xref: /linux/net/mac80211/rx.c (revision 7ff836f064e2c814a7504c91a4464eea45d475bd)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "led.h"
31 #include "mesh.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "rate.h"
37 
38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 {
40 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 
42 	u64_stats_update_begin(&tstats->syncp);
43 	tstats->rx_packets++;
44 	tstats->rx_bytes += len;
45 	u64_stats_update_end(&tstats->syncp);
46 }
47 
48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			       enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_mgmt(fc)) {
68 		if (len < 24) /* drop incorrect hdr len (mgmt) */
69 			return NULL;
70 		return hdr->addr3;
71 	}
72 
73 	if (ieee80211_is_ctl(fc)) {
74 		if (ieee80211_is_pspoll(fc))
75 			return hdr->addr1;
76 
77 		if (ieee80211_is_back_req(fc)) {
78 			switch (type) {
79 			case NL80211_IFTYPE_STATION:
80 				return hdr->addr2;
81 			case NL80211_IFTYPE_AP:
82 			case NL80211_IFTYPE_AP_VLAN:
83 				return hdr->addr1;
84 			default:
85 				break; /* fall through to the return */
86 			}
87 		}
88 	}
89 
90 	return NULL;
91 }
92 
93 /*
94  * monitor mode reception
95  *
96  * This function cleans up the SKB, i.e. it removes all the stuff
97  * only useful for monitoring.
98  */
99 static void remove_monitor_info(struct sk_buff *skb,
100 				unsigned int present_fcs_len,
101 				unsigned int rtap_space)
102 {
103 	if (present_fcs_len)
104 		__pskb_trim(skb, skb->len - present_fcs_len);
105 	__pskb_pull(skb, rtap_space);
106 }
107 
108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
109 				     unsigned int rtap_space)
110 {
111 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
112 	struct ieee80211_hdr *hdr;
113 
114 	hdr = (void *)(skb->data + rtap_space);
115 
116 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
117 			    RX_FLAG_FAILED_PLCP_CRC |
118 			    RX_FLAG_ONLY_MONITOR |
119 			    RX_FLAG_NO_PSDU))
120 		return true;
121 
122 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
123 		return true;
124 
125 	if (ieee80211_is_ctl(hdr->frame_control) &&
126 	    !ieee80211_is_pspoll(hdr->frame_control) &&
127 	    !ieee80211_is_back_req(hdr->frame_control))
128 		return true;
129 
130 	return false;
131 }
132 
133 static int
134 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
135 			     struct ieee80211_rx_status *status,
136 			     struct sk_buff *skb)
137 {
138 	int len;
139 
140 	/* always present fields */
141 	len = sizeof(struct ieee80211_radiotap_header) + 8;
142 
143 	/* allocate extra bitmaps */
144 	if (status->chains)
145 		len += 4 * hweight8(status->chains);
146 	/* vendor presence bitmap */
147 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
148 		len += 4;
149 
150 	if (ieee80211_have_rx_timestamp(status)) {
151 		len = ALIGN(len, 8);
152 		len += 8;
153 	}
154 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
155 		len += 1;
156 
157 	/* antenna field, if we don't have per-chain info */
158 	if (!status->chains)
159 		len += 1;
160 
161 	/* padding for RX_FLAGS if necessary */
162 	len = ALIGN(len, 2);
163 
164 	if (status->encoding == RX_ENC_HT) /* HT info */
165 		len += 3;
166 
167 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
168 		len = ALIGN(len, 4);
169 		len += 8;
170 	}
171 
172 	if (status->encoding == RX_ENC_VHT) {
173 		len = ALIGN(len, 2);
174 		len += 12;
175 	}
176 
177 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
178 		len = ALIGN(len, 8);
179 		len += 12;
180 	}
181 
182 	if (status->encoding == RX_ENC_HE &&
183 	    status->flag & RX_FLAG_RADIOTAP_HE) {
184 		len = ALIGN(len, 2);
185 		len += 12;
186 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
187 	}
188 
189 	if (status->encoding == RX_ENC_HE &&
190 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
191 		len = ALIGN(len, 2);
192 		len += 12;
193 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
194 	}
195 
196 	if (status->flag & RX_FLAG_NO_PSDU)
197 		len += 1;
198 
199 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
200 		len = ALIGN(len, 2);
201 		len += 4;
202 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
203 	}
204 
205 	if (status->chains) {
206 		/* antenna and antenna signal fields */
207 		len += 2 * hweight8(status->chains);
208 	}
209 
210 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
211 		struct ieee80211_vendor_radiotap *rtap;
212 		int vendor_data_offset = 0;
213 
214 		/*
215 		 * The position to look at depends on the existence (or non-
216 		 * existence) of other elements, so take that into account...
217 		 */
218 		if (status->flag & RX_FLAG_RADIOTAP_HE)
219 			vendor_data_offset +=
220 				sizeof(struct ieee80211_radiotap_he);
221 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
222 			vendor_data_offset +=
223 				sizeof(struct ieee80211_radiotap_he_mu);
224 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
225 			vendor_data_offset +=
226 				sizeof(struct ieee80211_radiotap_lsig);
227 
228 		rtap = (void *)&skb->data[vendor_data_offset];
229 
230 		/* alignment for fixed 6-byte vendor data header */
231 		len = ALIGN(len, 2);
232 		/* vendor data header */
233 		len += 6;
234 		if (WARN_ON(rtap->align == 0))
235 			rtap->align = 1;
236 		len = ALIGN(len, rtap->align);
237 		len += rtap->len + rtap->pad;
238 	}
239 
240 	return len;
241 }
242 
243 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
244 					 struct sk_buff *skb,
245 					 int rtap_space)
246 {
247 	struct {
248 		struct ieee80211_hdr_3addr hdr;
249 		u8 category;
250 		u8 action_code;
251 	} __packed __aligned(2) action;
252 
253 	if (!sdata)
254 		return;
255 
256 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
257 
258 	if (skb->len < rtap_space + sizeof(action) +
259 		       VHT_MUMIMO_GROUPS_DATA_LEN)
260 		return;
261 
262 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
263 		return;
264 
265 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
266 
267 	if (!ieee80211_is_action(action.hdr.frame_control))
268 		return;
269 
270 	if (action.category != WLAN_CATEGORY_VHT)
271 		return;
272 
273 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
274 		return;
275 
276 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
277 		return;
278 
279 	skb = skb_copy(skb, GFP_ATOMIC);
280 	if (!skb)
281 		return;
282 
283 	skb_queue_tail(&sdata->skb_queue, skb);
284 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
285 }
286 
287 /*
288  * ieee80211_add_rx_radiotap_header - add radiotap header
289  *
290  * add a radiotap header containing all the fields which the hardware provided.
291  */
292 static void
293 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
294 				 struct sk_buff *skb,
295 				 struct ieee80211_rate *rate,
296 				 int rtap_len, bool has_fcs)
297 {
298 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
299 	struct ieee80211_radiotap_header *rthdr;
300 	unsigned char *pos;
301 	__le32 *it_present;
302 	u32 it_present_val;
303 	u16 rx_flags = 0;
304 	u16 channel_flags = 0;
305 	int mpdulen, chain;
306 	unsigned long chains = status->chains;
307 	struct ieee80211_vendor_radiotap rtap = {};
308 	struct ieee80211_radiotap_he he = {};
309 	struct ieee80211_radiotap_he_mu he_mu = {};
310 	struct ieee80211_radiotap_lsig lsig = {};
311 
312 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
313 		he = *(struct ieee80211_radiotap_he *)skb->data;
314 		skb_pull(skb, sizeof(he));
315 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
316 	}
317 
318 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
319 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
320 		skb_pull(skb, sizeof(he_mu));
321 	}
322 
323 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
324 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
325 		skb_pull(skb, sizeof(lsig));
326 	}
327 
328 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
329 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
330 		/* rtap.len and rtap.pad are undone immediately */
331 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
332 	}
333 
334 	mpdulen = skb->len;
335 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
336 		mpdulen += FCS_LEN;
337 
338 	rthdr = skb_push(skb, rtap_len);
339 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
340 	it_present = &rthdr->it_present;
341 
342 	/* radiotap header, set always present flags */
343 	rthdr->it_len = cpu_to_le16(rtap_len);
344 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
345 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
346 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
347 
348 	if (!status->chains)
349 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
350 
351 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
352 		it_present_val |=
353 			BIT(IEEE80211_RADIOTAP_EXT) |
354 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
355 		put_unaligned_le32(it_present_val, it_present);
356 		it_present++;
357 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
358 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
359 	}
360 
361 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
362 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
363 				  BIT(IEEE80211_RADIOTAP_EXT);
364 		put_unaligned_le32(it_present_val, it_present);
365 		it_present++;
366 		it_present_val = rtap.present;
367 	}
368 
369 	put_unaligned_le32(it_present_val, it_present);
370 
371 	pos = (void *)(it_present + 1);
372 
373 	/* the order of the following fields is important */
374 
375 	/* IEEE80211_RADIOTAP_TSFT */
376 	if (ieee80211_have_rx_timestamp(status)) {
377 		/* padding */
378 		while ((pos - (u8 *)rthdr) & 7)
379 			*pos++ = 0;
380 		put_unaligned_le64(
381 			ieee80211_calculate_rx_timestamp(local, status,
382 							 mpdulen, 0),
383 			pos);
384 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
385 		pos += 8;
386 	}
387 
388 	/* IEEE80211_RADIOTAP_FLAGS */
389 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
390 		*pos |= IEEE80211_RADIOTAP_F_FCS;
391 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
392 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
393 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
394 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
395 	pos++;
396 
397 	/* IEEE80211_RADIOTAP_RATE */
398 	if (!rate || status->encoding != RX_ENC_LEGACY) {
399 		/*
400 		 * Without rate information don't add it. If we have,
401 		 * MCS information is a separate field in radiotap,
402 		 * added below. The byte here is needed as padding
403 		 * for the channel though, so initialise it to 0.
404 		 */
405 		*pos = 0;
406 	} else {
407 		int shift = 0;
408 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
409 		if (status->bw == RATE_INFO_BW_10)
410 			shift = 1;
411 		else if (status->bw == RATE_INFO_BW_5)
412 			shift = 2;
413 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
414 	}
415 	pos++;
416 
417 	/* IEEE80211_RADIOTAP_CHANNEL */
418 	put_unaligned_le16(status->freq, pos);
419 	pos += 2;
420 	if (status->bw == RATE_INFO_BW_10)
421 		channel_flags |= IEEE80211_CHAN_HALF;
422 	else if (status->bw == RATE_INFO_BW_5)
423 		channel_flags |= IEEE80211_CHAN_QUARTER;
424 
425 	if (status->band == NL80211_BAND_5GHZ)
426 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
427 	else if (status->encoding != RX_ENC_LEGACY)
428 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
429 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
430 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
431 	else if (rate)
432 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
433 	else
434 		channel_flags |= IEEE80211_CHAN_2GHZ;
435 	put_unaligned_le16(channel_flags, pos);
436 	pos += 2;
437 
438 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
439 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
440 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
441 		*pos = status->signal;
442 		rthdr->it_present |=
443 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
444 		pos++;
445 	}
446 
447 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
448 
449 	if (!status->chains) {
450 		/* IEEE80211_RADIOTAP_ANTENNA */
451 		*pos = status->antenna;
452 		pos++;
453 	}
454 
455 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
456 
457 	/* IEEE80211_RADIOTAP_RX_FLAGS */
458 	/* ensure 2 byte alignment for the 2 byte field as required */
459 	if ((pos - (u8 *)rthdr) & 1)
460 		*pos++ = 0;
461 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
462 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
463 	put_unaligned_le16(rx_flags, pos);
464 	pos += 2;
465 
466 	if (status->encoding == RX_ENC_HT) {
467 		unsigned int stbc;
468 
469 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
470 		*pos++ = local->hw.radiotap_mcs_details;
471 		*pos = 0;
472 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
473 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
474 		if (status->bw == RATE_INFO_BW_40)
475 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
476 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
477 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
478 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
479 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
480 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
481 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
482 		pos++;
483 		*pos++ = status->rate_idx;
484 	}
485 
486 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
487 		u16 flags = 0;
488 
489 		/* ensure 4 byte alignment */
490 		while ((pos - (u8 *)rthdr) & 3)
491 			pos++;
492 		rthdr->it_present |=
493 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
494 		put_unaligned_le32(status->ampdu_reference, pos);
495 		pos += 4;
496 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
497 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
498 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
499 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
500 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
501 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
502 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
503 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
504 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
505 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
506 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
507 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
508 		put_unaligned_le16(flags, pos);
509 		pos += 2;
510 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
511 			*pos++ = status->ampdu_delimiter_crc;
512 		else
513 			*pos++ = 0;
514 		*pos++ = 0;
515 	}
516 
517 	if (status->encoding == RX_ENC_VHT) {
518 		u16 known = local->hw.radiotap_vht_details;
519 
520 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
521 		put_unaligned_le16(known, pos);
522 		pos += 2;
523 		/* flags */
524 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
525 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
526 		/* in VHT, STBC is binary */
527 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
528 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
529 		if (status->enc_flags & RX_ENC_FLAG_BF)
530 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
531 		pos++;
532 		/* bandwidth */
533 		switch (status->bw) {
534 		case RATE_INFO_BW_80:
535 			*pos++ = 4;
536 			break;
537 		case RATE_INFO_BW_160:
538 			*pos++ = 11;
539 			break;
540 		case RATE_INFO_BW_40:
541 			*pos++ = 1;
542 			break;
543 		default:
544 			*pos++ = 0;
545 		}
546 		/* MCS/NSS */
547 		*pos = (status->rate_idx << 4) | status->nss;
548 		pos += 4;
549 		/* coding field */
550 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
551 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
552 		pos++;
553 		/* group ID */
554 		pos++;
555 		/* partial_aid */
556 		pos += 2;
557 	}
558 
559 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
560 		u16 accuracy = 0;
561 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
562 
563 		rthdr->it_present |=
564 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
565 
566 		/* ensure 8 byte alignment */
567 		while ((pos - (u8 *)rthdr) & 7)
568 			pos++;
569 
570 		put_unaligned_le64(status->device_timestamp, pos);
571 		pos += sizeof(u64);
572 
573 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
574 			accuracy = local->hw.radiotap_timestamp.accuracy;
575 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
576 		}
577 		put_unaligned_le16(accuracy, pos);
578 		pos += sizeof(u16);
579 
580 		*pos++ = local->hw.radiotap_timestamp.units_pos;
581 		*pos++ = flags;
582 	}
583 
584 	if (status->encoding == RX_ENC_HE &&
585 	    status->flag & RX_FLAG_RADIOTAP_HE) {
586 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
587 
588 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
589 			he.data6 |= HE_PREP(DATA6_NSTS,
590 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
591 						      status->enc_flags));
592 			he.data3 |= HE_PREP(DATA3_STBC, 1);
593 		} else {
594 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
595 		}
596 
597 #define CHECK_GI(s) \
598 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
599 		     (int)NL80211_RATE_INFO_HE_GI_##s)
600 
601 		CHECK_GI(0_8);
602 		CHECK_GI(1_6);
603 		CHECK_GI(3_2);
604 
605 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
606 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
607 		he.data3 |= HE_PREP(DATA3_CODING,
608 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
609 
610 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
611 
612 		switch (status->bw) {
613 		case RATE_INFO_BW_20:
614 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
615 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
616 			break;
617 		case RATE_INFO_BW_40:
618 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
619 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
620 			break;
621 		case RATE_INFO_BW_80:
622 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
623 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
624 			break;
625 		case RATE_INFO_BW_160:
626 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
627 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
628 			break;
629 		case RATE_INFO_BW_HE_RU:
630 #define CHECK_RU_ALLOC(s) \
631 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
632 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
633 
634 			CHECK_RU_ALLOC(26);
635 			CHECK_RU_ALLOC(52);
636 			CHECK_RU_ALLOC(106);
637 			CHECK_RU_ALLOC(242);
638 			CHECK_RU_ALLOC(484);
639 			CHECK_RU_ALLOC(996);
640 			CHECK_RU_ALLOC(2x996);
641 
642 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
643 					    status->he_ru + 4);
644 			break;
645 		default:
646 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
647 		}
648 
649 		/* ensure 2 byte alignment */
650 		while ((pos - (u8 *)rthdr) & 1)
651 			pos++;
652 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
653 		memcpy(pos, &he, sizeof(he));
654 		pos += sizeof(he);
655 	}
656 
657 	if (status->encoding == RX_ENC_HE &&
658 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
659 		/* ensure 2 byte alignment */
660 		while ((pos - (u8 *)rthdr) & 1)
661 			pos++;
662 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
663 		memcpy(pos, &he_mu, sizeof(he_mu));
664 		pos += sizeof(he_mu);
665 	}
666 
667 	if (status->flag & RX_FLAG_NO_PSDU) {
668 		rthdr->it_present |=
669 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
670 		*pos++ = status->zero_length_psdu_type;
671 	}
672 
673 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
674 		/* ensure 2 byte alignment */
675 		while ((pos - (u8 *)rthdr) & 1)
676 			pos++;
677 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
678 		memcpy(pos, &lsig, sizeof(lsig));
679 		pos += sizeof(lsig);
680 	}
681 
682 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
683 		*pos++ = status->chain_signal[chain];
684 		*pos++ = chain;
685 	}
686 
687 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
688 		/* ensure 2 byte alignment for the vendor field as required */
689 		if ((pos - (u8 *)rthdr) & 1)
690 			*pos++ = 0;
691 		*pos++ = rtap.oui[0];
692 		*pos++ = rtap.oui[1];
693 		*pos++ = rtap.oui[2];
694 		*pos++ = rtap.subns;
695 		put_unaligned_le16(rtap.len, pos);
696 		pos += 2;
697 		/* align the actual payload as requested */
698 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
699 			*pos++ = 0;
700 		/* data (and possible padding) already follows */
701 	}
702 }
703 
704 static struct sk_buff *
705 ieee80211_make_monitor_skb(struct ieee80211_local *local,
706 			   struct sk_buff **origskb,
707 			   struct ieee80211_rate *rate,
708 			   int rtap_space, bool use_origskb)
709 {
710 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
711 	int rt_hdrlen, needed_headroom;
712 	struct sk_buff *skb;
713 
714 	/* room for the radiotap header based on driver features */
715 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
716 	needed_headroom = rt_hdrlen - rtap_space;
717 
718 	if (use_origskb) {
719 		/* only need to expand headroom if necessary */
720 		skb = *origskb;
721 		*origskb = NULL;
722 
723 		/*
724 		 * This shouldn't trigger often because most devices have an
725 		 * RX header they pull before we get here, and that should
726 		 * be big enough for our radiotap information. We should
727 		 * probably export the length to drivers so that we can have
728 		 * them allocate enough headroom to start with.
729 		 */
730 		if (skb_headroom(skb) < needed_headroom &&
731 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
732 			dev_kfree_skb(skb);
733 			return NULL;
734 		}
735 	} else {
736 		/*
737 		 * Need to make a copy and possibly remove radiotap header
738 		 * and FCS from the original.
739 		 */
740 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
741 
742 		if (!skb)
743 			return NULL;
744 	}
745 
746 	/* prepend radiotap information */
747 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
748 
749 	skb_reset_mac_header(skb);
750 	skb->ip_summed = CHECKSUM_UNNECESSARY;
751 	skb->pkt_type = PACKET_OTHERHOST;
752 	skb->protocol = htons(ETH_P_802_2);
753 
754 	return skb;
755 }
756 
757 /*
758  * This function copies a received frame to all monitor interfaces and
759  * returns a cleaned-up SKB that no longer includes the FCS nor the
760  * radiotap header the driver might have added.
761  */
762 static struct sk_buff *
763 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
764 		     struct ieee80211_rate *rate)
765 {
766 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
767 	struct ieee80211_sub_if_data *sdata;
768 	struct sk_buff *monskb = NULL;
769 	int present_fcs_len = 0;
770 	unsigned int rtap_space = 0;
771 	struct ieee80211_sub_if_data *monitor_sdata =
772 		rcu_dereference(local->monitor_sdata);
773 	bool only_monitor = false;
774 	unsigned int min_head_len;
775 
776 	if (status->flag & RX_FLAG_RADIOTAP_HE)
777 		rtap_space += sizeof(struct ieee80211_radiotap_he);
778 
779 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
780 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
781 
782 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
783 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
784 
785 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
786 		struct ieee80211_vendor_radiotap *rtap =
787 			(void *)(origskb->data + rtap_space);
788 
789 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
790 	}
791 
792 	min_head_len = rtap_space;
793 
794 	/*
795 	 * First, we may need to make a copy of the skb because
796 	 *  (1) we need to modify it for radiotap (if not present), and
797 	 *  (2) the other RX handlers will modify the skb we got.
798 	 *
799 	 * We don't need to, of course, if we aren't going to return
800 	 * the SKB because it has a bad FCS/PLCP checksum.
801 	 */
802 
803 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
804 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
805 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
806 				/* driver bug */
807 				WARN_ON(1);
808 				dev_kfree_skb(origskb);
809 				return NULL;
810 			}
811 			present_fcs_len = FCS_LEN;
812 		}
813 
814 		/* also consider the hdr->frame_control */
815 		min_head_len += 2;
816 	}
817 
818 	/* ensure that the expected data elements are in skb head */
819 	if (!pskb_may_pull(origskb, min_head_len)) {
820 		dev_kfree_skb(origskb);
821 		return NULL;
822 	}
823 
824 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
825 
826 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
827 		if (only_monitor) {
828 			dev_kfree_skb(origskb);
829 			return NULL;
830 		}
831 
832 		remove_monitor_info(origskb, present_fcs_len, rtap_space);
833 		return origskb;
834 	}
835 
836 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
837 
838 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
839 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
840 						 &local->mon_list);
841 
842 		if (!monskb)
843 			monskb = ieee80211_make_monitor_skb(local, &origskb,
844 							    rate, rtap_space,
845 							    only_monitor &&
846 							    last_monitor);
847 
848 		if (monskb) {
849 			struct sk_buff *skb;
850 
851 			if (last_monitor) {
852 				skb = monskb;
853 				monskb = NULL;
854 			} else {
855 				skb = skb_clone(monskb, GFP_ATOMIC);
856 			}
857 
858 			if (skb) {
859 				skb->dev = sdata->dev;
860 				ieee80211_rx_stats(skb->dev, skb->len);
861 				netif_receive_skb(skb);
862 			}
863 		}
864 
865 		if (last_monitor)
866 			break;
867 	}
868 
869 	/* this happens if last_monitor was erroneously false */
870 	dev_kfree_skb(monskb);
871 
872 	/* ditto */
873 	if (!origskb)
874 		return NULL;
875 
876 	remove_monitor_info(origskb, present_fcs_len, rtap_space);
877 	return origskb;
878 }
879 
880 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
881 {
882 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
883 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
884 	int tid, seqno_idx, security_idx;
885 
886 	/* does the frame have a qos control field? */
887 	if (ieee80211_is_data_qos(hdr->frame_control)) {
888 		u8 *qc = ieee80211_get_qos_ctl(hdr);
889 		/* frame has qos control */
890 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
891 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
892 			status->rx_flags |= IEEE80211_RX_AMSDU;
893 
894 		seqno_idx = tid;
895 		security_idx = tid;
896 	} else {
897 		/*
898 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
899 		 *
900 		 *	Sequence numbers for management frames, QoS data
901 		 *	frames with a broadcast/multicast address in the
902 		 *	Address 1 field, and all non-QoS data frames sent
903 		 *	by QoS STAs are assigned using an additional single
904 		 *	modulo-4096 counter, [...]
905 		 *
906 		 * We also use that counter for non-QoS STAs.
907 		 */
908 		seqno_idx = IEEE80211_NUM_TIDS;
909 		security_idx = 0;
910 		if (ieee80211_is_mgmt(hdr->frame_control))
911 			security_idx = IEEE80211_NUM_TIDS;
912 		tid = 0;
913 	}
914 
915 	rx->seqno_idx = seqno_idx;
916 	rx->security_idx = security_idx;
917 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
918 	 * For now, set skb->priority to 0 for other cases. */
919 	rx->skb->priority = (tid > 7) ? 0 : tid;
920 }
921 
922 /**
923  * DOC: Packet alignment
924  *
925  * Drivers always need to pass packets that are aligned to two-byte boundaries
926  * to the stack.
927  *
928  * Additionally, should, if possible, align the payload data in a way that
929  * guarantees that the contained IP header is aligned to a four-byte
930  * boundary. In the case of regular frames, this simply means aligning the
931  * payload to a four-byte boundary (because either the IP header is directly
932  * contained, or IV/RFC1042 headers that have a length divisible by four are
933  * in front of it).  If the payload data is not properly aligned and the
934  * architecture doesn't support efficient unaligned operations, mac80211
935  * will align the data.
936  *
937  * With A-MSDU frames, however, the payload data address must yield two modulo
938  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
939  * push the IP header further back to a multiple of four again. Thankfully, the
940  * specs were sane enough this time around to require padding each A-MSDU
941  * subframe to a length that is a multiple of four.
942  *
943  * Padding like Atheros hardware adds which is between the 802.11 header and
944  * the payload is not supported, the driver is required to move the 802.11
945  * header to be directly in front of the payload in that case.
946  */
947 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
948 {
949 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
950 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
951 #endif
952 }
953 
954 
955 /* rx handlers */
956 
957 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
958 {
959 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
960 
961 	if (is_multicast_ether_addr(hdr->addr1))
962 		return 0;
963 
964 	return ieee80211_is_robust_mgmt_frame(skb);
965 }
966 
967 
968 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
969 {
970 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
971 
972 	if (!is_multicast_ether_addr(hdr->addr1))
973 		return 0;
974 
975 	return ieee80211_is_robust_mgmt_frame(skb);
976 }
977 
978 
979 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
980 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
981 {
982 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
983 	struct ieee80211_mmie *mmie;
984 	struct ieee80211_mmie_16 *mmie16;
985 
986 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
987 		return -1;
988 
989 	if (!ieee80211_is_robust_mgmt_frame(skb))
990 		return -1; /* not a robust management frame */
991 
992 	mmie = (struct ieee80211_mmie *)
993 		(skb->data + skb->len - sizeof(*mmie));
994 	if (mmie->element_id == WLAN_EID_MMIE &&
995 	    mmie->length == sizeof(*mmie) - 2)
996 		return le16_to_cpu(mmie->key_id);
997 
998 	mmie16 = (struct ieee80211_mmie_16 *)
999 		(skb->data + skb->len - sizeof(*mmie16));
1000 	if (skb->len >= 24 + sizeof(*mmie16) &&
1001 	    mmie16->element_id == WLAN_EID_MMIE &&
1002 	    mmie16->length == sizeof(*mmie16) - 2)
1003 		return le16_to_cpu(mmie16->key_id);
1004 
1005 	return -1;
1006 }
1007 
1008 static int ieee80211_get_keyid(struct sk_buff *skb,
1009 			       const struct ieee80211_cipher_scheme *cs)
1010 {
1011 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1012 	__le16 fc;
1013 	int hdrlen;
1014 	int minlen;
1015 	u8 key_idx_off;
1016 	u8 key_idx_shift;
1017 	u8 keyid;
1018 
1019 	fc = hdr->frame_control;
1020 	hdrlen = ieee80211_hdrlen(fc);
1021 
1022 	if (cs) {
1023 		minlen = hdrlen + cs->hdr_len;
1024 		key_idx_off = hdrlen + cs->key_idx_off;
1025 		key_idx_shift = cs->key_idx_shift;
1026 	} else {
1027 		/* WEP, TKIP, CCMP and GCMP */
1028 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1029 		key_idx_off = hdrlen + 3;
1030 		key_idx_shift = 6;
1031 	}
1032 
1033 	if (unlikely(skb->len < minlen))
1034 		return -EINVAL;
1035 
1036 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1037 
1038 	if (cs)
1039 		keyid &= cs->key_idx_mask;
1040 	keyid >>= key_idx_shift;
1041 
1042 	/* cs could use more than the usual two bits for the keyid */
1043 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1044 		return -EINVAL;
1045 
1046 	return keyid;
1047 }
1048 
1049 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1050 {
1051 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1052 	char *dev_addr = rx->sdata->vif.addr;
1053 
1054 	if (ieee80211_is_data(hdr->frame_control)) {
1055 		if (is_multicast_ether_addr(hdr->addr1)) {
1056 			if (ieee80211_has_tods(hdr->frame_control) ||
1057 			    !ieee80211_has_fromds(hdr->frame_control))
1058 				return RX_DROP_MONITOR;
1059 			if (ether_addr_equal(hdr->addr3, dev_addr))
1060 				return RX_DROP_MONITOR;
1061 		} else {
1062 			if (!ieee80211_has_a4(hdr->frame_control))
1063 				return RX_DROP_MONITOR;
1064 			if (ether_addr_equal(hdr->addr4, dev_addr))
1065 				return RX_DROP_MONITOR;
1066 		}
1067 	}
1068 
1069 	/* If there is not an established peer link and this is not a peer link
1070 	 * establisment frame, beacon or probe, drop the frame.
1071 	 */
1072 
1073 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1074 		struct ieee80211_mgmt *mgmt;
1075 
1076 		if (!ieee80211_is_mgmt(hdr->frame_control))
1077 			return RX_DROP_MONITOR;
1078 
1079 		if (ieee80211_is_action(hdr->frame_control)) {
1080 			u8 category;
1081 
1082 			/* make sure category field is present */
1083 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1084 				return RX_DROP_MONITOR;
1085 
1086 			mgmt = (struct ieee80211_mgmt *)hdr;
1087 			category = mgmt->u.action.category;
1088 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1089 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1090 				return RX_DROP_MONITOR;
1091 			return RX_CONTINUE;
1092 		}
1093 
1094 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1095 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1096 		    ieee80211_is_beacon(hdr->frame_control) ||
1097 		    ieee80211_is_auth(hdr->frame_control))
1098 			return RX_CONTINUE;
1099 
1100 		return RX_DROP_MONITOR;
1101 	}
1102 
1103 	return RX_CONTINUE;
1104 }
1105 
1106 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1107 					      int index)
1108 {
1109 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1110 	struct sk_buff *tail = skb_peek_tail(frames);
1111 	struct ieee80211_rx_status *status;
1112 
1113 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1114 		return true;
1115 
1116 	if (!tail)
1117 		return false;
1118 
1119 	status = IEEE80211_SKB_RXCB(tail);
1120 	if (status->flag & RX_FLAG_AMSDU_MORE)
1121 		return false;
1122 
1123 	return true;
1124 }
1125 
1126 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1127 					    struct tid_ampdu_rx *tid_agg_rx,
1128 					    int index,
1129 					    struct sk_buff_head *frames)
1130 {
1131 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1132 	struct sk_buff *skb;
1133 	struct ieee80211_rx_status *status;
1134 
1135 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1136 
1137 	if (skb_queue_empty(skb_list))
1138 		goto no_frame;
1139 
1140 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1141 		__skb_queue_purge(skb_list);
1142 		goto no_frame;
1143 	}
1144 
1145 	/* release frames from the reorder ring buffer */
1146 	tid_agg_rx->stored_mpdu_num--;
1147 	while ((skb = __skb_dequeue(skb_list))) {
1148 		status = IEEE80211_SKB_RXCB(skb);
1149 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1150 		__skb_queue_tail(frames, skb);
1151 	}
1152 
1153 no_frame:
1154 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1155 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1156 }
1157 
1158 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1159 					     struct tid_ampdu_rx *tid_agg_rx,
1160 					     u16 head_seq_num,
1161 					     struct sk_buff_head *frames)
1162 {
1163 	int index;
1164 
1165 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1166 
1167 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1168 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1169 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1170 						frames);
1171 	}
1172 }
1173 
1174 /*
1175  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1176  * the skb was added to the buffer longer than this time ago, the earlier
1177  * frames that have not yet been received are assumed to be lost and the skb
1178  * can be released for processing. This may also release other skb's from the
1179  * reorder buffer if there are no additional gaps between the frames.
1180  *
1181  * Callers must hold tid_agg_rx->reorder_lock.
1182  */
1183 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1184 
1185 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1186 					  struct tid_ampdu_rx *tid_agg_rx,
1187 					  struct sk_buff_head *frames)
1188 {
1189 	int index, i, j;
1190 
1191 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1192 
1193 	/* release the buffer until next missing frame */
1194 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1195 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1196 	    tid_agg_rx->stored_mpdu_num) {
1197 		/*
1198 		 * No buffers ready to be released, but check whether any
1199 		 * frames in the reorder buffer have timed out.
1200 		 */
1201 		int skipped = 1;
1202 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1203 		     j = (j + 1) % tid_agg_rx->buf_size) {
1204 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1205 				skipped++;
1206 				continue;
1207 			}
1208 			if (skipped &&
1209 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1210 					HT_RX_REORDER_BUF_TIMEOUT))
1211 				goto set_release_timer;
1212 
1213 			/* don't leave incomplete A-MSDUs around */
1214 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1215 			     i = (i + 1) % tid_agg_rx->buf_size)
1216 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1217 
1218 			ht_dbg_ratelimited(sdata,
1219 					   "release an RX reorder frame due to timeout on earlier frames\n");
1220 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1221 							frames);
1222 
1223 			/*
1224 			 * Increment the head seq# also for the skipped slots.
1225 			 */
1226 			tid_agg_rx->head_seq_num =
1227 				(tid_agg_rx->head_seq_num +
1228 				 skipped) & IEEE80211_SN_MASK;
1229 			skipped = 0;
1230 		}
1231 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1232 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1233 						frames);
1234 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1235 	}
1236 
1237 	if (tid_agg_rx->stored_mpdu_num) {
1238 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1239 
1240 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1241 		     j = (j + 1) % tid_agg_rx->buf_size) {
1242 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1243 				break;
1244 		}
1245 
1246  set_release_timer:
1247 
1248 		if (!tid_agg_rx->removed)
1249 			mod_timer(&tid_agg_rx->reorder_timer,
1250 				  tid_agg_rx->reorder_time[j] + 1 +
1251 				  HT_RX_REORDER_BUF_TIMEOUT);
1252 	} else {
1253 		del_timer(&tid_agg_rx->reorder_timer);
1254 	}
1255 }
1256 
1257 /*
1258  * As this function belongs to the RX path it must be under
1259  * rcu_read_lock protection. It returns false if the frame
1260  * can be processed immediately, true if it was consumed.
1261  */
1262 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1263 					     struct tid_ampdu_rx *tid_agg_rx,
1264 					     struct sk_buff *skb,
1265 					     struct sk_buff_head *frames)
1266 {
1267 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1268 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1269 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1270 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1271 	u16 head_seq_num, buf_size;
1272 	int index;
1273 	bool ret = true;
1274 
1275 	spin_lock(&tid_agg_rx->reorder_lock);
1276 
1277 	/*
1278 	 * Offloaded BA sessions have no known starting sequence number so pick
1279 	 * one from first Rxed frame for this tid after BA was started.
1280 	 */
1281 	if (unlikely(tid_agg_rx->auto_seq)) {
1282 		tid_agg_rx->auto_seq = false;
1283 		tid_agg_rx->ssn = mpdu_seq_num;
1284 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1285 	}
1286 
1287 	buf_size = tid_agg_rx->buf_size;
1288 	head_seq_num = tid_agg_rx->head_seq_num;
1289 
1290 	/*
1291 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1292 	 * be reordered.
1293 	 */
1294 	if (unlikely(!tid_agg_rx->started)) {
1295 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1296 			ret = false;
1297 			goto out;
1298 		}
1299 		tid_agg_rx->started = true;
1300 	}
1301 
1302 	/* frame with out of date sequence number */
1303 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1304 		dev_kfree_skb(skb);
1305 		goto out;
1306 	}
1307 
1308 	/*
1309 	 * If frame the sequence number exceeds our buffering window
1310 	 * size release some previous frames to make room for this one.
1311 	 */
1312 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1313 		head_seq_num = ieee80211_sn_inc(
1314 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1315 		/* release stored frames up to new head to stack */
1316 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1317 						 head_seq_num, frames);
1318 	}
1319 
1320 	/* Now the new frame is always in the range of the reordering buffer */
1321 
1322 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1323 
1324 	/* check if we already stored this frame */
1325 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1326 		dev_kfree_skb(skb);
1327 		goto out;
1328 	}
1329 
1330 	/*
1331 	 * If the current MPDU is in the right order and nothing else
1332 	 * is stored we can process it directly, no need to buffer it.
1333 	 * If it is first but there's something stored, we may be able
1334 	 * to release frames after this one.
1335 	 */
1336 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1337 	    tid_agg_rx->stored_mpdu_num == 0) {
1338 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1339 			tid_agg_rx->head_seq_num =
1340 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1341 		ret = false;
1342 		goto out;
1343 	}
1344 
1345 	/* put the frame in the reordering buffer */
1346 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1347 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1348 		tid_agg_rx->reorder_time[index] = jiffies;
1349 		tid_agg_rx->stored_mpdu_num++;
1350 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1351 	}
1352 
1353  out:
1354 	spin_unlock(&tid_agg_rx->reorder_lock);
1355 	return ret;
1356 }
1357 
1358 /*
1359  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1360  * true if the MPDU was buffered, false if it should be processed.
1361  */
1362 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1363 				       struct sk_buff_head *frames)
1364 {
1365 	struct sk_buff *skb = rx->skb;
1366 	struct ieee80211_local *local = rx->local;
1367 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1368 	struct sta_info *sta = rx->sta;
1369 	struct tid_ampdu_rx *tid_agg_rx;
1370 	u16 sc;
1371 	u8 tid, ack_policy;
1372 
1373 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1374 	    is_multicast_ether_addr(hdr->addr1))
1375 		goto dont_reorder;
1376 
1377 	/*
1378 	 * filter the QoS data rx stream according to
1379 	 * STA/TID and check if this STA/TID is on aggregation
1380 	 */
1381 
1382 	if (!sta)
1383 		goto dont_reorder;
1384 
1385 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1386 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1387 	tid = ieee80211_get_tid(hdr);
1388 
1389 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1390 	if (!tid_agg_rx) {
1391 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1392 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1393 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1394 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1395 					     WLAN_BACK_RECIPIENT,
1396 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1397 		goto dont_reorder;
1398 	}
1399 
1400 	/* qos null data frames are excluded */
1401 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1402 		goto dont_reorder;
1403 
1404 	/* not part of a BA session */
1405 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1406 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1407 		goto dont_reorder;
1408 
1409 	/* new, potentially un-ordered, ampdu frame - process it */
1410 
1411 	/* reset session timer */
1412 	if (tid_agg_rx->timeout)
1413 		tid_agg_rx->last_rx = jiffies;
1414 
1415 	/* if this mpdu is fragmented - terminate rx aggregation session */
1416 	sc = le16_to_cpu(hdr->seq_ctrl);
1417 	if (sc & IEEE80211_SCTL_FRAG) {
1418 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1419 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1420 		return;
1421 	}
1422 
1423 	/*
1424 	 * No locking needed -- we will only ever process one
1425 	 * RX packet at a time, and thus own tid_agg_rx. All
1426 	 * other code manipulating it needs to (and does) make
1427 	 * sure that we cannot get to it any more before doing
1428 	 * anything with it.
1429 	 */
1430 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1431 					     frames))
1432 		return;
1433 
1434  dont_reorder:
1435 	__skb_queue_tail(frames, skb);
1436 }
1437 
1438 static ieee80211_rx_result debug_noinline
1439 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1440 {
1441 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1442 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1443 
1444 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1445 		return RX_CONTINUE;
1446 
1447 	/*
1448 	 * Drop duplicate 802.11 retransmissions
1449 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1450 	 */
1451 
1452 	if (rx->skb->len < 24)
1453 		return RX_CONTINUE;
1454 
1455 	if (ieee80211_is_ctl(hdr->frame_control) ||
1456 	    ieee80211_is_nullfunc(hdr->frame_control) ||
1457 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1458 	    is_multicast_ether_addr(hdr->addr1))
1459 		return RX_CONTINUE;
1460 
1461 	if (!rx->sta)
1462 		return RX_CONTINUE;
1463 
1464 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1465 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1466 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1467 		rx->sta->rx_stats.num_duplicates++;
1468 		return RX_DROP_UNUSABLE;
1469 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1470 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1471 	}
1472 
1473 	return RX_CONTINUE;
1474 }
1475 
1476 static ieee80211_rx_result debug_noinline
1477 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1478 {
1479 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1480 
1481 	/* Drop disallowed frame classes based on STA auth/assoc state;
1482 	 * IEEE 802.11, Chap 5.5.
1483 	 *
1484 	 * mac80211 filters only based on association state, i.e. it drops
1485 	 * Class 3 frames from not associated stations. hostapd sends
1486 	 * deauth/disassoc frames when needed. In addition, hostapd is
1487 	 * responsible for filtering on both auth and assoc states.
1488 	 */
1489 
1490 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1491 		return ieee80211_rx_mesh_check(rx);
1492 
1493 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1494 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1495 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1496 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1497 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1498 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1499 		/*
1500 		 * accept port control frames from the AP even when it's not
1501 		 * yet marked ASSOC to prevent a race where we don't set the
1502 		 * assoc bit quickly enough before it sends the first frame
1503 		 */
1504 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1505 		    ieee80211_is_data_present(hdr->frame_control)) {
1506 			unsigned int hdrlen;
1507 			__be16 ethertype;
1508 
1509 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1510 
1511 			if (rx->skb->len < hdrlen + 8)
1512 				return RX_DROP_MONITOR;
1513 
1514 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1515 			if (ethertype == rx->sdata->control_port_protocol)
1516 				return RX_CONTINUE;
1517 		}
1518 
1519 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1520 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1521 					       hdr->addr2,
1522 					       GFP_ATOMIC))
1523 			return RX_DROP_UNUSABLE;
1524 
1525 		return RX_DROP_MONITOR;
1526 	}
1527 
1528 	return RX_CONTINUE;
1529 }
1530 
1531 
1532 static ieee80211_rx_result debug_noinline
1533 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1534 {
1535 	struct ieee80211_local *local;
1536 	struct ieee80211_hdr *hdr;
1537 	struct sk_buff *skb;
1538 
1539 	local = rx->local;
1540 	skb = rx->skb;
1541 	hdr = (struct ieee80211_hdr *) skb->data;
1542 
1543 	if (!local->pspolling)
1544 		return RX_CONTINUE;
1545 
1546 	if (!ieee80211_has_fromds(hdr->frame_control))
1547 		/* this is not from AP */
1548 		return RX_CONTINUE;
1549 
1550 	if (!ieee80211_is_data(hdr->frame_control))
1551 		return RX_CONTINUE;
1552 
1553 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1554 		/* AP has no more frames buffered for us */
1555 		local->pspolling = false;
1556 		return RX_CONTINUE;
1557 	}
1558 
1559 	/* more data bit is set, let's request a new frame from the AP */
1560 	ieee80211_send_pspoll(local, rx->sdata);
1561 
1562 	return RX_CONTINUE;
1563 }
1564 
1565 static void sta_ps_start(struct sta_info *sta)
1566 {
1567 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1568 	struct ieee80211_local *local = sdata->local;
1569 	struct ps_data *ps;
1570 	int tid;
1571 
1572 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1573 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1574 		ps = &sdata->bss->ps;
1575 	else
1576 		return;
1577 
1578 	atomic_inc(&ps->num_sta_ps);
1579 	set_sta_flag(sta, WLAN_STA_PS_STA);
1580 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1581 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1582 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1583 	       sta->sta.addr, sta->sta.aid);
1584 
1585 	ieee80211_clear_fast_xmit(sta);
1586 
1587 	if (!sta->sta.txq[0])
1588 		return;
1589 
1590 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1591 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1592 		struct txq_info *txqi = to_txq_info(txq);
1593 
1594 		spin_lock(&local->active_txq_lock[txq->ac]);
1595 		if (!list_empty(&txqi->schedule_order))
1596 			list_del_init(&txqi->schedule_order);
1597 		spin_unlock(&local->active_txq_lock[txq->ac]);
1598 
1599 		if (txq_has_queue(txq))
1600 			set_bit(tid, &sta->txq_buffered_tids);
1601 		else
1602 			clear_bit(tid, &sta->txq_buffered_tids);
1603 	}
1604 }
1605 
1606 static void sta_ps_end(struct sta_info *sta)
1607 {
1608 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1609 	       sta->sta.addr, sta->sta.aid);
1610 
1611 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1612 		/*
1613 		 * Clear the flag only if the other one is still set
1614 		 * so that the TX path won't start TX'ing new frames
1615 		 * directly ... In the case that the driver flag isn't
1616 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1617 		 */
1618 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1619 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1620 		       sta->sta.addr, sta->sta.aid);
1621 		return;
1622 	}
1623 
1624 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1625 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1626 	ieee80211_sta_ps_deliver_wakeup(sta);
1627 }
1628 
1629 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1630 {
1631 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1632 	bool in_ps;
1633 
1634 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1635 
1636 	/* Don't let the same PS state be set twice */
1637 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1638 	if ((start && in_ps) || (!start && !in_ps))
1639 		return -EINVAL;
1640 
1641 	if (start)
1642 		sta_ps_start(sta);
1643 	else
1644 		sta_ps_end(sta);
1645 
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1649 
1650 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1651 {
1652 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1653 
1654 	if (test_sta_flag(sta, WLAN_STA_SP))
1655 		return;
1656 
1657 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1658 		ieee80211_sta_ps_deliver_poll_response(sta);
1659 	else
1660 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1661 }
1662 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1663 
1664 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1665 {
1666 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1667 	int ac = ieee80211_ac_from_tid(tid);
1668 
1669 	/*
1670 	 * If this AC is not trigger-enabled do nothing unless the
1671 	 * driver is calling us after it already checked.
1672 	 *
1673 	 * NB: This could/should check a separate bitmap of trigger-
1674 	 * enabled queues, but for now we only implement uAPSD w/o
1675 	 * TSPEC changes to the ACs, so they're always the same.
1676 	 */
1677 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1678 	    tid != IEEE80211_NUM_TIDS)
1679 		return;
1680 
1681 	/* if we are in a service period, do nothing */
1682 	if (test_sta_flag(sta, WLAN_STA_SP))
1683 		return;
1684 
1685 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1686 		ieee80211_sta_ps_deliver_uapsd(sta);
1687 	else
1688 		set_sta_flag(sta, WLAN_STA_UAPSD);
1689 }
1690 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1691 
1692 static ieee80211_rx_result debug_noinline
1693 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1694 {
1695 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1696 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1697 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1698 
1699 	if (!rx->sta)
1700 		return RX_CONTINUE;
1701 
1702 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1703 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1704 		return RX_CONTINUE;
1705 
1706 	/*
1707 	 * The device handles station powersave, so don't do anything about
1708 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1709 	 * it to mac80211 since they're handled.)
1710 	 */
1711 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1712 		return RX_CONTINUE;
1713 
1714 	/*
1715 	 * Don't do anything if the station isn't already asleep. In
1716 	 * the uAPSD case, the station will probably be marked asleep,
1717 	 * in the PS-Poll case the station must be confused ...
1718 	 */
1719 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1720 		return RX_CONTINUE;
1721 
1722 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1723 		ieee80211_sta_pspoll(&rx->sta->sta);
1724 
1725 		/* Free PS Poll skb here instead of returning RX_DROP that would
1726 		 * count as an dropped frame. */
1727 		dev_kfree_skb(rx->skb);
1728 
1729 		return RX_QUEUED;
1730 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1731 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1732 		   ieee80211_has_pm(hdr->frame_control) &&
1733 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1734 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1735 		u8 tid = ieee80211_get_tid(hdr);
1736 
1737 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1738 	}
1739 
1740 	return RX_CONTINUE;
1741 }
1742 
1743 static ieee80211_rx_result debug_noinline
1744 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1745 {
1746 	struct sta_info *sta = rx->sta;
1747 	struct sk_buff *skb = rx->skb;
1748 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1749 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1750 	int i;
1751 
1752 	if (!sta)
1753 		return RX_CONTINUE;
1754 
1755 	/*
1756 	 * Update last_rx only for IBSS packets which are for the current
1757 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1758 	 * current IBSS network alive in cases where other STAs start
1759 	 * using different BSSID. This will also give the station another
1760 	 * chance to restart the authentication/authorization in case
1761 	 * something went wrong the first time.
1762 	 */
1763 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1764 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1765 						NL80211_IFTYPE_ADHOC);
1766 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1767 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1768 			sta->rx_stats.last_rx = jiffies;
1769 			if (ieee80211_is_data(hdr->frame_control) &&
1770 			    !is_multicast_ether_addr(hdr->addr1))
1771 				sta->rx_stats.last_rate =
1772 					sta_stats_encode_rate(status);
1773 		}
1774 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1775 		sta->rx_stats.last_rx = jiffies;
1776 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1777 		/*
1778 		 * Mesh beacons will update last_rx when if they are found to
1779 		 * match the current local configuration when processed.
1780 		 */
1781 		sta->rx_stats.last_rx = jiffies;
1782 		if (ieee80211_is_data(hdr->frame_control))
1783 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1784 	}
1785 
1786 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1787 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1788 
1789 	sta->rx_stats.fragments++;
1790 
1791 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1792 	sta->rx_stats.bytes += rx->skb->len;
1793 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1794 
1795 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1796 		sta->rx_stats.last_signal = status->signal;
1797 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1798 	}
1799 
1800 	if (status->chains) {
1801 		sta->rx_stats.chains = status->chains;
1802 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1803 			int signal = status->chain_signal[i];
1804 
1805 			if (!(status->chains & BIT(i)))
1806 				continue;
1807 
1808 			sta->rx_stats.chain_signal_last[i] = signal;
1809 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1810 					-signal);
1811 		}
1812 	}
1813 
1814 	/*
1815 	 * Change STA power saving mode only at the end of a frame
1816 	 * exchange sequence, and only for a data or management
1817 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1818 	 */
1819 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1820 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1821 	    !is_multicast_ether_addr(hdr->addr1) &&
1822 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1823 	     ieee80211_is_data(hdr->frame_control)) &&
1824 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1825 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1826 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1827 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1828 			if (!ieee80211_has_pm(hdr->frame_control))
1829 				sta_ps_end(sta);
1830 		} else {
1831 			if (ieee80211_has_pm(hdr->frame_control))
1832 				sta_ps_start(sta);
1833 		}
1834 	}
1835 
1836 	/* mesh power save support */
1837 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1838 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1839 
1840 	/*
1841 	 * Drop (qos-)data::nullfunc frames silently, since they
1842 	 * are used only to control station power saving mode.
1843 	 */
1844 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1845 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1846 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1847 
1848 		/*
1849 		 * If we receive a 4-addr nullfunc frame from a STA
1850 		 * that was not moved to a 4-addr STA vlan yet send
1851 		 * the event to userspace and for older hostapd drop
1852 		 * the frame to the monitor interface.
1853 		 */
1854 		if (ieee80211_has_a4(hdr->frame_control) &&
1855 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1856 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1857 		      !rx->sdata->u.vlan.sta))) {
1858 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1859 				cfg80211_rx_unexpected_4addr_frame(
1860 					rx->sdata->dev, sta->sta.addr,
1861 					GFP_ATOMIC);
1862 			return RX_DROP_MONITOR;
1863 		}
1864 		/*
1865 		 * Update counter and free packet here to avoid
1866 		 * counting this as a dropped packed.
1867 		 */
1868 		sta->rx_stats.packets++;
1869 		dev_kfree_skb(rx->skb);
1870 		return RX_QUEUED;
1871 	}
1872 
1873 	return RX_CONTINUE;
1874 } /* ieee80211_rx_h_sta_process */
1875 
1876 static ieee80211_rx_result debug_noinline
1877 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1878 {
1879 	struct sk_buff *skb = rx->skb;
1880 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1881 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1882 	int keyidx;
1883 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1884 	struct ieee80211_key *sta_ptk = NULL;
1885 	struct ieee80211_key *ptk_idx = NULL;
1886 	int mmie_keyidx = -1;
1887 	__le16 fc;
1888 	const struct ieee80211_cipher_scheme *cs = NULL;
1889 
1890 	/*
1891 	 * Key selection 101
1892 	 *
1893 	 * There are four types of keys:
1894 	 *  - GTK (group keys)
1895 	 *  - IGTK (group keys for management frames)
1896 	 *  - PTK (pairwise keys)
1897 	 *  - STK (station-to-station pairwise keys)
1898 	 *
1899 	 * When selecting a key, we have to distinguish between multicast
1900 	 * (including broadcast) and unicast frames, the latter can only
1901 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1902 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1903 	 * unicast frames can also use key indices like GTKs. Hence, if we
1904 	 * don't have a PTK/STK we check the key index for a WEP key.
1905 	 *
1906 	 * Note that in a regular BSS, multicast frames are sent by the
1907 	 * AP only, associated stations unicast the frame to the AP first
1908 	 * which then multicasts it on their behalf.
1909 	 *
1910 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1911 	 * with each station, that is something we don't currently handle.
1912 	 * The spec seems to expect that one negotiates the same key with
1913 	 * every station but there's no such requirement; VLANs could be
1914 	 * possible.
1915 	 */
1916 
1917 	/* start without a key */
1918 	rx->key = NULL;
1919 	fc = hdr->frame_control;
1920 
1921 	if (rx->sta) {
1922 		int keyid = rx->sta->ptk_idx;
1923 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1924 
1925 		if (ieee80211_has_protected(fc)) {
1926 			cs = rx->sta->cipher_scheme;
1927 			keyid = ieee80211_get_keyid(rx->skb, cs);
1928 
1929 			if (unlikely(keyid < 0))
1930 				return RX_DROP_UNUSABLE;
1931 
1932 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1933 		}
1934 	}
1935 
1936 	if (!ieee80211_has_protected(fc))
1937 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1938 
1939 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1940 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1941 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1942 		    (status->flag & RX_FLAG_IV_STRIPPED))
1943 			return RX_CONTINUE;
1944 		/* Skip decryption if the frame is not protected. */
1945 		if (!ieee80211_has_protected(fc))
1946 			return RX_CONTINUE;
1947 	} else if (mmie_keyidx >= 0) {
1948 		/* Broadcast/multicast robust management frame / BIP */
1949 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1950 		    (status->flag & RX_FLAG_IV_STRIPPED))
1951 			return RX_CONTINUE;
1952 
1953 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1954 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1955 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1956 		if (rx->sta) {
1957 			if (ieee80211_is_group_privacy_action(skb) &&
1958 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1959 				return RX_DROP_MONITOR;
1960 
1961 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1962 		}
1963 		if (!rx->key)
1964 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1965 	} else if (!ieee80211_has_protected(fc)) {
1966 		/*
1967 		 * The frame was not protected, so skip decryption. However, we
1968 		 * need to set rx->key if there is a key that could have been
1969 		 * used so that the frame may be dropped if encryption would
1970 		 * have been expected.
1971 		 */
1972 		struct ieee80211_key *key = NULL;
1973 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1974 		int i;
1975 
1976 		if (ieee80211_is_mgmt(fc) &&
1977 		    is_multicast_ether_addr(hdr->addr1) &&
1978 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1979 			rx->key = key;
1980 		else {
1981 			if (rx->sta) {
1982 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1983 					key = rcu_dereference(rx->sta->gtk[i]);
1984 					if (key)
1985 						break;
1986 				}
1987 			}
1988 			if (!key) {
1989 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1990 					key = rcu_dereference(sdata->keys[i]);
1991 					if (key)
1992 						break;
1993 				}
1994 			}
1995 			if (key)
1996 				rx->key = key;
1997 		}
1998 		return RX_CONTINUE;
1999 	} else {
2000 		/*
2001 		 * The device doesn't give us the IV so we won't be
2002 		 * able to look up the key. That's ok though, we
2003 		 * don't need to decrypt the frame, we just won't
2004 		 * be able to keep statistics accurate.
2005 		 * Except for key threshold notifications, should
2006 		 * we somehow allow the driver to tell us which key
2007 		 * the hardware used if this flag is set?
2008 		 */
2009 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2010 		    (status->flag & RX_FLAG_IV_STRIPPED))
2011 			return RX_CONTINUE;
2012 
2013 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2014 
2015 		if (unlikely(keyidx < 0))
2016 			return RX_DROP_UNUSABLE;
2017 
2018 		/* check per-station GTK first, if multicast packet */
2019 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2020 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2021 
2022 		/* if not found, try default key */
2023 		if (!rx->key) {
2024 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2025 
2026 			/*
2027 			 * RSNA-protected unicast frames should always be
2028 			 * sent with pairwise or station-to-station keys,
2029 			 * but for WEP we allow using a key index as well.
2030 			 */
2031 			if (rx->key &&
2032 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2033 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2034 			    !is_multicast_ether_addr(hdr->addr1))
2035 				rx->key = NULL;
2036 		}
2037 	}
2038 
2039 	if (rx->key) {
2040 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2041 			return RX_DROP_MONITOR;
2042 
2043 		/* TODO: add threshold stuff again */
2044 	} else {
2045 		return RX_DROP_MONITOR;
2046 	}
2047 
2048 	switch (rx->key->conf.cipher) {
2049 	case WLAN_CIPHER_SUITE_WEP40:
2050 	case WLAN_CIPHER_SUITE_WEP104:
2051 		result = ieee80211_crypto_wep_decrypt(rx);
2052 		break;
2053 	case WLAN_CIPHER_SUITE_TKIP:
2054 		result = ieee80211_crypto_tkip_decrypt(rx);
2055 		break;
2056 	case WLAN_CIPHER_SUITE_CCMP:
2057 		result = ieee80211_crypto_ccmp_decrypt(
2058 			rx, IEEE80211_CCMP_MIC_LEN);
2059 		break;
2060 	case WLAN_CIPHER_SUITE_CCMP_256:
2061 		result = ieee80211_crypto_ccmp_decrypt(
2062 			rx, IEEE80211_CCMP_256_MIC_LEN);
2063 		break;
2064 	case WLAN_CIPHER_SUITE_AES_CMAC:
2065 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2066 		break;
2067 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2068 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2069 		break;
2070 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2071 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2072 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2073 		break;
2074 	case WLAN_CIPHER_SUITE_GCMP:
2075 	case WLAN_CIPHER_SUITE_GCMP_256:
2076 		result = ieee80211_crypto_gcmp_decrypt(rx);
2077 		break;
2078 	default:
2079 		result = ieee80211_crypto_hw_decrypt(rx);
2080 	}
2081 
2082 	/* the hdr variable is invalid after the decrypt handlers */
2083 
2084 	/* either the frame has been decrypted or will be dropped */
2085 	status->flag |= RX_FLAG_DECRYPTED;
2086 
2087 	return result;
2088 }
2089 
2090 static inline struct ieee80211_fragment_entry *
2091 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2092 			 unsigned int frag, unsigned int seq, int rx_queue,
2093 			 struct sk_buff **skb)
2094 {
2095 	struct ieee80211_fragment_entry *entry;
2096 
2097 	entry = &sdata->fragments[sdata->fragment_next++];
2098 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2099 		sdata->fragment_next = 0;
2100 
2101 	if (!skb_queue_empty(&entry->skb_list))
2102 		__skb_queue_purge(&entry->skb_list);
2103 
2104 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2105 	*skb = NULL;
2106 	entry->first_frag_time = jiffies;
2107 	entry->seq = seq;
2108 	entry->rx_queue = rx_queue;
2109 	entry->last_frag = frag;
2110 	entry->check_sequential_pn = false;
2111 	entry->extra_len = 0;
2112 
2113 	return entry;
2114 }
2115 
2116 static inline struct ieee80211_fragment_entry *
2117 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2118 			  unsigned int frag, unsigned int seq,
2119 			  int rx_queue, struct ieee80211_hdr *hdr)
2120 {
2121 	struct ieee80211_fragment_entry *entry;
2122 	int i, idx;
2123 
2124 	idx = sdata->fragment_next;
2125 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2126 		struct ieee80211_hdr *f_hdr;
2127 		struct sk_buff *f_skb;
2128 
2129 		idx--;
2130 		if (idx < 0)
2131 			idx = IEEE80211_FRAGMENT_MAX - 1;
2132 
2133 		entry = &sdata->fragments[idx];
2134 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2135 		    entry->rx_queue != rx_queue ||
2136 		    entry->last_frag + 1 != frag)
2137 			continue;
2138 
2139 		f_skb = __skb_peek(&entry->skb_list);
2140 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2141 
2142 		/*
2143 		 * Check ftype and addresses are equal, else check next fragment
2144 		 */
2145 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2146 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2147 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2148 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2149 			continue;
2150 
2151 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2152 			__skb_queue_purge(&entry->skb_list);
2153 			continue;
2154 		}
2155 		return entry;
2156 	}
2157 
2158 	return NULL;
2159 }
2160 
2161 static ieee80211_rx_result debug_noinline
2162 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2163 {
2164 	struct ieee80211_hdr *hdr;
2165 	u16 sc;
2166 	__le16 fc;
2167 	unsigned int frag, seq;
2168 	struct ieee80211_fragment_entry *entry;
2169 	struct sk_buff *skb;
2170 
2171 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2172 	fc = hdr->frame_control;
2173 
2174 	if (ieee80211_is_ctl(fc))
2175 		return RX_CONTINUE;
2176 
2177 	sc = le16_to_cpu(hdr->seq_ctrl);
2178 	frag = sc & IEEE80211_SCTL_FRAG;
2179 
2180 	if (is_multicast_ether_addr(hdr->addr1)) {
2181 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2182 		goto out_no_led;
2183 	}
2184 
2185 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2186 		goto out;
2187 
2188 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2189 
2190 	if (skb_linearize(rx->skb))
2191 		return RX_DROP_UNUSABLE;
2192 
2193 	/*
2194 	 *  skb_linearize() might change the skb->data and
2195 	 *  previously cached variables (in this case, hdr) need to
2196 	 *  be refreshed with the new data.
2197 	 */
2198 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2199 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2200 
2201 	if (frag == 0) {
2202 		/* This is the first fragment of a new frame. */
2203 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2204 						 rx->seqno_idx, &(rx->skb));
2205 		if (rx->key &&
2206 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2207 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2208 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2209 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2210 		    ieee80211_has_protected(fc)) {
2211 			int queue = rx->security_idx;
2212 
2213 			/* Store CCMP/GCMP PN so that we can verify that the
2214 			 * next fragment has a sequential PN value.
2215 			 */
2216 			entry->check_sequential_pn = true;
2217 			memcpy(entry->last_pn,
2218 			       rx->key->u.ccmp.rx_pn[queue],
2219 			       IEEE80211_CCMP_PN_LEN);
2220 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2221 					      u.ccmp.rx_pn) !=
2222 				     offsetof(struct ieee80211_key,
2223 					      u.gcmp.rx_pn));
2224 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2225 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2226 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2227 				     IEEE80211_GCMP_PN_LEN);
2228 		}
2229 		return RX_QUEUED;
2230 	}
2231 
2232 	/* This is a fragment for a frame that should already be pending in
2233 	 * fragment cache. Add this fragment to the end of the pending entry.
2234 	 */
2235 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2236 					  rx->seqno_idx, hdr);
2237 	if (!entry) {
2238 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2239 		return RX_DROP_MONITOR;
2240 	}
2241 
2242 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2243 	 *  MPDU PN values are not incrementing in steps of 1."
2244 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2245 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2246 	 */
2247 	if (entry->check_sequential_pn) {
2248 		int i;
2249 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2250 		int queue;
2251 
2252 		if (!rx->key ||
2253 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2254 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2255 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2256 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2257 			return RX_DROP_UNUSABLE;
2258 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2259 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2260 			pn[i]++;
2261 			if (pn[i])
2262 				break;
2263 		}
2264 		queue = rx->security_idx;
2265 		rpn = rx->key->u.ccmp.rx_pn[queue];
2266 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2267 			return RX_DROP_UNUSABLE;
2268 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2269 	}
2270 
2271 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2272 	__skb_queue_tail(&entry->skb_list, rx->skb);
2273 	entry->last_frag = frag;
2274 	entry->extra_len += rx->skb->len;
2275 	if (ieee80211_has_morefrags(fc)) {
2276 		rx->skb = NULL;
2277 		return RX_QUEUED;
2278 	}
2279 
2280 	rx->skb = __skb_dequeue(&entry->skb_list);
2281 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2282 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2283 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2284 					      GFP_ATOMIC))) {
2285 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2286 			__skb_queue_purge(&entry->skb_list);
2287 			return RX_DROP_UNUSABLE;
2288 		}
2289 	}
2290 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2291 		skb_put_data(rx->skb, skb->data, skb->len);
2292 		dev_kfree_skb(skb);
2293 	}
2294 
2295  out:
2296 	ieee80211_led_rx(rx->local);
2297  out_no_led:
2298 	if (rx->sta)
2299 		rx->sta->rx_stats.packets++;
2300 	return RX_CONTINUE;
2301 }
2302 
2303 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2304 {
2305 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2306 		return -EACCES;
2307 
2308 	return 0;
2309 }
2310 
2311 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2312 {
2313 	struct sk_buff *skb = rx->skb;
2314 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2315 
2316 	/*
2317 	 * Pass through unencrypted frames if the hardware has
2318 	 * decrypted them already.
2319 	 */
2320 	if (status->flag & RX_FLAG_DECRYPTED)
2321 		return 0;
2322 
2323 	/* Drop unencrypted frames if key is set. */
2324 	if (unlikely(!ieee80211_has_protected(fc) &&
2325 		     !ieee80211_is_nullfunc(fc) &&
2326 		     ieee80211_is_data(fc) && rx->key))
2327 		return -EACCES;
2328 
2329 	return 0;
2330 }
2331 
2332 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2333 {
2334 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2335 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2336 	__le16 fc = hdr->frame_control;
2337 
2338 	/*
2339 	 * Pass through unencrypted frames if the hardware has
2340 	 * decrypted them already.
2341 	 */
2342 	if (status->flag & RX_FLAG_DECRYPTED)
2343 		return 0;
2344 
2345 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2346 		if (unlikely(!ieee80211_has_protected(fc) &&
2347 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2348 			     rx->key)) {
2349 			if (ieee80211_is_deauth(fc) ||
2350 			    ieee80211_is_disassoc(fc))
2351 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2352 							     rx->skb->data,
2353 							     rx->skb->len);
2354 			return -EACCES;
2355 		}
2356 		/* BIP does not use Protected field, so need to check MMIE */
2357 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2358 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2359 			if (ieee80211_is_deauth(fc) ||
2360 			    ieee80211_is_disassoc(fc))
2361 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2362 							     rx->skb->data,
2363 							     rx->skb->len);
2364 			return -EACCES;
2365 		}
2366 		/*
2367 		 * When using MFP, Action frames are not allowed prior to
2368 		 * having configured keys.
2369 		 */
2370 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2371 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2372 			return -EACCES;
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 static int
2379 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2380 {
2381 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2382 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2383 	bool check_port_control = false;
2384 	struct ethhdr *ehdr;
2385 	int ret;
2386 
2387 	*port_control = false;
2388 	if (ieee80211_has_a4(hdr->frame_control) &&
2389 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2390 		return -1;
2391 
2392 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2393 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2394 
2395 		if (!sdata->u.mgd.use_4addr)
2396 			return -1;
2397 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2398 			check_port_control = true;
2399 	}
2400 
2401 	if (is_multicast_ether_addr(hdr->addr1) &&
2402 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2403 		return -1;
2404 
2405 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2406 	if (ret < 0)
2407 		return ret;
2408 
2409 	ehdr = (struct ethhdr *) rx->skb->data;
2410 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2411 		*port_control = true;
2412 	else if (check_port_control)
2413 		return -1;
2414 
2415 	return 0;
2416 }
2417 
2418 /*
2419  * requires that rx->skb is a frame with ethernet header
2420  */
2421 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2422 {
2423 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2424 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2425 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2426 
2427 	/*
2428 	 * Allow EAPOL frames to us/the PAE group address regardless
2429 	 * of whether the frame was encrypted or not.
2430 	 */
2431 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2432 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2433 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2434 		return true;
2435 
2436 	if (ieee80211_802_1x_port_control(rx) ||
2437 	    ieee80211_drop_unencrypted(rx, fc))
2438 		return false;
2439 
2440 	return true;
2441 }
2442 
2443 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2444 						 struct ieee80211_rx_data *rx)
2445 {
2446 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2447 	struct net_device *dev = sdata->dev;
2448 
2449 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2450 		      skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2451 		     sdata->control_port_over_nl80211)) {
2452 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2453 		bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2454 
2455 		cfg80211_rx_control_port(dev, skb, noencrypt);
2456 		dev_kfree_skb(skb);
2457 	} else {
2458 		/* deliver to local stack */
2459 		if (rx->napi)
2460 			napi_gro_receive(rx->napi, skb);
2461 		else
2462 			netif_receive_skb(skb);
2463 	}
2464 }
2465 
2466 /*
2467  * requires that rx->skb is a frame with ethernet header
2468  */
2469 static void
2470 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2471 {
2472 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2473 	struct net_device *dev = sdata->dev;
2474 	struct sk_buff *skb, *xmit_skb;
2475 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2476 	struct sta_info *dsta;
2477 
2478 	skb = rx->skb;
2479 	xmit_skb = NULL;
2480 
2481 	ieee80211_rx_stats(dev, skb->len);
2482 
2483 	if (rx->sta) {
2484 		/* The seqno index has the same property as needed
2485 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2486 		 * for non-QoS-data frames. Here we know it's a data
2487 		 * frame, so count MSDUs.
2488 		 */
2489 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2490 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2491 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2492 	}
2493 
2494 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2495 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2496 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2497 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2498 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2499 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2500 			/*
2501 			 * send multicast frames both to higher layers in
2502 			 * local net stack and back to the wireless medium
2503 			 */
2504 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2505 			if (!xmit_skb)
2506 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2507 						    dev->name);
2508 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2509 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2510 			dsta = sta_info_get(sdata, ehdr->h_dest);
2511 			if (dsta) {
2512 				/*
2513 				 * The destination station is associated to
2514 				 * this AP (in this VLAN), so send the frame
2515 				 * directly to it and do not pass it to local
2516 				 * net stack.
2517 				 */
2518 				xmit_skb = skb;
2519 				skb = NULL;
2520 			}
2521 		}
2522 	}
2523 
2524 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2525 	if (skb) {
2526 		/* 'align' will only take the values 0 or 2 here since all
2527 		 * frames are required to be aligned to 2-byte boundaries
2528 		 * when being passed to mac80211; the code here works just
2529 		 * as well if that isn't true, but mac80211 assumes it can
2530 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2531 		 */
2532 		int align;
2533 
2534 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2535 		if (align) {
2536 			if (WARN_ON(skb_headroom(skb) < 3)) {
2537 				dev_kfree_skb(skb);
2538 				skb = NULL;
2539 			} else {
2540 				u8 *data = skb->data;
2541 				size_t len = skb_headlen(skb);
2542 				skb->data -= align;
2543 				memmove(skb->data, data, len);
2544 				skb_set_tail_pointer(skb, len);
2545 			}
2546 		}
2547 	}
2548 #endif
2549 
2550 	if (skb) {
2551 		skb->protocol = eth_type_trans(skb, dev);
2552 		memset(skb->cb, 0, sizeof(skb->cb));
2553 
2554 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2555 	}
2556 
2557 	if (xmit_skb) {
2558 		/*
2559 		 * Send to wireless media and increase priority by 256 to
2560 		 * keep the received priority instead of reclassifying
2561 		 * the frame (see cfg80211_classify8021d).
2562 		 */
2563 		xmit_skb->priority += 256;
2564 		xmit_skb->protocol = htons(ETH_P_802_3);
2565 		skb_reset_network_header(xmit_skb);
2566 		skb_reset_mac_header(xmit_skb);
2567 		dev_queue_xmit(xmit_skb);
2568 	}
2569 }
2570 
2571 static ieee80211_rx_result debug_noinline
2572 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2573 {
2574 	struct net_device *dev = rx->sdata->dev;
2575 	struct sk_buff *skb = rx->skb;
2576 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2577 	__le16 fc = hdr->frame_control;
2578 	struct sk_buff_head frame_list;
2579 	struct ethhdr ethhdr;
2580 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2581 
2582 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2583 		check_da = NULL;
2584 		check_sa = NULL;
2585 	} else switch (rx->sdata->vif.type) {
2586 		case NL80211_IFTYPE_AP:
2587 		case NL80211_IFTYPE_AP_VLAN:
2588 			check_da = NULL;
2589 			break;
2590 		case NL80211_IFTYPE_STATION:
2591 			if (!rx->sta ||
2592 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2593 				check_sa = NULL;
2594 			break;
2595 		case NL80211_IFTYPE_MESH_POINT:
2596 			check_sa = NULL;
2597 			break;
2598 		default:
2599 			break;
2600 	}
2601 
2602 	skb->dev = dev;
2603 	__skb_queue_head_init(&frame_list);
2604 
2605 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2606 					  rx->sdata->vif.addr,
2607 					  rx->sdata->vif.type,
2608 					  data_offset))
2609 		return RX_DROP_UNUSABLE;
2610 
2611 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2612 				 rx->sdata->vif.type,
2613 				 rx->local->hw.extra_tx_headroom,
2614 				 check_da, check_sa);
2615 
2616 	while (!skb_queue_empty(&frame_list)) {
2617 		rx->skb = __skb_dequeue(&frame_list);
2618 
2619 		if (!ieee80211_frame_allowed(rx, fc)) {
2620 			dev_kfree_skb(rx->skb);
2621 			continue;
2622 		}
2623 
2624 		ieee80211_deliver_skb(rx);
2625 	}
2626 
2627 	return RX_QUEUED;
2628 }
2629 
2630 static ieee80211_rx_result debug_noinline
2631 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2632 {
2633 	struct sk_buff *skb = rx->skb;
2634 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2635 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2636 	__le16 fc = hdr->frame_control;
2637 
2638 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2639 		return RX_CONTINUE;
2640 
2641 	if (unlikely(!ieee80211_is_data(fc)))
2642 		return RX_CONTINUE;
2643 
2644 	if (unlikely(!ieee80211_is_data_present(fc)))
2645 		return RX_DROP_MONITOR;
2646 
2647 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2648 		switch (rx->sdata->vif.type) {
2649 		case NL80211_IFTYPE_AP_VLAN:
2650 			if (!rx->sdata->u.vlan.sta)
2651 				return RX_DROP_UNUSABLE;
2652 			break;
2653 		case NL80211_IFTYPE_STATION:
2654 			if (!rx->sdata->u.mgd.use_4addr)
2655 				return RX_DROP_UNUSABLE;
2656 			break;
2657 		default:
2658 			return RX_DROP_UNUSABLE;
2659 		}
2660 	}
2661 
2662 	if (is_multicast_ether_addr(hdr->addr1))
2663 		return RX_DROP_UNUSABLE;
2664 
2665 	return __ieee80211_rx_h_amsdu(rx, 0);
2666 }
2667 
2668 #ifdef CONFIG_MAC80211_MESH
2669 static ieee80211_rx_result
2670 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2671 {
2672 	struct ieee80211_hdr *fwd_hdr, *hdr;
2673 	struct ieee80211_tx_info *info;
2674 	struct ieee80211s_hdr *mesh_hdr;
2675 	struct sk_buff *skb = rx->skb, *fwd_skb;
2676 	struct ieee80211_local *local = rx->local;
2677 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2678 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2679 	u16 ac, q, hdrlen;
2680 	int tailroom = 0;
2681 
2682 	hdr = (struct ieee80211_hdr *) skb->data;
2683 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2684 
2685 	/* make sure fixed part of mesh header is there, also checks skb len */
2686 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2687 		return RX_DROP_MONITOR;
2688 
2689 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2690 
2691 	/* make sure full mesh header is there, also checks skb len */
2692 	if (!pskb_may_pull(rx->skb,
2693 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2694 		return RX_DROP_MONITOR;
2695 
2696 	/* reload pointers */
2697 	hdr = (struct ieee80211_hdr *) skb->data;
2698 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2699 
2700 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2701 		return RX_DROP_MONITOR;
2702 
2703 	/* frame is in RMC, don't forward */
2704 	if (ieee80211_is_data(hdr->frame_control) &&
2705 	    is_multicast_ether_addr(hdr->addr1) &&
2706 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2707 		return RX_DROP_MONITOR;
2708 
2709 	if (!ieee80211_is_data(hdr->frame_control))
2710 		return RX_CONTINUE;
2711 
2712 	if (!mesh_hdr->ttl)
2713 		return RX_DROP_MONITOR;
2714 
2715 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2716 		struct mesh_path *mppath;
2717 		char *proxied_addr;
2718 		char *mpp_addr;
2719 
2720 		if (is_multicast_ether_addr(hdr->addr1)) {
2721 			mpp_addr = hdr->addr3;
2722 			proxied_addr = mesh_hdr->eaddr1;
2723 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2724 			    MESH_FLAGS_AE_A5_A6) {
2725 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2726 			mpp_addr = hdr->addr4;
2727 			proxied_addr = mesh_hdr->eaddr2;
2728 		} else {
2729 			return RX_DROP_MONITOR;
2730 		}
2731 
2732 		rcu_read_lock();
2733 		mppath = mpp_path_lookup(sdata, proxied_addr);
2734 		if (!mppath) {
2735 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2736 		} else {
2737 			spin_lock_bh(&mppath->state_lock);
2738 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2739 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2740 			mppath->exp_time = jiffies;
2741 			spin_unlock_bh(&mppath->state_lock);
2742 		}
2743 		rcu_read_unlock();
2744 	}
2745 
2746 	/* Frame has reached destination.  Don't forward */
2747 	if (!is_multicast_ether_addr(hdr->addr1) &&
2748 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2749 		return RX_CONTINUE;
2750 
2751 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2752 	q = sdata->vif.hw_queue[ac];
2753 	if (ieee80211_queue_stopped(&local->hw, q)) {
2754 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2755 		return RX_DROP_MONITOR;
2756 	}
2757 	skb_set_queue_mapping(skb, q);
2758 
2759 	if (!--mesh_hdr->ttl) {
2760 		if (!is_multicast_ether_addr(hdr->addr1))
2761 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2762 						     dropped_frames_ttl);
2763 		goto out;
2764 	}
2765 
2766 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2767 		goto out;
2768 
2769 	if (sdata->crypto_tx_tailroom_needed_cnt)
2770 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2771 
2772 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2773 				       sdata->encrypt_headroom,
2774 				  tailroom, GFP_ATOMIC);
2775 	if (!fwd_skb)
2776 		goto out;
2777 
2778 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2779 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2780 	info = IEEE80211_SKB_CB(fwd_skb);
2781 	memset(info, 0, sizeof(*info));
2782 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2783 	info->control.vif = &rx->sdata->vif;
2784 	info->control.jiffies = jiffies;
2785 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2786 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2787 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2788 		/* update power mode indication when forwarding */
2789 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2790 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2791 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2792 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2793 	} else {
2794 		/* unable to resolve next hop */
2795 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2796 				   fwd_hdr->addr3, 0,
2797 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2798 				   fwd_hdr->addr2);
2799 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2800 		kfree_skb(fwd_skb);
2801 		return RX_DROP_MONITOR;
2802 	}
2803 
2804 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2805 	ieee80211_add_pending_skb(local, fwd_skb);
2806  out:
2807 	if (is_multicast_ether_addr(hdr->addr1))
2808 		return RX_CONTINUE;
2809 	return RX_DROP_MONITOR;
2810 }
2811 #endif
2812 
2813 static ieee80211_rx_result debug_noinline
2814 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2815 {
2816 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2817 	struct ieee80211_local *local = rx->local;
2818 	struct net_device *dev = sdata->dev;
2819 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2820 	__le16 fc = hdr->frame_control;
2821 	bool port_control;
2822 	int err;
2823 
2824 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2825 		return RX_CONTINUE;
2826 
2827 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2828 		return RX_DROP_MONITOR;
2829 
2830 	/*
2831 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2832 	 * also drop the frame to cooked monitor interfaces.
2833 	 */
2834 	if (ieee80211_has_a4(hdr->frame_control) &&
2835 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2836 		if (rx->sta &&
2837 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2838 			cfg80211_rx_unexpected_4addr_frame(
2839 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2840 		return RX_DROP_MONITOR;
2841 	}
2842 
2843 	err = __ieee80211_data_to_8023(rx, &port_control);
2844 	if (unlikely(err))
2845 		return RX_DROP_UNUSABLE;
2846 
2847 	if (!ieee80211_frame_allowed(rx, fc))
2848 		return RX_DROP_MONITOR;
2849 
2850 	/* directly handle TDLS channel switch requests/responses */
2851 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2852 						cpu_to_be16(ETH_P_TDLS))) {
2853 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2854 
2855 		if (pskb_may_pull(rx->skb,
2856 				  offsetof(struct ieee80211_tdls_data, u)) &&
2857 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2858 		    tf->category == WLAN_CATEGORY_TDLS &&
2859 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2860 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2861 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2862 			schedule_work(&local->tdls_chsw_work);
2863 			if (rx->sta)
2864 				rx->sta->rx_stats.packets++;
2865 
2866 			return RX_QUEUED;
2867 		}
2868 	}
2869 
2870 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2871 	    unlikely(port_control) && sdata->bss) {
2872 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2873 				     u.ap);
2874 		dev = sdata->dev;
2875 		rx->sdata = sdata;
2876 	}
2877 
2878 	rx->skb->dev = dev;
2879 
2880 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2881 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2882 	    !is_multicast_ether_addr(
2883 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2884 	    (!local->scanning &&
2885 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2886 		mod_timer(&local->dynamic_ps_timer, jiffies +
2887 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2888 
2889 	ieee80211_deliver_skb(rx);
2890 
2891 	return RX_QUEUED;
2892 }
2893 
2894 static ieee80211_rx_result debug_noinline
2895 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2896 {
2897 	struct sk_buff *skb = rx->skb;
2898 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2899 	struct tid_ampdu_rx *tid_agg_rx;
2900 	u16 start_seq_num;
2901 	u16 tid;
2902 
2903 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2904 		return RX_CONTINUE;
2905 
2906 	if (ieee80211_is_back_req(bar->frame_control)) {
2907 		struct {
2908 			__le16 control, start_seq_num;
2909 		} __packed bar_data;
2910 		struct ieee80211_event event = {
2911 			.type = BAR_RX_EVENT,
2912 		};
2913 
2914 		if (!rx->sta)
2915 			return RX_DROP_MONITOR;
2916 
2917 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2918 				  &bar_data, sizeof(bar_data)))
2919 			return RX_DROP_MONITOR;
2920 
2921 		tid = le16_to_cpu(bar_data.control) >> 12;
2922 
2923 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2924 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2925 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2926 					     WLAN_BACK_RECIPIENT,
2927 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2928 
2929 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2930 		if (!tid_agg_rx)
2931 			return RX_DROP_MONITOR;
2932 
2933 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2934 		event.u.ba.tid = tid;
2935 		event.u.ba.ssn = start_seq_num;
2936 		event.u.ba.sta = &rx->sta->sta;
2937 
2938 		/* reset session timer */
2939 		if (tid_agg_rx->timeout)
2940 			mod_timer(&tid_agg_rx->session_timer,
2941 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2942 
2943 		spin_lock(&tid_agg_rx->reorder_lock);
2944 		/* release stored frames up to start of BAR */
2945 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2946 						 start_seq_num, frames);
2947 		spin_unlock(&tid_agg_rx->reorder_lock);
2948 
2949 		drv_event_callback(rx->local, rx->sdata, &event);
2950 
2951 		kfree_skb(skb);
2952 		return RX_QUEUED;
2953 	}
2954 
2955 	/*
2956 	 * After this point, we only want management frames,
2957 	 * so we can drop all remaining control frames to
2958 	 * cooked monitor interfaces.
2959 	 */
2960 	return RX_DROP_MONITOR;
2961 }
2962 
2963 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2964 					   struct ieee80211_mgmt *mgmt,
2965 					   size_t len)
2966 {
2967 	struct ieee80211_local *local = sdata->local;
2968 	struct sk_buff *skb;
2969 	struct ieee80211_mgmt *resp;
2970 
2971 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2972 		/* Not to own unicast address */
2973 		return;
2974 	}
2975 
2976 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2977 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2978 		/* Not from the current AP or not associated yet. */
2979 		return;
2980 	}
2981 
2982 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2983 		/* Too short SA Query request frame */
2984 		return;
2985 	}
2986 
2987 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2988 	if (skb == NULL)
2989 		return;
2990 
2991 	skb_reserve(skb, local->hw.extra_tx_headroom);
2992 	resp = skb_put_zero(skb, 24);
2993 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2994 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2995 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2996 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2997 					  IEEE80211_STYPE_ACTION);
2998 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2999 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3000 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3001 	memcpy(resp->u.action.u.sa_query.trans_id,
3002 	       mgmt->u.action.u.sa_query.trans_id,
3003 	       WLAN_SA_QUERY_TR_ID_LEN);
3004 
3005 	ieee80211_tx_skb(sdata, skb);
3006 }
3007 
3008 static ieee80211_rx_result debug_noinline
3009 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3010 {
3011 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3012 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3013 
3014 	/*
3015 	 * From here on, look only at management frames.
3016 	 * Data and control frames are already handled,
3017 	 * and unknown (reserved) frames are useless.
3018 	 */
3019 	if (rx->skb->len < 24)
3020 		return RX_DROP_MONITOR;
3021 
3022 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3023 		return RX_DROP_MONITOR;
3024 
3025 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3026 	    ieee80211_is_beacon(mgmt->frame_control) &&
3027 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3028 		int sig = 0;
3029 
3030 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3031 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3032 			sig = status->signal;
3033 
3034 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
3035 					    rx->skb->data, rx->skb->len,
3036 					    status->freq, sig);
3037 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3038 	}
3039 
3040 	if (ieee80211_drop_unencrypted_mgmt(rx))
3041 		return RX_DROP_UNUSABLE;
3042 
3043 	return RX_CONTINUE;
3044 }
3045 
3046 static ieee80211_rx_result debug_noinline
3047 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3048 {
3049 	struct ieee80211_local *local = rx->local;
3050 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3051 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3052 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3053 	int len = rx->skb->len;
3054 
3055 	if (!ieee80211_is_action(mgmt->frame_control))
3056 		return RX_CONTINUE;
3057 
3058 	/* drop too small frames */
3059 	if (len < IEEE80211_MIN_ACTION_SIZE)
3060 		return RX_DROP_UNUSABLE;
3061 
3062 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3063 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3064 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3065 		return RX_DROP_UNUSABLE;
3066 
3067 	switch (mgmt->u.action.category) {
3068 	case WLAN_CATEGORY_HT:
3069 		/* reject HT action frames from stations not supporting HT */
3070 		if (!rx->sta->sta.ht_cap.ht_supported)
3071 			goto invalid;
3072 
3073 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3074 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3075 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3076 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3077 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3078 			break;
3079 
3080 		/* verify action & smps_control/chanwidth are present */
3081 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3082 			goto invalid;
3083 
3084 		switch (mgmt->u.action.u.ht_smps.action) {
3085 		case WLAN_HT_ACTION_SMPS: {
3086 			struct ieee80211_supported_band *sband;
3087 			enum ieee80211_smps_mode smps_mode;
3088 			struct sta_opmode_info sta_opmode = {};
3089 
3090 			/* convert to HT capability */
3091 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3092 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3093 				smps_mode = IEEE80211_SMPS_OFF;
3094 				break;
3095 			case WLAN_HT_SMPS_CONTROL_STATIC:
3096 				smps_mode = IEEE80211_SMPS_STATIC;
3097 				break;
3098 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3099 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3100 				break;
3101 			default:
3102 				goto invalid;
3103 			}
3104 
3105 			/* if no change do nothing */
3106 			if (rx->sta->sta.smps_mode == smps_mode)
3107 				goto handled;
3108 			rx->sta->sta.smps_mode = smps_mode;
3109 			sta_opmode.smps_mode =
3110 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3111 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3112 
3113 			sband = rx->local->hw.wiphy->bands[status->band];
3114 
3115 			rate_control_rate_update(local, sband, rx->sta,
3116 						 IEEE80211_RC_SMPS_CHANGED);
3117 			cfg80211_sta_opmode_change_notify(sdata->dev,
3118 							  rx->sta->addr,
3119 							  &sta_opmode,
3120 							  GFP_ATOMIC);
3121 			goto handled;
3122 		}
3123 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3124 			struct ieee80211_supported_band *sband;
3125 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3126 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3127 			struct sta_opmode_info sta_opmode = {};
3128 
3129 			/* If it doesn't support 40 MHz it can't change ... */
3130 			if (!(rx->sta->sta.ht_cap.cap &
3131 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3132 				goto handled;
3133 
3134 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3135 				max_bw = IEEE80211_STA_RX_BW_20;
3136 			else
3137 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3138 
3139 			/* set cur_max_bandwidth and recalc sta bw */
3140 			rx->sta->cur_max_bandwidth = max_bw;
3141 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3142 
3143 			if (rx->sta->sta.bandwidth == new_bw)
3144 				goto handled;
3145 
3146 			rx->sta->sta.bandwidth = new_bw;
3147 			sband = rx->local->hw.wiphy->bands[status->band];
3148 			sta_opmode.bw =
3149 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3150 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3151 
3152 			rate_control_rate_update(local, sband, rx->sta,
3153 						 IEEE80211_RC_BW_CHANGED);
3154 			cfg80211_sta_opmode_change_notify(sdata->dev,
3155 							  rx->sta->addr,
3156 							  &sta_opmode,
3157 							  GFP_ATOMIC);
3158 			goto handled;
3159 		}
3160 		default:
3161 			goto invalid;
3162 		}
3163 
3164 		break;
3165 	case WLAN_CATEGORY_PUBLIC:
3166 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3167 			goto invalid;
3168 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3169 			break;
3170 		if (!rx->sta)
3171 			break;
3172 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3173 			break;
3174 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3175 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3176 			break;
3177 		if (len < offsetof(struct ieee80211_mgmt,
3178 				   u.action.u.ext_chan_switch.variable))
3179 			goto invalid;
3180 		goto queue;
3181 	case WLAN_CATEGORY_VHT:
3182 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3183 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3184 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3185 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3186 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3187 			break;
3188 
3189 		/* verify action code is present */
3190 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3191 			goto invalid;
3192 
3193 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3194 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3195 			/* verify opmode is present */
3196 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3197 				goto invalid;
3198 			goto queue;
3199 		}
3200 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3201 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3202 				goto invalid;
3203 			goto queue;
3204 		}
3205 		default:
3206 			break;
3207 		}
3208 		break;
3209 	case WLAN_CATEGORY_BACK:
3210 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3211 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3212 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3213 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3214 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3215 			break;
3216 
3217 		/* verify action_code is present */
3218 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3219 			break;
3220 
3221 		switch (mgmt->u.action.u.addba_req.action_code) {
3222 		case WLAN_ACTION_ADDBA_REQ:
3223 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3224 				   sizeof(mgmt->u.action.u.addba_req)))
3225 				goto invalid;
3226 			break;
3227 		case WLAN_ACTION_ADDBA_RESP:
3228 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3229 				   sizeof(mgmt->u.action.u.addba_resp)))
3230 				goto invalid;
3231 			break;
3232 		case WLAN_ACTION_DELBA:
3233 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3234 				   sizeof(mgmt->u.action.u.delba)))
3235 				goto invalid;
3236 			break;
3237 		default:
3238 			goto invalid;
3239 		}
3240 
3241 		goto queue;
3242 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3243 		/* verify action_code is present */
3244 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3245 			break;
3246 
3247 		switch (mgmt->u.action.u.measurement.action_code) {
3248 		case WLAN_ACTION_SPCT_MSR_REQ:
3249 			if (status->band != NL80211_BAND_5GHZ)
3250 				break;
3251 
3252 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3253 				   sizeof(mgmt->u.action.u.measurement)))
3254 				break;
3255 
3256 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3257 				break;
3258 
3259 			ieee80211_process_measurement_req(sdata, mgmt, len);
3260 			goto handled;
3261 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3262 			u8 *bssid;
3263 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3264 				   sizeof(mgmt->u.action.u.chan_switch)))
3265 				break;
3266 
3267 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3268 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3269 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3270 				break;
3271 
3272 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3273 				bssid = sdata->u.mgd.bssid;
3274 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3275 				bssid = sdata->u.ibss.bssid;
3276 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3277 				bssid = mgmt->sa;
3278 			else
3279 				break;
3280 
3281 			if (!ether_addr_equal(mgmt->bssid, bssid))
3282 				break;
3283 
3284 			goto queue;
3285 			}
3286 		}
3287 		break;
3288 	case WLAN_CATEGORY_SA_QUERY:
3289 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3290 			   sizeof(mgmt->u.action.u.sa_query)))
3291 			break;
3292 
3293 		switch (mgmt->u.action.u.sa_query.action) {
3294 		case WLAN_ACTION_SA_QUERY_REQUEST:
3295 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3296 				break;
3297 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3298 			goto handled;
3299 		}
3300 		break;
3301 	case WLAN_CATEGORY_SELF_PROTECTED:
3302 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3303 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3304 			break;
3305 
3306 		switch (mgmt->u.action.u.self_prot.action_code) {
3307 		case WLAN_SP_MESH_PEERING_OPEN:
3308 		case WLAN_SP_MESH_PEERING_CLOSE:
3309 		case WLAN_SP_MESH_PEERING_CONFIRM:
3310 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3311 				goto invalid;
3312 			if (sdata->u.mesh.user_mpm)
3313 				/* userspace handles this frame */
3314 				break;
3315 			goto queue;
3316 		case WLAN_SP_MGK_INFORM:
3317 		case WLAN_SP_MGK_ACK:
3318 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3319 				goto invalid;
3320 			break;
3321 		}
3322 		break;
3323 	case WLAN_CATEGORY_MESH_ACTION:
3324 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3325 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3326 			break;
3327 
3328 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3329 			break;
3330 		if (mesh_action_is_path_sel(mgmt) &&
3331 		    !mesh_path_sel_is_hwmp(sdata))
3332 			break;
3333 		goto queue;
3334 	}
3335 
3336 	return RX_CONTINUE;
3337 
3338  invalid:
3339 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3340 	/* will return in the next handlers */
3341 	return RX_CONTINUE;
3342 
3343  handled:
3344 	if (rx->sta)
3345 		rx->sta->rx_stats.packets++;
3346 	dev_kfree_skb(rx->skb);
3347 	return RX_QUEUED;
3348 
3349  queue:
3350 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3351 	ieee80211_queue_work(&local->hw, &sdata->work);
3352 	if (rx->sta)
3353 		rx->sta->rx_stats.packets++;
3354 	return RX_QUEUED;
3355 }
3356 
3357 static ieee80211_rx_result debug_noinline
3358 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3359 {
3360 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3361 	int sig = 0;
3362 
3363 	/* skip known-bad action frames and return them in the next handler */
3364 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3365 		return RX_CONTINUE;
3366 
3367 	/*
3368 	 * Getting here means the kernel doesn't know how to handle
3369 	 * it, but maybe userspace does ... include returned frames
3370 	 * so userspace can register for those to know whether ones
3371 	 * it transmitted were processed or returned.
3372 	 */
3373 
3374 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3375 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3376 		sig = status->signal;
3377 
3378 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3379 			     rx->skb->data, rx->skb->len, 0)) {
3380 		if (rx->sta)
3381 			rx->sta->rx_stats.packets++;
3382 		dev_kfree_skb(rx->skb);
3383 		return RX_QUEUED;
3384 	}
3385 
3386 	return RX_CONTINUE;
3387 }
3388 
3389 static ieee80211_rx_result debug_noinline
3390 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3391 {
3392 	struct ieee80211_local *local = rx->local;
3393 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3394 	struct sk_buff *nskb;
3395 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3396 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3397 
3398 	if (!ieee80211_is_action(mgmt->frame_control))
3399 		return RX_CONTINUE;
3400 
3401 	/*
3402 	 * For AP mode, hostapd is responsible for handling any action
3403 	 * frames that we didn't handle, including returning unknown
3404 	 * ones. For all other modes we will return them to the sender,
3405 	 * setting the 0x80 bit in the action category, as required by
3406 	 * 802.11-2012 9.24.4.
3407 	 * Newer versions of hostapd shall also use the management frame
3408 	 * registration mechanisms, but older ones still use cooked
3409 	 * monitor interfaces so push all frames there.
3410 	 */
3411 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3412 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3413 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3414 		return RX_DROP_MONITOR;
3415 
3416 	if (is_multicast_ether_addr(mgmt->da))
3417 		return RX_DROP_MONITOR;
3418 
3419 	/* do not return rejected action frames */
3420 	if (mgmt->u.action.category & 0x80)
3421 		return RX_DROP_UNUSABLE;
3422 
3423 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3424 			       GFP_ATOMIC);
3425 	if (nskb) {
3426 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3427 
3428 		nmgmt->u.action.category |= 0x80;
3429 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3430 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3431 
3432 		memset(nskb->cb, 0, sizeof(nskb->cb));
3433 
3434 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3435 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3436 
3437 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3438 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3439 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3440 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3441 				info->hw_queue =
3442 					local->hw.offchannel_tx_hw_queue;
3443 		}
3444 
3445 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3446 					    status->band, 0);
3447 	}
3448 	dev_kfree_skb(rx->skb);
3449 	return RX_QUEUED;
3450 }
3451 
3452 static ieee80211_rx_result debug_noinline
3453 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3454 {
3455 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3456 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3457 	__le16 stype;
3458 
3459 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3460 
3461 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3462 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3463 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3464 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3465 		return RX_DROP_MONITOR;
3466 
3467 	switch (stype) {
3468 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3469 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3470 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3471 		/* process for all: mesh, mlme, ibss */
3472 		break;
3473 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3474 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3475 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3476 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3477 		if (is_multicast_ether_addr(mgmt->da) &&
3478 		    !is_broadcast_ether_addr(mgmt->da))
3479 			return RX_DROP_MONITOR;
3480 
3481 		/* process only for station */
3482 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3483 			return RX_DROP_MONITOR;
3484 		break;
3485 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3486 		/* process only for ibss and mesh */
3487 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3488 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3489 			return RX_DROP_MONITOR;
3490 		break;
3491 	default:
3492 		return RX_DROP_MONITOR;
3493 	}
3494 
3495 	/* queue up frame and kick off work to process it */
3496 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3497 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3498 	if (rx->sta)
3499 		rx->sta->rx_stats.packets++;
3500 
3501 	return RX_QUEUED;
3502 }
3503 
3504 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3505 					struct ieee80211_rate *rate)
3506 {
3507 	struct ieee80211_sub_if_data *sdata;
3508 	struct ieee80211_local *local = rx->local;
3509 	struct sk_buff *skb = rx->skb, *skb2;
3510 	struct net_device *prev_dev = NULL;
3511 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3512 	int needed_headroom;
3513 
3514 	/*
3515 	 * If cooked monitor has been processed already, then
3516 	 * don't do it again. If not, set the flag.
3517 	 */
3518 	if (rx->flags & IEEE80211_RX_CMNTR)
3519 		goto out_free_skb;
3520 	rx->flags |= IEEE80211_RX_CMNTR;
3521 
3522 	/* If there are no cooked monitor interfaces, just free the SKB */
3523 	if (!local->cooked_mntrs)
3524 		goto out_free_skb;
3525 
3526 	/* vendor data is long removed here */
3527 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3528 	/* room for the radiotap header based on driver features */
3529 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3530 
3531 	if (skb_headroom(skb) < needed_headroom &&
3532 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3533 		goto out_free_skb;
3534 
3535 	/* prepend radiotap information */
3536 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3537 					 false);
3538 
3539 	skb_reset_mac_header(skb);
3540 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3541 	skb->pkt_type = PACKET_OTHERHOST;
3542 	skb->protocol = htons(ETH_P_802_2);
3543 
3544 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3545 		if (!ieee80211_sdata_running(sdata))
3546 			continue;
3547 
3548 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3549 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3550 			continue;
3551 
3552 		if (prev_dev) {
3553 			skb2 = skb_clone(skb, GFP_ATOMIC);
3554 			if (skb2) {
3555 				skb2->dev = prev_dev;
3556 				netif_receive_skb(skb2);
3557 			}
3558 		}
3559 
3560 		prev_dev = sdata->dev;
3561 		ieee80211_rx_stats(sdata->dev, skb->len);
3562 	}
3563 
3564 	if (prev_dev) {
3565 		skb->dev = prev_dev;
3566 		netif_receive_skb(skb);
3567 		return;
3568 	}
3569 
3570  out_free_skb:
3571 	dev_kfree_skb(skb);
3572 }
3573 
3574 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3575 					 ieee80211_rx_result res)
3576 {
3577 	switch (res) {
3578 	case RX_DROP_MONITOR:
3579 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3580 		if (rx->sta)
3581 			rx->sta->rx_stats.dropped++;
3582 		/* fall through */
3583 	case RX_CONTINUE: {
3584 		struct ieee80211_rate *rate = NULL;
3585 		struct ieee80211_supported_band *sband;
3586 		struct ieee80211_rx_status *status;
3587 
3588 		status = IEEE80211_SKB_RXCB((rx->skb));
3589 
3590 		sband = rx->local->hw.wiphy->bands[status->band];
3591 		if (status->encoding == RX_ENC_LEGACY)
3592 			rate = &sband->bitrates[status->rate_idx];
3593 
3594 		ieee80211_rx_cooked_monitor(rx, rate);
3595 		break;
3596 		}
3597 	case RX_DROP_UNUSABLE:
3598 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3599 		if (rx->sta)
3600 			rx->sta->rx_stats.dropped++;
3601 		dev_kfree_skb(rx->skb);
3602 		break;
3603 	case RX_QUEUED:
3604 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3605 		break;
3606 	}
3607 }
3608 
3609 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3610 				  struct sk_buff_head *frames)
3611 {
3612 	ieee80211_rx_result res = RX_DROP_MONITOR;
3613 	struct sk_buff *skb;
3614 
3615 #define CALL_RXH(rxh)			\
3616 	do {				\
3617 		res = rxh(rx);		\
3618 		if (res != RX_CONTINUE)	\
3619 			goto rxh_next;  \
3620 	} while (0)
3621 
3622 	/* Lock here to avoid hitting all of the data used in the RX
3623 	 * path (e.g. key data, station data, ...) concurrently when
3624 	 * a frame is released from the reorder buffer due to timeout
3625 	 * from the timer, potentially concurrently with RX from the
3626 	 * driver.
3627 	 */
3628 	spin_lock_bh(&rx->local->rx_path_lock);
3629 
3630 	while ((skb = __skb_dequeue(frames))) {
3631 		/*
3632 		 * all the other fields are valid across frames
3633 		 * that belong to an aMPDU since they are on the
3634 		 * same TID from the same station
3635 		 */
3636 		rx->skb = skb;
3637 
3638 		CALL_RXH(ieee80211_rx_h_check_more_data);
3639 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3640 		CALL_RXH(ieee80211_rx_h_sta_process);
3641 		CALL_RXH(ieee80211_rx_h_decrypt);
3642 		CALL_RXH(ieee80211_rx_h_defragment);
3643 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3644 		/* must be after MMIC verify so header is counted in MPDU mic */
3645 #ifdef CONFIG_MAC80211_MESH
3646 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3647 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3648 #endif
3649 		CALL_RXH(ieee80211_rx_h_amsdu);
3650 		CALL_RXH(ieee80211_rx_h_data);
3651 
3652 		/* special treatment -- needs the queue */
3653 		res = ieee80211_rx_h_ctrl(rx, frames);
3654 		if (res != RX_CONTINUE)
3655 			goto rxh_next;
3656 
3657 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3658 		CALL_RXH(ieee80211_rx_h_action);
3659 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3660 		CALL_RXH(ieee80211_rx_h_action_return);
3661 		CALL_RXH(ieee80211_rx_h_mgmt);
3662 
3663  rxh_next:
3664 		ieee80211_rx_handlers_result(rx, res);
3665 
3666 #undef CALL_RXH
3667 	}
3668 
3669 	spin_unlock_bh(&rx->local->rx_path_lock);
3670 }
3671 
3672 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3673 {
3674 	struct sk_buff_head reorder_release;
3675 	ieee80211_rx_result res = RX_DROP_MONITOR;
3676 
3677 	__skb_queue_head_init(&reorder_release);
3678 
3679 #define CALL_RXH(rxh)			\
3680 	do {				\
3681 		res = rxh(rx);		\
3682 		if (res != RX_CONTINUE)	\
3683 			goto rxh_next;  \
3684 	} while (0)
3685 
3686 	CALL_RXH(ieee80211_rx_h_check_dup);
3687 	CALL_RXH(ieee80211_rx_h_check);
3688 
3689 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3690 
3691 	ieee80211_rx_handlers(rx, &reorder_release);
3692 	return;
3693 
3694  rxh_next:
3695 	ieee80211_rx_handlers_result(rx, res);
3696 
3697 #undef CALL_RXH
3698 }
3699 
3700 /*
3701  * This function makes calls into the RX path, therefore
3702  * it has to be invoked under RCU read lock.
3703  */
3704 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3705 {
3706 	struct sk_buff_head frames;
3707 	struct ieee80211_rx_data rx = {
3708 		.sta = sta,
3709 		.sdata = sta->sdata,
3710 		.local = sta->local,
3711 		/* This is OK -- must be QoS data frame */
3712 		.security_idx = tid,
3713 		.seqno_idx = tid,
3714 		.napi = NULL, /* must be NULL to not have races */
3715 	};
3716 	struct tid_ampdu_rx *tid_agg_rx;
3717 
3718 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3719 	if (!tid_agg_rx)
3720 		return;
3721 
3722 	__skb_queue_head_init(&frames);
3723 
3724 	spin_lock(&tid_agg_rx->reorder_lock);
3725 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3726 	spin_unlock(&tid_agg_rx->reorder_lock);
3727 
3728 	if (!skb_queue_empty(&frames)) {
3729 		struct ieee80211_event event = {
3730 			.type = BA_FRAME_TIMEOUT,
3731 			.u.ba.tid = tid,
3732 			.u.ba.sta = &sta->sta,
3733 		};
3734 		drv_event_callback(rx.local, rx.sdata, &event);
3735 	}
3736 
3737 	ieee80211_rx_handlers(&rx, &frames);
3738 }
3739 
3740 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3741 					  u16 ssn, u64 filtered,
3742 					  u16 received_mpdus)
3743 {
3744 	struct sta_info *sta;
3745 	struct tid_ampdu_rx *tid_agg_rx;
3746 	struct sk_buff_head frames;
3747 	struct ieee80211_rx_data rx = {
3748 		/* This is OK -- must be QoS data frame */
3749 		.security_idx = tid,
3750 		.seqno_idx = tid,
3751 	};
3752 	int i, diff;
3753 
3754 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3755 		return;
3756 
3757 	__skb_queue_head_init(&frames);
3758 
3759 	sta = container_of(pubsta, struct sta_info, sta);
3760 
3761 	rx.sta = sta;
3762 	rx.sdata = sta->sdata;
3763 	rx.local = sta->local;
3764 
3765 	rcu_read_lock();
3766 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3767 	if (!tid_agg_rx)
3768 		goto out;
3769 
3770 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3771 
3772 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3773 		int release;
3774 
3775 		/* release all frames in the reorder buffer */
3776 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3777 			   IEEE80211_SN_MODULO;
3778 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3779 						 release, &frames);
3780 		/* update ssn to match received ssn */
3781 		tid_agg_rx->head_seq_num = ssn;
3782 	} else {
3783 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3784 						 &frames);
3785 	}
3786 
3787 	/* handle the case that received ssn is behind the mac ssn.
3788 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3789 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3790 	if (diff >= tid_agg_rx->buf_size) {
3791 		tid_agg_rx->reorder_buf_filtered = 0;
3792 		goto release;
3793 	}
3794 	filtered = filtered >> diff;
3795 	ssn += diff;
3796 
3797 	/* update bitmap */
3798 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3799 		int index = (ssn + i) % tid_agg_rx->buf_size;
3800 
3801 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3802 		if (filtered & BIT_ULL(i))
3803 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3804 	}
3805 
3806 	/* now process also frames that the filter marking released */
3807 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3808 
3809 release:
3810 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3811 
3812 	ieee80211_rx_handlers(&rx, &frames);
3813 
3814  out:
3815 	rcu_read_unlock();
3816 }
3817 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3818 
3819 /* main receive path */
3820 
3821 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3822 {
3823 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3824 	struct sk_buff *skb = rx->skb;
3825 	struct ieee80211_hdr *hdr = (void *)skb->data;
3826 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3827 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3828 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3829 
3830 	switch (sdata->vif.type) {
3831 	case NL80211_IFTYPE_STATION:
3832 		if (!bssid && !sdata->u.mgd.use_4addr)
3833 			return false;
3834 		if (multicast)
3835 			return true;
3836 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3837 	case NL80211_IFTYPE_ADHOC:
3838 		if (!bssid)
3839 			return false;
3840 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3841 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3842 			return false;
3843 		if (ieee80211_is_beacon(hdr->frame_control))
3844 			return true;
3845 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3846 			return false;
3847 		if (!multicast &&
3848 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3849 			return false;
3850 		if (!rx->sta) {
3851 			int rate_idx;
3852 			if (status->encoding != RX_ENC_LEGACY)
3853 				rate_idx = 0; /* TODO: HT/VHT rates */
3854 			else
3855 				rate_idx = status->rate_idx;
3856 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3857 						 BIT(rate_idx));
3858 		}
3859 		return true;
3860 	case NL80211_IFTYPE_OCB:
3861 		if (!bssid)
3862 			return false;
3863 		if (!ieee80211_is_data_present(hdr->frame_control))
3864 			return false;
3865 		if (!is_broadcast_ether_addr(bssid))
3866 			return false;
3867 		if (!multicast &&
3868 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3869 			return false;
3870 		if (!rx->sta) {
3871 			int rate_idx;
3872 			if (status->encoding != RX_ENC_LEGACY)
3873 				rate_idx = 0; /* TODO: HT rates */
3874 			else
3875 				rate_idx = status->rate_idx;
3876 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3877 						BIT(rate_idx));
3878 		}
3879 		return true;
3880 	case NL80211_IFTYPE_MESH_POINT:
3881 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3882 			return false;
3883 		if (multicast)
3884 			return true;
3885 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3886 	case NL80211_IFTYPE_AP_VLAN:
3887 	case NL80211_IFTYPE_AP:
3888 		if (!bssid)
3889 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3890 
3891 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3892 			/*
3893 			 * Accept public action frames even when the
3894 			 * BSSID doesn't match, this is used for P2P
3895 			 * and location updates. Note that mac80211
3896 			 * itself never looks at these frames.
3897 			 */
3898 			if (!multicast &&
3899 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3900 				return false;
3901 			if (ieee80211_is_public_action(hdr, skb->len))
3902 				return true;
3903 			return ieee80211_is_beacon(hdr->frame_control);
3904 		}
3905 
3906 		if (!ieee80211_has_tods(hdr->frame_control)) {
3907 			/* ignore data frames to TDLS-peers */
3908 			if (ieee80211_is_data(hdr->frame_control))
3909 				return false;
3910 			/* ignore action frames to TDLS-peers */
3911 			if (ieee80211_is_action(hdr->frame_control) &&
3912 			    !is_broadcast_ether_addr(bssid) &&
3913 			    !ether_addr_equal(bssid, hdr->addr1))
3914 				return false;
3915 		}
3916 
3917 		/*
3918 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3919 		 * the BSSID - we've checked that already but may have accepted
3920 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3921 		 *
3922 		 * It also says:
3923 		 *	The BSSID of the Data frame is determined as follows:
3924 		 *	a) If the STA is contained within an AP or is associated
3925 		 *	   with an AP, the BSSID is the address currently in use
3926 		 *	   by the STA contained in the AP.
3927 		 *
3928 		 * So we should not accept data frames with an address that's
3929 		 * multicast.
3930 		 *
3931 		 * Accepting it also opens a security problem because stations
3932 		 * could encrypt it with the GTK and inject traffic that way.
3933 		 */
3934 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3935 			return false;
3936 
3937 		return true;
3938 	case NL80211_IFTYPE_WDS:
3939 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3940 			return false;
3941 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3942 	case NL80211_IFTYPE_P2P_DEVICE:
3943 		return ieee80211_is_public_action(hdr, skb->len) ||
3944 		       ieee80211_is_probe_req(hdr->frame_control) ||
3945 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3946 		       ieee80211_is_beacon(hdr->frame_control);
3947 	case NL80211_IFTYPE_NAN:
3948 		/* Currently no frames on NAN interface are allowed */
3949 		return false;
3950 	default:
3951 		break;
3952 	}
3953 
3954 	WARN_ON_ONCE(1);
3955 	return false;
3956 }
3957 
3958 void ieee80211_check_fast_rx(struct sta_info *sta)
3959 {
3960 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3961 	struct ieee80211_local *local = sdata->local;
3962 	struct ieee80211_key *key;
3963 	struct ieee80211_fast_rx fastrx = {
3964 		.dev = sdata->dev,
3965 		.vif_type = sdata->vif.type,
3966 		.control_port_protocol = sdata->control_port_protocol,
3967 	}, *old, *new = NULL;
3968 	bool assign = false;
3969 
3970 	/* use sparse to check that we don't return without updating */
3971 	__acquire(check_fast_rx);
3972 
3973 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3974 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3975 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3976 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3977 
3978 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3979 
3980 	/* fast-rx doesn't do reordering */
3981 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3982 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3983 		goto clear;
3984 
3985 	switch (sdata->vif.type) {
3986 	case NL80211_IFTYPE_STATION:
3987 		if (sta->sta.tdls) {
3988 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3989 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3990 			fastrx.expected_ds_bits = 0;
3991 		} else {
3992 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3993 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3994 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3995 			fastrx.expected_ds_bits =
3996 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3997 		}
3998 
3999 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4000 			fastrx.expected_ds_bits |=
4001 				cpu_to_le16(IEEE80211_FCTL_TODS);
4002 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4003 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4004 		}
4005 
4006 		if (!sdata->u.mgd.powersave)
4007 			break;
4008 
4009 		/* software powersave is a huge mess, avoid all of it */
4010 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4011 			goto clear;
4012 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4013 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4014 			goto clear;
4015 		break;
4016 	case NL80211_IFTYPE_AP_VLAN:
4017 	case NL80211_IFTYPE_AP:
4018 		/* parallel-rx requires this, at least with calls to
4019 		 * ieee80211_sta_ps_transition()
4020 		 */
4021 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4022 			goto clear;
4023 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4024 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4025 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4026 
4027 		fastrx.internal_forward =
4028 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4029 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4030 			 !sdata->u.vlan.sta);
4031 
4032 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4033 		    sdata->u.vlan.sta) {
4034 			fastrx.expected_ds_bits |=
4035 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4036 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4037 			fastrx.internal_forward = 0;
4038 		}
4039 
4040 		break;
4041 	default:
4042 		goto clear;
4043 	}
4044 
4045 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4046 		goto clear;
4047 
4048 	rcu_read_lock();
4049 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4050 	if (key) {
4051 		switch (key->conf.cipher) {
4052 		case WLAN_CIPHER_SUITE_TKIP:
4053 			/* we don't want to deal with MMIC in fast-rx */
4054 			goto clear_rcu;
4055 		case WLAN_CIPHER_SUITE_CCMP:
4056 		case WLAN_CIPHER_SUITE_CCMP_256:
4057 		case WLAN_CIPHER_SUITE_GCMP:
4058 		case WLAN_CIPHER_SUITE_GCMP_256:
4059 			break;
4060 		default:
4061 			/* We also don't want to deal with
4062 			 * WEP or cipher scheme.
4063 			 */
4064 			goto clear_rcu;
4065 		}
4066 
4067 		fastrx.key = true;
4068 		fastrx.icv_len = key->conf.icv_len;
4069 	}
4070 
4071 	assign = true;
4072  clear_rcu:
4073 	rcu_read_unlock();
4074  clear:
4075 	__release(check_fast_rx);
4076 
4077 	if (assign)
4078 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4079 
4080 	spin_lock_bh(&sta->lock);
4081 	old = rcu_dereference_protected(sta->fast_rx, true);
4082 	rcu_assign_pointer(sta->fast_rx, new);
4083 	spin_unlock_bh(&sta->lock);
4084 
4085 	if (old)
4086 		kfree_rcu(old, rcu_head);
4087 }
4088 
4089 void ieee80211_clear_fast_rx(struct sta_info *sta)
4090 {
4091 	struct ieee80211_fast_rx *old;
4092 
4093 	spin_lock_bh(&sta->lock);
4094 	old = rcu_dereference_protected(sta->fast_rx, true);
4095 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4096 	spin_unlock_bh(&sta->lock);
4097 
4098 	if (old)
4099 		kfree_rcu(old, rcu_head);
4100 }
4101 
4102 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4103 {
4104 	struct ieee80211_local *local = sdata->local;
4105 	struct sta_info *sta;
4106 
4107 	lockdep_assert_held(&local->sta_mtx);
4108 
4109 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
4110 		if (sdata != sta->sdata &&
4111 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4112 			continue;
4113 		ieee80211_check_fast_rx(sta);
4114 	}
4115 }
4116 
4117 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4118 {
4119 	struct ieee80211_local *local = sdata->local;
4120 
4121 	mutex_lock(&local->sta_mtx);
4122 	__ieee80211_check_fast_rx_iface(sdata);
4123 	mutex_unlock(&local->sta_mtx);
4124 }
4125 
4126 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4127 				     struct ieee80211_fast_rx *fast_rx)
4128 {
4129 	struct sk_buff *skb = rx->skb;
4130 	struct ieee80211_hdr *hdr = (void *)skb->data;
4131 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4132 	struct sta_info *sta = rx->sta;
4133 	int orig_len = skb->len;
4134 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4135 	int snap_offs = hdrlen;
4136 	struct {
4137 		u8 snap[sizeof(rfc1042_header)];
4138 		__be16 proto;
4139 	} *payload __aligned(2);
4140 	struct {
4141 		u8 da[ETH_ALEN];
4142 		u8 sa[ETH_ALEN];
4143 	} addrs __aligned(2);
4144 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4145 
4146 	if (fast_rx->uses_rss)
4147 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4148 
4149 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4150 	 * to a common data structure; drivers can implement that per queue
4151 	 * but we don't have that information in mac80211
4152 	 */
4153 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4154 		return false;
4155 
4156 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4157 
4158 	/* If using encryption, we also need to have:
4159 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4160 	 *  - DECRYPTED: necessary for PN_VALIDATED
4161 	 */
4162 	if (fast_rx->key &&
4163 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4164 		return false;
4165 
4166 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4167 		return false;
4168 
4169 	if (unlikely(ieee80211_is_frag(hdr)))
4170 		return false;
4171 
4172 	/* Since our interface address cannot be multicast, this
4173 	 * implicitly also rejects multicast frames without the
4174 	 * explicit check.
4175 	 *
4176 	 * We shouldn't get any *data* frames not addressed to us
4177 	 * (AP mode will accept multicast *management* frames), but
4178 	 * punting here will make it go through the full checks in
4179 	 * ieee80211_accept_frame().
4180 	 */
4181 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4182 		return false;
4183 
4184 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4185 					      IEEE80211_FCTL_TODS)) !=
4186 	    fast_rx->expected_ds_bits)
4187 		return false;
4188 
4189 	/* assign the key to drop unencrypted frames (later)
4190 	 * and strip the IV/MIC if necessary
4191 	 */
4192 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4193 		/* GCMP header length is the same */
4194 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4195 	}
4196 
4197 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4198 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4199 			goto drop;
4200 
4201 		payload = (void *)(skb->data + snap_offs);
4202 
4203 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4204 			return false;
4205 
4206 		/* Don't handle these here since they require special code.
4207 		 * Accept AARP and IPX even though they should come with a
4208 		 * bridge-tunnel header - but if we get them this way then
4209 		 * there's little point in discarding them.
4210 		 */
4211 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4212 			     payload->proto == fast_rx->control_port_protocol))
4213 			return false;
4214 	}
4215 
4216 	/* after this point, don't punt to the slowpath! */
4217 
4218 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4219 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4220 		goto drop;
4221 
4222 	if (unlikely(fast_rx->sta_notify)) {
4223 		ieee80211_sta_rx_notify(rx->sdata, hdr);
4224 		fast_rx->sta_notify = false;
4225 	}
4226 
4227 	/* statistics part of ieee80211_rx_h_sta_process() */
4228 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4229 		stats->last_signal = status->signal;
4230 		if (!fast_rx->uses_rss)
4231 			ewma_signal_add(&sta->rx_stats_avg.signal,
4232 					-status->signal);
4233 	}
4234 
4235 	if (status->chains) {
4236 		int i;
4237 
4238 		stats->chains = status->chains;
4239 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4240 			int signal = status->chain_signal[i];
4241 
4242 			if (!(status->chains & BIT(i)))
4243 				continue;
4244 
4245 			stats->chain_signal_last[i] = signal;
4246 			if (!fast_rx->uses_rss)
4247 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4248 						-signal);
4249 		}
4250 	}
4251 	/* end of statistics */
4252 
4253 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4254 		goto drop;
4255 
4256 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4257 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4258 		    RX_QUEUED)
4259 			goto drop;
4260 
4261 		return true;
4262 	}
4263 
4264 	stats->last_rx = jiffies;
4265 	stats->last_rate = sta_stats_encode_rate(status);
4266 
4267 	stats->fragments++;
4268 	stats->packets++;
4269 
4270 	/* do the header conversion - first grab the addresses */
4271 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4272 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4273 	/* remove the SNAP but leave the ethertype */
4274 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4275 	/* push the addresses in front */
4276 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4277 
4278 	skb->dev = fast_rx->dev;
4279 
4280 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4281 
4282 	/* The seqno index has the same property as needed
4283 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4284 	 * for non-QoS-data frames. Here we know it's a data
4285 	 * frame, so count MSDUs.
4286 	 */
4287 	u64_stats_update_begin(&stats->syncp);
4288 	stats->msdu[rx->seqno_idx]++;
4289 	stats->bytes += orig_len;
4290 	u64_stats_update_end(&stats->syncp);
4291 
4292 	if (fast_rx->internal_forward) {
4293 		struct sk_buff *xmit_skb = NULL;
4294 		if (is_multicast_ether_addr(addrs.da)) {
4295 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4296 		} else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4297 			   sta_info_get(rx->sdata, addrs.da)) {
4298 			xmit_skb = skb;
4299 			skb = NULL;
4300 		}
4301 
4302 		if (xmit_skb) {
4303 			/*
4304 			 * Send to wireless media and increase priority by 256
4305 			 * to keep the received priority instead of
4306 			 * reclassifying the frame (see cfg80211_classify8021d).
4307 			 */
4308 			xmit_skb->priority += 256;
4309 			xmit_skb->protocol = htons(ETH_P_802_3);
4310 			skb_reset_network_header(xmit_skb);
4311 			skb_reset_mac_header(xmit_skb);
4312 			dev_queue_xmit(xmit_skb);
4313 		}
4314 
4315 		if (!skb)
4316 			return true;
4317 	}
4318 
4319 	/* deliver to local stack */
4320 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4321 	memset(skb->cb, 0, sizeof(skb->cb));
4322 	if (rx->napi)
4323 		napi_gro_receive(rx->napi, skb);
4324 	else
4325 		netif_receive_skb(skb);
4326 
4327 	return true;
4328  drop:
4329 	dev_kfree_skb(skb);
4330 	stats->dropped++;
4331 	return true;
4332 }
4333 
4334 /*
4335  * This function returns whether or not the SKB
4336  * was destined for RX processing or not, which,
4337  * if consume is true, is equivalent to whether
4338  * or not the skb was consumed.
4339  */
4340 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4341 					    struct sk_buff *skb, bool consume)
4342 {
4343 	struct ieee80211_local *local = rx->local;
4344 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4345 
4346 	rx->skb = skb;
4347 
4348 	/* See if we can do fast-rx; if we have to copy we already lost,
4349 	 * so punt in that case. We should never have to deliver a data
4350 	 * frame to multiple interfaces anyway.
4351 	 *
4352 	 * We skip the ieee80211_accept_frame() call and do the necessary
4353 	 * checking inside ieee80211_invoke_fast_rx().
4354 	 */
4355 	if (consume && rx->sta) {
4356 		struct ieee80211_fast_rx *fast_rx;
4357 
4358 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4359 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4360 			return true;
4361 	}
4362 
4363 	if (!ieee80211_accept_frame(rx))
4364 		return false;
4365 
4366 	if (!consume) {
4367 		skb = skb_copy(skb, GFP_ATOMIC);
4368 		if (!skb) {
4369 			if (net_ratelimit())
4370 				wiphy_debug(local->hw.wiphy,
4371 					"failed to copy skb for %s\n",
4372 					sdata->name);
4373 			return true;
4374 		}
4375 
4376 		rx->skb = skb;
4377 	}
4378 
4379 	ieee80211_invoke_rx_handlers(rx);
4380 	return true;
4381 }
4382 
4383 /*
4384  * This is the actual Rx frames handler. as it belongs to Rx path it must
4385  * be called with rcu_read_lock protection.
4386  */
4387 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4388 					 struct ieee80211_sta *pubsta,
4389 					 struct sk_buff *skb,
4390 					 struct napi_struct *napi)
4391 {
4392 	struct ieee80211_local *local = hw_to_local(hw);
4393 	struct ieee80211_sub_if_data *sdata;
4394 	struct ieee80211_hdr *hdr;
4395 	__le16 fc;
4396 	struct ieee80211_rx_data rx;
4397 	struct ieee80211_sub_if_data *prev;
4398 	struct rhlist_head *tmp;
4399 	int err = 0;
4400 
4401 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4402 	memset(&rx, 0, sizeof(rx));
4403 	rx.skb = skb;
4404 	rx.local = local;
4405 	rx.napi = napi;
4406 
4407 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4408 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4409 
4410 	if (ieee80211_is_mgmt(fc)) {
4411 		/* drop frame if too short for header */
4412 		if (skb->len < ieee80211_hdrlen(fc))
4413 			err = -ENOBUFS;
4414 		else
4415 			err = skb_linearize(skb);
4416 	} else {
4417 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4418 	}
4419 
4420 	if (err) {
4421 		dev_kfree_skb(skb);
4422 		return;
4423 	}
4424 
4425 	hdr = (struct ieee80211_hdr *)skb->data;
4426 	ieee80211_parse_qos(&rx);
4427 	ieee80211_verify_alignment(&rx);
4428 
4429 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4430 		     ieee80211_is_beacon(hdr->frame_control)))
4431 		ieee80211_scan_rx(local, skb);
4432 
4433 	if (ieee80211_is_data(fc)) {
4434 		struct sta_info *sta, *prev_sta;
4435 
4436 		if (pubsta) {
4437 			rx.sta = container_of(pubsta, struct sta_info, sta);
4438 			rx.sdata = rx.sta->sdata;
4439 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4440 				return;
4441 			goto out;
4442 		}
4443 
4444 		prev_sta = NULL;
4445 
4446 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4447 			if (!prev_sta) {
4448 				prev_sta = sta;
4449 				continue;
4450 			}
4451 
4452 			rx.sta = prev_sta;
4453 			rx.sdata = prev_sta->sdata;
4454 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4455 
4456 			prev_sta = sta;
4457 		}
4458 
4459 		if (prev_sta) {
4460 			rx.sta = prev_sta;
4461 			rx.sdata = prev_sta->sdata;
4462 
4463 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4464 				return;
4465 			goto out;
4466 		}
4467 	}
4468 
4469 	prev = NULL;
4470 
4471 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4472 		if (!ieee80211_sdata_running(sdata))
4473 			continue;
4474 
4475 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4476 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4477 			continue;
4478 
4479 		/*
4480 		 * frame is destined for this interface, but if it's
4481 		 * not also for the previous one we handle that after
4482 		 * the loop to avoid copying the SKB once too much
4483 		 */
4484 
4485 		if (!prev) {
4486 			prev = sdata;
4487 			continue;
4488 		}
4489 
4490 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4491 		rx.sdata = prev;
4492 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4493 
4494 		prev = sdata;
4495 	}
4496 
4497 	if (prev) {
4498 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4499 		rx.sdata = prev;
4500 
4501 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4502 			return;
4503 	}
4504 
4505  out:
4506 	dev_kfree_skb(skb);
4507 }
4508 
4509 /*
4510  * This is the receive path handler. It is called by a low level driver when an
4511  * 802.11 MPDU is received from the hardware.
4512  */
4513 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4514 		       struct sk_buff *skb, struct napi_struct *napi)
4515 {
4516 	struct ieee80211_local *local = hw_to_local(hw);
4517 	struct ieee80211_rate *rate = NULL;
4518 	struct ieee80211_supported_band *sband;
4519 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4520 
4521 	WARN_ON_ONCE(softirq_count() == 0);
4522 
4523 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4524 		goto drop;
4525 
4526 	sband = local->hw.wiphy->bands[status->band];
4527 	if (WARN_ON(!sband))
4528 		goto drop;
4529 
4530 	/*
4531 	 * If we're suspending, it is possible although not too likely
4532 	 * that we'd be receiving frames after having already partially
4533 	 * quiesced the stack. We can't process such frames then since
4534 	 * that might, for example, cause stations to be added or other
4535 	 * driver callbacks be invoked.
4536 	 */
4537 	if (unlikely(local->quiescing || local->suspended))
4538 		goto drop;
4539 
4540 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4541 	if (unlikely(local->in_reconfig))
4542 		goto drop;
4543 
4544 	/*
4545 	 * The same happens when we're not even started,
4546 	 * but that's worth a warning.
4547 	 */
4548 	if (WARN_ON(!local->started))
4549 		goto drop;
4550 
4551 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4552 		/*
4553 		 * Validate the rate, unless a PLCP error means that
4554 		 * we probably can't have a valid rate here anyway.
4555 		 */
4556 
4557 		switch (status->encoding) {
4558 		case RX_ENC_HT:
4559 			/*
4560 			 * rate_idx is MCS index, which can be [0-76]
4561 			 * as documented on:
4562 			 *
4563 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4564 			 *
4565 			 * Anything else would be some sort of driver or
4566 			 * hardware error. The driver should catch hardware
4567 			 * errors.
4568 			 */
4569 			if (WARN(status->rate_idx > 76,
4570 				 "Rate marked as an HT rate but passed "
4571 				 "status->rate_idx is not "
4572 				 "an MCS index [0-76]: %d (0x%02x)\n",
4573 				 status->rate_idx,
4574 				 status->rate_idx))
4575 				goto drop;
4576 			break;
4577 		case RX_ENC_VHT:
4578 			if (WARN_ONCE(status->rate_idx > 9 ||
4579 				      !status->nss ||
4580 				      status->nss > 8,
4581 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4582 				      status->rate_idx, status->nss))
4583 				goto drop;
4584 			break;
4585 		case RX_ENC_HE:
4586 			if (WARN_ONCE(status->rate_idx > 11 ||
4587 				      !status->nss ||
4588 				      status->nss > 8,
4589 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4590 				      status->rate_idx, status->nss))
4591 				goto drop;
4592 			break;
4593 		default:
4594 			WARN_ON_ONCE(1);
4595 			/* fall through */
4596 		case RX_ENC_LEGACY:
4597 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4598 				goto drop;
4599 			rate = &sband->bitrates[status->rate_idx];
4600 		}
4601 	}
4602 
4603 	status->rx_flags = 0;
4604 
4605 	/*
4606 	 * key references and virtual interfaces are protected using RCU
4607 	 * and this requires that we are in a read-side RCU section during
4608 	 * receive processing
4609 	 */
4610 	rcu_read_lock();
4611 
4612 	/*
4613 	 * Frames with failed FCS/PLCP checksum are not returned,
4614 	 * all other frames are returned without radiotap header
4615 	 * if it was previously present.
4616 	 * Also, frames with less than 16 bytes are dropped.
4617 	 */
4618 	skb = ieee80211_rx_monitor(local, skb, rate);
4619 	if (!skb) {
4620 		rcu_read_unlock();
4621 		return;
4622 	}
4623 
4624 	ieee80211_tpt_led_trig_rx(local,
4625 			((struct ieee80211_hdr *)skb->data)->frame_control,
4626 			skb->len);
4627 
4628 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4629 
4630 	rcu_read_unlock();
4631 
4632 	return;
4633  drop:
4634 	kfree_skb(skb);
4635 }
4636 EXPORT_SYMBOL(ieee80211_rx_napi);
4637 
4638 /* This is a version of the rx handler that can be called from hard irq
4639  * context. Post the skb on the queue and schedule the tasklet */
4640 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4641 {
4642 	struct ieee80211_local *local = hw_to_local(hw);
4643 
4644 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4645 
4646 	skb->pkt_type = IEEE80211_RX_MSG;
4647 	skb_queue_tail(&local->skb_queue, skb);
4648 	tasklet_schedule(&local->tasklet);
4649 }
4650 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4651