1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/jiffies.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/skbuff.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <linux/bitops.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 38 { 39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 40 41 u64_stats_update_begin(&tstats->syncp); 42 tstats->rx_packets++; 43 tstats->rx_bytes += len; 44 u64_stats_update_end(&tstats->syncp); 45 } 46 47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 48 enum nl80211_iftype type) 49 { 50 __le16 fc = hdr->frame_control; 51 52 if (ieee80211_is_data(fc)) { 53 if (len < 24) /* drop incorrect hdr len (data) */ 54 return NULL; 55 56 if (ieee80211_has_a4(fc)) 57 return NULL; 58 if (ieee80211_has_tods(fc)) 59 return hdr->addr1; 60 if (ieee80211_has_fromds(fc)) 61 return hdr->addr2; 62 63 return hdr->addr3; 64 } 65 66 if (ieee80211_is_mgmt(fc)) { 67 if (len < 24) /* drop incorrect hdr len (mgmt) */ 68 return NULL; 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_ctl(fc)) { 73 if (ieee80211_is_pspoll(fc)) 74 return hdr->addr1; 75 76 if (ieee80211_is_back_req(fc)) { 77 switch (type) { 78 case NL80211_IFTYPE_STATION: 79 return hdr->addr2; 80 case NL80211_IFTYPE_AP: 81 case NL80211_IFTYPE_AP_VLAN: 82 return hdr->addr1; 83 default: 84 break; /* fall through to the return */ 85 } 86 } 87 } 88 89 return NULL; 90 } 91 92 /* 93 * monitor mode reception 94 * 95 * This function cleans up the SKB, i.e. it removes all the stuff 96 * only useful for monitoring. 97 */ 98 static void remove_monitor_info(struct sk_buff *skb, 99 unsigned int present_fcs_len, 100 unsigned int rtap_vendor_space) 101 { 102 if (present_fcs_len) 103 __pskb_trim(skb, skb->len - present_fcs_len); 104 __pskb_pull(skb, rtap_vendor_space); 105 } 106 107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 108 unsigned int rtap_vendor_space) 109 { 110 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 111 struct ieee80211_hdr *hdr; 112 113 hdr = (void *)(skb->data + rtap_vendor_space); 114 115 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 116 RX_FLAG_FAILED_PLCP_CRC | 117 RX_FLAG_ONLY_MONITOR)) 118 return true; 119 120 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 121 return true; 122 123 if (ieee80211_is_ctl(hdr->frame_control) && 124 !ieee80211_is_pspoll(hdr->frame_control) && 125 !ieee80211_is_back_req(hdr->frame_control)) 126 return true; 127 128 return false; 129 } 130 131 static int 132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 133 struct ieee80211_rx_status *status, 134 struct sk_buff *skb) 135 { 136 int len; 137 138 /* always present fields */ 139 len = sizeof(struct ieee80211_radiotap_header) + 8; 140 141 /* allocate extra bitmaps */ 142 if (status->chains) 143 len += 4 * hweight8(status->chains); 144 145 if (ieee80211_have_rx_timestamp(status)) { 146 len = ALIGN(len, 8); 147 len += 8; 148 } 149 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 150 len += 1; 151 152 /* antenna field, if we don't have per-chain info */ 153 if (!status->chains) 154 len += 1; 155 156 /* padding for RX_FLAGS if necessary */ 157 len = ALIGN(len, 2); 158 159 if (status->encoding == RX_ENC_HT) /* HT info */ 160 len += 3; 161 162 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 163 len = ALIGN(len, 4); 164 len += 8; 165 } 166 167 if (status->encoding == RX_ENC_VHT) { 168 len = ALIGN(len, 2); 169 len += 12; 170 } 171 172 if (local->hw.radiotap_timestamp.units_pos >= 0) { 173 len = ALIGN(len, 8); 174 len += 12; 175 } 176 177 if (status->chains) { 178 /* antenna and antenna signal fields */ 179 len += 2 * hweight8(status->chains); 180 } 181 182 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 183 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 184 185 /* vendor presence bitmap */ 186 len += 4; 187 /* alignment for fixed 6-byte vendor data header */ 188 len = ALIGN(len, 2); 189 /* vendor data header */ 190 len += 6; 191 if (WARN_ON(rtap->align == 0)) 192 rtap->align = 1; 193 len = ALIGN(len, rtap->align); 194 len += rtap->len + rtap->pad; 195 } 196 197 return len; 198 } 199 200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 201 struct sk_buff *skb, 202 int rtap_vendor_space) 203 { 204 struct { 205 struct ieee80211_hdr_3addr hdr; 206 u8 category; 207 u8 action_code; 208 } __packed action; 209 210 if (!sdata) 211 return; 212 213 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 214 215 if (skb->len < rtap_vendor_space + sizeof(action) + 216 VHT_MUMIMO_GROUPS_DATA_LEN) 217 return; 218 219 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 220 return; 221 222 skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action)); 223 224 if (!ieee80211_is_action(action.hdr.frame_control)) 225 return; 226 227 if (action.category != WLAN_CATEGORY_VHT) 228 return; 229 230 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 231 return; 232 233 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 234 return; 235 236 skb = skb_copy(skb, GFP_ATOMIC); 237 if (!skb) 238 return; 239 240 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 241 skb_queue_tail(&sdata->skb_queue, skb); 242 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 243 } 244 245 /* 246 * ieee80211_add_rx_radiotap_header - add radiotap header 247 * 248 * add a radiotap header containing all the fields which the hardware provided. 249 */ 250 static void 251 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 252 struct sk_buff *skb, 253 struct ieee80211_rate *rate, 254 int rtap_len, bool has_fcs) 255 { 256 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 257 struct ieee80211_radiotap_header *rthdr; 258 unsigned char *pos; 259 __le32 *it_present; 260 u32 it_present_val; 261 u16 rx_flags = 0; 262 u16 channel_flags = 0; 263 int mpdulen, chain; 264 unsigned long chains = status->chains; 265 struct ieee80211_vendor_radiotap rtap = {}; 266 267 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 268 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 269 /* rtap.len and rtap.pad are undone immediately */ 270 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 271 } 272 273 mpdulen = skb->len; 274 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 275 mpdulen += FCS_LEN; 276 277 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 278 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 279 it_present = &rthdr->it_present; 280 281 /* radiotap header, set always present flags */ 282 rthdr->it_len = cpu_to_le16(rtap_len); 283 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 284 BIT(IEEE80211_RADIOTAP_CHANNEL) | 285 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 286 287 if (!status->chains) 288 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 289 290 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 291 it_present_val |= 292 BIT(IEEE80211_RADIOTAP_EXT) | 293 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 294 put_unaligned_le32(it_present_val, it_present); 295 it_present++; 296 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 297 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 298 } 299 300 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 301 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 302 BIT(IEEE80211_RADIOTAP_EXT); 303 put_unaligned_le32(it_present_val, it_present); 304 it_present++; 305 it_present_val = rtap.present; 306 } 307 308 put_unaligned_le32(it_present_val, it_present); 309 310 pos = (void *)(it_present + 1); 311 312 /* the order of the following fields is important */ 313 314 /* IEEE80211_RADIOTAP_TSFT */ 315 if (ieee80211_have_rx_timestamp(status)) { 316 /* padding */ 317 while ((pos - (u8 *)rthdr) & 7) 318 *pos++ = 0; 319 put_unaligned_le64( 320 ieee80211_calculate_rx_timestamp(local, status, 321 mpdulen, 0), 322 pos); 323 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 324 pos += 8; 325 } 326 327 /* IEEE80211_RADIOTAP_FLAGS */ 328 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 329 *pos |= IEEE80211_RADIOTAP_F_FCS; 330 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 331 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 332 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 333 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 334 pos++; 335 336 /* IEEE80211_RADIOTAP_RATE */ 337 if (!rate || status->encoding != RX_ENC_LEGACY) { 338 /* 339 * Without rate information don't add it. If we have, 340 * MCS information is a separate field in radiotap, 341 * added below. The byte here is needed as padding 342 * for the channel though, so initialise it to 0. 343 */ 344 *pos = 0; 345 } else { 346 int shift = 0; 347 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 348 if (status->bw == RATE_INFO_BW_10) 349 shift = 1; 350 else if (status->bw == RATE_INFO_BW_5) 351 shift = 2; 352 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 353 } 354 pos++; 355 356 /* IEEE80211_RADIOTAP_CHANNEL */ 357 put_unaligned_le16(status->freq, pos); 358 pos += 2; 359 if (status->bw == RATE_INFO_BW_10) 360 channel_flags |= IEEE80211_CHAN_HALF; 361 else if (status->bw == RATE_INFO_BW_5) 362 channel_flags |= IEEE80211_CHAN_QUARTER; 363 364 if (status->band == NL80211_BAND_5GHZ) 365 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 366 else if (status->encoding != RX_ENC_LEGACY) 367 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 368 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 369 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 370 else if (rate) 371 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 372 else 373 channel_flags |= IEEE80211_CHAN_2GHZ; 374 put_unaligned_le16(channel_flags, pos); 375 pos += 2; 376 377 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 378 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 379 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 380 *pos = status->signal; 381 rthdr->it_present |= 382 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 383 pos++; 384 } 385 386 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 387 388 if (!status->chains) { 389 /* IEEE80211_RADIOTAP_ANTENNA */ 390 *pos = status->antenna; 391 pos++; 392 } 393 394 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 395 396 /* IEEE80211_RADIOTAP_RX_FLAGS */ 397 /* ensure 2 byte alignment for the 2 byte field as required */ 398 if ((pos - (u8 *)rthdr) & 1) 399 *pos++ = 0; 400 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 401 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 402 put_unaligned_le16(rx_flags, pos); 403 pos += 2; 404 405 if (status->encoding == RX_ENC_HT) { 406 unsigned int stbc; 407 408 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 409 *pos++ = local->hw.radiotap_mcs_details; 410 *pos = 0; 411 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 412 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 413 if (status->bw == RATE_INFO_BW_40) 414 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 415 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 416 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 417 if (status->enc_flags & RX_ENC_FLAG_LDPC) 418 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 419 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 420 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 421 pos++; 422 *pos++ = status->rate_idx; 423 } 424 425 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 426 u16 flags = 0; 427 428 /* ensure 4 byte alignment */ 429 while ((pos - (u8 *)rthdr) & 3) 430 pos++; 431 rthdr->it_present |= 432 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 433 put_unaligned_le32(status->ampdu_reference, pos); 434 pos += 4; 435 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 436 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 437 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 438 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 439 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 440 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 441 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 442 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 443 put_unaligned_le16(flags, pos); 444 pos += 2; 445 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 446 *pos++ = status->ampdu_delimiter_crc; 447 else 448 *pos++ = 0; 449 *pos++ = 0; 450 } 451 452 if (status->encoding == RX_ENC_VHT) { 453 u16 known = local->hw.radiotap_vht_details; 454 455 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 456 put_unaligned_le16(known, pos); 457 pos += 2; 458 /* flags */ 459 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 460 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 461 /* in VHT, STBC is binary */ 462 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 463 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 464 if (status->enc_flags & RX_ENC_FLAG_BF) 465 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 466 pos++; 467 /* bandwidth */ 468 switch (status->bw) { 469 case RATE_INFO_BW_80: 470 *pos++ = 4; 471 break; 472 case RATE_INFO_BW_160: 473 *pos++ = 11; 474 break; 475 case RATE_INFO_BW_40: 476 *pos++ = 1; 477 break; 478 default: 479 *pos++ = 0; 480 } 481 /* MCS/NSS */ 482 *pos = (status->rate_idx << 4) | status->nss; 483 pos += 4; 484 /* coding field */ 485 if (status->enc_flags & RX_ENC_FLAG_LDPC) 486 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 487 pos++; 488 /* group ID */ 489 pos++; 490 /* partial_aid */ 491 pos += 2; 492 } 493 494 if (local->hw.radiotap_timestamp.units_pos >= 0) { 495 u16 accuracy = 0; 496 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 497 498 rthdr->it_present |= 499 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 500 501 /* ensure 8 byte alignment */ 502 while ((pos - (u8 *)rthdr) & 7) 503 pos++; 504 505 put_unaligned_le64(status->device_timestamp, pos); 506 pos += sizeof(u64); 507 508 if (local->hw.radiotap_timestamp.accuracy >= 0) { 509 accuracy = local->hw.radiotap_timestamp.accuracy; 510 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 511 } 512 put_unaligned_le16(accuracy, pos); 513 pos += sizeof(u16); 514 515 *pos++ = local->hw.radiotap_timestamp.units_pos; 516 *pos++ = flags; 517 } 518 519 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 520 *pos++ = status->chain_signal[chain]; 521 *pos++ = chain; 522 } 523 524 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 525 /* ensure 2 byte alignment for the vendor field as required */ 526 if ((pos - (u8 *)rthdr) & 1) 527 *pos++ = 0; 528 *pos++ = rtap.oui[0]; 529 *pos++ = rtap.oui[1]; 530 *pos++ = rtap.oui[2]; 531 *pos++ = rtap.subns; 532 put_unaligned_le16(rtap.len, pos); 533 pos += 2; 534 /* align the actual payload as requested */ 535 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 536 *pos++ = 0; 537 /* data (and possible padding) already follows */ 538 } 539 } 540 541 static struct sk_buff * 542 ieee80211_make_monitor_skb(struct ieee80211_local *local, 543 struct sk_buff **origskb, 544 struct ieee80211_rate *rate, 545 int rtap_vendor_space, bool use_origskb) 546 { 547 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 548 int rt_hdrlen, needed_headroom; 549 struct sk_buff *skb; 550 551 /* room for the radiotap header based on driver features */ 552 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 553 needed_headroom = rt_hdrlen - rtap_vendor_space; 554 555 if (use_origskb) { 556 /* only need to expand headroom if necessary */ 557 skb = *origskb; 558 *origskb = NULL; 559 560 /* 561 * This shouldn't trigger often because most devices have an 562 * RX header they pull before we get here, and that should 563 * be big enough for our radiotap information. We should 564 * probably export the length to drivers so that we can have 565 * them allocate enough headroom to start with. 566 */ 567 if (skb_headroom(skb) < needed_headroom && 568 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 569 dev_kfree_skb(skb); 570 return NULL; 571 } 572 } else { 573 /* 574 * Need to make a copy and possibly remove radiotap header 575 * and FCS from the original. 576 */ 577 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 578 579 if (!skb) 580 return NULL; 581 } 582 583 /* prepend radiotap information */ 584 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 585 586 skb_reset_mac_header(skb); 587 skb->ip_summed = CHECKSUM_UNNECESSARY; 588 skb->pkt_type = PACKET_OTHERHOST; 589 skb->protocol = htons(ETH_P_802_2); 590 591 return skb; 592 } 593 594 /* 595 * This function copies a received frame to all monitor interfaces and 596 * returns a cleaned-up SKB that no longer includes the FCS nor the 597 * radiotap header the driver might have added. 598 */ 599 static struct sk_buff * 600 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 601 struct ieee80211_rate *rate) 602 { 603 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 604 struct ieee80211_sub_if_data *sdata; 605 struct sk_buff *monskb = NULL; 606 int present_fcs_len = 0; 607 unsigned int rtap_vendor_space = 0; 608 struct ieee80211_sub_if_data *monitor_sdata = 609 rcu_dereference(local->monitor_sdata); 610 bool only_monitor = false; 611 612 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 613 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 614 615 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 616 } 617 618 /* 619 * First, we may need to make a copy of the skb because 620 * (1) we need to modify it for radiotap (if not present), and 621 * (2) the other RX handlers will modify the skb we got. 622 * 623 * We don't need to, of course, if we aren't going to return 624 * the SKB because it has a bad FCS/PLCP checksum. 625 */ 626 627 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 628 if (unlikely(origskb->len <= FCS_LEN)) { 629 /* driver bug */ 630 WARN_ON(1); 631 dev_kfree_skb(origskb); 632 return NULL; 633 } 634 present_fcs_len = FCS_LEN; 635 } 636 637 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 638 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 639 dev_kfree_skb(origskb); 640 return NULL; 641 } 642 643 only_monitor = should_drop_frame(origskb, present_fcs_len, 644 rtap_vendor_space); 645 646 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 647 if (only_monitor) { 648 dev_kfree_skb(origskb); 649 return NULL; 650 } 651 652 remove_monitor_info(origskb, present_fcs_len, 653 rtap_vendor_space); 654 return origskb; 655 } 656 657 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space); 658 659 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 660 bool last_monitor = list_is_last(&sdata->u.mntr.list, 661 &local->mon_list); 662 663 if (!monskb) 664 monskb = ieee80211_make_monitor_skb(local, &origskb, 665 rate, 666 rtap_vendor_space, 667 only_monitor && 668 last_monitor); 669 670 if (monskb) { 671 struct sk_buff *skb; 672 673 if (last_monitor) { 674 skb = monskb; 675 monskb = NULL; 676 } else { 677 skb = skb_clone(monskb, GFP_ATOMIC); 678 } 679 680 if (skb) { 681 skb->dev = sdata->dev; 682 ieee80211_rx_stats(skb->dev, skb->len); 683 netif_receive_skb(skb); 684 } 685 } 686 687 if (last_monitor) 688 break; 689 } 690 691 /* this happens if last_monitor was erroneously false */ 692 dev_kfree_skb(monskb); 693 694 /* ditto */ 695 if (!origskb) 696 return NULL; 697 698 remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space); 699 return origskb; 700 } 701 702 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 703 { 704 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 705 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 706 int tid, seqno_idx, security_idx; 707 708 /* does the frame have a qos control field? */ 709 if (ieee80211_is_data_qos(hdr->frame_control)) { 710 u8 *qc = ieee80211_get_qos_ctl(hdr); 711 /* frame has qos control */ 712 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 713 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 714 status->rx_flags |= IEEE80211_RX_AMSDU; 715 716 seqno_idx = tid; 717 security_idx = tid; 718 } else { 719 /* 720 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 721 * 722 * Sequence numbers for management frames, QoS data 723 * frames with a broadcast/multicast address in the 724 * Address 1 field, and all non-QoS data frames sent 725 * by QoS STAs are assigned using an additional single 726 * modulo-4096 counter, [...] 727 * 728 * We also use that counter for non-QoS STAs. 729 */ 730 seqno_idx = IEEE80211_NUM_TIDS; 731 security_idx = 0; 732 if (ieee80211_is_mgmt(hdr->frame_control)) 733 security_idx = IEEE80211_NUM_TIDS; 734 tid = 0; 735 } 736 737 rx->seqno_idx = seqno_idx; 738 rx->security_idx = security_idx; 739 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 740 * For now, set skb->priority to 0 for other cases. */ 741 rx->skb->priority = (tid > 7) ? 0 : tid; 742 } 743 744 /** 745 * DOC: Packet alignment 746 * 747 * Drivers always need to pass packets that are aligned to two-byte boundaries 748 * to the stack. 749 * 750 * Additionally, should, if possible, align the payload data in a way that 751 * guarantees that the contained IP header is aligned to a four-byte 752 * boundary. In the case of regular frames, this simply means aligning the 753 * payload to a four-byte boundary (because either the IP header is directly 754 * contained, or IV/RFC1042 headers that have a length divisible by four are 755 * in front of it). If the payload data is not properly aligned and the 756 * architecture doesn't support efficient unaligned operations, mac80211 757 * will align the data. 758 * 759 * With A-MSDU frames, however, the payload data address must yield two modulo 760 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 761 * push the IP header further back to a multiple of four again. Thankfully, the 762 * specs were sane enough this time around to require padding each A-MSDU 763 * subframe to a length that is a multiple of four. 764 * 765 * Padding like Atheros hardware adds which is between the 802.11 header and 766 * the payload is not supported, the driver is required to move the 802.11 767 * header to be directly in front of the payload in that case. 768 */ 769 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 770 { 771 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 772 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 773 #endif 774 } 775 776 777 /* rx handlers */ 778 779 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 780 { 781 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 782 783 if (is_multicast_ether_addr(hdr->addr1)) 784 return 0; 785 786 return ieee80211_is_robust_mgmt_frame(skb); 787 } 788 789 790 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 791 { 792 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 793 794 if (!is_multicast_ether_addr(hdr->addr1)) 795 return 0; 796 797 return ieee80211_is_robust_mgmt_frame(skb); 798 } 799 800 801 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 802 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 803 { 804 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 805 struct ieee80211_mmie *mmie; 806 struct ieee80211_mmie_16 *mmie16; 807 808 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 809 return -1; 810 811 if (!ieee80211_is_robust_mgmt_frame(skb)) 812 return -1; /* not a robust management frame */ 813 814 mmie = (struct ieee80211_mmie *) 815 (skb->data + skb->len - sizeof(*mmie)); 816 if (mmie->element_id == WLAN_EID_MMIE && 817 mmie->length == sizeof(*mmie) - 2) 818 return le16_to_cpu(mmie->key_id); 819 820 mmie16 = (struct ieee80211_mmie_16 *) 821 (skb->data + skb->len - sizeof(*mmie16)); 822 if (skb->len >= 24 + sizeof(*mmie16) && 823 mmie16->element_id == WLAN_EID_MMIE && 824 mmie16->length == sizeof(*mmie16) - 2) 825 return le16_to_cpu(mmie16->key_id); 826 827 return -1; 828 } 829 830 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 831 struct sk_buff *skb) 832 { 833 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 834 __le16 fc; 835 int hdrlen; 836 u8 keyid; 837 838 fc = hdr->frame_control; 839 hdrlen = ieee80211_hdrlen(fc); 840 841 if (skb->len < hdrlen + cs->hdr_len) 842 return -EINVAL; 843 844 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 845 keyid &= cs->key_idx_mask; 846 keyid >>= cs->key_idx_shift; 847 848 return keyid; 849 } 850 851 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 852 { 853 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 854 char *dev_addr = rx->sdata->vif.addr; 855 856 if (ieee80211_is_data(hdr->frame_control)) { 857 if (is_multicast_ether_addr(hdr->addr1)) { 858 if (ieee80211_has_tods(hdr->frame_control) || 859 !ieee80211_has_fromds(hdr->frame_control)) 860 return RX_DROP_MONITOR; 861 if (ether_addr_equal(hdr->addr3, dev_addr)) 862 return RX_DROP_MONITOR; 863 } else { 864 if (!ieee80211_has_a4(hdr->frame_control)) 865 return RX_DROP_MONITOR; 866 if (ether_addr_equal(hdr->addr4, dev_addr)) 867 return RX_DROP_MONITOR; 868 } 869 } 870 871 /* If there is not an established peer link and this is not a peer link 872 * establisment frame, beacon or probe, drop the frame. 873 */ 874 875 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 876 struct ieee80211_mgmt *mgmt; 877 878 if (!ieee80211_is_mgmt(hdr->frame_control)) 879 return RX_DROP_MONITOR; 880 881 if (ieee80211_is_action(hdr->frame_control)) { 882 u8 category; 883 884 /* make sure category field is present */ 885 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 886 return RX_DROP_MONITOR; 887 888 mgmt = (struct ieee80211_mgmt *)hdr; 889 category = mgmt->u.action.category; 890 if (category != WLAN_CATEGORY_MESH_ACTION && 891 category != WLAN_CATEGORY_SELF_PROTECTED) 892 return RX_DROP_MONITOR; 893 return RX_CONTINUE; 894 } 895 896 if (ieee80211_is_probe_req(hdr->frame_control) || 897 ieee80211_is_probe_resp(hdr->frame_control) || 898 ieee80211_is_beacon(hdr->frame_control) || 899 ieee80211_is_auth(hdr->frame_control)) 900 return RX_CONTINUE; 901 902 return RX_DROP_MONITOR; 903 } 904 905 return RX_CONTINUE; 906 } 907 908 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 909 int index) 910 { 911 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 912 struct sk_buff *tail = skb_peek_tail(frames); 913 struct ieee80211_rx_status *status; 914 915 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 916 return true; 917 918 if (!tail) 919 return false; 920 921 status = IEEE80211_SKB_RXCB(tail); 922 if (status->flag & RX_FLAG_AMSDU_MORE) 923 return false; 924 925 return true; 926 } 927 928 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 929 struct tid_ampdu_rx *tid_agg_rx, 930 int index, 931 struct sk_buff_head *frames) 932 { 933 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 934 struct sk_buff *skb; 935 struct ieee80211_rx_status *status; 936 937 lockdep_assert_held(&tid_agg_rx->reorder_lock); 938 939 if (skb_queue_empty(skb_list)) 940 goto no_frame; 941 942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 943 __skb_queue_purge(skb_list); 944 goto no_frame; 945 } 946 947 /* release frames from the reorder ring buffer */ 948 tid_agg_rx->stored_mpdu_num--; 949 while ((skb = __skb_dequeue(skb_list))) { 950 status = IEEE80211_SKB_RXCB(skb); 951 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 952 __skb_queue_tail(frames, skb); 953 } 954 955 no_frame: 956 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 957 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 958 } 959 960 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 961 struct tid_ampdu_rx *tid_agg_rx, 962 u16 head_seq_num, 963 struct sk_buff_head *frames) 964 { 965 int index; 966 967 lockdep_assert_held(&tid_agg_rx->reorder_lock); 968 969 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 970 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 971 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 972 frames); 973 } 974 } 975 976 /* 977 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 978 * the skb was added to the buffer longer than this time ago, the earlier 979 * frames that have not yet been received are assumed to be lost and the skb 980 * can be released for processing. This may also release other skb's from the 981 * reorder buffer if there are no additional gaps between the frames. 982 * 983 * Callers must hold tid_agg_rx->reorder_lock. 984 */ 985 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 986 987 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 988 struct tid_ampdu_rx *tid_agg_rx, 989 struct sk_buff_head *frames) 990 { 991 int index, i, j; 992 993 lockdep_assert_held(&tid_agg_rx->reorder_lock); 994 995 /* release the buffer until next missing frame */ 996 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 997 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 998 tid_agg_rx->stored_mpdu_num) { 999 /* 1000 * No buffers ready to be released, but check whether any 1001 * frames in the reorder buffer have timed out. 1002 */ 1003 int skipped = 1; 1004 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1005 j = (j + 1) % tid_agg_rx->buf_size) { 1006 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1007 skipped++; 1008 continue; 1009 } 1010 if (skipped && 1011 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1012 HT_RX_REORDER_BUF_TIMEOUT)) 1013 goto set_release_timer; 1014 1015 /* don't leave incomplete A-MSDUs around */ 1016 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1017 i = (i + 1) % tid_agg_rx->buf_size) 1018 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1019 1020 ht_dbg_ratelimited(sdata, 1021 "release an RX reorder frame due to timeout on earlier frames\n"); 1022 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1023 frames); 1024 1025 /* 1026 * Increment the head seq# also for the skipped slots. 1027 */ 1028 tid_agg_rx->head_seq_num = 1029 (tid_agg_rx->head_seq_num + 1030 skipped) & IEEE80211_SN_MASK; 1031 skipped = 0; 1032 } 1033 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1034 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1035 frames); 1036 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1037 } 1038 1039 if (tid_agg_rx->stored_mpdu_num) { 1040 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1041 1042 for (; j != (index - 1) % tid_agg_rx->buf_size; 1043 j = (j + 1) % tid_agg_rx->buf_size) { 1044 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1045 break; 1046 } 1047 1048 set_release_timer: 1049 1050 if (!tid_agg_rx->removed) 1051 mod_timer(&tid_agg_rx->reorder_timer, 1052 tid_agg_rx->reorder_time[j] + 1 + 1053 HT_RX_REORDER_BUF_TIMEOUT); 1054 } else { 1055 del_timer(&tid_agg_rx->reorder_timer); 1056 } 1057 } 1058 1059 /* 1060 * As this function belongs to the RX path it must be under 1061 * rcu_read_lock protection. It returns false if the frame 1062 * can be processed immediately, true if it was consumed. 1063 */ 1064 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1065 struct tid_ampdu_rx *tid_agg_rx, 1066 struct sk_buff *skb, 1067 struct sk_buff_head *frames) 1068 { 1069 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1070 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1071 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1072 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1073 u16 head_seq_num, buf_size; 1074 int index; 1075 bool ret = true; 1076 1077 spin_lock(&tid_agg_rx->reorder_lock); 1078 1079 /* 1080 * Offloaded BA sessions have no known starting sequence number so pick 1081 * one from first Rxed frame for this tid after BA was started. 1082 */ 1083 if (unlikely(tid_agg_rx->auto_seq)) { 1084 tid_agg_rx->auto_seq = false; 1085 tid_agg_rx->ssn = mpdu_seq_num; 1086 tid_agg_rx->head_seq_num = mpdu_seq_num; 1087 } 1088 1089 buf_size = tid_agg_rx->buf_size; 1090 head_seq_num = tid_agg_rx->head_seq_num; 1091 1092 /* 1093 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1094 * be reordered. 1095 */ 1096 if (unlikely(!tid_agg_rx->started)) { 1097 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1098 ret = false; 1099 goto out; 1100 } 1101 tid_agg_rx->started = true; 1102 } 1103 1104 /* frame with out of date sequence number */ 1105 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1106 dev_kfree_skb(skb); 1107 goto out; 1108 } 1109 1110 /* 1111 * If frame the sequence number exceeds our buffering window 1112 * size release some previous frames to make room for this one. 1113 */ 1114 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1115 head_seq_num = ieee80211_sn_inc( 1116 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1117 /* release stored frames up to new head to stack */ 1118 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1119 head_seq_num, frames); 1120 } 1121 1122 /* Now the new frame is always in the range of the reordering buffer */ 1123 1124 index = mpdu_seq_num % tid_agg_rx->buf_size; 1125 1126 /* check if we already stored this frame */ 1127 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1128 dev_kfree_skb(skb); 1129 goto out; 1130 } 1131 1132 /* 1133 * If the current MPDU is in the right order and nothing else 1134 * is stored we can process it directly, no need to buffer it. 1135 * If it is first but there's something stored, we may be able 1136 * to release frames after this one. 1137 */ 1138 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1139 tid_agg_rx->stored_mpdu_num == 0) { 1140 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1141 tid_agg_rx->head_seq_num = 1142 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1143 ret = false; 1144 goto out; 1145 } 1146 1147 /* put the frame in the reordering buffer */ 1148 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1149 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1150 tid_agg_rx->reorder_time[index] = jiffies; 1151 tid_agg_rx->stored_mpdu_num++; 1152 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1153 } 1154 1155 out: 1156 spin_unlock(&tid_agg_rx->reorder_lock); 1157 return ret; 1158 } 1159 1160 /* 1161 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1162 * true if the MPDU was buffered, false if it should be processed. 1163 */ 1164 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1165 struct sk_buff_head *frames) 1166 { 1167 struct sk_buff *skb = rx->skb; 1168 struct ieee80211_local *local = rx->local; 1169 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1170 struct sta_info *sta = rx->sta; 1171 struct tid_ampdu_rx *tid_agg_rx; 1172 u16 sc; 1173 u8 tid, ack_policy; 1174 1175 if (!ieee80211_is_data_qos(hdr->frame_control) || 1176 is_multicast_ether_addr(hdr->addr1)) 1177 goto dont_reorder; 1178 1179 /* 1180 * filter the QoS data rx stream according to 1181 * STA/TID and check if this STA/TID is on aggregation 1182 */ 1183 1184 if (!sta) 1185 goto dont_reorder; 1186 1187 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1188 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1189 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1190 1191 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1192 if (!tid_agg_rx) { 1193 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1194 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1195 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1196 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1197 WLAN_BACK_RECIPIENT, 1198 WLAN_REASON_QSTA_REQUIRE_SETUP); 1199 goto dont_reorder; 1200 } 1201 1202 /* qos null data frames are excluded */ 1203 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1204 goto dont_reorder; 1205 1206 /* not part of a BA session */ 1207 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1208 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1209 goto dont_reorder; 1210 1211 /* new, potentially un-ordered, ampdu frame - process it */ 1212 1213 /* reset session timer */ 1214 if (tid_agg_rx->timeout) 1215 tid_agg_rx->last_rx = jiffies; 1216 1217 /* if this mpdu is fragmented - terminate rx aggregation session */ 1218 sc = le16_to_cpu(hdr->seq_ctrl); 1219 if (sc & IEEE80211_SCTL_FRAG) { 1220 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1221 skb_queue_tail(&rx->sdata->skb_queue, skb); 1222 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1223 return; 1224 } 1225 1226 /* 1227 * No locking needed -- we will only ever process one 1228 * RX packet at a time, and thus own tid_agg_rx. All 1229 * other code manipulating it needs to (and does) make 1230 * sure that we cannot get to it any more before doing 1231 * anything with it. 1232 */ 1233 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1234 frames)) 1235 return; 1236 1237 dont_reorder: 1238 __skb_queue_tail(frames, skb); 1239 } 1240 1241 static ieee80211_rx_result debug_noinline 1242 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1243 { 1244 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1245 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1246 1247 if (status->flag & RX_FLAG_DUP_VALIDATED) 1248 return RX_CONTINUE; 1249 1250 /* 1251 * Drop duplicate 802.11 retransmissions 1252 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1253 */ 1254 1255 if (rx->skb->len < 24) 1256 return RX_CONTINUE; 1257 1258 if (ieee80211_is_ctl(hdr->frame_control) || 1259 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1260 is_multicast_ether_addr(hdr->addr1)) 1261 return RX_CONTINUE; 1262 1263 if (!rx->sta) 1264 return RX_CONTINUE; 1265 1266 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1267 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1268 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1269 rx->sta->rx_stats.num_duplicates++; 1270 return RX_DROP_UNUSABLE; 1271 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1272 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1273 } 1274 1275 return RX_CONTINUE; 1276 } 1277 1278 static ieee80211_rx_result debug_noinline 1279 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1280 { 1281 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1282 1283 /* Drop disallowed frame classes based on STA auth/assoc state; 1284 * IEEE 802.11, Chap 5.5. 1285 * 1286 * mac80211 filters only based on association state, i.e. it drops 1287 * Class 3 frames from not associated stations. hostapd sends 1288 * deauth/disassoc frames when needed. In addition, hostapd is 1289 * responsible for filtering on both auth and assoc states. 1290 */ 1291 1292 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1293 return ieee80211_rx_mesh_check(rx); 1294 1295 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1296 ieee80211_is_pspoll(hdr->frame_control)) && 1297 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1298 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1299 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1300 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1301 /* 1302 * accept port control frames from the AP even when it's not 1303 * yet marked ASSOC to prevent a race where we don't set the 1304 * assoc bit quickly enough before it sends the first frame 1305 */ 1306 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1307 ieee80211_is_data_present(hdr->frame_control)) { 1308 unsigned int hdrlen; 1309 __be16 ethertype; 1310 1311 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1312 1313 if (rx->skb->len < hdrlen + 8) 1314 return RX_DROP_MONITOR; 1315 1316 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1317 if (ethertype == rx->sdata->control_port_protocol) 1318 return RX_CONTINUE; 1319 } 1320 1321 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1322 cfg80211_rx_spurious_frame(rx->sdata->dev, 1323 hdr->addr2, 1324 GFP_ATOMIC)) 1325 return RX_DROP_UNUSABLE; 1326 1327 return RX_DROP_MONITOR; 1328 } 1329 1330 return RX_CONTINUE; 1331 } 1332 1333 1334 static ieee80211_rx_result debug_noinline 1335 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1336 { 1337 struct ieee80211_local *local; 1338 struct ieee80211_hdr *hdr; 1339 struct sk_buff *skb; 1340 1341 local = rx->local; 1342 skb = rx->skb; 1343 hdr = (struct ieee80211_hdr *) skb->data; 1344 1345 if (!local->pspolling) 1346 return RX_CONTINUE; 1347 1348 if (!ieee80211_has_fromds(hdr->frame_control)) 1349 /* this is not from AP */ 1350 return RX_CONTINUE; 1351 1352 if (!ieee80211_is_data(hdr->frame_control)) 1353 return RX_CONTINUE; 1354 1355 if (!ieee80211_has_moredata(hdr->frame_control)) { 1356 /* AP has no more frames buffered for us */ 1357 local->pspolling = false; 1358 return RX_CONTINUE; 1359 } 1360 1361 /* more data bit is set, let's request a new frame from the AP */ 1362 ieee80211_send_pspoll(local, rx->sdata); 1363 1364 return RX_CONTINUE; 1365 } 1366 1367 static void sta_ps_start(struct sta_info *sta) 1368 { 1369 struct ieee80211_sub_if_data *sdata = sta->sdata; 1370 struct ieee80211_local *local = sdata->local; 1371 struct ps_data *ps; 1372 int tid; 1373 1374 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1375 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1376 ps = &sdata->bss->ps; 1377 else 1378 return; 1379 1380 atomic_inc(&ps->num_sta_ps); 1381 set_sta_flag(sta, WLAN_STA_PS_STA); 1382 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1383 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1384 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1385 sta->sta.addr, sta->sta.aid); 1386 1387 ieee80211_clear_fast_xmit(sta); 1388 1389 if (!sta->sta.txq[0]) 1390 return; 1391 1392 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1393 if (txq_has_queue(sta->sta.txq[tid])) 1394 set_bit(tid, &sta->txq_buffered_tids); 1395 else 1396 clear_bit(tid, &sta->txq_buffered_tids); 1397 } 1398 } 1399 1400 static void sta_ps_end(struct sta_info *sta) 1401 { 1402 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1403 sta->sta.addr, sta->sta.aid); 1404 1405 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1406 /* 1407 * Clear the flag only if the other one is still set 1408 * so that the TX path won't start TX'ing new frames 1409 * directly ... In the case that the driver flag isn't 1410 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1411 */ 1412 clear_sta_flag(sta, WLAN_STA_PS_STA); 1413 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1414 sta->sta.addr, sta->sta.aid); 1415 return; 1416 } 1417 1418 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1419 clear_sta_flag(sta, WLAN_STA_PS_STA); 1420 ieee80211_sta_ps_deliver_wakeup(sta); 1421 } 1422 1423 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1424 { 1425 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1426 bool in_ps; 1427 1428 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1429 1430 /* Don't let the same PS state be set twice */ 1431 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1432 if ((start && in_ps) || (!start && !in_ps)) 1433 return -EINVAL; 1434 1435 if (start) 1436 sta_ps_start(sta); 1437 else 1438 sta_ps_end(sta); 1439 1440 return 0; 1441 } 1442 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1443 1444 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1445 { 1446 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1447 1448 if (test_sta_flag(sta, WLAN_STA_SP)) 1449 return; 1450 1451 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1452 ieee80211_sta_ps_deliver_poll_response(sta); 1453 else 1454 set_sta_flag(sta, WLAN_STA_PSPOLL); 1455 } 1456 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1457 1458 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1459 { 1460 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1461 int ac = ieee80211_ac_from_tid(tid); 1462 1463 /* 1464 * If this AC is not trigger-enabled do nothing unless the 1465 * driver is calling us after it already checked. 1466 * 1467 * NB: This could/should check a separate bitmap of trigger- 1468 * enabled queues, but for now we only implement uAPSD w/o 1469 * TSPEC changes to the ACs, so they're always the same. 1470 */ 1471 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1472 tid != IEEE80211_NUM_TIDS) 1473 return; 1474 1475 /* if we are in a service period, do nothing */ 1476 if (test_sta_flag(sta, WLAN_STA_SP)) 1477 return; 1478 1479 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1480 ieee80211_sta_ps_deliver_uapsd(sta); 1481 else 1482 set_sta_flag(sta, WLAN_STA_UAPSD); 1483 } 1484 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1485 1486 static ieee80211_rx_result debug_noinline 1487 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1488 { 1489 struct ieee80211_sub_if_data *sdata = rx->sdata; 1490 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1491 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1492 1493 if (!rx->sta) 1494 return RX_CONTINUE; 1495 1496 if (sdata->vif.type != NL80211_IFTYPE_AP && 1497 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1498 return RX_CONTINUE; 1499 1500 /* 1501 * The device handles station powersave, so don't do anything about 1502 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1503 * it to mac80211 since they're handled.) 1504 */ 1505 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1506 return RX_CONTINUE; 1507 1508 /* 1509 * Don't do anything if the station isn't already asleep. In 1510 * the uAPSD case, the station will probably be marked asleep, 1511 * in the PS-Poll case the station must be confused ... 1512 */ 1513 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1514 return RX_CONTINUE; 1515 1516 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1517 ieee80211_sta_pspoll(&rx->sta->sta); 1518 1519 /* Free PS Poll skb here instead of returning RX_DROP that would 1520 * count as an dropped frame. */ 1521 dev_kfree_skb(rx->skb); 1522 1523 return RX_QUEUED; 1524 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1525 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1526 ieee80211_has_pm(hdr->frame_control) && 1527 (ieee80211_is_data_qos(hdr->frame_control) || 1528 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1529 u8 tid; 1530 1531 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1532 1533 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1534 } 1535 1536 return RX_CONTINUE; 1537 } 1538 1539 static ieee80211_rx_result debug_noinline 1540 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1541 { 1542 struct sta_info *sta = rx->sta; 1543 struct sk_buff *skb = rx->skb; 1544 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1545 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1546 int i; 1547 1548 if (!sta) 1549 return RX_CONTINUE; 1550 1551 /* 1552 * Update last_rx only for IBSS packets which are for the current 1553 * BSSID and for station already AUTHORIZED to avoid keeping the 1554 * current IBSS network alive in cases where other STAs start 1555 * using different BSSID. This will also give the station another 1556 * chance to restart the authentication/authorization in case 1557 * something went wrong the first time. 1558 */ 1559 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1560 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1561 NL80211_IFTYPE_ADHOC); 1562 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1563 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1564 sta->rx_stats.last_rx = jiffies; 1565 if (ieee80211_is_data(hdr->frame_control) && 1566 !is_multicast_ether_addr(hdr->addr1)) 1567 sta->rx_stats.last_rate = 1568 sta_stats_encode_rate(status); 1569 } 1570 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1571 sta->rx_stats.last_rx = jiffies; 1572 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1573 /* 1574 * Mesh beacons will update last_rx when if they are found to 1575 * match the current local configuration when processed. 1576 */ 1577 sta->rx_stats.last_rx = jiffies; 1578 if (ieee80211_is_data(hdr->frame_control)) 1579 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1580 } 1581 1582 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1583 ieee80211_sta_rx_notify(rx->sdata, hdr); 1584 1585 sta->rx_stats.fragments++; 1586 1587 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1588 sta->rx_stats.bytes += rx->skb->len; 1589 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1590 1591 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1592 sta->rx_stats.last_signal = status->signal; 1593 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1594 } 1595 1596 if (status->chains) { 1597 sta->rx_stats.chains = status->chains; 1598 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1599 int signal = status->chain_signal[i]; 1600 1601 if (!(status->chains & BIT(i))) 1602 continue; 1603 1604 sta->rx_stats.chain_signal_last[i] = signal; 1605 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1606 -signal); 1607 } 1608 } 1609 1610 /* 1611 * Change STA power saving mode only at the end of a frame 1612 * exchange sequence. 1613 */ 1614 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1615 !ieee80211_has_morefrags(hdr->frame_control) && 1616 !ieee80211_is_back_req(hdr->frame_control) && 1617 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1618 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1619 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1620 /* 1621 * PM bit is only checked in frames where it isn't reserved, 1622 * in AP mode it's reserved in non-bufferable management frames 1623 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1624 * BAR frames should be ignored as specified in 1625 * IEEE 802.11-2012 10.2.1.2. 1626 */ 1627 (!ieee80211_is_mgmt(hdr->frame_control) || 1628 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1629 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1630 if (!ieee80211_has_pm(hdr->frame_control)) 1631 sta_ps_end(sta); 1632 } else { 1633 if (ieee80211_has_pm(hdr->frame_control)) 1634 sta_ps_start(sta); 1635 } 1636 } 1637 1638 /* mesh power save support */ 1639 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1640 ieee80211_mps_rx_h_sta_process(sta, hdr); 1641 1642 /* 1643 * Drop (qos-)data::nullfunc frames silently, since they 1644 * are used only to control station power saving mode. 1645 */ 1646 if (ieee80211_is_nullfunc(hdr->frame_control) || 1647 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1648 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1649 1650 /* 1651 * If we receive a 4-addr nullfunc frame from a STA 1652 * that was not moved to a 4-addr STA vlan yet send 1653 * the event to userspace and for older hostapd drop 1654 * the frame to the monitor interface. 1655 */ 1656 if (ieee80211_has_a4(hdr->frame_control) && 1657 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1658 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1659 !rx->sdata->u.vlan.sta))) { 1660 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1661 cfg80211_rx_unexpected_4addr_frame( 1662 rx->sdata->dev, sta->sta.addr, 1663 GFP_ATOMIC); 1664 return RX_DROP_MONITOR; 1665 } 1666 /* 1667 * Update counter and free packet here to avoid 1668 * counting this as a dropped packed. 1669 */ 1670 sta->rx_stats.packets++; 1671 dev_kfree_skb(rx->skb); 1672 return RX_QUEUED; 1673 } 1674 1675 return RX_CONTINUE; 1676 } /* ieee80211_rx_h_sta_process */ 1677 1678 static ieee80211_rx_result debug_noinline 1679 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1680 { 1681 struct sk_buff *skb = rx->skb; 1682 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1683 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1684 int keyidx; 1685 int hdrlen; 1686 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1687 struct ieee80211_key *sta_ptk = NULL; 1688 int mmie_keyidx = -1; 1689 __le16 fc; 1690 const struct ieee80211_cipher_scheme *cs = NULL; 1691 1692 /* 1693 * Key selection 101 1694 * 1695 * There are four types of keys: 1696 * - GTK (group keys) 1697 * - IGTK (group keys for management frames) 1698 * - PTK (pairwise keys) 1699 * - STK (station-to-station pairwise keys) 1700 * 1701 * When selecting a key, we have to distinguish between multicast 1702 * (including broadcast) and unicast frames, the latter can only 1703 * use PTKs and STKs while the former always use GTKs and IGTKs. 1704 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1705 * unicast frames can also use key indices like GTKs. Hence, if we 1706 * don't have a PTK/STK we check the key index for a WEP key. 1707 * 1708 * Note that in a regular BSS, multicast frames are sent by the 1709 * AP only, associated stations unicast the frame to the AP first 1710 * which then multicasts it on their behalf. 1711 * 1712 * There is also a slight problem in IBSS mode: GTKs are negotiated 1713 * with each station, that is something we don't currently handle. 1714 * The spec seems to expect that one negotiates the same key with 1715 * every station but there's no such requirement; VLANs could be 1716 * possible. 1717 */ 1718 1719 /* start without a key */ 1720 rx->key = NULL; 1721 fc = hdr->frame_control; 1722 1723 if (rx->sta) { 1724 int keyid = rx->sta->ptk_idx; 1725 1726 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1727 cs = rx->sta->cipher_scheme; 1728 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1729 if (unlikely(keyid < 0)) 1730 return RX_DROP_UNUSABLE; 1731 } 1732 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1733 } 1734 1735 if (!ieee80211_has_protected(fc)) 1736 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1737 1738 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1739 rx->key = sta_ptk; 1740 if ((status->flag & RX_FLAG_DECRYPTED) && 1741 (status->flag & RX_FLAG_IV_STRIPPED)) 1742 return RX_CONTINUE; 1743 /* Skip decryption if the frame is not protected. */ 1744 if (!ieee80211_has_protected(fc)) 1745 return RX_CONTINUE; 1746 } else if (mmie_keyidx >= 0) { 1747 /* Broadcast/multicast robust management frame / BIP */ 1748 if ((status->flag & RX_FLAG_DECRYPTED) && 1749 (status->flag & RX_FLAG_IV_STRIPPED)) 1750 return RX_CONTINUE; 1751 1752 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1753 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1754 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1755 if (rx->sta) { 1756 if (ieee80211_is_group_privacy_action(skb) && 1757 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1758 return RX_DROP_MONITOR; 1759 1760 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1761 } 1762 if (!rx->key) 1763 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1764 } else if (!ieee80211_has_protected(fc)) { 1765 /* 1766 * The frame was not protected, so skip decryption. However, we 1767 * need to set rx->key if there is a key that could have been 1768 * used so that the frame may be dropped if encryption would 1769 * have been expected. 1770 */ 1771 struct ieee80211_key *key = NULL; 1772 struct ieee80211_sub_if_data *sdata = rx->sdata; 1773 int i; 1774 1775 if (ieee80211_is_mgmt(fc) && 1776 is_multicast_ether_addr(hdr->addr1) && 1777 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1778 rx->key = key; 1779 else { 1780 if (rx->sta) { 1781 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1782 key = rcu_dereference(rx->sta->gtk[i]); 1783 if (key) 1784 break; 1785 } 1786 } 1787 if (!key) { 1788 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1789 key = rcu_dereference(sdata->keys[i]); 1790 if (key) 1791 break; 1792 } 1793 } 1794 if (key) 1795 rx->key = key; 1796 } 1797 return RX_CONTINUE; 1798 } else { 1799 u8 keyid; 1800 1801 /* 1802 * The device doesn't give us the IV so we won't be 1803 * able to look up the key. That's ok though, we 1804 * don't need to decrypt the frame, we just won't 1805 * be able to keep statistics accurate. 1806 * Except for key threshold notifications, should 1807 * we somehow allow the driver to tell us which key 1808 * the hardware used if this flag is set? 1809 */ 1810 if ((status->flag & RX_FLAG_DECRYPTED) && 1811 (status->flag & RX_FLAG_IV_STRIPPED)) 1812 return RX_CONTINUE; 1813 1814 hdrlen = ieee80211_hdrlen(fc); 1815 1816 if (cs) { 1817 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1818 1819 if (unlikely(keyidx < 0)) 1820 return RX_DROP_UNUSABLE; 1821 } else { 1822 if (rx->skb->len < 8 + hdrlen) 1823 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1824 /* 1825 * no need to call ieee80211_wep_get_keyidx, 1826 * it verifies a bunch of things we've done already 1827 */ 1828 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1829 keyidx = keyid >> 6; 1830 } 1831 1832 /* check per-station GTK first, if multicast packet */ 1833 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1834 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1835 1836 /* if not found, try default key */ 1837 if (!rx->key) { 1838 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1839 1840 /* 1841 * RSNA-protected unicast frames should always be 1842 * sent with pairwise or station-to-station keys, 1843 * but for WEP we allow using a key index as well. 1844 */ 1845 if (rx->key && 1846 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1847 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1848 !is_multicast_ether_addr(hdr->addr1)) 1849 rx->key = NULL; 1850 } 1851 } 1852 1853 if (rx->key) { 1854 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1855 return RX_DROP_MONITOR; 1856 1857 /* TODO: add threshold stuff again */ 1858 } else { 1859 return RX_DROP_MONITOR; 1860 } 1861 1862 switch (rx->key->conf.cipher) { 1863 case WLAN_CIPHER_SUITE_WEP40: 1864 case WLAN_CIPHER_SUITE_WEP104: 1865 result = ieee80211_crypto_wep_decrypt(rx); 1866 break; 1867 case WLAN_CIPHER_SUITE_TKIP: 1868 result = ieee80211_crypto_tkip_decrypt(rx); 1869 break; 1870 case WLAN_CIPHER_SUITE_CCMP: 1871 result = ieee80211_crypto_ccmp_decrypt( 1872 rx, IEEE80211_CCMP_MIC_LEN); 1873 break; 1874 case WLAN_CIPHER_SUITE_CCMP_256: 1875 result = ieee80211_crypto_ccmp_decrypt( 1876 rx, IEEE80211_CCMP_256_MIC_LEN); 1877 break; 1878 case WLAN_CIPHER_SUITE_AES_CMAC: 1879 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1880 break; 1881 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1882 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1883 break; 1884 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1885 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1886 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1887 break; 1888 case WLAN_CIPHER_SUITE_GCMP: 1889 case WLAN_CIPHER_SUITE_GCMP_256: 1890 result = ieee80211_crypto_gcmp_decrypt(rx); 1891 break; 1892 default: 1893 result = ieee80211_crypto_hw_decrypt(rx); 1894 } 1895 1896 /* the hdr variable is invalid after the decrypt handlers */ 1897 1898 /* either the frame has been decrypted or will be dropped */ 1899 status->flag |= RX_FLAG_DECRYPTED; 1900 1901 return result; 1902 } 1903 1904 static inline struct ieee80211_fragment_entry * 1905 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1906 unsigned int frag, unsigned int seq, int rx_queue, 1907 struct sk_buff **skb) 1908 { 1909 struct ieee80211_fragment_entry *entry; 1910 1911 entry = &sdata->fragments[sdata->fragment_next++]; 1912 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1913 sdata->fragment_next = 0; 1914 1915 if (!skb_queue_empty(&entry->skb_list)) 1916 __skb_queue_purge(&entry->skb_list); 1917 1918 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1919 *skb = NULL; 1920 entry->first_frag_time = jiffies; 1921 entry->seq = seq; 1922 entry->rx_queue = rx_queue; 1923 entry->last_frag = frag; 1924 entry->check_sequential_pn = false; 1925 entry->extra_len = 0; 1926 1927 return entry; 1928 } 1929 1930 static inline struct ieee80211_fragment_entry * 1931 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1932 unsigned int frag, unsigned int seq, 1933 int rx_queue, struct ieee80211_hdr *hdr) 1934 { 1935 struct ieee80211_fragment_entry *entry; 1936 int i, idx; 1937 1938 idx = sdata->fragment_next; 1939 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1940 struct ieee80211_hdr *f_hdr; 1941 1942 idx--; 1943 if (idx < 0) 1944 idx = IEEE80211_FRAGMENT_MAX - 1; 1945 1946 entry = &sdata->fragments[idx]; 1947 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1948 entry->rx_queue != rx_queue || 1949 entry->last_frag + 1 != frag) 1950 continue; 1951 1952 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1953 1954 /* 1955 * Check ftype and addresses are equal, else check next fragment 1956 */ 1957 if (((hdr->frame_control ^ f_hdr->frame_control) & 1958 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1959 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1960 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1961 continue; 1962 1963 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1964 __skb_queue_purge(&entry->skb_list); 1965 continue; 1966 } 1967 return entry; 1968 } 1969 1970 return NULL; 1971 } 1972 1973 static ieee80211_rx_result debug_noinline 1974 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1975 { 1976 struct ieee80211_hdr *hdr; 1977 u16 sc; 1978 __le16 fc; 1979 unsigned int frag, seq; 1980 struct ieee80211_fragment_entry *entry; 1981 struct sk_buff *skb; 1982 1983 hdr = (struct ieee80211_hdr *)rx->skb->data; 1984 fc = hdr->frame_control; 1985 1986 if (ieee80211_is_ctl(fc)) 1987 return RX_CONTINUE; 1988 1989 sc = le16_to_cpu(hdr->seq_ctrl); 1990 frag = sc & IEEE80211_SCTL_FRAG; 1991 1992 if (is_multicast_ether_addr(hdr->addr1)) { 1993 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1994 goto out_no_led; 1995 } 1996 1997 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1998 goto out; 1999 2000 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2001 2002 if (skb_linearize(rx->skb)) 2003 return RX_DROP_UNUSABLE; 2004 2005 /* 2006 * skb_linearize() might change the skb->data and 2007 * previously cached variables (in this case, hdr) need to 2008 * be refreshed with the new data. 2009 */ 2010 hdr = (struct ieee80211_hdr *)rx->skb->data; 2011 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2012 2013 if (frag == 0) { 2014 /* This is the first fragment of a new frame. */ 2015 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2016 rx->seqno_idx, &(rx->skb)); 2017 if (rx->key && 2018 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2019 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2020 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2021 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2022 ieee80211_has_protected(fc)) { 2023 int queue = rx->security_idx; 2024 2025 /* Store CCMP/GCMP PN so that we can verify that the 2026 * next fragment has a sequential PN value. 2027 */ 2028 entry->check_sequential_pn = true; 2029 memcpy(entry->last_pn, 2030 rx->key->u.ccmp.rx_pn[queue], 2031 IEEE80211_CCMP_PN_LEN); 2032 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2033 u.ccmp.rx_pn) != 2034 offsetof(struct ieee80211_key, 2035 u.gcmp.rx_pn)); 2036 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2037 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2038 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2039 IEEE80211_GCMP_PN_LEN); 2040 } 2041 return RX_QUEUED; 2042 } 2043 2044 /* This is a fragment for a frame that should already be pending in 2045 * fragment cache. Add this fragment to the end of the pending entry. 2046 */ 2047 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2048 rx->seqno_idx, hdr); 2049 if (!entry) { 2050 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2051 return RX_DROP_MONITOR; 2052 } 2053 2054 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2055 * MPDU PN values are not incrementing in steps of 1." 2056 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2057 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2058 */ 2059 if (entry->check_sequential_pn) { 2060 int i; 2061 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2062 int queue; 2063 2064 if (!rx->key || 2065 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2066 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2067 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2068 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2069 return RX_DROP_UNUSABLE; 2070 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2071 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2072 pn[i]++; 2073 if (pn[i]) 2074 break; 2075 } 2076 queue = rx->security_idx; 2077 rpn = rx->key->u.ccmp.rx_pn[queue]; 2078 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2079 return RX_DROP_UNUSABLE; 2080 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2081 } 2082 2083 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2084 __skb_queue_tail(&entry->skb_list, rx->skb); 2085 entry->last_frag = frag; 2086 entry->extra_len += rx->skb->len; 2087 if (ieee80211_has_morefrags(fc)) { 2088 rx->skb = NULL; 2089 return RX_QUEUED; 2090 } 2091 2092 rx->skb = __skb_dequeue(&entry->skb_list); 2093 if (skb_tailroom(rx->skb) < entry->extra_len) { 2094 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2095 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2096 GFP_ATOMIC))) { 2097 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2098 __skb_queue_purge(&entry->skb_list); 2099 return RX_DROP_UNUSABLE; 2100 } 2101 } 2102 while ((skb = __skb_dequeue(&entry->skb_list))) { 2103 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 2104 dev_kfree_skb(skb); 2105 } 2106 2107 out: 2108 ieee80211_led_rx(rx->local); 2109 out_no_led: 2110 if (rx->sta) 2111 rx->sta->rx_stats.packets++; 2112 return RX_CONTINUE; 2113 } 2114 2115 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2116 { 2117 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2118 return -EACCES; 2119 2120 return 0; 2121 } 2122 2123 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2124 { 2125 struct sk_buff *skb = rx->skb; 2126 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2127 2128 /* 2129 * Pass through unencrypted frames if the hardware has 2130 * decrypted them already. 2131 */ 2132 if (status->flag & RX_FLAG_DECRYPTED) 2133 return 0; 2134 2135 /* Drop unencrypted frames if key is set. */ 2136 if (unlikely(!ieee80211_has_protected(fc) && 2137 !ieee80211_is_nullfunc(fc) && 2138 ieee80211_is_data(fc) && rx->key)) 2139 return -EACCES; 2140 2141 return 0; 2142 } 2143 2144 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2145 { 2146 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2147 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2148 __le16 fc = hdr->frame_control; 2149 2150 /* 2151 * Pass through unencrypted frames if the hardware has 2152 * decrypted them already. 2153 */ 2154 if (status->flag & RX_FLAG_DECRYPTED) 2155 return 0; 2156 2157 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2158 if (unlikely(!ieee80211_has_protected(fc) && 2159 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2160 rx->key)) { 2161 if (ieee80211_is_deauth(fc) || 2162 ieee80211_is_disassoc(fc)) 2163 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2164 rx->skb->data, 2165 rx->skb->len); 2166 return -EACCES; 2167 } 2168 /* BIP does not use Protected field, so need to check MMIE */ 2169 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2170 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2171 if (ieee80211_is_deauth(fc) || 2172 ieee80211_is_disassoc(fc)) 2173 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2174 rx->skb->data, 2175 rx->skb->len); 2176 return -EACCES; 2177 } 2178 /* 2179 * When using MFP, Action frames are not allowed prior to 2180 * having configured keys. 2181 */ 2182 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2183 ieee80211_is_robust_mgmt_frame(rx->skb))) 2184 return -EACCES; 2185 } 2186 2187 return 0; 2188 } 2189 2190 static int 2191 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2192 { 2193 struct ieee80211_sub_if_data *sdata = rx->sdata; 2194 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2195 bool check_port_control = false; 2196 struct ethhdr *ehdr; 2197 int ret; 2198 2199 *port_control = false; 2200 if (ieee80211_has_a4(hdr->frame_control) && 2201 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2202 return -1; 2203 2204 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2205 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2206 2207 if (!sdata->u.mgd.use_4addr) 2208 return -1; 2209 else 2210 check_port_control = true; 2211 } 2212 2213 if (is_multicast_ether_addr(hdr->addr1) && 2214 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2215 return -1; 2216 2217 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2218 if (ret < 0) 2219 return ret; 2220 2221 ehdr = (struct ethhdr *) rx->skb->data; 2222 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2223 *port_control = true; 2224 else if (check_port_control) 2225 return -1; 2226 2227 return 0; 2228 } 2229 2230 /* 2231 * requires that rx->skb is a frame with ethernet header 2232 */ 2233 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2234 { 2235 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2236 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2237 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2238 2239 /* 2240 * Allow EAPOL frames to us/the PAE group address regardless 2241 * of whether the frame was encrypted or not. 2242 */ 2243 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2244 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2245 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2246 return true; 2247 2248 if (ieee80211_802_1x_port_control(rx) || 2249 ieee80211_drop_unencrypted(rx, fc)) 2250 return false; 2251 2252 return true; 2253 } 2254 2255 /* 2256 * requires that rx->skb is a frame with ethernet header 2257 */ 2258 static void 2259 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2260 { 2261 struct ieee80211_sub_if_data *sdata = rx->sdata; 2262 struct net_device *dev = sdata->dev; 2263 struct sk_buff *skb, *xmit_skb; 2264 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2265 struct sta_info *dsta; 2266 2267 skb = rx->skb; 2268 xmit_skb = NULL; 2269 2270 ieee80211_rx_stats(dev, skb->len); 2271 2272 if (rx->sta) { 2273 /* The seqno index has the same property as needed 2274 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2275 * for non-QoS-data frames. Here we know it's a data 2276 * frame, so count MSDUs. 2277 */ 2278 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2279 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2280 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2281 } 2282 2283 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2284 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2285 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2286 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2287 if (is_multicast_ether_addr(ehdr->h_dest) && 2288 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2289 /* 2290 * send multicast frames both to higher layers in 2291 * local net stack and back to the wireless medium 2292 */ 2293 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2294 if (!xmit_skb) 2295 net_info_ratelimited("%s: failed to clone multicast frame\n", 2296 dev->name); 2297 } else if (!is_multicast_ether_addr(ehdr->h_dest)) { 2298 dsta = sta_info_get(sdata, skb->data); 2299 if (dsta) { 2300 /* 2301 * The destination station is associated to 2302 * this AP (in this VLAN), so send the frame 2303 * directly to it and do not pass it to local 2304 * net stack. 2305 */ 2306 xmit_skb = skb; 2307 skb = NULL; 2308 } 2309 } 2310 } 2311 2312 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2313 if (skb) { 2314 /* 'align' will only take the values 0 or 2 here since all 2315 * frames are required to be aligned to 2-byte boundaries 2316 * when being passed to mac80211; the code here works just 2317 * as well if that isn't true, but mac80211 assumes it can 2318 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2319 */ 2320 int align; 2321 2322 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2323 if (align) { 2324 if (WARN_ON(skb_headroom(skb) < 3)) { 2325 dev_kfree_skb(skb); 2326 skb = NULL; 2327 } else { 2328 u8 *data = skb->data; 2329 size_t len = skb_headlen(skb); 2330 skb->data -= align; 2331 memmove(skb->data, data, len); 2332 skb_set_tail_pointer(skb, len); 2333 } 2334 } 2335 } 2336 #endif 2337 2338 if (skb) { 2339 /* deliver to local stack */ 2340 skb->protocol = eth_type_trans(skb, dev); 2341 memset(skb->cb, 0, sizeof(skb->cb)); 2342 if (rx->napi) 2343 napi_gro_receive(rx->napi, skb); 2344 else 2345 netif_receive_skb(skb); 2346 } 2347 2348 if (xmit_skb) { 2349 /* 2350 * Send to wireless media and increase priority by 256 to 2351 * keep the received priority instead of reclassifying 2352 * the frame (see cfg80211_classify8021d). 2353 */ 2354 xmit_skb->priority += 256; 2355 xmit_skb->protocol = htons(ETH_P_802_3); 2356 skb_reset_network_header(xmit_skb); 2357 skb_reset_mac_header(xmit_skb); 2358 dev_queue_xmit(xmit_skb); 2359 } 2360 } 2361 2362 static ieee80211_rx_result debug_noinline 2363 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2364 { 2365 struct net_device *dev = rx->sdata->dev; 2366 struct sk_buff *skb = rx->skb; 2367 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2368 __le16 fc = hdr->frame_control; 2369 struct sk_buff_head frame_list; 2370 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2371 struct ethhdr ethhdr; 2372 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2373 2374 if (unlikely(!ieee80211_is_data(fc))) 2375 return RX_CONTINUE; 2376 2377 if (unlikely(!ieee80211_is_data_present(fc))) 2378 return RX_DROP_MONITOR; 2379 2380 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2381 return RX_CONTINUE; 2382 2383 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2384 switch (rx->sdata->vif.type) { 2385 case NL80211_IFTYPE_AP_VLAN: 2386 if (!rx->sdata->u.vlan.sta) 2387 return RX_DROP_UNUSABLE; 2388 break; 2389 case NL80211_IFTYPE_STATION: 2390 if (!rx->sdata->u.mgd.use_4addr) 2391 return RX_DROP_UNUSABLE; 2392 break; 2393 default: 2394 return RX_DROP_UNUSABLE; 2395 } 2396 check_da = NULL; 2397 check_sa = NULL; 2398 } else switch (rx->sdata->vif.type) { 2399 case NL80211_IFTYPE_AP: 2400 case NL80211_IFTYPE_AP_VLAN: 2401 check_da = NULL; 2402 break; 2403 case NL80211_IFTYPE_STATION: 2404 if (!rx->sta || 2405 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2406 check_sa = NULL; 2407 break; 2408 case NL80211_IFTYPE_MESH_POINT: 2409 check_sa = NULL; 2410 break; 2411 default: 2412 break; 2413 } 2414 2415 if (is_multicast_ether_addr(hdr->addr1)) 2416 return RX_DROP_UNUSABLE; 2417 2418 skb->dev = dev; 2419 __skb_queue_head_init(&frame_list); 2420 2421 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2422 rx->sdata->vif.addr, 2423 rx->sdata->vif.type)) 2424 return RX_DROP_UNUSABLE; 2425 2426 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2427 rx->sdata->vif.type, 2428 rx->local->hw.extra_tx_headroom, 2429 check_da, check_sa); 2430 2431 while (!skb_queue_empty(&frame_list)) { 2432 rx->skb = __skb_dequeue(&frame_list); 2433 2434 if (!ieee80211_frame_allowed(rx, fc)) { 2435 dev_kfree_skb(rx->skb); 2436 continue; 2437 } 2438 2439 ieee80211_deliver_skb(rx); 2440 } 2441 2442 return RX_QUEUED; 2443 } 2444 2445 #ifdef CONFIG_MAC80211_MESH 2446 static ieee80211_rx_result 2447 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2448 { 2449 struct ieee80211_hdr *fwd_hdr, *hdr; 2450 struct ieee80211_tx_info *info; 2451 struct ieee80211s_hdr *mesh_hdr; 2452 struct sk_buff *skb = rx->skb, *fwd_skb; 2453 struct ieee80211_local *local = rx->local; 2454 struct ieee80211_sub_if_data *sdata = rx->sdata; 2455 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2456 u16 ac, q, hdrlen; 2457 2458 hdr = (struct ieee80211_hdr *) skb->data; 2459 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2460 2461 /* make sure fixed part of mesh header is there, also checks skb len */ 2462 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2463 return RX_DROP_MONITOR; 2464 2465 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2466 2467 /* make sure full mesh header is there, also checks skb len */ 2468 if (!pskb_may_pull(rx->skb, 2469 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2470 return RX_DROP_MONITOR; 2471 2472 /* reload pointers */ 2473 hdr = (struct ieee80211_hdr *) skb->data; 2474 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2475 2476 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2477 return RX_DROP_MONITOR; 2478 2479 /* frame is in RMC, don't forward */ 2480 if (ieee80211_is_data(hdr->frame_control) && 2481 is_multicast_ether_addr(hdr->addr1) && 2482 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2483 return RX_DROP_MONITOR; 2484 2485 if (!ieee80211_is_data(hdr->frame_control)) 2486 return RX_CONTINUE; 2487 2488 if (!mesh_hdr->ttl) 2489 return RX_DROP_MONITOR; 2490 2491 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2492 struct mesh_path *mppath; 2493 char *proxied_addr; 2494 char *mpp_addr; 2495 2496 if (is_multicast_ether_addr(hdr->addr1)) { 2497 mpp_addr = hdr->addr3; 2498 proxied_addr = mesh_hdr->eaddr1; 2499 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2500 MESH_FLAGS_AE_A5_A6) { 2501 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2502 mpp_addr = hdr->addr4; 2503 proxied_addr = mesh_hdr->eaddr2; 2504 } else { 2505 return RX_DROP_MONITOR; 2506 } 2507 2508 rcu_read_lock(); 2509 mppath = mpp_path_lookup(sdata, proxied_addr); 2510 if (!mppath) { 2511 mpp_path_add(sdata, proxied_addr, mpp_addr); 2512 } else { 2513 spin_lock_bh(&mppath->state_lock); 2514 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2515 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2516 mppath->exp_time = jiffies; 2517 spin_unlock_bh(&mppath->state_lock); 2518 } 2519 rcu_read_unlock(); 2520 } 2521 2522 /* Frame has reached destination. Don't forward */ 2523 if (!is_multicast_ether_addr(hdr->addr1) && 2524 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2525 return RX_CONTINUE; 2526 2527 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2528 q = sdata->vif.hw_queue[ac]; 2529 if (ieee80211_queue_stopped(&local->hw, q)) { 2530 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2531 return RX_DROP_MONITOR; 2532 } 2533 skb_set_queue_mapping(skb, q); 2534 2535 if (!--mesh_hdr->ttl) { 2536 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2537 goto out; 2538 } 2539 2540 if (!ifmsh->mshcfg.dot11MeshForwarding) 2541 goto out; 2542 2543 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2544 sdata->encrypt_headroom, 0, GFP_ATOMIC); 2545 if (!fwd_skb) { 2546 net_info_ratelimited("%s: failed to clone mesh frame\n", 2547 sdata->name); 2548 goto out; 2549 } 2550 2551 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2552 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2553 info = IEEE80211_SKB_CB(fwd_skb); 2554 memset(info, 0, sizeof(*info)); 2555 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2556 info->control.vif = &rx->sdata->vif; 2557 info->control.jiffies = jiffies; 2558 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2559 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2560 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2561 /* update power mode indication when forwarding */ 2562 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2563 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2564 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2565 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2566 } else { 2567 /* unable to resolve next hop */ 2568 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2569 fwd_hdr->addr3, 0, 2570 WLAN_REASON_MESH_PATH_NOFORWARD, 2571 fwd_hdr->addr2); 2572 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2573 kfree_skb(fwd_skb); 2574 return RX_DROP_MONITOR; 2575 } 2576 2577 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2578 ieee80211_add_pending_skb(local, fwd_skb); 2579 out: 2580 if (is_multicast_ether_addr(hdr->addr1)) 2581 return RX_CONTINUE; 2582 return RX_DROP_MONITOR; 2583 } 2584 #endif 2585 2586 static ieee80211_rx_result debug_noinline 2587 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2588 { 2589 struct ieee80211_sub_if_data *sdata = rx->sdata; 2590 struct ieee80211_local *local = rx->local; 2591 struct net_device *dev = sdata->dev; 2592 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2593 __le16 fc = hdr->frame_control; 2594 bool port_control; 2595 int err; 2596 2597 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2598 return RX_CONTINUE; 2599 2600 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2601 return RX_DROP_MONITOR; 2602 2603 /* 2604 * Send unexpected-4addr-frame event to hostapd. For older versions, 2605 * also drop the frame to cooked monitor interfaces. 2606 */ 2607 if (ieee80211_has_a4(hdr->frame_control) && 2608 sdata->vif.type == NL80211_IFTYPE_AP) { 2609 if (rx->sta && 2610 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2611 cfg80211_rx_unexpected_4addr_frame( 2612 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2613 return RX_DROP_MONITOR; 2614 } 2615 2616 err = __ieee80211_data_to_8023(rx, &port_control); 2617 if (unlikely(err)) 2618 return RX_DROP_UNUSABLE; 2619 2620 if (!ieee80211_frame_allowed(rx, fc)) 2621 return RX_DROP_MONITOR; 2622 2623 /* directly handle TDLS channel switch requests/responses */ 2624 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2625 cpu_to_be16(ETH_P_TDLS))) { 2626 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2627 2628 if (pskb_may_pull(rx->skb, 2629 offsetof(struct ieee80211_tdls_data, u)) && 2630 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2631 tf->category == WLAN_CATEGORY_TDLS && 2632 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2633 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2634 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2635 schedule_work(&local->tdls_chsw_work); 2636 if (rx->sta) 2637 rx->sta->rx_stats.packets++; 2638 2639 return RX_QUEUED; 2640 } 2641 } 2642 2643 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2644 unlikely(port_control) && sdata->bss) { 2645 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2646 u.ap); 2647 dev = sdata->dev; 2648 rx->sdata = sdata; 2649 } 2650 2651 rx->skb->dev = dev; 2652 2653 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2654 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2655 !is_multicast_ether_addr( 2656 ((struct ethhdr *)rx->skb->data)->h_dest) && 2657 (!local->scanning && 2658 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2659 mod_timer(&local->dynamic_ps_timer, jiffies + 2660 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2661 2662 ieee80211_deliver_skb(rx); 2663 2664 return RX_QUEUED; 2665 } 2666 2667 static ieee80211_rx_result debug_noinline 2668 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2669 { 2670 struct sk_buff *skb = rx->skb; 2671 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2672 struct tid_ampdu_rx *tid_agg_rx; 2673 u16 start_seq_num; 2674 u16 tid; 2675 2676 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2677 return RX_CONTINUE; 2678 2679 if (ieee80211_is_back_req(bar->frame_control)) { 2680 struct { 2681 __le16 control, start_seq_num; 2682 } __packed bar_data; 2683 struct ieee80211_event event = { 2684 .type = BAR_RX_EVENT, 2685 }; 2686 2687 if (!rx->sta) 2688 return RX_DROP_MONITOR; 2689 2690 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2691 &bar_data, sizeof(bar_data))) 2692 return RX_DROP_MONITOR; 2693 2694 tid = le16_to_cpu(bar_data.control) >> 12; 2695 2696 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2697 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2698 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2699 WLAN_BACK_RECIPIENT, 2700 WLAN_REASON_QSTA_REQUIRE_SETUP); 2701 2702 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2703 if (!tid_agg_rx) 2704 return RX_DROP_MONITOR; 2705 2706 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2707 event.u.ba.tid = tid; 2708 event.u.ba.ssn = start_seq_num; 2709 event.u.ba.sta = &rx->sta->sta; 2710 2711 /* reset session timer */ 2712 if (tid_agg_rx->timeout) 2713 mod_timer(&tid_agg_rx->session_timer, 2714 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2715 2716 spin_lock(&tid_agg_rx->reorder_lock); 2717 /* release stored frames up to start of BAR */ 2718 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2719 start_seq_num, frames); 2720 spin_unlock(&tid_agg_rx->reorder_lock); 2721 2722 drv_event_callback(rx->local, rx->sdata, &event); 2723 2724 kfree_skb(skb); 2725 return RX_QUEUED; 2726 } 2727 2728 /* 2729 * After this point, we only want management frames, 2730 * so we can drop all remaining control frames to 2731 * cooked monitor interfaces. 2732 */ 2733 return RX_DROP_MONITOR; 2734 } 2735 2736 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2737 struct ieee80211_mgmt *mgmt, 2738 size_t len) 2739 { 2740 struct ieee80211_local *local = sdata->local; 2741 struct sk_buff *skb; 2742 struct ieee80211_mgmt *resp; 2743 2744 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2745 /* Not to own unicast address */ 2746 return; 2747 } 2748 2749 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2750 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2751 /* Not from the current AP or not associated yet. */ 2752 return; 2753 } 2754 2755 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2756 /* Too short SA Query request frame */ 2757 return; 2758 } 2759 2760 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2761 if (skb == NULL) 2762 return; 2763 2764 skb_reserve(skb, local->hw.extra_tx_headroom); 2765 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2766 memset(resp, 0, 24); 2767 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2768 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2769 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2770 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2771 IEEE80211_STYPE_ACTION); 2772 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2773 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2774 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2775 memcpy(resp->u.action.u.sa_query.trans_id, 2776 mgmt->u.action.u.sa_query.trans_id, 2777 WLAN_SA_QUERY_TR_ID_LEN); 2778 2779 ieee80211_tx_skb(sdata, skb); 2780 } 2781 2782 static ieee80211_rx_result debug_noinline 2783 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2784 { 2785 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2786 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2787 2788 /* 2789 * From here on, look only at management frames. 2790 * Data and control frames are already handled, 2791 * and unknown (reserved) frames are useless. 2792 */ 2793 if (rx->skb->len < 24) 2794 return RX_DROP_MONITOR; 2795 2796 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2797 return RX_DROP_MONITOR; 2798 2799 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2800 ieee80211_is_beacon(mgmt->frame_control) && 2801 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2802 int sig = 0; 2803 2804 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2805 sig = status->signal; 2806 2807 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2808 rx->skb->data, rx->skb->len, 2809 status->freq, sig); 2810 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2811 } 2812 2813 if (ieee80211_drop_unencrypted_mgmt(rx)) 2814 return RX_DROP_UNUSABLE; 2815 2816 return RX_CONTINUE; 2817 } 2818 2819 static ieee80211_rx_result debug_noinline 2820 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2821 { 2822 struct ieee80211_local *local = rx->local; 2823 struct ieee80211_sub_if_data *sdata = rx->sdata; 2824 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2825 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2826 int len = rx->skb->len; 2827 2828 if (!ieee80211_is_action(mgmt->frame_control)) 2829 return RX_CONTINUE; 2830 2831 /* drop too small frames */ 2832 if (len < IEEE80211_MIN_ACTION_SIZE) 2833 return RX_DROP_UNUSABLE; 2834 2835 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2836 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2837 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2838 return RX_DROP_UNUSABLE; 2839 2840 switch (mgmt->u.action.category) { 2841 case WLAN_CATEGORY_HT: 2842 /* reject HT action frames from stations not supporting HT */ 2843 if (!rx->sta->sta.ht_cap.ht_supported) 2844 goto invalid; 2845 2846 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2847 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2848 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2849 sdata->vif.type != NL80211_IFTYPE_AP && 2850 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2851 break; 2852 2853 /* verify action & smps_control/chanwidth are present */ 2854 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2855 goto invalid; 2856 2857 switch (mgmt->u.action.u.ht_smps.action) { 2858 case WLAN_HT_ACTION_SMPS: { 2859 struct ieee80211_supported_band *sband; 2860 enum ieee80211_smps_mode smps_mode; 2861 2862 /* convert to HT capability */ 2863 switch (mgmt->u.action.u.ht_smps.smps_control) { 2864 case WLAN_HT_SMPS_CONTROL_DISABLED: 2865 smps_mode = IEEE80211_SMPS_OFF; 2866 break; 2867 case WLAN_HT_SMPS_CONTROL_STATIC: 2868 smps_mode = IEEE80211_SMPS_STATIC; 2869 break; 2870 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2871 smps_mode = IEEE80211_SMPS_DYNAMIC; 2872 break; 2873 default: 2874 goto invalid; 2875 } 2876 2877 /* if no change do nothing */ 2878 if (rx->sta->sta.smps_mode == smps_mode) 2879 goto handled; 2880 rx->sta->sta.smps_mode = smps_mode; 2881 2882 sband = rx->local->hw.wiphy->bands[status->band]; 2883 2884 rate_control_rate_update(local, sband, rx->sta, 2885 IEEE80211_RC_SMPS_CHANGED); 2886 goto handled; 2887 } 2888 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2889 struct ieee80211_supported_band *sband; 2890 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2891 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2892 2893 /* If it doesn't support 40 MHz it can't change ... */ 2894 if (!(rx->sta->sta.ht_cap.cap & 2895 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2896 goto handled; 2897 2898 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2899 max_bw = IEEE80211_STA_RX_BW_20; 2900 else 2901 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2902 2903 /* set cur_max_bandwidth and recalc sta bw */ 2904 rx->sta->cur_max_bandwidth = max_bw; 2905 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2906 2907 if (rx->sta->sta.bandwidth == new_bw) 2908 goto handled; 2909 2910 rx->sta->sta.bandwidth = new_bw; 2911 sband = rx->local->hw.wiphy->bands[status->band]; 2912 2913 rate_control_rate_update(local, sband, rx->sta, 2914 IEEE80211_RC_BW_CHANGED); 2915 goto handled; 2916 } 2917 default: 2918 goto invalid; 2919 } 2920 2921 break; 2922 case WLAN_CATEGORY_PUBLIC: 2923 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2924 goto invalid; 2925 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2926 break; 2927 if (!rx->sta) 2928 break; 2929 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2930 break; 2931 if (mgmt->u.action.u.ext_chan_switch.action_code != 2932 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2933 break; 2934 if (len < offsetof(struct ieee80211_mgmt, 2935 u.action.u.ext_chan_switch.variable)) 2936 goto invalid; 2937 goto queue; 2938 case WLAN_CATEGORY_VHT: 2939 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2940 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2941 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2942 sdata->vif.type != NL80211_IFTYPE_AP && 2943 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2944 break; 2945 2946 /* verify action code is present */ 2947 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2948 goto invalid; 2949 2950 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2951 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2952 /* verify opmode is present */ 2953 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2954 goto invalid; 2955 goto queue; 2956 } 2957 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2958 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2959 goto invalid; 2960 goto queue; 2961 } 2962 default: 2963 break; 2964 } 2965 break; 2966 case WLAN_CATEGORY_BACK: 2967 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2968 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2969 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2970 sdata->vif.type != NL80211_IFTYPE_AP && 2971 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2972 break; 2973 2974 /* verify action_code is present */ 2975 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2976 break; 2977 2978 switch (mgmt->u.action.u.addba_req.action_code) { 2979 case WLAN_ACTION_ADDBA_REQ: 2980 if (len < (IEEE80211_MIN_ACTION_SIZE + 2981 sizeof(mgmt->u.action.u.addba_req))) 2982 goto invalid; 2983 break; 2984 case WLAN_ACTION_ADDBA_RESP: 2985 if (len < (IEEE80211_MIN_ACTION_SIZE + 2986 sizeof(mgmt->u.action.u.addba_resp))) 2987 goto invalid; 2988 break; 2989 case WLAN_ACTION_DELBA: 2990 if (len < (IEEE80211_MIN_ACTION_SIZE + 2991 sizeof(mgmt->u.action.u.delba))) 2992 goto invalid; 2993 break; 2994 default: 2995 goto invalid; 2996 } 2997 2998 goto queue; 2999 case WLAN_CATEGORY_SPECTRUM_MGMT: 3000 /* verify action_code is present */ 3001 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3002 break; 3003 3004 switch (mgmt->u.action.u.measurement.action_code) { 3005 case WLAN_ACTION_SPCT_MSR_REQ: 3006 if (status->band != NL80211_BAND_5GHZ) 3007 break; 3008 3009 if (len < (IEEE80211_MIN_ACTION_SIZE + 3010 sizeof(mgmt->u.action.u.measurement))) 3011 break; 3012 3013 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3014 break; 3015 3016 ieee80211_process_measurement_req(sdata, mgmt, len); 3017 goto handled; 3018 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3019 u8 *bssid; 3020 if (len < (IEEE80211_MIN_ACTION_SIZE + 3021 sizeof(mgmt->u.action.u.chan_switch))) 3022 break; 3023 3024 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3025 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3026 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3027 break; 3028 3029 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3030 bssid = sdata->u.mgd.bssid; 3031 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3032 bssid = sdata->u.ibss.bssid; 3033 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3034 bssid = mgmt->sa; 3035 else 3036 break; 3037 3038 if (!ether_addr_equal(mgmt->bssid, bssid)) 3039 break; 3040 3041 goto queue; 3042 } 3043 } 3044 break; 3045 case WLAN_CATEGORY_SA_QUERY: 3046 if (len < (IEEE80211_MIN_ACTION_SIZE + 3047 sizeof(mgmt->u.action.u.sa_query))) 3048 break; 3049 3050 switch (mgmt->u.action.u.sa_query.action) { 3051 case WLAN_ACTION_SA_QUERY_REQUEST: 3052 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3053 break; 3054 ieee80211_process_sa_query_req(sdata, mgmt, len); 3055 goto handled; 3056 } 3057 break; 3058 case WLAN_CATEGORY_SELF_PROTECTED: 3059 if (len < (IEEE80211_MIN_ACTION_SIZE + 3060 sizeof(mgmt->u.action.u.self_prot.action_code))) 3061 break; 3062 3063 switch (mgmt->u.action.u.self_prot.action_code) { 3064 case WLAN_SP_MESH_PEERING_OPEN: 3065 case WLAN_SP_MESH_PEERING_CLOSE: 3066 case WLAN_SP_MESH_PEERING_CONFIRM: 3067 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3068 goto invalid; 3069 if (sdata->u.mesh.user_mpm) 3070 /* userspace handles this frame */ 3071 break; 3072 goto queue; 3073 case WLAN_SP_MGK_INFORM: 3074 case WLAN_SP_MGK_ACK: 3075 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3076 goto invalid; 3077 break; 3078 } 3079 break; 3080 case WLAN_CATEGORY_MESH_ACTION: 3081 if (len < (IEEE80211_MIN_ACTION_SIZE + 3082 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3083 break; 3084 3085 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3086 break; 3087 if (mesh_action_is_path_sel(mgmt) && 3088 !mesh_path_sel_is_hwmp(sdata)) 3089 break; 3090 goto queue; 3091 } 3092 3093 return RX_CONTINUE; 3094 3095 invalid: 3096 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3097 /* will return in the next handlers */ 3098 return RX_CONTINUE; 3099 3100 handled: 3101 if (rx->sta) 3102 rx->sta->rx_stats.packets++; 3103 dev_kfree_skb(rx->skb); 3104 return RX_QUEUED; 3105 3106 queue: 3107 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3108 skb_queue_tail(&sdata->skb_queue, rx->skb); 3109 ieee80211_queue_work(&local->hw, &sdata->work); 3110 if (rx->sta) 3111 rx->sta->rx_stats.packets++; 3112 return RX_QUEUED; 3113 } 3114 3115 static ieee80211_rx_result debug_noinline 3116 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3117 { 3118 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3119 int sig = 0; 3120 3121 /* skip known-bad action frames and return them in the next handler */ 3122 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3123 return RX_CONTINUE; 3124 3125 /* 3126 * Getting here means the kernel doesn't know how to handle 3127 * it, but maybe userspace does ... include returned frames 3128 * so userspace can register for those to know whether ones 3129 * it transmitted were processed or returned. 3130 */ 3131 3132 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 3133 sig = status->signal; 3134 3135 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3136 rx->skb->data, rx->skb->len, 0)) { 3137 if (rx->sta) 3138 rx->sta->rx_stats.packets++; 3139 dev_kfree_skb(rx->skb); 3140 return RX_QUEUED; 3141 } 3142 3143 return RX_CONTINUE; 3144 } 3145 3146 static ieee80211_rx_result debug_noinline 3147 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3148 { 3149 struct ieee80211_local *local = rx->local; 3150 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3151 struct sk_buff *nskb; 3152 struct ieee80211_sub_if_data *sdata = rx->sdata; 3153 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3154 3155 if (!ieee80211_is_action(mgmt->frame_control)) 3156 return RX_CONTINUE; 3157 3158 /* 3159 * For AP mode, hostapd is responsible for handling any action 3160 * frames that we didn't handle, including returning unknown 3161 * ones. For all other modes we will return them to the sender, 3162 * setting the 0x80 bit in the action category, as required by 3163 * 802.11-2012 9.24.4. 3164 * Newer versions of hostapd shall also use the management frame 3165 * registration mechanisms, but older ones still use cooked 3166 * monitor interfaces so push all frames there. 3167 */ 3168 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3169 (sdata->vif.type == NL80211_IFTYPE_AP || 3170 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3171 return RX_DROP_MONITOR; 3172 3173 if (is_multicast_ether_addr(mgmt->da)) 3174 return RX_DROP_MONITOR; 3175 3176 /* do not return rejected action frames */ 3177 if (mgmt->u.action.category & 0x80) 3178 return RX_DROP_UNUSABLE; 3179 3180 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3181 GFP_ATOMIC); 3182 if (nskb) { 3183 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3184 3185 nmgmt->u.action.category |= 0x80; 3186 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3187 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3188 3189 memset(nskb->cb, 0, sizeof(nskb->cb)); 3190 3191 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3192 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3193 3194 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3195 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3196 IEEE80211_TX_CTL_NO_CCK_RATE; 3197 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3198 info->hw_queue = 3199 local->hw.offchannel_tx_hw_queue; 3200 } 3201 3202 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3203 status->band); 3204 } 3205 dev_kfree_skb(rx->skb); 3206 return RX_QUEUED; 3207 } 3208 3209 static ieee80211_rx_result debug_noinline 3210 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3211 { 3212 struct ieee80211_sub_if_data *sdata = rx->sdata; 3213 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3214 __le16 stype; 3215 3216 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3217 3218 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3219 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3220 sdata->vif.type != NL80211_IFTYPE_OCB && 3221 sdata->vif.type != NL80211_IFTYPE_STATION) 3222 return RX_DROP_MONITOR; 3223 3224 switch (stype) { 3225 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3226 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3227 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3228 /* process for all: mesh, mlme, ibss */ 3229 break; 3230 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3231 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3232 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3233 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3234 if (is_multicast_ether_addr(mgmt->da) && 3235 !is_broadcast_ether_addr(mgmt->da)) 3236 return RX_DROP_MONITOR; 3237 3238 /* process only for station */ 3239 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3240 return RX_DROP_MONITOR; 3241 break; 3242 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3243 /* process only for ibss and mesh */ 3244 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3245 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3246 return RX_DROP_MONITOR; 3247 break; 3248 default: 3249 return RX_DROP_MONITOR; 3250 } 3251 3252 /* queue up frame and kick off work to process it */ 3253 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3254 skb_queue_tail(&sdata->skb_queue, rx->skb); 3255 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3256 if (rx->sta) 3257 rx->sta->rx_stats.packets++; 3258 3259 return RX_QUEUED; 3260 } 3261 3262 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3263 struct ieee80211_rate *rate) 3264 { 3265 struct ieee80211_sub_if_data *sdata; 3266 struct ieee80211_local *local = rx->local; 3267 struct sk_buff *skb = rx->skb, *skb2; 3268 struct net_device *prev_dev = NULL; 3269 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3270 int needed_headroom; 3271 3272 /* 3273 * If cooked monitor has been processed already, then 3274 * don't do it again. If not, set the flag. 3275 */ 3276 if (rx->flags & IEEE80211_RX_CMNTR) 3277 goto out_free_skb; 3278 rx->flags |= IEEE80211_RX_CMNTR; 3279 3280 /* If there are no cooked monitor interfaces, just free the SKB */ 3281 if (!local->cooked_mntrs) 3282 goto out_free_skb; 3283 3284 /* vendor data is long removed here */ 3285 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3286 /* room for the radiotap header based on driver features */ 3287 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3288 3289 if (skb_headroom(skb) < needed_headroom && 3290 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3291 goto out_free_skb; 3292 3293 /* prepend radiotap information */ 3294 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3295 false); 3296 3297 skb_reset_mac_header(skb); 3298 skb->ip_summed = CHECKSUM_UNNECESSARY; 3299 skb->pkt_type = PACKET_OTHERHOST; 3300 skb->protocol = htons(ETH_P_802_2); 3301 3302 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3303 if (!ieee80211_sdata_running(sdata)) 3304 continue; 3305 3306 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3307 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3308 continue; 3309 3310 if (prev_dev) { 3311 skb2 = skb_clone(skb, GFP_ATOMIC); 3312 if (skb2) { 3313 skb2->dev = prev_dev; 3314 netif_receive_skb(skb2); 3315 } 3316 } 3317 3318 prev_dev = sdata->dev; 3319 ieee80211_rx_stats(sdata->dev, skb->len); 3320 } 3321 3322 if (prev_dev) { 3323 skb->dev = prev_dev; 3324 netif_receive_skb(skb); 3325 return; 3326 } 3327 3328 out_free_skb: 3329 dev_kfree_skb(skb); 3330 } 3331 3332 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3333 ieee80211_rx_result res) 3334 { 3335 switch (res) { 3336 case RX_DROP_MONITOR: 3337 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3338 if (rx->sta) 3339 rx->sta->rx_stats.dropped++; 3340 /* fall through */ 3341 case RX_CONTINUE: { 3342 struct ieee80211_rate *rate = NULL; 3343 struct ieee80211_supported_band *sband; 3344 struct ieee80211_rx_status *status; 3345 3346 status = IEEE80211_SKB_RXCB((rx->skb)); 3347 3348 sband = rx->local->hw.wiphy->bands[status->band]; 3349 if (!(status->encoding == RX_ENC_HT) && 3350 !(status->encoding == RX_ENC_VHT)) 3351 rate = &sband->bitrates[status->rate_idx]; 3352 3353 ieee80211_rx_cooked_monitor(rx, rate); 3354 break; 3355 } 3356 case RX_DROP_UNUSABLE: 3357 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3358 if (rx->sta) 3359 rx->sta->rx_stats.dropped++; 3360 dev_kfree_skb(rx->skb); 3361 break; 3362 case RX_QUEUED: 3363 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3364 break; 3365 } 3366 } 3367 3368 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3369 struct sk_buff_head *frames) 3370 { 3371 ieee80211_rx_result res = RX_DROP_MONITOR; 3372 struct sk_buff *skb; 3373 3374 #define CALL_RXH(rxh) \ 3375 do { \ 3376 res = rxh(rx); \ 3377 if (res != RX_CONTINUE) \ 3378 goto rxh_next; \ 3379 } while (0) 3380 3381 /* Lock here to avoid hitting all of the data used in the RX 3382 * path (e.g. key data, station data, ...) concurrently when 3383 * a frame is released from the reorder buffer due to timeout 3384 * from the timer, potentially concurrently with RX from the 3385 * driver. 3386 */ 3387 spin_lock_bh(&rx->local->rx_path_lock); 3388 3389 while ((skb = __skb_dequeue(frames))) { 3390 /* 3391 * all the other fields are valid across frames 3392 * that belong to an aMPDU since they are on the 3393 * same TID from the same station 3394 */ 3395 rx->skb = skb; 3396 3397 CALL_RXH(ieee80211_rx_h_check_more_data); 3398 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3399 CALL_RXH(ieee80211_rx_h_sta_process); 3400 CALL_RXH(ieee80211_rx_h_decrypt); 3401 CALL_RXH(ieee80211_rx_h_defragment); 3402 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3403 /* must be after MMIC verify so header is counted in MPDU mic */ 3404 #ifdef CONFIG_MAC80211_MESH 3405 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3406 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3407 #endif 3408 CALL_RXH(ieee80211_rx_h_amsdu); 3409 CALL_RXH(ieee80211_rx_h_data); 3410 3411 /* special treatment -- needs the queue */ 3412 res = ieee80211_rx_h_ctrl(rx, frames); 3413 if (res != RX_CONTINUE) 3414 goto rxh_next; 3415 3416 CALL_RXH(ieee80211_rx_h_mgmt_check); 3417 CALL_RXH(ieee80211_rx_h_action); 3418 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3419 CALL_RXH(ieee80211_rx_h_action_return); 3420 CALL_RXH(ieee80211_rx_h_mgmt); 3421 3422 rxh_next: 3423 ieee80211_rx_handlers_result(rx, res); 3424 3425 #undef CALL_RXH 3426 } 3427 3428 spin_unlock_bh(&rx->local->rx_path_lock); 3429 } 3430 3431 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3432 { 3433 struct sk_buff_head reorder_release; 3434 ieee80211_rx_result res = RX_DROP_MONITOR; 3435 3436 __skb_queue_head_init(&reorder_release); 3437 3438 #define CALL_RXH(rxh) \ 3439 do { \ 3440 res = rxh(rx); \ 3441 if (res != RX_CONTINUE) \ 3442 goto rxh_next; \ 3443 } while (0) 3444 3445 CALL_RXH(ieee80211_rx_h_check_dup); 3446 CALL_RXH(ieee80211_rx_h_check); 3447 3448 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3449 3450 ieee80211_rx_handlers(rx, &reorder_release); 3451 return; 3452 3453 rxh_next: 3454 ieee80211_rx_handlers_result(rx, res); 3455 3456 #undef CALL_RXH 3457 } 3458 3459 /* 3460 * This function makes calls into the RX path, therefore 3461 * it has to be invoked under RCU read lock. 3462 */ 3463 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3464 { 3465 struct sk_buff_head frames; 3466 struct ieee80211_rx_data rx = { 3467 .sta = sta, 3468 .sdata = sta->sdata, 3469 .local = sta->local, 3470 /* This is OK -- must be QoS data frame */ 3471 .security_idx = tid, 3472 .seqno_idx = tid, 3473 .napi = NULL, /* must be NULL to not have races */ 3474 }; 3475 struct tid_ampdu_rx *tid_agg_rx; 3476 3477 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3478 if (!tid_agg_rx) 3479 return; 3480 3481 __skb_queue_head_init(&frames); 3482 3483 spin_lock(&tid_agg_rx->reorder_lock); 3484 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3485 spin_unlock(&tid_agg_rx->reorder_lock); 3486 3487 if (!skb_queue_empty(&frames)) { 3488 struct ieee80211_event event = { 3489 .type = BA_FRAME_TIMEOUT, 3490 .u.ba.tid = tid, 3491 .u.ba.sta = &sta->sta, 3492 }; 3493 drv_event_callback(rx.local, rx.sdata, &event); 3494 } 3495 3496 ieee80211_rx_handlers(&rx, &frames); 3497 } 3498 3499 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3500 u16 ssn, u64 filtered, 3501 u16 received_mpdus) 3502 { 3503 struct sta_info *sta; 3504 struct tid_ampdu_rx *tid_agg_rx; 3505 struct sk_buff_head frames; 3506 struct ieee80211_rx_data rx = { 3507 /* This is OK -- must be QoS data frame */ 3508 .security_idx = tid, 3509 .seqno_idx = tid, 3510 }; 3511 int i, diff; 3512 3513 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3514 return; 3515 3516 __skb_queue_head_init(&frames); 3517 3518 sta = container_of(pubsta, struct sta_info, sta); 3519 3520 rx.sta = sta; 3521 rx.sdata = sta->sdata; 3522 rx.local = sta->local; 3523 3524 rcu_read_lock(); 3525 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3526 if (!tid_agg_rx) 3527 goto out; 3528 3529 spin_lock_bh(&tid_agg_rx->reorder_lock); 3530 3531 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3532 int release; 3533 3534 /* release all frames in the reorder buffer */ 3535 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3536 IEEE80211_SN_MODULO; 3537 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3538 release, &frames); 3539 /* update ssn to match received ssn */ 3540 tid_agg_rx->head_seq_num = ssn; 3541 } else { 3542 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3543 &frames); 3544 } 3545 3546 /* handle the case that received ssn is behind the mac ssn. 3547 * it can be tid_agg_rx->buf_size behind and still be valid */ 3548 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3549 if (diff >= tid_agg_rx->buf_size) { 3550 tid_agg_rx->reorder_buf_filtered = 0; 3551 goto release; 3552 } 3553 filtered = filtered >> diff; 3554 ssn += diff; 3555 3556 /* update bitmap */ 3557 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3558 int index = (ssn + i) % tid_agg_rx->buf_size; 3559 3560 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3561 if (filtered & BIT_ULL(i)) 3562 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3563 } 3564 3565 /* now process also frames that the filter marking released */ 3566 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3567 3568 release: 3569 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3570 3571 ieee80211_rx_handlers(&rx, &frames); 3572 3573 out: 3574 rcu_read_unlock(); 3575 } 3576 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3577 3578 /* main receive path */ 3579 3580 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3581 { 3582 struct ieee80211_sub_if_data *sdata = rx->sdata; 3583 struct sk_buff *skb = rx->skb; 3584 struct ieee80211_hdr *hdr = (void *)skb->data; 3585 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3586 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3587 bool multicast = is_multicast_ether_addr(hdr->addr1); 3588 3589 switch (sdata->vif.type) { 3590 case NL80211_IFTYPE_STATION: 3591 if (!bssid && !sdata->u.mgd.use_4addr) 3592 return false; 3593 if (multicast) 3594 return true; 3595 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3596 case NL80211_IFTYPE_ADHOC: 3597 if (!bssid) 3598 return false; 3599 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3600 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3601 return false; 3602 if (ieee80211_is_beacon(hdr->frame_control)) 3603 return true; 3604 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3605 return false; 3606 if (!multicast && 3607 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3608 return false; 3609 if (!rx->sta) { 3610 int rate_idx; 3611 if (status->encoding != RX_ENC_LEGACY) 3612 rate_idx = 0; /* TODO: HT/VHT rates */ 3613 else 3614 rate_idx = status->rate_idx; 3615 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3616 BIT(rate_idx)); 3617 } 3618 return true; 3619 case NL80211_IFTYPE_OCB: 3620 if (!bssid) 3621 return false; 3622 if (!ieee80211_is_data_present(hdr->frame_control)) 3623 return false; 3624 if (!is_broadcast_ether_addr(bssid)) 3625 return false; 3626 if (!multicast && 3627 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3628 return false; 3629 if (!rx->sta) { 3630 int rate_idx; 3631 if (status->encoding != RX_ENC_LEGACY) 3632 rate_idx = 0; /* TODO: HT rates */ 3633 else 3634 rate_idx = status->rate_idx; 3635 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3636 BIT(rate_idx)); 3637 } 3638 return true; 3639 case NL80211_IFTYPE_MESH_POINT: 3640 if (multicast) 3641 return true; 3642 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3643 case NL80211_IFTYPE_AP_VLAN: 3644 case NL80211_IFTYPE_AP: 3645 if (!bssid) 3646 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3647 3648 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3649 /* 3650 * Accept public action frames even when the 3651 * BSSID doesn't match, this is used for P2P 3652 * and location updates. Note that mac80211 3653 * itself never looks at these frames. 3654 */ 3655 if (!multicast && 3656 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3657 return false; 3658 if (ieee80211_is_public_action(hdr, skb->len)) 3659 return true; 3660 return ieee80211_is_beacon(hdr->frame_control); 3661 } 3662 3663 if (!ieee80211_has_tods(hdr->frame_control)) { 3664 /* ignore data frames to TDLS-peers */ 3665 if (ieee80211_is_data(hdr->frame_control)) 3666 return false; 3667 /* ignore action frames to TDLS-peers */ 3668 if (ieee80211_is_action(hdr->frame_control) && 3669 !is_broadcast_ether_addr(bssid) && 3670 !ether_addr_equal(bssid, hdr->addr1)) 3671 return false; 3672 } 3673 3674 /* 3675 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3676 * the BSSID - we've checked that already but may have accepted 3677 * the wildcard (ff:ff:ff:ff:ff:ff). 3678 * 3679 * It also says: 3680 * The BSSID of the Data frame is determined as follows: 3681 * a) If the STA is contained within an AP or is associated 3682 * with an AP, the BSSID is the address currently in use 3683 * by the STA contained in the AP. 3684 * 3685 * So we should not accept data frames with an address that's 3686 * multicast. 3687 * 3688 * Accepting it also opens a security problem because stations 3689 * could encrypt it with the GTK and inject traffic that way. 3690 */ 3691 if (ieee80211_is_data(hdr->frame_control) && multicast) 3692 return false; 3693 3694 return true; 3695 case NL80211_IFTYPE_WDS: 3696 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3697 return false; 3698 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3699 case NL80211_IFTYPE_P2P_DEVICE: 3700 return ieee80211_is_public_action(hdr, skb->len) || 3701 ieee80211_is_probe_req(hdr->frame_control) || 3702 ieee80211_is_probe_resp(hdr->frame_control) || 3703 ieee80211_is_beacon(hdr->frame_control); 3704 case NL80211_IFTYPE_NAN: 3705 /* Currently no frames on NAN interface are allowed */ 3706 return false; 3707 default: 3708 break; 3709 } 3710 3711 WARN_ON_ONCE(1); 3712 return false; 3713 } 3714 3715 void ieee80211_check_fast_rx(struct sta_info *sta) 3716 { 3717 struct ieee80211_sub_if_data *sdata = sta->sdata; 3718 struct ieee80211_local *local = sdata->local; 3719 struct ieee80211_key *key; 3720 struct ieee80211_fast_rx fastrx = { 3721 .dev = sdata->dev, 3722 .vif_type = sdata->vif.type, 3723 .control_port_protocol = sdata->control_port_protocol, 3724 }, *old, *new = NULL; 3725 bool assign = false; 3726 3727 /* use sparse to check that we don't return without updating */ 3728 __acquire(check_fast_rx); 3729 3730 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3731 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3732 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3733 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3734 3735 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3736 3737 /* fast-rx doesn't do reordering */ 3738 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3739 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3740 goto clear; 3741 3742 switch (sdata->vif.type) { 3743 case NL80211_IFTYPE_STATION: 3744 /* 4-addr is harder to deal with, later maybe */ 3745 if (sdata->u.mgd.use_4addr) 3746 goto clear; 3747 /* software powersave is a huge mess, avoid all of it */ 3748 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3749 goto clear; 3750 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3751 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3752 goto clear; 3753 if (sta->sta.tdls) { 3754 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3755 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3756 fastrx.expected_ds_bits = 0; 3757 } else { 3758 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3759 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3760 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3761 fastrx.expected_ds_bits = 3762 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3763 } 3764 break; 3765 case NL80211_IFTYPE_AP_VLAN: 3766 case NL80211_IFTYPE_AP: 3767 /* parallel-rx requires this, at least with calls to 3768 * ieee80211_sta_ps_transition() 3769 */ 3770 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3771 goto clear; 3772 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3773 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3774 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3775 3776 fastrx.internal_forward = 3777 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3778 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3779 !sdata->u.vlan.sta); 3780 break; 3781 default: 3782 goto clear; 3783 } 3784 3785 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3786 goto clear; 3787 3788 rcu_read_lock(); 3789 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3790 if (key) { 3791 switch (key->conf.cipher) { 3792 case WLAN_CIPHER_SUITE_TKIP: 3793 /* we don't want to deal with MMIC in fast-rx */ 3794 goto clear_rcu; 3795 case WLAN_CIPHER_SUITE_CCMP: 3796 case WLAN_CIPHER_SUITE_CCMP_256: 3797 case WLAN_CIPHER_SUITE_GCMP: 3798 case WLAN_CIPHER_SUITE_GCMP_256: 3799 break; 3800 default: 3801 /* we also don't want to deal with WEP or cipher scheme 3802 * since those require looking up the key idx in the 3803 * frame, rather than assuming the PTK is used 3804 * (we need to revisit this once we implement the real 3805 * PTK index, which is now valid in the spec, but we 3806 * haven't implemented that part yet) 3807 */ 3808 goto clear_rcu; 3809 } 3810 3811 fastrx.key = true; 3812 fastrx.icv_len = key->conf.icv_len; 3813 } 3814 3815 assign = true; 3816 clear_rcu: 3817 rcu_read_unlock(); 3818 clear: 3819 __release(check_fast_rx); 3820 3821 if (assign) 3822 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3823 3824 spin_lock_bh(&sta->lock); 3825 old = rcu_dereference_protected(sta->fast_rx, true); 3826 rcu_assign_pointer(sta->fast_rx, new); 3827 spin_unlock_bh(&sta->lock); 3828 3829 if (old) 3830 kfree_rcu(old, rcu_head); 3831 } 3832 3833 void ieee80211_clear_fast_rx(struct sta_info *sta) 3834 { 3835 struct ieee80211_fast_rx *old; 3836 3837 spin_lock_bh(&sta->lock); 3838 old = rcu_dereference_protected(sta->fast_rx, true); 3839 RCU_INIT_POINTER(sta->fast_rx, NULL); 3840 spin_unlock_bh(&sta->lock); 3841 3842 if (old) 3843 kfree_rcu(old, rcu_head); 3844 } 3845 3846 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3847 { 3848 struct ieee80211_local *local = sdata->local; 3849 struct sta_info *sta; 3850 3851 lockdep_assert_held(&local->sta_mtx); 3852 3853 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3854 if (sdata != sta->sdata && 3855 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3856 continue; 3857 ieee80211_check_fast_rx(sta); 3858 } 3859 } 3860 3861 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3862 { 3863 struct ieee80211_local *local = sdata->local; 3864 3865 mutex_lock(&local->sta_mtx); 3866 __ieee80211_check_fast_rx_iface(sdata); 3867 mutex_unlock(&local->sta_mtx); 3868 } 3869 3870 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3871 struct ieee80211_fast_rx *fast_rx) 3872 { 3873 struct sk_buff *skb = rx->skb; 3874 struct ieee80211_hdr *hdr = (void *)skb->data; 3875 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3876 struct sta_info *sta = rx->sta; 3877 int orig_len = skb->len; 3878 int snap_offs = ieee80211_hdrlen(hdr->frame_control); 3879 struct { 3880 u8 snap[sizeof(rfc1042_header)]; 3881 __be16 proto; 3882 } *payload __aligned(2); 3883 struct { 3884 u8 da[ETH_ALEN]; 3885 u8 sa[ETH_ALEN]; 3886 } addrs __aligned(2); 3887 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3888 3889 if (fast_rx->uses_rss) 3890 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3891 3892 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3893 * to a common data structure; drivers can implement that per queue 3894 * but we don't have that information in mac80211 3895 */ 3896 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3897 return false; 3898 3899 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3900 3901 /* If using encryption, we also need to have: 3902 * - PN_VALIDATED: similar, but the implementation is tricky 3903 * - DECRYPTED: necessary for PN_VALIDATED 3904 */ 3905 if (fast_rx->key && 3906 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3907 return false; 3908 3909 /* we don't deal with A-MSDU deaggregation here */ 3910 if (status->rx_flags & IEEE80211_RX_AMSDU) 3911 return false; 3912 3913 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3914 return false; 3915 3916 if (unlikely(ieee80211_is_frag(hdr))) 3917 return false; 3918 3919 /* Since our interface address cannot be multicast, this 3920 * implicitly also rejects multicast frames without the 3921 * explicit check. 3922 * 3923 * We shouldn't get any *data* frames not addressed to us 3924 * (AP mode will accept multicast *management* frames), but 3925 * punting here will make it go through the full checks in 3926 * ieee80211_accept_frame(). 3927 */ 3928 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3929 return false; 3930 3931 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3932 IEEE80211_FCTL_TODS)) != 3933 fast_rx->expected_ds_bits) 3934 goto drop; 3935 3936 /* assign the key to drop unencrypted frames (later) 3937 * and strip the IV/MIC if necessary 3938 */ 3939 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3940 /* GCMP header length is the same */ 3941 snap_offs += IEEE80211_CCMP_HDR_LEN; 3942 } 3943 3944 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3945 goto drop; 3946 payload = (void *)(skb->data + snap_offs); 3947 3948 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 3949 return false; 3950 3951 /* Don't handle these here since they require special code. 3952 * Accept AARP and IPX even though they should come with a 3953 * bridge-tunnel header - but if we get them this way then 3954 * there's little point in discarding them. 3955 */ 3956 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 3957 payload->proto == fast_rx->control_port_protocol)) 3958 return false; 3959 3960 /* after this point, don't punt to the slowpath! */ 3961 3962 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 3963 pskb_trim(skb, skb->len - fast_rx->icv_len)) 3964 goto drop; 3965 3966 if (unlikely(fast_rx->sta_notify)) { 3967 ieee80211_sta_rx_notify(rx->sdata, hdr); 3968 fast_rx->sta_notify = false; 3969 } 3970 3971 /* statistics part of ieee80211_rx_h_sta_process() */ 3972 stats->last_rx = jiffies; 3973 stats->last_rate = sta_stats_encode_rate(status); 3974 3975 stats->fragments++; 3976 stats->packets++; 3977 3978 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 3979 stats->last_signal = status->signal; 3980 if (!fast_rx->uses_rss) 3981 ewma_signal_add(&sta->rx_stats_avg.signal, 3982 -status->signal); 3983 } 3984 3985 if (status->chains) { 3986 int i; 3987 3988 stats->chains = status->chains; 3989 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 3990 int signal = status->chain_signal[i]; 3991 3992 if (!(status->chains & BIT(i))) 3993 continue; 3994 3995 stats->chain_signal_last[i] = signal; 3996 if (!fast_rx->uses_rss) 3997 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 3998 -signal); 3999 } 4000 } 4001 /* end of statistics */ 4002 4003 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4004 goto drop; 4005 4006 /* do the header conversion - first grab the addresses */ 4007 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4008 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4009 /* remove the SNAP but leave the ethertype */ 4010 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4011 /* push the addresses in front */ 4012 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4013 4014 skb->dev = fast_rx->dev; 4015 4016 ieee80211_rx_stats(fast_rx->dev, skb->len); 4017 4018 /* The seqno index has the same property as needed 4019 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4020 * for non-QoS-data frames. Here we know it's a data 4021 * frame, so count MSDUs. 4022 */ 4023 u64_stats_update_begin(&stats->syncp); 4024 stats->msdu[rx->seqno_idx]++; 4025 stats->bytes += orig_len; 4026 u64_stats_update_end(&stats->syncp); 4027 4028 if (fast_rx->internal_forward) { 4029 struct sk_buff *xmit_skb = NULL; 4030 bool multicast = is_multicast_ether_addr(skb->data); 4031 4032 if (multicast) { 4033 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4034 } else if (sta_info_get(rx->sdata, skb->data)) { 4035 xmit_skb = skb; 4036 skb = NULL; 4037 } 4038 4039 if (xmit_skb) { 4040 /* 4041 * Send to wireless media and increase priority by 256 4042 * to keep the received priority instead of 4043 * reclassifying the frame (see cfg80211_classify8021d). 4044 */ 4045 xmit_skb->priority += 256; 4046 xmit_skb->protocol = htons(ETH_P_802_3); 4047 skb_reset_network_header(xmit_skb); 4048 skb_reset_mac_header(xmit_skb); 4049 dev_queue_xmit(xmit_skb); 4050 } 4051 4052 if (!skb) 4053 return true; 4054 } 4055 4056 /* deliver to local stack */ 4057 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4058 memset(skb->cb, 0, sizeof(skb->cb)); 4059 if (rx->napi) 4060 napi_gro_receive(rx->napi, skb); 4061 else 4062 netif_receive_skb(skb); 4063 4064 return true; 4065 drop: 4066 dev_kfree_skb(skb); 4067 stats->dropped++; 4068 return true; 4069 } 4070 4071 /* 4072 * This function returns whether or not the SKB 4073 * was destined for RX processing or not, which, 4074 * if consume is true, is equivalent to whether 4075 * or not the skb was consumed. 4076 */ 4077 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4078 struct sk_buff *skb, bool consume) 4079 { 4080 struct ieee80211_local *local = rx->local; 4081 struct ieee80211_sub_if_data *sdata = rx->sdata; 4082 4083 rx->skb = skb; 4084 4085 /* See if we can do fast-rx; if we have to copy we already lost, 4086 * so punt in that case. We should never have to deliver a data 4087 * frame to multiple interfaces anyway. 4088 * 4089 * We skip the ieee80211_accept_frame() call and do the necessary 4090 * checking inside ieee80211_invoke_fast_rx(). 4091 */ 4092 if (consume && rx->sta) { 4093 struct ieee80211_fast_rx *fast_rx; 4094 4095 fast_rx = rcu_dereference(rx->sta->fast_rx); 4096 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4097 return true; 4098 } 4099 4100 if (!ieee80211_accept_frame(rx)) 4101 return false; 4102 4103 if (!consume) { 4104 skb = skb_copy(skb, GFP_ATOMIC); 4105 if (!skb) { 4106 if (net_ratelimit()) 4107 wiphy_debug(local->hw.wiphy, 4108 "failed to copy skb for %s\n", 4109 sdata->name); 4110 return true; 4111 } 4112 4113 rx->skb = skb; 4114 } 4115 4116 ieee80211_invoke_rx_handlers(rx); 4117 return true; 4118 } 4119 4120 /* 4121 * This is the actual Rx frames handler. as it belongs to Rx path it must 4122 * be called with rcu_read_lock protection. 4123 */ 4124 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4125 struct ieee80211_sta *pubsta, 4126 struct sk_buff *skb, 4127 struct napi_struct *napi) 4128 { 4129 struct ieee80211_local *local = hw_to_local(hw); 4130 struct ieee80211_sub_if_data *sdata; 4131 struct ieee80211_hdr *hdr; 4132 __le16 fc; 4133 struct ieee80211_rx_data rx; 4134 struct ieee80211_sub_if_data *prev; 4135 struct rhlist_head *tmp; 4136 int err = 0; 4137 4138 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4139 memset(&rx, 0, sizeof(rx)); 4140 rx.skb = skb; 4141 rx.local = local; 4142 rx.napi = napi; 4143 4144 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4145 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4146 4147 if (ieee80211_is_mgmt(fc)) { 4148 /* drop frame if too short for header */ 4149 if (skb->len < ieee80211_hdrlen(fc)) 4150 err = -ENOBUFS; 4151 else 4152 err = skb_linearize(skb); 4153 } else { 4154 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4155 } 4156 4157 if (err) { 4158 dev_kfree_skb(skb); 4159 return; 4160 } 4161 4162 hdr = (struct ieee80211_hdr *)skb->data; 4163 ieee80211_parse_qos(&rx); 4164 ieee80211_verify_alignment(&rx); 4165 4166 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4167 ieee80211_is_beacon(hdr->frame_control))) 4168 ieee80211_scan_rx(local, skb); 4169 4170 if (ieee80211_is_data(fc)) { 4171 struct sta_info *sta, *prev_sta; 4172 4173 if (pubsta) { 4174 rx.sta = container_of(pubsta, struct sta_info, sta); 4175 rx.sdata = rx.sta->sdata; 4176 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4177 return; 4178 goto out; 4179 } 4180 4181 prev_sta = NULL; 4182 4183 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4184 if (!prev_sta) { 4185 prev_sta = sta; 4186 continue; 4187 } 4188 4189 rx.sta = prev_sta; 4190 rx.sdata = prev_sta->sdata; 4191 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4192 4193 prev_sta = sta; 4194 } 4195 4196 if (prev_sta) { 4197 rx.sta = prev_sta; 4198 rx.sdata = prev_sta->sdata; 4199 4200 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4201 return; 4202 goto out; 4203 } 4204 } 4205 4206 prev = NULL; 4207 4208 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4209 if (!ieee80211_sdata_running(sdata)) 4210 continue; 4211 4212 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4213 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4214 continue; 4215 4216 /* 4217 * frame is destined for this interface, but if it's 4218 * not also for the previous one we handle that after 4219 * the loop to avoid copying the SKB once too much 4220 */ 4221 4222 if (!prev) { 4223 prev = sdata; 4224 continue; 4225 } 4226 4227 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4228 rx.sdata = prev; 4229 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4230 4231 prev = sdata; 4232 } 4233 4234 if (prev) { 4235 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4236 rx.sdata = prev; 4237 4238 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4239 return; 4240 } 4241 4242 out: 4243 dev_kfree_skb(skb); 4244 } 4245 4246 /* 4247 * This is the receive path handler. It is called by a low level driver when an 4248 * 802.11 MPDU is received from the hardware. 4249 */ 4250 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4251 struct sk_buff *skb, struct napi_struct *napi) 4252 { 4253 struct ieee80211_local *local = hw_to_local(hw); 4254 struct ieee80211_rate *rate = NULL; 4255 struct ieee80211_supported_band *sband; 4256 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4257 4258 WARN_ON_ONCE(softirq_count() == 0); 4259 4260 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4261 goto drop; 4262 4263 sband = local->hw.wiphy->bands[status->band]; 4264 if (WARN_ON(!sband)) 4265 goto drop; 4266 4267 /* 4268 * If we're suspending, it is possible although not too likely 4269 * that we'd be receiving frames after having already partially 4270 * quiesced the stack. We can't process such frames then since 4271 * that might, for example, cause stations to be added or other 4272 * driver callbacks be invoked. 4273 */ 4274 if (unlikely(local->quiescing || local->suspended)) 4275 goto drop; 4276 4277 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4278 if (unlikely(local->in_reconfig)) 4279 goto drop; 4280 4281 /* 4282 * The same happens when we're not even started, 4283 * but that's worth a warning. 4284 */ 4285 if (WARN_ON(!local->started)) 4286 goto drop; 4287 4288 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4289 /* 4290 * Validate the rate, unless a PLCP error means that 4291 * we probably can't have a valid rate here anyway. 4292 */ 4293 4294 switch (status->encoding) { 4295 case RX_ENC_HT: 4296 /* 4297 * rate_idx is MCS index, which can be [0-76] 4298 * as documented on: 4299 * 4300 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4301 * 4302 * Anything else would be some sort of driver or 4303 * hardware error. The driver should catch hardware 4304 * errors. 4305 */ 4306 if (WARN(status->rate_idx > 76, 4307 "Rate marked as an HT rate but passed " 4308 "status->rate_idx is not " 4309 "an MCS index [0-76]: %d (0x%02x)\n", 4310 status->rate_idx, 4311 status->rate_idx)) 4312 goto drop; 4313 break; 4314 case RX_ENC_VHT: 4315 if (WARN_ONCE(status->rate_idx > 9 || 4316 !status->nss || 4317 status->nss > 8, 4318 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4319 status->rate_idx, status->nss)) 4320 goto drop; 4321 break; 4322 default: 4323 WARN_ON_ONCE(1); 4324 /* fall through */ 4325 case RX_ENC_LEGACY: 4326 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4327 goto drop; 4328 rate = &sband->bitrates[status->rate_idx]; 4329 } 4330 } 4331 4332 status->rx_flags = 0; 4333 4334 /* 4335 * key references and virtual interfaces are protected using RCU 4336 * and this requires that we are in a read-side RCU section during 4337 * receive processing 4338 */ 4339 rcu_read_lock(); 4340 4341 /* 4342 * Frames with failed FCS/PLCP checksum are not returned, 4343 * all other frames are returned without radiotap header 4344 * if it was previously present. 4345 * Also, frames with less than 16 bytes are dropped. 4346 */ 4347 skb = ieee80211_rx_monitor(local, skb, rate); 4348 if (!skb) { 4349 rcu_read_unlock(); 4350 return; 4351 } 4352 4353 ieee80211_tpt_led_trig_rx(local, 4354 ((struct ieee80211_hdr *)skb->data)->frame_control, 4355 skb->len); 4356 4357 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4358 4359 rcu_read_unlock(); 4360 4361 return; 4362 drop: 4363 kfree_skb(skb); 4364 } 4365 EXPORT_SYMBOL(ieee80211_rx_napi); 4366 4367 /* This is a version of the rx handler that can be called from hard irq 4368 * context. Post the skb on the queue and schedule the tasklet */ 4369 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4370 { 4371 struct ieee80211_local *local = hw_to_local(hw); 4372 4373 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4374 4375 skb->pkt_type = IEEE80211_RX_MSG; 4376 skb_queue_tail(&local->skb_queue, skb); 4377 tasklet_schedule(&local->tasklet); 4378 } 4379 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4380