1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 int link_id, 219 struct sta_info *sta, 220 struct sk_buff *skb) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 224 if (link_id >= 0) { 225 status->link_valid = 1; 226 status->link_id = link_id; 227 } else { 228 status->link_valid = 0; 229 } 230 231 skb_queue_tail(&sdata->skb_queue, skb); 232 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 233 if (sta) 234 sta->deflink.rx_stats.packets++; 235 } 236 237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 238 int link_id, 239 struct sta_info *sta, 240 struct sk_buff *skb) 241 { 242 skb->protocol = 0; 243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 244 } 245 246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 247 struct sk_buff *skb, 248 int rtap_space) 249 { 250 struct { 251 struct ieee80211_hdr_3addr hdr; 252 u8 category; 253 u8 action_code; 254 } __packed __aligned(2) action; 255 256 if (!sdata) 257 return; 258 259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 260 261 if (skb->len < rtap_space + sizeof(action) + 262 VHT_MUMIMO_GROUPS_DATA_LEN) 263 return; 264 265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 266 return; 267 268 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 269 270 if (!ieee80211_is_action(action.hdr.frame_control)) 271 return; 272 273 if (action.category != WLAN_CATEGORY_VHT) 274 return; 275 276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 277 return; 278 279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 280 return; 281 282 skb = skb_copy(skb, GFP_ATOMIC); 283 if (!skb) 284 return; 285 286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 287 } 288 289 /* 290 * ieee80211_add_rx_radiotap_header - add radiotap header 291 * 292 * add a radiotap header containing all the fields which the hardware provided. 293 */ 294 static void 295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 296 struct sk_buff *skb, 297 struct ieee80211_rate *rate, 298 int rtap_len, bool has_fcs) 299 { 300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 301 struct ieee80211_radiotap_header *rthdr; 302 unsigned char *pos; 303 __le32 *it_present; 304 u32 it_present_val; 305 u16 rx_flags = 0; 306 u16 channel_flags = 0; 307 int mpdulen, chain; 308 unsigned long chains = status->chains; 309 struct ieee80211_vendor_radiotap rtap = {}; 310 struct ieee80211_radiotap_he he = {}; 311 struct ieee80211_radiotap_he_mu he_mu = {}; 312 struct ieee80211_radiotap_lsig lsig = {}; 313 314 if (status->flag & RX_FLAG_RADIOTAP_HE) { 315 he = *(struct ieee80211_radiotap_he *)skb->data; 316 skb_pull(skb, sizeof(he)); 317 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 322 skb_pull(skb, sizeof(he_mu)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 327 skb_pull(skb, sizeof(lsig)); 328 } 329 330 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 331 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 332 /* rtap.len and rtap.pad are undone immediately */ 333 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 334 } 335 336 mpdulen = skb->len; 337 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 338 mpdulen += FCS_LEN; 339 340 rthdr = skb_push(skb, rtap_len); 341 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 342 it_present = &rthdr->it_present; 343 344 /* radiotap header, set always present flags */ 345 rthdr->it_len = cpu_to_le16(rtap_len); 346 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 347 BIT(IEEE80211_RADIOTAP_CHANNEL) | 348 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 349 350 if (!status->chains) 351 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 352 353 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 354 it_present_val |= 355 BIT(IEEE80211_RADIOTAP_EXT) | 356 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 357 put_unaligned_le32(it_present_val, it_present); 358 it_present++; 359 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 360 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 361 } 362 363 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 364 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 365 BIT(IEEE80211_RADIOTAP_EXT); 366 put_unaligned_le32(it_present_val, it_present); 367 it_present++; 368 it_present_val = rtap.present; 369 } 370 371 put_unaligned_le32(it_present_val, it_present); 372 373 /* This references through an offset into it_optional[] rather 374 * than via it_present otherwise later uses of pos will cause 375 * the compiler to think we have walked past the end of the 376 * struct member. 377 */ 378 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 379 380 /* the order of the following fields is important */ 381 382 /* IEEE80211_RADIOTAP_TSFT */ 383 if (ieee80211_have_rx_timestamp(status)) { 384 /* padding */ 385 while ((pos - (u8 *)rthdr) & 7) 386 *pos++ = 0; 387 put_unaligned_le64( 388 ieee80211_calculate_rx_timestamp(local, status, 389 mpdulen, 0), 390 pos); 391 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 392 pos += 8; 393 } 394 395 /* IEEE80211_RADIOTAP_FLAGS */ 396 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 397 *pos |= IEEE80211_RADIOTAP_F_FCS; 398 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 399 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 400 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 401 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 402 pos++; 403 404 /* IEEE80211_RADIOTAP_RATE */ 405 if (!rate || status->encoding != RX_ENC_LEGACY) { 406 /* 407 * Without rate information don't add it. If we have, 408 * MCS information is a separate field in radiotap, 409 * added below. The byte here is needed as padding 410 * for the channel though, so initialise it to 0. 411 */ 412 *pos = 0; 413 } else { 414 int shift = 0; 415 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 416 if (status->bw == RATE_INFO_BW_10) 417 shift = 1; 418 else if (status->bw == RATE_INFO_BW_5) 419 shift = 2; 420 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 421 } 422 pos++; 423 424 /* IEEE80211_RADIOTAP_CHANNEL */ 425 /* TODO: frequency offset in KHz */ 426 put_unaligned_le16(status->freq, pos); 427 pos += 2; 428 if (status->bw == RATE_INFO_BW_10) 429 channel_flags |= IEEE80211_CHAN_HALF; 430 else if (status->bw == RATE_INFO_BW_5) 431 channel_flags |= IEEE80211_CHAN_QUARTER; 432 433 if (status->band == NL80211_BAND_5GHZ || 434 status->band == NL80211_BAND_6GHZ) 435 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 436 else if (status->encoding != RX_ENC_LEGACY) 437 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 438 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 439 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 440 else if (rate) 441 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 442 else 443 channel_flags |= IEEE80211_CHAN_2GHZ; 444 put_unaligned_le16(channel_flags, pos); 445 pos += 2; 446 447 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 448 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 449 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 450 *pos = status->signal; 451 rthdr->it_present |= 452 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 453 pos++; 454 } 455 456 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 457 458 if (!status->chains) { 459 /* IEEE80211_RADIOTAP_ANTENNA */ 460 *pos = status->antenna; 461 pos++; 462 } 463 464 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 465 466 /* IEEE80211_RADIOTAP_RX_FLAGS */ 467 /* ensure 2 byte alignment for the 2 byte field as required */ 468 if ((pos - (u8 *)rthdr) & 1) 469 *pos++ = 0; 470 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 471 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 472 put_unaligned_le16(rx_flags, pos); 473 pos += 2; 474 475 if (status->encoding == RX_ENC_HT) { 476 unsigned int stbc; 477 478 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 479 *pos = local->hw.radiotap_mcs_details; 480 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 481 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 482 if (status->enc_flags & RX_ENC_FLAG_LDPC) 483 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 484 pos++; 485 *pos = 0; 486 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 487 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 488 if (status->bw == RATE_INFO_BW_40) 489 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 490 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 491 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 492 if (status->enc_flags & RX_ENC_FLAG_LDPC) 493 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 494 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 495 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 496 pos++; 497 *pos++ = status->rate_idx; 498 } 499 500 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 501 u16 flags = 0; 502 503 /* ensure 4 byte alignment */ 504 while ((pos - (u8 *)rthdr) & 3) 505 pos++; 506 rthdr->it_present |= 507 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 508 put_unaligned_le32(status->ampdu_reference, pos); 509 pos += 4; 510 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 511 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 512 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 513 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 514 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 515 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 516 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 517 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 518 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 519 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 520 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 521 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 522 put_unaligned_le16(flags, pos); 523 pos += 2; 524 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 525 *pos++ = status->ampdu_delimiter_crc; 526 else 527 *pos++ = 0; 528 *pos++ = 0; 529 } 530 531 if (status->encoding == RX_ENC_VHT) { 532 u16 known = local->hw.radiotap_vht_details; 533 534 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 535 put_unaligned_le16(known, pos); 536 pos += 2; 537 /* flags */ 538 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 539 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 540 /* in VHT, STBC is binary */ 541 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 542 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 543 if (status->enc_flags & RX_ENC_FLAG_BF) 544 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 545 pos++; 546 /* bandwidth */ 547 switch (status->bw) { 548 case RATE_INFO_BW_80: 549 *pos++ = 4; 550 break; 551 case RATE_INFO_BW_160: 552 *pos++ = 11; 553 break; 554 case RATE_INFO_BW_40: 555 *pos++ = 1; 556 break; 557 default: 558 *pos++ = 0; 559 } 560 /* MCS/NSS */ 561 *pos = (status->rate_idx << 4) | status->nss; 562 pos += 4; 563 /* coding field */ 564 if (status->enc_flags & RX_ENC_FLAG_LDPC) 565 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 566 pos++; 567 /* group ID */ 568 pos++; 569 /* partial_aid */ 570 pos += 2; 571 } 572 573 if (local->hw.radiotap_timestamp.units_pos >= 0) { 574 u16 accuracy = 0; 575 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 576 577 rthdr->it_present |= 578 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 579 580 /* ensure 8 byte alignment */ 581 while ((pos - (u8 *)rthdr) & 7) 582 pos++; 583 584 put_unaligned_le64(status->device_timestamp, pos); 585 pos += sizeof(u64); 586 587 if (local->hw.radiotap_timestamp.accuracy >= 0) { 588 accuracy = local->hw.radiotap_timestamp.accuracy; 589 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 590 } 591 put_unaligned_le16(accuracy, pos); 592 pos += sizeof(u16); 593 594 *pos++ = local->hw.radiotap_timestamp.units_pos; 595 *pos++ = flags; 596 } 597 598 if (status->encoding == RX_ENC_HE && 599 status->flag & RX_FLAG_RADIOTAP_HE) { 600 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 601 602 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 603 he.data6 |= HE_PREP(DATA6_NSTS, 604 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 605 status->enc_flags)); 606 he.data3 |= HE_PREP(DATA3_STBC, 1); 607 } else { 608 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 609 } 610 611 #define CHECK_GI(s) \ 612 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 613 (int)NL80211_RATE_INFO_HE_GI_##s) 614 615 CHECK_GI(0_8); 616 CHECK_GI(1_6); 617 CHECK_GI(3_2); 618 619 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 620 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 621 he.data3 |= HE_PREP(DATA3_CODING, 622 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 623 624 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 625 626 switch (status->bw) { 627 case RATE_INFO_BW_20: 628 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 629 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 630 break; 631 case RATE_INFO_BW_40: 632 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 633 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 634 break; 635 case RATE_INFO_BW_80: 636 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 637 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 638 break; 639 case RATE_INFO_BW_160: 640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 641 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 642 break; 643 case RATE_INFO_BW_HE_RU: 644 #define CHECK_RU_ALLOC(s) \ 645 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 646 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 647 648 CHECK_RU_ALLOC(26); 649 CHECK_RU_ALLOC(52); 650 CHECK_RU_ALLOC(106); 651 CHECK_RU_ALLOC(242); 652 CHECK_RU_ALLOC(484); 653 CHECK_RU_ALLOC(996); 654 CHECK_RU_ALLOC(2x996); 655 656 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 657 status->he_ru + 4); 658 break; 659 default: 660 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 661 } 662 663 /* ensure 2 byte alignment */ 664 while ((pos - (u8 *)rthdr) & 1) 665 pos++; 666 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 667 memcpy(pos, &he, sizeof(he)); 668 pos += sizeof(he); 669 } 670 671 if (status->encoding == RX_ENC_HE && 672 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 673 /* ensure 2 byte alignment */ 674 while ((pos - (u8 *)rthdr) & 1) 675 pos++; 676 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 677 memcpy(pos, &he_mu, sizeof(he_mu)); 678 pos += sizeof(he_mu); 679 } 680 681 if (status->flag & RX_FLAG_NO_PSDU) { 682 rthdr->it_present |= 683 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 684 *pos++ = status->zero_length_psdu_type; 685 } 686 687 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 688 /* ensure 2 byte alignment */ 689 while ((pos - (u8 *)rthdr) & 1) 690 pos++; 691 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 692 memcpy(pos, &lsig, sizeof(lsig)); 693 pos += sizeof(lsig); 694 } 695 696 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 697 *pos++ = status->chain_signal[chain]; 698 *pos++ = chain; 699 } 700 701 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 702 /* ensure 2 byte alignment for the vendor field as required */ 703 if ((pos - (u8 *)rthdr) & 1) 704 *pos++ = 0; 705 *pos++ = rtap.oui[0]; 706 *pos++ = rtap.oui[1]; 707 *pos++ = rtap.oui[2]; 708 *pos++ = rtap.subns; 709 put_unaligned_le16(rtap.len, pos); 710 pos += 2; 711 /* align the actual payload as requested */ 712 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 713 *pos++ = 0; 714 /* data (and possible padding) already follows */ 715 } 716 } 717 718 static struct sk_buff * 719 ieee80211_make_monitor_skb(struct ieee80211_local *local, 720 struct sk_buff **origskb, 721 struct ieee80211_rate *rate, 722 int rtap_space, bool use_origskb) 723 { 724 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 725 int rt_hdrlen, needed_headroom; 726 struct sk_buff *skb; 727 728 /* room for the radiotap header based on driver features */ 729 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 730 needed_headroom = rt_hdrlen - rtap_space; 731 732 if (use_origskb) { 733 /* only need to expand headroom if necessary */ 734 skb = *origskb; 735 *origskb = NULL; 736 737 /* 738 * This shouldn't trigger often because most devices have an 739 * RX header they pull before we get here, and that should 740 * be big enough for our radiotap information. We should 741 * probably export the length to drivers so that we can have 742 * them allocate enough headroom to start with. 743 */ 744 if (skb_headroom(skb) < needed_headroom && 745 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 746 dev_kfree_skb(skb); 747 return NULL; 748 } 749 } else { 750 /* 751 * Need to make a copy and possibly remove radiotap header 752 * and FCS from the original. 753 */ 754 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 755 0, GFP_ATOMIC); 756 757 if (!skb) 758 return NULL; 759 } 760 761 /* prepend radiotap information */ 762 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 763 764 skb_reset_mac_header(skb); 765 skb->ip_summed = CHECKSUM_UNNECESSARY; 766 skb->pkt_type = PACKET_OTHERHOST; 767 skb->protocol = htons(ETH_P_802_2); 768 769 return skb; 770 } 771 772 /* 773 * This function copies a received frame to all monitor interfaces and 774 * returns a cleaned-up SKB that no longer includes the FCS nor the 775 * radiotap header the driver might have added. 776 */ 777 static struct sk_buff * 778 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 779 struct ieee80211_rate *rate) 780 { 781 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 782 struct ieee80211_sub_if_data *sdata; 783 struct sk_buff *monskb = NULL; 784 int present_fcs_len = 0; 785 unsigned int rtap_space = 0; 786 struct ieee80211_sub_if_data *monitor_sdata = 787 rcu_dereference(local->monitor_sdata); 788 bool only_monitor = false; 789 unsigned int min_head_len; 790 791 if (status->flag & RX_FLAG_RADIOTAP_HE) 792 rtap_space += sizeof(struct ieee80211_radiotap_he); 793 794 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 795 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 796 797 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 798 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 799 800 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 801 struct ieee80211_vendor_radiotap *rtap = 802 (void *)(origskb->data + rtap_space); 803 804 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 805 } 806 807 min_head_len = rtap_space; 808 809 /* 810 * First, we may need to make a copy of the skb because 811 * (1) we need to modify it for radiotap (if not present), and 812 * (2) the other RX handlers will modify the skb we got. 813 * 814 * We don't need to, of course, if we aren't going to return 815 * the SKB because it has a bad FCS/PLCP checksum. 816 */ 817 818 if (!(status->flag & RX_FLAG_NO_PSDU)) { 819 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 820 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 821 /* driver bug */ 822 WARN_ON(1); 823 dev_kfree_skb(origskb); 824 return NULL; 825 } 826 present_fcs_len = FCS_LEN; 827 } 828 829 /* also consider the hdr->frame_control */ 830 min_head_len += 2; 831 } 832 833 /* ensure that the expected data elements are in skb head */ 834 if (!pskb_may_pull(origskb, min_head_len)) { 835 dev_kfree_skb(origskb); 836 return NULL; 837 } 838 839 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 840 841 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 842 if (only_monitor) { 843 dev_kfree_skb(origskb); 844 return NULL; 845 } 846 847 return ieee80211_clean_skb(origskb, present_fcs_len, 848 rtap_space); 849 } 850 851 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 852 853 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 854 bool last_monitor = list_is_last(&sdata->u.mntr.list, 855 &local->mon_list); 856 857 if (!monskb) 858 monskb = ieee80211_make_monitor_skb(local, &origskb, 859 rate, rtap_space, 860 only_monitor && 861 last_monitor); 862 863 if (monskb) { 864 struct sk_buff *skb; 865 866 if (last_monitor) { 867 skb = monskb; 868 monskb = NULL; 869 } else { 870 skb = skb_clone(monskb, GFP_ATOMIC); 871 } 872 873 if (skb) { 874 skb->dev = sdata->dev; 875 dev_sw_netstats_rx_add(skb->dev, skb->len); 876 netif_receive_skb(skb); 877 } 878 } 879 880 if (last_monitor) 881 break; 882 } 883 884 /* this happens if last_monitor was erroneously false */ 885 dev_kfree_skb(monskb); 886 887 /* ditto */ 888 if (!origskb) 889 return NULL; 890 891 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 892 } 893 894 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 895 { 896 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 897 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 898 int tid, seqno_idx, security_idx; 899 900 /* does the frame have a qos control field? */ 901 if (ieee80211_is_data_qos(hdr->frame_control)) { 902 u8 *qc = ieee80211_get_qos_ctl(hdr); 903 /* frame has qos control */ 904 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 905 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 906 status->rx_flags |= IEEE80211_RX_AMSDU; 907 908 seqno_idx = tid; 909 security_idx = tid; 910 } else { 911 /* 912 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 913 * 914 * Sequence numbers for management frames, QoS data 915 * frames with a broadcast/multicast address in the 916 * Address 1 field, and all non-QoS data frames sent 917 * by QoS STAs are assigned using an additional single 918 * modulo-4096 counter, [...] 919 * 920 * We also use that counter for non-QoS STAs. 921 */ 922 seqno_idx = IEEE80211_NUM_TIDS; 923 security_idx = 0; 924 if (ieee80211_is_mgmt(hdr->frame_control)) 925 security_idx = IEEE80211_NUM_TIDS; 926 tid = 0; 927 } 928 929 rx->seqno_idx = seqno_idx; 930 rx->security_idx = security_idx; 931 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 932 * For now, set skb->priority to 0 for other cases. */ 933 rx->skb->priority = (tid > 7) ? 0 : tid; 934 } 935 936 /** 937 * DOC: Packet alignment 938 * 939 * Drivers always need to pass packets that are aligned to two-byte boundaries 940 * to the stack. 941 * 942 * Additionally, should, if possible, align the payload data in a way that 943 * guarantees that the contained IP header is aligned to a four-byte 944 * boundary. In the case of regular frames, this simply means aligning the 945 * payload to a four-byte boundary (because either the IP header is directly 946 * contained, or IV/RFC1042 headers that have a length divisible by four are 947 * in front of it). If the payload data is not properly aligned and the 948 * architecture doesn't support efficient unaligned operations, mac80211 949 * will align the data. 950 * 951 * With A-MSDU frames, however, the payload data address must yield two modulo 952 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 953 * push the IP header further back to a multiple of four again. Thankfully, the 954 * specs were sane enough this time around to require padding each A-MSDU 955 * subframe to a length that is a multiple of four. 956 * 957 * Padding like Atheros hardware adds which is between the 802.11 header and 958 * the payload is not supported, the driver is required to move the 802.11 959 * header to be directly in front of the payload in that case. 960 */ 961 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 962 { 963 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 964 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 965 #endif 966 } 967 968 969 /* rx handlers */ 970 971 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 972 { 973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 974 975 if (is_multicast_ether_addr(hdr->addr1)) 976 return 0; 977 978 return ieee80211_is_robust_mgmt_frame(skb); 979 } 980 981 982 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 983 { 984 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 985 986 if (!is_multicast_ether_addr(hdr->addr1)) 987 return 0; 988 989 return ieee80211_is_robust_mgmt_frame(skb); 990 } 991 992 993 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 994 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 995 { 996 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 997 struct ieee80211_mmie *mmie; 998 struct ieee80211_mmie_16 *mmie16; 999 1000 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 1001 return -1; 1002 1003 if (!ieee80211_is_robust_mgmt_frame(skb) && 1004 !ieee80211_is_beacon(hdr->frame_control)) 1005 return -1; /* not a robust management frame */ 1006 1007 mmie = (struct ieee80211_mmie *) 1008 (skb->data + skb->len - sizeof(*mmie)); 1009 if (mmie->element_id == WLAN_EID_MMIE && 1010 mmie->length == sizeof(*mmie) - 2) 1011 return le16_to_cpu(mmie->key_id); 1012 1013 mmie16 = (struct ieee80211_mmie_16 *) 1014 (skb->data + skb->len - sizeof(*mmie16)); 1015 if (skb->len >= 24 + sizeof(*mmie16) && 1016 mmie16->element_id == WLAN_EID_MMIE && 1017 mmie16->length == sizeof(*mmie16) - 2) 1018 return le16_to_cpu(mmie16->key_id); 1019 1020 return -1; 1021 } 1022 1023 static int ieee80211_get_keyid(struct sk_buff *skb) 1024 { 1025 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1026 __le16 fc = hdr->frame_control; 1027 int hdrlen = ieee80211_hdrlen(fc); 1028 u8 keyid; 1029 1030 /* WEP, TKIP, CCMP and GCMP */ 1031 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1032 return -EINVAL; 1033 1034 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1035 1036 keyid >>= 6; 1037 1038 return keyid; 1039 } 1040 1041 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1042 { 1043 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1044 char *dev_addr = rx->sdata->vif.addr; 1045 1046 if (ieee80211_is_data(hdr->frame_control)) { 1047 if (is_multicast_ether_addr(hdr->addr1)) { 1048 if (ieee80211_has_tods(hdr->frame_control) || 1049 !ieee80211_has_fromds(hdr->frame_control)) 1050 return RX_DROP_MONITOR; 1051 if (ether_addr_equal(hdr->addr3, dev_addr)) 1052 return RX_DROP_MONITOR; 1053 } else { 1054 if (!ieee80211_has_a4(hdr->frame_control)) 1055 return RX_DROP_MONITOR; 1056 if (ether_addr_equal(hdr->addr4, dev_addr)) 1057 return RX_DROP_MONITOR; 1058 } 1059 } 1060 1061 /* If there is not an established peer link and this is not a peer link 1062 * establisment frame, beacon or probe, drop the frame. 1063 */ 1064 1065 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1066 struct ieee80211_mgmt *mgmt; 1067 1068 if (!ieee80211_is_mgmt(hdr->frame_control)) 1069 return RX_DROP_MONITOR; 1070 1071 if (ieee80211_is_action(hdr->frame_control)) { 1072 u8 category; 1073 1074 /* make sure category field is present */ 1075 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1076 return RX_DROP_MONITOR; 1077 1078 mgmt = (struct ieee80211_mgmt *)hdr; 1079 category = mgmt->u.action.category; 1080 if (category != WLAN_CATEGORY_MESH_ACTION && 1081 category != WLAN_CATEGORY_SELF_PROTECTED) 1082 return RX_DROP_MONITOR; 1083 return RX_CONTINUE; 1084 } 1085 1086 if (ieee80211_is_probe_req(hdr->frame_control) || 1087 ieee80211_is_probe_resp(hdr->frame_control) || 1088 ieee80211_is_beacon(hdr->frame_control) || 1089 ieee80211_is_auth(hdr->frame_control)) 1090 return RX_CONTINUE; 1091 1092 return RX_DROP_MONITOR; 1093 } 1094 1095 return RX_CONTINUE; 1096 } 1097 1098 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1099 int index) 1100 { 1101 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1102 struct sk_buff *tail = skb_peek_tail(frames); 1103 struct ieee80211_rx_status *status; 1104 1105 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1106 return true; 1107 1108 if (!tail) 1109 return false; 1110 1111 status = IEEE80211_SKB_RXCB(tail); 1112 if (status->flag & RX_FLAG_AMSDU_MORE) 1113 return false; 1114 1115 return true; 1116 } 1117 1118 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1119 struct tid_ampdu_rx *tid_agg_rx, 1120 int index, 1121 struct sk_buff_head *frames) 1122 { 1123 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1124 struct sk_buff *skb; 1125 struct ieee80211_rx_status *status; 1126 1127 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1128 1129 if (skb_queue_empty(skb_list)) 1130 goto no_frame; 1131 1132 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1133 __skb_queue_purge(skb_list); 1134 goto no_frame; 1135 } 1136 1137 /* release frames from the reorder ring buffer */ 1138 tid_agg_rx->stored_mpdu_num--; 1139 while ((skb = __skb_dequeue(skb_list))) { 1140 status = IEEE80211_SKB_RXCB(skb); 1141 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1142 __skb_queue_tail(frames, skb); 1143 } 1144 1145 no_frame: 1146 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1147 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1148 } 1149 1150 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1151 struct tid_ampdu_rx *tid_agg_rx, 1152 u16 head_seq_num, 1153 struct sk_buff_head *frames) 1154 { 1155 int index; 1156 1157 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1158 1159 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1160 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1161 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1162 frames); 1163 } 1164 } 1165 1166 /* 1167 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1168 * the skb was added to the buffer longer than this time ago, the earlier 1169 * frames that have not yet been received are assumed to be lost and the skb 1170 * can be released for processing. This may also release other skb's from the 1171 * reorder buffer if there are no additional gaps between the frames. 1172 * 1173 * Callers must hold tid_agg_rx->reorder_lock. 1174 */ 1175 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1176 1177 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1178 struct tid_ampdu_rx *tid_agg_rx, 1179 struct sk_buff_head *frames) 1180 { 1181 int index, i, j; 1182 1183 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1184 1185 /* release the buffer until next missing frame */ 1186 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1187 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1188 tid_agg_rx->stored_mpdu_num) { 1189 /* 1190 * No buffers ready to be released, but check whether any 1191 * frames in the reorder buffer have timed out. 1192 */ 1193 int skipped = 1; 1194 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1195 j = (j + 1) % tid_agg_rx->buf_size) { 1196 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1197 skipped++; 1198 continue; 1199 } 1200 if (skipped && 1201 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1202 HT_RX_REORDER_BUF_TIMEOUT)) 1203 goto set_release_timer; 1204 1205 /* don't leave incomplete A-MSDUs around */ 1206 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1207 i = (i + 1) % tid_agg_rx->buf_size) 1208 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1209 1210 ht_dbg_ratelimited(sdata, 1211 "release an RX reorder frame due to timeout on earlier frames\n"); 1212 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1213 frames); 1214 1215 /* 1216 * Increment the head seq# also for the skipped slots. 1217 */ 1218 tid_agg_rx->head_seq_num = 1219 (tid_agg_rx->head_seq_num + 1220 skipped) & IEEE80211_SN_MASK; 1221 skipped = 0; 1222 } 1223 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1224 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1225 frames); 1226 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1227 } 1228 1229 if (tid_agg_rx->stored_mpdu_num) { 1230 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1231 1232 for (; j != (index - 1) % tid_agg_rx->buf_size; 1233 j = (j + 1) % tid_agg_rx->buf_size) { 1234 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1235 break; 1236 } 1237 1238 set_release_timer: 1239 1240 if (!tid_agg_rx->removed) 1241 mod_timer(&tid_agg_rx->reorder_timer, 1242 tid_agg_rx->reorder_time[j] + 1 + 1243 HT_RX_REORDER_BUF_TIMEOUT); 1244 } else { 1245 del_timer(&tid_agg_rx->reorder_timer); 1246 } 1247 } 1248 1249 /* 1250 * As this function belongs to the RX path it must be under 1251 * rcu_read_lock protection. It returns false if the frame 1252 * can be processed immediately, true if it was consumed. 1253 */ 1254 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1255 struct tid_ampdu_rx *tid_agg_rx, 1256 struct sk_buff *skb, 1257 struct sk_buff_head *frames) 1258 { 1259 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1260 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1261 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1262 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1263 u16 head_seq_num, buf_size; 1264 int index; 1265 bool ret = true; 1266 1267 spin_lock(&tid_agg_rx->reorder_lock); 1268 1269 /* 1270 * Offloaded BA sessions have no known starting sequence number so pick 1271 * one from first Rxed frame for this tid after BA was started. 1272 */ 1273 if (unlikely(tid_agg_rx->auto_seq)) { 1274 tid_agg_rx->auto_seq = false; 1275 tid_agg_rx->ssn = mpdu_seq_num; 1276 tid_agg_rx->head_seq_num = mpdu_seq_num; 1277 } 1278 1279 buf_size = tid_agg_rx->buf_size; 1280 head_seq_num = tid_agg_rx->head_seq_num; 1281 1282 /* 1283 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1284 * be reordered. 1285 */ 1286 if (unlikely(!tid_agg_rx->started)) { 1287 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1288 ret = false; 1289 goto out; 1290 } 1291 tid_agg_rx->started = true; 1292 } 1293 1294 /* frame with out of date sequence number */ 1295 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1296 dev_kfree_skb(skb); 1297 goto out; 1298 } 1299 1300 /* 1301 * If frame the sequence number exceeds our buffering window 1302 * size release some previous frames to make room for this one. 1303 */ 1304 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1305 head_seq_num = ieee80211_sn_inc( 1306 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1307 /* release stored frames up to new head to stack */ 1308 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1309 head_seq_num, frames); 1310 } 1311 1312 /* Now the new frame is always in the range of the reordering buffer */ 1313 1314 index = mpdu_seq_num % tid_agg_rx->buf_size; 1315 1316 /* check if we already stored this frame */ 1317 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1318 dev_kfree_skb(skb); 1319 goto out; 1320 } 1321 1322 /* 1323 * If the current MPDU is in the right order and nothing else 1324 * is stored we can process it directly, no need to buffer it. 1325 * If it is first but there's something stored, we may be able 1326 * to release frames after this one. 1327 */ 1328 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1329 tid_agg_rx->stored_mpdu_num == 0) { 1330 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1331 tid_agg_rx->head_seq_num = 1332 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1333 ret = false; 1334 goto out; 1335 } 1336 1337 /* put the frame in the reordering buffer */ 1338 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1339 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1340 tid_agg_rx->reorder_time[index] = jiffies; 1341 tid_agg_rx->stored_mpdu_num++; 1342 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1343 } 1344 1345 out: 1346 spin_unlock(&tid_agg_rx->reorder_lock); 1347 return ret; 1348 } 1349 1350 /* 1351 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1352 * true if the MPDU was buffered, false if it should be processed. 1353 */ 1354 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1355 struct sk_buff_head *frames) 1356 { 1357 struct sk_buff *skb = rx->skb; 1358 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1359 struct sta_info *sta = rx->sta; 1360 struct tid_ampdu_rx *tid_agg_rx; 1361 u16 sc; 1362 u8 tid, ack_policy; 1363 1364 if (!ieee80211_is_data_qos(hdr->frame_control) || 1365 is_multicast_ether_addr(hdr->addr1)) 1366 goto dont_reorder; 1367 1368 /* 1369 * filter the QoS data rx stream according to 1370 * STA/TID and check if this STA/TID is on aggregation 1371 */ 1372 1373 if (!sta) 1374 goto dont_reorder; 1375 1376 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1377 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1378 tid = ieee80211_get_tid(hdr); 1379 1380 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1381 if (!tid_agg_rx) { 1382 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1383 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1384 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1385 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1386 WLAN_BACK_RECIPIENT, 1387 WLAN_REASON_QSTA_REQUIRE_SETUP); 1388 goto dont_reorder; 1389 } 1390 1391 /* qos null data frames are excluded */ 1392 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1393 goto dont_reorder; 1394 1395 /* not part of a BA session */ 1396 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1397 goto dont_reorder; 1398 1399 /* new, potentially un-ordered, ampdu frame - process it */ 1400 1401 /* reset session timer */ 1402 if (tid_agg_rx->timeout) 1403 tid_agg_rx->last_rx = jiffies; 1404 1405 /* if this mpdu is fragmented - terminate rx aggregation session */ 1406 sc = le16_to_cpu(hdr->seq_ctrl); 1407 if (sc & IEEE80211_SCTL_FRAG) { 1408 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1409 return; 1410 } 1411 1412 /* 1413 * No locking needed -- we will only ever process one 1414 * RX packet at a time, and thus own tid_agg_rx. All 1415 * other code manipulating it needs to (and does) make 1416 * sure that we cannot get to it any more before doing 1417 * anything with it. 1418 */ 1419 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1420 frames)) 1421 return; 1422 1423 dont_reorder: 1424 __skb_queue_tail(frames, skb); 1425 } 1426 1427 static ieee80211_rx_result debug_noinline 1428 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1429 { 1430 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1431 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1432 1433 if (status->flag & RX_FLAG_DUP_VALIDATED) 1434 return RX_CONTINUE; 1435 1436 /* 1437 * Drop duplicate 802.11 retransmissions 1438 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1439 */ 1440 1441 if (rx->skb->len < 24) 1442 return RX_CONTINUE; 1443 1444 if (ieee80211_is_ctl(hdr->frame_control) || 1445 ieee80211_is_any_nullfunc(hdr->frame_control) || 1446 is_multicast_ether_addr(hdr->addr1)) 1447 return RX_CONTINUE; 1448 1449 if (!rx->sta) 1450 return RX_CONTINUE; 1451 1452 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1453 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1454 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1455 rx->link_sta->rx_stats.num_duplicates++; 1456 return RX_DROP_UNUSABLE; 1457 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1458 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1459 } 1460 1461 return RX_CONTINUE; 1462 } 1463 1464 static ieee80211_rx_result debug_noinline 1465 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1466 { 1467 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1468 1469 /* Drop disallowed frame classes based on STA auth/assoc state; 1470 * IEEE 802.11, Chap 5.5. 1471 * 1472 * mac80211 filters only based on association state, i.e. it drops 1473 * Class 3 frames from not associated stations. hostapd sends 1474 * deauth/disassoc frames when needed. In addition, hostapd is 1475 * responsible for filtering on both auth and assoc states. 1476 */ 1477 1478 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1479 return ieee80211_rx_mesh_check(rx); 1480 1481 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1482 ieee80211_is_pspoll(hdr->frame_control)) && 1483 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1484 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1485 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1486 /* 1487 * accept port control frames from the AP even when it's not 1488 * yet marked ASSOC to prevent a race where we don't set the 1489 * assoc bit quickly enough before it sends the first frame 1490 */ 1491 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1492 ieee80211_is_data_present(hdr->frame_control)) { 1493 unsigned int hdrlen; 1494 __be16 ethertype; 1495 1496 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1497 1498 if (rx->skb->len < hdrlen + 8) 1499 return RX_DROP_MONITOR; 1500 1501 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1502 if (ethertype == rx->sdata->control_port_protocol) 1503 return RX_CONTINUE; 1504 } 1505 1506 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1507 cfg80211_rx_spurious_frame(rx->sdata->dev, 1508 hdr->addr2, 1509 GFP_ATOMIC)) 1510 return RX_DROP_UNUSABLE; 1511 1512 return RX_DROP_MONITOR; 1513 } 1514 1515 return RX_CONTINUE; 1516 } 1517 1518 1519 static ieee80211_rx_result debug_noinline 1520 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1521 { 1522 struct ieee80211_local *local; 1523 struct ieee80211_hdr *hdr; 1524 struct sk_buff *skb; 1525 1526 local = rx->local; 1527 skb = rx->skb; 1528 hdr = (struct ieee80211_hdr *) skb->data; 1529 1530 if (!local->pspolling) 1531 return RX_CONTINUE; 1532 1533 if (!ieee80211_has_fromds(hdr->frame_control)) 1534 /* this is not from AP */ 1535 return RX_CONTINUE; 1536 1537 if (!ieee80211_is_data(hdr->frame_control)) 1538 return RX_CONTINUE; 1539 1540 if (!ieee80211_has_moredata(hdr->frame_control)) { 1541 /* AP has no more frames buffered for us */ 1542 local->pspolling = false; 1543 return RX_CONTINUE; 1544 } 1545 1546 /* more data bit is set, let's request a new frame from the AP */ 1547 ieee80211_send_pspoll(local, rx->sdata); 1548 1549 return RX_CONTINUE; 1550 } 1551 1552 static void sta_ps_start(struct sta_info *sta) 1553 { 1554 struct ieee80211_sub_if_data *sdata = sta->sdata; 1555 struct ieee80211_local *local = sdata->local; 1556 struct ps_data *ps; 1557 int tid; 1558 1559 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1560 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1561 ps = &sdata->bss->ps; 1562 else 1563 return; 1564 1565 atomic_inc(&ps->num_sta_ps); 1566 set_sta_flag(sta, WLAN_STA_PS_STA); 1567 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1568 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1569 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1570 sta->sta.addr, sta->sta.aid); 1571 1572 ieee80211_clear_fast_xmit(sta); 1573 1574 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1575 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1576 struct txq_info *txqi = to_txq_info(txq); 1577 1578 spin_lock(&local->active_txq_lock[txq->ac]); 1579 if (!list_empty(&txqi->schedule_order)) 1580 list_del_init(&txqi->schedule_order); 1581 spin_unlock(&local->active_txq_lock[txq->ac]); 1582 1583 if (txq_has_queue(txq)) 1584 set_bit(tid, &sta->txq_buffered_tids); 1585 else 1586 clear_bit(tid, &sta->txq_buffered_tids); 1587 } 1588 } 1589 1590 static void sta_ps_end(struct sta_info *sta) 1591 { 1592 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1593 sta->sta.addr, sta->sta.aid); 1594 1595 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1596 /* 1597 * Clear the flag only if the other one is still set 1598 * so that the TX path won't start TX'ing new frames 1599 * directly ... In the case that the driver flag isn't 1600 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1601 */ 1602 clear_sta_flag(sta, WLAN_STA_PS_STA); 1603 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1604 sta->sta.addr, sta->sta.aid); 1605 return; 1606 } 1607 1608 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1609 clear_sta_flag(sta, WLAN_STA_PS_STA); 1610 ieee80211_sta_ps_deliver_wakeup(sta); 1611 } 1612 1613 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1614 { 1615 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1616 bool in_ps; 1617 1618 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1619 1620 /* Don't let the same PS state be set twice */ 1621 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1622 if ((start && in_ps) || (!start && !in_ps)) 1623 return -EINVAL; 1624 1625 if (start) 1626 sta_ps_start(sta); 1627 else 1628 sta_ps_end(sta); 1629 1630 return 0; 1631 } 1632 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1633 1634 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1635 { 1636 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1637 1638 if (test_sta_flag(sta, WLAN_STA_SP)) 1639 return; 1640 1641 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1642 ieee80211_sta_ps_deliver_poll_response(sta); 1643 else 1644 set_sta_flag(sta, WLAN_STA_PSPOLL); 1645 } 1646 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1647 1648 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1649 { 1650 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1651 int ac = ieee80211_ac_from_tid(tid); 1652 1653 /* 1654 * If this AC is not trigger-enabled do nothing unless the 1655 * driver is calling us after it already checked. 1656 * 1657 * NB: This could/should check a separate bitmap of trigger- 1658 * enabled queues, but for now we only implement uAPSD w/o 1659 * TSPEC changes to the ACs, so they're always the same. 1660 */ 1661 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1662 tid != IEEE80211_NUM_TIDS) 1663 return; 1664 1665 /* if we are in a service period, do nothing */ 1666 if (test_sta_flag(sta, WLAN_STA_SP)) 1667 return; 1668 1669 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1670 ieee80211_sta_ps_deliver_uapsd(sta); 1671 else 1672 set_sta_flag(sta, WLAN_STA_UAPSD); 1673 } 1674 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1675 1676 static ieee80211_rx_result debug_noinline 1677 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1678 { 1679 struct ieee80211_sub_if_data *sdata = rx->sdata; 1680 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1681 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1682 1683 if (!rx->sta) 1684 return RX_CONTINUE; 1685 1686 if (sdata->vif.type != NL80211_IFTYPE_AP && 1687 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1688 return RX_CONTINUE; 1689 1690 /* 1691 * The device handles station powersave, so don't do anything about 1692 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1693 * it to mac80211 since they're handled.) 1694 */ 1695 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1696 return RX_CONTINUE; 1697 1698 /* 1699 * Don't do anything if the station isn't already asleep. In 1700 * the uAPSD case, the station will probably be marked asleep, 1701 * in the PS-Poll case the station must be confused ... 1702 */ 1703 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1704 return RX_CONTINUE; 1705 1706 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1707 ieee80211_sta_pspoll(&rx->sta->sta); 1708 1709 /* Free PS Poll skb here instead of returning RX_DROP that would 1710 * count as an dropped frame. */ 1711 dev_kfree_skb(rx->skb); 1712 1713 return RX_QUEUED; 1714 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1715 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1716 ieee80211_has_pm(hdr->frame_control) && 1717 (ieee80211_is_data_qos(hdr->frame_control) || 1718 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1719 u8 tid = ieee80211_get_tid(hdr); 1720 1721 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1722 } 1723 1724 return RX_CONTINUE; 1725 } 1726 1727 static ieee80211_rx_result debug_noinline 1728 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1729 { 1730 struct sta_info *sta = rx->sta; 1731 struct link_sta_info *link_sta = rx->link_sta; 1732 struct sk_buff *skb = rx->skb; 1733 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1734 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1735 int i; 1736 1737 if (!sta || !link_sta) 1738 return RX_CONTINUE; 1739 1740 /* 1741 * Update last_rx only for IBSS packets which are for the current 1742 * BSSID and for station already AUTHORIZED to avoid keeping the 1743 * current IBSS network alive in cases where other STAs start 1744 * using different BSSID. This will also give the station another 1745 * chance to restart the authentication/authorization in case 1746 * something went wrong the first time. 1747 */ 1748 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1749 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1750 NL80211_IFTYPE_ADHOC); 1751 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1752 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1753 link_sta->rx_stats.last_rx = jiffies; 1754 if (ieee80211_is_data(hdr->frame_control) && 1755 !is_multicast_ether_addr(hdr->addr1)) 1756 link_sta->rx_stats.last_rate = 1757 sta_stats_encode_rate(status); 1758 } 1759 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1760 link_sta->rx_stats.last_rx = jiffies; 1761 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1762 !is_multicast_ether_addr(hdr->addr1)) { 1763 /* 1764 * Mesh beacons will update last_rx when if they are found to 1765 * match the current local configuration when processed. 1766 */ 1767 link_sta->rx_stats.last_rx = jiffies; 1768 if (ieee80211_is_data(hdr->frame_control)) 1769 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1770 } 1771 1772 link_sta->rx_stats.fragments++; 1773 1774 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1775 link_sta->rx_stats.bytes += rx->skb->len; 1776 u64_stats_update_end(&link_sta->rx_stats.syncp); 1777 1778 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1779 link_sta->rx_stats.last_signal = status->signal; 1780 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1781 -status->signal); 1782 } 1783 1784 if (status->chains) { 1785 link_sta->rx_stats.chains = status->chains; 1786 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1787 int signal = status->chain_signal[i]; 1788 1789 if (!(status->chains & BIT(i))) 1790 continue; 1791 1792 link_sta->rx_stats.chain_signal_last[i] = signal; 1793 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1794 -signal); 1795 } 1796 } 1797 1798 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1799 return RX_CONTINUE; 1800 1801 /* 1802 * Change STA power saving mode only at the end of a frame 1803 * exchange sequence, and only for a data or management 1804 * frame as specified in IEEE 802.11-2016 11.2.3.2 1805 */ 1806 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1807 !ieee80211_has_morefrags(hdr->frame_control) && 1808 !is_multicast_ether_addr(hdr->addr1) && 1809 (ieee80211_is_mgmt(hdr->frame_control) || 1810 ieee80211_is_data(hdr->frame_control)) && 1811 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1812 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1813 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1814 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1815 if (!ieee80211_has_pm(hdr->frame_control)) 1816 sta_ps_end(sta); 1817 } else { 1818 if (ieee80211_has_pm(hdr->frame_control)) 1819 sta_ps_start(sta); 1820 } 1821 } 1822 1823 /* mesh power save support */ 1824 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1825 ieee80211_mps_rx_h_sta_process(sta, hdr); 1826 1827 /* 1828 * Drop (qos-)data::nullfunc frames silently, since they 1829 * are used only to control station power saving mode. 1830 */ 1831 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1832 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1833 1834 /* 1835 * If we receive a 4-addr nullfunc frame from a STA 1836 * that was not moved to a 4-addr STA vlan yet send 1837 * the event to userspace and for older hostapd drop 1838 * the frame to the monitor interface. 1839 */ 1840 if (ieee80211_has_a4(hdr->frame_control) && 1841 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1842 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1843 !rx->sdata->u.vlan.sta))) { 1844 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1845 cfg80211_rx_unexpected_4addr_frame( 1846 rx->sdata->dev, sta->sta.addr, 1847 GFP_ATOMIC); 1848 return RX_DROP_MONITOR; 1849 } 1850 /* 1851 * Update counter and free packet here to avoid 1852 * counting this as a dropped packed. 1853 */ 1854 link_sta->rx_stats.packets++; 1855 dev_kfree_skb(rx->skb); 1856 return RX_QUEUED; 1857 } 1858 1859 return RX_CONTINUE; 1860 } /* ieee80211_rx_h_sta_process */ 1861 1862 static struct ieee80211_key * 1863 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1864 { 1865 struct ieee80211_key *key = NULL; 1866 int idx2; 1867 1868 /* Make sure key gets set if either BIGTK key index is set so that 1869 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1870 * Beacon frames and Beacon frames that claim to use another BIGTK key 1871 * index (i.e., a key that we do not have). 1872 */ 1873 1874 if (idx < 0) { 1875 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1876 idx2 = idx + 1; 1877 } else { 1878 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1879 idx2 = idx + 1; 1880 else 1881 idx2 = idx - 1; 1882 } 1883 1884 if (rx->link_sta) 1885 key = rcu_dereference(rx->link_sta->gtk[idx]); 1886 if (!key) 1887 key = rcu_dereference(rx->link->gtk[idx]); 1888 if (!key && rx->link_sta) 1889 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1890 if (!key) 1891 key = rcu_dereference(rx->link->gtk[idx2]); 1892 1893 return key; 1894 } 1895 1896 static ieee80211_rx_result debug_noinline 1897 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1898 { 1899 struct sk_buff *skb = rx->skb; 1900 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1901 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1902 int keyidx; 1903 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1904 struct ieee80211_key *sta_ptk = NULL; 1905 struct ieee80211_key *ptk_idx = NULL; 1906 int mmie_keyidx = -1; 1907 __le16 fc; 1908 1909 if (ieee80211_is_ext(hdr->frame_control)) 1910 return RX_CONTINUE; 1911 1912 /* 1913 * Key selection 101 1914 * 1915 * There are five types of keys: 1916 * - GTK (group keys) 1917 * - IGTK (group keys for management frames) 1918 * - BIGTK (group keys for Beacon frames) 1919 * - PTK (pairwise keys) 1920 * - STK (station-to-station pairwise keys) 1921 * 1922 * When selecting a key, we have to distinguish between multicast 1923 * (including broadcast) and unicast frames, the latter can only 1924 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1925 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1926 * then unicast frames can also use key indices like GTKs. Hence, if we 1927 * don't have a PTK/STK we check the key index for a WEP key. 1928 * 1929 * Note that in a regular BSS, multicast frames are sent by the 1930 * AP only, associated stations unicast the frame to the AP first 1931 * which then multicasts it on their behalf. 1932 * 1933 * There is also a slight problem in IBSS mode: GTKs are negotiated 1934 * with each station, that is something we don't currently handle. 1935 * The spec seems to expect that one negotiates the same key with 1936 * every station but there's no such requirement; VLANs could be 1937 * possible. 1938 */ 1939 1940 /* start without a key */ 1941 rx->key = NULL; 1942 fc = hdr->frame_control; 1943 1944 if (rx->sta) { 1945 int keyid = rx->sta->ptk_idx; 1946 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1947 1948 if (ieee80211_has_protected(fc) && 1949 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1950 keyid = ieee80211_get_keyid(rx->skb); 1951 1952 if (unlikely(keyid < 0)) 1953 return RX_DROP_UNUSABLE; 1954 1955 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1956 } 1957 } 1958 1959 if (!ieee80211_has_protected(fc)) 1960 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1961 1962 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1963 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1964 if ((status->flag & RX_FLAG_DECRYPTED) && 1965 (status->flag & RX_FLAG_IV_STRIPPED)) 1966 return RX_CONTINUE; 1967 /* Skip decryption if the frame is not protected. */ 1968 if (!ieee80211_has_protected(fc)) 1969 return RX_CONTINUE; 1970 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1971 /* Broadcast/multicast robust management frame / BIP */ 1972 if ((status->flag & RX_FLAG_DECRYPTED) && 1973 (status->flag & RX_FLAG_IV_STRIPPED)) 1974 return RX_CONTINUE; 1975 1976 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1977 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1978 NUM_DEFAULT_BEACON_KEYS) { 1979 if (rx->sdata->dev) 1980 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1981 skb->data, 1982 skb->len); 1983 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1984 } 1985 1986 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1987 if (!rx->key) 1988 return RX_CONTINUE; /* Beacon protection not in use */ 1989 } else if (mmie_keyidx >= 0) { 1990 /* Broadcast/multicast robust management frame / BIP */ 1991 if ((status->flag & RX_FLAG_DECRYPTED) && 1992 (status->flag & RX_FLAG_IV_STRIPPED)) 1993 return RX_CONTINUE; 1994 1995 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1996 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1997 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1998 if (rx->link_sta) { 1999 if (ieee80211_is_group_privacy_action(skb) && 2000 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2001 return RX_DROP_MONITOR; 2002 2003 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 2004 } 2005 if (!rx->key) 2006 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 2007 } else if (!ieee80211_has_protected(fc)) { 2008 /* 2009 * The frame was not protected, so skip decryption. However, we 2010 * need to set rx->key if there is a key that could have been 2011 * used so that the frame may be dropped if encryption would 2012 * have been expected. 2013 */ 2014 struct ieee80211_key *key = NULL; 2015 int i; 2016 2017 if (ieee80211_is_beacon(fc)) { 2018 key = ieee80211_rx_get_bigtk(rx, -1); 2019 } else if (ieee80211_is_mgmt(fc) && 2020 is_multicast_ether_addr(hdr->addr1)) { 2021 key = rcu_dereference(rx->link->default_mgmt_key); 2022 } else { 2023 if (rx->link_sta) { 2024 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2025 key = rcu_dereference(rx->link_sta->gtk[i]); 2026 if (key) 2027 break; 2028 } 2029 } 2030 if (!key) { 2031 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2032 key = rcu_dereference(rx->link->gtk[i]); 2033 if (key) 2034 break; 2035 } 2036 } 2037 } 2038 if (key) 2039 rx->key = key; 2040 return RX_CONTINUE; 2041 } else { 2042 /* 2043 * The device doesn't give us the IV so we won't be 2044 * able to look up the key. That's ok though, we 2045 * don't need to decrypt the frame, we just won't 2046 * be able to keep statistics accurate. 2047 * Except for key threshold notifications, should 2048 * we somehow allow the driver to tell us which key 2049 * the hardware used if this flag is set? 2050 */ 2051 if ((status->flag & RX_FLAG_DECRYPTED) && 2052 (status->flag & RX_FLAG_IV_STRIPPED)) 2053 return RX_CONTINUE; 2054 2055 keyidx = ieee80211_get_keyid(rx->skb); 2056 2057 if (unlikely(keyidx < 0)) 2058 return RX_DROP_UNUSABLE; 2059 2060 /* check per-station GTK first, if multicast packet */ 2061 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2062 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2063 2064 /* if not found, try default key */ 2065 if (!rx->key) { 2066 if (is_multicast_ether_addr(hdr->addr1)) 2067 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2068 if (!rx->key) 2069 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2070 2071 /* 2072 * RSNA-protected unicast frames should always be 2073 * sent with pairwise or station-to-station keys, 2074 * but for WEP we allow using a key index as well. 2075 */ 2076 if (rx->key && 2077 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2078 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2079 !is_multicast_ether_addr(hdr->addr1)) 2080 rx->key = NULL; 2081 } 2082 } 2083 2084 if (rx->key) { 2085 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2086 return RX_DROP_MONITOR; 2087 2088 /* TODO: add threshold stuff again */ 2089 } else { 2090 return RX_DROP_MONITOR; 2091 } 2092 2093 switch (rx->key->conf.cipher) { 2094 case WLAN_CIPHER_SUITE_WEP40: 2095 case WLAN_CIPHER_SUITE_WEP104: 2096 result = ieee80211_crypto_wep_decrypt(rx); 2097 break; 2098 case WLAN_CIPHER_SUITE_TKIP: 2099 result = ieee80211_crypto_tkip_decrypt(rx); 2100 break; 2101 case WLAN_CIPHER_SUITE_CCMP: 2102 result = ieee80211_crypto_ccmp_decrypt( 2103 rx, IEEE80211_CCMP_MIC_LEN); 2104 break; 2105 case WLAN_CIPHER_SUITE_CCMP_256: 2106 result = ieee80211_crypto_ccmp_decrypt( 2107 rx, IEEE80211_CCMP_256_MIC_LEN); 2108 break; 2109 case WLAN_CIPHER_SUITE_AES_CMAC: 2110 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2111 break; 2112 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2113 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2114 break; 2115 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2116 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2117 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2118 break; 2119 case WLAN_CIPHER_SUITE_GCMP: 2120 case WLAN_CIPHER_SUITE_GCMP_256: 2121 result = ieee80211_crypto_gcmp_decrypt(rx); 2122 break; 2123 default: 2124 result = RX_DROP_UNUSABLE; 2125 } 2126 2127 /* the hdr variable is invalid after the decrypt handlers */ 2128 2129 /* either the frame has been decrypted or will be dropped */ 2130 status->flag |= RX_FLAG_DECRYPTED; 2131 2132 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE && 2133 rx->sdata->dev)) 2134 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2135 skb->data, skb->len); 2136 2137 return result; 2138 } 2139 2140 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2141 { 2142 int i; 2143 2144 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2145 skb_queue_head_init(&cache->entries[i].skb_list); 2146 } 2147 2148 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2149 { 2150 int i; 2151 2152 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2153 __skb_queue_purge(&cache->entries[i].skb_list); 2154 } 2155 2156 static inline struct ieee80211_fragment_entry * 2157 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2158 unsigned int frag, unsigned int seq, int rx_queue, 2159 struct sk_buff **skb) 2160 { 2161 struct ieee80211_fragment_entry *entry; 2162 2163 entry = &cache->entries[cache->next++]; 2164 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2165 cache->next = 0; 2166 2167 __skb_queue_purge(&entry->skb_list); 2168 2169 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2170 *skb = NULL; 2171 entry->first_frag_time = jiffies; 2172 entry->seq = seq; 2173 entry->rx_queue = rx_queue; 2174 entry->last_frag = frag; 2175 entry->check_sequential_pn = false; 2176 entry->extra_len = 0; 2177 2178 return entry; 2179 } 2180 2181 static inline struct ieee80211_fragment_entry * 2182 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2183 unsigned int frag, unsigned int seq, 2184 int rx_queue, struct ieee80211_hdr *hdr) 2185 { 2186 struct ieee80211_fragment_entry *entry; 2187 int i, idx; 2188 2189 idx = cache->next; 2190 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2191 struct ieee80211_hdr *f_hdr; 2192 struct sk_buff *f_skb; 2193 2194 idx--; 2195 if (idx < 0) 2196 idx = IEEE80211_FRAGMENT_MAX - 1; 2197 2198 entry = &cache->entries[idx]; 2199 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2200 entry->rx_queue != rx_queue || 2201 entry->last_frag + 1 != frag) 2202 continue; 2203 2204 f_skb = __skb_peek(&entry->skb_list); 2205 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2206 2207 /* 2208 * Check ftype and addresses are equal, else check next fragment 2209 */ 2210 if (((hdr->frame_control ^ f_hdr->frame_control) & 2211 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2212 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2213 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2214 continue; 2215 2216 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2217 __skb_queue_purge(&entry->skb_list); 2218 continue; 2219 } 2220 return entry; 2221 } 2222 2223 return NULL; 2224 } 2225 2226 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2227 { 2228 return rx->key && 2229 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2230 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2231 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2232 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2233 ieee80211_has_protected(fc); 2234 } 2235 2236 static ieee80211_rx_result debug_noinline 2237 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2238 { 2239 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2240 struct ieee80211_hdr *hdr; 2241 u16 sc; 2242 __le16 fc; 2243 unsigned int frag, seq; 2244 struct ieee80211_fragment_entry *entry; 2245 struct sk_buff *skb; 2246 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2247 2248 hdr = (struct ieee80211_hdr *)rx->skb->data; 2249 fc = hdr->frame_control; 2250 2251 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2252 return RX_CONTINUE; 2253 2254 sc = le16_to_cpu(hdr->seq_ctrl); 2255 frag = sc & IEEE80211_SCTL_FRAG; 2256 2257 if (rx->sta) 2258 cache = &rx->sta->frags; 2259 2260 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2261 goto out; 2262 2263 if (is_multicast_ether_addr(hdr->addr1)) 2264 return RX_DROP_MONITOR; 2265 2266 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2267 2268 if (skb_linearize(rx->skb)) 2269 return RX_DROP_UNUSABLE; 2270 2271 /* 2272 * skb_linearize() might change the skb->data and 2273 * previously cached variables (in this case, hdr) need to 2274 * be refreshed with the new data. 2275 */ 2276 hdr = (struct ieee80211_hdr *)rx->skb->data; 2277 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2278 2279 if (frag == 0) { 2280 /* This is the first fragment of a new frame. */ 2281 entry = ieee80211_reassemble_add(cache, frag, seq, 2282 rx->seqno_idx, &(rx->skb)); 2283 if (requires_sequential_pn(rx, fc)) { 2284 int queue = rx->security_idx; 2285 2286 /* Store CCMP/GCMP PN so that we can verify that the 2287 * next fragment has a sequential PN value. 2288 */ 2289 entry->check_sequential_pn = true; 2290 entry->is_protected = true; 2291 entry->key_color = rx->key->color; 2292 memcpy(entry->last_pn, 2293 rx->key->u.ccmp.rx_pn[queue], 2294 IEEE80211_CCMP_PN_LEN); 2295 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2296 u.ccmp.rx_pn) != 2297 offsetof(struct ieee80211_key, 2298 u.gcmp.rx_pn)); 2299 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2300 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2301 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2302 IEEE80211_GCMP_PN_LEN); 2303 } else if (rx->key && 2304 (ieee80211_has_protected(fc) || 2305 (status->flag & RX_FLAG_DECRYPTED))) { 2306 entry->is_protected = true; 2307 entry->key_color = rx->key->color; 2308 } 2309 return RX_QUEUED; 2310 } 2311 2312 /* This is a fragment for a frame that should already be pending in 2313 * fragment cache. Add this fragment to the end of the pending entry. 2314 */ 2315 entry = ieee80211_reassemble_find(cache, frag, seq, 2316 rx->seqno_idx, hdr); 2317 if (!entry) { 2318 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2319 return RX_DROP_MONITOR; 2320 } 2321 2322 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2323 * MPDU PN values are not incrementing in steps of 1." 2324 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2325 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2326 */ 2327 if (entry->check_sequential_pn) { 2328 int i; 2329 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2330 2331 if (!requires_sequential_pn(rx, fc)) 2332 return RX_DROP_UNUSABLE; 2333 2334 /* Prevent mixed key and fragment cache attacks */ 2335 if (entry->key_color != rx->key->color) 2336 return RX_DROP_UNUSABLE; 2337 2338 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2339 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2340 pn[i]++; 2341 if (pn[i]) 2342 break; 2343 } 2344 2345 rpn = rx->ccm_gcm.pn; 2346 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2347 return RX_DROP_UNUSABLE; 2348 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2349 } else if (entry->is_protected && 2350 (!rx->key || 2351 (!ieee80211_has_protected(fc) && 2352 !(status->flag & RX_FLAG_DECRYPTED)) || 2353 rx->key->color != entry->key_color)) { 2354 /* Drop this as a mixed key or fragment cache attack, even 2355 * if for TKIP Michael MIC should protect us, and WEP is a 2356 * lost cause anyway. 2357 */ 2358 return RX_DROP_UNUSABLE; 2359 } else if (entry->is_protected && rx->key && 2360 entry->key_color != rx->key->color && 2361 (status->flag & RX_FLAG_DECRYPTED)) { 2362 return RX_DROP_UNUSABLE; 2363 } 2364 2365 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2366 __skb_queue_tail(&entry->skb_list, rx->skb); 2367 entry->last_frag = frag; 2368 entry->extra_len += rx->skb->len; 2369 if (ieee80211_has_morefrags(fc)) { 2370 rx->skb = NULL; 2371 return RX_QUEUED; 2372 } 2373 2374 rx->skb = __skb_dequeue(&entry->skb_list); 2375 if (skb_tailroom(rx->skb) < entry->extra_len) { 2376 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2377 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2378 GFP_ATOMIC))) { 2379 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2380 __skb_queue_purge(&entry->skb_list); 2381 return RX_DROP_UNUSABLE; 2382 } 2383 } 2384 while ((skb = __skb_dequeue(&entry->skb_list))) { 2385 skb_put_data(rx->skb, skb->data, skb->len); 2386 dev_kfree_skb(skb); 2387 } 2388 2389 out: 2390 ieee80211_led_rx(rx->local); 2391 if (rx->sta) 2392 rx->link_sta->rx_stats.packets++; 2393 return RX_CONTINUE; 2394 } 2395 2396 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2397 { 2398 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2399 return -EACCES; 2400 2401 return 0; 2402 } 2403 2404 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2405 { 2406 struct sk_buff *skb = rx->skb; 2407 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2408 2409 /* 2410 * Pass through unencrypted frames if the hardware has 2411 * decrypted them already. 2412 */ 2413 if (status->flag & RX_FLAG_DECRYPTED) 2414 return 0; 2415 2416 /* Drop unencrypted frames if key is set. */ 2417 if (unlikely(!ieee80211_has_protected(fc) && 2418 !ieee80211_is_any_nullfunc(fc) && 2419 ieee80211_is_data(fc) && rx->key)) 2420 return -EACCES; 2421 2422 return 0; 2423 } 2424 2425 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2426 { 2427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2429 __le16 fc = hdr->frame_control; 2430 2431 /* 2432 * Pass through unencrypted frames if the hardware has 2433 * decrypted them already. 2434 */ 2435 if (status->flag & RX_FLAG_DECRYPTED) 2436 return 0; 2437 2438 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2439 if (unlikely(!ieee80211_has_protected(fc) && 2440 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2441 rx->key)) { 2442 if (ieee80211_is_deauth(fc) || 2443 ieee80211_is_disassoc(fc)) 2444 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2445 rx->skb->data, 2446 rx->skb->len); 2447 return -EACCES; 2448 } 2449 /* BIP does not use Protected field, so need to check MMIE */ 2450 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2451 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2452 if (ieee80211_is_deauth(fc) || 2453 ieee80211_is_disassoc(fc)) 2454 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2455 rx->skb->data, 2456 rx->skb->len); 2457 return -EACCES; 2458 } 2459 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2460 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2461 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2462 rx->skb->data, 2463 rx->skb->len); 2464 return -EACCES; 2465 } 2466 /* 2467 * When using MFP, Action frames are not allowed prior to 2468 * having configured keys. 2469 */ 2470 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2471 ieee80211_is_robust_mgmt_frame(rx->skb))) 2472 return -EACCES; 2473 } 2474 2475 return 0; 2476 } 2477 2478 static int 2479 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2480 { 2481 struct ieee80211_sub_if_data *sdata = rx->sdata; 2482 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2483 bool check_port_control = false; 2484 struct ethhdr *ehdr; 2485 int ret; 2486 2487 *port_control = false; 2488 if (ieee80211_has_a4(hdr->frame_control) && 2489 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2490 return -1; 2491 2492 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2493 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2494 2495 if (!sdata->u.mgd.use_4addr) 2496 return -1; 2497 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2498 check_port_control = true; 2499 } 2500 2501 if (is_multicast_ether_addr(hdr->addr1) && 2502 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2503 return -1; 2504 2505 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2506 if (ret < 0) 2507 return ret; 2508 2509 ehdr = (struct ethhdr *) rx->skb->data; 2510 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2511 *port_control = true; 2512 else if (check_port_control) 2513 return -1; 2514 2515 return 0; 2516 } 2517 2518 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2519 const u8 *addr, int *out_link_id) 2520 { 2521 unsigned int link_id; 2522 2523 /* non-MLO, or MLD address replaced by hardware */ 2524 if (ether_addr_equal(sdata->vif.addr, addr)) 2525 return true; 2526 2527 if (!sdata->vif.valid_links) 2528 return false; 2529 2530 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2531 struct ieee80211_bss_conf *conf; 2532 2533 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2534 2535 if (!conf) 2536 continue; 2537 if (ether_addr_equal(conf->addr, addr)) { 2538 if (out_link_id) 2539 *out_link_id = link_id; 2540 return true; 2541 } 2542 } 2543 2544 return false; 2545 } 2546 2547 /* 2548 * requires that rx->skb is a frame with ethernet header 2549 */ 2550 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2551 { 2552 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2553 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2554 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2555 2556 /* 2557 * Allow EAPOL frames to us/the PAE group address regardless of 2558 * whether the frame was encrypted or not, and always disallow 2559 * all other destination addresses for them. 2560 */ 2561 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2562 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2563 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2564 2565 if (ieee80211_802_1x_port_control(rx) || 2566 ieee80211_drop_unencrypted(rx, fc)) 2567 return false; 2568 2569 return true; 2570 } 2571 2572 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2573 struct ieee80211_rx_data *rx) 2574 { 2575 struct ieee80211_sub_if_data *sdata = rx->sdata; 2576 struct net_device *dev = sdata->dev; 2577 2578 if (unlikely((skb->protocol == sdata->control_port_protocol || 2579 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2580 !sdata->control_port_no_preauth)) && 2581 sdata->control_port_over_nl80211)) { 2582 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2583 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2584 2585 cfg80211_rx_control_port(dev, skb, noencrypt); 2586 dev_kfree_skb(skb); 2587 } else { 2588 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2589 2590 memset(skb->cb, 0, sizeof(skb->cb)); 2591 2592 /* 2593 * 802.1X over 802.11 requires that the authenticator address 2594 * be used for EAPOL frames. However, 802.1X allows the use of 2595 * the PAE group address instead. If the interface is part of 2596 * a bridge and we pass the frame with the PAE group address, 2597 * then the bridge will forward it to the network (even if the 2598 * client was not associated yet), which isn't supposed to 2599 * happen. 2600 * To avoid that, rewrite the destination address to our own 2601 * address, so that the authenticator (e.g. hostapd) will see 2602 * the frame, but bridge won't forward it anywhere else. Note 2603 * that due to earlier filtering, the only other address can 2604 * be the PAE group address, unless the hardware allowed them 2605 * through in 802.3 offloaded mode. 2606 */ 2607 if (unlikely(skb->protocol == sdata->control_port_protocol && 2608 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2609 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2610 2611 /* deliver to local stack */ 2612 if (rx->list) 2613 list_add_tail(&skb->list, rx->list); 2614 else 2615 netif_receive_skb(skb); 2616 } 2617 } 2618 2619 /* 2620 * requires that rx->skb is a frame with ethernet header 2621 */ 2622 static void 2623 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2624 { 2625 struct ieee80211_sub_if_data *sdata = rx->sdata; 2626 struct net_device *dev = sdata->dev; 2627 struct sk_buff *skb, *xmit_skb; 2628 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2629 struct sta_info *dsta; 2630 2631 skb = rx->skb; 2632 xmit_skb = NULL; 2633 2634 dev_sw_netstats_rx_add(dev, skb->len); 2635 2636 if (rx->sta) { 2637 /* The seqno index has the same property as needed 2638 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2639 * for non-QoS-data frames. Here we know it's a data 2640 * frame, so count MSDUs. 2641 */ 2642 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2643 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2644 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2645 } 2646 2647 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2648 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2649 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2650 ehdr->h_proto != rx->sdata->control_port_protocol && 2651 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2652 if (is_multicast_ether_addr(ehdr->h_dest) && 2653 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2654 /* 2655 * send multicast frames both to higher layers in 2656 * local net stack and back to the wireless medium 2657 */ 2658 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2659 if (!xmit_skb) 2660 net_info_ratelimited("%s: failed to clone multicast frame\n", 2661 dev->name); 2662 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2663 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2664 dsta = sta_info_get(sdata, ehdr->h_dest); 2665 if (dsta) { 2666 /* 2667 * The destination station is associated to 2668 * this AP (in this VLAN), so send the frame 2669 * directly to it and do not pass it to local 2670 * net stack. 2671 */ 2672 xmit_skb = skb; 2673 skb = NULL; 2674 } 2675 } 2676 } 2677 2678 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2679 if (skb) { 2680 /* 'align' will only take the values 0 or 2 here since all 2681 * frames are required to be aligned to 2-byte boundaries 2682 * when being passed to mac80211; the code here works just 2683 * as well if that isn't true, but mac80211 assumes it can 2684 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2685 */ 2686 int align; 2687 2688 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2689 if (align) { 2690 if (WARN_ON(skb_headroom(skb) < 3)) { 2691 dev_kfree_skb(skb); 2692 skb = NULL; 2693 } else { 2694 u8 *data = skb->data; 2695 size_t len = skb_headlen(skb); 2696 skb->data -= align; 2697 memmove(skb->data, data, len); 2698 skb_set_tail_pointer(skb, len); 2699 } 2700 } 2701 } 2702 #endif 2703 2704 if (skb) { 2705 skb->protocol = eth_type_trans(skb, dev); 2706 ieee80211_deliver_skb_to_local_stack(skb, rx); 2707 } 2708 2709 if (xmit_skb) { 2710 /* 2711 * Send to wireless media and increase priority by 256 to 2712 * keep the received priority instead of reclassifying 2713 * the frame (see cfg80211_classify8021d). 2714 */ 2715 xmit_skb->priority += 256; 2716 xmit_skb->protocol = htons(ETH_P_802_3); 2717 skb_reset_network_header(xmit_skb); 2718 skb_reset_mac_header(xmit_skb); 2719 dev_queue_xmit(xmit_skb); 2720 } 2721 } 2722 2723 static ieee80211_rx_result 2724 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2725 struct sk_buff *skb) 2726 { 2727 #ifdef CONFIG_MAC80211_MESH 2728 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2729 struct ieee80211_local *local = sdata->local; 2730 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2731 struct ieee80211_hdr hdr = { 2732 .frame_control = cpu_to_le16(fc) 2733 }; 2734 struct ieee80211_hdr *fwd_hdr; 2735 struct ieee80211s_hdr *mesh_hdr; 2736 struct ieee80211_tx_info *info; 2737 struct sk_buff *fwd_skb; 2738 struct ethhdr *eth; 2739 bool multicast; 2740 int tailroom = 0; 2741 int hdrlen, mesh_hdrlen; 2742 u8 *qos; 2743 2744 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2745 return RX_CONTINUE; 2746 2747 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2748 return RX_DROP_MONITOR; 2749 2750 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2751 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2752 2753 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2754 return RX_DROP_MONITOR; 2755 2756 eth = (struct ethhdr *)skb->data; 2757 multicast = is_multicast_ether_addr(eth->h_dest); 2758 2759 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2760 if (!mesh_hdr->ttl) 2761 return RX_DROP_MONITOR; 2762 2763 /* frame is in RMC, don't forward */ 2764 if (is_multicast_ether_addr(eth->h_dest) && 2765 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2766 return RX_DROP_MONITOR; 2767 2768 /* Frame has reached destination. Don't forward */ 2769 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2770 goto rx_accept; 2771 2772 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2773 if (is_multicast_ether_addr(eth->h_dest)) 2774 goto rx_accept; 2775 2776 return RX_DROP_MONITOR; 2777 } 2778 2779 /* forward packet */ 2780 if (sdata->crypto_tx_tailroom_needed_cnt) 2781 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2782 2783 if (!--mesh_hdr->ttl) { 2784 if (multicast) 2785 goto rx_accept; 2786 2787 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2788 return RX_DROP_MONITOR; 2789 } 2790 2791 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2792 struct mesh_path *mppath; 2793 char *proxied_addr; 2794 2795 if (multicast) 2796 proxied_addr = mesh_hdr->eaddr1; 2797 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2798 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2799 proxied_addr = mesh_hdr->eaddr2; 2800 else 2801 return RX_DROP_MONITOR; 2802 2803 rcu_read_lock(); 2804 mppath = mpp_path_lookup(sdata, proxied_addr); 2805 if (!mppath) { 2806 mpp_path_add(sdata, proxied_addr, eth->h_source); 2807 } else { 2808 spin_lock_bh(&mppath->state_lock); 2809 if (!ether_addr_equal(mppath->mpp, eth->h_source)) 2810 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2811 mppath->exp_time = jiffies; 2812 spin_unlock_bh(&mppath->state_lock); 2813 } 2814 rcu_read_unlock(); 2815 } 2816 2817 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2818 2819 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2820 eth->h_dest, eth->h_source); 2821 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2822 if (multicast) { 2823 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2824 2825 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2826 IEEE80211_ENCRYPT_HEADROOM, 2827 tailroom, GFP_ATOMIC); 2828 if (!fwd_skb) 2829 goto rx_accept; 2830 } else { 2831 fwd_skb = skb; 2832 skb = NULL; 2833 2834 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2835 return RX_DROP_UNUSABLE; 2836 } 2837 2838 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2839 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2840 qos = ieee80211_get_qos_ctl(fwd_hdr); 2841 qos[0] = qos[1] = 0; 2842 2843 skb_reset_mac_header(fwd_skb); 2844 hdrlen += mesh_hdrlen; 2845 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2846 &fwd_skb->protocol)) 2847 hdrlen += ETH_ALEN; 2848 else 2849 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2850 skb_set_network_header(fwd_skb, hdrlen); 2851 2852 info = IEEE80211_SKB_CB(fwd_skb); 2853 memset(info, 0, sizeof(*info)); 2854 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2855 info->control.vif = &sdata->vif; 2856 info->control.jiffies = jiffies; 2857 if (multicast) { 2858 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2859 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2860 /* update power mode indication when forwarding */ 2861 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2862 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2863 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2864 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2865 } else { 2866 /* unable to resolve next hop */ 2867 if (sta) 2868 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2869 hdr.addr3, 0, 2870 WLAN_REASON_MESH_PATH_NOFORWARD, 2871 sta->sta.addr); 2872 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2873 kfree_skb(fwd_skb); 2874 goto rx_accept; 2875 } 2876 2877 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2878 fwd_skb->dev = sdata->dev; 2879 ieee80211_add_pending_skb(local, fwd_skb); 2880 2881 rx_accept: 2882 if (!skb) 2883 return RX_QUEUED; 2884 2885 ieee80211_strip_8023_mesh_hdr(skb); 2886 #endif 2887 2888 return RX_CONTINUE; 2889 } 2890 2891 static ieee80211_rx_result debug_noinline 2892 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2893 { 2894 struct net_device *dev = rx->sdata->dev; 2895 struct sk_buff *skb = rx->skb; 2896 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2897 __le16 fc = hdr->frame_control; 2898 struct sk_buff_head frame_list; 2899 static ieee80211_rx_result res; 2900 struct ethhdr ethhdr; 2901 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2902 2903 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2904 check_da = NULL; 2905 check_sa = NULL; 2906 } else switch (rx->sdata->vif.type) { 2907 case NL80211_IFTYPE_AP: 2908 case NL80211_IFTYPE_AP_VLAN: 2909 check_da = NULL; 2910 break; 2911 case NL80211_IFTYPE_STATION: 2912 if (!rx->sta || 2913 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2914 check_sa = NULL; 2915 break; 2916 case NL80211_IFTYPE_MESH_POINT: 2917 check_sa = NULL; 2918 check_da = NULL; 2919 break; 2920 default: 2921 break; 2922 } 2923 2924 skb->dev = dev; 2925 __skb_queue_head_init(&frame_list); 2926 2927 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2928 rx->sdata->vif.addr, 2929 rx->sdata->vif.type, 2930 data_offset, true)) 2931 return RX_DROP_UNUSABLE; 2932 2933 if (rx->sta && rx->sta->amsdu_mesh_control < 0) { 2934 bool valid_std = ieee80211_is_valid_amsdu(skb, true); 2935 bool valid_nonstd = ieee80211_is_valid_amsdu(skb, false); 2936 2937 if (valid_std && !valid_nonstd) 2938 rx->sta->amsdu_mesh_control = 1; 2939 else if (valid_nonstd && !valid_std) 2940 rx->sta->amsdu_mesh_control = 0; 2941 } 2942 2943 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2944 rx->sdata->vif.type, 2945 rx->local->hw.extra_tx_headroom, 2946 check_da, check_sa, 2947 rx->sta->amsdu_mesh_control); 2948 2949 while (!skb_queue_empty(&frame_list)) { 2950 rx->skb = __skb_dequeue(&frame_list); 2951 2952 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 2953 switch (res) { 2954 case RX_QUEUED: 2955 continue; 2956 case RX_CONTINUE: 2957 break; 2958 default: 2959 goto free; 2960 } 2961 2962 if (!ieee80211_frame_allowed(rx, fc)) 2963 goto free; 2964 2965 ieee80211_deliver_skb(rx); 2966 continue; 2967 2968 free: 2969 dev_kfree_skb(rx->skb); 2970 } 2971 2972 return RX_QUEUED; 2973 } 2974 2975 static ieee80211_rx_result debug_noinline 2976 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2977 { 2978 struct sk_buff *skb = rx->skb; 2979 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2980 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2981 __le16 fc = hdr->frame_control; 2982 2983 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2984 return RX_CONTINUE; 2985 2986 if (unlikely(!ieee80211_is_data(fc))) 2987 return RX_CONTINUE; 2988 2989 if (unlikely(!ieee80211_is_data_present(fc))) 2990 return RX_DROP_MONITOR; 2991 2992 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2993 switch (rx->sdata->vif.type) { 2994 case NL80211_IFTYPE_AP_VLAN: 2995 if (!rx->sdata->u.vlan.sta) 2996 return RX_DROP_UNUSABLE; 2997 break; 2998 case NL80211_IFTYPE_STATION: 2999 if (!rx->sdata->u.mgd.use_4addr) 3000 return RX_DROP_UNUSABLE; 3001 break; 3002 case NL80211_IFTYPE_MESH_POINT: 3003 break; 3004 default: 3005 return RX_DROP_UNUSABLE; 3006 } 3007 } 3008 3009 if (is_multicast_ether_addr(hdr->addr1)) 3010 return RX_DROP_UNUSABLE; 3011 3012 if (rx->key) { 3013 /* 3014 * We should not receive A-MSDUs on pre-HT connections, 3015 * and HT connections cannot use old ciphers. Thus drop 3016 * them, as in those cases we couldn't even have SPP 3017 * A-MSDUs or such. 3018 */ 3019 switch (rx->key->conf.cipher) { 3020 case WLAN_CIPHER_SUITE_WEP40: 3021 case WLAN_CIPHER_SUITE_WEP104: 3022 case WLAN_CIPHER_SUITE_TKIP: 3023 return RX_DROP_UNUSABLE; 3024 default: 3025 break; 3026 } 3027 } 3028 3029 return __ieee80211_rx_h_amsdu(rx, 0); 3030 } 3031 3032 static ieee80211_rx_result debug_noinline 3033 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3034 { 3035 struct ieee80211_sub_if_data *sdata = rx->sdata; 3036 struct ieee80211_local *local = rx->local; 3037 struct net_device *dev = sdata->dev; 3038 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3039 __le16 fc = hdr->frame_control; 3040 static ieee80211_rx_result res; 3041 bool port_control; 3042 int err; 3043 3044 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3045 return RX_CONTINUE; 3046 3047 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3048 return RX_DROP_MONITOR; 3049 3050 /* 3051 * Send unexpected-4addr-frame event to hostapd. For older versions, 3052 * also drop the frame to cooked monitor interfaces. 3053 */ 3054 if (ieee80211_has_a4(hdr->frame_control) && 3055 sdata->vif.type == NL80211_IFTYPE_AP) { 3056 if (rx->sta && 3057 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3058 cfg80211_rx_unexpected_4addr_frame( 3059 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3060 return RX_DROP_MONITOR; 3061 } 3062 3063 err = __ieee80211_data_to_8023(rx, &port_control); 3064 if (unlikely(err)) 3065 return RX_DROP_UNUSABLE; 3066 3067 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3068 if (res != RX_CONTINUE) 3069 return res; 3070 3071 if (!ieee80211_frame_allowed(rx, fc)) 3072 return RX_DROP_MONITOR; 3073 3074 /* directly handle TDLS channel switch requests/responses */ 3075 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3076 cpu_to_be16(ETH_P_TDLS))) { 3077 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3078 3079 if (pskb_may_pull(rx->skb, 3080 offsetof(struct ieee80211_tdls_data, u)) && 3081 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3082 tf->category == WLAN_CATEGORY_TDLS && 3083 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3084 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3085 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3086 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3087 rx->sta, rx->skb); 3088 return RX_QUEUED; 3089 } 3090 } 3091 3092 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3093 unlikely(port_control) && sdata->bss) { 3094 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3095 u.ap); 3096 dev = sdata->dev; 3097 rx->sdata = sdata; 3098 } 3099 3100 rx->skb->dev = dev; 3101 3102 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3103 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3104 !is_multicast_ether_addr( 3105 ((struct ethhdr *)rx->skb->data)->h_dest) && 3106 (!local->scanning && 3107 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3108 mod_timer(&local->dynamic_ps_timer, jiffies + 3109 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3110 3111 ieee80211_deliver_skb(rx); 3112 3113 return RX_QUEUED; 3114 } 3115 3116 static ieee80211_rx_result debug_noinline 3117 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3118 { 3119 struct sk_buff *skb = rx->skb; 3120 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3121 struct tid_ampdu_rx *tid_agg_rx; 3122 u16 start_seq_num; 3123 u16 tid; 3124 3125 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3126 return RX_CONTINUE; 3127 3128 if (ieee80211_is_back_req(bar->frame_control)) { 3129 struct { 3130 __le16 control, start_seq_num; 3131 } __packed bar_data; 3132 struct ieee80211_event event = { 3133 .type = BAR_RX_EVENT, 3134 }; 3135 3136 if (!rx->sta) 3137 return RX_DROP_MONITOR; 3138 3139 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3140 &bar_data, sizeof(bar_data))) 3141 return RX_DROP_MONITOR; 3142 3143 tid = le16_to_cpu(bar_data.control) >> 12; 3144 3145 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3146 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3147 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3148 WLAN_BACK_RECIPIENT, 3149 WLAN_REASON_QSTA_REQUIRE_SETUP); 3150 3151 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3152 if (!tid_agg_rx) 3153 return RX_DROP_MONITOR; 3154 3155 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3156 event.u.ba.tid = tid; 3157 event.u.ba.ssn = start_seq_num; 3158 event.u.ba.sta = &rx->sta->sta; 3159 3160 /* reset session timer */ 3161 if (tid_agg_rx->timeout) 3162 mod_timer(&tid_agg_rx->session_timer, 3163 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3164 3165 spin_lock(&tid_agg_rx->reorder_lock); 3166 /* release stored frames up to start of BAR */ 3167 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3168 start_seq_num, frames); 3169 spin_unlock(&tid_agg_rx->reorder_lock); 3170 3171 drv_event_callback(rx->local, rx->sdata, &event); 3172 3173 kfree_skb(skb); 3174 return RX_QUEUED; 3175 } 3176 3177 /* 3178 * After this point, we only want management frames, 3179 * so we can drop all remaining control frames to 3180 * cooked monitor interfaces. 3181 */ 3182 return RX_DROP_MONITOR; 3183 } 3184 3185 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3186 struct ieee80211_mgmt *mgmt, 3187 size_t len) 3188 { 3189 struct ieee80211_local *local = sdata->local; 3190 struct sk_buff *skb; 3191 struct ieee80211_mgmt *resp; 3192 3193 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3194 /* Not to own unicast address */ 3195 return; 3196 } 3197 3198 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3199 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3200 /* Not from the current AP or not associated yet. */ 3201 return; 3202 } 3203 3204 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3205 /* Too short SA Query request frame */ 3206 return; 3207 } 3208 3209 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3210 if (skb == NULL) 3211 return; 3212 3213 skb_reserve(skb, local->hw.extra_tx_headroom); 3214 resp = skb_put_zero(skb, 24); 3215 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3216 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3217 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3218 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3219 IEEE80211_STYPE_ACTION); 3220 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3221 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3222 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3223 memcpy(resp->u.action.u.sa_query.trans_id, 3224 mgmt->u.action.u.sa_query.trans_id, 3225 WLAN_SA_QUERY_TR_ID_LEN); 3226 3227 ieee80211_tx_skb(sdata, skb); 3228 } 3229 3230 static void 3231 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3232 { 3233 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3234 const struct element *ie; 3235 size_t baselen; 3236 3237 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3238 NL80211_EXT_FEATURE_BSS_COLOR)) 3239 return; 3240 3241 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3242 return; 3243 3244 if (rx->sdata->vif.bss_conf.csa_active) 3245 return; 3246 3247 baselen = mgmt->u.beacon.variable - rx->skb->data; 3248 if (baselen > rx->skb->len) 3249 return; 3250 3251 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3252 mgmt->u.beacon.variable, 3253 rx->skb->len - baselen); 3254 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3255 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3256 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3257 const struct ieee80211_he_operation *he_oper; 3258 u8 color; 3259 3260 he_oper = (void *)(ie->data + 1); 3261 if (le32_get_bits(he_oper->he_oper_params, 3262 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3263 return; 3264 3265 color = le32_get_bits(he_oper->he_oper_params, 3266 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3267 if (color == bss_conf->he_bss_color.color) 3268 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3269 BIT_ULL(color), 3270 GFP_ATOMIC); 3271 } 3272 } 3273 3274 static ieee80211_rx_result debug_noinline 3275 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3276 { 3277 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3278 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3279 3280 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3281 return RX_CONTINUE; 3282 3283 /* 3284 * From here on, look only at management frames. 3285 * Data and control frames are already handled, 3286 * and unknown (reserved) frames are useless. 3287 */ 3288 if (rx->skb->len < 24) 3289 return RX_DROP_MONITOR; 3290 3291 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3292 return RX_DROP_MONITOR; 3293 3294 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3295 ieee80211_is_beacon(mgmt->frame_control) && 3296 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3297 int sig = 0; 3298 3299 /* sw bss color collision detection */ 3300 ieee80211_rx_check_bss_color_collision(rx); 3301 3302 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3303 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3304 sig = status->signal; 3305 3306 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3307 rx->skb->data, rx->skb->len, 3308 ieee80211_rx_status_to_khz(status), 3309 sig); 3310 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3311 } 3312 3313 if (ieee80211_drop_unencrypted_mgmt(rx)) 3314 return RX_DROP_UNUSABLE; 3315 3316 return RX_CONTINUE; 3317 } 3318 3319 static bool 3320 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3321 { 3322 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3323 struct ieee80211_sub_if_data *sdata = rx->sdata; 3324 3325 /* TWT actions are only supported in AP for the moment */ 3326 if (sdata->vif.type != NL80211_IFTYPE_AP) 3327 return false; 3328 3329 if (!rx->local->ops->add_twt_setup) 3330 return false; 3331 3332 if (!sdata->vif.bss_conf.twt_responder) 3333 return false; 3334 3335 if (!rx->sta) 3336 return false; 3337 3338 switch (mgmt->u.action.u.s1g.action_code) { 3339 case WLAN_S1G_TWT_SETUP: { 3340 struct ieee80211_twt_setup *twt; 3341 3342 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3343 1 + /* action code */ 3344 sizeof(struct ieee80211_twt_setup) + 3345 2 /* TWT req_type agrt */) 3346 break; 3347 3348 twt = (void *)mgmt->u.action.u.s1g.variable; 3349 if (twt->element_id != WLAN_EID_S1G_TWT) 3350 break; 3351 3352 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3353 4 + /* action code + token + tlv */ 3354 twt->length) 3355 break; 3356 3357 return true; /* queue the frame */ 3358 } 3359 case WLAN_S1G_TWT_TEARDOWN: 3360 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3361 break; 3362 3363 return true; /* queue the frame */ 3364 default: 3365 break; 3366 } 3367 3368 return false; 3369 } 3370 3371 static ieee80211_rx_result debug_noinline 3372 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3373 { 3374 struct ieee80211_local *local = rx->local; 3375 struct ieee80211_sub_if_data *sdata = rx->sdata; 3376 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3377 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3378 int len = rx->skb->len; 3379 3380 if (!ieee80211_is_action(mgmt->frame_control)) 3381 return RX_CONTINUE; 3382 3383 /* drop too small frames */ 3384 if (len < IEEE80211_MIN_ACTION_SIZE) 3385 return RX_DROP_UNUSABLE; 3386 3387 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3388 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3389 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3390 return RX_DROP_UNUSABLE; 3391 3392 switch (mgmt->u.action.category) { 3393 case WLAN_CATEGORY_HT: 3394 /* reject HT action frames from stations not supporting HT */ 3395 if (!rx->link_sta->pub->ht_cap.ht_supported) 3396 goto invalid; 3397 3398 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3399 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3400 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3401 sdata->vif.type != NL80211_IFTYPE_AP && 3402 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3403 break; 3404 3405 /* verify action & smps_control/chanwidth are present */ 3406 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3407 goto invalid; 3408 3409 switch (mgmt->u.action.u.ht_smps.action) { 3410 case WLAN_HT_ACTION_SMPS: { 3411 struct ieee80211_supported_band *sband; 3412 enum ieee80211_smps_mode smps_mode; 3413 struct sta_opmode_info sta_opmode = {}; 3414 3415 if (sdata->vif.type != NL80211_IFTYPE_AP && 3416 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3417 goto handled; 3418 3419 /* convert to HT capability */ 3420 switch (mgmt->u.action.u.ht_smps.smps_control) { 3421 case WLAN_HT_SMPS_CONTROL_DISABLED: 3422 smps_mode = IEEE80211_SMPS_OFF; 3423 break; 3424 case WLAN_HT_SMPS_CONTROL_STATIC: 3425 smps_mode = IEEE80211_SMPS_STATIC; 3426 break; 3427 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3428 smps_mode = IEEE80211_SMPS_DYNAMIC; 3429 break; 3430 default: 3431 goto invalid; 3432 } 3433 3434 /* if no change do nothing */ 3435 if (rx->link_sta->pub->smps_mode == smps_mode) 3436 goto handled; 3437 rx->link_sta->pub->smps_mode = smps_mode; 3438 sta_opmode.smps_mode = 3439 ieee80211_smps_mode_to_smps_mode(smps_mode); 3440 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3441 3442 sband = rx->local->hw.wiphy->bands[status->band]; 3443 3444 rate_control_rate_update(local, sband, rx->sta, 0, 3445 IEEE80211_RC_SMPS_CHANGED); 3446 cfg80211_sta_opmode_change_notify(sdata->dev, 3447 rx->sta->addr, 3448 &sta_opmode, 3449 GFP_ATOMIC); 3450 goto handled; 3451 } 3452 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3453 struct ieee80211_supported_band *sband; 3454 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3455 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3456 struct sta_opmode_info sta_opmode = {}; 3457 3458 /* If it doesn't support 40 MHz it can't change ... */ 3459 if (!(rx->link_sta->pub->ht_cap.cap & 3460 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3461 goto handled; 3462 3463 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3464 max_bw = IEEE80211_STA_RX_BW_20; 3465 else 3466 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3467 3468 /* set cur_max_bandwidth and recalc sta bw */ 3469 rx->link_sta->cur_max_bandwidth = max_bw; 3470 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3471 3472 if (rx->link_sta->pub->bandwidth == new_bw) 3473 goto handled; 3474 3475 rx->link_sta->pub->bandwidth = new_bw; 3476 sband = rx->local->hw.wiphy->bands[status->band]; 3477 sta_opmode.bw = 3478 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3479 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3480 3481 rate_control_rate_update(local, sband, rx->sta, 0, 3482 IEEE80211_RC_BW_CHANGED); 3483 cfg80211_sta_opmode_change_notify(sdata->dev, 3484 rx->sta->addr, 3485 &sta_opmode, 3486 GFP_ATOMIC); 3487 goto handled; 3488 } 3489 default: 3490 goto invalid; 3491 } 3492 3493 break; 3494 case WLAN_CATEGORY_PUBLIC: 3495 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3496 goto invalid; 3497 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3498 break; 3499 if (!rx->sta) 3500 break; 3501 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3502 break; 3503 if (mgmt->u.action.u.ext_chan_switch.action_code != 3504 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3505 break; 3506 if (len < offsetof(struct ieee80211_mgmt, 3507 u.action.u.ext_chan_switch.variable)) 3508 goto invalid; 3509 goto queue; 3510 case WLAN_CATEGORY_VHT: 3511 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3512 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3513 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3514 sdata->vif.type != NL80211_IFTYPE_AP && 3515 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3516 break; 3517 3518 /* verify action code is present */ 3519 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3520 goto invalid; 3521 3522 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3523 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3524 /* verify opmode is present */ 3525 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3526 goto invalid; 3527 goto queue; 3528 } 3529 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3530 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3531 goto invalid; 3532 goto queue; 3533 } 3534 default: 3535 break; 3536 } 3537 break; 3538 case WLAN_CATEGORY_BACK: 3539 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3540 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3541 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3542 sdata->vif.type != NL80211_IFTYPE_AP && 3543 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3544 break; 3545 3546 /* verify action_code is present */ 3547 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3548 break; 3549 3550 switch (mgmt->u.action.u.addba_req.action_code) { 3551 case WLAN_ACTION_ADDBA_REQ: 3552 if (len < (IEEE80211_MIN_ACTION_SIZE + 3553 sizeof(mgmt->u.action.u.addba_req))) 3554 goto invalid; 3555 break; 3556 case WLAN_ACTION_ADDBA_RESP: 3557 if (len < (IEEE80211_MIN_ACTION_SIZE + 3558 sizeof(mgmt->u.action.u.addba_resp))) 3559 goto invalid; 3560 break; 3561 case WLAN_ACTION_DELBA: 3562 if (len < (IEEE80211_MIN_ACTION_SIZE + 3563 sizeof(mgmt->u.action.u.delba))) 3564 goto invalid; 3565 break; 3566 default: 3567 goto invalid; 3568 } 3569 3570 goto queue; 3571 case WLAN_CATEGORY_SPECTRUM_MGMT: 3572 /* verify action_code is present */ 3573 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3574 break; 3575 3576 switch (mgmt->u.action.u.measurement.action_code) { 3577 case WLAN_ACTION_SPCT_MSR_REQ: 3578 if (status->band != NL80211_BAND_5GHZ) 3579 break; 3580 3581 if (len < (IEEE80211_MIN_ACTION_SIZE + 3582 sizeof(mgmt->u.action.u.measurement))) 3583 break; 3584 3585 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3586 break; 3587 3588 ieee80211_process_measurement_req(sdata, mgmt, len); 3589 goto handled; 3590 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3591 u8 *bssid; 3592 if (len < (IEEE80211_MIN_ACTION_SIZE + 3593 sizeof(mgmt->u.action.u.chan_switch))) 3594 break; 3595 3596 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3597 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3598 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3599 break; 3600 3601 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3602 bssid = sdata->deflink.u.mgd.bssid; 3603 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3604 bssid = sdata->u.ibss.bssid; 3605 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3606 bssid = mgmt->sa; 3607 else 3608 break; 3609 3610 if (!ether_addr_equal(mgmt->bssid, bssid)) 3611 break; 3612 3613 goto queue; 3614 } 3615 } 3616 break; 3617 case WLAN_CATEGORY_SELF_PROTECTED: 3618 if (len < (IEEE80211_MIN_ACTION_SIZE + 3619 sizeof(mgmt->u.action.u.self_prot.action_code))) 3620 break; 3621 3622 switch (mgmt->u.action.u.self_prot.action_code) { 3623 case WLAN_SP_MESH_PEERING_OPEN: 3624 case WLAN_SP_MESH_PEERING_CLOSE: 3625 case WLAN_SP_MESH_PEERING_CONFIRM: 3626 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3627 goto invalid; 3628 if (sdata->u.mesh.user_mpm) 3629 /* userspace handles this frame */ 3630 break; 3631 goto queue; 3632 case WLAN_SP_MGK_INFORM: 3633 case WLAN_SP_MGK_ACK: 3634 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3635 goto invalid; 3636 break; 3637 } 3638 break; 3639 case WLAN_CATEGORY_MESH_ACTION: 3640 if (len < (IEEE80211_MIN_ACTION_SIZE + 3641 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3642 break; 3643 3644 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3645 break; 3646 if (mesh_action_is_path_sel(mgmt) && 3647 !mesh_path_sel_is_hwmp(sdata)) 3648 break; 3649 goto queue; 3650 case WLAN_CATEGORY_S1G: 3651 switch (mgmt->u.action.u.s1g.action_code) { 3652 case WLAN_S1G_TWT_SETUP: 3653 case WLAN_S1G_TWT_TEARDOWN: 3654 if (ieee80211_process_rx_twt_action(rx)) 3655 goto queue; 3656 break; 3657 default: 3658 break; 3659 } 3660 break; 3661 } 3662 3663 return RX_CONTINUE; 3664 3665 invalid: 3666 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3667 /* will return in the next handlers */ 3668 return RX_CONTINUE; 3669 3670 handled: 3671 if (rx->sta) 3672 rx->link_sta->rx_stats.packets++; 3673 dev_kfree_skb(rx->skb); 3674 return RX_QUEUED; 3675 3676 queue: 3677 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3678 return RX_QUEUED; 3679 } 3680 3681 static ieee80211_rx_result debug_noinline 3682 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3683 { 3684 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3685 struct cfg80211_rx_info info = { 3686 .freq = ieee80211_rx_status_to_khz(status), 3687 .buf = rx->skb->data, 3688 .len = rx->skb->len, 3689 .link_id = rx->link_id, 3690 .have_link_id = rx->link_id >= 0, 3691 }; 3692 3693 /* skip known-bad action frames and return them in the next handler */ 3694 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3695 return RX_CONTINUE; 3696 3697 /* 3698 * Getting here means the kernel doesn't know how to handle 3699 * it, but maybe userspace does ... include returned frames 3700 * so userspace can register for those to know whether ones 3701 * it transmitted were processed or returned. 3702 */ 3703 3704 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3705 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3706 info.sig_dbm = status->signal; 3707 3708 if (ieee80211_is_timing_measurement(rx->skb) || 3709 ieee80211_is_ftm(rx->skb)) { 3710 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3711 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3712 } 3713 3714 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3715 if (rx->sta) 3716 rx->link_sta->rx_stats.packets++; 3717 dev_kfree_skb(rx->skb); 3718 return RX_QUEUED; 3719 } 3720 3721 return RX_CONTINUE; 3722 } 3723 3724 static ieee80211_rx_result debug_noinline 3725 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3726 { 3727 struct ieee80211_sub_if_data *sdata = rx->sdata; 3728 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3729 int len = rx->skb->len; 3730 3731 if (!ieee80211_is_action(mgmt->frame_control)) 3732 return RX_CONTINUE; 3733 3734 switch (mgmt->u.action.category) { 3735 case WLAN_CATEGORY_SA_QUERY: 3736 if (len < (IEEE80211_MIN_ACTION_SIZE + 3737 sizeof(mgmt->u.action.u.sa_query))) 3738 break; 3739 3740 switch (mgmt->u.action.u.sa_query.action) { 3741 case WLAN_ACTION_SA_QUERY_REQUEST: 3742 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3743 break; 3744 ieee80211_process_sa_query_req(sdata, mgmt, len); 3745 goto handled; 3746 } 3747 break; 3748 } 3749 3750 return RX_CONTINUE; 3751 3752 handled: 3753 if (rx->sta) 3754 rx->link_sta->rx_stats.packets++; 3755 dev_kfree_skb(rx->skb); 3756 return RX_QUEUED; 3757 } 3758 3759 static ieee80211_rx_result debug_noinline 3760 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3761 { 3762 struct ieee80211_local *local = rx->local; 3763 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3764 struct sk_buff *nskb; 3765 struct ieee80211_sub_if_data *sdata = rx->sdata; 3766 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3767 3768 if (!ieee80211_is_action(mgmt->frame_control)) 3769 return RX_CONTINUE; 3770 3771 /* 3772 * For AP mode, hostapd is responsible for handling any action 3773 * frames that we didn't handle, including returning unknown 3774 * ones. For all other modes we will return them to the sender, 3775 * setting the 0x80 bit in the action category, as required by 3776 * 802.11-2012 9.24.4. 3777 * Newer versions of hostapd shall also use the management frame 3778 * registration mechanisms, but older ones still use cooked 3779 * monitor interfaces so push all frames there. 3780 */ 3781 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3782 (sdata->vif.type == NL80211_IFTYPE_AP || 3783 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3784 return RX_DROP_MONITOR; 3785 3786 if (is_multicast_ether_addr(mgmt->da)) 3787 return RX_DROP_MONITOR; 3788 3789 /* do not return rejected action frames */ 3790 if (mgmt->u.action.category & 0x80) 3791 return RX_DROP_UNUSABLE; 3792 3793 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3794 GFP_ATOMIC); 3795 if (nskb) { 3796 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3797 3798 nmgmt->u.action.category |= 0x80; 3799 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3800 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3801 3802 memset(nskb->cb, 0, sizeof(nskb->cb)); 3803 3804 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3805 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3806 3807 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3808 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3809 IEEE80211_TX_CTL_NO_CCK_RATE; 3810 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3811 info->hw_queue = 3812 local->hw.offchannel_tx_hw_queue; 3813 } 3814 3815 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3816 status->band); 3817 } 3818 dev_kfree_skb(rx->skb); 3819 return RX_QUEUED; 3820 } 3821 3822 static ieee80211_rx_result debug_noinline 3823 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3824 { 3825 struct ieee80211_sub_if_data *sdata = rx->sdata; 3826 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3827 3828 if (!ieee80211_is_ext(hdr->frame_control)) 3829 return RX_CONTINUE; 3830 3831 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3832 return RX_DROP_MONITOR; 3833 3834 /* for now only beacons are ext, so queue them */ 3835 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3836 3837 return RX_QUEUED; 3838 } 3839 3840 static ieee80211_rx_result debug_noinline 3841 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3842 { 3843 struct ieee80211_sub_if_data *sdata = rx->sdata; 3844 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3845 __le16 stype; 3846 3847 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3848 3849 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3850 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3851 sdata->vif.type != NL80211_IFTYPE_OCB && 3852 sdata->vif.type != NL80211_IFTYPE_STATION) 3853 return RX_DROP_MONITOR; 3854 3855 switch (stype) { 3856 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3857 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3858 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3859 /* process for all: mesh, mlme, ibss */ 3860 break; 3861 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3862 if (is_multicast_ether_addr(mgmt->da) && 3863 !is_broadcast_ether_addr(mgmt->da)) 3864 return RX_DROP_MONITOR; 3865 3866 /* process only for station/IBSS */ 3867 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3868 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3869 return RX_DROP_MONITOR; 3870 break; 3871 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3872 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3873 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3874 if (is_multicast_ether_addr(mgmt->da) && 3875 !is_broadcast_ether_addr(mgmt->da)) 3876 return RX_DROP_MONITOR; 3877 3878 /* process only for station */ 3879 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3880 return RX_DROP_MONITOR; 3881 break; 3882 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3883 /* process only for ibss and mesh */ 3884 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3885 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3886 return RX_DROP_MONITOR; 3887 break; 3888 default: 3889 return RX_DROP_MONITOR; 3890 } 3891 3892 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3893 3894 return RX_QUEUED; 3895 } 3896 3897 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3898 struct ieee80211_rate *rate) 3899 { 3900 struct ieee80211_sub_if_data *sdata; 3901 struct ieee80211_local *local = rx->local; 3902 struct sk_buff *skb = rx->skb, *skb2; 3903 struct net_device *prev_dev = NULL; 3904 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3905 int needed_headroom; 3906 3907 /* 3908 * If cooked monitor has been processed already, then 3909 * don't do it again. If not, set the flag. 3910 */ 3911 if (rx->flags & IEEE80211_RX_CMNTR) 3912 goto out_free_skb; 3913 rx->flags |= IEEE80211_RX_CMNTR; 3914 3915 /* If there are no cooked monitor interfaces, just free the SKB */ 3916 if (!local->cooked_mntrs) 3917 goto out_free_skb; 3918 3919 /* vendor data is long removed here */ 3920 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3921 /* room for the radiotap header based on driver features */ 3922 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3923 3924 if (skb_headroom(skb) < needed_headroom && 3925 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3926 goto out_free_skb; 3927 3928 /* prepend radiotap information */ 3929 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3930 false); 3931 3932 skb_reset_mac_header(skb); 3933 skb->ip_summed = CHECKSUM_UNNECESSARY; 3934 skb->pkt_type = PACKET_OTHERHOST; 3935 skb->protocol = htons(ETH_P_802_2); 3936 3937 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3938 if (!ieee80211_sdata_running(sdata)) 3939 continue; 3940 3941 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3942 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3943 continue; 3944 3945 if (prev_dev) { 3946 skb2 = skb_clone(skb, GFP_ATOMIC); 3947 if (skb2) { 3948 skb2->dev = prev_dev; 3949 netif_receive_skb(skb2); 3950 } 3951 } 3952 3953 prev_dev = sdata->dev; 3954 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3955 } 3956 3957 if (prev_dev) { 3958 skb->dev = prev_dev; 3959 netif_receive_skb(skb); 3960 return; 3961 } 3962 3963 out_free_skb: 3964 dev_kfree_skb(skb); 3965 } 3966 3967 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3968 ieee80211_rx_result res) 3969 { 3970 switch (res) { 3971 case RX_DROP_MONITOR: 3972 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3973 if (rx->sta) 3974 rx->link_sta->rx_stats.dropped++; 3975 fallthrough; 3976 case RX_CONTINUE: { 3977 struct ieee80211_rate *rate = NULL; 3978 struct ieee80211_supported_band *sband; 3979 struct ieee80211_rx_status *status; 3980 3981 status = IEEE80211_SKB_RXCB((rx->skb)); 3982 3983 sband = rx->local->hw.wiphy->bands[status->band]; 3984 if (status->encoding == RX_ENC_LEGACY) 3985 rate = &sband->bitrates[status->rate_idx]; 3986 3987 ieee80211_rx_cooked_monitor(rx, rate); 3988 break; 3989 } 3990 case RX_DROP_UNUSABLE: 3991 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3992 if (rx->sta) 3993 rx->link_sta->rx_stats.dropped++; 3994 dev_kfree_skb(rx->skb); 3995 break; 3996 case RX_QUEUED: 3997 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3998 break; 3999 } 4000 } 4001 4002 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 4003 struct sk_buff_head *frames) 4004 { 4005 ieee80211_rx_result res = RX_DROP_MONITOR; 4006 struct sk_buff *skb; 4007 4008 #define CALL_RXH(rxh) \ 4009 do { \ 4010 res = rxh(rx); \ 4011 if (res != RX_CONTINUE) \ 4012 goto rxh_next; \ 4013 } while (0) 4014 4015 /* Lock here to avoid hitting all of the data used in the RX 4016 * path (e.g. key data, station data, ...) concurrently when 4017 * a frame is released from the reorder buffer due to timeout 4018 * from the timer, potentially concurrently with RX from the 4019 * driver. 4020 */ 4021 spin_lock_bh(&rx->local->rx_path_lock); 4022 4023 while ((skb = __skb_dequeue(frames))) { 4024 /* 4025 * all the other fields are valid across frames 4026 * that belong to an aMPDU since they are on the 4027 * same TID from the same station 4028 */ 4029 rx->skb = skb; 4030 4031 if (WARN_ON_ONCE(!rx->link)) 4032 goto rxh_next; 4033 4034 CALL_RXH(ieee80211_rx_h_check_more_data); 4035 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4036 CALL_RXH(ieee80211_rx_h_sta_process); 4037 CALL_RXH(ieee80211_rx_h_decrypt); 4038 CALL_RXH(ieee80211_rx_h_defragment); 4039 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4040 /* must be after MMIC verify so header is counted in MPDU mic */ 4041 CALL_RXH(ieee80211_rx_h_amsdu); 4042 CALL_RXH(ieee80211_rx_h_data); 4043 4044 /* special treatment -- needs the queue */ 4045 res = ieee80211_rx_h_ctrl(rx, frames); 4046 if (res != RX_CONTINUE) 4047 goto rxh_next; 4048 4049 CALL_RXH(ieee80211_rx_h_mgmt_check); 4050 CALL_RXH(ieee80211_rx_h_action); 4051 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4052 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4053 CALL_RXH(ieee80211_rx_h_action_return); 4054 CALL_RXH(ieee80211_rx_h_ext); 4055 CALL_RXH(ieee80211_rx_h_mgmt); 4056 4057 rxh_next: 4058 ieee80211_rx_handlers_result(rx, res); 4059 4060 #undef CALL_RXH 4061 } 4062 4063 spin_unlock_bh(&rx->local->rx_path_lock); 4064 } 4065 4066 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4067 { 4068 struct sk_buff_head reorder_release; 4069 ieee80211_rx_result res = RX_DROP_MONITOR; 4070 4071 __skb_queue_head_init(&reorder_release); 4072 4073 #define CALL_RXH(rxh) \ 4074 do { \ 4075 res = rxh(rx); \ 4076 if (res != RX_CONTINUE) \ 4077 goto rxh_next; \ 4078 } while (0) 4079 4080 CALL_RXH(ieee80211_rx_h_check_dup); 4081 CALL_RXH(ieee80211_rx_h_check); 4082 4083 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4084 4085 ieee80211_rx_handlers(rx, &reorder_release); 4086 return; 4087 4088 rxh_next: 4089 ieee80211_rx_handlers_result(rx, res); 4090 4091 #undef CALL_RXH 4092 } 4093 4094 static bool 4095 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4096 { 4097 return !!(sta->valid_links & BIT(link_id)); 4098 } 4099 4100 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4101 u8 link_id) 4102 { 4103 rx->link_id = link_id; 4104 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4105 4106 if (!rx->sta) 4107 return rx->link; 4108 4109 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4110 return false; 4111 4112 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4113 4114 return rx->link && rx->link_sta; 4115 } 4116 4117 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4118 struct sta_info *sta, int link_id) 4119 { 4120 rx->link_id = link_id; 4121 rx->sta = sta; 4122 4123 if (sta) { 4124 rx->local = sta->sdata->local; 4125 if (!rx->sdata) 4126 rx->sdata = sta->sdata; 4127 rx->link_sta = &sta->deflink; 4128 } else { 4129 rx->link_sta = NULL; 4130 } 4131 4132 if (link_id < 0) 4133 rx->link = &rx->sdata->deflink; 4134 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4135 return false; 4136 4137 return true; 4138 } 4139 4140 /* 4141 * This function makes calls into the RX path, therefore 4142 * it has to be invoked under RCU read lock. 4143 */ 4144 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4145 { 4146 struct sk_buff_head frames; 4147 struct ieee80211_rx_data rx = { 4148 /* This is OK -- must be QoS data frame */ 4149 .security_idx = tid, 4150 .seqno_idx = tid, 4151 }; 4152 struct tid_ampdu_rx *tid_agg_rx; 4153 int link_id = -1; 4154 4155 /* FIXME: statistics won't be right with this */ 4156 if (sta->sta.valid_links) 4157 link_id = ffs(sta->sta.valid_links) - 1; 4158 4159 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4160 return; 4161 4162 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4163 if (!tid_agg_rx) 4164 return; 4165 4166 __skb_queue_head_init(&frames); 4167 4168 spin_lock(&tid_agg_rx->reorder_lock); 4169 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4170 spin_unlock(&tid_agg_rx->reorder_lock); 4171 4172 if (!skb_queue_empty(&frames)) { 4173 struct ieee80211_event event = { 4174 .type = BA_FRAME_TIMEOUT, 4175 .u.ba.tid = tid, 4176 .u.ba.sta = &sta->sta, 4177 }; 4178 drv_event_callback(rx.local, rx.sdata, &event); 4179 } 4180 4181 ieee80211_rx_handlers(&rx, &frames); 4182 } 4183 4184 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4185 u16 ssn, u64 filtered, 4186 u16 received_mpdus) 4187 { 4188 struct sta_info *sta; 4189 struct tid_ampdu_rx *tid_agg_rx; 4190 struct sk_buff_head frames; 4191 struct ieee80211_rx_data rx = { 4192 /* This is OK -- must be QoS data frame */ 4193 .security_idx = tid, 4194 .seqno_idx = tid, 4195 }; 4196 int i, diff; 4197 4198 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4199 return; 4200 4201 __skb_queue_head_init(&frames); 4202 4203 sta = container_of(pubsta, struct sta_info, sta); 4204 4205 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4206 return; 4207 4208 rcu_read_lock(); 4209 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4210 if (!tid_agg_rx) 4211 goto out; 4212 4213 spin_lock_bh(&tid_agg_rx->reorder_lock); 4214 4215 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4216 int release; 4217 4218 /* release all frames in the reorder buffer */ 4219 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4220 IEEE80211_SN_MODULO; 4221 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4222 release, &frames); 4223 /* update ssn to match received ssn */ 4224 tid_agg_rx->head_seq_num = ssn; 4225 } else { 4226 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4227 &frames); 4228 } 4229 4230 /* handle the case that received ssn is behind the mac ssn. 4231 * it can be tid_agg_rx->buf_size behind and still be valid */ 4232 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4233 if (diff >= tid_agg_rx->buf_size) { 4234 tid_agg_rx->reorder_buf_filtered = 0; 4235 goto release; 4236 } 4237 filtered = filtered >> diff; 4238 ssn += diff; 4239 4240 /* update bitmap */ 4241 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4242 int index = (ssn + i) % tid_agg_rx->buf_size; 4243 4244 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4245 if (filtered & BIT_ULL(i)) 4246 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4247 } 4248 4249 /* now process also frames that the filter marking released */ 4250 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4251 4252 release: 4253 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4254 4255 ieee80211_rx_handlers(&rx, &frames); 4256 4257 out: 4258 rcu_read_unlock(); 4259 } 4260 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4261 4262 /* main receive path */ 4263 4264 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4265 { 4266 return ether_addr_equal(raddr, addr) || 4267 is_broadcast_ether_addr(raddr); 4268 } 4269 4270 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4271 { 4272 struct ieee80211_sub_if_data *sdata = rx->sdata; 4273 struct sk_buff *skb = rx->skb; 4274 struct ieee80211_hdr *hdr = (void *)skb->data; 4275 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4276 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4277 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4278 ieee80211_is_s1g_beacon(hdr->frame_control); 4279 4280 switch (sdata->vif.type) { 4281 case NL80211_IFTYPE_STATION: 4282 if (!bssid && !sdata->u.mgd.use_4addr) 4283 return false; 4284 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4285 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4286 return false; 4287 if (multicast) 4288 return true; 4289 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4290 case NL80211_IFTYPE_ADHOC: 4291 if (!bssid) 4292 return false; 4293 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4294 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4295 !is_valid_ether_addr(hdr->addr2)) 4296 return false; 4297 if (ieee80211_is_beacon(hdr->frame_control)) 4298 return true; 4299 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4300 return false; 4301 if (!multicast && 4302 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4303 return false; 4304 if (!rx->sta) { 4305 int rate_idx; 4306 if (status->encoding != RX_ENC_LEGACY) 4307 rate_idx = 0; /* TODO: HT/VHT rates */ 4308 else 4309 rate_idx = status->rate_idx; 4310 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4311 BIT(rate_idx)); 4312 } 4313 return true; 4314 case NL80211_IFTYPE_OCB: 4315 if (!bssid) 4316 return false; 4317 if (!ieee80211_is_data_present(hdr->frame_control)) 4318 return false; 4319 if (!is_broadcast_ether_addr(bssid)) 4320 return false; 4321 if (!multicast && 4322 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4323 return false; 4324 if (!rx->sta) { 4325 int rate_idx; 4326 if (status->encoding != RX_ENC_LEGACY) 4327 rate_idx = 0; /* TODO: HT rates */ 4328 else 4329 rate_idx = status->rate_idx; 4330 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4331 BIT(rate_idx)); 4332 } 4333 return true; 4334 case NL80211_IFTYPE_MESH_POINT: 4335 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4336 return false; 4337 if (multicast) 4338 return true; 4339 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4340 case NL80211_IFTYPE_AP_VLAN: 4341 case NL80211_IFTYPE_AP: 4342 if (!bssid) 4343 return ieee80211_is_our_addr(sdata, hdr->addr1, 4344 &rx->link_id); 4345 4346 if (!is_broadcast_ether_addr(bssid) && 4347 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4348 /* 4349 * Accept public action frames even when the 4350 * BSSID doesn't match, this is used for P2P 4351 * and location updates. Note that mac80211 4352 * itself never looks at these frames. 4353 */ 4354 if (!multicast && 4355 !ieee80211_is_our_addr(sdata, hdr->addr1, 4356 &rx->link_id)) 4357 return false; 4358 if (ieee80211_is_public_action(hdr, skb->len)) 4359 return true; 4360 return ieee80211_is_beacon(hdr->frame_control); 4361 } 4362 4363 if (!ieee80211_has_tods(hdr->frame_control)) { 4364 /* ignore data frames to TDLS-peers */ 4365 if (ieee80211_is_data(hdr->frame_control)) 4366 return false; 4367 /* ignore action frames to TDLS-peers */ 4368 if (ieee80211_is_action(hdr->frame_control) && 4369 !is_broadcast_ether_addr(bssid) && 4370 !ether_addr_equal(bssid, hdr->addr1)) 4371 return false; 4372 } 4373 4374 /* 4375 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4376 * the BSSID - we've checked that already but may have accepted 4377 * the wildcard (ff:ff:ff:ff:ff:ff). 4378 * 4379 * It also says: 4380 * The BSSID of the Data frame is determined as follows: 4381 * a) If the STA is contained within an AP or is associated 4382 * with an AP, the BSSID is the address currently in use 4383 * by the STA contained in the AP. 4384 * 4385 * So we should not accept data frames with an address that's 4386 * multicast. 4387 * 4388 * Accepting it also opens a security problem because stations 4389 * could encrypt it with the GTK and inject traffic that way. 4390 */ 4391 if (ieee80211_is_data(hdr->frame_control) && multicast) 4392 return false; 4393 4394 return true; 4395 case NL80211_IFTYPE_P2P_DEVICE: 4396 return ieee80211_is_public_action(hdr, skb->len) || 4397 ieee80211_is_probe_req(hdr->frame_control) || 4398 ieee80211_is_probe_resp(hdr->frame_control) || 4399 ieee80211_is_beacon(hdr->frame_control); 4400 case NL80211_IFTYPE_NAN: 4401 /* Currently no frames on NAN interface are allowed */ 4402 return false; 4403 default: 4404 break; 4405 } 4406 4407 WARN_ON_ONCE(1); 4408 return false; 4409 } 4410 4411 void ieee80211_check_fast_rx(struct sta_info *sta) 4412 { 4413 struct ieee80211_sub_if_data *sdata = sta->sdata; 4414 struct ieee80211_local *local = sdata->local; 4415 struct ieee80211_key *key; 4416 struct ieee80211_fast_rx fastrx = { 4417 .dev = sdata->dev, 4418 .vif_type = sdata->vif.type, 4419 .control_port_protocol = sdata->control_port_protocol, 4420 }, *old, *new = NULL; 4421 u32 offload_flags; 4422 bool set_offload = false; 4423 bool assign = false; 4424 bool offload; 4425 4426 /* use sparse to check that we don't return without updating */ 4427 __acquire(check_fast_rx); 4428 4429 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4430 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4431 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4432 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4433 4434 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4435 4436 /* fast-rx doesn't do reordering */ 4437 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4438 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4439 goto clear; 4440 4441 switch (sdata->vif.type) { 4442 case NL80211_IFTYPE_STATION: 4443 if (sta->sta.tdls) { 4444 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4445 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4446 fastrx.expected_ds_bits = 0; 4447 } else { 4448 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4449 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4450 fastrx.expected_ds_bits = 4451 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4452 } 4453 4454 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4455 fastrx.expected_ds_bits |= 4456 cpu_to_le16(IEEE80211_FCTL_TODS); 4457 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4458 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4459 } 4460 4461 if (!sdata->u.mgd.powersave) 4462 break; 4463 4464 /* software powersave is a huge mess, avoid all of it */ 4465 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4466 goto clear; 4467 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4468 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4469 goto clear; 4470 break; 4471 case NL80211_IFTYPE_AP_VLAN: 4472 case NL80211_IFTYPE_AP: 4473 /* parallel-rx requires this, at least with calls to 4474 * ieee80211_sta_ps_transition() 4475 */ 4476 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4477 goto clear; 4478 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4479 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4480 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4481 4482 fastrx.internal_forward = 4483 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4484 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4485 !sdata->u.vlan.sta); 4486 4487 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4488 sdata->u.vlan.sta) { 4489 fastrx.expected_ds_bits |= 4490 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4491 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4492 fastrx.internal_forward = 0; 4493 } 4494 4495 break; 4496 default: 4497 goto clear; 4498 } 4499 4500 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4501 goto clear; 4502 4503 rcu_read_lock(); 4504 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4505 if (!key) 4506 key = rcu_dereference(sdata->default_unicast_key); 4507 if (key) { 4508 switch (key->conf.cipher) { 4509 case WLAN_CIPHER_SUITE_TKIP: 4510 /* we don't want to deal with MMIC in fast-rx */ 4511 goto clear_rcu; 4512 case WLAN_CIPHER_SUITE_CCMP: 4513 case WLAN_CIPHER_SUITE_CCMP_256: 4514 case WLAN_CIPHER_SUITE_GCMP: 4515 case WLAN_CIPHER_SUITE_GCMP_256: 4516 break; 4517 default: 4518 /* We also don't want to deal with 4519 * WEP or cipher scheme. 4520 */ 4521 goto clear_rcu; 4522 } 4523 4524 fastrx.key = true; 4525 fastrx.icv_len = key->conf.icv_len; 4526 } 4527 4528 assign = true; 4529 clear_rcu: 4530 rcu_read_unlock(); 4531 clear: 4532 __release(check_fast_rx); 4533 4534 if (assign) 4535 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4536 4537 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4538 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4539 4540 if (assign && offload) 4541 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4542 else 4543 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4544 4545 if (set_offload) 4546 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4547 4548 spin_lock_bh(&sta->lock); 4549 old = rcu_dereference_protected(sta->fast_rx, true); 4550 rcu_assign_pointer(sta->fast_rx, new); 4551 spin_unlock_bh(&sta->lock); 4552 4553 if (old) 4554 kfree_rcu(old, rcu_head); 4555 } 4556 4557 void ieee80211_clear_fast_rx(struct sta_info *sta) 4558 { 4559 struct ieee80211_fast_rx *old; 4560 4561 spin_lock_bh(&sta->lock); 4562 old = rcu_dereference_protected(sta->fast_rx, true); 4563 RCU_INIT_POINTER(sta->fast_rx, NULL); 4564 spin_unlock_bh(&sta->lock); 4565 4566 if (old) 4567 kfree_rcu(old, rcu_head); 4568 } 4569 4570 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4571 { 4572 struct ieee80211_local *local = sdata->local; 4573 struct sta_info *sta; 4574 4575 lockdep_assert_held(&local->sta_mtx); 4576 4577 list_for_each_entry(sta, &local->sta_list, list) { 4578 if (sdata != sta->sdata && 4579 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4580 continue; 4581 ieee80211_check_fast_rx(sta); 4582 } 4583 } 4584 4585 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4586 { 4587 struct ieee80211_local *local = sdata->local; 4588 4589 mutex_lock(&local->sta_mtx); 4590 __ieee80211_check_fast_rx_iface(sdata); 4591 mutex_unlock(&local->sta_mtx); 4592 } 4593 4594 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4595 struct ieee80211_fast_rx *fast_rx, 4596 int orig_len) 4597 { 4598 struct ieee80211_sta_rx_stats *stats; 4599 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4600 struct sta_info *sta = rx->sta; 4601 struct link_sta_info *link_sta; 4602 struct sk_buff *skb = rx->skb; 4603 void *sa = skb->data + ETH_ALEN; 4604 void *da = skb->data; 4605 4606 if (rx->link_id >= 0) { 4607 link_sta = rcu_dereference(sta->link[rx->link_id]); 4608 if (WARN_ON_ONCE(!link_sta)) { 4609 dev_kfree_skb(rx->skb); 4610 return; 4611 } 4612 } else { 4613 link_sta = &sta->deflink; 4614 } 4615 4616 stats = &link_sta->rx_stats; 4617 if (fast_rx->uses_rss) 4618 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4619 4620 /* statistics part of ieee80211_rx_h_sta_process() */ 4621 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4622 stats->last_signal = status->signal; 4623 if (!fast_rx->uses_rss) 4624 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4625 -status->signal); 4626 } 4627 4628 if (status->chains) { 4629 int i; 4630 4631 stats->chains = status->chains; 4632 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4633 int signal = status->chain_signal[i]; 4634 4635 if (!(status->chains & BIT(i))) 4636 continue; 4637 4638 stats->chain_signal_last[i] = signal; 4639 if (!fast_rx->uses_rss) 4640 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4641 -signal); 4642 } 4643 } 4644 /* end of statistics */ 4645 4646 stats->last_rx = jiffies; 4647 stats->last_rate = sta_stats_encode_rate(status); 4648 4649 stats->fragments++; 4650 stats->packets++; 4651 4652 skb->dev = fast_rx->dev; 4653 4654 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4655 4656 /* The seqno index has the same property as needed 4657 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4658 * for non-QoS-data frames. Here we know it's a data 4659 * frame, so count MSDUs. 4660 */ 4661 u64_stats_update_begin(&stats->syncp); 4662 stats->msdu[rx->seqno_idx]++; 4663 stats->bytes += orig_len; 4664 u64_stats_update_end(&stats->syncp); 4665 4666 if (fast_rx->internal_forward) { 4667 struct sk_buff *xmit_skb = NULL; 4668 if (is_multicast_ether_addr(da)) { 4669 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4670 } else if (!ether_addr_equal(da, sa) && 4671 sta_info_get(rx->sdata, da)) { 4672 xmit_skb = skb; 4673 skb = NULL; 4674 } 4675 4676 if (xmit_skb) { 4677 /* 4678 * Send to wireless media and increase priority by 256 4679 * to keep the received priority instead of 4680 * reclassifying the frame (see cfg80211_classify8021d). 4681 */ 4682 xmit_skb->priority += 256; 4683 xmit_skb->protocol = htons(ETH_P_802_3); 4684 skb_reset_network_header(xmit_skb); 4685 skb_reset_mac_header(xmit_skb); 4686 dev_queue_xmit(xmit_skb); 4687 } 4688 4689 if (!skb) 4690 return; 4691 } 4692 4693 /* deliver to local stack */ 4694 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4695 ieee80211_deliver_skb_to_local_stack(skb, rx); 4696 } 4697 4698 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4699 struct ieee80211_fast_rx *fast_rx) 4700 { 4701 struct sk_buff *skb = rx->skb; 4702 struct ieee80211_hdr *hdr = (void *)skb->data; 4703 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4704 int orig_len = skb->len; 4705 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4706 int snap_offs = hdrlen; 4707 struct { 4708 u8 snap[sizeof(rfc1042_header)]; 4709 __be16 proto; 4710 } *payload __aligned(2); 4711 struct { 4712 u8 da[ETH_ALEN]; 4713 u8 sa[ETH_ALEN]; 4714 } addrs __aligned(2); 4715 struct ieee80211_sta_rx_stats *stats; 4716 4717 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4718 * to a common data structure; drivers can implement that per queue 4719 * but we don't have that information in mac80211 4720 */ 4721 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4722 return false; 4723 4724 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4725 4726 /* If using encryption, we also need to have: 4727 * - PN_VALIDATED: similar, but the implementation is tricky 4728 * - DECRYPTED: necessary for PN_VALIDATED 4729 */ 4730 if (fast_rx->key && 4731 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4732 return false; 4733 4734 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4735 return false; 4736 4737 if (unlikely(ieee80211_is_frag(hdr))) 4738 return false; 4739 4740 /* Since our interface address cannot be multicast, this 4741 * implicitly also rejects multicast frames without the 4742 * explicit check. 4743 * 4744 * We shouldn't get any *data* frames not addressed to us 4745 * (AP mode will accept multicast *management* frames), but 4746 * punting here will make it go through the full checks in 4747 * ieee80211_accept_frame(). 4748 */ 4749 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4750 return false; 4751 4752 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4753 IEEE80211_FCTL_TODS)) != 4754 fast_rx->expected_ds_bits) 4755 return false; 4756 4757 /* assign the key to drop unencrypted frames (later) 4758 * and strip the IV/MIC if necessary 4759 */ 4760 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4761 /* GCMP header length is the same */ 4762 snap_offs += IEEE80211_CCMP_HDR_LEN; 4763 } 4764 4765 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4766 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4767 return false; 4768 4769 payload = (void *)(skb->data + snap_offs); 4770 4771 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4772 return false; 4773 4774 /* Don't handle these here since they require special code. 4775 * Accept AARP and IPX even though they should come with a 4776 * bridge-tunnel header - but if we get them this way then 4777 * there's little point in discarding them. 4778 */ 4779 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4780 payload->proto == fast_rx->control_port_protocol)) 4781 return false; 4782 } 4783 4784 /* after this point, don't punt to the slowpath! */ 4785 4786 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4787 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4788 goto drop; 4789 4790 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4791 goto drop; 4792 4793 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4794 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4795 RX_QUEUED) 4796 goto drop; 4797 4798 return true; 4799 } 4800 4801 /* do the header conversion - first grab the addresses */ 4802 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4803 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4804 skb_postpull_rcsum(skb, skb->data + snap_offs, 4805 sizeof(rfc1042_header) + 2); 4806 /* remove the SNAP but leave the ethertype */ 4807 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4808 /* push the addresses in front */ 4809 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4810 4811 ieee80211_rx_8023(rx, fast_rx, orig_len); 4812 4813 return true; 4814 drop: 4815 dev_kfree_skb(skb); 4816 4817 if (fast_rx->uses_rss) 4818 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 4819 else 4820 stats = &rx->link_sta->rx_stats; 4821 4822 stats->dropped++; 4823 return true; 4824 } 4825 4826 /* 4827 * This function returns whether or not the SKB 4828 * was destined for RX processing or not, which, 4829 * if consume is true, is equivalent to whether 4830 * or not the skb was consumed. 4831 */ 4832 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4833 struct sk_buff *skb, bool consume) 4834 { 4835 struct ieee80211_local *local = rx->local; 4836 struct ieee80211_sub_if_data *sdata = rx->sdata; 4837 struct ieee80211_hdr *hdr = (void *)skb->data; 4838 struct link_sta_info *link_sta = rx->link_sta; 4839 struct ieee80211_link_data *link = rx->link; 4840 4841 rx->skb = skb; 4842 4843 /* See if we can do fast-rx; if we have to copy we already lost, 4844 * so punt in that case. We should never have to deliver a data 4845 * frame to multiple interfaces anyway. 4846 * 4847 * We skip the ieee80211_accept_frame() call and do the necessary 4848 * checking inside ieee80211_invoke_fast_rx(). 4849 */ 4850 if (consume && rx->sta) { 4851 struct ieee80211_fast_rx *fast_rx; 4852 4853 fast_rx = rcu_dereference(rx->sta->fast_rx); 4854 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4855 return true; 4856 } 4857 4858 if (!ieee80211_accept_frame(rx)) 4859 return false; 4860 4861 if (!consume) { 4862 struct skb_shared_hwtstamps *shwt; 4863 4864 rx->skb = skb_copy(skb, GFP_ATOMIC); 4865 if (!rx->skb) { 4866 if (net_ratelimit()) 4867 wiphy_debug(local->hw.wiphy, 4868 "failed to copy skb for %s\n", 4869 sdata->name); 4870 return true; 4871 } 4872 4873 /* skb_copy() does not copy the hw timestamps, so copy it 4874 * explicitly 4875 */ 4876 shwt = skb_hwtstamps(rx->skb); 4877 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 4878 4879 /* Update the hdr pointer to the new skb for translation below */ 4880 hdr = (struct ieee80211_hdr *)rx->skb->data; 4881 } 4882 4883 if (unlikely(rx->sta && rx->sta->sta.mlo) && 4884 is_unicast_ether_addr(hdr->addr1)) { 4885 /* translate to MLD addresses */ 4886 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 4887 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 4888 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 4889 ether_addr_copy(hdr->addr2, rx->sta->addr); 4890 /* translate A3 only if it's the BSSID */ 4891 if (!ieee80211_has_tods(hdr->frame_control) && 4892 !ieee80211_has_fromds(hdr->frame_control)) { 4893 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 4894 ether_addr_copy(hdr->addr3, rx->sta->addr); 4895 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 4896 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 4897 } 4898 /* not needed for A4 since it can only carry the SA */ 4899 } 4900 4901 ieee80211_invoke_rx_handlers(rx); 4902 return true; 4903 } 4904 4905 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4906 struct ieee80211_sta *pubsta, 4907 struct sk_buff *skb, 4908 struct list_head *list) 4909 { 4910 struct ieee80211_local *local = hw_to_local(hw); 4911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4912 struct ieee80211_fast_rx *fast_rx; 4913 struct ieee80211_rx_data rx; 4914 struct sta_info *sta; 4915 int link_id = -1; 4916 4917 memset(&rx, 0, sizeof(rx)); 4918 rx.skb = skb; 4919 rx.local = local; 4920 rx.list = list; 4921 rx.link_id = -1; 4922 4923 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4924 4925 /* drop frame if too short for header */ 4926 if (skb->len < sizeof(struct ethhdr)) 4927 goto drop; 4928 4929 if (!pubsta) 4930 goto drop; 4931 4932 if (status->link_valid) 4933 link_id = status->link_id; 4934 4935 /* 4936 * TODO: Should the frame be dropped if the right link_id is not 4937 * available? Or may be it is fine in the current form to proceed with 4938 * the frame processing because with frame being in 802.3 format, 4939 * link_id is used only for stats purpose and updating the stats on 4940 * the deflink is fine? 4941 */ 4942 sta = container_of(pubsta, struct sta_info, sta); 4943 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4944 goto drop; 4945 4946 fast_rx = rcu_dereference(rx.sta->fast_rx); 4947 if (!fast_rx) 4948 goto drop; 4949 4950 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4951 return; 4952 4953 drop: 4954 dev_kfree_skb(skb); 4955 } 4956 4957 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 4958 struct sk_buff *skb, bool consume) 4959 { 4960 struct link_sta_info *link_sta; 4961 struct ieee80211_hdr *hdr = (void *)skb->data; 4962 struct sta_info *sta; 4963 int link_id = -1; 4964 4965 /* 4966 * Look up link station first, in case there's a 4967 * chance that they might have a link address that 4968 * is identical to the MLD address, that way we'll 4969 * have the link information if needed. 4970 */ 4971 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 4972 if (link_sta) { 4973 sta = link_sta->sta; 4974 link_id = link_sta->link_id; 4975 } else { 4976 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4977 4978 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 4979 if (status->link_valid) 4980 link_id = status->link_id; 4981 } 4982 4983 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 4984 return false; 4985 4986 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 4987 } 4988 4989 /* 4990 * This is the actual Rx frames handler. as it belongs to Rx path it must 4991 * be called with rcu_read_lock protection. 4992 */ 4993 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4994 struct ieee80211_sta *pubsta, 4995 struct sk_buff *skb, 4996 struct list_head *list) 4997 { 4998 struct ieee80211_local *local = hw_to_local(hw); 4999 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5000 struct ieee80211_sub_if_data *sdata; 5001 struct ieee80211_hdr *hdr; 5002 __le16 fc; 5003 struct ieee80211_rx_data rx; 5004 struct ieee80211_sub_if_data *prev; 5005 struct rhlist_head *tmp; 5006 int err = 0; 5007 5008 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5009 memset(&rx, 0, sizeof(rx)); 5010 rx.skb = skb; 5011 rx.local = local; 5012 rx.list = list; 5013 rx.link_id = -1; 5014 5015 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5016 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5017 5018 if (ieee80211_is_mgmt(fc)) { 5019 /* drop frame if too short for header */ 5020 if (skb->len < ieee80211_hdrlen(fc)) 5021 err = -ENOBUFS; 5022 else 5023 err = skb_linearize(skb); 5024 } else { 5025 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5026 } 5027 5028 if (err) { 5029 dev_kfree_skb(skb); 5030 return; 5031 } 5032 5033 hdr = (struct ieee80211_hdr *)skb->data; 5034 ieee80211_parse_qos(&rx); 5035 ieee80211_verify_alignment(&rx); 5036 5037 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5038 ieee80211_is_beacon(hdr->frame_control) || 5039 ieee80211_is_s1g_beacon(hdr->frame_control))) 5040 ieee80211_scan_rx(local, skb); 5041 5042 if (ieee80211_is_data(fc)) { 5043 struct sta_info *sta, *prev_sta; 5044 int link_id = -1; 5045 5046 if (status->link_valid) 5047 link_id = status->link_id; 5048 5049 if (pubsta) { 5050 sta = container_of(pubsta, struct sta_info, sta); 5051 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5052 goto out; 5053 5054 /* 5055 * In MLO connection, fetch the link_id using addr2 5056 * when the driver does not pass link_id in status. 5057 * When the address translation is already performed by 5058 * driver/hw, the valid link_id must be passed in 5059 * status. 5060 */ 5061 5062 if (!status->link_valid && pubsta->mlo) { 5063 struct ieee80211_hdr *hdr = (void *)skb->data; 5064 struct link_sta_info *link_sta; 5065 5066 link_sta = link_sta_info_get_bss(rx.sdata, 5067 hdr->addr2); 5068 if (!link_sta) 5069 goto out; 5070 5071 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5072 } 5073 5074 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5075 return; 5076 goto out; 5077 } 5078 5079 prev_sta = NULL; 5080 5081 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5082 if (!prev_sta) { 5083 prev_sta = sta; 5084 continue; 5085 } 5086 5087 rx.sdata = prev_sta->sdata; 5088 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5089 goto out; 5090 5091 if (!status->link_valid && prev_sta->sta.mlo) 5092 continue; 5093 5094 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5095 5096 prev_sta = sta; 5097 } 5098 5099 if (prev_sta) { 5100 rx.sdata = prev_sta->sdata; 5101 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5102 goto out; 5103 5104 if (!status->link_valid && prev_sta->sta.mlo) 5105 goto out; 5106 5107 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5108 return; 5109 goto out; 5110 } 5111 } 5112 5113 prev = NULL; 5114 5115 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5116 if (!ieee80211_sdata_running(sdata)) 5117 continue; 5118 5119 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5120 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5121 continue; 5122 5123 /* 5124 * frame is destined for this interface, but if it's 5125 * not also for the previous one we handle that after 5126 * the loop to avoid copying the SKB once too much 5127 */ 5128 5129 if (!prev) { 5130 prev = sdata; 5131 continue; 5132 } 5133 5134 rx.sdata = prev; 5135 ieee80211_rx_for_interface(&rx, skb, false); 5136 5137 prev = sdata; 5138 } 5139 5140 if (prev) { 5141 rx.sdata = prev; 5142 5143 if (ieee80211_rx_for_interface(&rx, skb, true)) 5144 return; 5145 } 5146 5147 out: 5148 dev_kfree_skb(skb); 5149 } 5150 5151 /* 5152 * This is the receive path handler. It is called by a low level driver when an 5153 * 802.11 MPDU is received from the hardware. 5154 */ 5155 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5156 struct sk_buff *skb, struct list_head *list) 5157 { 5158 struct ieee80211_local *local = hw_to_local(hw); 5159 struct ieee80211_rate *rate = NULL; 5160 struct ieee80211_supported_band *sband; 5161 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5162 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5163 5164 WARN_ON_ONCE(softirq_count() == 0); 5165 5166 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5167 goto drop; 5168 5169 sband = local->hw.wiphy->bands[status->band]; 5170 if (WARN_ON(!sband)) 5171 goto drop; 5172 5173 /* 5174 * If we're suspending, it is possible although not too likely 5175 * that we'd be receiving frames after having already partially 5176 * quiesced the stack. We can't process such frames then since 5177 * that might, for example, cause stations to be added or other 5178 * driver callbacks be invoked. 5179 */ 5180 if (unlikely(local->quiescing || local->suspended)) 5181 goto drop; 5182 5183 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5184 if (unlikely(local->in_reconfig)) 5185 goto drop; 5186 5187 /* 5188 * The same happens when we're not even started, 5189 * but that's worth a warning. 5190 */ 5191 if (WARN_ON(!local->started)) 5192 goto drop; 5193 5194 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5195 /* 5196 * Validate the rate, unless a PLCP error means that 5197 * we probably can't have a valid rate here anyway. 5198 */ 5199 5200 switch (status->encoding) { 5201 case RX_ENC_HT: 5202 /* 5203 * rate_idx is MCS index, which can be [0-76] 5204 * as documented on: 5205 * 5206 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5207 * 5208 * Anything else would be some sort of driver or 5209 * hardware error. The driver should catch hardware 5210 * errors. 5211 */ 5212 if (WARN(status->rate_idx > 76, 5213 "Rate marked as an HT rate but passed " 5214 "status->rate_idx is not " 5215 "an MCS index [0-76]: %d (0x%02x)\n", 5216 status->rate_idx, 5217 status->rate_idx)) 5218 goto drop; 5219 break; 5220 case RX_ENC_VHT: 5221 if (WARN_ONCE(status->rate_idx > 11 || 5222 !status->nss || 5223 status->nss > 8, 5224 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5225 status->rate_idx, status->nss)) 5226 goto drop; 5227 break; 5228 case RX_ENC_HE: 5229 if (WARN_ONCE(status->rate_idx > 11 || 5230 !status->nss || 5231 status->nss > 8, 5232 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5233 status->rate_idx, status->nss)) 5234 goto drop; 5235 break; 5236 case RX_ENC_EHT: 5237 if (WARN_ONCE(status->rate_idx > 15 || 5238 !status->nss || 5239 status->nss > 8 || 5240 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5241 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5242 status->rate_idx, status->nss, status->eht.gi)) 5243 goto drop; 5244 break; 5245 default: 5246 WARN_ON_ONCE(1); 5247 fallthrough; 5248 case RX_ENC_LEGACY: 5249 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5250 goto drop; 5251 rate = &sband->bitrates[status->rate_idx]; 5252 } 5253 } 5254 5255 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5256 goto drop; 5257 5258 status->rx_flags = 0; 5259 5260 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5261 5262 /* 5263 * Frames with failed FCS/PLCP checksum are not returned, 5264 * all other frames are returned without radiotap header 5265 * if it was previously present. 5266 * Also, frames with less than 16 bytes are dropped. 5267 */ 5268 if (!(status->flag & RX_FLAG_8023)) 5269 skb = ieee80211_rx_monitor(local, skb, rate); 5270 if (skb) { 5271 if ((status->flag & RX_FLAG_8023) || 5272 ieee80211_is_data_present(hdr->frame_control)) 5273 ieee80211_tpt_led_trig_rx(local, skb->len); 5274 5275 if (status->flag & RX_FLAG_8023) 5276 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5277 else 5278 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5279 } 5280 5281 kcov_remote_stop(); 5282 return; 5283 drop: 5284 kfree_skb(skb); 5285 } 5286 EXPORT_SYMBOL(ieee80211_rx_list); 5287 5288 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5289 struct sk_buff *skb, struct napi_struct *napi) 5290 { 5291 struct sk_buff *tmp; 5292 LIST_HEAD(list); 5293 5294 5295 /* 5296 * key references and virtual interfaces are protected using RCU 5297 * and this requires that we are in a read-side RCU section during 5298 * receive processing 5299 */ 5300 rcu_read_lock(); 5301 ieee80211_rx_list(hw, pubsta, skb, &list); 5302 rcu_read_unlock(); 5303 5304 if (!napi) { 5305 netif_receive_skb_list(&list); 5306 return; 5307 } 5308 5309 list_for_each_entry_safe(skb, tmp, &list, list) { 5310 skb_list_del_init(skb); 5311 napi_gro_receive(napi, skb); 5312 } 5313 } 5314 EXPORT_SYMBOL(ieee80211_rx_napi); 5315 5316 /* This is a version of the rx handler that can be called from hard irq 5317 * context. Post the skb on the queue and schedule the tasklet */ 5318 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5319 { 5320 struct ieee80211_local *local = hw_to_local(hw); 5321 5322 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5323 5324 skb->pkt_type = IEEE80211_RX_MSG; 5325 skb_queue_tail(&local->skb_queue, skb); 5326 tasklet_schedule(&local->tasklet); 5327 } 5328 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5329