xref: /linux/net/mac80211/rx.c (revision 6ede2b7df92f4f8da1abfa831a038688fcf409ea)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36 
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40 
41 	u64_stats_update_begin(&tstats->syncp);
42 	tstats->rx_packets++;
43 	tstats->rx_bytes += len;
44 	u64_stats_update_end(&tstats->syncp);
45 }
46 
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 			       enum nl80211_iftype type)
49 {
50 	__le16 fc = hdr->frame_control;
51 
52 	if (ieee80211_is_data(fc)) {
53 		if (len < 24) /* drop incorrect hdr len (data) */
54 			return NULL;
55 
56 		if (ieee80211_has_a4(fc))
57 			return NULL;
58 		if (ieee80211_has_tods(fc))
59 			return hdr->addr1;
60 		if (ieee80211_has_fromds(fc))
61 			return hdr->addr2;
62 
63 		return hdr->addr3;
64 	}
65 
66 	if (ieee80211_is_mgmt(fc)) {
67 		if (len < 24) /* drop incorrect hdr len (mgmt) */
68 			return NULL;
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_ctl(fc)) {
73 		if (ieee80211_is_pspoll(fc))
74 			return hdr->addr1;
75 
76 		if (ieee80211_is_back_req(fc)) {
77 			switch (type) {
78 			case NL80211_IFTYPE_STATION:
79 				return hdr->addr2;
80 			case NL80211_IFTYPE_AP:
81 			case NL80211_IFTYPE_AP_VLAN:
82 				return hdr->addr1;
83 			default:
84 				break; /* fall through to the return */
85 			}
86 		}
87 	}
88 
89 	return NULL;
90 }
91 
92 /*
93  * monitor mode reception
94  *
95  * This function cleans up the SKB, i.e. it removes all the stuff
96  * only useful for monitoring.
97  */
98 static void remove_monitor_info(struct sk_buff *skb,
99 				unsigned int present_fcs_len,
100 				unsigned int rtap_vendor_space)
101 {
102 	if (present_fcs_len)
103 		__pskb_trim(skb, skb->len - present_fcs_len);
104 	__pskb_pull(skb, rtap_vendor_space);
105 }
106 
107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
108 				     unsigned int rtap_vendor_space)
109 {
110 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
111 	struct ieee80211_hdr *hdr;
112 
113 	hdr = (void *)(skb->data + rtap_vendor_space);
114 
115 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
116 			    RX_FLAG_FAILED_PLCP_CRC |
117 			    RX_FLAG_ONLY_MONITOR))
118 		return true;
119 
120 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
121 		return true;
122 
123 	if (ieee80211_is_ctl(hdr->frame_control) &&
124 	    !ieee80211_is_pspoll(hdr->frame_control) &&
125 	    !ieee80211_is_back_req(hdr->frame_control))
126 		return true;
127 
128 	return false;
129 }
130 
131 static int
132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
133 			     struct ieee80211_rx_status *status,
134 			     struct sk_buff *skb)
135 {
136 	int len;
137 
138 	/* always present fields */
139 	len = sizeof(struct ieee80211_radiotap_header) + 8;
140 
141 	/* allocate extra bitmaps */
142 	if (status->chains)
143 		len += 4 * hweight8(status->chains);
144 
145 	if (ieee80211_have_rx_timestamp(status)) {
146 		len = ALIGN(len, 8);
147 		len += 8;
148 	}
149 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
150 		len += 1;
151 
152 	/* antenna field, if we don't have per-chain info */
153 	if (!status->chains)
154 		len += 1;
155 
156 	/* padding for RX_FLAGS if necessary */
157 	len = ALIGN(len, 2);
158 
159 	if (status->encoding == RX_ENC_HT) /* HT info */
160 		len += 3;
161 
162 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
163 		len = ALIGN(len, 4);
164 		len += 8;
165 	}
166 
167 	if (status->encoding == RX_ENC_VHT) {
168 		len = ALIGN(len, 2);
169 		len += 12;
170 	}
171 
172 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
173 		len = ALIGN(len, 8);
174 		len += 12;
175 	}
176 
177 	if (status->chains) {
178 		/* antenna and antenna signal fields */
179 		len += 2 * hweight8(status->chains);
180 	}
181 
182 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
183 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
184 
185 		/* vendor presence bitmap */
186 		len += 4;
187 		/* alignment for fixed 6-byte vendor data header */
188 		len = ALIGN(len, 2);
189 		/* vendor data header */
190 		len += 6;
191 		if (WARN_ON(rtap->align == 0))
192 			rtap->align = 1;
193 		len = ALIGN(len, rtap->align);
194 		len += rtap->len + rtap->pad;
195 	}
196 
197 	return len;
198 }
199 
200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
201 					 struct sk_buff *skb,
202 					 int rtap_vendor_space)
203 {
204 	struct {
205 		struct ieee80211_hdr_3addr hdr;
206 		u8 category;
207 		u8 action_code;
208 	} __packed action;
209 
210 	if (!sdata)
211 		return;
212 
213 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
214 
215 	if (skb->len < rtap_vendor_space + sizeof(action) +
216 		       VHT_MUMIMO_GROUPS_DATA_LEN)
217 		return;
218 
219 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
220 		return;
221 
222 	skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
223 
224 	if (!ieee80211_is_action(action.hdr.frame_control))
225 		return;
226 
227 	if (action.category != WLAN_CATEGORY_VHT)
228 		return;
229 
230 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
231 		return;
232 
233 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
234 		return;
235 
236 	skb = skb_copy(skb, GFP_ATOMIC);
237 	if (!skb)
238 		return;
239 
240 	skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
241 	skb_queue_tail(&sdata->skb_queue, skb);
242 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
243 }
244 
245 /*
246  * ieee80211_add_rx_radiotap_header - add radiotap header
247  *
248  * add a radiotap header containing all the fields which the hardware provided.
249  */
250 static void
251 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
252 				 struct sk_buff *skb,
253 				 struct ieee80211_rate *rate,
254 				 int rtap_len, bool has_fcs)
255 {
256 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
257 	struct ieee80211_radiotap_header *rthdr;
258 	unsigned char *pos;
259 	__le32 *it_present;
260 	u32 it_present_val;
261 	u16 rx_flags = 0;
262 	u16 channel_flags = 0;
263 	int mpdulen, chain;
264 	unsigned long chains = status->chains;
265 	struct ieee80211_vendor_radiotap rtap = {};
266 
267 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
268 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
269 		/* rtap.len and rtap.pad are undone immediately */
270 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
271 	}
272 
273 	mpdulen = skb->len;
274 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
275 		mpdulen += FCS_LEN;
276 
277 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
278 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
279 	it_present = &rthdr->it_present;
280 
281 	/* radiotap header, set always present flags */
282 	rthdr->it_len = cpu_to_le16(rtap_len);
283 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
284 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
285 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
286 
287 	if (!status->chains)
288 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
289 
290 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
291 		it_present_val |=
292 			BIT(IEEE80211_RADIOTAP_EXT) |
293 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
294 		put_unaligned_le32(it_present_val, it_present);
295 		it_present++;
296 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
297 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
298 	}
299 
300 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
301 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
302 				  BIT(IEEE80211_RADIOTAP_EXT);
303 		put_unaligned_le32(it_present_val, it_present);
304 		it_present++;
305 		it_present_val = rtap.present;
306 	}
307 
308 	put_unaligned_le32(it_present_val, it_present);
309 
310 	pos = (void *)(it_present + 1);
311 
312 	/* the order of the following fields is important */
313 
314 	/* IEEE80211_RADIOTAP_TSFT */
315 	if (ieee80211_have_rx_timestamp(status)) {
316 		/* padding */
317 		while ((pos - (u8 *)rthdr) & 7)
318 			*pos++ = 0;
319 		put_unaligned_le64(
320 			ieee80211_calculate_rx_timestamp(local, status,
321 							 mpdulen, 0),
322 			pos);
323 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
324 		pos += 8;
325 	}
326 
327 	/* IEEE80211_RADIOTAP_FLAGS */
328 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
329 		*pos |= IEEE80211_RADIOTAP_F_FCS;
330 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
331 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
332 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
333 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
334 	pos++;
335 
336 	/* IEEE80211_RADIOTAP_RATE */
337 	if (!rate || status->encoding != RX_ENC_LEGACY) {
338 		/*
339 		 * Without rate information don't add it. If we have,
340 		 * MCS information is a separate field in radiotap,
341 		 * added below. The byte here is needed as padding
342 		 * for the channel though, so initialise it to 0.
343 		 */
344 		*pos = 0;
345 	} else {
346 		int shift = 0;
347 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
348 		if (status->bw == RATE_INFO_BW_10)
349 			shift = 1;
350 		else if (status->bw == RATE_INFO_BW_5)
351 			shift = 2;
352 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
353 	}
354 	pos++;
355 
356 	/* IEEE80211_RADIOTAP_CHANNEL */
357 	put_unaligned_le16(status->freq, pos);
358 	pos += 2;
359 	if (status->bw == RATE_INFO_BW_10)
360 		channel_flags |= IEEE80211_CHAN_HALF;
361 	else if (status->bw == RATE_INFO_BW_5)
362 		channel_flags |= IEEE80211_CHAN_QUARTER;
363 
364 	if (status->band == NL80211_BAND_5GHZ)
365 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
366 	else if (status->encoding != RX_ENC_LEGACY)
367 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
368 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
369 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
370 	else if (rate)
371 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
372 	else
373 		channel_flags |= IEEE80211_CHAN_2GHZ;
374 	put_unaligned_le16(channel_flags, pos);
375 	pos += 2;
376 
377 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
378 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
379 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
380 		*pos = status->signal;
381 		rthdr->it_present |=
382 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
383 		pos++;
384 	}
385 
386 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
387 
388 	if (!status->chains) {
389 		/* IEEE80211_RADIOTAP_ANTENNA */
390 		*pos = status->antenna;
391 		pos++;
392 	}
393 
394 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
395 
396 	/* IEEE80211_RADIOTAP_RX_FLAGS */
397 	/* ensure 2 byte alignment for the 2 byte field as required */
398 	if ((pos - (u8 *)rthdr) & 1)
399 		*pos++ = 0;
400 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
401 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
402 	put_unaligned_le16(rx_flags, pos);
403 	pos += 2;
404 
405 	if (status->encoding == RX_ENC_HT) {
406 		unsigned int stbc;
407 
408 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
409 		*pos++ = local->hw.radiotap_mcs_details;
410 		*pos = 0;
411 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
412 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
413 		if (status->bw == RATE_INFO_BW_40)
414 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
415 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
416 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
417 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
418 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
419 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
420 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
421 		pos++;
422 		*pos++ = status->rate_idx;
423 	}
424 
425 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
426 		u16 flags = 0;
427 
428 		/* ensure 4 byte alignment */
429 		while ((pos - (u8 *)rthdr) & 3)
430 			pos++;
431 		rthdr->it_present |=
432 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
433 		put_unaligned_le32(status->ampdu_reference, pos);
434 		pos += 4;
435 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
436 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
437 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
438 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
439 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
440 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
441 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
442 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
443 		put_unaligned_le16(flags, pos);
444 		pos += 2;
445 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
446 			*pos++ = status->ampdu_delimiter_crc;
447 		else
448 			*pos++ = 0;
449 		*pos++ = 0;
450 	}
451 
452 	if (status->encoding == RX_ENC_VHT) {
453 		u16 known = local->hw.radiotap_vht_details;
454 
455 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
456 		put_unaligned_le16(known, pos);
457 		pos += 2;
458 		/* flags */
459 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
460 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
461 		/* in VHT, STBC is binary */
462 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
463 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
464 		if (status->enc_flags & RX_ENC_FLAG_BF)
465 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
466 		pos++;
467 		/* bandwidth */
468 		switch (status->bw) {
469 		case RATE_INFO_BW_80:
470 			*pos++ = 4;
471 			break;
472 		case RATE_INFO_BW_160:
473 			*pos++ = 11;
474 			break;
475 		case RATE_INFO_BW_40:
476 			*pos++ = 1;
477 			break;
478 		default:
479 			*pos++ = 0;
480 		}
481 		/* MCS/NSS */
482 		*pos = (status->rate_idx << 4) | status->nss;
483 		pos += 4;
484 		/* coding field */
485 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
486 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
487 		pos++;
488 		/* group ID */
489 		pos++;
490 		/* partial_aid */
491 		pos += 2;
492 	}
493 
494 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
495 		u16 accuracy = 0;
496 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
497 
498 		rthdr->it_present |=
499 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
500 
501 		/* ensure 8 byte alignment */
502 		while ((pos - (u8 *)rthdr) & 7)
503 			pos++;
504 
505 		put_unaligned_le64(status->device_timestamp, pos);
506 		pos += sizeof(u64);
507 
508 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
509 			accuracy = local->hw.radiotap_timestamp.accuracy;
510 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
511 		}
512 		put_unaligned_le16(accuracy, pos);
513 		pos += sizeof(u16);
514 
515 		*pos++ = local->hw.radiotap_timestamp.units_pos;
516 		*pos++ = flags;
517 	}
518 
519 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
520 		*pos++ = status->chain_signal[chain];
521 		*pos++ = chain;
522 	}
523 
524 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
525 		/* ensure 2 byte alignment for the vendor field as required */
526 		if ((pos - (u8 *)rthdr) & 1)
527 			*pos++ = 0;
528 		*pos++ = rtap.oui[0];
529 		*pos++ = rtap.oui[1];
530 		*pos++ = rtap.oui[2];
531 		*pos++ = rtap.subns;
532 		put_unaligned_le16(rtap.len, pos);
533 		pos += 2;
534 		/* align the actual payload as requested */
535 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
536 			*pos++ = 0;
537 		/* data (and possible padding) already follows */
538 	}
539 }
540 
541 static struct sk_buff *
542 ieee80211_make_monitor_skb(struct ieee80211_local *local,
543 			   struct sk_buff **origskb,
544 			   struct ieee80211_rate *rate,
545 			   int rtap_vendor_space, bool use_origskb)
546 {
547 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
548 	int rt_hdrlen, needed_headroom;
549 	struct sk_buff *skb;
550 
551 	/* room for the radiotap header based on driver features */
552 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
553 	needed_headroom = rt_hdrlen - rtap_vendor_space;
554 
555 	if (use_origskb) {
556 		/* only need to expand headroom if necessary */
557 		skb = *origskb;
558 		*origskb = NULL;
559 
560 		/*
561 		 * This shouldn't trigger often because most devices have an
562 		 * RX header they pull before we get here, and that should
563 		 * be big enough for our radiotap information. We should
564 		 * probably export the length to drivers so that we can have
565 		 * them allocate enough headroom to start with.
566 		 */
567 		if (skb_headroom(skb) < needed_headroom &&
568 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
569 			dev_kfree_skb(skb);
570 			return NULL;
571 		}
572 	} else {
573 		/*
574 		 * Need to make a copy and possibly remove radiotap header
575 		 * and FCS from the original.
576 		 */
577 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
578 
579 		if (!skb)
580 			return NULL;
581 	}
582 
583 	/* prepend radiotap information */
584 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
585 
586 	skb_reset_mac_header(skb);
587 	skb->ip_summed = CHECKSUM_UNNECESSARY;
588 	skb->pkt_type = PACKET_OTHERHOST;
589 	skb->protocol = htons(ETH_P_802_2);
590 
591 	return skb;
592 }
593 
594 /*
595  * This function copies a received frame to all monitor interfaces and
596  * returns a cleaned-up SKB that no longer includes the FCS nor the
597  * radiotap header the driver might have added.
598  */
599 static struct sk_buff *
600 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
601 		     struct ieee80211_rate *rate)
602 {
603 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
604 	struct ieee80211_sub_if_data *sdata;
605 	struct sk_buff *monskb = NULL;
606 	int present_fcs_len = 0;
607 	unsigned int rtap_vendor_space = 0;
608 	struct ieee80211_sub_if_data *monitor_sdata =
609 		rcu_dereference(local->monitor_sdata);
610 	bool only_monitor = false;
611 
612 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
613 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
614 
615 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
616 	}
617 
618 	/*
619 	 * First, we may need to make a copy of the skb because
620 	 *  (1) we need to modify it for radiotap (if not present), and
621 	 *  (2) the other RX handlers will modify the skb we got.
622 	 *
623 	 * We don't need to, of course, if we aren't going to return
624 	 * the SKB because it has a bad FCS/PLCP checksum.
625 	 */
626 
627 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
628 		if (unlikely(origskb->len <= FCS_LEN)) {
629 			/* driver bug */
630 			WARN_ON(1);
631 			dev_kfree_skb(origskb);
632 			return NULL;
633 		}
634 		present_fcs_len = FCS_LEN;
635 	}
636 
637 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
638 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
639 		dev_kfree_skb(origskb);
640 		return NULL;
641 	}
642 
643 	only_monitor = should_drop_frame(origskb, present_fcs_len,
644 					 rtap_vendor_space);
645 
646 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
647 		if (only_monitor) {
648 			dev_kfree_skb(origskb);
649 			return NULL;
650 		}
651 
652 		remove_monitor_info(origskb, present_fcs_len,
653 				    rtap_vendor_space);
654 		return origskb;
655 	}
656 
657 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
658 
659 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
660 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
661 						 &local->mon_list);
662 
663 		if (!monskb)
664 			monskb = ieee80211_make_monitor_skb(local, &origskb,
665 							    rate,
666 							    rtap_vendor_space,
667 							    only_monitor &&
668 							    last_monitor);
669 
670 		if (monskb) {
671 			struct sk_buff *skb;
672 
673 			if (last_monitor) {
674 				skb = monskb;
675 				monskb = NULL;
676 			} else {
677 				skb = skb_clone(monskb, GFP_ATOMIC);
678 			}
679 
680 			if (skb) {
681 				skb->dev = sdata->dev;
682 				ieee80211_rx_stats(skb->dev, skb->len);
683 				netif_receive_skb(skb);
684 			}
685 		}
686 
687 		if (last_monitor)
688 			break;
689 	}
690 
691 	/* this happens if last_monitor was erroneously false */
692 	dev_kfree_skb(monskb);
693 
694 	/* ditto */
695 	if (!origskb)
696 		return NULL;
697 
698 	remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space);
699 	return origskb;
700 }
701 
702 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
703 {
704 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
705 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
706 	int tid, seqno_idx, security_idx;
707 
708 	/* does the frame have a qos control field? */
709 	if (ieee80211_is_data_qos(hdr->frame_control)) {
710 		u8 *qc = ieee80211_get_qos_ctl(hdr);
711 		/* frame has qos control */
712 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
713 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
714 			status->rx_flags |= IEEE80211_RX_AMSDU;
715 
716 		seqno_idx = tid;
717 		security_idx = tid;
718 	} else {
719 		/*
720 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
721 		 *
722 		 *	Sequence numbers for management frames, QoS data
723 		 *	frames with a broadcast/multicast address in the
724 		 *	Address 1 field, and all non-QoS data frames sent
725 		 *	by QoS STAs are assigned using an additional single
726 		 *	modulo-4096 counter, [...]
727 		 *
728 		 * We also use that counter for non-QoS STAs.
729 		 */
730 		seqno_idx = IEEE80211_NUM_TIDS;
731 		security_idx = 0;
732 		if (ieee80211_is_mgmt(hdr->frame_control))
733 			security_idx = IEEE80211_NUM_TIDS;
734 		tid = 0;
735 	}
736 
737 	rx->seqno_idx = seqno_idx;
738 	rx->security_idx = security_idx;
739 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
740 	 * For now, set skb->priority to 0 for other cases. */
741 	rx->skb->priority = (tid > 7) ? 0 : tid;
742 }
743 
744 /**
745  * DOC: Packet alignment
746  *
747  * Drivers always need to pass packets that are aligned to two-byte boundaries
748  * to the stack.
749  *
750  * Additionally, should, if possible, align the payload data in a way that
751  * guarantees that the contained IP header is aligned to a four-byte
752  * boundary. In the case of regular frames, this simply means aligning the
753  * payload to a four-byte boundary (because either the IP header is directly
754  * contained, or IV/RFC1042 headers that have a length divisible by four are
755  * in front of it).  If the payload data is not properly aligned and the
756  * architecture doesn't support efficient unaligned operations, mac80211
757  * will align the data.
758  *
759  * With A-MSDU frames, however, the payload data address must yield two modulo
760  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
761  * push the IP header further back to a multiple of four again. Thankfully, the
762  * specs were sane enough this time around to require padding each A-MSDU
763  * subframe to a length that is a multiple of four.
764  *
765  * Padding like Atheros hardware adds which is between the 802.11 header and
766  * the payload is not supported, the driver is required to move the 802.11
767  * header to be directly in front of the payload in that case.
768  */
769 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
770 {
771 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
772 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
773 #endif
774 }
775 
776 
777 /* rx handlers */
778 
779 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
780 {
781 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
782 
783 	if (is_multicast_ether_addr(hdr->addr1))
784 		return 0;
785 
786 	return ieee80211_is_robust_mgmt_frame(skb);
787 }
788 
789 
790 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
791 {
792 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
793 
794 	if (!is_multicast_ether_addr(hdr->addr1))
795 		return 0;
796 
797 	return ieee80211_is_robust_mgmt_frame(skb);
798 }
799 
800 
801 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
802 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
803 {
804 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
805 	struct ieee80211_mmie *mmie;
806 	struct ieee80211_mmie_16 *mmie16;
807 
808 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
809 		return -1;
810 
811 	if (!ieee80211_is_robust_mgmt_frame(skb))
812 		return -1; /* not a robust management frame */
813 
814 	mmie = (struct ieee80211_mmie *)
815 		(skb->data + skb->len - sizeof(*mmie));
816 	if (mmie->element_id == WLAN_EID_MMIE &&
817 	    mmie->length == sizeof(*mmie) - 2)
818 		return le16_to_cpu(mmie->key_id);
819 
820 	mmie16 = (struct ieee80211_mmie_16 *)
821 		(skb->data + skb->len - sizeof(*mmie16));
822 	if (skb->len >= 24 + sizeof(*mmie16) &&
823 	    mmie16->element_id == WLAN_EID_MMIE &&
824 	    mmie16->length == sizeof(*mmie16) - 2)
825 		return le16_to_cpu(mmie16->key_id);
826 
827 	return -1;
828 }
829 
830 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
831 				  struct sk_buff *skb)
832 {
833 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
834 	__le16 fc;
835 	int hdrlen;
836 	u8 keyid;
837 
838 	fc = hdr->frame_control;
839 	hdrlen = ieee80211_hdrlen(fc);
840 
841 	if (skb->len < hdrlen + cs->hdr_len)
842 		return -EINVAL;
843 
844 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
845 	keyid &= cs->key_idx_mask;
846 	keyid >>= cs->key_idx_shift;
847 
848 	return keyid;
849 }
850 
851 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
852 {
853 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
854 	char *dev_addr = rx->sdata->vif.addr;
855 
856 	if (ieee80211_is_data(hdr->frame_control)) {
857 		if (is_multicast_ether_addr(hdr->addr1)) {
858 			if (ieee80211_has_tods(hdr->frame_control) ||
859 			    !ieee80211_has_fromds(hdr->frame_control))
860 				return RX_DROP_MONITOR;
861 			if (ether_addr_equal(hdr->addr3, dev_addr))
862 				return RX_DROP_MONITOR;
863 		} else {
864 			if (!ieee80211_has_a4(hdr->frame_control))
865 				return RX_DROP_MONITOR;
866 			if (ether_addr_equal(hdr->addr4, dev_addr))
867 				return RX_DROP_MONITOR;
868 		}
869 	}
870 
871 	/* If there is not an established peer link and this is not a peer link
872 	 * establisment frame, beacon or probe, drop the frame.
873 	 */
874 
875 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
876 		struct ieee80211_mgmt *mgmt;
877 
878 		if (!ieee80211_is_mgmt(hdr->frame_control))
879 			return RX_DROP_MONITOR;
880 
881 		if (ieee80211_is_action(hdr->frame_control)) {
882 			u8 category;
883 
884 			/* make sure category field is present */
885 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
886 				return RX_DROP_MONITOR;
887 
888 			mgmt = (struct ieee80211_mgmt *)hdr;
889 			category = mgmt->u.action.category;
890 			if (category != WLAN_CATEGORY_MESH_ACTION &&
891 			    category != WLAN_CATEGORY_SELF_PROTECTED)
892 				return RX_DROP_MONITOR;
893 			return RX_CONTINUE;
894 		}
895 
896 		if (ieee80211_is_probe_req(hdr->frame_control) ||
897 		    ieee80211_is_probe_resp(hdr->frame_control) ||
898 		    ieee80211_is_beacon(hdr->frame_control) ||
899 		    ieee80211_is_auth(hdr->frame_control))
900 			return RX_CONTINUE;
901 
902 		return RX_DROP_MONITOR;
903 	}
904 
905 	return RX_CONTINUE;
906 }
907 
908 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
909 					      int index)
910 {
911 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
912 	struct sk_buff *tail = skb_peek_tail(frames);
913 	struct ieee80211_rx_status *status;
914 
915 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
916 		return true;
917 
918 	if (!tail)
919 		return false;
920 
921 	status = IEEE80211_SKB_RXCB(tail);
922 	if (status->flag & RX_FLAG_AMSDU_MORE)
923 		return false;
924 
925 	return true;
926 }
927 
928 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
929 					    struct tid_ampdu_rx *tid_agg_rx,
930 					    int index,
931 					    struct sk_buff_head *frames)
932 {
933 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
934 	struct sk_buff *skb;
935 	struct ieee80211_rx_status *status;
936 
937 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
938 
939 	if (skb_queue_empty(skb_list))
940 		goto no_frame;
941 
942 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
943 		__skb_queue_purge(skb_list);
944 		goto no_frame;
945 	}
946 
947 	/* release frames from the reorder ring buffer */
948 	tid_agg_rx->stored_mpdu_num--;
949 	while ((skb = __skb_dequeue(skb_list))) {
950 		status = IEEE80211_SKB_RXCB(skb);
951 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
952 		__skb_queue_tail(frames, skb);
953 	}
954 
955 no_frame:
956 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
957 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
958 }
959 
960 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
961 					     struct tid_ampdu_rx *tid_agg_rx,
962 					     u16 head_seq_num,
963 					     struct sk_buff_head *frames)
964 {
965 	int index;
966 
967 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
968 
969 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
970 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
971 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
972 						frames);
973 	}
974 }
975 
976 /*
977  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
978  * the skb was added to the buffer longer than this time ago, the earlier
979  * frames that have not yet been received are assumed to be lost and the skb
980  * can be released for processing. This may also release other skb's from the
981  * reorder buffer if there are no additional gaps between the frames.
982  *
983  * Callers must hold tid_agg_rx->reorder_lock.
984  */
985 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
986 
987 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
988 					  struct tid_ampdu_rx *tid_agg_rx,
989 					  struct sk_buff_head *frames)
990 {
991 	int index, i, j;
992 
993 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
994 
995 	/* release the buffer until next missing frame */
996 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
997 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
998 	    tid_agg_rx->stored_mpdu_num) {
999 		/*
1000 		 * No buffers ready to be released, but check whether any
1001 		 * frames in the reorder buffer have timed out.
1002 		 */
1003 		int skipped = 1;
1004 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1005 		     j = (j + 1) % tid_agg_rx->buf_size) {
1006 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1007 				skipped++;
1008 				continue;
1009 			}
1010 			if (skipped &&
1011 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1012 					HT_RX_REORDER_BUF_TIMEOUT))
1013 				goto set_release_timer;
1014 
1015 			/* don't leave incomplete A-MSDUs around */
1016 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1017 			     i = (i + 1) % tid_agg_rx->buf_size)
1018 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1019 
1020 			ht_dbg_ratelimited(sdata,
1021 					   "release an RX reorder frame due to timeout on earlier frames\n");
1022 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1023 							frames);
1024 
1025 			/*
1026 			 * Increment the head seq# also for the skipped slots.
1027 			 */
1028 			tid_agg_rx->head_seq_num =
1029 				(tid_agg_rx->head_seq_num +
1030 				 skipped) & IEEE80211_SN_MASK;
1031 			skipped = 0;
1032 		}
1033 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1034 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1035 						frames);
1036 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1037 	}
1038 
1039 	if (tid_agg_rx->stored_mpdu_num) {
1040 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1041 
1042 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1043 		     j = (j + 1) % tid_agg_rx->buf_size) {
1044 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1045 				break;
1046 		}
1047 
1048  set_release_timer:
1049 
1050 		if (!tid_agg_rx->removed)
1051 			mod_timer(&tid_agg_rx->reorder_timer,
1052 				  tid_agg_rx->reorder_time[j] + 1 +
1053 				  HT_RX_REORDER_BUF_TIMEOUT);
1054 	} else {
1055 		del_timer(&tid_agg_rx->reorder_timer);
1056 	}
1057 }
1058 
1059 /*
1060  * As this function belongs to the RX path it must be under
1061  * rcu_read_lock protection. It returns false if the frame
1062  * can be processed immediately, true if it was consumed.
1063  */
1064 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1065 					     struct tid_ampdu_rx *tid_agg_rx,
1066 					     struct sk_buff *skb,
1067 					     struct sk_buff_head *frames)
1068 {
1069 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1070 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1071 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1072 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1073 	u16 head_seq_num, buf_size;
1074 	int index;
1075 	bool ret = true;
1076 
1077 	spin_lock(&tid_agg_rx->reorder_lock);
1078 
1079 	/*
1080 	 * Offloaded BA sessions have no known starting sequence number so pick
1081 	 * one from first Rxed frame for this tid after BA was started.
1082 	 */
1083 	if (unlikely(tid_agg_rx->auto_seq)) {
1084 		tid_agg_rx->auto_seq = false;
1085 		tid_agg_rx->ssn = mpdu_seq_num;
1086 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1087 	}
1088 
1089 	buf_size = tid_agg_rx->buf_size;
1090 	head_seq_num = tid_agg_rx->head_seq_num;
1091 
1092 	/*
1093 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1094 	 * be reordered.
1095 	 */
1096 	if (unlikely(!tid_agg_rx->started)) {
1097 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1098 			ret = false;
1099 			goto out;
1100 		}
1101 		tid_agg_rx->started = true;
1102 	}
1103 
1104 	/* frame with out of date sequence number */
1105 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1106 		dev_kfree_skb(skb);
1107 		goto out;
1108 	}
1109 
1110 	/*
1111 	 * If frame the sequence number exceeds our buffering window
1112 	 * size release some previous frames to make room for this one.
1113 	 */
1114 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1115 		head_seq_num = ieee80211_sn_inc(
1116 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1117 		/* release stored frames up to new head to stack */
1118 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1119 						 head_seq_num, frames);
1120 	}
1121 
1122 	/* Now the new frame is always in the range of the reordering buffer */
1123 
1124 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1125 
1126 	/* check if we already stored this frame */
1127 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1128 		dev_kfree_skb(skb);
1129 		goto out;
1130 	}
1131 
1132 	/*
1133 	 * If the current MPDU is in the right order and nothing else
1134 	 * is stored we can process it directly, no need to buffer it.
1135 	 * If it is first but there's something stored, we may be able
1136 	 * to release frames after this one.
1137 	 */
1138 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1139 	    tid_agg_rx->stored_mpdu_num == 0) {
1140 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1141 			tid_agg_rx->head_seq_num =
1142 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1143 		ret = false;
1144 		goto out;
1145 	}
1146 
1147 	/* put the frame in the reordering buffer */
1148 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1149 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1150 		tid_agg_rx->reorder_time[index] = jiffies;
1151 		tid_agg_rx->stored_mpdu_num++;
1152 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1153 	}
1154 
1155  out:
1156 	spin_unlock(&tid_agg_rx->reorder_lock);
1157 	return ret;
1158 }
1159 
1160 /*
1161  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1162  * true if the MPDU was buffered, false if it should be processed.
1163  */
1164 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1165 				       struct sk_buff_head *frames)
1166 {
1167 	struct sk_buff *skb = rx->skb;
1168 	struct ieee80211_local *local = rx->local;
1169 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1170 	struct sta_info *sta = rx->sta;
1171 	struct tid_ampdu_rx *tid_agg_rx;
1172 	u16 sc;
1173 	u8 tid, ack_policy;
1174 
1175 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1176 	    is_multicast_ether_addr(hdr->addr1))
1177 		goto dont_reorder;
1178 
1179 	/*
1180 	 * filter the QoS data rx stream according to
1181 	 * STA/TID and check if this STA/TID is on aggregation
1182 	 */
1183 
1184 	if (!sta)
1185 		goto dont_reorder;
1186 
1187 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1188 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1189 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1190 
1191 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1192 	if (!tid_agg_rx) {
1193 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1194 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1195 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1196 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1197 					     WLAN_BACK_RECIPIENT,
1198 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1199 		goto dont_reorder;
1200 	}
1201 
1202 	/* qos null data frames are excluded */
1203 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1204 		goto dont_reorder;
1205 
1206 	/* not part of a BA session */
1207 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1208 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1209 		goto dont_reorder;
1210 
1211 	/* new, potentially un-ordered, ampdu frame - process it */
1212 
1213 	/* reset session timer */
1214 	if (tid_agg_rx->timeout)
1215 		tid_agg_rx->last_rx = jiffies;
1216 
1217 	/* if this mpdu is fragmented - terminate rx aggregation session */
1218 	sc = le16_to_cpu(hdr->seq_ctrl);
1219 	if (sc & IEEE80211_SCTL_FRAG) {
1220 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1221 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1222 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1223 		return;
1224 	}
1225 
1226 	/*
1227 	 * No locking needed -- we will only ever process one
1228 	 * RX packet at a time, and thus own tid_agg_rx. All
1229 	 * other code manipulating it needs to (and does) make
1230 	 * sure that we cannot get to it any more before doing
1231 	 * anything with it.
1232 	 */
1233 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1234 					     frames))
1235 		return;
1236 
1237  dont_reorder:
1238 	__skb_queue_tail(frames, skb);
1239 }
1240 
1241 static ieee80211_rx_result debug_noinline
1242 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1243 {
1244 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1245 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1246 
1247 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1248 		return RX_CONTINUE;
1249 
1250 	/*
1251 	 * Drop duplicate 802.11 retransmissions
1252 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1253 	 */
1254 
1255 	if (rx->skb->len < 24)
1256 		return RX_CONTINUE;
1257 
1258 	if (ieee80211_is_ctl(hdr->frame_control) ||
1259 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1260 	    is_multicast_ether_addr(hdr->addr1))
1261 		return RX_CONTINUE;
1262 
1263 	if (!rx->sta)
1264 		return RX_CONTINUE;
1265 
1266 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1267 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1268 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1269 		rx->sta->rx_stats.num_duplicates++;
1270 		return RX_DROP_UNUSABLE;
1271 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1272 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1273 	}
1274 
1275 	return RX_CONTINUE;
1276 }
1277 
1278 static ieee80211_rx_result debug_noinline
1279 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1280 {
1281 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1282 
1283 	/* Drop disallowed frame classes based on STA auth/assoc state;
1284 	 * IEEE 802.11, Chap 5.5.
1285 	 *
1286 	 * mac80211 filters only based on association state, i.e. it drops
1287 	 * Class 3 frames from not associated stations. hostapd sends
1288 	 * deauth/disassoc frames when needed. In addition, hostapd is
1289 	 * responsible for filtering on both auth and assoc states.
1290 	 */
1291 
1292 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1293 		return ieee80211_rx_mesh_check(rx);
1294 
1295 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1296 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1297 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1298 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1299 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1300 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1301 		/*
1302 		 * accept port control frames from the AP even when it's not
1303 		 * yet marked ASSOC to prevent a race where we don't set the
1304 		 * assoc bit quickly enough before it sends the first frame
1305 		 */
1306 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1307 		    ieee80211_is_data_present(hdr->frame_control)) {
1308 			unsigned int hdrlen;
1309 			__be16 ethertype;
1310 
1311 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1312 
1313 			if (rx->skb->len < hdrlen + 8)
1314 				return RX_DROP_MONITOR;
1315 
1316 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1317 			if (ethertype == rx->sdata->control_port_protocol)
1318 				return RX_CONTINUE;
1319 		}
1320 
1321 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1322 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1323 					       hdr->addr2,
1324 					       GFP_ATOMIC))
1325 			return RX_DROP_UNUSABLE;
1326 
1327 		return RX_DROP_MONITOR;
1328 	}
1329 
1330 	return RX_CONTINUE;
1331 }
1332 
1333 
1334 static ieee80211_rx_result debug_noinline
1335 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1336 {
1337 	struct ieee80211_local *local;
1338 	struct ieee80211_hdr *hdr;
1339 	struct sk_buff *skb;
1340 
1341 	local = rx->local;
1342 	skb = rx->skb;
1343 	hdr = (struct ieee80211_hdr *) skb->data;
1344 
1345 	if (!local->pspolling)
1346 		return RX_CONTINUE;
1347 
1348 	if (!ieee80211_has_fromds(hdr->frame_control))
1349 		/* this is not from AP */
1350 		return RX_CONTINUE;
1351 
1352 	if (!ieee80211_is_data(hdr->frame_control))
1353 		return RX_CONTINUE;
1354 
1355 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1356 		/* AP has no more frames buffered for us */
1357 		local->pspolling = false;
1358 		return RX_CONTINUE;
1359 	}
1360 
1361 	/* more data bit is set, let's request a new frame from the AP */
1362 	ieee80211_send_pspoll(local, rx->sdata);
1363 
1364 	return RX_CONTINUE;
1365 }
1366 
1367 static void sta_ps_start(struct sta_info *sta)
1368 {
1369 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1370 	struct ieee80211_local *local = sdata->local;
1371 	struct ps_data *ps;
1372 	int tid;
1373 
1374 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1375 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1376 		ps = &sdata->bss->ps;
1377 	else
1378 		return;
1379 
1380 	atomic_inc(&ps->num_sta_ps);
1381 	set_sta_flag(sta, WLAN_STA_PS_STA);
1382 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1383 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1384 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1385 	       sta->sta.addr, sta->sta.aid);
1386 
1387 	ieee80211_clear_fast_xmit(sta);
1388 
1389 	if (!sta->sta.txq[0])
1390 		return;
1391 
1392 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1393 		if (txq_has_queue(sta->sta.txq[tid]))
1394 			set_bit(tid, &sta->txq_buffered_tids);
1395 		else
1396 			clear_bit(tid, &sta->txq_buffered_tids);
1397 	}
1398 }
1399 
1400 static void sta_ps_end(struct sta_info *sta)
1401 {
1402 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1403 	       sta->sta.addr, sta->sta.aid);
1404 
1405 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1406 		/*
1407 		 * Clear the flag only if the other one is still set
1408 		 * so that the TX path won't start TX'ing new frames
1409 		 * directly ... In the case that the driver flag isn't
1410 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1411 		 */
1412 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1413 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1414 		       sta->sta.addr, sta->sta.aid);
1415 		return;
1416 	}
1417 
1418 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1419 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1420 	ieee80211_sta_ps_deliver_wakeup(sta);
1421 }
1422 
1423 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1424 {
1425 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1426 	bool in_ps;
1427 
1428 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1429 
1430 	/* Don't let the same PS state be set twice */
1431 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1432 	if ((start && in_ps) || (!start && !in_ps))
1433 		return -EINVAL;
1434 
1435 	if (start)
1436 		sta_ps_start(sta);
1437 	else
1438 		sta_ps_end(sta);
1439 
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1443 
1444 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1445 {
1446 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1447 
1448 	if (test_sta_flag(sta, WLAN_STA_SP))
1449 		return;
1450 
1451 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1452 		ieee80211_sta_ps_deliver_poll_response(sta);
1453 	else
1454 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1455 }
1456 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1457 
1458 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1459 {
1460 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1461 	int ac = ieee80211_ac_from_tid(tid);
1462 
1463 	/*
1464 	 * If this AC is not trigger-enabled do nothing unless the
1465 	 * driver is calling us after it already checked.
1466 	 *
1467 	 * NB: This could/should check a separate bitmap of trigger-
1468 	 * enabled queues, but for now we only implement uAPSD w/o
1469 	 * TSPEC changes to the ACs, so they're always the same.
1470 	 */
1471 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1472 	    tid != IEEE80211_NUM_TIDS)
1473 		return;
1474 
1475 	/* if we are in a service period, do nothing */
1476 	if (test_sta_flag(sta, WLAN_STA_SP))
1477 		return;
1478 
1479 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1480 		ieee80211_sta_ps_deliver_uapsd(sta);
1481 	else
1482 		set_sta_flag(sta, WLAN_STA_UAPSD);
1483 }
1484 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1485 
1486 static ieee80211_rx_result debug_noinline
1487 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1488 {
1489 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1490 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1491 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1492 
1493 	if (!rx->sta)
1494 		return RX_CONTINUE;
1495 
1496 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1497 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1498 		return RX_CONTINUE;
1499 
1500 	/*
1501 	 * The device handles station powersave, so don't do anything about
1502 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1503 	 * it to mac80211 since they're handled.)
1504 	 */
1505 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1506 		return RX_CONTINUE;
1507 
1508 	/*
1509 	 * Don't do anything if the station isn't already asleep. In
1510 	 * the uAPSD case, the station will probably be marked asleep,
1511 	 * in the PS-Poll case the station must be confused ...
1512 	 */
1513 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1514 		return RX_CONTINUE;
1515 
1516 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1517 		ieee80211_sta_pspoll(&rx->sta->sta);
1518 
1519 		/* Free PS Poll skb here instead of returning RX_DROP that would
1520 		 * count as an dropped frame. */
1521 		dev_kfree_skb(rx->skb);
1522 
1523 		return RX_QUEUED;
1524 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1525 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1526 		   ieee80211_has_pm(hdr->frame_control) &&
1527 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1528 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1529 		u8 tid;
1530 
1531 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1532 
1533 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1534 	}
1535 
1536 	return RX_CONTINUE;
1537 }
1538 
1539 static ieee80211_rx_result debug_noinline
1540 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1541 {
1542 	struct sta_info *sta = rx->sta;
1543 	struct sk_buff *skb = rx->skb;
1544 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1545 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1546 	int i;
1547 
1548 	if (!sta)
1549 		return RX_CONTINUE;
1550 
1551 	/*
1552 	 * Update last_rx only for IBSS packets which are for the current
1553 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1554 	 * current IBSS network alive in cases where other STAs start
1555 	 * using different BSSID. This will also give the station another
1556 	 * chance to restart the authentication/authorization in case
1557 	 * something went wrong the first time.
1558 	 */
1559 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1560 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1561 						NL80211_IFTYPE_ADHOC);
1562 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1563 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1564 			sta->rx_stats.last_rx = jiffies;
1565 			if (ieee80211_is_data(hdr->frame_control) &&
1566 			    !is_multicast_ether_addr(hdr->addr1))
1567 				sta->rx_stats.last_rate =
1568 					sta_stats_encode_rate(status);
1569 		}
1570 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1571 		sta->rx_stats.last_rx = jiffies;
1572 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1573 		/*
1574 		 * Mesh beacons will update last_rx when if they are found to
1575 		 * match the current local configuration when processed.
1576 		 */
1577 		sta->rx_stats.last_rx = jiffies;
1578 		if (ieee80211_is_data(hdr->frame_control))
1579 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1580 	}
1581 
1582 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1583 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1584 
1585 	sta->rx_stats.fragments++;
1586 
1587 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1588 	sta->rx_stats.bytes += rx->skb->len;
1589 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1590 
1591 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1592 		sta->rx_stats.last_signal = status->signal;
1593 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1594 	}
1595 
1596 	if (status->chains) {
1597 		sta->rx_stats.chains = status->chains;
1598 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1599 			int signal = status->chain_signal[i];
1600 
1601 			if (!(status->chains & BIT(i)))
1602 				continue;
1603 
1604 			sta->rx_stats.chain_signal_last[i] = signal;
1605 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1606 					-signal);
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Change STA power saving mode only at the end of a frame
1612 	 * exchange sequence.
1613 	 */
1614 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1615 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1616 	    !ieee80211_is_back_req(hdr->frame_control) &&
1617 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1618 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1619 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1620 	    /*
1621 	     * PM bit is only checked in frames where it isn't reserved,
1622 	     * in AP mode it's reserved in non-bufferable management frames
1623 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1624 	     * BAR frames should be ignored as specified in
1625 	     * IEEE 802.11-2012 10.2.1.2.
1626 	     */
1627 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1628 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1629 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1630 			if (!ieee80211_has_pm(hdr->frame_control))
1631 				sta_ps_end(sta);
1632 		} else {
1633 			if (ieee80211_has_pm(hdr->frame_control))
1634 				sta_ps_start(sta);
1635 		}
1636 	}
1637 
1638 	/* mesh power save support */
1639 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1640 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1641 
1642 	/*
1643 	 * Drop (qos-)data::nullfunc frames silently, since they
1644 	 * are used only to control station power saving mode.
1645 	 */
1646 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1647 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1648 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1649 
1650 		/*
1651 		 * If we receive a 4-addr nullfunc frame from a STA
1652 		 * that was not moved to a 4-addr STA vlan yet send
1653 		 * the event to userspace and for older hostapd drop
1654 		 * the frame to the monitor interface.
1655 		 */
1656 		if (ieee80211_has_a4(hdr->frame_control) &&
1657 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1658 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1659 		      !rx->sdata->u.vlan.sta))) {
1660 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1661 				cfg80211_rx_unexpected_4addr_frame(
1662 					rx->sdata->dev, sta->sta.addr,
1663 					GFP_ATOMIC);
1664 			return RX_DROP_MONITOR;
1665 		}
1666 		/*
1667 		 * Update counter and free packet here to avoid
1668 		 * counting this as a dropped packed.
1669 		 */
1670 		sta->rx_stats.packets++;
1671 		dev_kfree_skb(rx->skb);
1672 		return RX_QUEUED;
1673 	}
1674 
1675 	return RX_CONTINUE;
1676 } /* ieee80211_rx_h_sta_process */
1677 
1678 static ieee80211_rx_result debug_noinline
1679 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1680 {
1681 	struct sk_buff *skb = rx->skb;
1682 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1683 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1684 	int keyidx;
1685 	int hdrlen;
1686 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1687 	struct ieee80211_key *sta_ptk = NULL;
1688 	int mmie_keyidx = -1;
1689 	__le16 fc;
1690 	const struct ieee80211_cipher_scheme *cs = NULL;
1691 
1692 	/*
1693 	 * Key selection 101
1694 	 *
1695 	 * There are four types of keys:
1696 	 *  - GTK (group keys)
1697 	 *  - IGTK (group keys for management frames)
1698 	 *  - PTK (pairwise keys)
1699 	 *  - STK (station-to-station pairwise keys)
1700 	 *
1701 	 * When selecting a key, we have to distinguish between multicast
1702 	 * (including broadcast) and unicast frames, the latter can only
1703 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1704 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1705 	 * unicast frames can also use key indices like GTKs. Hence, if we
1706 	 * don't have a PTK/STK we check the key index for a WEP key.
1707 	 *
1708 	 * Note that in a regular BSS, multicast frames are sent by the
1709 	 * AP only, associated stations unicast the frame to the AP first
1710 	 * which then multicasts it on their behalf.
1711 	 *
1712 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1713 	 * with each station, that is something we don't currently handle.
1714 	 * The spec seems to expect that one negotiates the same key with
1715 	 * every station but there's no such requirement; VLANs could be
1716 	 * possible.
1717 	 */
1718 
1719 	/* start without a key */
1720 	rx->key = NULL;
1721 	fc = hdr->frame_control;
1722 
1723 	if (rx->sta) {
1724 		int keyid = rx->sta->ptk_idx;
1725 
1726 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1727 			cs = rx->sta->cipher_scheme;
1728 			keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1729 			if (unlikely(keyid < 0))
1730 				return RX_DROP_UNUSABLE;
1731 		}
1732 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1733 	}
1734 
1735 	if (!ieee80211_has_protected(fc))
1736 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1737 
1738 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1739 		rx->key = sta_ptk;
1740 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1741 		    (status->flag & RX_FLAG_IV_STRIPPED))
1742 			return RX_CONTINUE;
1743 		/* Skip decryption if the frame is not protected. */
1744 		if (!ieee80211_has_protected(fc))
1745 			return RX_CONTINUE;
1746 	} else if (mmie_keyidx >= 0) {
1747 		/* Broadcast/multicast robust management frame / BIP */
1748 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1749 		    (status->flag & RX_FLAG_IV_STRIPPED))
1750 			return RX_CONTINUE;
1751 
1752 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1753 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1754 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1755 		if (rx->sta) {
1756 			if (ieee80211_is_group_privacy_action(skb) &&
1757 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1758 				return RX_DROP_MONITOR;
1759 
1760 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1761 		}
1762 		if (!rx->key)
1763 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1764 	} else if (!ieee80211_has_protected(fc)) {
1765 		/*
1766 		 * The frame was not protected, so skip decryption. However, we
1767 		 * need to set rx->key if there is a key that could have been
1768 		 * used so that the frame may be dropped if encryption would
1769 		 * have been expected.
1770 		 */
1771 		struct ieee80211_key *key = NULL;
1772 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1773 		int i;
1774 
1775 		if (ieee80211_is_mgmt(fc) &&
1776 		    is_multicast_ether_addr(hdr->addr1) &&
1777 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1778 			rx->key = key;
1779 		else {
1780 			if (rx->sta) {
1781 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1782 					key = rcu_dereference(rx->sta->gtk[i]);
1783 					if (key)
1784 						break;
1785 				}
1786 			}
1787 			if (!key) {
1788 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1789 					key = rcu_dereference(sdata->keys[i]);
1790 					if (key)
1791 						break;
1792 				}
1793 			}
1794 			if (key)
1795 				rx->key = key;
1796 		}
1797 		return RX_CONTINUE;
1798 	} else {
1799 		u8 keyid;
1800 
1801 		/*
1802 		 * The device doesn't give us the IV so we won't be
1803 		 * able to look up the key. That's ok though, we
1804 		 * don't need to decrypt the frame, we just won't
1805 		 * be able to keep statistics accurate.
1806 		 * Except for key threshold notifications, should
1807 		 * we somehow allow the driver to tell us which key
1808 		 * the hardware used if this flag is set?
1809 		 */
1810 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1811 		    (status->flag & RX_FLAG_IV_STRIPPED))
1812 			return RX_CONTINUE;
1813 
1814 		hdrlen = ieee80211_hdrlen(fc);
1815 
1816 		if (cs) {
1817 			keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1818 
1819 			if (unlikely(keyidx < 0))
1820 				return RX_DROP_UNUSABLE;
1821 		} else {
1822 			if (rx->skb->len < 8 + hdrlen)
1823 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1824 			/*
1825 			 * no need to call ieee80211_wep_get_keyidx,
1826 			 * it verifies a bunch of things we've done already
1827 			 */
1828 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1829 			keyidx = keyid >> 6;
1830 		}
1831 
1832 		/* check per-station GTK first, if multicast packet */
1833 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1834 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1835 
1836 		/* if not found, try default key */
1837 		if (!rx->key) {
1838 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1839 
1840 			/*
1841 			 * RSNA-protected unicast frames should always be
1842 			 * sent with pairwise or station-to-station keys,
1843 			 * but for WEP we allow using a key index as well.
1844 			 */
1845 			if (rx->key &&
1846 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1847 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1848 			    !is_multicast_ether_addr(hdr->addr1))
1849 				rx->key = NULL;
1850 		}
1851 	}
1852 
1853 	if (rx->key) {
1854 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1855 			return RX_DROP_MONITOR;
1856 
1857 		/* TODO: add threshold stuff again */
1858 	} else {
1859 		return RX_DROP_MONITOR;
1860 	}
1861 
1862 	switch (rx->key->conf.cipher) {
1863 	case WLAN_CIPHER_SUITE_WEP40:
1864 	case WLAN_CIPHER_SUITE_WEP104:
1865 		result = ieee80211_crypto_wep_decrypt(rx);
1866 		break;
1867 	case WLAN_CIPHER_SUITE_TKIP:
1868 		result = ieee80211_crypto_tkip_decrypt(rx);
1869 		break;
1870 	case WLAN_CIPHER_SUITE_CCMP:
1871 		result = ieee80211_crypto_ccmp_decrypt(
1872 			rx, IEEE80211_CCMP_MIC_LEN);
1873 		break;
1874 	case WLAN_CIPHER_SUITE_CCMP_256:
1875 		result = ieee80211_crypto_ccmp_decrypt(
1876 			rx, IEEE80211_CCMP_256_MIC_LEN);
1877 		break;
1878 	case WLAN_CIPHER_SUITE_AES_CMAC:
1879 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1880 		break;
1881 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1882 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1883 		break;
1884 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1885 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1886 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1887 		break;
1888 	case WLAN_CIPHER_SUITE_GCMP:
1889 	case WLAN_CIPHER_SUITE_GCMP_256:
1890 		result = ieee80211_crypto_gcmp_decrypt(rx);
1891 		break;
1892 	default:
1893 		result = ieee80211_crypto_hw_decrypt(rx);
1894 	}
1895 
1896 	/* the hdr variable is invalid after the decrypt handlers */
1897 
1898 	/* either the frame has been decrypted or will be dropped */
1899 	status->flag |= RX_FLAG_DECRYPTED;
1900 
1901 	return result;
1902 }
1903 
1904 static inline struct ieee80211_fragment_entry *
1905 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1906 			 unsigned int frag, unsigned int seq, int rx_queue,
1907 			 struct sk_buff **skb)
1908 {
1909 	struct ieee80211_fragment_entry *entry;
1910 
1911 	entry = &sdata->fragments[sdata->fragment_next++];
1912 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1913 		sdata->fragment_next = 0;
1914 
1915 	if (!skb_queue_empty(&entry->skb_list))
1916 		__skb_queue_purge(&entry->skb_list);
1917 
1918 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1919 	*skb = NULL;
1920 	entry->first_frag_time = jiffies;
1921 	entry->seq = seq;
1922 	entry->rx_queue = rx_queue;
1923 	entry->last_frag = frag;
1924 	entry->check_sequential_pn = false;
1925 	entry->extra_len = 0;
1926 
1927 	return entry;
1928 }
1929 
1930 static inline struct ieee80211_fragment_entry *
1931 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1932 			  unsigned int frag, unsigned int seq,
1933 			  int rx_queue, struct ieee80211_hdr *hdr)
1934 {
1935 	struct ieee80211_fragment_entry *entry;
1936 	int i, idx;
1937 
1938 	idx = sdata->fragment_next;
1939 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1940 		struct ieee80211_hdr *f_hdr;
1941 
1942 		idx--;
1943 		if (idx < 0)
1944 			idx = IEEE80211_FRAGMENT_MAX - 1;
1945 
1946 		entry = &sdata->fragments[idx];
1947 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1948 		    entry->rx_queue != rx_queue ||
1949 		    entry->last_frag + 1 != frag)
1950 			continue;
1951 
1952 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1953 
1954 		/*
1955 		 * Check ftype and addresses are equal, else check next fragment
1956 		 */
1957 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1958 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1959 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1960 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1961 			continue;
1962 
1963 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1964 			__skb_queue_purge(&entry->skb_list);
1965 			continue;
1966 		}
1967 		return entry;
1968 	}
1969 
1970 	return NULL;
1971 }
1972 
1973 static ieee80211_rx_result debug_noinline
1974 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1975 {
1976 	struct ieee80211_hdr *hdr;
1977 	u16 sc;
1978 	__le16 fc;
1979 	unsigned int frag, seq;
1980 	struct ieee80211_fragment_entry *entry;
1981 	struct sk_buff *skb;
1982 
1983 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1984 	fc = hdr->frame_control;
1985 
1986 	if (ieee80211_is_ctl(fc))
1987 		return RX_CONTINUE;
1988 
1989 	sc = le16_to_cpu(hdr->seq_ctrl);
1990 	frag = sc & IEEE80211_SCTL_FRAG;
1991 
1992 	if (is_multicast_ether_addr(hdr->addr1)) {
1993 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1994 		goto out_no_led;
1995 	}
1996 
1997 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1998 		goto out;
1999 
2000 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2001 
2002 	if (skb_linearize(rx->skb))
2003 		return RX_DROP_UNUSABLE;
2004 
2005 	/*
2006 	 *  skb_linearize() might change the skb->data and
2007 	 *  previously cached variables (in this case, hdr) need to
2008 	 *  be refreshed with the new data.
2009 	 */
2010 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2011 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2012 
2013 	if (frag == 0) {
2014 		/* This is the first fragment of a new frame. */
2015 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2016 						 rx->seqno_idx, &(rx->skb));
2017 		if (rx->key &&
2018 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2019 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2020 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2021 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2022 		    ieee80211_has_protected(fc)) {
2023 			int queue = rx->security_idx;
2024 
2025 			/* Store CCMP/GCMP PN so that we can verify that the
2026 			 * next fragment has a sequential PN value.
2027 			 */
2028 			entry->check_sequential_pn = true;
2029 			memcpy(entry->last_pn,
2030 			       rx->key->u.ccmp.rx_pn[queue],
2031 			       IEEE80211_CCMP_PN_LEN);
2032 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2033 					      u.ccmp.rx_pn) !=
2034 				     offsetof(struct ieee80211_key,
2035 					      u.gcmp.rx_pn));
2036 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2037 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2038 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2039 				     IEEE80211_GCMP_PN_LEN);
2040 		}
2041 		return RX_QUEUED;
2042 	}
2043 
2044 	/* This is a fragment for a frame that should already be pending in
2045 	 * fragment cache. Add this fragment to the end of the pending entry.
2046 	 */
2047 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2048 					  rx->seqno_idx, hdr);
2049 	if (!entry) {
2050 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2051 		return RX_DROP_MONITOR;
2052 	}
2053 
2054 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2055 	 *  MPDU PN values are not incrementing in steps of 1."
2056 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2057 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2058 	 */
2059 	if (entry->check_sequential_pn) {
2060 		int i;
2061 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2062 		int queue;
2063 
2064 		if (!rx->key ||
2065 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2066 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2067 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2068 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2069 			return RX_DROP_UNUSABLE;
2070 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2071 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2072 			pn[i]++;
2073 			if (pn[i])
2074 				break;
2075 		}
2076 		queue = rx->security_idx;
2077 		rpn = rx->key->u.ccmp.rx_pn[queue];
2078 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2079 			return RX_DROP_UNUSABLE;
2080 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2081 	}
2082 
2083 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2084 	__skb_queue_tail(&entry->skb_list, rx->skb);
2085 	entry->last_frag = frag;
2086 	entry->extra_len += rx->skb->len;
2087 	if (ieee80211_has_morefrags(fc)) {
2088 		rx->skb = NULL;
2089 		return RX_QUEUED;
2090 	}
2091 
2092 	rx->skb = __skb_dequeue(&entry->skb_list);
2093 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2094 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2095 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2096 					      GFP_ATOMIC))) {
2097 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2098 			__skb_queue_purge(&entry->skb_list);
2099 			return RX_DROP_UNUSABLE;
2100 		}
2101 	}
2102 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2103 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2104 		dev_kfree_skb(skb);
2105 	}
2106 
2107  out:
2108 	ieee80211_led_rx(rx->local);
2109  out_no_led:
2110 	if (rx->sta)
2111 		rx->sta->rx_stats.packets++;
2112 	return RX_CONTINUE;
2113 }
2114 
2115 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2116 {
2117 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2118 		return -EACCES;
2119 
2120 	return 0;
2121 }
2122 
2123 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2124 {
2125 	struct sk_buff *skb = rx->skb;
2126 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2127 
2128 	/*
2129 	 * Pass through unencrypted frames if the hardware has
2130 	 * decrypted them already.
2131 	 */
2132 	if (status->flag & RX_FLAG_DECRYPTED)
2133 		return 0;
2134 
2135 	/* Drop unencrypted frames if key is set. */
2136 	if (unlikely(!ieee80211_has_protected(fc) &&
2137 		     !ieee80211_is_nullfunc(fc) &&
2138 		     ieee80211_is_data(fc) && rx->key))
2139 		return -EACCES;
2140 
2141 	return 0;
2142 }
2143 
2144 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2145 {
2146 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2147 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2148 	__le16 fc = hdr->frame_control;
2149 
2150 	/*
2151 	 * Pass through unencrypted frames if the hardware has
2152 	 * decrypted them already.
2153 	 */
2154 	if (status->flag & RX_FLAG_DECRYPTED)
2155 		return 0;
2156 
2157 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2158 		if (unlikely(!ieee80211_has_protected(fc) &&
2159 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2160 			     rx->key)) {
2161 			if (ieee80211_is_deauth(fc) ||
2162 			    ieee80211_is_disassoc(fc))
2163 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2164 							     rx->skb->data,
2165 							     rx->skb->len);
2166 			return -EACCES;
2167 		}
2168 		/* BIP does not use Protected field, so need to check MMIE */
2169 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2170 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2171 			if (ieee80211_is_deauth(fc) ||
2172 			    ieee80211_is_disassoc(fc))
2173 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2174 							     rx->skb->data,
2175 							     rx->skb->len);
2176 			return -EACCES;
2177 		}
2178 		/*
2179 		 * When using MFP, Action frames are not allowed prior to
2180 		 * having configured keys.
2181 		 */
2182 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2183 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2184 			return -EACCES;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 static int
2191 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2192 {
2193 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2194 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2195 	bool check_port_control = false;
2196 	struct ethhdr *ehdr;
2197 	int ret;
2198 
2199 	*port_control = false;
2200 	if (ieee80211_has_a4(hdr->frame_control) &&
2201 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2202 		return -1;
2203 
2204 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2205 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2206 
2207 		if (!sdata->u.mgd.use_4addr)
2208 			return -1;
2209 		else
2210 			check_port_control = true;
2211 	}
2212 
2213 	if (is_multicast_ether_addr(hdr->addr1) &&
2214 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2215 		return -1;
2216 
2217 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2218 	if (ret < 0)
2219 		return ret;
2220 
2221 	ehdr = (struct ethhdr *) rx->skb->data;
2222 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2223 		*port_control = true;
2224 	else if (check_port_control)
2225 		return -1;
2226 
2227 	return 0;
2228 }
2229 
2230 /*
2231  * requires that rx->skb is a frame with ethernet header
2232  */
2233 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2234 {
2235 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2236 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2237 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2238 
2239 	/*
2240 	 * Allow EAPOL frames to us/the PAE group address regardless
2241 	 * of whether the frame was encrypted or not.
2242 	 */
2243 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2244 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2245 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2246 		return true;
2247 
2248 	if (ieee80211_802_1x_port_control(rx) ||
2249 	    ieee80211_drop_unencrypted(rx, fc))
2250 		return false;
2251 
2252 	return true;
2253 }
2254 
2255 /*
2256  * requires that rx->skb is a frame with ethernet header
2257  */
2258 static void
2259 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2260 {
2261 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2262 	struct net_device *dev = sdata->dev;
2263 	struct sk_buff *skb, *xmit_skb;
2264 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2265 	struct sta_info *dsta;
2266 
2267 	skb = rx->skb;
2268 	xmit_skb = NULL;
2269 
2270 	ieee80211_rx_stats(dev, skb->len);
2271 
2272 	if (rx->sta) {
2273 		/* The seqno index has the same property as needed
2274 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2275 		 * for non-QoS-data frames. Here we know it's a data
2276 		 * frame, so count MSDUs.
2277 		 */
2278 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2279 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2280 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2281 	}
2282 
2283 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2284 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2285 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2286 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2287 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2288 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2289 			/*
2290 			 * send multicast frames both to higher layers in
2291 			 * local net stack and back to the wireless medium
2292 			 */
2293 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2294 			if (!xmit_skb)
2295 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2296 						    dev->name);
2297 		} else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2298 			dsta = sta_info_get(sdata, skb->data);
2299 			if (dsta) {
2300 				/*
2301 				 * The destination station is associated to
2302 				 * this AP (in this VLAN), so send the frame
2303 				 * directly to it and do not pass it to local
2304 				 * net stack.
2305 				 */
2306 				xmit_skb = skb;
2307 				skb = NULL;
2308 			}
2309 		}
2310 	}
2311 
2312 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2313 	if (skb) {
2314 		/* 'align' will only take the values 0 or 2 here since all
2315 		 * frames are required to be aligned to 2-byte boundaries
2316 		 * when being passed to mac80211; the code here works just
2317 		 * as well if that isn't true, but mac80211 assumes it can
2318 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2319 		 */
2320 		int align;
2321 
2322 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2323 		if (align) {
2324 			if (WARN_ON(skb_headroom(skb) < 3)) {
2325 				dev_kfree_skb(skb);
2326 				skb = NULL;
2327 			} else {
2328 				u8 *data = skb->data;
2329 				size_t len = skb_headlen(skb);
2330 				skb->data -= align;
2331 				memmove(skb->data, data, len);
2332 				skb_set_tail_pointer(skb, len);
2333 			}
2334 		}
2335 	}
2336 #endif
2337 
2338 	if (skb) {
2339 		/* deliver to local stack */
2340 		skb->protocol = eth_type_trans(skb, dev);
2341 		memset(skb->cb, 0, sizeof(skb->cb));
2342 		if (rx->napi)
2343 			napi_gro_receive(rx->napi, skb);
2344 		else
2345 			netif_receive_skb(skb);
2346 	}
2347 
2348 	if (xmit_skb) {
2349 		/*
2350 		 * Send to wireless media and increase priority by 256 to
2351 		 * keep the received priority instead of reclassifying
2352 		 * the frame (see cfg80211_classify8021d).
2353 		 */
2354 		xmit_skb->priority += 256;
2355 		xmit_skb->protocol = htons(ETH_P_802_3);
2356 		skb_reset_network_header(xmit_skb);
2357 		skb_reset_mac_header(xmit_skb);
2358 		dev_queue_xmit(xmit_skb);
2359 	}
2360 }
2361 
2362 static ieee80211_rx_result debug_noinline
2363 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2364 {
2365 	struct net_device *dev = rx->sdata->dev;
2366 	struct sk_buff *skb = rx->skb;
2367 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2368 	__le16 fc = hdr->frame_control;
2369 	struct sk_buff_head frame_list;
2370 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2371 	struct ethhdr ethhdr;
2372 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2373 
2374 	if (unlikely(!ieee80211_is_data(fc)))
2375 		return RX_CONTINUE;
2376 
2377 	if (unlikely(!ieee80211_is_data_present(fc)))
2378 		return RX_DROP_MONITOR;
2379 
2380 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2381 		return RX_CONTINUE;
2382 
2383 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2384 		switch (rx->sdata->vif.type) {
2385 		case NL80211_IFTYPE_AP_VLAN:
2386 			if (!rx->sdata->u.vlan.sta)
2387 				return RX_DROP_UNUSABLE;
2388 			break;
2389 		case NL80211_IFTYPE_STATION:
2390 			if (!rx->sdata->u.mgd.use_4addr)
2391 				return RX_DROP_UNUSABLE;
2392 			break;
2393 		default:
2394 			return RX_DROP_UNUSABLE;
2395 		}
2396 		check_da = NULL;
2397 		check_sa = NULL;
2398 	} else switch (rx->sdata->vif.type) {
2399 		case NL80211_IFTYPE_AP:
2400 		case NL80211_IFTYPE_AP_VLAN:
2401 			check_da = NULL;
2402 			break;
2403 		case NL80211_IFTYPE_STATION:
2404 			if (!rx->sta ||
2405 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2406 				check_sa = NULL;
2407 			break;
2408 		case NL80211_IFTYPE_MESH_POINT:
2409 			check_sa = NULL;
2410 			break;
2411 		default:
2412 			break;
2413 	}
2414 
2415 	if (is_multicast_ether_addr(hdr->addr1))
2416 		return RX_DROP_UNUSABLE;
2417 
2418 	skb->dev = dev;
2419 	__skb_queue_head_init(&frame_list);
2420 
2421 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2422 					  rx->sdata->vif.addr,
2423 					  rx->sdata->vif.type))
2424 		return RX_DROP_UNUSABLE;
2425 
2426 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2427 				 rx->sdata->vif.type,
2428 				 rx->local->hw.extra_tx_headroom,
2429 				 check_da, check_sa);
2430 
2431 	while (!skb_queue_empty(&frame_list)) {
2432 		rx->skb = __skb_dequeue(&frame_list);
2433 
2434 		if (!ieee80211_frame_allowed(rx, fc)) {
2435 			dev_kfree_skb(rx->skb);
2436 			continue;
2437 		}
2438 
2439 		ieee80211_deliver_skb(rx);
2440 	}
2441 
2442 	return RX_QUEUED;
2443 }
2444 
2445 #ifdef CONFIG_MAC80211_MESH
2446 static ieee80211_rx_result
2447 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2448 {
2449 	struct ieee80211_hdr *fwd_hdr, *hdr;
2450 	struct ieee80211_tx_info *info;
2451 	struct ieee80211s_hdr *mesh_hdr;
2452 	struct sk_buff *skb = rx->skb, *fwd_skb;
2453 	struct ieee80211_local *local = rx->local;
2454 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2455 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2456 	u16 ac, q, hdrlen;
2457 
2458 	hdr = (struct ieee80211_hdr *) skb->data;
2459 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2460 
2461 	/* make sure fixed part of mesh header is there, also checks skb len */
2462 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2463 		return RX_DROP_MONITOR;
2464 
2465 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2466 
2467 	/* make sure full mesh header is there, also checks skb len */
2468 	if (!pskb_may_pull(rx->skb,
2469 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2470 		return RX_DROP_MONITOR;
2471 
2472 	/* reload pointers */
2473 	hdr = (struct ieee80211_hdr *) skb->data;
2474 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2475 
2476 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2477 		return RX_DROP_MONITOR;
2478 
2479 	/* frame is in RMC, don't forward */
2480 	if (ieee80211_is_data(hdr->frame_control) &&
2481 	    is_multicast_ether_addr(hdr->addr1) &&
2482 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2483 		return RX_DROP_MONITOR;
2484 
2485 	if (!ieee80211_is_data(hdr->frame_control))
2486 		return RX_CONTINUE;
2487 
2488 	if (!mesh_hdr->ttl)
2489 		return RX_DROP_MONITOR;
2490 
2491 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2492 		struct mesh_path *mppath;
2493 		char *proxied_addr;
2494 		char *mpp_addr;
2495 
2496 		if (is_multicast_ether_addr(hdr->addr1)) {
2497 			mpp_addr = hdr->addr3;
2498 			proxied_addr = mesh_hdr->eaddr1;
2499 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2500 			    MESH_FLAGS_AE_A5_A6) {
2501 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2502 			mpp_addr = hdr->addr4;
2503 			proxied_addr = mesh_hdr->eaddr2;
2504 		} else {
2505 			return RX_DROP_MONITOR;
2506 		}
2507 
2508 		rcu_read_lock();
2509 		mppath = mpp_path_lookup(sdata, proxied_addr);
2510 		if (!mppath) {
2511 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2512 		} else {
2513 			spin_lock_bh(&mppath->state_lock);
2514 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2515 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2516 			mppath->exp_time = jiffies;
2517 			spin_unlock_bh(&mppath->state_lock);
2518 		}
2519 		rcu_read_unlock();
2520 	}
2521 
2522 	/* Frame has reached destination.  Don't forward */
2523 	if (!is_multicast_ether_addr(hdr->addr1) &&
2524 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2525 		return RX_CONTINUE;
2526 
2527 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2528 	q = sdata->vif.hw_queue[ac];
2529 	if (ieee80211_queue_stopped(&local->hw, q)) {
2530 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2531 		return RX_DROP_MONITOR;
2532 	}
2533 	skb_set_queue_mapping(skb, q);
2534 
2535 	if (!--mesh_hdr->ttl) {
2536 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2537 		goto out;
2538 	}
2539 
2540 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2541 		goto out;
2542 
2543 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2544 				       sdata->encrypt_headroom, 0, GFP_ATOMIC);
2545 	if (!fwd_skb) {
2546 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2547 				    sdata->name);
2548 		goto out;
2549 	}
2550 
2551 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2552 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2553 	info = IEEE80211_SKB_CB(fwd_skb);
2554 	memset(info, 0, sizeof(*info));
2555 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2556 	info->control.vif = &rx->sdata->vif;
2557 	info->control.jiffies = jiffies;
2558 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2559 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2560 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2561 		/* update power mode indication when forwarding */
2562 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2563 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2564 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2565 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2566 	} else {
2567 		/* unable to resolve next hop */
2568 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2569 				   fwd_hdr->addr3, 0,
2570 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2571 				   fwd_hdr->addr2);
2572 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2573 		kfree_skb(fwd_skb);
2574 		return RX_DROP_MONITOR;
2575 	}
2576 
2577 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2578 	ieee80211_add_pending_skb(local, fwd_skb);
2579  out:
2580 	if (is_multicast_ether_addr(hdr->addr1))
2581 		return RX_CONTINUE;
2582 	return RX_DROP_MONITOR;
2583 }
2584 #endif
2585 
2586 static ieee80211_rx_result debug_noinline
2587 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2588 {
2589 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2590 	struct ieee80211_local *local = rx->local;
2591 	struct net_device *dev = sdata->dev;
2592 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2593 	__le16 fc = hdr->frame_control;
2594 	bool port_control;
2595 	int err;
2596 
2597 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2598 		return RX_CONTINUE;
2599 
2600 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2601 		return RX_DROP_MONITOR;
2602 
2603 	/*
2604 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2605 	 * also drop the frame to cooked monitor interfaces.
2606 	 */
2607 	if (ieee80211_has_a4(hdr->frame_control) &&
2608 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2609 		if (rx->sta &&
2610 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2611 			cfg80211_rx_unexpected_4addr_frame(
2612 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2613 		return RX_DROP_MONITOR;
2614 	}
2615 
2616 	err = __ieee80211_data_to_8023(rx, &port_control);
2617 	if (unlikely(err))
2618 		return RX_DROP_UNUSABLE;
2619 
2620 	if (!ieee80211_frame_allowed(rx, fc))
2621 		return RX_DROP_MONITOR;
2622 
2623 	/* directly handle TDLS channel switch requests/responses */
2624 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2625 						cpu_to_be16(ETH_P_TDLS))) {
2626 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2627 
2628 		if (pskb_may_pull(rx->skb,
2629 				  offsetof(struct ieee80211_tdls_data, u)) &&
2630 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2631 		    tf->category == WLAN_CATEGORY_TDLS &&
2632 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2633 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2634 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2635 			schedule_work(&local->tdls_chsw_work);
2636 			if (rx->sta)
2637 				rx->sta->rx_stats.packets++;
2638 
2639 			return RX_QUEUED;
2640 		}
2641 	}
2642 
2643 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2644 	    unlikely(port_control) && sdata->bss) {
2645 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2646 				     u.ap);
2647 		dev = sdata->dev;
2648 		rx->sdata = sdata;
2649 	}
2650 
2651 	rx->skb->dev = dev;
2652 
2653 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2654 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2655 	    !is_multicast_ether_addr(
2656 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2657 	    (!local->scanning &&
2658 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2659 		mod_timer(&local->dynamic_ps_timer, jiffies +
2660 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2661 
2662 	ieee80211_deliver_skb(rx);
2663 
2664 	return RX_QUEUED;
2665 }
2666 
2667 static ieee80211_rx_result debug_noinline
2668 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2669 {
2670 	struct sk_buff *skb = rx->skb;
2671 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2672 	struct tid_ampdu_rx *tid_agg_rx;
2673 	u16 start_seq_num;
2674 	u16 tid;
2675 
2676 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2677 		return RX_CONTINUE;
2678 
2679 	if (ieee80211_is_back_req(bar->frame_control)) {
2680 		struct {
2681 			__le16 control, start_seq_num;
2682 		} __packed bar_data;
2683 		struct ieee80211_event event = {
2684 			.type = BAR_RX_EVENT,
2685 		};
2686 
2687 		if (!rx->sta)
2688 			return RX_DROP_MONITOR;
2689 
2690 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2691 				  &bar_data, sizeof(bar_data)))
2692 			return RX_DROP_MONITOR;
2693 
2694 		tid = le16_to_cpu(bar_data.control) >> 12;
2695 
2696 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2697 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2698 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2699 					     WLAN_BACK_RECIPIENT,
2700 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2701 
2702 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2703 		if (!tid_agg_rx)
2704 			return RX_DROP_MONITOR;
2705 
2706 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2707 		event.u.ba.tid = tid;
2708 		event.u.ba.ssn = start_seq_num;
2709 		event.u.ba.sta = &rx->sta->sta;
2710 
2711 		/* reset session timer */
2712 		if (tid_agg_rx->timeout)
2713 			mod_timer(&tid_agg_rx->session_timer,
2714 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2715 
2716 		spin_lock(&tid_agg_rx->reorder_lock);
2717 		/* release stored frames up to start of BAR */
2718 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2719 						 start_seq_num, frames);
2720 		spin_unlock(&tid_agg_rx->reorder_lock);
2721 
2722 		drv_event_callback(rx->local, rx->sdata, &event);
2723 
2724 		kfree_skb(skb);
2725 		return RX_QUEUED;
2726 	}
2727 
2728 	/*
2729 	 * After this point, we only want management frames,
2730 	 * so we can drop all remaining control frames to
2731 	 * cooked monitor interfaces.
2732 	 */
2733 	return RX_DROP_MONITOR;
2734 }
2735 
2736 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2737 					   struct ieee80211_mgmt *mgmt,
2738 					   size_t len)
2739 {
2740 	struct ieee80211_local *local = sdata->local;
2741 	struct sk_buff *skb;
2742 	struct ieee80211_mgmt *resp;
2743 
2744 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2745 		/* Not to own unicast address */
2746 		return;
2747 	}
2748 
2749 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2750 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2751 		/* Not from the current AP or not associated yet. */
2752 		return;
2753 	}
2754 
2755 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2756 		/* Too short SA Query request frame */
2757 		return;
2758 	}
2759 
2760 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2761 	if (skb == NULL)
2762 		return;
2763 
2764 	skb_reserve(skb, local->hw.extra_tx_headroom);
2765 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2766 	memset(resp, 0, 24);
2767 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2768 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2769 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2770 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2771 					  IEEE80211_STYPE_ACTION);
2772 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2773 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2774 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2775 	memcpy(resp->u.action.u.sa_query.trans_id,
2776 	       mgmt->u.action.u.sa_query.trans_id,
2777 	       WLAN_SA_QUERY_TR_ID_LEN);
2778 
2779 	ieee80211_tx_skb(sdata, skb);
2780 }
2781 
2782 static ieee80211_rx_result debug_noinline
2783 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2784 {
2785 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2786 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2787 
2788 	/*
2789 	 * From here on, look only at management frames.
2790 	 * Data and control frames are already handled,
2791 	 * and unknown (reserved) frames are useless.
2792 	 */
2793 	if (rx->skb->len < 24)
2794 		return RX_DROP_MONITOR;
2795 
2796 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2797 		return RX_DROP_MONITOR;
2798 
2799 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2800 	    ieee80211_is_beacon(mgmt->frame_control) &&
2801 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2802 		int sig = 0;
2803 
2804 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2805 			sig = status->signal;
2806 
2807 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2808 					    rx->skb->data, rx->skb->len,
2809 					    status->freq, sig);
2810 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2811 	}
2812 
2813 	if (ieee80211_drop_unencrypted_mgmt(rx))
2814 		return RX_DROP_UNUSABLE;
2815 
2816 	return RX_CONTINUE;
2817 }
2818 
2819 static ieee80211_rx_result debug_noinline
2820 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2821 {
2822 	struct ieee80211_local *local = rx->local;
2823 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2824 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2825 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2826 	int len = rx->skb->len;
2827 
2828 	if (!ieee80211_is_action(mgmt->frame_control))
2829 		return RX_CONTINUE;
2830 
2831 	/* drop too small frames */
2832 	if (len < IEEE80211_MIN_ACTION_SIZE)
2833 		return RX_DROP_UNUSABLE;
2834 
2835 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2836 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2837 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2838 		return RX_DROP_UNUSABLE;
2839 
2840 	switch (mgmt->u.action.category) {
2841 	case WLAN_CATEGORY_HT:
2842 		/* reject HT action frames from stations not supporting HT */
2843 		if (!rx->sta->sta.ht_cap.ht_supported)
2844 			goto invalid;
2845 
2846 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2847 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2848 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2849 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2850 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2851 			break;
2852 
2853 		/* verify action & smps_control/chanwidth are present */
2854 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2855 			goto invalid;
2856 
2857 		switch (mgmt->u.action.u.ht_smps.action) {
2858 		case WLAN_HT_ACTION_SMPS: {
2859 			struct ieee80211_supported_band *sband;
2860 			enum ieee80211_smps_mode smps_mode;
2861 
2862 			/* convert to HT capability */
2863 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2864 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2865 				smps_mode = IEEE80211_SMPS_OFF;
2866 				break;
2867 			case WLAN_HT_SMPS_CONTROL_STATIC:
2868 				smps_mode = IEEE80211_SMPS_STATIC;
2869 				break;
2870 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2871 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2872 				break;
2873 			default:
2874 				goto invalid;
2875 			}
2876 
2877 			/* if no change do nothing */
2878 			if (rx->sta->sta.smps_mode == smps_mode)
2879 				goto handled;
2880 			rx->sta->sta.smps_mode = smps_mode;
2881 
2882 			sband = rx->local->hw.wiphy->bands[status->band];
2883 
2884 			rate_control_rate_update(local, sband, rx->sta,
2885 						 IEEE80211_RC_SMPS_CHANGED);
2886 			goto handled;
2887 		}
2888 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2889 			struct ieee80211_supported_band *sband;
2890 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2891 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2892 
2893 			/* If it doesn't support 40 MHz it can't change ... */
2894 			if (!(rx->sta->sta.ht_cap.cap &
2895 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2896 				goto handled;
2897 
2898 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2899 				max_bw = IEEE80211_STA_RX_BW_20;
2900 			else
2901 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2902 
2903 			/* set cur_max_bandwidth and recalc sta bw */
2904 			rx->sta->cur_max_bandwidth = max_bw;
2905 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2906 
2907 			if (rx->sta->sta.bandwidth == new_bw)
2908 				goto handled;
2909 
2910 			rx->sta->sta.bandwidth = new_bw;
2911 			sband = rx->local->hw.wiphy->bands[status->band];
2912 
2913 			rate_control_rate_update(local, sband, rx->sta,
2914 						 IEEE80211_RC_BW_CHANGED);
2915 			goto handled;
2916 		}
2917 		default:
2918 			goto invalid;
2919 		}
2920 
2921 		break;
2922 	case WLAN_CATEGORY_PUBLIC:
2923 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2924 			goto invalid;
2925 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2926 			break;
2927 		if (!rx->sta)
2928 			break;
2929 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2930 			break;
2931 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2932 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2933 			break;
2934 		if (len < offsetof(struct ieee80211_mgmt,
2935 				   u.action.u.ext_chan_switch.variable))
2936 			goto invalid;
2937 		goto queue;
2938 	case WLAN_CATEGORY_VHT:
2939 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2940 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2941 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2942 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2943 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2944 			break;
2945 
2946 		/* verify action code is present */
2947 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2948 			goto invalid;
2949 
2950 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2951 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2952 			/* verify opmode is present */
2953 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2954 				goto invalid;
2955 			goto queue;
2956 		}
2957 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
2958 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2959 				goto invalid;
2960 			goto queue;
2961 		}
2962 		default:
2963 			break;
2964 		}
2965 		break;
2966 	case WLAN_CATEGORY_BACK:
2967 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2968 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2969 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2970 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2971 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2972 			break;
2973 
2974 		/* verify action_code is present */
2975 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2976 			break;
2977 
2978 		switch (mgmt->u.action.u.addba_req.action_code) {
2979 		case WLAN_ACTION_ADDBA_REQ:
2980 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2981 				   sizeof(mgmt->u.action.u.addba_req)))
2982 				goto invalid;
2983 			break;
2984 		case WLAN_ACTION_ADDBA_RESP:
2985 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2986 				   sizeof(mgmt->u.action.u.addba_resp)))
2987 				goto invalid;
2988 			break;
2989 		case WLAN_ACTION_DELBA:
2990 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2991 				   sizeof(mgmt->u.action.u.delba)))
2992 				goto invalid;
2993 			break;
2994 		default:
2995 			goto invalid;
2996 		}
2997 
2998 		goto queue;
2999 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3000 		/* verify action_code is present */
3001 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3002 			break;
3003 
3004 		switch (mgmt->u.action.u.measurement.action_code) {
3005 		case WLAN_ACTION_SPCT_MSR_REQ:
3006 			if (status->band != NL80211_BAND_5GHZ)
3007 				break;
3008 
3009 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3010 				   sizeof(mgmt->u.action.u.measurement)))
3011 				break;
3012 
3013 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3014 				break;
3015 
3016 			ieee80211_process_measurement_req(sdata, mgmt, len);
3017 			goto handled;
3018 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3019 			u8 *bssid;
3020 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3021 				   sizeof(mgmt->u.action.u.chan_switch)))
3022 				break;
3023 
3024 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3025 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3026 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3027 				break;
3028 
3029 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3030 				bssid = sdata->u.mgd.bssid;
3031 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3032 				bssid = sdata->u.ibss.bssid;
3033 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3034 				bssid = mgmt->sa;
3035 			else
3036 				break;
3037 
3038 			if (!ether_addr_equal(mgmt->bssid, bssid))
3039 				break;
3040 
3041 			goto queue;
3042 			}
3043 		}
3044 		break;
3045 	case WLAN_CATEGORY_SA_QUERY:
3046 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3047 			   sizeof(mgmt->u.action.u.sa_query)))
3048 			break;
3049 
3050 		switch (mgmt->u.action.u.sa_query.action) {
3051 		case WLAN_ACTION_SA_QUERY_REQUEST:
3052 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3053 				break;
3054 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3055 			goto handled;
3056 		}
3057 		break;
3058 	case WLAN_CATEGORY_SELF_PROTECTED:
3059 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3060 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3061 			break;
3062 
3063 		switch (mgmt->u.action.u.self_prot.action_code) {
3064 		case WLAN_SP_MESH_PEERING_OPEN:
3065 		case WLAN_SP_MESH_PEERING_CLOSE:
3066 		case WLAN_SP_MESH_PEERING_CONFIRM:
3067 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3068 				goto invalid;
3069 			if (sdata->u.mesh.user_mpm)
3070 				/* userspace handles this frame */
3071 				break;
3072 			goto queue;
3073 		case WLAN_SP_MGK_INFORM:
3074 		case WLAN_SP_MGK_ACK:
3075 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3076 				goto invalid;
3077 			break;
3078 		}
3079 		break;
3080 	case WLAN_CATEGORY_MESH_ACTION:
3081 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3082 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3083 			break;
3084 
3085 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3086 			break;
3087 		if (mesh_action_is_path_sel(mgmt) &&
3088 		    !mesh_path_sel_is_hwmp(sdata))
3089 			break;
3090 		goto queue;
3091 	}
3092 
3093 	return RX_CONTINUE;
3094 
3095  invalid:
3096 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3097 	/* will return in the next handlers */
3098 	return RX_CONTINUE;
3099 
3100  handled:
3101 	if (rx->sta)
3102 		rx->sta->rx_stats.packets++;
3103 	dev_kfree_skb(rx->skb);
3104 	return RX_QUEUED;
3105 
3106  queue:
3107 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3108 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3109 	ieee80211_queue_work(&local->hw, &sdata->work);
3110 	if (rx->sta)
3111 		rx->sta->rx_stats.packets++;
3112 	return RX_QUEUED;
3113 }
3114 
3115 static ieee80211_rx_result debug_noinline
3116 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3117 {
3118 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3119 	int sig = 0;
3120 
3121 	/* skip known-bad action frames and return them in the next handler */
3122 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3123 		return RX_CONTINUE;
3124 
3125 	/*
3126 	 * Getting here means the kernel doesn't know how to handle
3127 	 * it, but maybe userspace does ... include returned frames
3128 	 * so userspace can register for those to know whether ones
3129 	 * it transmitted were processed or returned.
3130 	 */
3131 
3132 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3133 		sig = status->signal;
3134 
3135 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3136 			     rx->skb->data, rx->skb->len, 0)) {
3137 		if (rx->sta)
3138 			rx->sta->rx_stats.packets++;
3139 		dev_kfree_skb(rx->skb);
3140 		return RX_QUEUED;
3141 	}
3142 
3143 	return RX_CONTINUE;
3144 }
3145 
3146 static ieee80211_rx_result debug_noinline
3147 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3148 {
3149 	struct ieee80211_local *local = rx->local;
3150 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3151 	struct sk_buff *nskb;
3152 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3153 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3154 
3155 	if (!ieee80211_is_action(mgmt->frame_control))
3156 		return RX_CONTINUE;
3157 
3158 	/*
3159 	 * For AP mode, hostapd is responsible for handling any action
3160 	 * frames that we didn't handle, including returning unknown
3161 	 * ones. For all other modes we will return them to the sender,
3162 	 * setting the 0x80 bit in the action category, as required by
3163 	 * 802.11-2012 9.24.4.
3164 	 * Newer versions of hostapd shall also use the management frame
3165 	 * registration mechanisms, but older ones still use cooked
3166 	 * monitor interfaces so push all frames there.
3167 	 */
3168 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3169 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3170 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3171 		return RX_DROP_MONITOR;
3172 
3173 	if (is_multicast_ether_addr(mgmt->da))
3174 		return RX_DROP_MONITOR;
3175 
3176 	/* do not return rejected action frames */
3177 	if (mgmt->u.action.category & 0x80)
3178 		return RX_DROP_UNUSABLE;
3179 
3180 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3181 			       GFP_ATOMIC);
3182 	if (nskb) {
3183 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3184 
3185 		nmgmt->u.action.category |= 0x80;
3186 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3187 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3188 
3189 		memset(nskb->cb, 0, sizeof(nskb->cb));
3190 
3191 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3192 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3193 
3194 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3195 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3196 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3197 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3198 				info->hw_queue =
3199 					local->hw.offchannel_tx_hw_queue;
3200 		}
3201 
3202 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3203 					    status->band);
3204 	}
3205 	dev_kfree_skb(rx->skb);
3206 	return RX_QUEUED;
3207 }
3208 
3209 static ieee80211_rx_result debug_noinline
3210 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3211 {
3212 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3213 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3214 	__le16 stype;
3215 
3216 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3217 
3218 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3219 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3220 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3221 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3222 		return RX_DROP_MONITOR;
3223 
3224 	switch (stype) {
3225 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3226 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3227 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3228 		/* process for all: mesh, mlme, ibss */
3229 		break;
3230 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3231 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3232 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3233 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3234 		if (is_multicast_ether_addr(mgmt->da) &&
3235 		    !is_broadcast_ether_addr(mgmt->da))
3236 			return RX_DROP_MONITOR;
3237 
3238 		/* process only for station */
3239 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3240 			return RX_DROP_MONITOR;
3241 		break;
3242 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3243 		/* process only for ibss and mesh */
3244 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3245 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3246 			return RX_DROP_MONITOR;
3247 		break;
3248 	default:
3249 		return RX_DROP_MONITOR;
3250 	}
3251 
3252 	/* queue up frame and kick off work to process it */
3253 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3254 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3255 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3256 	if (rx->sta)
3257 		rx->sta->rx_stats.packets++;
3258 
3259 	return RX_QUEUED;
3260 }
3261 
3262 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3263 					struct ieee80211_rate *rate)
3264 {
3265 	struct ieee80211_sub_if_data *sdata;
3266 	struct ieee80211_local *local = rx->local;
3267 	struct sk_buff *skb = rx->skb, *skb2;
3268 	struct net_device *prev_dev = NULL;
3269 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3270 	int needed_headroom;
3271 
3272 	/*
3273 	 * If cooked monitor has been processed already, then
3274 	 * don't do it again. If not, set the flag.
3275 	 */
3276 	if (rx->flags & IEEE80211_RX_CMNTR)
3277 		goto out_free_skb;
3278 	rx->flags |= IEEE80211_RX_CMNTR;
3279 
3280 	/* If there are no cooked monitor interfaces, just free the SKB */
3281 	if (!local->cooked_mntrs)
3282 		goto out_free_skb;
3283 
3284 	/* vendor data is long removed here */
3285 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3286 	/* room for the radiotap header based on driver features */
3287 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3288 
3289 	if (skb_headroom(skb) < needed_headroom &&
3290 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3291 		goto out_free_skb;
3292 
3293 	/* prepend radiotap information */
3294 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3295 					 false);
3296 
3297 	skb_reset_mac_header(skb);
3298 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3299 	skb->pkt_type = PACKET_OTHERHOST;
3300 	skb->protocol = htons(ETH_P_802_2);
3301 
3302 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3303 		if (!ieee80211_sdata_running(sdata))
3304 			continue;
3305 
3306 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3307 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3308 			continue;
3309 
3310 		if (prev_dev) {
3311 			skb2 = skb_clone(skb, GFP_ATOMIC);
3312 			if (skb2) {
3313 				skb2->dev = prev_dev;
3314 				netif_receive_skb(skb2);
3315 			}
3316 		}
3317 
3318 		prev_dev = sdata->dev;
3319 		ieee80211_rx_stats(sdata->dev, skb->len);
3320 	}
3321 
3322 	if (prev_dev) {
3323 		skb->dev = prev_dev;
3324 		netif_receive_skb(skb);
3325 		return;
3326 	}
3327 
3328  out_free_skb:
3329 	dev_kfree_skb(skb);
3330 }
3331 
3332 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3333 					 ieee80211_rx_result res)
3334 {
3335 	switch (res) {
3336 	case RX_DROP_MONITOR:
3337 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3338 		if (rx->sta)
3339 			rx->sta->rx_stats.dropped++;
3340 		/* fall through */
3341 	case RX_CONTINUE: {
3342 		struct ieee80211_rate *rate = NULL;
3343 		struct ieee80211_supported_band *sband;
3344 		struct ieee80211_rx_status *status;
3345 
3346 		status = IEEE80211_SKB_RXCB((rx->skb));
3347 
3348 		sband = rx->local->hw.wiphy->bands[status->band];
3349 		if (!(status->encoding == RX_ENC_HT) &&
3350 		    !(status->encoding == RX_ENC_VHT))
3351 			rate = &sband->bitrates[status->rate_idx];
3352 
3353 		ieee80211_rx_cooked_monitor(rx, rate);
3354 		break;
3355 		}
3356 	case RX_DROP_UNUSABLE:
3357 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3358 		if (rx->sta)
3359 			rx->sta->rx_stats.dropped++;
3360 		dev_kfree_skb(rx->skb);
3361 		break;
3362 	case RX_QUEUED:
3363 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3364 		break;
3365 	}
3366 }
3367 
3368 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3369 				  struct sk_buff_head *frames)
3370 {
3371 	ieee80211_rx_result res = RX_DROP_MONITOR;
3372 	struct sk_buff *skb;
3373 
3374 #define CALL_RXH(rxh)			\
3375 	do {				\
3376 		res = rxh(rx);		\
3377 		if (res != RX_CONTINUE)	\
3378 			goto rxh_next;  \
3379 	} while (0)
3380 
3381 	/* Lock here to avoid hitting all of the data used in the RX
3382 	 * path (e.g. key data, station data, ...) concurrently when
3383 	 * a frame is released from the reorder buffer due to timeout
3384 	 * from the timer, potentially concurrently with RX from the
3385 	 * driver.
3386 	 */
3387 	spin_lock_bh(&rx->local->rx_path_lock);
3388 
3389 	while ((skb = __skb_dequeue(frames))) {
3390 		/*
3391 		 * all the other fields are valid across frames
3392 		 * that belong to an aMPDU since they are on the
3393 		 * same TID from the same station
3394 		 */
3395 		rx->skb = skb;
3396 
3397 		CALL_RXH(ieee80211_rx_h_check_more_data);
3398 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3399 		CALL_RXH(ieee80211_rx_h_sta_process);
3400 		CALL_RXH(ieee80211_rx_h_decrypt);
3401 		CALL_RXH(ieee80211_rx_h_defragment);
3402 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3403 		/* must be after MMIC verify so header is counted in MPDU mic */
3404 #ifdef CONFIG_MAC80211_MESH
3405 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3406 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3407 #endif
3408 		CALL_RXH(ieee80211_rx_h_amsdu);
3409 		CALL_RXH(ieee80211_rx_h_data);
3410 
3411 		/* special treatment -- needs the queue */
3412 		res = ieee80211_rx_h_ctrl(rx, frames);
3413 		if (res != RX_CONTINUE)
3414 			goto rxh_next;
3415 
3416 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3417 		CALL_RXH(ieee80211_rx_h_action);
3418 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3419 		CALL_RXH(ieee80211_rx_h_action_return);
3420 		CALL_RXH(ieee80211_rx_h_mgmt);
3421 
3422  rxh_next:
3423 		ieee80211_rx_handlers_result(rx, res);
3424 
3425 #undef CALL_RXH
3426 	}
3427 
3428 	spin_unlock_bh(&rx->local->rx_path_lock);
3429 }
3430 
3431 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3432 {
3433 	struct sk_buff_head reorder_release;
3434 	ieee80211_rx_result res = RX_DROP_MONITOR;
3435 
3436 	__skb_queue_head_init(&reorder_release);
3437 
3438 #define CALL_RXH(rxh)			\
3439 	do {				\
3440 		res = rxh(rx);		\
3441 		if (res != RX_CONTINUE)	\
3442 			goto rxh_next;  \
3443 	} while (0)
3444 
3445 	CALL_RXH(ieee80211_rx_h_check_dup);
3446 	CALL_RXH(ieee80211_rx_h_check);
3447 
3448 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3449 
3450 	ieee80211_rx_handlers(rx, &reorder_release);
3451 	return;
3452 
3453  rxh_next:
3454 	ieee80211_rx_handlers_result(rx, res);
3455 
3456 #undef CALL_RXH
3457 }
3458 
3459 /*
3460  * This function makes calls into the RX path, therefore
3461  * it has to be invoked under RCU read lock.
3462  */
3463 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3464 {
3465 	struct sk_buff_head frames;
3466 	struct ieee80211_rx_data rx = {
3467 		.sta = sta,
3468 		.sdata = sta->sdata,
3469 		.local = sta->local,
3470 		/* This is OK -- must be QoS data frame */
3471 		.security_idx = tid,
3472 		.seqno_idx = tid,
3473 		.napi = NULL, /* must be NULL to not have races */
3474 	};
3475 	struct tid_ampdu_rx *tid_agg_rx;
3476 
3477 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3478 	if (!tid_agg_rx)
3479 		return;
3480 
3481 	__skb_queue_head_init(&frames);
3482 
3483 	spin_lock(&tid_agg_rx->reorder_lock);
3484 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3485 	spin_unlock(&tid_agg_rx->reorder_lock);
3486 
3487 	if (!skb_queue_empty(&frames)) {
3488 		struct ieee80211_event event = {
3489 			.type = BA_FRAME_TIMEOUT,
3490 			.u.ba.tid = tid,
3491 			.u.ba.sta = &sta->sta,
3492 		};
3493 		drv_event_callback(rx.local, rx.sdata, &event);
3494 	}
3495 
3496 	ieee80211_rx_handlers(&rx, &frames);
3497 }
3498 
3499 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3500 					  u16 ssn, u64 filtered,
3501 					  u16 received_mpdus)
3502 {
3503 	struct sta_info *sta;
3504 	struct tid_ampdu_rx *tid_agg_rx;
3505 	struct sk_buff_head frames;
3506 	struct ieee80211_rx_data rx = {
3507 		/* This is OK -- must be QoS data frame */
3508 		.security_idx = tid,
3509 		.seqno_idx = tid,
3510 	};
3511 	int i, diff;
3512 
3513 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3514 		return;
3515 
3516 	__skb_queue_head_init(&frames);
3517 
3518 	sta = container_of(pubsta, struct sta_info, sta);
3519 
3520 	rx.sta = sta;
3521 	rx.sdata = sta->sdata;
3522 	rx.local = sta->local;
3523 
3524 	rcu_read_lock();
3525 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3526 	if (!tid_agg_rx)
3527 		goto out;
3528 
3529 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3530 
3531 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3532 		int release;
3533 
3534 		/* release all frames in the reorder buffer */
3535 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3536 			   IEEE80211_SN_MODULO;
3537 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3538 						 release, &frames);
3539 		/* update ssn to match received ssn */
3540 		tid_agg_rx->head_seq_num = ssn;
3541 	} else {
3542 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3543 						 &frames);
3544 	}
3545 
3546 	/* handle the case that received ssn is behind the mac ssn.
3547 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3548 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3549 	if (diff >= tid_agg_rx->buf_size) {
3550 		tid_agg_rx->reorder_buf_filtered = 0;
3551 		goto release;
3552 	}
3553 	filtered = filtered >> diff;
3554 	ssn += diff;
3555 
3556 	/* update bitmap */
3557 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3558 		int index = (ssn + i) % tid_agg_rx->buf_size;
3559 
3560 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3561 		if (filtered & BIT_ULL(i))
3562 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3563 	}
3564 
3565 	/* now process also frames that the filter marking released */
3566 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3567 
3568 release:
3569 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3570 
3571 	ieee80211_rx_handlers(&rx, &frames);
3572 
3573  out:
3574 	rcu_read_unlock();
3575 }
3576 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3577 
3578 /* main receive path */
3579 
3580 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3581 {
3582 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3583 	struct sk_buff *skb = rx->skb;
3584 	struct ieee80211_hdr *hdr = (void *)skb->data;
3585 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3586 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3587 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3588 
3589 	switch (sdata->vif.type) {
3590 	case NL80211_IFTYPE_STATION:
3591 		if (!bssid && !sdata->u.mgd.use_4addr)
3592 			return false;
3593 		if (multicast)
3594 			return true;
3595 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3596 	case NL80211_IFTYPE_ADHOC:
3597 		if (!bssid)
3598 			return false;
3599 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3600 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3601 			return false;
3602 		if (ieee80211_is_beacon(hdr->frame_control))
3603 			return true;
3604 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3605 			return false;
3606 		if (!multicast &&
3607 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3608 			return false;
3609 		if (!rx->sta) {
3610 			int rate_idx;
3611 			if (status->encoding != RX_ENC_LEGACY)
3612 				rate_idx = 0; /* TODO: HT/VHT rates */
3613 			else
3614 				rate_idx = status->rate_idx;
3615 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3616 						 BIT(rate_idx));
3617 		}
3618 		return true;
3619 	case NL80211_IFTYPE_OCB:
3620 		if (!bssid)
3621 			return false;
3622 		if (!ieee80211_is_data_present(hdr->frame_control))
3623 			return false;
3624 		if (!is_broadcast_ether_addr(bssid))
3625 			return false;
3626 		if (!multicast &&
3627 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3628 			return false;
3629 		if (!rx->sta) {
3630 			int rate_idx;
3631 			if (status->encoding != RX_ENC_LEGACY)
3632 				rate_idx = 0; /* TODO: HT rates */
3633 			else
3634 				rate_idx = status->rate_idx;
3635 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3636 						BIT(rate_idx));
3637 		}
3638 		return true;
3639 	case NL80211_IFTYPE_MESH_POINT:
3640 		if (multicast)
3641 			return true;
3642 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3643 	case NL80211_IFTYPE_AP_VLAN:
3644 	case NL80211_IFTYPE_AP:
3645 		if (!bssid)
3646 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3647 
3648 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3649 			/*
3650 			 * Accept public action frames even when the
3651 			 * BSSID doesn't match, this is used for P2P
3652 			 * and location updates. Note that mac80211
3653 			 * itself never looks at these frames.
3654 			 */
3655 			if (!multicast &&
3656 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3657 				return false;
3658 			if (ieee80211_is_public_action(hdr, skb->len))
3659 				return true;
3660 			return ieee80211_is_beacon(hdr->frame_control);
3661 		}
3662 
3663 		if (!ieee80211_has_tods(hdr->frame_control)) {
3664 			/* ignore data frames to TDLS-peers */
3665 			if (ieee80211_is_data(hdr->frame_control))
3666 				return false;
3667 			/* ignore action frames to TDLS-peers */
3668 			if (ieee80211_is_action(hdr->frame_control) &&
3669 			    !is_broadcast_ether_addr(bssid) &&
3670 			    !ether_addr_equal(bssid, hdr->addr1))
3671 				return false;
3672 		}
3673 
3674 		/*
3675 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3676 		 * the BSSID - we've checked that already but may have accepted
3677 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3678 		 *
3679 		 * It also says:
3680 		 *	The BSSID of the Data frame is determined as follows:
3681 		 *	a) If the STA is contained within an AP or is associated
3682 		 *	   with an AP, the BSSID is the address currently in use
3683 		 *	   by the STA contained in the AP.
3684 		 *
3685 		 * So we should not accept data frames with an address that's
3686 		 * multicast.
3687 		 *
3688 		 * Accepting it also opens a security problem because stations
3689 		 * could encrypt it with the GTK and inject traffic that way.
3690 		 */
3691 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3692 			return false;
3693 
3694 		return true;
3695 	case NL80211_IFTYPE_WDS:
3696 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3697 			return false;
3698 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3699 	case NL80211_IFTYPE_P2P_DEVICE:
3700 		return ieee80211_is_public_action(hdr, skb->len) ||
3701 		       ieee80211_is_probe_req(hdr->frame_control) ||
3702 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3703 		       ieee80211_is_beacon(hdr->frame_control);
3704 	case NL80211_IFTYPE_NAN:
3705 		/* Currently no frames on NAN interface are allowed */
3706 		return false;
3707 	default:
3708 		break;
3709 	}
3710 
3711 	WARN_ON_ONCE(1);
3712 	return false;
3713 }
3714 
3715 void ieee80211_check_fast_rx(struct sta_info *sta)
3716 {
3717 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3718 	struct ieee80211_local *local = sdata->local;
3719 	struct ieee80211_key *key;
3720 	struct ieee80211_fast_rx fastrx = {
3721 		.dev = sdata->dev,
3722 		.vif_type = sdata->vif.type,
3723 		.control_port_protocol = sdata->control_port_protocol,
3724 	}, *old, *new = NULL;
3725 	bool assign = false;
3726 
3727 	/* use sparse to check that we don't return without updating */
3728 	__acquire(check_fast_rx);
3729 
3730 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3731 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3732 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3733 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3734 
3735 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3736 
3737 	/* fast-rx doesn't do reordering */
3738 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3739 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3740 		goto clear;
3741 
3742 	switch (sdata->vif.type) {
3743 	case NL80211_IFTYPE_STATION:
3744 		/* 4-addr is harder to deal with, later maybe */
3745 		if (sdata->u.mgd.use_4addr)
3746 			goto clear;
3747 		/* software powersave is a huge mess, avoid all of it */
3748 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3749 			goto clear;
3750 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3751 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3752 			goto clear;
3753 		if (sta->sta.tdls) {
3754 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3755 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3756 			fastrx.expected_ds_bits = 0;
3757 		} else {
3758 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3759 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3760 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3761 			fastrx.expected_ds_bits =
3762 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
3763 		}
3764 		break;
3765 	case NL80211_IFTYPE_AP_VLAN:
3766 	case NL80211_IFTYPE_AP:
3767 		/* parallel-rx requires this, at least with calls to
3768 		 * ieee80211_sta_ps_transition()
3769 		 */
3770 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3771 			goto clear;
3772 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3773 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3774 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3775 
3776 		fastrx.internal_forward =
3777 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3778 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3779 			 !sdata->u.vlan.sta);
3780 		break;
3781 	default:
3782 		goto clear;
3783 	}
3784 
3785 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3786 		goto clear;
3787 
3788 	rcu_read_lock();
3789 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3790 	if (key) {
3791 		switch (key->conf.cipher) {
3792 		case WLAN_CIPHER_SUITE_TKIP:
3793 			/* we don't want to deal with MMIC in fast-rx */
3794 			goto clear_rcu;
3795 		case WLAN_CIPHER_SUITE_CCMP:
3796 		case WLAN_CIPHER_SUITE_CCMP_256:
3797 		case WLAN_CIPHER_SUITE_GCMP:
3798 		case WLAN_CIPHER_SUITE_GCMP_256:
3799 			break;
3800 		default:
3801 			/* we also don't want to deal with WEP or cipher scheme
3802 			 * since those require looking up the key idx in the
3803 			 * frame, rather than assuming the PTK is used
3804 			 * (we need to revisit this once we implement the real
3805 			 * PTK index, which is now valid in the spec, but we
3806 			 * haven't implemented that part yet)
3807 			 */
3808 			goto clear_rcu;
3809 		}
3810 
3811 		fastrx.key = true;
3812 		fastrx.icv_len = key->conf.icv_len;
3813 	}
3814 
3815 	assign = true;
3816  clear_rcu:
3817 	rcu_read_unlock();
3818  clear:
3819 	__release(check_fast_rx);
3820 
3821 	if (assign)
3822 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3823 
3824 	spin_lock_bh(&sta->lock);
3825 	old = rcu_dereference_protected(sta->fast_rx, true);
3826 	rcu_assign_pointer(sta->fast_rx, new);
3827 	spin_unlock_bh(&sta->lock);
3828 
3829 	if (old)
3830 		kfree_rcu(old, rcu_head);
3831 }
3832 
3833 void ieee80211_clear_fast_rx(struct sta_info *sta)
3834 {
3835 	struct ieee80211_fast_rx *old;
3836 
3837 	spin_lock_bh(&sta->lock);
3838 	old = rcu_dereference_protected(sta->fast_rx, true);
3839 	RCU_INIT_POINTER(sta->fast_rx, NULL);
3840 	spin_unlock_bh(&sta->lock);
3841 
3842 	if (old)
3843 		kfree_rcu(old, rcu_head);
3844 }
3845 
3846 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3847 {
3848 	struct ieee80211_local *local = sdata->local;
3849 	struct sta_info *sta;
3850 
3851 	lockdep_assert_held(&local->sta_mtx);
3852 
3853 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
3854 		if (sdata != sta->sdata &&
3855 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3856 			continue;
3857 		ieee80211_check_fast_rx(sta);
3858 	}
3859 }
3860 
3861 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3862 {
3863 	struct ieee80211_local *local = sdata->local;
3864 
3865 	mutex_lock(&local->sta_mtx);
3866 	__ieee80211_check_fast_rx_iface(sdata);
3867 	mutex_unlock(&local->sta_mtx);
3868 }
3869 
3870 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3871 				     struct ieee80211_fast_rx *fast_rx)
3872 {
3873 	struct sk_buff *skb = rx->skb;
3874 	struct ieee80211_hdr *hdr = (void *)skb->data;
3875 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3876 	struct sta_info *sta = rx->sta;
3877 	int orig_len = skb->len;
3878 	int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3879 	struct {
3880 		u8 snap[sizeof(rfc1042_header)];
3881 		__be16 proto;
3882 	} *payload __aligned(2);
3883 	struct {
3884 		u8 da[ETH_ALEN];
3885 		u8 sa[ETH_ALEN];
3886 	} addrs __aligned(2);
3887 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3888 
3889 	if (fast_rx->uses_rss)
3890 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
3891 
3892 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3893 	 * to a common data structure; drivers can implement that per queue
3894 	 * but we don't have that information in mac80211
3895 	 */
3896 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3897 		return false;
3898 
3899 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3900 
3901 	/* If using encryption, we also need to have:
3902 	 *  - PN_VALIDATED: similar, but the implementation is tricky
3903 	 *  - DECRYPTED: necessary for PN_VALIDATED
3904 	 */
3905 	if (fast_rx->key &&
3906 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3907 		return false;
3908 
3909 	/* we don't deal with A-MSDU deaggregation here */
3910 	if (status->rx_flags & IEEE80211_RX_AMSDU)
3911 		return false;
3912 
3913 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3914 		return false;
3915 
3916 	if (unlikely(ieee80211_is_frag(hdr)))
3917 		return false;
3918 
3919 	/* Since our interface address cannot be multicast, this
3920 	 * implicitly also rejects multicast frames without the
3921 	 * explicit check.
3922 	 *
3923 	 * We shouldn't get any *data* frames not addressed to us
3924 	 * (AP mode will accept multicast *management* frames), but
3925 	 * punting here will make it go through the full checks in
3926 	 * ieee80211_accept_frame().
3927 	 */
3928 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3929 		return false;
3930 
3931 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3932 					      IEEE80211_FCTL_TODS)) !=
3933 	    fast_rx->expected_ds_bits)
3934 		goto drop;
3935 
3936 	/* assign the key to drop unencrypted frames (later)
3937 	 * and strip the IV/MIC if necessary
3938 	 */
3939 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3940 		/* GCMP header length is the same */
3941 		snap_offs += IEEE80211_CCMP_HDR_LEN;
3942 	}
3943 
3944 	if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3945 		goto drop;
3946 	payload = (void *)(skb->data + snap_offs);
3947 
3948 	if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3949 		return false;
3950 
3951 	/* Don't handle these here since they require special code.
3952 	 * Accept AARP and IPX even though they should come with a
3953 	 * bridge-tunnel header - but if we get them this way then
3954 	 * there's little point in discarding them.
3955 	 */
3956 	if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3957 		     payload->proto == fast_rx->control_port_protocol))
3958 		return false;
3959 
3960 	/* after this point, don't punt to the slowpath! */
3961 
3962 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3963 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
3964 		goto drop;
3965 
3966 	if (unlikely(fast_rx->sta_notify)) {
3967 		ieee80211_sta_rx_notify(rx->sdata, hdr);
3968 		fast_rx->sta_notify = false;
3969 	}
3970 
3971 	/* statistics part of ieee80211_rx_h_sta_process() */
3972 	stats->last_rx = jiffies;
3973 	stats->last_rate = sta_stats_encode_rate(status);
3974 
3975 	stats->fragments++;
3976 	stats->packets++;
3977 
3978 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3979 		stats->last_signal = status->signal;
3980 		if (!fast_rx->uses_rss)
3981 			ewma_signal_add(&sta->rx_stats_avg.signal,
3982 					-status->signal);
3983 	}
3984 
3985 	if (status->chains) {
3986 		int i;
3987 
3988 		stats->chains = status->chains;
3989 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3990 			int signal = status->chain_signal[i];
3991 
3992 			if (!(status->chains & BIT(i)))
3993 				continue;
3994 
3995 			stats->chain_signal_last[i] = signal;
3996 			if (!fast_rx->uses_rss)
3997 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3998 						-signal);
3999 		}
4000 	}
4001 	/* end of statistics */
4002 
4003 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4004 		goto drop;
4005 
4006 	/* do the header conversion - first grab the addresses */
4007 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4008 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4009 	/* remove the SNAP but leave the ethertype */
4010 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4011 	/* push the addresses in front */
4012 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4013 
4014 	skb->dev = fast_rx->dev;
4015 
4016 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4017 
4018 	/* The seqno index has the same property as needed
4019 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4020 	 * for non-QoS-data frames. Here we know it's a data
4021 	 * frame, so count MSDUs.
4022 	 */
4023 	u64_stats_update_begin(&stats->syncp);
4024 	stats->msdu[rx->seqno_idx]++;
4025 	stats->bytes += orig_len;
4026 	u64_stats_update_end(&stats->syncp);
4027 
4028 	if (fast_rx->internal_forward) {
4029 		struct sk_buff *xmit_skb = NULL;
4030 		bool multicast = is_multicast_ether_addr(skb->data);
4031 
4032 		if (multicast) {
4033 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4034 		} else if (sta_info_get(rx->sdata, skb->data)) {
4035 			xmit_skb = skb;
4036 			skb = NULL;
4037 		}
4038 
4039 		if (xmit_skb) {
4040 			/*
4041 			 * Send to wireless media and increase priority by 256
4042 			 * to keep the received priority instead of
4043 			 * reclassifying the frame (see cfg80211_classify8021d).
4044 			 */
4045 			xmit_skb->priority += 256;
4046 			xmit_skb->protocol = htons(ETH_P_802_3);
4047 			skb_reset_network_header(xmit_skb);
4048 			skb_reset_mac_header(xmit_skb);
4049 			dev_queue_xmit(xmit_skb);
4050 		}
4051 
4052 		if (!skb)
4053 			return true;
4054 	}
4055 
4056 	/* deliver to local stack */
4057 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4058 	memset(skb->cb, 0, sizeof(skb->cb));
4059 	if (rx->napi)
4060 		napi_gro_receive(rx->napi, skb);
4061 	else
4062 		netif_receive_skb(skb);
4063 
4064 	return true;
4065  drop:
4066 	dev_kfree_skb(skb);
4067 	stats->dropped++;
4068 	return true;
4069 }
4070 
4071 /*
4072  * This function returns whether or not the SKB
4073  * was destined for RX processing or not, which,
4074  * if consume is true, is equivalent to whether
4075  * or not the skb was consumed.
4076  */
4077 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4078 					    struct sk_buff *skb, bool consume)
4079 {
4080 	struct ieee80211_local *local = rx->local;
4081 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4082 
4083 	rx->skb = skb;
4084 
4085 	/* See if we can do fast-rx; if we have to copy we already lost,
4086 	 * so punt in that case. We should never have to deliver a data
4087 	 * frame to multiple interfaces anyway.
4088 	 *
4089 	 * We skip the ieee80211_accept_frame() call and do the necessary
4090 	 * checking inside ieee80211_invoke_fast_rx().
4091 	 */
4092 	if (consume && rx->sta) {
4093 		struct ieee80211_fast_rx *fast_rx;
4094 
4095 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4096 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4097 			return true;
4098 	}
4099 
4100 	if (!ieee80211_accept_frame(rx))
4101 		return false;
4102 
4103 	if (!consume) {
4104 		skb = skb_copy(skb, GFP_ATOMIC);
4105 		if (!skb) {
4106 			if (net_ratelimit())
4107 				wiphy_debug(local->hw.wiphy,
4108 					"failed to copy skb for %s\n",
4109 					sdata->name);
4110 			return true;
4111 		}
4112 
4113 		rx->skb = skb;
4114 	}
4115 
4116 	ieee80211_invoke_rx_handlers(rx);
4117 	return true;
4118 }
4119 
4120 /*
4121  * This is the actual Rx frames handler. as it belongs to Rx path it must
4122  * be called with rcu_read_lock protection.
4123  */
4124 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4125 					 struct ieee80211_sta *pubsta,
4126 					 struct sk_buff *skb,
4127 					 struct napi_struct *napi)
4128 {
4129 	struct ieee80211_local *local = hw_to_local(hw);
4130 	struct ieee80211_sub_if_data *sdata;
4131 	struct ieee80211_hdr *hdr;
4132 	__le16 fc;
4133 	struct ieee80211_rx_data rx;
4134 	struct ieee80211_sub_if_data *prev;
4135 	struct rhlist_head *tmp;
4136 	int err = 0;
4137 
4138 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4139 	memset(&rx, 0, sizeof(rx));
4140 	rx.skb = skb;
4141 	rx.local = local;
4142 	rx.napi = napi;
4143 
4144 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4145 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4146 
4147 	if (ieee80211_is_mgmt(fc)) {
4148 		/* drop frame if too short for header */
4149 		if (skb->len < ieee80211_hdrlen(fc))
4150 			err = -ENOBUFS;
4151 		else
4152 			err = skb_linearize(skb);
4153 	} else {
4154 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4155 	}
4156 
4157 	if (err) {
4158 		dev_kfree_skb(skb);
4159 		return;
4160 	}
4161 
4162 	hdr = (struct ieee80211_hdr *)skb->data;
4163 	ieee80211_parse_qos(&rx);
4164 	ieee80211_verify_alignment(&rx);
4165 
4166 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4167 		     ieee80211_is_beacon(hdr->frame_control)))
4168 		ieee80211_scan_rx(local, skb);
4169 
4170 	if (ieee80211_is_data(fc)) {
4171 		struct sta_info *sta, *prev_sta;
4172 
4173 		if (pubsta) {
4174 			rx.sta = container_of(pubsta, struct sta_info, sta);
4175 			rx.sdata = rx.sta->sdata;
4176 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4177 				return;
4178 			goto out;
4179 		}
4180 
4181 		prev_sta = NULL;
4182 
4183 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4184 			if (!prev_sta) {
4185 				prev_sta = sta;
4186 				continue;
4187 			}
4188 
4189 			rx.sta = prev_sta;
4190 			rx.sdata = prev_sta->sdata;
4191 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4192 
4193 			prev_sta = sta;
4194 		}
4195 
4196 		if (prev_sta) {
4197 			rx.sta = prev_sta;
4198 			rx.sdata = prev_sta->sdata;
4199 
4200 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4201 				return;
4202 			goto out;
4203 		}
4204 	}
4205 
4206 	prev = NULL;
4207 
4208 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4209 		if (!ieee80211_sdata_running(sdata))
4210 			continue;
4211 
4212 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4213 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4214 			continue;
4215 
4216 		/*
4217 		 * frame is destined for this interface, but if it's
4218 		 * not also for the previous one we handle that after
4219 		 * the loop to avoid copying the SKB once too much
4220 		 */
4221 
4222 		if (!prev) {
4223 			prev = sdata;
4224 			continue;
4225 		}
4226 
4227 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4228 		rx.sdata = prev;
4229 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4230 
4231 		prev = sdata;
4232 	}
4233 
4234 	if (prev) {
4235 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4236 		rx.sdata = prev;
4237 
4238 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4239 			return;
4240 	}
4241 
4242  out:
4243 	dev_kfree_skb(skb);
4244 }
4245 
4246 /*
4247  * This is the receive path handler. It is called by a low level driver when an
4248  * 802.11 MPDU is received from the hardware.
4249  */
4250 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4251 		       struct sk_buff *skb, struct napi_struct *napi)
4252 {
4253 	struct ieee80211_local *local = hw_to_local(hw);
4254 	struct ieee80211_rate *rate = NULL;
4255 	struct ieee80211_supported_band *sband;
4256 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4257 
4258 	WARN_ON_ONCE(softirq_count() == 0);
4259 
4260 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4261 		goto drop;
4262 
4263 	sband = local->hw.wiphy->bands[status->band];
4264 	if (WARN_ON(!sband))
4265 		goto drop;
4266 
4267 	/*
4268 	 * If we're suspending, it is possible although not too likely
4269 	 * that we'd be receiving frames after having already partially
4270 	 * quiesced the stack. We can't process such frames then since
4271 	 * that might, for example, cause stations to be added or other
4272 	 * driver callbacks be invoked.
4273 	 */
4274 	if (unlikely(local->quiescing || local->suspended))
4275 		goto drop;
4276 
4277 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4278 	if (unlikely(local->in_reconfig))
4279 		goto drop;
4280 
4281 	/*
4282 	 * The same happens when we're not even started,
4283 	 * but that's worth a warning.
4284 	 */
4285 	if (WARN_ON(!local->started))
4286 		goto drop;
4287 
4288 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4289 		/*
4290 		 * Validate the rate, unless a PLCP error means that
4291 		 * we probably can't have a valid rate here anyway.
4292 		 */
4293 
4294 		switch (status->encoding) {
4295 		case RX_ENC_HT:
4296 			/*
4297 			 * rate_idx is MCS index, which can be [0-76]
4298 			 * as documented on:
4299 			 *
4300 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4301 			 *
4302 			 * Anything else would be some sort of driver or
4303 			 * hardware error. The driver should catch hardware
4304 			 * errors.
4305 			 */
4306 			if (WARN(status->rate_idx > 76,
4307 				 "Rate marked as an HT rate but passed "
4308 				 "status->rate_idx is not "
4309 				 "an MCS index [0-76]: %d (0x%02x)\n",
4310 				 status->rate_idx,
4311 				 status->rate_idx))
4312 				goto drop;
4313 			break;
4314 		case RX_ENC_VHT:
4315 			if (WARN_ONCE(status->rate_idx > 9 ||
4316 				      !status->nss ||
4317 				      status->nss > 8,
4318 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4319 				      status->rate_idx, status->nss))
4320 				goto drop;
4321 			break;
4322 		default:
4323 			WARN_ON_ONCE(1);
4324 			/* fall through */
4325 		case RX_ENC_LEGACY:
4326 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4327 				goto drop;
4328 			rate = &sband->bitrates[status->rate_idx];
4329 		}
4330 	}
4331 
4332 	status->rx_flags = 0;
4333 
4334 	/*
4335 	 * key references and virtual interfaces are protected using RCU
4336 	 * and this requires that we are in a read-side RCU section during
4337 	 * receive processing
4338 	 */
4339 	rcu_read_lock();
4340 
4341 	/*
4342 	 * Frames with failed FCS/PLCP checksum are not returned,
4343 	 * all other frames are returned without radiotap header
4344 	 * if it was previously present.
4345 	 * Also, frames with less than 16 bytes are dropped.
4346 	 */
4347 	skb = ieee80211_rx_monitor(local, skb, rate);
4348 	if (!skb) {
4349 		rcu_read_unlock();
4350 		return;
4351 	}
4352 
4353 	ieee80211_tpt_led_trig_rx(local,
4354 			((struct ieee80211_hdr *)skb->data)->frame_control,
4355 			skb->len);
4356 
4357 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4358 
4359 	rcu_read_unlock();
4360 
4361 	return;
4362  drop:
4363 	kfree_skb(skb);
4364 }
4365 EXPORT_SYMBOL(ieee80211_rx_napi);
4366 
4367 /* This is a version of the rx handler that can be called from hard irq
4368  * context. Post the skb on the queue and schedule the tasklet */
4369 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4370 {
4371 	struct ieee80211_local *local = hw_to_local(hw);
4372 
4373 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4374 
4375 	skb->pkt_type = IEEE80211_RX_MSG;
4376 	skb_queue_tail(&local->skb_queue, skb);
4377 	tasklet_schedule(&local->tasklet);
4378 }
4379 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4380