, sizeof(rx));
4059 	rx.skb = skb;
4060 	rx.local = local;
4061 	rx.napi = napi;
4062 
4063 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4064 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4065 
4066 	if (ieee80211_is_mgmt(fc)) {
4067 		/* drop frame if too short for header */
4068 		if (skb->len < ieee80211_hdrlen(fc))
4069 			err = -ENOBUFS;
4070 		else
4071 			err = skb_linearize(skb);
4072 	} else {
4073 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4074 	}
4075 
4076 	if (err) {
4077 		dev_kfree_skb(skb);
4078 		return;
4079 	}
4080 
4081 	hdr = (struct ieee80211_hdr *)skb->data;
4082 	ieee80211_parse_qos(&rx);
4083 	ieee80211_verify_alignment(&rx);
4084 
4085 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4086 		     ieee80211_is_beacon(hdr->frame_control)))
4087 		ieee80211_scan_rx(local, skb);
4088 
4089 	if (ieee80211_is_data(fc)) {
4090 		struct sta_info *sta, *prev_sta;
4091 
4092 		if (pubsta) {
4093 			rx.sta = container_of(pubsta, struct sta_info, sta);
4094 			rx.sdata = rx.sta->sdata;
4095 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4096 				return;
4097 			goto out;
4098 		}
4099 
4100 		prev_sta = NULL;
4101 
4102 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4103 			if (!prev_sta) {
4104 				prev_sta = sta;
4105 				continue;
4106 			}
4107 
4108 			rx.sta = prev_sta;
4109 			rx.sdata = prev_sta->sdata;
4110 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4111 
4112 			prev_sta = sta;
4113 		}
4114 
4115 		if (prev_sta) {
4116 			rx.sta = prev_sta;
4117 			rx.sdata = prev_sta->sdata;
4118 
4119 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4120 				return;
4121 			goto out;
4122 		}
4123 	}
4124 
4125 	prev = NULL;
4126 
4127 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4128 		if (!ieee80211_sdata_running(sdata))
4129 			continue;
4130 
4131 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4132 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4133 			continue;
4134 
4135 		/*
4136 		 * frame is destined for this interface, but if it's
4137 		 * not also for the previous one we handle that after
4138 		 * the loop to avoid copying the SKB once too much
4139 		 */
4140 
4141 		if (!prev) {
4142 			prev = sdata;
4143 			continue;
4144 		}
4145 
4146 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4147 		rx.sdata = prev;
4148 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4149 
4150 		prev = sdata;
4151 	}
4152 
4153 	if (prev) {
4154 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4155 		rx.sdata = prev;
4156 
4157 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4158 			return;
4159 	}
4160 
4161  out:
4162 	dev_kfree_skb(skb);
4163 }
4164 
4165 /*
4166  * This is the receive path handler. It is called by a low level driver when an
4167  * 802.11 MPDU is received from the hardware.
4168  */
4169 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4170 		       struct sk_buff *skb, struct napi_struct *napi)
4171 {
4172 	struct ieee80211_local *local = hw_to_local(hw);
4173 	struct ieee80211_rate *rate = NULL;
4174 	struct ieee80211_supported_band *sband;
4175 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4176 
4177 	WARN_ON_ONCE(softirq_count() == 0);
4178 
4179 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4180 		goto drop;
4181 
4182 	sband = local->hw.wiphy->bands[status->band];
4183 	if (WARN_ON(!sband))
4184 		goto drop;
4185 
4186 	/*
4187 	 * If we're suspending, it is possible although not too likely
4188 	 * that we'd be receiving frames after having already partially
4189 	 * quiesced the stack. We can't process such frames then since
4190 	 * that might, for example, cause stations to be added or other
4191 	 * driver callbacks be invoked.
4192 	 */
4193 	if (unlikely(local->quiescing || local->suspended))
4194 		goto drop;
4195 
4196 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4197 	if (unlikely(local->in_reconfig))
4198 		goto drop;
4199 
4200 	/*
4201 	 * The same happens when we're not even started,
4202 	 * but that's worth a warning.
4203 	 */
4204 	if (WARN_ON(!local->started))
4205 		goto drop;
4206 
4207 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4208 		/*
4209 		 * Validate the rate, unless a PLCP error means that
4210 		 * we probably can't have a valid rate here anyway.
4211 		 */
4212 
4213 		if (status->flag & RX_FLAG_HT) {
4214 			/*
4215 			 * rate_idx is MCS index, which can be [0-76]
4216 			 * as documented on:
4217 			 *
4218 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4219 			 *
4220 			 * Anything else would be some sort of driver or
4221 			 * hardware error. The driver should catch hardware
4222 			 * errors.
4223 			 */
4224 			if (WARN(status->rate_idx > 76,
4225 				 "Rate marked as an HT rate but passed "
4226 				 "status->rate_idx is not "
4227 				 "an MCS index [0-76]: %d (0x%02x)\n",
4228 				 status->rate_idx,
4229 				 status->rate_idx))
4230 				goto drop;
4231 		} else if (status->flag & RX_FLAG_VHT) {
4232 			if (WARN_ONCE(status->rate_idx > 9 ||
4233 				      !status->vht_nss ||
4234 				      status->vht_nss > 8,
4235 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4236 				      status->rate_idx, status->vht_nss))
4237 				goto drop;
4238 		} else {
4239 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4240 				goto drop;
4241 			rate = &sband->bitrates[status->rate_idx];
4242 		}
4243 	}
4244 
4245 	status->rx_flags = 0;
4246 
4247 	/*
4248 	 * key references and virtual interfaces are protected using RCU
4249 	 * and this requires that we are in a read-side RCU section during
4250 	 * receive processing
4251 	 */
4252 	rcu_read_lock();
4253 
4254 	/*
4255 	 * Frames with failed FCS/PLCP checksum are not returned,
4256 	 * all other frames are returned without radiotap header
4257 	 * if it was previously present.
4258 	 * Also, frames with less than 16 bytes are dropped.
4259 	 */
4260 	skb = ieee80211_rx_monitor(local, skb, rate);
4261 	if (!skb) {
4262 		rcu_read_unlock();
4263 		return;
4264 	}
4265 
4266 	ieee80211_tpt_led_trig_rx(local,
4267 			((struct ieee80211_hdr *)skb->data)->frame_control,
4268 			skb->len);
4269 
4270 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4271 
4272 	rcu_read_unlock();
4273 
4274 	return;
4275  drop:
4276 	kfree_skb(skb);
4277 }
4278 EXPORT_SYMBOL(ieee80211_rx_napi);
4279 
4280 /* This is a version of the rx handler that can be called from hard irq
4281  * context. Post the skb on the queue and schedule the tasklet */
4282 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4283 {
4284 	struct ieee80211_local *local = hw_to_local(hw);
4285 
4286 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4287 
4288 	skb->pkt_type = IEEE80211_RX_MSG;
4289 	skb_queue_tail(&local->skb_queue, skb);
4290 	tasklet_schedule(&local->tasklet);
4291 }
4292 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4293