xref: /linux/net/mac80211/rx.c (revision 77ec462536a13d4b428a1eead725c4818a49f0b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2020 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 /*
36  * monitor mode reception
37  *
38  * This function cleans up the SKB, i.e. it removes all the stuff
39  * only useful for monitoring.
40  */
41 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
42 					   unsigned int present_fcs_len,
43 					   unsigned int rtap_space)
44 {
45 	struct ieee80211_hdr *hdr;
46 	unsigned int hdrlen;
47 	__le16 fc;
48 
49 	if (present_fcs_len)
50 		__pskb_trim(skb, skb->len - present_fcs_len);
51 	__pskb_pull(skb, rtap_space);
52 
53 	hdr = (void *)skb->data;
54 	fc = hdr->frame_control;
55 
56 	/*
57 	 * Remove the HT-Control field (if present) on management
58 	 * frames after we've sent the frame to monitoring. We
59 	 * (currently) don't need it, and don't properly parse
60 	 * frames with it present, due to the assumption of a
61 	 * fixed management header length.
62 	 */
63 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
64 		return skb;
65 
66 	hdrlen = ieee80211_hdrlen(fc);
67 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
68 
69 	if (!pskb_may_pull(skb, hdrlen)) {
70 		dev_kfree_skb(skb);
71 		return NULL;
72 	}
73 
74 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
75 		hdrlen - IEEE80211_HT_CTL_LEN);
76 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
77 
78 	return skb;
79 }
80 
81 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
82 				     unsigned int rtap_space)
83 {
84 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
85 	struct ieee80211_hdr *hdr;
86 
87 	hdr = (void *)(skb->data + rtap_space);
88 
89 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
90 			    RX_FLAG_FAILED_PLCP_CRC |
91 			    RX_FLAG_ONLY_MONITOR |
92 			    RX_FLAG_NO_PSDU))
93 		return true;
94 
95 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
96 		return true;
97 
98 	if (ieee80211_is_ctl(hdr->frame_control) &&
99 	    !ieee80211_is_pspoll(hdr->frame_control) &&
100 	    !ieee80211_is_back_req(hdr->frame_control))
101 		return true;
102 
103 	return false;
104 }
105 
106 static int
107 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
108 			     struct ieee80211_rx_status *status,
109 			     struct sk_buff *skb)
110 {
111 	int len;
112 
113 	/* always present fields */
114 	len = sizeof(struct ieee80211_radiotap_header) + 8;
115 
116 	/* allocate extra bitmaps */
117 	if (status->chains)
118 		len += 4 * hweight8(status->chains);
119 	/* vendor presence bitmap */
120 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
121 		len += 4;
122 
123 	if (ieee80211_have_rx_timestamp(status)) {
124 		len = ALIGN(len, 8);
125 		len += 8;
126 	}
127 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
128 		len += 1;
129 
130 	/* antenna field, if we don't have per-chain info */
131 	if (!status->chains)
132 		len += 1;
133 
134 	/* padding for RX_FLAGS if necessary */
135 	len = ALIGN(len, 2);
136 
137 	if (status->encoding == RX_ENC_HT) /* HT info */
138 		len += 3;
139 
140 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
141 		len = ALIGN(len, 4);
142 		len += 8;
143 	}
144 
145 	if (status->encoding == RX_ENC_VHT) {
146 		len = ALIGN(len, 2);
147 		len += 12;
148 	}
149 
150 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
151 		len = ALIGN(len, 8);
152 		len += 12;
153 	}
154 
155 	if (status->encoding == RX_ENC_HE &&
156 	    status->flag & RX_FLAG_RADIOTAP_HE) {
157 		len = ALIGN(len, 2);
158 		len += 12;
159 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
160 	}
161 
162 	if (status->encoding == RX_ENC_HE &&
163 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
164 		len = ALIGN(len, 2);
165 		len += 12;
166 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
167 	}
168 
169 	if (status->flag & RX_FLAG_NO_PSDU)
170 		len += 1;
171 
172 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
173 		len = ALIGN(len, 2);
174 		len += 4;
175 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
176 	}
177 
178 	if (status->chains) {
179 		/* antenna and antenna signal fields */
180 		len += 2 * hweight8(status->chains);
181 	}
182 
183 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
184 		struct ieee80211_vendor_radiotap *rtap;
185 		int vendor_data_offset = 0;
186 
187 		/*
188 		 * The position to look at depends on the existence (or non-
189 		 * existence) of other elements, so take that into account...
190 		 */
191 		if (status->flag & RX_FLAG_RADIOTAP_HE)
192 			vendor_data_offset +=
193 				sizeof(struct ieee80211_radiotap_he);
194 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
195 			vendor_data_offset +=
196 				sizeof(struct ieee80211_radiotap_he_mu);
197 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
198 			vendor_data_offset +=
199 				sizeof(struct ieee80211_radiotap_lsig);
200 
201 		rtap = (void *)&skb->data[vendor_data_offset];
202 
203 		/* alignment for fixed 6-byte vendor data header */
204 		len = ALIGN(len, 2);
205 		/* vendor data header */
206 		len += 6;
207 		if (WARN_ON(rtap->align == 0))
208 			rtap->align = 1;
209 		len = ALIGN(len, rtap->align);
210 		len += rtap->len + rtap->pad;
211 	}
212 
213 	return len;
214 }
215 
216 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
217 					 struct sk_buff *skb,
218 					 int rtap_space)
219 {
220 	struct {
221 		struct ieee80211_hdr_3addr hdr;
222 		u8 category;
223 		u8 action_code;
224 	} __packed __aligned(2) action;
225 
226 	if (!sdata)
227 		return;
228 
229 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
230 
231 	if (skb->len < rtap_space + sizeof(action) +
232 		       VHT_MUMIMO_GROUPS_DATA_LEN)
233 		return;
234 
235 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
236 		return;
237 
238 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
239 
240 	if (!ieee80211_is_action(action.hdr.frame_control))
241 		return;
242 
243 	if (action.category != WLAN_CATEGORY_VHT)
244 		return;
245 
246 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
247 		return;
248 
249 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
250 		return;
251 
252 	skb = skb_copy(skb, GFP_ATOMIC);
253 	if (!skb)
254 		return;
255 
256 	skb_queue_tail(&sdata->skb_queue, skb);
257 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
258 }
259 
260 /*
261  * ieee80211_add_rx_radiotap_header - add radiotap header
262  *
263  * add a radiotap header containing all the fields which the hardware provided.
264  */
265 static void
266 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
267 				 struct sk_buff *skb,
268 				 struct ieee80211_rate *rate,
269 				 int rtap_len, bool has_fcs)
270 {
271 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
272 	struct ieee80211_radiotap_header *rthdr;
273 	unsigned char *pos;
274 	__le32 *it_present;
275 	u32 it_present_val;
276 	u16 rx_flags = 0;
277 	u16 channel_flags = 0;
278 	int mpdulen, chain;
279 	unsigned long chains = status->chains;
280 	struct ieee80211_vendor_radiotap rtap = {};
281 	struct ieee80211_radiotap_he he = {};
282 	struct ieee80211_radiotap_he_mu he_mu = {};
283 	struct ieee80211_radiotap_lsig lsig = {};
284 
285 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
286 		he = *(struct ieee80211_radiotap_he *)skb->data;
287 		skb_pull(skb, sizeof(he));
288 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
289 	}
290 
291 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
292 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
293 		skb_pull(skb, sizeof(he_mu));
294 	}
295 
296 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
297 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
298 		skb_pull(skb, sizeof(lsig));
299 	}
300 
301 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
302 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
303 		/* rtap.len and rtap.pad are undone immediately */
304 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
305 	}
306 
307 	mpdulen = skb->len;
308 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
309 		mpdulen += FCS_LEN;
310 
311 	rthdr = skb_push(skb, rtap_len);
312 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
313 	it_present = &rthdr->it_present;
314 
315 	/* radiotap header, set always present flags */
316 	rthdr->it_len = cpu_to_le16(rtap_len);
317 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
318 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
319 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
320 
321 	if (!status->chains)
322 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
323 
324 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
325 		it_present_val |=
326 			BIT(IEEE80211_RADIOTAP_EXT) |
327 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
328 		put_unaligned_le32(it_present_val, it_present);
329 		it_present++;
330 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
331 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
332 	}
333 
334 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
335 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
336 				  BIT(IEEE80211_RADIOTAP_EXT);
337 		put_unaligned_le32(it_present_val, it_present);
338 		it_present++;
339 		it_present_val = rtap.present;
340 	}
341 
342 	put_unaligned_le32(it_present_val, it_present);
343 
344 	pos = (void *)(it_present + 1);
345 
346 	/* the order of the following fields is important */
347 
348 	/* IEEE80211_RADIOTAP_TSFT */
349 	if (ieee80211_have_rx_timestamp(status)) {
350 		/* padding */
351 		while ((pos - (u8 *)rthdr) & 7)
352 			*pos++ = 0;
353 		put_unaligned_le64(
354 			ieee80211_calculate_rx_timestamp(local, status,
355 							 mpdulen, 0),
356 			pos);
357 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
358 		pos += 8;
359 	}
360 
361 	/* IEEE80211_RADIOTAP_FLAGS */
362 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
363 		*pos |= IEEE80211_RADIOTAP_F_FCS;
364 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
365 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
366 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
367 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
368 	pos++;
369 
370 	/* IEEE80211_RADIOTAP_RATE */
371 	if (!rate || status->encoding != RX_ENC_LEGACY) {
372 		/*
373 		 * Without rate information don't add it. If we have,
374 		 * MCS information is a separate field in radiotap,
375 		 * added below. The byte here is needed as padding
376 		 * for the channel though, so initialise it to 0.
377 		 */
378 		*pos = 0;
379 	} else {
380 		int shift = 0;
381 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
382 		if (status->bw == RATE_INFO_BW_10)
383 			shift = 1;
384 		else if (status->bw == RATE_INFO_BW_5)
385 			shift = 2;
386 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
387 	}
388 	pos++;
389 
390 	/* IEEE80211_RADIOTAP_CHANNEL */
391 	/* TODO: frequency offset in KHz */
392 	put_unaligned_le16(status->freq, pos);
393 	pos += 2;
394 	if (status->bw == RATE_INFO_BW_10)
395 		channel_flags |= IEEE80211_CHAN_HALF;
396 	else if (status->bw == RATE_INFO_BW_5)
397 		channel_flags |= IEEE80211_CHAN_QUARTER;
398 
399 	if (status->band == NL80211_BAND_5GHZ ||
400 	    status->band == NL80211_BAND_6GHZ)
401 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
402 	else if (status->encoding != RX_ENC_LEGACY)
403 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
404 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
405 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
406 	else if (rate)
407 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
408 	else
409 		channel_flags |= IEEE80211_CHAN_2GHZ;
410 	put_unaligned_le16(channel_flags, pos);
411 	pos += 2;
412 
413 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
414 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
415 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
416 		*pos = status->signal;
417 		rthdr->it_present |=
418 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
419 		pos++;
420 	}
421 
422 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
423 
424 	if (!status->chains) {
425 		/* IEEE80211_RADIOTAP_ANTENNA */
426 		*pos = status->antenna;
427 		pos++;
428 	}
429 
430 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
431 
432 	/* IEEE80211_RADIOTAP_RX_FLAGS */
433 	/* ensure 2 byte alignment for the 2 byte field as required */
434 	if ((pos - (u8 *)rthdr) & 1)
435 		*pos++ = 0;
436 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
437 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
438 	put_unaligned_le16(rx_flags, pos);
439 	pos += 2;
440 
441 	if (status->encoding == RX_ENC_HT) {
442 		unsigned int stbc;
443 
444 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
445 		*pos++ = local->hw.radiotap_mcs_details;
446 		*pos = 0;
447 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
448 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
449 		if (status->bw == RATE_INFO_BW_40)
450 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
451 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
452 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
453 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
454 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
455 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
456 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
457 		pos++;
458 		*pos++ = status->rate_idx;
459 	}
460 
461 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
462 		u16 flags = 0;
463 
464 		/* ensure 4 byte alignment */
465 		while ((pos - (u8 *)rthdr) & 3)
466 			pos++;
467 		rthdr->it_present |=
468 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
469 		put_unaligned_le32(status->ampdu_reference, pos);
470 		pos += 4;
471 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
472 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
473 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
474 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
475 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
476 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
477 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
478 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
479 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
480 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
481 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
482 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
483 		put_unaligned_le16(flags, pos);
484 		pos += 2;
485 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
486 			*pos++ = status->ampdu_delimiter_crc;
487 		else
488 			*pos++ = 0;
489 		*pos++ = 0;
490 	}
491 
492 	if (status->encoding == RX_ENC_VHT) {
493 		u16 known = local->hw.radiotap_vht_details;
494 
495 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
496 		put_unaligned_le16(known, pos);
497 		pos += 2;
498 		/* flags */
499 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
500 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
501 		/* in VHT, STBC is binary */
502 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
503 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
504 		if (status->enc_flags & RX_ENC_FLAG_BF)
505 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
506 		pos++;
507 		/* bandwidth */
508 		switch (status->bw) {
509 		case RATE_INFO_BW_80:
510 			*pos++ = 4;
511 			break;
512 		case RATE_INFO_BW_160:
513 			*pos++ = 11;
514 			break;
515 		case RATE_INFO_BW_40:
516 			*pos++ = 1;
517 			break;
518 		default:
519 			*pos++ = 0;
520 		}
521 		/* MCS/NSS */
522 		*pos = (status->rate_idx << 4) | status->nss;
523 		pos += 4;
524 		/* coding field */
525 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
526 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
527 		pos++;
528 		/* group ID */
529 		pos++;
530 		/* partial_aid */
531 		pos += 2;
532 	}
533 
534 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
535 		u16 accuracy = 0;
536 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
537 
538 		rthdr->it_present |=
539 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
540 
541 		/* ensure 8 byte alignment */
542 		while ((pos - (u8 *)rthdr) & 7)
543 			pos++;
544 
545 		put_unaligned_le64(status->device_timestamp, pos);
546 		pos += sizeof(u64);
547 
548 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
549 			accuracy = local->hw.radiotap_timestamp.accuracy;
550 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
551 		}
552 		put_unaligned_le16(accuracy, pos);
553 		pos += sizeof(u16);
554 
555 		*pos++ = local->hw.radiotap_timestamp.units_pos;
556 		*pos++ = flags;
557 	}
558 
559 	if (status->encoding == RX_ENC_HE &&
560 	    status->flag & RX_FLAG_RADIOTAP_HE) {
561 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
562 
563 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
564 			he.data6 |= HE_PREP(DATA6_NSTS,
565 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
566 						      status->enc_flags));
567 			he.data3 |= HE_PREP(DATA3_STBC, 1);
568 		} else {
569 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
570 		}
571 
572 #define CHECK_GI(s) \
573 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
574 		     (int)NL80211_RATE_INFO_HE_GI_##s)
575 
576 		CHECK_GI(0_8);
577 		CHECK_GI(1_6);
578 		CHECK_GI(3_2);
579 
580 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
581 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
582 		he.data3 |= HE_PREP(DATA3_CODING,
583 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
584 
585 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
586 
587 		switch (status->bw) {
588 		case RATE_INFO_BW_20:
589 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
590 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
591 			break;
592 		case RATE_INFO_BW_40:
593 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
594 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
595 			break;
596 		case RATE_INFO_BW_80:
597 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
598 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
599 			break;
600 		case RATE_INFO_BW_160:
601 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
602 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
603 			break;
604 		case RATE_INFO_BW_HE_RU:
605 #define CHECK_RU_ALLOC(s) \
606 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
607 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
608 
609 			CHECK_RU_ALLOC(26);
610 			CHECK_RU_ALLOC(52);
611 			CHECK_RU_ALLOC(106);
612 			CHECK_RU_ALLOC(242);
613 			CHECK_RU_ALLOC(484);
614 			CHECK_RU_ALLOC(996);
615 			CHECK_RU_ALLOC(2x996);
616 
617 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
618 					    status->he_ru + 4);
619 			break;
620 		default:
621 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
622 		}
623 
624 		/* ensure 2 byte alignment */
625 		while ((pos - (u8 *)rthdr) & 1)
626 			pos++;
627 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
628 		memcpy(pos, &he, sizeof(he));
629 		pos += sizeof(he);
630 	}
631 
632 	if (status->encoding == RX_ENC_HE &&
633 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
634 		/* ensure 2 byte alignment */
635 		while ((pos - (u8 *)rthdr) & 1)
636 			pos++;
637 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
638 		memcpy(pos, &he_mu, sizeof(he_mu));
639 		pos += sizeof(he_mu);
640 	}
641 
642 	if (status->flag & RX_FLAG_NO_PSDU) {
643 		rthdr->it_present |=
644 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
645 		*pos++ = status->zero_length_psdu_type;
646 	}
647 
648 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
649 		/* ensure 2 byte alignment */
650 		while ((pos - (u8 *)rthdr) & 1)
651 			pos++;
652 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
653 		memcpy(pos, &lsig, sizeof(lsig));
654 		pos += sizeof(lsig);
655 	}
656 
657 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
658 		*pos++ = status->chain_signal[chain];
659 		*pos++ = chain;
660 	}
661 
662 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
663 		/* ensure 2 byte alignment for the vendor field as required */
664 		if ((pos - (u8 *)rthdr) & 1)
665 			*pos++ = 0;
666 		*pos++ = rtap.oui[0];
667 		*pos++ = rtap.oui[1];
668 		*pos++ = rtap.oui[2];
669 		*pos++ = rtap.subns;
670 		put_unaligned_le16(rtap.len, pos);
671 		pos += 2;
672 		/* align the actual payload as requested */
673 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
674 			*pos++ = 0;
675 		/* data (and possible padding) already follows */
676 	}
677 }
678 
679 static struct sk_buff *
680 ieee80211_make_monitor_skb(struct ieee80211_local *local,
681 			   struct sk_buff **origskb,
682 			   struct ieee80211_rate *rate,
683 			   int rtap_space, bool use_origskb)
684 {
685 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
686 	int rt_hdrlen, needed_headroom;
687 	struct sk_buff *skb;
688 
689 	/* room for the radiotap header based on driver features */
690 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
691 	needed_headroom = rt_hdrlen - rtap_space;
692 
693 	if (use_origskb) {
694 		/* only need to expand headroom if necessary */
695 		skb = *origskb;
696 		*origskb = NULL;
697 
698 		/*
699 		 * This shouldn't trigger often because most devices have an
700 		 * RX header they pull before we get here, and that should
701 		 * be big enough for our radiotap information. We should
702 		 * probably export the length to drivers so that we can have
703 		 * them allocate enough headroom to start with.
704 		 */
705 		if (skb_headroom(skb) < needed_headroom &&
706 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
707 			dev_kfree_skb(skb);
708 			return NULL;
709 		}
710 	} else {
711 		/*
712 		 * Need to make a copy and possibly remove radiotap header
713 		 * and FCS from the original.
714 		 */
715 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
716 
717 		if (!skb)
718 			return NULL;
719 	}
720 
721 	/* prepend radiotap information */
722 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
723 
724 	skb_reset_mac_header(skb);
725 	skb->ip_summed = CHECKSUM_UNNECESSARY;
726 	skb->pkt_type = PACKET_OTHERHOST;
727 	skb->protocol = htons(ETH_P_802_2);
728 
729 	return skb;
730 }
731 
732 /*
733  * This function copies a received frame to all monitor interfaces and
734  * returns a cleaned-up SKB that no longer includes the FCS nor the
735  * radiotap header the driver might have added.
736  */
737 static struct sk_buff *
738 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
739 		     struct ieee80211_rate *rate)
740 {
741 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
742 	struct ieee80211_sub_if_data *sdata;
743 	struct sk_buff *monskb = NULL;
744 	int present_fcs_len = 0;
745 	unsigned int rtap_space = 0;
746 	struct ieee80211_sub_if_data *monitor_sdata =
747 		rcu_dereference(local->monitor_sdata);
748 	bool only_monitor = false;
749 	unsigned int min_head_len;
750 
751 	if (status->flag & RX_FLAG_RADIOTAP_HE)
752 		rtap_space += sizeof(struct ieee80211_radiotap_he);
753 
754 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
755 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
756 
757 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
758 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
759 
760 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
761 		struct ieee80211_vendor_radiotap *rtap =
762 			(void *)(origskb->data + rtap_space);
763 
764 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
765 	}
766 
767 	min_head_len = rtap_space;
768 
769 	/*
770 	 * First, we may need to make a copy of the skb because
771 	 *  (1) we need to modify it for radiotap (if not present), and
772 	 *  (2) the other RX handlers will modify the skb we got.
773 	 *
774 	 * We don't need to, of course, if we aren't going to return
775 	 * the SKB because it has a bad FCS/PLCP checksum.
776 	 */
777 
778 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
779 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
780 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
781 				/* driver bug */
782 				WARN_ON(1);
783 				dev_kfree_skb(origskb);
784 				return NULL;
785 			}
786 			present_fcs_len = FCS_LEN;
787 		}
788 
789 		/* also consider the hdr->frame_control */
790 		min_head_len += 2;
791 	}
792 
793 	/* ensure that the expected data elements are in skb head */
794 	if (!pskb_may_pull(origskb, min_head_len)) {
795 		dev_kfree_skb(origskb);
796 		return NULL;
797 	}
798 
799 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
800 
801 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
802 		if (only_monitor) {
803 			dev_kfree_skb(origskb);
804 			return NULL;
805 		}
806 
807 		return ieee80211_clean_skb(origskb, present_fcs_len,
808 					   rtap_space);
809 	}
810 
811 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
812 
813 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
814 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
815 						 &local->mon_list);
816 
817 		if (!monskb)
818 			monskb = ieee80211_make_monitor_skb(local, &origskb,
819 							    rate, rtap_space,
820 							    only_monitor &&
821 							    last_monitor);
822 
823 		if (monskb) {
824 			struct sk_buff *skb;
825 
826 			if (last_monitor) {
827 				skb = monskb;
828 				monskb = NULL;
829 			} else {
830 				skb = skb_clone(monskb, GFP_ATOMIC);
831 			}
832 
833 			if (skb) {
834 				skb->dev = sdata->dev;
835 				dev_sw_netstats_rx_add(skb->dev, skb->len);
836 				netif_receive_skb(skb);
837 			}
838 		}
839 
840 		if (last_monitor)
841 			break;
842 	}
843 
844 	/* this happens if last_monitor was erroneously false */
845 	dev_kfree_skb(monskb);
846 
847 	/* ditto */
848 	if (!origskb)
849 		return NULL;
850 
851 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
852 }
853 
854 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
855 {
856 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
857 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
858 	int tid, seqno_idx, security_idx;
859 
860 	/* does the frame have a qos control field? */
861 	if (ieee80211_is_data_qos(hdr->frame_control)) {
862 		u8 *qc = ieee80211_get_qos_ctl(hdr);
863 		/* frame has qos control */
864 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
865 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
866 			status->rx_flags |= IEEE80211_RX_AMSDU;
867 
868 		seqno_idx = tid;
869 		security_idx = tid;
870 	} else {
871 		/*
872 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
873 		 *
874 		 *	Sequence numbers for management frames, QoS data
875 		 *	frames with a broadcast/multicast address in the
876 		 *	Address 1 field, and all non-QoS data frames sent
877 		 *	by QoS STAs are assigned using an additional single
878 		 *	modulo-4096 counter, [...]
879 		 *
880 		 * We also use that counter for non-QoS STAs.
881 		 */
882 		seqno_idx = IEEE80211_NUM_TIDS;
883 		security_idx = 0;
884 		if (ieee80211_is_mgmt(hdr->frame_control))
885 			security_idx = IEEE80211_NUM_TIDS;
886 		tid = 0;
887 	}
888 
889 	rx->seqno_idx = seqno_idx;
890 	rx->security_idx = security_idx;
891 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
892 	 * For now, set skb->priority to 0 for other cases. */
893 	rx->skb->priority = (tid > 7) ? 0 : tid;
894 }
895 
896 /**
897  * DOC: Packet alignment
898  *
899  * Drivers always need to pass packets that are aligned to two-byte boundaries
900  * to the stack.
901  *
902  * Additionally, should, if possible, align the payload data in a way that
903  * guarantees that the contained IP header is aligned to a four-byte
904  * boundary. In the case of regular frames, this simply means aligning the
905  * payload to a four-byte boundary (because either the IP header is directly
906  * contained, or IV/RFC1042 headers that have a length divisible by four are
907  * in front of it).  If the payload data is not properly aligned and the
908  * architecture doesn't support efficient unaligned operations, mac80211
909  * will align the data.
910  *
911  * With A-MSDU frames, however, the payload data address must yield two modulo
912  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
913  * push the IP header further back to a multiple of four again. Thankfully, the
914  * specs were sane enough this time around to require padding each A-MSDU
915  * subframe to a length that is a multiple of four.
916  *
917  * Padding like Atheros hardware adds which is between the 802.11 header and
918  * the payload is not supported, the driver is required to move the 802.11
919  * header to be directly in front of the payload in that case.
920  */
921 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
922 {
923 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
924 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
925 #endif
926 }
927 
928 
929 /* rx handlers */
930 
931 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
932 {
933 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
934 
935 	if (is_multicast_ether_addr(hdr->addr1))
936 		return 0;
937 
938 	return ieee80211_is_robust_mgmt_frame(skb);
939 }
940 
941 
942 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
943 {
944 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
945 
946 	if (!is_multicast_ether_addr(hdr->addr1))
947 		return 0;
948 
949 	return ieee80211_is_robust_mgmt_frame(skb);
950 }
951 
952 
953 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
954 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
955 {
956 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
957 	struct ieee80211_mmie *mmie;
958 	struct ieee80211_mmie_16 *mmie16;
959 
960 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
961 		return -1;
962 
963 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
964 	    !ieee80211_is_beacon(hdr->frame_control))
965 		return -1; /* not a robust management frame */
966 
967 	mmie = (struct ieee80211_mmie *)
968 		(skb->data + skb->len - sizeof(*mmie));
969 	if (mmie->element_id == WLAN_EID_MMIE &&
970 	    mmie->length == sizeof(*mmie) - 2)
971 		return le16_to_cpu(mmie->key_id);
972 
973 	mmie16 = (struct ieee80211_mmie_16 *)
974 		(skb->data + skb->len - sizeof(*mmie16));
975 	if (skb->len >= 24 + sizeof(*mmie16) &&
976 	    mmie16->element_id == WLAN_EID_MMIE &&
977 	    mmie16->length == sizeof(*mmie16) - 2)
978 		return le16_to_cpu(mmie16->key_id);
979 
980 	return -1;
981 }
982 
983 static int ieee80211_get_keyid(struct sk_buff *skb,
984 			       const struct ieee80211_cipher_scheme *cs)
985 {
986 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
987 	__le16 fc;
988 	int hdrlen;
989 	int minlen;
990 	u8 key_idx_off;
991 	u8 key_idx_shift;
992 	u8 keyid;
993 
994 	fc = hdr->frame_control;
995 	hdrlen = ieee80211_hdrlen(fc);
996 
997 	if (cs) {
998 		minlen = hdrlen + cs->hdr_len;
999 		key_idx_off = hdrlen + cs->key_idx_off;
1000 		key_idx_shift = cs->key_idx_shift;
1001 	} else {
1002 		/* WEP, TKIP, CCMP and GCMP */
1003 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1004 		key_idx_off = hdrlen + 3;
1005 		key_idx_shift = 6;
1006 	}
1007 
1008 	if (unlikely(skb->len < minlen))
1009 		return -EINVAL;
1010 
1011 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1012 
1013 	if (cs)
1014 		keyid &= cs->key_idx_mask;
1015 	keyid >>= key_idx_shift;
1016 
1017 	/* cs could use more than the usual two bits for the keyid */
1018 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1019 		return -EINVAL;
1020 
1021 	return keyid;
1022 }
1023 
1024 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1025 {
1026 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1027 	char *dev_addr = rx->sdata->vif.addr;
1028 
1029 	if (ieee80211_is_data(hdr->frame_control)) {
1030 		if (is_multicast_ether_addr(hdr->addr1)) {
1031 			if (ieee80211_has_tods(hdr->frame_control) ||
1032 			    !ieee80211_has_fromds(hdr->frame_control))
1033 				return RX_DROP_MONITOR;
1034 			if (ether_addr_equal(hdr->addr3, dev_addr))
1035 				return RX_DROP_MONITOR;
1036 		} else {
1037 			if (!ieee80211_has_a4(hdr->frame_control))
1038 				return RX_DROP_MONITOR;
1039 			if (ether_addr_equal(hdr->addr4, dev_addr))
1040 				return RX_DROP_MONITOR;
1041 		}
1042 	}
1043 
1044 	/* If there is not an established peer link and this is not a peer link
1045 	 * establisment frame, beacon or probe, drop the frame.
1046 	 */
1047 
1048 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1049 		struct ieee80211_mgmt *mgmt;
1050 
1051 		if (!ieee80211_is_mgmt(hdr->frame_control))
1052 			return RX_DROP_MONITOR;
1053 
1054 		if (ieee80211_is_action(hdr->frame_control)) {
1055 			u8 category;
1056 
1057 			/* make sure category field is present */
1058 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1059 				return RX_DROP_MONITOR;
1060 
1061 			mgmt = (struct ieee80211_mgmt *)hdr;
1062 			category = mgmt->u.action.category;
1063 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1064 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1065 				return RX_DROP_MONITOR;
1066 			return RX_CONTINUE;
1067 		}
1068 
1069 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1070 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1071 		    ieee80211_is_beacon(hdr->frame_control) ||
1072 		    ieee80211_is_auth(hdr->frame_control))
1073 			return RX_CONTINUE;
1074 
1075 		return RX_DROP_MONITOR;
1076 	}
1077 
1078 	return RX_CONTINUE;
1079 }
1080 
1081 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1082 					      int index)
1083 {
1084 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1085 	struct sk_buff *tail = skb_peek_tail(frames);
1086 	struct ieee80211_rx_status *status;
1087 
1088 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1089 		return true;
1090 
1091 	if (!tail)
1092 		return false;
1093 
1094 	status = IEEE80211_SKB_RXCB(tail);
1095 	if (status->flag & RX_FLAG_AMSDU_MORE)
1096 		return false;
1097 
1098 	return true;
1099 }
1100 
1101 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1102 					    struct tid_ampdu_rx *tid_agg_rx,
1103 					    int index,
1104 					    struct sk_buff_head *frames)
1105 {
1106 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1107 	struct sk_buff *skb;
1108 	struct ieee80211_rx_status *status;
1109 
1110 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1111 
1112 	if (skb_queue_empty(skb_list))
1113 		goto no_frame;
1114 
1115 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1116 		__skb_queue_purge(skb_list);
1117 		goto no_frame;
1118 	}
1119 
1120 	/* release frames from the reorder ring buffer */
1121 	tid_agg_rx->stored_mpdu_num--;
1122 	while ((skb = __skb_dequeue(skb_list))) {
1123 		status = IEEE80211_SKB_RXCB(skb);
1124 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1125 		__skb_queue_tail(frames, skb);
1126 	}
1127 
1128 no_frame:
1129 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1130 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1131 }
1132 
1133 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1134 					     struct tid_ampdu_rx *tid_agg_rx,
1135 					     u16 head_seq_num,
1136 					     struct sk_buff_head *frames)
1137 {
1138 	int index;
1139 
1140 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1141 
1142 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1143 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1144 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1145 						frames);
1146 	}
1147 }
1148 
1149 /*
1150  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1151  * the skb was added to the buffer longer than this time ago, the earlier
1152  * frames that have not yet been received are assumed to be lost and the skb
1153  * can be released for processing. This may also release other skb's from the
1154  * reorder buffer if there are no additional gaps between the frames.
1155  *
1156  * Callers must hold tid_agg_rx->reorder_lock.
1157  */
1158 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1159 
1160 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1161 					  struct tid_ampdu_rx *tid_agg_rx,
1162 					  struct sk_buff_head *frames)
1163 {
1164 	int index, i, j;
1165 
1166 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1167 
1168 	/* release the buffer until next missing frame */
1169 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1170 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1171 	    tid_agg_rx->stored_mpdu_num) {
1172 		/*
1173 		 * No buffers ready to be released, but check whether any
1174 		 * frames in the reorder buffer have timed out.
1175 		 */
1176 		int skipped = 1;
1177 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1178 		     j = (j + 1) % tid_agg_rx->buf_size) {
1179 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1180 				skipped++;
1181 				continue;
1182 			}
1183 			if (skipped &&
1184 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1185 					HT_RX_REORDER_BUF_TIMEOUT))
1186 				goto set_release_timer;
1187 
1188 			/* don't leave incomplete A-MSDUs around */
1189 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1190 			     i = (i + 1) % tid_agg_rx->buf_size)
1191 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1192 
1193 			ht_dbg_ratelimited(sdata,
1194 					   "release an RX reorder frame due to timeout on earlier frames\n");
1195 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1196 							frames);
1197 
1198 			/*
1199 			 * Increment the head seq# also for the skipped slots.
1200 			 */
1201 			tid_agg_rx->head_seq_num =
1202 				(tid_agg_rx->head_seq_num +
1203 				 skipped) & IEEE80211_SN_MASK;
1204 			skipped = 0;
1205 		}
1206 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1207 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1208 						frames);
1209 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1210 	}
1211 
1212 	if (tid_agg_rx->stored_mpdu_num) {
1213 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1214 
1215 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1216 		     j = (j + 1) % tid_agg_rx->buf_size) {
1217 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1218 				break;
1219 		}
1220 
1221  set_release_timer:
1222 
1223 		if (!tid_agg_rx->removed)
1224 			mod_timer(&tid_agg_rx->reorder_timer,
1225 				  tid_agg_rx->reorder_time[j] + 1 +
1226 				  HT_RX_REORDER_BUF_TIMEOUT);
1227 	} else {
1228 		del_timer(&tid_agg_rx->reorder_timer);
1229 	}
1230 }
1231 
1232 /*
1233  * As this function belongs to the RX path it must be under
1234  * rcu_read_lock protection. It returns false if the frame
1235  * can be processed immediately, true if it was consumed.
1236  */
1237 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1238 					     struct tid_ampdu_rx *tid_agg_rx,
1239 					     struct sk_buff *skb,
1240 					     struct sk_buff_head *frames)
1241 {
1242 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1243 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1244 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1245 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1246 	u16 head_seq_num, buf_size;
1247 	int index;
1248 	bool ret = true;
1249 
1250 	spin_lock(&tid_agg_rx->reorder_lock);
1251 
1252 	/*
1253 	 * Offloaded BA sessions have no known starting sequence number so pick
1254 	 * one from first Rxed frame for this tid after BA was started.
1255 	 */
1256 	if (unlikely(tid_agg_rx->auto_seq)) {
1257 		tid_agg_rx->auto_seq = false;
1258 		tid_agg_rx->ssn = mpdu_seq_num;
1259 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1260 	}
1261 
1262 	buf_size = tid_agg_rx->buf_size;
1263 	head_seq_num = tid_agg_rx->head_seq_num;
1264 
1265 	/*
1266 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1267 	 * be reordered.
1268 	 */
1269 	if (unlikely(!tid_agg_rx->started)) {
1270 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1271 			ret = false;
1272 			goto out;
1273 		}
1274 		tid_agg_rx->started = true;
1275 	}
1276 
1277 	/* frame with out of date sequence number */
1278 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1279 		dev_kfree_skb(skb);
1280 		goto out;
1281 	}
1282 
1283 	/*
1284 	 * If frame the sequence number exceeds our buffering window
1285 	 * size release some previous frames to make room for this one.
1286 	 */
1287 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1288 		head_seq_num = ieee80211_sn_inc(
1289 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1290 		/* release stored frames up to new head to stack */
1291 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1292 						 head_seq_num, frames);
1293 	}
1294 
1295 	/* Now the new frame is always in the range of the reordering buffer */
1296 
1297 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1298 
1299 	/* check if we already stored this frame */
1300 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1301 		dev_kfree_skb(skb);
1302 		goto out;
1303 	}
1304 
1305 	/*
1306 	 * If the current MPDU is in the right order and nothing else
1307 	 * is stored we can process it directly, no need to buffer it.
1308 	 * If it is first but there's something stored, we may be able
1309 	 * to release frames after this one.
1310 	 */
1311 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1312 	    tid_agg_rx->stored_mpdu_num == 0) {
1313 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1314 			tid_agg_rx->head_seq_num =
1315 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1316 		ret = false;
1317 		goto out;
1318 	}
1319 
1320 	/* put the frame in the reordering buffer */
1321 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1322 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1323 		tid_agg_rx->reorder_time[index] = jiffies;
1324 		tid_agg_rx->stored_mpdu_num++;
1325 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1326 	}
1327 
1328  out:
1329 	spin_unlock(&tid_agg_rx->reorder_lock);
1330 	return ret;
1331 }
1332 
1333 /*
1334  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1335  * true if the MPDU was buffered, false if it should be processed.
1336  */
1337 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1338 				       struct sk_buff_head *frames)
1339 {
1340 	struct sk_buff *skb = rx->skb;
1341 	struct ieee80211_local *local = rx->local;
1342 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1343 	struct sta_info *sta = rx->sta;
1344 	struct tid_ampdu_rx *tid_agg_rx;
1345 	u16 sc;
1346 	u8 tid, ack_policy;
1347 
1348 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1349 	    is_multicast_ether_addr(hdr->addr1))
1350 		goto dont_reorder;
1351 
1352 	/*
1353 	 * filter the QoS data rx stream according to
1354 	 * STA/TID and check if this STA/TID is on aggregation
1355 	 */
1356 
1357 	if (!sta)
1358 		goto dont_reorder;
1359 
1360 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1361 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1362 	tid = ieee80211_get_tid(hdr);
1363 
1364 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1365 	if (!tid_agg_rx) {
1366 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1367 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1368 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1369 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1370 					     WLAN_BACK_RECIPIENT,
1371 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1372 		goto dont_reorder;
1373 	}
1374 
1375 	/* qos null data frames are excluded */
1376 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1377 		goto dont_reorder;
1378 
1379 	/* not part of a BA session */
1380 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1381 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1382 		goto dont_reorder;
1383 
1384 	/* new, potentially un-ordered, ampdu frame - process it */
1385 
1386 	/* reset session timer */
1387 	if (tid_agg_rx->timeout)
1388 		tid_agg_rx->last_rx = jiffies;
1389 
1390 	/* if this mpdu is fragmented - terminate rx aggregation session */
1391 	sc = le16_to_cpu(hdr->seq_ctrl);
1392 	if (sc & IEEE80211_SCTL_FRAG) {
1393 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1394 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1395 		return;
1396 	}
1397 
1398 	/*
1399 	 * No locking needed -- we will only ever process one
1400 	 * RX packet at a time, and thus own tid_agg_rx. All
1401 	 * other code manipulating it needs to (and does) make
1402 	 * sure that we cannot get to it any more before doing
1403 	 * anything with it.
1404 	 */
1405 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1406 					     frames))
1407 		return;
1408 
1409  dont_reorder:
1410 	__skb_queue_tail(frames, skb);
1411 }
1412 
1413 static ieee80211_rx_result debug_noinline
1414 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1415 {
1416 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1417 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1418 
1419 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1420 		return RX_CONTINUE;
1421 
1422 	/*
1423 	 * Drop duplicate 802.11 retransmissions
1424 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1425 	 */
1426 
1427 	if (rx->skb->len < 24)
1428 		return RX_CONTINUE;
1429 
1430 	if (ieee80211_is_ctl(hdr->frame_control) ||
1431 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1432 	    is_multicast_ether_addr(hdr->addr1))
1433 		return RX_CONTINUE;
1434 
1435 	if (!rx->sta)
1436 		return RX_CONTINUE;
1437 
1438 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1439 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1440 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1441 		rx->sta->rx_stats.num_duplicates++;
1442 		return RX_DROP_UNUSABLE;
1443 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1444 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1445 	}
1446 
1447 	return RX_CONTINUE;
1448 }
1449 
1450 static ieee80211_rx_result debug_noinline
1451 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1452 {
1453 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1454 
1455 	/* Drop disallowed frame classes based on STA auth/assoc state;
1456 	 * IEEE 802.11, Chap 5.5.
1457 	 *
1458 	 * mac80211 filters only based on association state, i.e. it drops
1459 	 * Class 3 frames from not associated stations. hostapd sends
1460 	 * deauth/disassoc frames when needed. In addition, hostapd is
1461 	 * responsible for filtering on both auth and assoc states.
1462 	 */
1463 
1464 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1465 		return ieee80211_rx_mesh_check(rx);
1466 
1467 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1468 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1469 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1470 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1471 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1472 		/*
1473 		 * accept port control frames from the AP even when it's not
1474 		 * yet marked ASSOC to prevent a race where we don't set the
1475 		 * assoc bit quickly enough before it sends the first frame
1476 		 */
1477 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1478 		    ieee80211_is_data_present(hdr->frame_control)) {
1479 			unsigned int hdrlen;
1480 			__be16 ethertype;
1481 
1482 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1483 
1484 			if (rx->skb->len < hdrlen + 8)
1485 				return RX_DROP_MONITOR;
1486 
1487 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1488 			if (ethertype == rx->sdata->control_port_protocol)
1489 				return RX_CONTINUE;
1490 		}
1491 
1492 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1493 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1494 					       hdr->addr2,
1495 					       GFP_ATOMIC))
1496 			return RX_DROP_UNUSABLE;
1497 
1498 		return RX_DROP_MONITOR;
1499 	}
1500 
1501 	return RX_CONTINUE;
1502 }
1503 
1504 
1505 static ieee80211_rx_result debug_noinline
1506 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1507 {
1508 	struct ieee80211_local *local;
1509 	struct ieee80211_hdr *hdr;
1510 	struct sk_buff *skb;
1511 
1512 	local = rx->local;
1513 	skb = rx->skb;
1514 	hdr = (struct ieee80211_hdr *) skb->data;
1515 
1516 	if (!local->pspolling)
1517 		return RX_CONTINUE;
1518 
1519 	if (!ieee80211_has_fromds(hdr->frame_control))
1520 		/* this is not from AP */
1521 		return RX_CONTINUE;
1522 
1523 	if (!ieee80211_is_data(hdr->frame_control))
1524 		return RX_CONTINUE;
1525 
1526 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1527 		/* AP has no more frames buffered for us */
1528 		local->pspolling = false;
1529 		return RX_CONTINUE;
1530 	}
1531 
1532 	/* more data bit is set, let's request a new frame from the AP */
1533 	ieee80211_send_pspoll(local, rx->sdata);
1534 
1535 	return RX_CONTINUE;
1536 }
1537 
1538 static void sta_ps_start(struct sta_info *sta)
1539 {
1540 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1541 	struct ieee80211_local *local = sdata->local;
1542 	struct ps_data *ps;
1543 	int tid;
1544 
1545 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1546 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1547 		ps = &sdata->bss->ps;
1548 	else
1549 		return;
1550 
1551 	atomic_inc(&ps->num_sta_ps);
1552 	set_sta_flag(sta, WLAN_STA_PS_STA);
1553 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1554 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1555 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1556 	       sta->sta.addr, sta->sta.aid);
1557 
1558 	ieee80211_clear_fast_xmit(sta);
1559 
1560 	if (!sta->sta.txq[0])
1561 		return;
1562 
1563 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1564 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1565 		struct txq_info *txqi = to_txq_info(txq);
1566 
1567 		spin_lock(&local->active_txq_lock[txq->ac]);
1568 		if (!list_empty(&txqi->schedule_order))
1569 			list_del_init(&txqi->schedule_order);
1570 		spin_unlock(&local->active_txq_lock[txq->ac]);
1571 
1572 		if (txq_has_queue(txq))
1573 			set_bit(tid, &sta->txq_buffered_tids);
1574 		else
1575 			clear_bit(tid, &sta->txq_buffered_tids);
1576 	}
1577 }
1578 
1579 static void sta_ps_end(struct sta_info *sta)
1580 {
1581 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1582 	       sta->sta.addr, sta->sta.aid);
1583 
1584 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1585 		/*
1586 		 * Clear the flag only if the other one is still set
1587 		 * so that the TX path won't start TX'ing new frames
1588 		 * directly ... In the case that the driver flag isn't
1589 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1590 		 */
1591 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1592 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1593 		       sta->sta.addr, sta->sta.aid);
1594 		return;
1595 	}
1596 
1597 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1598 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1599 	ieee80211_sta_ps_deliver_wakeup(sta);
1600 }
1601 
1602 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1603 {
1604 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1605 	bool in_ps;
1606 
1607 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1608 
1609 	/* Don't let the same PS state be set twice */
1610 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1611 	if ((start && in_ps) || (!start && !in_ps))
1612 		return -EINVAL;
1613 
1614 	if (start)
1615 		sta_ps_start(sta);
1616 	else
1617 		sta_ps_end(sta);
1618 
1619 	return 0;
1620 }
1621 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1622 
1623 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1624 {
1625 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1626 
1627 	if (test_sta_flag(sta, WLAN_STA_SP))
1628 		return;
1629 
1630 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1631 		ieee80211_sta_ps_deliver_poll_response(sta);
1632 	else
1633 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1634 }
1635 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1636 
1637 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1638 {
1639 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1640 	int ac = ieee80211_ac_from_tid(tid);
1641 
1642 	/*
1643 	 * If this AC is not trigger-enabled do nothing unless the
1644 	 * driver is calling us after it already checked.
1645 	 *
1646 	 * NB: This could/should check a separate bitmap of trigger-
1647 	 * enabled queues, but for now we only implement uAPSD w/o
1648 	 * TSPEC changes to the ACs, so they're always the same.
1649 	 */
1650 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1651 	    tid != IEEE80211_NUM_TIDS)
1652 		return;
1653 
1654 	/* if we are in a service period, do nothing */
1655 	if (test_sta_flag(sta, WLAN_STA_SP))
1656 		return;
1657 
1658 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1659 		ieee80211_sta_ps_deliver_uapsd(sta);
1660 	else
1661 		set_sta_flag(sta, WLAN_STA_UAPSD);
1662 }
1663 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1664 
1665 static ieee80211_rx_result debug_noinline
1666 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1667 {
1668 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1669 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1670 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1671 
1672 	if (!rx->sta)
1673 		return RX_CONTINUE;
1674 
1675 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1676 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1677 		return RX_CONTINUE;
1678 
1679 	/*
1680 	 * The device handles station powersave, so don't do anything about
1681 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1682 	 * it to mac80211 since they're handled.)
1683 	 */
1684 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1685 		return RX_CONTINUE;
1686 
1687 	/*
1688 	 * Don't do anything if the station isn't already asleep. In
1689 	 * the uAPSD case, the station will probably be marked asleep,
1690 	 * in the PS-Poll case the station must be confused ...
1691 	 */
1692 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1693 		return RX_CONTINUE;
1694 
1695 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1696 		ieee80211_sta_pspoll(&rx->sta->sta);
1697 
1698 		/* Free PS Poll skb here instead of returning RX_DROP that would
1699 		 * count as an dropped frame. */
1700 		dev_kfree_skb(rx->skb);
1701 
1702 		return RX_QUEUED;
1703 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1704 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1705 		   ieee80211_has_pm(hdr->frame_control) &&
1706 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1707 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1708 		u8 tid = ieee80211_get_tid(hdr);
1709 
1710 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1711 	}
1712 
1713 	return RX_CONTINUE;
1714 }
1715 
1716 static ieee80211_rx_result debug_noinline
1717 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1718 {
1719 	struct sta_info *sta = rx->sta;
1720 	struct sk_buff *skb = rx->skb;
1721 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1722 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1723 	int i;
1724 
1725 	if (!sta)
1726 		return RX_CONTINUE;
1727 
1728 	/*
1729 	 * Update last_rx only for IBSS packets which are for the current
1730 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1731 	 * current IBSS network alive in cases where other STAs start
1732 	 * using different BSSID. This will also give the station another
1733 	 * chance to restart the authentication/authorization in case
1734 	 * something went wrong the first time.
1735 	 */
1736 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1737 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1738 						NL80211_IFTYPE_ADHOC);
1739 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1740 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1741 			sta->rx_stats.last_rx = jiffies;
1742 			if (ieee80211_is_data(hdr->frame_control) &&
1743 			    !is_multicast_ether_addr(hdr->addr1))
1744 				sta->rx_stats.last_rate =
1745 					sta_stats_encode_rate(status);
1746 		}
1747 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1748 		sta->rx_stats.last_rx = jiffies;
1749 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1750 		   !is_multicast_ether_addr(hdr->addr1)) {
1751 		/*
1752 		 * Mesh beacons will update last_rx when if they are found to
1753 		 * match the current local configuration when processed.
1754 		 */
1755 		sta->rx_stats.last_rx = jiffies;
1756 		if (ieee80211_is_data(hdr->frame_control))
1757 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1758 	}
1759 
1760 	sta->rx_stats.fragments++;
1761 
1762 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1763 	sta->rx_stats.bytes += rx->skb->len;
1764 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1765 
1766 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1767 		sta->rx_stats.last_signal = status->signal;
1768 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1769 	}
1770 
1771 	if (status->chains) {
1772 		sta->rx_stats.chains = status->chains;
1773 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1774 			int signal = status->chain_signal[i];
1775 
1776 			if (!(status->chains & BIT(i)))
1777 				continue;
1778 
1779 			sta->rx_stats.chain_signal_last[i] = signal;
1780 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1781 					-signal);
1782 		}
1783 	}
1784 
1785 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1786 		return RX_CONTINUE;
1787 
1788 	/*
1789 	 * Change STA power saving mode only at the end of a frame
1790 	 * exchange sequence, and only for a data or management
1791 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1792 	 */
1793 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1794 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1795 	    !is_multicast_ether_addr(hdr->addr1) &&
1796 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1797 	     ieee80211_is_data(hdr->frame_control)) &&
1798 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1799 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1800 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1801 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1802 			if (!ieee80211_has_pm(hdr->frame_control))
1803 				sta_ps_end(sta);
1804 		} else {
1805 			if (ieee80211_has_pm(hdr->frame_control))
1806 				sta_ps_start(sta);
1807 		}
1808 	}
1809 
1810 	/* mesh power save support */
1811 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1812 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1813 
1814 	/*
1815 	 * Drop (qos-)data::nullfunc frames silently, since they
1816 	 * are used only to control station power saving mode.
1817 	 */
1818 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1819 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1820 
1821 		/*
1822 		 * If we receive a 4-addr nullfunc frame from a STA
1823 		 * that was not moved to a 4-addr STA vlan yet send
1824 		 * the event to userspace and for older hostapd drop
1825 		 * the frame to the monitor interface.
1826 		 */
1827 		if (ieee80211_has_a4(hdr->frame_control) &&
1828 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1829 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1830 		      !rx->sdata->u.vlan.sta))) {
1831 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1832 				cfg80211_rx_unexpected_4addr_frame(
1833 					rx->sdata->dev, sta->sta.addr,
1834 					GFP_ATOMIC);
1835 			return RX_DROP_MONITOR;
1836 		}
1837 		/*
1838 		 * Update counter and free packet here to avoid
1839 		 * counting this as a dropped packed.
1840 		 */
1841 		sta->rx_stats.packets++;
1842 		dev_kfree_skb(rx->skb);
1843 		return RX_QUEUED;
1844 	}
1845 
1846 	return RX_CONTINUE;
1847 } /* ieee80211_rx_h_sta_process */
1848 
1849 static struct ieee80211_key *
1850 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1851 {
1852 	struct ieee80211_key *key = NULL;
1853 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1854 	int idx2;
1855 
1856 	/* Make sure key gets set if either BIGTK key index is set so that
1857 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1858 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1859 	 * index (i.e., a key that we do not have).
1860 	 */
1861 
1862 	if (idx < 0) {
1863 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1864 		idx2 = idx + 1;
1865 	} else {
1866 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1867 			idx2 = idx + 1;
1868 		else
1869 			idx2 = idx - 1;
1870 	}
1871 
1872 	if (rx->sta)
1873 		key = rcu_dereference(rx->sta->gtk[idx]);
1874 	if (!key)
1875 		key = rcu_dereference(sdata->keys[idx]);
1876 	if (!key && rx->sta)
1877 		key = rcu_dereference(rx->sta->gtk[idx2]);
1878 	if (!key)
1879 		key = rcu_dereference(sdata->keys[idx2]);
1880 
1881 	return key;
1882 }
1883 
1884 static ieee80211_rx_result debug_noinline
1885 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1886 {
1887 	struct sk_buff *skb = rx->skb;
1888 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1889 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1890 	int keyidx;
1891 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1892 	struct ieee80211_key *sta_ptk = NULL;
1893 	struct ieee80211_key *ptk_idx = NULL;
1894 	int mmie_keyidx = -1;
1895 	__le16 fc;
1896 	const struct ieee80211_cipher_scheme *cs = NULL;
1897 
1898 	if (ieee80211_is_ext(hdr->frame_control))
1899 		return RX_CONTINUE;
1900 
1901 	/*
1902 	 * Key selection 101
1903 	 *
1904 	 * There are five types of keys:
1905 	 *  - GTK (group keys)
1906 	 *  - IGTK (group keys for management frames)
1907 	 *  - BIGTK (group keys for Beacon frames)
1908 	 *  - PTK (pairwise keys)
1909 	 *  - STK (station-to-station pairwise keys)
1910 	 *
1911 	 * When selecting a key, we have to distinguish between multicast
1912 	 * (including broadcast) and unicast frames, the latter can only
1913 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1914 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1915 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1916 	 * don't have a PTK/STK we check the key index for a WEP key.
1917 	 *
1918 	 * Note that in a regular BSS, multicast frames are sent by the
1919 	 * AP only, associated stations unicast the frame to the AP first
1920 	 * which then multicasts it on their behalf.
1921 	 *
1922 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1923 	 * with each station, that is something we don't currently handle.
1924 	 * The spec seems to expect that one negotiates the same key with
1925 	 * every station but there's no such requirement; VLANs could be
1926 	 * possible.
1927 	 */
1928 
1929 	/* start without a key */
1930 	rx->key = NULL;
1931 	fc = hdr->frame_control;
1932 
1933 	if (rx->sta) {
1934 		int keyid = rx->sta->ptk_idx;
1935 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1936 
1937 		if (ieee80211_has_protected(fc)) {
1938 			cs = rx->sta->cipher_scheme;
1939 			keyid = ieee80211_get_keyid(rx->skb, cs);
1940 
1941 			if (unlikely(keyid < 0))
1942 				return RX_DROP_UNUSABLE;
1943 
1944 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1945 		}
1946 	}
1947 
1948 	if (!ieee80211_has_protected(fc))
1949 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1950 
1951 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1952 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1953 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1954 		    (status->flag & RX_FLAG_IV_STRIPPED))
1955 			return RX_CONTINUE;
1956 		/* Skip decryption if the frame is not protected. */
1957 		if (!ieee80211_has_protected(fc))
1958 			return RX_CONTINUE;
1959 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1960 		/* Broadcast/multicast robust management frame / BIP */
1961 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1962 		    (status->flag & RX_FLAG_IV_STRIPPED))
1963 			return RX_CONTINUE;
1964 
1965 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1966 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1967 		    NUM_DEFAULT_BEACON_KEYS) {
1968 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1969 						     skb->data,
1970 						     skb->len);
1971 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1972 		}
1973 
1974 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1975 		if (!rx->key)
1976 			return RX_CONTINUE; /* Beacon protection not in use */
1977 	} else if (mmie_keyidx >= 0) {
1978 		/* Broadcast/multicast robust management frame / BIP */
1979 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1980 		    (status->flag & RX_FLAG_IV_STRIPPED))
1981 			return RX_CONTINUE;
1982 
1983 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1984 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1985 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1986 		if (rx->sta) {
1987 			if (ieee80211_is_group_privacy_action(skb) &&
1988 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1989 				return RX_DROP_MONITOR;
1990 
1991 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1992 		}
1993 		if (!rx->key)
1994 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1995 	} else if (!ieee80211_has_protected(fc)) {
1996 		/*
1997 		 * The frame was not protected, so skip decryption. However, we
1998 		 * need to set rx->key if there is a key that could have been
1999 		 * used so that the frame may be dropped if encryption would
2000 		 * have been expected.
2001 		 */
2002 		struct ieee80211_key *key = NULL;
2003 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2004 		int i;
2005 
2006 		if (ieee80211_is_beacon(fc)) {
2007 			key = ieee80211_rx_get_bigtk(rx, -1);
2008 		} else if (ieee80211_is_mgmt(fc) &&
2009 			   is_multicast_ether_addr(hdr->addr1)) {
2010 			key = rcu_dereference(rx->sdata->default_mgmt_key);
2011 		} else {
2012 			if (rx->sta) {
2013 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2014 					key = rcu_dereference(rx->sta->gtk[i]);
2015 					if (key)
2016 						break;
2017 				}
2018 			}
2019 			if (!key) {
2020 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2021 					key = rcu_dereference(sdata->keys[i]);
2022 					if (key)
2023 						break;
2024 				}
2025 			}
2026 		}
2027 		if (key)
2028 			rx->key = key;
2029 		return RX_CONTINUE;
2030 	} else {
2031 		/*
2032 		 * The device doesn't give us the IV so we won't be
2033 		 * able to look up the key. That's ok though, we
2034 		 * don't need to decrypt the frame, we just won't
2035 		 * be able to keep statistics accurate.
2036 		 * Except for key threshold notifications, should
2037 		 * we somehow allow the driver to tell us which key
2038 		 * the hardware used if this flag is set?
2039 		 */
2040 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2041 		    (status->flag & RX_FLAG_IV_STRIPPED))
2042 			return RX_CONTINUE;
2043 
2044 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2045 
2046 		if (unlikely(keyidx < 0))
2047 			return RX_DROP_UNUSABLE;
2048 
2049 		/* check per-station GTK first, if multicast packet */
2050 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2051 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2052 
2053 		/* if not found, try default key */
2054 		if (!rx->key) {
2055 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2056 
2057 			/*
2058 			 * RSNA-protected unicast frames should always be
2059 			 * sent with pairwise or station-to-station keys,
2060 			 * but for WEP we allow using a key index as well.
2061 			 */
2062 			if (rx->key &&
2063 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2064 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2065 			    !is_multicast_ether_addr(hdr->addr1))
2066 				rx->key = NULL;
2067 		}
2068 	}
2069 
2070 	if (rx->key) {
2071 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2072 			return RX_DROP_MONITOR;
2073 
2074 		/* TODO: add threshold stuff again */
2075 	} else {
2076 		return RX_DROP_MONITOR;
2077 	}
2078 
2079 	switch (rx->key->conf.cipher) {
2080 	case WLAN_CIPHER_SUITE_WEP40:
2081 	case WLAN_CIPHER_SUITE_WEP104:
2082 		result = ieee80211_crypto_wep_decrypt(rx);
2083 		break;
2084 	case WLAN_CIPHER_SUITE_TKIP:
2085 		result = ieee80211_crypto_tkip_decrypt(rx);
2086 		break;
2087 	case WLAN_CIPHER_SUITE_CCMP:
2088 		result = ieee80211_crypto_ccmp_decrypt(
2089 			rx, IEEE80211_CCMP_MIC_LEN);
2090 		break;
2091 	case WLAN_CIPHER_SUITE_CCMP_256:
2092 		result = ieee80211_crypto_ccmp_decrypt(
2093 			rx, IEEE80211_CCMP_256_MIC_LEN);
2094 		break;
2095 	case WLAN_CIPHER_SUITE_AES_CMAC:
2096 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2097 		break;
2098 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2099 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2100 		break;
2101 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2102 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2103 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2104 		break;
2105 	case WLAN_CIPHER_SUITE_GCMP:
2106 	case WLAN_CIPHER_SUITE_GCMP_256:
2107 		result = ieee80211_crypto_gcmp_decrypt(rx);
2108 		break;
2109 	default:
2110 		result = ieee80211_crypto_hw_decrypt(rx);
2111 	}
2112 
2113 	/* the hdr variable is invalid after the decrypt handlers */
2114 
2115 	/* either the frame has been decrypted or will be dropped */
2116 	status->flag |= RX_FLAG_DECRYPTED;
2117 
2118 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2119 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2120 					     skb->data, skb->len);
2121 
2122 	return result;
2123 }
2124 
2125 static inline struct ieee80211_fragment_entry *
2126 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2127 			 unsigned int frag, unsigned int seq, int rx_queue,
2128 			 struct sk_buff **skb)
2129 {
2130 	struct ieee80211_fragment_entry *entry;
2131 
2132 	entry = &sdata->fragments[sdata->fragment_next++];
2133 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2134 		sdata->fragment_next = 0;
2135 
2136 	if (!skb_queue_empty(&entry->skb_list))
2137 		__skb_queue_purge(&entry->skb_list);
2138 
2139 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2140 	*skb = NULL;
2141 	entry->first_frag_time = jiffies;
2142 	entry->seq = seq;
2143 	entry->rx_queue = rx_queue;
2144 	entry->last_frag = frag;
2145 	entry->check_sequential_pn = false;
2146 	entry->extra_len = 0;
2147 
2148 	return entry;
2149 }
2150 
2151 static inline struct ieee80211_fragment_entry *
2152 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2153 			  unsigned int frag, unsigned int seq,
2154 			  int rx_queue, struct ieee80211_hdr *hdr)
2155 {
2156 	struct ieee80211_fragment_entry *entry;
2157 	int i, idx;
2158 
2159 	idx = sdata->fragment_next;
2160 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2161 		struct ieee80211_hdr *f_hdr;
2162 		struct sk_buff *f_skb;
2163 
2164 		idx--;
2165 		if (idx < 0)
2166 			idx = IEEE80211_FRAGMENT_MAX - 1;
2167 
2168 		entry = &sdata->fragments[idx];
2169 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2170 		    entry->rx_queue != rx_queue ||
2171 		    entry->last_frag + 1 != frag)
2172 			continue;
2173 
2174 		f_skb = __skb_peek(&entry->skb_list);
2175 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2176 
2177 		/*
2178 		 * Check ftype and addresses are equal, else check next fragment
2179 		 */
2180 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2181 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2182 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2183 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2184 			continue;
2185 
2186 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2187 			__skb_queue_purge(&entry->skb_list);
2188 			continue;
2189 		}
2190 		return entry;
2191 	}
2192 
2193 	return NULL;
2194 }
2195 
2196 static ieee80211_rx_result debug_noinline
2197 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2198 {
2199 	struct ieee80211_hdr *hdr;
2200 	u16 sc;
2201 	__le16 fc;
2202 	unsigned int frag, seq;
2203 	struct ieee80211_fragment_entry *entry;
2204 	struct sk_buff *skb;
2205 
2206 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2207 	fc = hdr->frame_control;
2208 
2209 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2210 		return RX_CONTINUE;
2211 
2212 	sc = le16_to_cpu(hdr->seq_ctrl);
2213 	frag = sc & IEEE80211_SCTL_FRAG;
2214 
2215 	if (is_multicast_ether_addr(hdr->addr1)) {
2216 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2217 		goto out_no_led;
2218 	}
2219 
2220 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2221 		goto out;
2222 
2223 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2224 
2225 	if (skb_linearize(rx->skb))
2226 		return RX_DROP_UNUSABLE;
2227 
2228 	/*
2229 	 *  skb_linearize() might change the skb->data and
2230 	 *  previously cached variables (in this case, hdr) need to
2231 	 *  be refreshed with the new data.
2232 	 */
2233 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2234 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2235 
2236 	if (frag == 0) {
2237 		/* This is the first fragment of a new frame. */
2238 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2239 						 rx->seqno_idx, &(rx->skb));
2240 		if (rx->key &&
2241 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2242 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2243 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2244 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2245 		    ieee80211_has_protected(fc)) {
2246 			int queue = rx->security_idx;
2247 
2248 			/* Store CCMP/GCMP PN so that we can verify that the
2249 			 * next fragment has a sequential PN value.
2250 			 */
2251 			entry->check_sequential_pn = true;
2252 			memcpy(entry->last_pn,
2253 			       rx->key->u.ccmp.rx_pn[queue],
2254 			       IEEE80211_CCMP_PN_LEN);
2255 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2256 					      u.ccmp.rx_pn) !=
2257 				     offsetof(struct ieee80211_key,
2258 					      u.gcmp.rx_pn));
2259 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2260 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2261 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2262 				     IEEE80211_GCMP_PN_LEN);
2263 		}
2264 		return RX_QUEUED;
2265 	}
2266 
2267 	/* This is a fragment for a frame that should already be pending in
2268 	 * fragment cache. Add this fragment to the end of the pending entry.
2269 	 */
2270 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2271 					  rx->seqno_idx, hdr);
2272 	if (!entry) {
2273 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2274 		return RX_DROP_MONITOR;
2275 	}
2276 
2277 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2278 	 *  MPDU PN values are not incrementing in steps of 1."
2279 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2280 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2281 	 */
2282 	if (entry->check_sequential_pn) {
2283 		int i;
2284 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2285 		int queue;
2286 
2287 		if (!rx->key ||
2288 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2289 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2290 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2291 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2292 			return RX_DROP_UNUSABLE;
2293 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2294 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2295 			pn[i]++;
2296 			if (pn[i])
2297 				break;
2298 		}
2299 		queue = rx->security_idx;
2300 		rpn = rx->key->u.ccmp.rx_pn[queue];
2301 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2302 			return RX_DROP_UNUSABLE;
2303 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2304 	}
2305 
2306 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2307 	__skb_queue_tail(&entry->skb_list, rx->skb);
2308 	entry->last_frag = frag;
2309 	entry->extra_len += rx->skb->len;
2310 	if (ieee80211_has_morefrags(fc)) {
2311 		rx->skb = NULL;
2312 		return RX_QUEUED;
2313 	}
2314 
2315 	rx->skb = __skb_dequeue(&entry->skb_list);
2316 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2317 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2318 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2319 					      GFP_ATOMIC))) {
2320 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2321 			__skb_queue_purge(&entry->skb_list);
2322 			return RX_DROP_UNUSABLE;
2323 		}
2324 	}
2325 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2326 		skb_put_data(rx->skb, skb->data, skb->len);
2327 		dev_kfree_skb(skb);
2328 	}
2329 
2330  out:
2331 	ieee80211_led_rx(rx->local);
2332  out_no_led:
2333 	if (rx->sta)
2334 		rx->sta->rx_stats.packets++;
2335 	return RX_CONTINUE;
2336 }
2337 
2338 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2339 {
2340 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2341 		return -EACCES;
2342 
2343 	return 0;
2344 }
2345 
2346 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2347 {
2348 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2349 	struct sk_buff *skb = rx->skb;
2350 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2351 
2352 	/*
2353 	 * Pass through unencrypted frames if the hardware has
2354 	 * decrypted them already.
2355 	 */
2356 	if (status->flag & RX_FLAG_DECRYPTED)
2357 		return 0;
2358 
2359 	/* check mesh EAPOL frames first */
2360 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2361 		     ieee80211_is_data(fc))) {
2362 		struct ieee80211s_hdr *mesh_hdr;
2363 		u16 hdr_len = ieee80211_hdrlen(fc);
2364 		u16 ethertype_offset;
2365 		__be16 ethertype;
2366 
2367 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2368 			goto drop_check;
2369 
2370 		/* make sure fixed part of mesh header is there, also checks skb len */
2371 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2372 			goto drop_check;
2373 
2374 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2375 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2376 				   sizeof(rfc1042_header);
2377 
2378 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2379 		    ethertype == rx->sdata->control_port_protocol)
2380 			return 0;
2381 	}
2382 
2383 drop_check:
2384 	/* Drop unencrypted frames if key is set. */
2385 	if (unlikely(!ieee80211_has_protected(fc) &&
2386 		     !ieee80211_is_any_nullfunc(fc) &&
2387 		     ieee80211_is_data(fc) && rx->key))
2388 		return -EACCES;
2389 
2390 	return 0;
2391 }
2392 
2393 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2394 {
2395 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2396 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2397 	__le16 fc = hdr->frame_control;
2398 
2399 	/*
2400 	 * Pass through unencrypted frames if the hardware has
2401 	 * decrypted them already.
2402 	 */
2403 	if (status->flag & RX_FLAG_DECRYPTED)
2404 		return 0;
2405 
2406 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2407 		if (unlikely(!ieee80211_has_protected(fc) &&
2408 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2409 			     rx->key)) {
2410 			if (ieee80211_is_deauth(fc) ||
2411 			    ieee80211_is_disassoc(fc))
2412 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2413 							     rx->skb->data,
2414 							     rx->skb->len);
2415 			return -EACCES;
2416 		}
2417 		/* BIP does not use Protected field, so need to check MMIE */
2418 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2419 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2420 			if (ieee80211_is_deauth(fc) ||
2421 			    ieee80211_is_disassoc(fc))
2422 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2423 							     rx->skb->data,
2424 							     rx->skb->len);
2425 			return -EACCES;
2426 		}
2427 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2428 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2429 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2430 						     rx->skb->data,
2431 						     rx->skb->len);
2432 			return -EACCES;
2433 		}
2434 		/*
2435 		 * When using MFP, Action frames are not allowed prior to
2436 		 * having configured keys.
2437 		 */
2438 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2439 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2440 			return -EACCES;
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 static int
2447 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2448 {
2449 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2450 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2451 	bool check_port_control = false;
2452 	struct ethhdr *ehdr;
2453 	int ret;
2454 
2455 	*port_control = false;
2456 	if (ieee80211_has_a4(hdr->frame_control) &&
2457 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2458 		return -1;
2459 
2460 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2461 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2462 
2463 		if (!sdata->u.mgd.use_4addr)
2464 			return -1;
2465 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2466 			check_port_control = true;
2467 	}
2468 
2469 	if (is_multicast_ether_addr(hdr->addr1) &&
2470 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2471 		return -1;
2472 
2473 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2474 	if (ret < 0)
2475 		return ret;
2476 
2477 	ehdr = (struct ethhdr *) rx->skb->data;
2478 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2479 		*port_control = true;
2480 	else if (check_port_control)
2481 		return -1;
2482 
2483 	return 0;
2484 }
2485 
2486 /*
2487  * requires that rx->skb is a frame with ethernet header
2488  */
2489 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2490 {
2491 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2492 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2493 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2494 
2495 	/*
2496 	 * Allow EAPOL frames to us/the PAE group address regardless
2497 	 * of whether the frame was encrypted or not.
2498 	 */
2499 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2500 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2501 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2502 		return true;
2503 
2504 	if (ieee80211_802_1x_port_control(rx) ||
2505 	    ieee80211_drop_unencrypted(rx, fc))
2506 		return false;
2507 
2508 	return true;
2509 }
2510 
2511 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2512 						 struct ieee80211_rx_data *rx)
2513 {
2514 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2515 	struct net_device *dev = sdata->dev;
2516 
2517 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2518 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2519 		      !sdata->control_port_no_preauth)) &&
2520 		     sdata->control_port_over_nl80211)) {
2521 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2522 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2523 
2524 		cfg80211_rx_control_port(dev, skb, noencrypt);
2525 		dev_kfree_skb(skb);
2526 	} else {
2527 		memset(skb->cb, 0, sizeof(skb->cb));
2528 
2529 		/* deliver to local stack */
2530 		if (rx->list)
2531 			list_add_tail(&skb->list, rx->list);
2532 		else
2533 			netif_receive_skb(skb);
2534 	}
2535 }
2536 
2537 /*
2538  * requires that rx->skb is a frame with ethernet header
2539  */
2540 static void
2541 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2542 {
2543 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2544 	struct net_device *dev = sdata->dev;
2545 	struct sk_buff *skb, *xmit_skb;
2546 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2547 	struct sta_info *dsta;
2548 
2549 	skb = rx->skb;
2550 	xmit_skb = NULL;
2551 
2552 	dev_sw_netstats_rx_add(dev, skb->len);
2553 
2554 	if (rx->sta) {
2555 		/* The seqno index has the same property as needed
2556 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2557 		 * for non-QoS-data frames. Here we know it's a data
2558 		 * frame, so count MSDUs.
2559 		 */
2560 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2561 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2562 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2563 	}
2564 
2565 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2566 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2567 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2568 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2569 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2570 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2571 			/*
2572 			 * send multicast frames both to higher layers in
2573 			 * local net stack and back to the wireless medium
2574 			 */
2575 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2576 			if (!xmit_skb)
2577 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2578 						    dev->name);
2579 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2580 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2581 			dsta = sta_info_get(sdata, ehdr->h_dest);
2582 			if (dsta) {
2583 				/*
2584 				 * The destination station is associated to
2585 				 * this AP (in this VLAN), so send the frame
2586 				 * directly to it and do not pass it to local
2587 				 * net stack.
2588 				 */
2589 				xmit_skb = skb;
2590 				skb = NULL;
2591 			}
2592 		}
2593 	}
2594 
2595 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2596 	if (skb) {
2597 		/* 'align' will only take the values 0 or 2 here since all
2598 		 * frames are required to be aligned to 2-byte boundaries
2599 		 * when being passed to mac80211; the code here works just
2600 		 * as well if that isn't true, but mac80211 assumes it can
2601 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2602 		 */
2603 		int align;
2604 
2605 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2606 		if (align) {
2607 			if (WARN_ON(skb_headroom(skb) < 3)) {
2608 				dev_kfree_skb(skb);
2609 				skb = NULL;
2610 			} else {
2611 				u8 *data = skb->data;
2612 				size_t len = skb_headlen(skb);
2613 				skb->data -= align;
2614 				memmove(skb->data, data, len);
2615 				skb_set_tail_pointer(skb, len);
2616 			}
2617 		}
2618 	}
2619 #endif
2620 
2621 	if (skb) {
2622 		skb->protocol = eth_type_trans(skb, dev);
2623 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2624 	}
2625 
2626 	if (xmit_skb) {
2627 		/*
2628 		 * Send to wireless media and increase priority by 256 to
2629 		 * keep the received priority instead of reclassifying
2630 		 * the frame (see cfg80211_classify8021d).
2631 		 */
2632 		xmit_skb->priority += 256;
2633 		xmit_skb->protocol = htons(ETH_P_802_3);
2634 		skb_reset_network_header(xmit_skb);
2635 		skb_reset_mac_header(xmit_skb);
2636 		dev_queue_xmit(xmit_skb);
2637 	}
2638 }
2639 
2640 static ieee80211_rx_result debug_noinline
2641 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2642 {
2643 	struct net_device *dev = rx->sdata->dev;
2644 	struct sk_buff *skb = rx->skb;
2645 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2646 	__le16 fc = hdr->frame_control;
2647 	struct sk_buff_head frame_list;
2648 	struct ethhdr ethhdr;
2649 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2650 
2651 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2652 		check_da = NULL;
2653 		check_sa = NULL;
2654 	} else switch (rx->sdata->vif.type) {
2655 		case NL80211_IFTYPE_AP:
2656 		case NL80211_IFTYPE_AP_VLAN:
2657 			check_da = NULL;
2658 			break;
2659 		case NL80211_IFTYPE_STATION:
2660 			if (!rx->sta ||
2661 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2662 				check_sa = NULL;
2663 			break;
2664 		case NL80211_IFTYPE_MESH_POINT:
2665 			check_sa = NULL;
2666 			break;
2667 		default:
2668 			break;
2669 	}
2670 
2671 	skb->dev = dev;
2672 	__skb_queue_head_init(&frame_list);
2673 
2674 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2675 					  rx->sdata->vif.addr,
2676 					  rx->sdata->vif.type,
2677 					  data_offset))
2678 		return RX_DROP_UNUSABLE;
2679 
2680 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2681 				 rx->sdata->vif.type,
2682 				 rx->local->hw.extra_tx_headroom,
2683 				 check_da, check_sa);
2684 
2685 	while (!skb_queue_empty(&frame_list)) {
2686 		rx->skb = __skb_dequeue(&frame_list);
2687 
2688 		if (!ieee80211_frame_allowed(rx, fc)) {
2689 			dev_kfree_skb(rx->skb);
2690 			continue;
2691 		}
2692 
2693 		ieee80211_deliver_skb(rx);
2694 	}
2695 
2696 	return RX_QUEUED;
2697 }
2698 
2699 static ieee80211_rx_result debug_noinline
2700 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2701 {
2702 	struct sk_buff *skb = rx->skb;
2703 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2704 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2705 	__le16 fc = hdr->frame_control;
2706 
2707 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2708 		return RX_CONTINUE;
2709 
2710 	if (unlikely(!ieee80211_is_data(fc)))
2711 		return RX_CONTINUE;
2712 
2713 	if (unlikely(!ieee80211_is_data_present(fc)))
2714 		return RX_DROP_MONITOR;
2715 
2716 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2717 		switch (rx->sdata->vif.type) {
2718 		case NL80211_IFTYPE_AP_VLAN:
2719 			if (!rx->sdata->u.vlan.sta)
2720 				return RX_DROP_UNUSABLE;
2721 			break;
2722 		case NL80211_IFTYPE_STATION:
2723 			if (!rx->sdata->u.mgd.use_4addr)
2724 				return RX_DROP_UNUSABLE;
2725 			break;
2726 		default:
2727 			return RX_DROP_UNUSABLE;
2728 		}
2729 	}
2730 
2731 	if (is_multicast_ether_addr(hdr->addr1))
2732 		return RX_DROP_UNUSABLE;
2733 
2734 	return __ieee80211_rx_h_amsdu(rx, 0);
2735 }
2736 
2737 #ifdef CONFIG_MAC80211_MESH
2738 static ieee80211_rx_result
2739 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2740 {
2741 	struct ieee80211_hdr *fwd_hdr, *hdr;
2742 	struct ieee80211_tx_info *info;
2743 	struct ieee80211s_hdr *mesh_hdr;
2744 	struct sk_buff *skb = rx->skb, *fwd_skb;
2745 	struct ieee80211_local *local = rx->local;
2746 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2747 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2748 	u16 ac, q, hdrlen;
2749 	int tailroom = 0;
2750 
2751 	hdr = (struct ieee80211_hdr *) skb->data;
2752 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2753 
2754 	/* make sure fixed part of mesh header is there, also checks skb len */
2755 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2756 		return RX_DROP_MONITOR;
2757 
2758 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2759 
2760 	/* make sure full mesh header is there, also checks skb len */
2761 	if (!pskb_may_pull(rx->skb,
2762 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2763 		return RX_DROP_MONITOR;
2764 
2765 	/* reload pointers */
2766 	hdr = (struct ieee80211_hdr *) skb->data;
2767 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2768 
2769 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2770 		return RX_DROP_MONITOR;
2771 
2772 	/* frame is in RMC, don't forward */
2773 	if (ieee80211_is_data(hdr->frame_control) &&
2774 	    is_multicast_ether_addr(hdr->addr1) &&
2775 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2776 		return RX_DROP_MONITOR;
2777 
2778 	if (!ieee80211_is_data(hdr->frame_control))
2779 		return RX_CONTINUE;
2780 
2781 	if (!mesh_hdr->ttl)
2782 		return RX_DROP_MONITOR;
2783 
2784 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2785 		struct mesh_path *mppath;
2786 		char *proxied_addr;
2787 		char *mpp_addr;
2788 
2789 		if (is_multicast_ether_addr(hdr->addr1)) {
2790 			mpp_addr = hdr->addr3;
2791 			proxied_addr = mesh_hdr->eaddr1;
2792 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2793 			    MESH_FLAGS_AE_A5_A6) {
2794 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2795 			mpp_addr = hdr->addr4;
2796 			proxied_addr = mesh_hdr->eaddr2;
2797 		} else {
2798 			return RX_DROP_MONITOR;
2799 		}
2800 
2801 		rcu_read_lock();
2802 		mppath = mpp_path_lookup(sdata, proxied_addr);
2803 		if (!mppath) {
2804 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2805 		} else {
2806 			spin_lock_bh(&mppath->state_lock);
2807 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2808 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2809 			mppath->exp_time = jiffies;
2810 			spin_unlock_bh(&mppath->state_lock);
2811 		}
2812 		rcu_read_unlock();
2813 	}
2814 
2815 	/* Frame has reached destination.  Don't forward */
2816 	if (!is_multicast_ether_addr(hdr->addr1) &&
2817 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2818 		return RX_CONTINUE;
2819 
2820 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2821 	q = sdata->vif.hw_queue[ac];
2822 	if (ieee80211_queue_stopped(&local->hw, q)) {
2823 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2824 		return RX_DROP_MONITOR;
2825 	}
2826 	skb_set_queue_mapping(skb, q);
2827 
2828 	if (!--mesh_hdr->ttl) {
2829 		if (!is_multicast_ether_addr(hdr->addr1))
2830 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2831 						     dropped_frames_ttl);
2832 		goto out;
2833 	}
2834 
2835 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2836 		goto out;
2837 
2838 	if (sdata->crypto_tx_tailroom_needed_cnt)
2839 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2840 
2841 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2842 				       sdata->encrypt_headroom,
2843 				  tailroom, GFP_ATOMIC);
2844 	if (!fwd_skb)
2845 		goto out;
2846 
2847 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2848 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2849 	info = IEEE80211_SKB_CB(fwd_skb);
2850 	memset(info, 0, sizeof(*info));
2851 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2852 	info->control.vif = &rx->sdata->vif;
2853 	info->control.jiffies = jiffies;
2854 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2855 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2856 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2857 		/* update power mode indication when forwarding */
2858 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2859 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2860 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2861 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2862 	} else {
2863 		/* unable to resolve next hop */
2864 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2865 				   fwd_hdr->addr3, 0,
2866 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2867 				   fwd_hdr->addr2);
2868 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2869 		kfree_skb(fwd_skb);
2870 		return RX_DROP_MONITOR;
2871 	}
2872 
2873 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2874 	ieee80211_add_pending_skb(local, fwd_skb);
2875  out:
2876 	if (is_multicast_ether_addr(hdr->addr1))
2877 		return RX_CONTINUE;
2878 	return RX_DROP_MONITOR;
2879 }
2880 #endif
2881 
2882 static ieee80211_rx_result debug_noinline
2883 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2884 {
2885 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2886 	struct ieee80211_local *local = rx->local;
2887 	struct net_device *dev = sdata->dev;
2888 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2889 	__le16 fc = hdr->frame_control;
2890 	bool port_control;
2891 	int err;
2892 
2893 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2894 		return RX_CONTINUE;
2895 
2896 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2897 		return RX_DROP_MONITOR;
2898 
2899 	/*
2900 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2901 	 * also drop the frame to cooked monitor interfaces.
2902 	 */
2903 	if (ieee80211_has_a4(hdr->frame_control) &&
2904 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2905 		if (rx->sta &&
2906 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2907 			cfg80211_rx_unexpected_4addr_frame(
2908 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2909 		return RX_DROP_MONITOR;
2910 	}
2911 
2912 	err = __ieee80211_data_to_8023(rx, &port_control);
2913 	if (unlikely(err))
2914 		return RX_DROP_UNUSABLE;
2915 
2916 	if (!ieee80211_frame_allowed(rx, fc))
2917 		return RX_DROP_MONITOR;
2918 
2919 	/* directly handle TDLS channel switch requests/responses */
2920 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2921 						cpu_to_be16(ETH_P_TDLS))) {
2922 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2923 
2924 		if (pskb_may_pull(rx->skb,
2925 				  offsetof(struct ieee80211_tdls_data, u)) &&
2926 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2927 		    tf->category == WLAN_CATEGORY_TDLS &&
2928 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2929 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2930 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2931 			schedule_work(&local->tdls_chsw_work);
2932 			if (rx->sta)
2933 				rx->sta->rx_stats.packets++;
2934 
2935 			return RX_QUEUED;
2936 		}
2937 	}
2938 
2939 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2940 	    unlikely(port_control) && sdata->bss) {
2941 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2942 				     u.ap);
2943 		dev = sdata->dev;
2944 		rx->sdata = sdata;
2945 	}
2946 
2947 	rx->skb->dev = dev;
2948 
2949 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2950 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2951 	    !is_multicast_ether_addr(
2952 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2953 	    (!local->scanning &&
2954 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2955 		mod_timer(&local->dynamic_ps_timer, jiffies +
2956 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2957 
2958 	ieee80211_deliver_skb(rx);
2959 
2960 	return RX_QUEUED;
2961 }
2962 
2963 static ieee80211_rx_result debug_noinline
2964 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2965 {
2966 	struct sk_buff *skb = rx->skb;
2967 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2968 	struct tid_ampdu_rx *tid_agg_rx;
2969 	u16 start_seq_num;
2970 	u16 tid;
2971 
2972 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2973 		return RX_CONTINUE;
2974 
2975 	if (ieee80211_is_back_req(bar->frame_control)) {
2976 		struct {
2977 			__le16 control, start_seq_num;
2978 		} __packed bar_data;
2979 		struct ieee80211_event event = {
2980 			.type = BAR_RX_EVENT,
2981 		};
2982 
2983 		if (!rx->sta)
2984 			return RX_DROP_MONITOR;
2985 
2986 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2987 				  &bar_data, sizeof(bar_data)))
2988 			return RX_DROP_MONITOR;
2989 
2990 		tid = le16_to_cpu(bar_data.control) >> 12;
2991 
2992 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2993 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2994 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2995 					     WLAN_BACK_RECIPIENT,
2996 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2997 
2998 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2999 		if (!tid_agg_rx)
3000 			return RX_DROP_MONITOR;
3001 
3002 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3003 		event.u.ba.tid = tid;
3004 		event.u.ba.ssn = start_seq_num;
3005 		event.u.ba.sta = &rx->sta->sta;
3006 
3007 		/* reset session timer */
3008 		if (tid_agg_rx->timeout)
3009 			mod_timer(&tid_agg_rx->session_timer,
3010 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3011 
3012 		spin_lock(&tid_agg_rx->reorder_lock);
3013 		/* release stored frames up to start of BAR */
3014 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3015 						 start_seq_num, frames);
3016 		spin_unlock(&tid_agg_rx->reorder_lock);
3017 
3018 		drv_event_callback(rx->local, rx->sdata, &event);
3019 
3020 		kfree_skb(skb);
3021 		return RX_QUEUED;
3022 	}
3023 
3024 	/*
3025 	 * After this point, we only want management frames,
3026 	 * so we can drop all remaining control frames to
3027 	 * cooked monitor interfaces.
3028 	 */
3029 	return RX_DROP_MONITOR;
3030 }
3031 
3032 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3033 					   struct ieee80211_mgmt *mgmt,
3034 					   size_t len)
3035 {
3036 	struct ieee80211_local *local = sdata->local;
3037 	struct sk_buff *skb;
3038 	struct ieee80211_mgmt *resp;
3039 
3040 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3041 		/* Not to own unicast address */
3042 		return;
3043 	}
3044 
3045 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3046 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3047 		/* Not from the current AP or not associated yet. */
3048 		return;
3049 	}
3050 
3051 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3052 		/* Too short SA Query request frame */
3053 		return;
3054 	}
3055 
3056 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3057 	if (skb == NULL)
3058 		return;
3059 
3060 	skb_reserve(skb, local->hw.extra_tx_headroom);
3061 	resp = skb_put_zero(skb, 24);
3062 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3063 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3064 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3065 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3066 					  IEEE80211_STYPE_ACTION);
3067 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3068 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3069 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3070 	memcpy(resp->u.action.u.sa_query.trans_id,
3071 	       mgmt->u.action.u.sa_query.trans_id,
3072 	       WLAN_SA_QUERY_TR_ID_LEN);
3073 
3074 	ieee80211_tx_skb(sdata, skb);
3075 }
3076 
3077 static ieee80211_rx_result debug_noinline
3078 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3079 {
3080 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3081 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3082 
3083 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3084 		return RX_CONTINUE;
3085 
3086 	/*
3087 	 * From here on, look only at management frames.
3088 	 * Data and control frames are already handled,
3089 	 * and unknown (reserved) frames are useless.
3090 	 */
3091 	if (rx->skb->len < 24)
3092 		return RX_DROP_MONITOR;
3093 
3094 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3095 		return RX_DROP_MONITOR;
3096 
3097 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3098 	    ieee80211_is_beacon(mgmt->frame_control) &&
3099 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3100 		int sig = 0;
3101 
3102 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3103 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3104 			sig = status->signal;
3105 
3106 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3107 						rx->skb->data, rx->skb->len,
3108 						ieee80211_rx_status_to_khz(status),
3109 						sig);
3110 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3111 	}
3112 
3113 	if (ieee80211_drop_unencrypted_mgmt(rx))
3114 		return RX_DROP_UNUSABLE;
3115 
3116 	return RX_CONTINUE;
3117 }
3118 
3119 static ieee80211_rx_result debug_noinline
3120 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3121 {
3122 	struct ieee80211_local *local = rx->local;
3123 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3124 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3125 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3126 	int len = rx->skb->len;
3127 
3128 	if (!ieee80211_is_action(mgmt->frame_control))
3129 		return RX_CONTINUE;
3130 
3131 	/* drop too small frames */
3132 	if (len < IEEE80211_MIN_ACTION_SIZE)
3133 		return RX_DROP_UNUSABLE;
3134 
3135 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3136 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3137 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3138 		return RX_DROP_UNUSABLE;
3139 
3140 	switch (mgmt->u.action.category) {
3141 	case WLAN_CATEGORY_HT:
3142 		/* reject HT action frames from stations not supporting HT */
3143 		if (!rx->sta->sta.ht_cap.ht_supported)
3144 			goto invalid;
3145 
3146 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3147 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3148 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3149 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3150 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3151 			break;
3152 
3153 		/* verify action & smps_control/chanwidth are present */
3154 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3155 			goto invalid;
3156 
3157 		switch (mgmt->u.action.u.ht_smps.action) {
3158 		case WLAN_HT_ACTION_SMPS: {
3159 			struct ieee80211_supported_band *sband;
3160 			enum ieee80211_smps_mode smps_mode;
3161 			struct sta_opmode_info sta_opmode = {};
3162 
3163 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3164 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3165 				goto handled;
3166 
3167 			/* convert to HT capability */
3168 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3169 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3170 				smps_mode = IEEE80211_SMPS_OFF;
3171 				break;
3172 			case WLAN_HT_SMPS_CONTROL_STATIC:
3173 				smps_mode = IEEE80211_SMPS_STATIC;
3174 				break;
3175 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3176 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3177 				break;
3178 			default:
3179 				goto invalid;
3180 			}
3181 
3182 			/* if no change do nothing */
3183 			if (rx->sta->sta.smps_mode == smps_mode)
3184 				goto handled;
3185 			rx->sta->sta.smps_mode = smps_mode;
3186 			sta_opmode.smps_mode =
3187 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3188 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3189 
3190 			sband = rx->local->hw.wiphy->bands[status->band];
3191 
3192 			rate_control_rate_update(local, sband, rx->sta,
3193 						 IEEE80211_RC_SMPS_CHANGED);
3194 			cfg80211_sta_opmode_change_notify(sdata->dev,
3195 							  rx->sta->addr,
3196 							  &sta_opmode,
3197 							  GFP_ATOMIC);
3198 			goto handled;
3199 		}
3200 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3201 			struct ieee80211_supported_band *sband;
3202 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3203 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3204 			struct sta_opmode_info sta_opmode = {};
3205 
3206 			/* If it doesn't support 40 MHz it can't change ... */
3207 			if (!(rx->sta->sta.ht_cap.cap &
3208 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3209 				goto handled;
3210 
3211 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3212 				max_bw = IEEE80211_STA_RX_BW_20;
3213 			else
3214 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3215 
3216 			/* set cur_max_bandwidth and recalc sta bw */
3217 			rx->sta->cur_max_bandwidth = max_bw;
3218 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3219 
3220 			if (rx->sta->sta.bandwidth == new_bw)
3221 				goto handled;
3222 
3223 			rx->sta->sta.bandwidth = new_bw;
3224 			sband = rx->local->hw.wiphy->bands[status->band];
3225 			sta_opmode.bw =
3226 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3227 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3228 
3229 			rate_control_rate_update(local, sband, rx->sta,
3230 						 IEEE80211_RC_BW_CHANGED);
3231 			cfg80211_sta_opmode_change_notify(sdata->dev,
3232 							  rx->sta->addr,
3233 							  &sta_opmode,
3234 							  GFP_ATOMIC);
3235 			goto handled;
3236 		}
3237 		default:
3238 			goto invalid;
3239 		}
3240 
3241 		break;
3242 	case WLAN_CATEGORY_PUBLIC:
3243 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3244 			goto invalid;
3245 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3246 			break;
3247 		if (!rx->sta)
3248 			break;
3249 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3250 			break;
3251 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3252 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3253 			break;
3254 		if (len < offsetof(struct ieee80211_mgmt,
3255 				   u.action.u.ext_chan_switch.variable))
3256 			goto invalid;
3257 		goto queue;
3258 	case WLAN_CATEGORY_VHT:
3259 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3260 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3261 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3262 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3263 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3264 			break;
3265 
3266 		/* verify action code is present */
3267 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3268 			goto invalid;
3269 
3270 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3271 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3272 			/* verify opmode is present */
3273 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3274 				goto invalid;
3275 			goto queue;
3276 		}
3277 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3278 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3279 				goto invalid;
3280 			goto queue;
3281 		}
3282 		default:
3283 			break;
3284 		}
3285 		break;
3286 	case WLAN_CATEGORY_BACK:
3287 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3288 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3289 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3290 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3291 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3292 			break;
3293 
3294 		/* verify action_code is present */
3295 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3296 			break;
3297 
3298 		switch (mgmt->u.action.u.addba_req.action_code) {
3299 		case WLAN_ACTION_ADDBA_REQ:
3300 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3301 				   sizeof(mgmt->u.action.u.addba_req)))
3302 				goto invalid;
3303 			break;
3304 		case WLAN_ACTION_ADDBA_RESP:
3305 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3306 				   sizeof(mgmt->u.action.u.addba_resp)))
3307 				goto invalid;
3308 			break;
3309 		case WLAN_ACTION_DELBA:
3310 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3311 				   sizeof(mgmt->u.action.u.delba)))
3312 				goto invalid;
3313 			break;
3314 		default:
3315 			goto invalid;
3316 		}
3317 
3318 		goto queue;
3319 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3320 		/* verify action_code is present */
3321 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3322 			break;
3323 
3324 		switch (mgmt->u.action.u.measurement.action_code) {
3325 		case WLAN_ACTION_SPCT_MSR_REQ:
3326 			if (status->band != NL80211_BAND_5GHZ)
3327 				break;
3328 
3329 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3330 				   sizeof(mgmt->u.action.u.measurement)))
3331 				break;
3332 
3333 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3334 				break;
3335 
3336 			ieee80211_process_measurement_req(sdata, mgmt, len);
3337 			goto handled;
3338 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3339 			u8 *bssid;
3340 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3341 				   sizeof(mgmt->u.action.u.chan_switch)))
3342 				break;
3343 
3344 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3345 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3346 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3347 				break;
3348 
3349 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3350 				bssid = sdata->u.mgd.bssid;
3351 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3352 				bssid = sdata->u.ibss.bssid;
3353 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3354 				bssid = mgmt->sa;
3355 			else
3356 				break;
3357 
3358 			if (!ether_addr_equal(mgmt->bssid, bssid))
3359 				break;
3360 
3361 			goto queue;
3362 			}
3363 		}
3364 		break;
3365 	case WLAN_CATEGORY_SELF_PROTECTED:
3366 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3367 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3368 			break;
3369 
3370 		switch (mgmt->u.action.u.self_prot.action_code) {
3371 		case WLAN_SP_MESH_PEERING_OPEN:
3372 		case WLAN_SP_MESH_PEERING_CLOSE:
3373 		case WLAN_SP_MESH_PEERING_CONFIRM:
3374 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3375 				goto invalid;
3376 			if (sdata->u.mesh.user_mpm)
3377 				/* userspace handles this frame */
3378 				break;
3379 			goto queue;
3380 		case WLAN_SP_MGK_INFORM:
3381 		case WLAN_SP_MGK_ACK:
3382 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3383 				goto invalid;
3384 			break;
3385 		}
3386 		break;
3387 	case WLAN_CATEGORY_MESH_ACTION:
3388 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3389 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3390 			break;
3391 
3392 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3393 			break;
3394 		if (mesh_action_is_path_sel(mgmt) &&
3395 		    !mesh_path_sel_is_hwmp(sdata))
3396 			break;
3397 		goto queue;
3398 	}
3399 
3400 	return RX_CONTINUE;
3401 
3402  invalid:
3403 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3404 	/* will return in the next handlers */
3405 	return RX_CONTINUE;
3406 
3407  handled:
3408 	if (rx->sta)
3409 		rx->sta->rx_stats.packets++;
3410 	dev_kfree_skb(rx->skb);
3411 	return RX_QUEUED;
3412 
3413  queue:
3414 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3415 	ieee80211_queue_work(&local->hw, &sdata->work);
3416 	if (rx->sta)
3417 		rx->sta->rx_stats.packets++;
3418 	return RX_QUEUED;
3419 }
3420 
3421 static ieee80211_rx_result debug_noinline
3422 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3423 {
3424 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3425 	int sig = 0;
3426 
3427 	/* skip known-bad action frames and return them in the next handler */
3428 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3429 		return RX_CONTINUE;
3430 
3431 	/*
3432 	 * Getting here means the kernel doesn't know how to handle
3433 	 * it, but maybe userspace does ... include returned frames
3434 	 * so userspace can register for those to know whether ones
3435 	 * it transmitted were processed or returned.
3436 	 */
3437 
3438 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3439 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3440 		sig = status->signal;
3441 
3442 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3443 				 ieee80211_rx_status_to_khz(status), sig,
3444 				 rx->skb->data, rx->skb->len, 0)) {
3445 		if (rx->sta)
3446 			rx->sta->rx_stats.packets++;
3447 		dev_kfree_skb(rx->skb);
3448 		return RX_QUEUED;
3449 	}
3450 
3451 	return RX_CONTINUE;
3452 }
3453 
3454 static ieee80211_rx_result debug_noinline
3455 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3456 {
3457 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3458 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3459 	int len = rx->skb->len;
3460 
3461 	if (!ieee80211_is_action(mgmt->frame_control))
3462 		return RX_CONTINUE;
3463 
3464 	switch (mgmt->u.action.category) {
3465 	case WLAN_CATEGORY_SA_QUERY:
3466 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3467 			   sizeof(mgmt->u.action.u.sa_query)))
3468 			break;
3469 
3470 		switch (mgmt->u.action.u.sa_query.action) {
3471 		case WLAN_ACTION_SA_QUERY_REQUEST:
3472 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3473 				break;
3474 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3475 			goto handled;
3476 		}
3477 		break;
3478 	}
3479 
3480 	return RX_CONTINUE;
3481 
3482  handled:
3483 	if (rx->sta)
3484 		rx->sta->rx_stats.packets++;
3485 	dev_kfree_skb(rx->skb);
3486 	return RX_QUEUED;
3487 }
3488 
3489 static ieee80211_rx_result debug_noinline
3490 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3491 {
3492 	struct ieee80211_local *local = rx->local;
3493 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3494 	struct sk_buff *nskb;
3495 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3496 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3497 
3498 	if (!ieee80211_is_action(mgmt->frame_control))
3499 		return RX_CONTINUE;
3500 
3501 	/*
3502 	 * For AP mode, hostapd is responsible for handling any action
3503 	 * frames that we didn't handle, including returning unknown
3504 	 * ones. For all other modes we will return them to the sender,
3505 	 * setting the 0x80 bit in the action category, as required by
3506 	 * 802.11-2012 9.24.4.
3507 	 * Newer versions of hostapd shall also use the management frame
3508 	 * registration mechanisms, but older ones still use cooked
3509 	 * monitor interfaces so push all frames there.
3510 	 */
3511 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3512 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3513 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3514 		return RX_DROP_MONITOR;
3515 
3516 	if (is_multicast_ether_addr(mgmt->da))
3517 		return RX_DROP_MONITOR;
3518 
3519 	/* do not return rejected action frames */
3520 	if (mgmt->u.action.category & 0x80)
3521 		return RX_DROP_UNUSABLE;
3522 
3523 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3524 			       GFP_ATOMIC);
3525 	if (nskb) {
3526 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3527 
3528 		nmgmt->u.action.category |= 0x80;
3529 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3530 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3531 
3532 		memset(nskb->cb, 0, sizeof(nskb->cb));
3533 
3534 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3535 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3536 
3537 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3538 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3539 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3540 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3541 				info->hw_queue =
3542 					local->hw.offchannel_tx_hw_queue;
3543 		}
3544 
3545 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3546 					    status->band);
3547 	}
3548 	dev_kfree_skb(rx->skb);
3549 	return RX_QUEUED;
3550 }
3551 
3552 static ieee80211_rx_result debug_noinline
3553 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3554 {
3555 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3556 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3557 
3558 	if (!ieee80211_is_ext(hdr->frame_control))
3559 		return RX_CONTINUE;
3560 
3561 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3562 		return RX_DROP_MONITOR;
3563 
3564 	/* for now only beacons are ext, so queue them */
3565 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3566 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3567 	if (rx->sta)
3568 		rx->sta->rx_stats.packets++;
3569 
3570 	return RX_QUEUED;
3571 }
3572 
3573 static ieee80211_rx_result debug_noinline
3574 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3575 {
3576 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3577 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3578 	__le16 stype;
3579 
3580 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3581 
3582 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3583 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3584 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3585 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3586 		return RX_DROP_MONITOR;
3587 
3588 	switch (stype) {
3589 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3590 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3591 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3592 		/* process for all: mesh, mlme, ibss */
3593 		break;
3594 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3595 		if (is_multicast_ether_addr(mgmt->da) &&
3596 		    !is_broadcast_ether_addr(mgmt->da))
3597 			return RX_DROP_MONITOR;
3598 
3599 		/* process only for station/IBSS */
3600 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3601 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3602 			return RX_DROP_MONITOR;
3603 		break;
3604 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3605 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3606 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3607 		if (is_multicast_ether_addr(mgmt->da) &&
3608 		    !is_broadcast_ether_addr(mgmt->da))
3609 			return RX_DROP_MONITOR;
3610 
3611 		/* process only for station */
3612 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3613 			return RX_DROP_MONITOR;
3614 		break;
3615 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3616 		/* process only for ibss and mesh */
3617 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3618 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3619 			return RX_DROP_MONITOR;
3620 		break;
3621 	default:
3622 		return RX_DROP_MONITOR;
3623 	}
3624 
3625 	/* queue up frame and kick off work to process it */
3626 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3627 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3628 	if (rx->sta)
3629 		rx->sta->rx_stats.packets++;
3630 
3631 	return RX_QUEUED;
3632 }
3633 
3634 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3635 					struct ieee80211_rate *rate)
3636 {
3637 	struct ieee80211_sub_if_data *sdata;
3638 	struct ieee80211_local *local = rx->local;
3639 	struct sk_buff *skb = rx->skb, *skb2;
3640 	struct net_device *prev_dev = NULL;
3641 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3642 	int needed_headroom;
3643 
3644 	/*
3645 	 * If cooked monitor has been processed already, then
3646 	 * don't do it again. If not, set the flag.
3647 	 */
3648 	if (rx->flags & IEEE80211_RX_CMNTR)
3649 		goto out_free_skb;
3650 	rx->flags |= IEEE80211_RX_CMNTR;
3651 
3652 	/* If there are no cooked monitor interfaces, just free the SKB */
3653 	if (!local->cooked_mntrs)
3654 		goto out_free_skb;
3655 
3656 	/* vendor data is long removed here */
3657 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3658 	/* room for the radiotap header based on driver features */
3659 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3660 
3661 	if (skb_headroom(skb) < needed_headroom &&
3662 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3663 		goto out_free_skb;
3664 
3665 	/* prepend radiotap information */
3666 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3667 					 false);
3668 
3669 	skb_reset_mac_header(skb);
3670 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3671 	skb->pkt_type = PACKET_OTHERHOST;
3672 	skb->protocol = htons(ETH_P_802_2);
3673 
3674 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3675 		if (!ieee80211_sdata_running(sdata))
3676 			continue;
3677 
3678 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3679 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3680 			continue;
3681 
3682 		if (prev_dev) {
3683 			skb2 = skb_clone(skb, GFP_ATOMIC);
3684 			if (skb2) {
3685 				skb2->dev = prev_dev;
3686 				netif_receive_skb(skb2);
3687 			}
3688 		}
3689 
3690 		prev_dev = sdata->dev;
3691 		dev_sw_netstats_rx_add(sdata->dev, skb->len);
3692 	}
3693 
3694 	if (prev_dev) {
3695 		skb->dev = prev_dev;
3696 		netif_receive_skb(skb);
3697 		return;
3698 	}
3699 
3700  out_free_skb:
3701 	dev_kfree_skb(skb);
3702 }
3703 
3704 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3705 					 ieee80211_rx_result res)
3706 {
3707 	switch (res) {
3708 	case RX_DROP_MONITOR:
3709 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3710 		if (rx->sta)
3711 			rx->sta->rx_stats.dropped++;
3712 		fallthrough;
3713 	case RX_CONTINUE: {
3714 		struct ieee80211_rate *rate = NULL;
3715 		struct ieee80211_supported_band *sband;
3716 		struct ieee80211_rx_status *status;
3717 
3718 		status = IEEE80211_SKB_RXCB((rx->skb));
3719 
3720 		sband = rx->local->hw.wiphy->bands[status->band];
3721 		if (status->encoding == RX_ENC_LEGACY)
3722 			rate = &sband->bitrates[status->rate_idx];
3723 
3724 		ieee80211_rx_cooked_monitor(rx, rate);
3725 		break;
3726 		}
3727 	case RX_DROP_UNUSABLE:
3728 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3729 		if (rx->sta)
3730 			rx->sta->rx_stats.dropped++;
3731 		dev_kfree_skb(rx->skb);
3732 		break;
3733 	case RX_QUEUED:
3734 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3735 		break;
3736 	}
3737 }
3738 
3739 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3740 				  struct sk_buff_head *frames)
3741 {
3742 	ieee80211_rx_result res = RX_DROP_MONITOR;
3743 	struct sk_buff *skb;
3744 
3745 #define CALL_RXH(rxh)			\
3746 	do {				\
3747 		res = rxh(rx);		\
3748 		if (res != RX_CONTINUE)	\
3749 			goto rxh_next;  \
3750 	} while (0)
3751 
3752 	/* Lock here to avoid hitting all of the data used in the RX
3753 	 * path (e.g. key data, station data, ...) concurrently when
3754 	 * a frame is released from the reorder buffer due to timeout
3755 	 * from the timer, potentially concurrently with RX from the
3756 	 * driver.
3757 	 */
3758 	spin_lock_bh(&rx->local->rx_path_lock);
3759 
3760 	while ((skb = __skb_dequeue(frames))) {
3761 		/*
3762 		 * all the other fields are valid across frames
3763 		 * that belong to an aMPDU since they are on the
3764 		 * same TID from the same station
3765 		 */
3766 		rx->skb = skb;
3767 
3768 		CALL_RXH(ieee80211_rx_h_check_more_data);
3769 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3770 		CALL_RXH(ieee80211_rx_h_sta_process);
3771 		CALL_RXH(ieee80211_rx_h_decrypt);
3772 		CALL_RXH(ieee80211_rx_h_defragment);
3773 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3774 		/* must be after MMIC verify so header is counted in MPDU mic */
3775 #ifdef CONFIG_MAC80211_MESH
3776 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3777 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3778 #endif
3779 		CALL_RXH(ieee80211_rx_h_amsdu);
3780 		CALL_RXH(ieee80211_rx_h_data);
3781 
3782 		/* special treatment -- needs the queue */
3783 		res = ieee80211_rx_h_ctrl(rx, frames);
3784 		if (res != RX_CONTINUE)
3785 			goto rxh_next;
3786 
3787 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3788 		CALL_RXH(ieee80211_rx_h_action);
3789 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3790 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3791 		CALL_RXH(ieee80211_rx_h_action_return);
3792 		CALL_RXH(ieee80211_rx_h_ext);
3793 		CALL_RXH(ieee80211_rx_h_mgmt);
3794 
3795  rxh_next:
3796 		ieee80211_rx_handlers_result(rx, res);
3797 
3798 #undef CALL_RXH
3799 	}
3800 
3801 	spin_unlock_bh(&rx->local->rx_path_lock);
3802 }
3803 
3804 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3805 {
3806 	struct sk_buff_head reorder_release;
3807 	ieee80211_rx_result res = RX_DROP_MONITOR;
3808 
3809 	__skb_queue_head_init(&reorder_release);
3810 
3811 #define CALL_RXH(rxh)			\
3812 	do {				\
3813 		res = rxh(rx);		\
3814 		if (res != RX_CONTINUE)	\
3815 			goto rxh_next;  \
3816 	} while (0)
3817 
3818 	CALL_RXH(ieee80211_rx_h_check_dup);
3819 	CALL_RXH(ieee80211_rx_h_check);
3820 
3821 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3822 
3823 	ieee80211_rx_handlers(rx, &reorder_release);
3824 	return;
3825 
3826  rxh_next:
3827 	ieee80211_rx_handlers_result(rx, res);
3828 
3829 #undef CALL_RXH
3830 }
3831 
3832 /*
3833  * This function makes calls into the RX path, therefore
3834  * it has to be invoked under RCU read lock.
3835  */
3836 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3837 {
3838 	struct sk_buff_head frames;
3839 	struct ieee80211_rx_data rx = {
3840 		.sta = sta,
3841 		.sdata = sta->sdata,
3842 		.local = sta->local,
3843 		/* This is OK -- must be QoS data frame */
3844 		.security_idx = tid,
3845 		.seqno_idx = tid,
3846 	};
3847 	struct tid_ampdu_rx *tid_agg_rx;
3848 
3849 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3850 	if (!tid_agg_rx)
3851 		return;
3852 
3853 	__skb_queue_head_init(&frames);
3854 
3855 	spin_lock(&tid_agg_rx->reorder_lock);
3856 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3857 	spin_unlock(&tid_agg_rx->reorder_lock);
3858 
3859 	if (!skb_queue_empty(&frames)) {
3860 		struct ieee80211_event event = {
3861 			.type = BA_FRAME_TIMEOUT,
3862 			.u.ba.tid = tid,
3863 			.u.ba.sta = &sta->sta,
3864 		};
3865 		drv_event_callback(rx.local, rx.sdata, &event);
3866 	}
3867 
3868 	ieee80211_rx_handlers(&rx, &frames);
3869 }
3870 
3871 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3872 					  u16 ssn, u64 filtered,
3873 					  u16 received_mpdus)
3874 {
3875 	struct sta_info *sta;
3876 	struct tid_ampdu_rx *tid_agg_rx;
3877 	struct sk_buff_head frames;
3878 	struct ieee80211_rx_data rx = {
3879 		/* This is OK -- must be QoS data frame */
3880 		.security_idx = tid,
3881 		.seqno_idx = tid,
3882 	};
3883 	int i, diff;
3884 
3885 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3886 		return;
3887 
3888 	__skb_queue_head_init(&frames);
3889 
3890 	sta = container_of(pubsta, struct sta_info, sta);
3891 
3892 	rx.sta = sta;
3893 	rx.sdata = sta->sdata;
3894 	rx.local = sta->local;
3895 
3896 	rcu_read_lock();
3897 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3898 	if (!tid_agg_rx)
3899 		goto out;
3900 
3901 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3902 
3903 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3904 		int release;
3905 
3906 		/* release all frames in the reorder buffer */
3907 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3908 			   IEEE80211_SN_MODULO;
3909 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3910 						 release, &frames);
3911 		/* update ssn to match received ssn */
3912 		tid_agg_rx->head_seq_num = ssn;
3913 	} else {
3914 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3915 						 &frames);
3916 	}
3917 
3918 	/* handle the case that received ssn is behind the mac ssn.
3919 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3920 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3921 	if (diff >= tid_agg_rx->buf_size) {
3922 		tid_agg_rx->reorder_buf_filtered = 0;
3923 		goto release;
3924 	}
3925 	filtered = filtered >> diff;
3926 	ssn += diff;
3927 
3928 	/* update bitmap */
3929 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3930 		int index = (ssn + i) % tid_agg_rx->buf_size;
3931 
3932 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3933 		if (filtered & BIT_ULL(i))
3934 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3935 	}
3936 
3937 	/* now process also frames that the filter marking released */
3938 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3939 
3940 release:
3941 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3942 
3943 	ieee80211_rx_handlers(&rx, &frames);
3944 
3945  out:
3946 	rcu_read_unlock();
3947 }
3948 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3949 
3950 /* main receive path */
3951 
3952 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3953 {
3954 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3955 	struct sk_buff *skb = rx->skb;
3956 	struct ieee80211_hdr *hdr = (void *)skb->data;
3957 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3958 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3959 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
3960 			 ieee80211_is_s1g_beacon(hdr->frame_control);
3961 
3962 	switch (sdata->vif.type) {
3963 	case NL80211_IFTYPE_STATION:
3964 		if (!bssid && !sdata->u.mgd.use_4addr)
3965 			return false;
3966 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3967 			return false;
3968 		if (multicast)
3969 			return true;
3970 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3971 	case NL80211_IFTYPE_ADHOC:
3972 		if (!bssid)
3973 			return false;
3974 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3975 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3976 			return false;
3977 		if (ieee80211_is_beacon(hdr->frame_control))
3978 			return true;
3979 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3980 			return false;
3981 		if (!multicast &&
3982 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3983 			return false;
3984 		if (!rx->sta) {
3985 			int rate_idx;
3986 			if (status->encoding != RX_ENC_LEGACY)
3987 				rate_idx = 0; /* TODO: HT/VHT rates */
3988 			else
3989 				rate_idx = status->rate_idx;
3990 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3991 						 BIT(rate_idx));
3992 		}
3993 		return true;
3994 	case NL80211_IFTYPE_OCB:
3995 		if (!bssid)
3996 			return false;
3997 		if (!ieee80211_is_data_present(hdr->frame_control))
3998 			return false;
3999 		if (!is_broadcast_ether_addr(bssid))
4000 			return false;
4001 		if (!multicast &&
4002 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4003 			return false;
4004 		if (!rx->sta) {
4005 			int rate_idx;
4006 			if (status->encoding != RX_ENC_LEGACY)
4007 				rate_idx = 0; /* TODO: HT rates */
4008 			else
4009 				rate_idx = status->rate_idx;
4010 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4011 						BIT(rate_idx));
4012 		}
4013 		return true;
4014 	case NL80211_IFTYPE_MESH_POINT:
4015 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4016 			return false;
4017 		if (multicast)
4018 			return true;
4019 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4020 	case NL80211_IFTYPE_AP_VLAN:
4021 	case NL80211_IFTYPE_AP:
4022 		if (!bssid)
4023 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4024 
4025 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4026 			/*
4027 			 * Accept public action frames even when the
4028 			 * BSSID doesn't match, this is used for P2P
4029 			 * and location updates. Note that mac80211
4030 			 * itself never looks at these frames.
4031 			 */
4032 			if (!multicast &&
4033 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4034 				return false;
4035 			if (ieee80211_is_public_action(hdr, skb->len))
4036 				return true;
4037 			return ieee80211_is_beacon(hdr->frame_control);
4038 		}
4039 
4040 		if (!ieee80211_has_tods(hdr->frame_control)) {
4041 			/* ignore data frames to TDLS-peers */
4042 			if (ieee80211_is_data(hdr->frame_control))
4043 				return false;
4044 			/* ignore action frames to TDLS-peers */
4045 			if (ieee80211_is_action(hdr->frame_control) &&
4046 			    !is_broadcast_ether_addr(bssid) &&
4047 			    !ether_addr_equal(bssid, hdr->addr1))
4048 				return false;
4049 		}
4050 
4051 		/*
4052 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4053 		 * the BSSID - we've checked that already but may have accepted
4054 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4055 		 *
4056 		 * It also says:
4057 		 *	The BSSID of the Data frame is determined as follows:
4058 		 *	a) If the STA is contained within an AP or is associated
4059 		 *	   with an AP, the BSSID is the address currently in use
4060 		 *	   by the STA contained in the AP.
4061 		 *
4062 		 * So we should not accept data frames with an address that's
4063 		 * multicast.
4064 		 *
4065 		 * Accepting it also opens a security problem because stations
4066 		 * could encrypt it with the GTK and inject traffic that way.
4067 		 */
4068 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4069 			return false;
4070 
4071 		return true;
4072 	case NL80211_IFTYPE_P2P_DEVICE:
4073 		return ieee80211_is_public_action(hdr, skb->len) ||
4074 		       ieee80211_is_probe_req(hdr->frame_control) ||
4075 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4076 		       ieee80211_is_beacon(hdr->frame_control);
4077 	case NL80211_IFTYPE_NAN:
4078 		/* Currently no frames on NAN interface are allowed */
4079 		return false;
4080 	default:
4081 		break;
4082 	}
4083 
4084 	WARN_ON_ONCE(1);
4085 	return false;
4086 }
4087 
4088 void ieee80211_check_fast_rx(struct sta_info *sta)
4089 {
4090 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4091 	struct ieee80211_local *local = sdata->local;
4092 	struct ieee80211_key *key;
4093 	struct ieee80211_fast_rx fastrx = {
4094 		.dev = sdata->dev,
4095 		.vif_type = sdata->vif.type,
4096 		.control_port_protocol = sdata->control_port_protocol,
4097 	}, *old, *new = NULL;
4098 	bool set_offload = false;
4099 	bool assign = false;
4100 	bool offload;
4101 
4102 	/* use sparse to check that we don't return without updating */
4103 	__acquire(check_fast_rx);
4104 
4105 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4106 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4107 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4108 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4109 
4110 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4111 
4112 	/* fast-rx doesn't do reordering */
4113 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4114 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4115 		goto clear;
4116 
4117 	switch (sdata->vif.type) {
4118 	case NL80211_IFTYPE_STATION:
4119 		if (sta->sta.tdls) {
4120 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4121 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4122 			fastrx.expected_ds_bits = 0;
4123 		} else {
4124 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4125 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4126 			fastrx.expected_ds_bits =
4127 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4128 		}
4129 
4130 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4131 			fastrx.expected_ds_bits |=
4132 				cpu_to_le16(IEEE80211_FCTL_TODS);
4133 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4134 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4135 		}
4136 
4137 		if (!sdata->u.mgd.powersave)
4138 			break;
4139 
4140 		/* software powersave is a huge mess, avoid all of it */
4141 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4142 			goto clear;
4143 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4144 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4145 			goto clear;
4146 		break;
4147 	case NL80211_IFTYPE_AP_VLAN:
4148 	case NL80211_IFTYPE_AP:
4149 		/* parallel-rx requires this, at least with calls to
4150 		 * ieee80211_sta_ps_transition()
4151 		 */
4152 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4153 			goto clear;
4154 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4155 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4156 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4157 
4158 		fastrx.internal_forward =
4159 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4160 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4161 			 !sdata->u.vlan.sta);
4162 
4163 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4164 		    sdata->u.vlan.sta) {
4165 			fastrx.expected_ds_bits |=
4166 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4167 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4168 			fastrx.internal_forward = 0;
4169 		}
4170 
4171 		break;
4172 	default:
4173 		goto clear;
4174 	}
4175 
4176 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4177 		goto clear;
4178 
4179 	rcu_read_lock();
4180 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4181 	if (!key)
4182 		key = rcu_dereference(sdata->default_unicast_key);
4183 	if (key) {
4184 		switch (key->conf.cipher) {
4185 		case WLAN_CIPHER_SUITE_TKIP:
4186 			/* we don't want to deal with MMIC in fast-rx */
4187 			goto clear_rcu;
4188 		case WLAN_CIPHER_SUITE_CCMP:
4189 		case WLAN_CIPHER_SUITE_CCMP_256:
4190 		case WLAN_CIPHER_SUITE_GCMP:
4191 		case WLAN_CIPHER_SUITE_GCMP_256:
4192 			break;
4193 		default:
4194 			/* We also don't want to deal with
4195 			 * WEP or cipher scheme.
4196 			 */
4197 			goto clear_rcu;
4198 		}
4199 
4200 		fastrx.key = true;
4201 		fastrx.icv_len = key->conf.icv_len;
4202 	}
4203 
4204 	assign = true;
4205  clear_rcu:
4206 	rcu_read_unlock();
4207  clear:
4208 	__release(check_fast_rx);
4209 
4210 	if (assign)
4211 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4212 
4213 	offload = assign &&
4214 		  (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4215 
4216 	if (offload)
4217 		set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4218 	else
4219 		set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4220 
4221 	if (set_offload)
4222 		drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4223 
4224 	spin_lock_bh(&sta->lock);
4225 	old = rcu_dereference_protected(sta->fast_rx, true);
4226 	rcu_assign_pointer(sta->fast_rx, new);
4227 	spin_unlock_bh(&sta->lock);
4228 
4229 	if (old)
4230 		kfree_rcu(old, rcu_head);
4231 }
4232 
4233 void ieee80211_clear_fast_rx(struct sta_info *sta)
4234 {
4235 	struct ieee80211_fast_rx *old;
4236 
4237 	spin_lock_bh(&sta->lock);
4238 	old = rcu_dereference_protected(sta->fast_rx, true);
4239 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4240 	spin_unlock_bh(&sta->lock);
4241 
4242 	if (old)
4243 		kfree_rcu(old, rcu_head);
4244 }
4245 
4246 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4247 {
4248 	struct ieee80211_local *local = sdata->local;
4249 	struct sta_info *sta;
4250 
4251 	lockdep_assert_held(&local->sta_mtx);
4252 
4253 	list_for_each_entry(sta, &local->sta_list, list) {
4254 		if (sdata != sta->sdata &&
4255 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4256 			continue;
4257 		ieee80211_check_fast_rx(sta);
4258 	}
4259 }
4260 
4261 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4262 {
4263 	struct ieee80211_local *local = sdata->local;
4264 
4265 	mutex_lock(&local->sta_mtx);
4266 	__ieee80211_check_fast_rx_iface(sdata);
4267 	mutex_unlock(&local->sta_mtx);
4268 }
4269 
4270 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4271 			      struct ieee80211_fast_rx *fast_rx,
4272 			      int orig_len)
4273 {
4274 	struct ieee80211_sta_rx_stats *stats;
4275 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4276 	struct sta_info *sta = rx->sta;
4277 	struct sk_buff *skb = rx->skb;
4278 	void *sa = skb->data + ETH_ALEN;
4279 	void *da = skb->data;
4280 
4281 	stats = &sta->rx_stats;
4282 	if (fast_rx->uses_rss)
4283 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4284 
4285 	/* statistics part of ieee80211_rx_h_sta_process() */
4286 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4287 		stats->last_signal = status->signal;
4288 		if (!fast_rx->uses_rss)
4289 			ewma_signal_add(&sta->rx_stats_avg.signal,
4290 					-status->signal);
4291 	}
4292 
4293 	if (status->chains) {
4294 		int i;
4295 
4296 		stats->chains = status->chains;
4297 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4298 			int signal = status->chain_signal[i];
4299 
4300 			if (!(status->chains & BIT(i)))
4301 				continue;
4302 
4303 			stats->chain_signal_last[i] = signal;
4304 			if (!fast_rx->uses_rss)
4305 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4306 						-signal);
4307 		}
4308 	}
4309 	/* end of statistics */
4310 
4311 	stats->last_rx = jiffies;
4312 	stats->last_rate = sta_stats_encode_rate(status);
4313 
4314 	stats->fragments++;
4315 	stats->packets++;
4316 
4317 	skb->dev = fast_rx->dev;
4318 
4319 	dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4320 
4321 	/* The seqno index has the same property as needed
4322 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4323 	 * for non-QoS-data frames. Here we know it's a data
4324 	 * frame, so count MSDUs.
4325 	 */
4326 	u64_stats_update_begin(&stats->syncp);
4327 	stats->msdu[rx->seqno_idx]++;
4328 	stats->bytes += orig_len;
4329 	u64_stats_update_end(&stats->syncp);
4330 
4331 	if (fast_rx->internal_forward) {
4332 		struct sk_buff *xmit_skb = NULL;
4333 		if (is_multicast_ether_addr(da)) {
4334 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4335 		} else if (!ether_addr_equal(da, sa) &&
4336 			   sta_info_get(rx->sdata, da)) {
4337 			xmit_skb = skb;
4338 			skb = NULL;
4339 		}
4340 
4341 		if (xmit_skb) {
4342 			/*
4343 			 * Send to wireless media and increase priority by 256
4344 			 * to keep the received priority instead of
4345 			 * reclassifying the frame (see cfg80211_classify8021d).
4346 			 */
4347 			xmit_skb->priority += 256;
4348 			xmit_skb->protocol = htons(ETH_P_802_3);
4349 			skb_reset_network_header(xmit_skb);
4350 			skb_reset_mac_header(xmit_skb);
4351 			dev_queue_xmit(xmit_skb);
4352 		}
4353 
4354 		if (!skb)
4355 			return;
4356 	}
4357 
4358 	/* deliver to local stack */
4359 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4360 	memset(skb->cb, 0, sizeof(skb->cb));
4361 	if (rx->list)
4362 		list_add_tail(&skb->list, rx->list);
4363 	else
4364 		netif_receive_skb(skb);
4365 
4366 }
4367 
4368 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4369 				     struct ieee80211_fast_rx *fast_rx)
4370 {
4371 	struct sk_buff *skb = rx->skb;
4372 	struct ieee80211_hdr *hdr = (void *)skb->data;
4373 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4374 	struct sta_info *sta = rx->sta;
4375 	int orig_len = skb->len;
4376 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4377 	int snap_offs = hdrlen;
4378 	struct {
4379 		u8 snap[sizeof(rfc1042_header)];
4380 		__be16 proto;
4381 	} *payload __aligned(2);
4382 	struct {
4383 		u8 da[ETH_ALEN];
4384 		u8 sa[ETH_ALEN];
4385 	} addrs __aligned(2);
4386 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4387 
4388 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4389 	 * to a common data structure; drivers can implement that per queue
4390 	 * but we don't have that information in mac80211
4391 	 */
4392 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4393 		return false;
4394 
4395 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4396 
4397 	/* If using encryption, we also need to have:
4398 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4399 	 *  - DECRYPTED: necessary for PN_VALIDATED
4400 	 */
4401 	if (fast_rx->key &&
4402 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4403 		return false;
4404 
4405 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4406 		return false;
4407 
4408 	if (unlikely(ieee80211_is_frag(hdr)))
4409 		return false;
4410 
4411 	/* Since our interface address cannot be multicast, this
4412 	 * implicitly also rejects multicast frames without the
4413 	 * explicit check.
4414 	 *
4415 	 * We shouldn't get any *data* frames not addressed to us
4416 	 * (AP mode will accept multicast *management* frames), but
4417 	 * punting here will make it go through the full checks in
4418 	 * ieee80211_accept_frame().
4419 	 */
4420 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4421 		return false;
4422 
4423 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4424 					      IEEE80211_FCTL_TODS)) !=
4425 	    fast_rx->expected_ds_bits)
4426 		return false;
4427 
4428 	/* assign the key to drop unencrypted frames (later)
4429 	 * and strip the IV/MIC if necessary
4430 	 */
4431 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4432 		/* GCMP header length is the same */
4433 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4434 	}
4435 
4436 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4437 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4438 			goto drop;
4439 
4440 		payload = (void *)(skb->data + snap_offs);
4441 
4442 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4443 			return false;
4444 
4445 		/* Don't handle these here since they require special code.
4446 		 * Accept AARP and IPX even though they should come with a
4447 		 * bridge-tunnel header - but if we get them this way then
4448 		 * there's little point in discarding them.
4449 		 */
4450 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4451 			     payload->proto == fast_rx->control_port_protocol))
4452 			return false;
4453 	}
4454 
4455 	/* after this point, don't punt to the slowpath! */
4456 
4457 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4458 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4459 		goto drop;
4460 
4461 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4462 		goto drop;
4463 
4464 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4465 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4466 		    RX_QUEUED)
4467 			goto drop;
4468 
4469 		return true;
4470 	}
4471 
4472 	/* do the header conversion - first grab the addresses */
4473 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4474 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4475 	/* remove the SNAP but leave the ethertype */
4476 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4477 	/* push the addresses in front */
4478 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4479 
4480 	ieee80211_rx_8023(rx, fast_rx, orig_len);
4481 
4482 	return true;
4483  drop:
4484 	dev_kfree_skb(skb);
4485 	if (fast_rx->uses_rss)
4486 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4487 
4488 	stats->dropped++;
4489 	return true;
4490 }
4491 
4492 /*
4493  * This function returns whether or not the SKB
4494  * was destined for RX processing or not, which,
4495  * if consume is true, is equivalent to whether
4496  * or not the skb was consumed.
4497  */
4498 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4499 					    struct sk_buff *skb, bool consume)
4500 {
4501 	struct ieee80211_local *local = rx->local;
4502 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4503 
4504 	rx->skb = skb;
4505 
4506 	/* See if we can do fast-rx; if we have to copy we already lost,
4507 	 * so punt in that case. We should never have to deliver a data
4508 	 * frame to multiple interfaces anyway.
4509 	 *
4510 	 * We skip the ieee80211_accept_frame() call and do the necessary
4511 	 * checking inside ieee80211_invoke_fast_rx().
4512 	 */
4513 	if (consume && rx->sta) {
4514 		struct ieee80211_fast_rx *fast_rx;
4515 
4516 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4517 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4518 			return true;
4519 	}
4520 
4521 	if (!ieee80211_accept_frame(rx))
4522 		return false;
4523 
4524 	if (!consume) {
4525 		skb = skb_copy(skb, GFP_ATOMIC);
4526 		if (!skb) {
4527 			if (net_ratelimit())
4528 				wiphy_debug(local->hw.wiphy,
4529 					"failed to copy skb for %s\n",
4530 					sdata->name);
4531 			return true;
4532 		}
4533 
4534 		rx->skb = skb;
4535 	}
4536 
4537 	ieee80211_invoke_rx_handlers(rx);
4538 	return true;
4539 }
4540 
4541 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4542 				       struct ieee80211_sta *pubsta,
4543 				       struct sk_buff *skb,
4544 				       struct list_head *list)
4545 {
4546 	struct ieee80211_local *local = hw_to_local(hw);
4547 	struct ieee80211_fast_rx *fast_rx;
4548 	struct ieee80211_rx_data rx;
4549 
4550 	memset(&rx, 0, sizeof(rx));
4551 	rx.skb = skb;
4552 	rx.local = local;
4553 	rx.list = list;
4554 
4555 	I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4556 
4557 	/* drop frame if too short for header */
4558 	if (skb->len < sizeof(struct ethhdr))
4559 		goto drop;
4560 
4561 	if (!pubsta)
4562 		goto drop;
4563 
4564 	rx.sta = container_of(pubsta, struct sta_info, sta);
4565 	rx.sdata = rx.sta->sdata;
4566 
4567 	fast_rx = rcu_dereference(rx.sta->fast_rx);
4568 	if (!fast_rx)
4569 		goto drop;
4570 
4571 	ieee80211_rx_8023(&rx, fast_rx, skb->len);
4572 	return;
4573 
4574 drop:
4575 	dev_kfree_skb(skb);
4576 }
4577 
4578 /*
4579  * This is the actual Rx frames handler. as it belongs to Rx path it must
4580  * be called with rcu_read_lock protection.
4581  */
4582 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4583 					 struct ieee80211_sta *pubsta,
4584 					 struct sk_buff *skb,
4585 					 struct list_head *list)
4586 {
4587 	struct ieee80211_local *local = hw_to_local(hw);
4588 	struct ieee80211_sub_if_data *sdata;
4589 	struct ieee80211_hdr *hdr;
4590 	__le16 fc;
4591 	struct ieee80211_rx_data rx;
4592 	struct ieee80211_sub_if_data *prev;
4593 	struct rhlist_head *tmp;
4594 	int err = 0;
4595 
4596 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4597 	memset(&rx, 0, sizeof(rx));
4598 	rx.skb = skb;
4599 	rx.local = local;
4600 	rx.list = list;
4601 
4602 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4603 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4604 
4605 	if (ieee80211_is_mgmt(fc)) {
4606 		/* drop frame if too short for header */
4607 		if (skb->len < ieee80211_hdrlen(fc))
4608 			err = -ENOBUFS;
4609 		else
4610 			err = skb_linearize(skb);
4611 	} else {
4612 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4613 	}
4614 
4615 	if (err) {
4616 		dev_kfree_skb(skb);
4617 		return;
4618 	}
4619 
4620 	hdr = (struct ieee80211_hdr *)skb->data;
4621 	ieee80211_parse_qos(&rx);
4622 	ieee80211_verify_alignment(&rx);
4623 
4624 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4625 		     ieee80211_is_beacon(hdr->frame_control) ||
4626 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4627 		ieee80211_scan_rx(local, skb);
4628 
4629 	if (ieee80211_is_data(fc)) {
4630 		struct sta_info *sta, *prev_sta;
4631 
4632 		if (pubsta) {
4633 			rx.sta = container_of(pubsta, struct sta_info, sta);
4634 			rx.sdata = rx.sta->sdata;
4635 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4636 				return;
4637 			goto out;
4638 		}
4639 
4640 		prev_sta = NULL;
4641 
4642 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4643 			if (!prev_sta) {
4644 				prev_sta = sta;
4645 				continue;
4646 			}
4647 
4648 			rx.sta = prev_sta;
4649 			rx.sdata = prev_sta->sdata;
4650 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4651 
4652 			prev_sta = sta;
4653 		}
4654 
4655 		if (prev_sta) {
4656 			rx.sta = prev_sta;
4657 			rx.sdata = prev_sta->sdata;
4658 
4659 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4660 				return;
4661 			goto out;
4662 		}
4663 	}
4664 
4665 	prev = NULL;
4666 
4667 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4668 		if (!ieee80211_sdata_running(sdata))
4669 			continue;
4670 
4671 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4672 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4673 			continue;
4674 
4675 		/*
4676 		 * frame is destined for this interface, but if it's
4677 		 * not also for the previous one we handle that after
4678 		 * the loop to avoid copying the SKB once too much
4679 		 */
4680 
4681 		if (!prev) {
4682 			prev = sdata;
4683 			continue;
4684 		}
4685 
4686 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4687 		rx.sdata = prev;
4688 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4689 
4690 		prev = sdata;
4691 	}
4692 
4693 	if (prev) {
4694 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4695 		rx.sdata = prev;
4696 
4697 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4698 			return;
4699 	}
4700 
4701  out:
4702 	dev_kfree_skb(skb);
4703 }
4704 
4705 /*
4706  * This is the receive path handler. It is called by a low level driver when an
4707  * 802.11 MPDU is received from the hardware.
4708  */
4709 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4710 		       struct sk_buff *skb, struct list_head *list)
4711 {
4712 	struct ieee80211_local *local = hw_to_local(hw);
4713 	struct ieee80211_rate *rate = NULL;
4714 	struct ieee80211_supported_band *sband;
4715 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4716 
4717 	WARN_ON_ONCE(softirq_count() == 0);
4718 
4719 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4720 		goto drop;
4721 
4722 	sband = local->hw.wiphy->bands[status->band];
4723 	if (WARN_ON(!sband))
4724 		goto drop;
4725 
4726 	/*
4727 	 * If we're suspending, it is possible although not too likely
4728 	 * that we'd be receiving frames after having already partially
4729 	 * quiesced the stack. We can't process such frames then since
4730 	 * that might, for example, cause stations to be added or other
4731 	 * driver callbacks be invoked.
4732 	 */
4733 	if (unlikely(local->quiescing || local->suspended))
4734 		goto drop;
4735 
4736 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4737 	if (unlikely(local->in_reconfig))
4738 		goto drop;
4739 
4740 	/*
4741 	 * The same happens when we're not even started,
4742 	 * but that's worth a warning.
4743 	 */
4744 	if (WARN_ON(!local->started))
4745 		goto drop;
4746 
4747 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4748 		/*
4749 		 * Validate the rate, unless a PLCP error means that
4750 		 * we probably can't have a valid rate here anyway.
4751 		 */
4752 
4753 		switch (status->encoding) {
4754 		case RX_ENC_HT:
4755 			/*
4756 			 * rate_idx is MCS index, which can be [0-76]
4757 			 * as documented on:
4758 			 *
4759 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4760 			 *
4761 			 * Anything else would be some sort of driver or
4762 			 * hardware error. The driver should catch hardware
4763 			 * errors.
4764 			 */
4765 			if (WARN(status->rate_idx > 76,
4766 				 "Rate marked as an HT rate but passed "
4767 				 "status->rate_idx is not "
4768 				 "an MCS index [0-76]: %d (0x%02x)\n",
4769 				 status->rate_idx,
4770 				 status->rate_idx))
4771 				goto drop;
4772 			break;
4773 		case RX_ENC_VHT:
4774 			if (WARN_ONCE(status->rate_idx > 9 ||
4775 				      !status->nss ||
4776 				      status->nss > 8,
4777 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4778 				      status->rate_idx, status->nss))
4779 				goto drop;
4780 			break;
4781 		case RX_ENC_HE:
4782 			if (WARN_ONCE(status->rate_idx > 11 ||
4783 				      !status->nss ||
4784 				      status->nss > 8,
4785 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4786 				      status->rate_idx, status->nss))
4787 				goto drop;
4788 			break;
4789 		default:
4790 			WARN_ON_ONCE(1);
4791 			fallthrough;
4792 		case RX_ENC_LEGACY:
4793 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4794 				goto drop;
4795 			rate = &sband->bitrates[status->rate_idx];
4796 		}
4797 	}
4798 
4799 	status->rx_flags = 0;
4800 
4801 	kcov_remote_start_common(skb_get_kcov_handle(skb));
4802 
4803 	/*
4804 	 * Frames with failed FCS/PLCP checksum are not returned,
4805 	 * all other frames are returned without radiotap header
4806 	 * if it was previously present.
4807 	 * Also, frames with less than 16 bytes are dropped.
4808 	 */
4809 	if (!(status->flag & RX_FLAG_8023))
4810 		skb = ieee80211_rx_monitor(local, skb, rate);
4811 	if (skb) {
4812 		ieee80211_tpt_led_trig_rx(local,
4813 					  ((struct ieee80211_hdr *)skb->data)->frame_control,
4814 					  skb->len);
4815 
4816 		if (status->flag & RX_FLAG_8023)
4817 			__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4818 		else
4819 			__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4820 	}
4821 
4822 	kcov_remote_stop();
4823 	return;
4824  drop:
4825 	kfree_skb(skb);
4826 }
4827 EXPORT_SYMBOL(ieee80211_rx_list);
4828 
4829 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4830 		       struct sk_buff *skb, struct napi_struct *napi)
4831 {
4832 	struct sk_buff *tmp;
4833 	LIST_HEAD(list);
4834 
4835 
4836 	/*
4837 	 * key references and virtual interfaces are protected using RCU
4838 	 * and this requires that we are in a read-side RCU section during
4839 	 * receive processing
4840 	 */
4841 	rcu_read_lock();
4842 	ieee80211_rx_list(hw, pubsta, skb, &list);
4843 	rcu_read_unlock();
4844 
4845 	if (!napi) {
4846 		netif_receive_skb_list(&list);
4847 		return;
4848 	}
4849 
4850 	list_for_each_entry_safe(skb, tmp, &list, list) {
4851 		skb_list_del_init(skb);
4852 		napi_gro_receive(napi, skb);
4853 	}
4854 }
4855 EXPORT_SYMBOL(ieee80211_rx_napi);
4856 
4857 /* This is a version of the rx handler that can be called from hard irq
4858  * context. Post the skb on the queue and schedule the tasklet */
4859 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4860 {
4861 	struct ieee80211_local *local = hw_to_local(hw);
4862 
4863 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4864 
4865 	skb->pkt_type = IEEE80211_RX_MSG;
4866 	skb_queue_tail(&local->skb_queue, skb);
4867 	tasklet_schedule(&local->tasklet);
4868 }
4869 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4870