1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/jiffies.h> 14 #include <linux/slab.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/netdevice.h> 18 #include <linux/etherdevice.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 /* 36 * monitor mode reception 37 * 38 * This function cleans up the SKB, i.e. it removes all the stuff 39 * only useful for monitoring. 40 */ 41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 42 struct sk_buff *skb, 43 unsigned int rtap_vendor_space) 44 { 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 __pskb_pull(skb, rtap_vendor_space); 57 58 return skb; 59 } 60 61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 62 unsigned int rtap_vendor_space) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + rtap_vendor_space); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return true; 73 74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 75 return true; 76 77 if (ieee80211_is_ctl(hdr->frame_control) && 78 !ieee80211_is_pspoll(hdr->frame_control) && 79 !ieee80211_is_back_req(hdr->frame_control)) 80 return true; 81 82 return false; 83 } 84 85 static int 86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 87 struct ieee80211_rx_status *status, 88 struct sk_buff *skb) 89 { 90 int len; 91 92 /* always present fields */ 93 len = sizeof(struct ieee80211_radiotap_header) + 8; 94 95 /* allocate extra bitmaps */ 96 if (status->chains) 97 len += 4 * hweight8(status->chains); 98 99 if (ieee80211_have_rx_timestamp(status)) { 100 len = ALIGN(len, 8); 101 len += 8; 102 } 103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 104 len += 1; 105 106 /* antenna field, if we don't have per-chain info */ 107 if (!status->chains) 108 len += 1; 109 110 /* padding for RX_FLAGS if necessary */ 111 len = ALIGN(len, 2); 112 113 if (status->flag & RX_FLAG_HT) /* HT info */ 114 len += 3; 115 116 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 117 len = ALIGN(len, 4); 118 len += 8; 119 } 120 121 if (status->flag & RX_FLAG_VHT) { 122 len = ALIGN(len, 2); 123 len += 12; 124 } 125 126 if (status->chains) { 127 /* antenna and antenna signal fields */ 128 len += 2 * hweight8(status->chains); 129 } 130 131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 133 134 /* vendor presence bitmap */ 135 len += 4; 136 /* alignment for fixed 6-byte vendor data header */ 137 len = ALIGN(len, 2); 138 /* vendor data header */ 139 len += 6; 140 if (WARN_ON(rtap->align == 0)) 141 rtap->align = 1; 142 len = ALIGN(len, rtap->align); 143 len += rtap->len + rtap->pad; 144 } 145 146 return len; 147 } 148 149 /* 150 * ieee80211_add_rx_radiotap_header - add radiotap header 151 * 152 * add a radiotap header containing all the fields which the hardware provided. 153 */ 154 static void 155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 156 struct sk_buff *skb, 157 struct ieee80211_rate *rate, 158 int rtap_len, bool has_fcs) 159 { 160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 161 struct ieee80211_radiotap_header *rthdr; 162 unsigned char *pos; 163 __le32 *it_present; 164 u32 it_present_val; 165 u16 rx_flags = 0; 166 u16 channel_flags = 0; 167 int mpdulen, chain; 168 unsigned long chains = status->chains; 169 struct ieee80211_vendor_radiotap rtap = {}; 170 171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 173 /* rtap.len and rtap.pad are undone immediately */ 174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 175 } 176 177 mpdulen = skb->len; 178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 179 mpdulen += FCS_LEN; 180 181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 183 it_present = &rthdr->it_present; 184 185 /* radiotap header, set always present flags */ 186 rthdr->it_len = cpu_to_le16(rtap_len); 187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 188 BIT(IEEE80211_RADIOTAP_CHANNEL) | 189 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 190 191 if (!status->chains) 192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 193 194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 195 it_present_val |= 196 BIT(IEEE80211_RADIOTAP_EXT) | 197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 198 put_unaligned_le32(it_present_val, it_present); 199 it_present++; 200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 202 } 203 204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 206 BIT(IEEE80211_RADIOTAP_EXT); 207 put_unaligned_le32(it_present_val, it_present); 208 it_present++; 209 it_present_val = rtap.present; 210 } 211 212 put_unaligned_le32(it_present_val, it_present); 213 214 pos = (void *)(it_present + 1); 215 216 /* the order of the following fields is important */ 217 218 /* IEEE80211_RADIOTAP_TSFT */ 219 if (ieee80211_have_rx_timestamp(status)) { 220 /* padding */ 221 while ((pos - (u8 *)rthdr) & 7) 222 *pos++ = 0; 223 put_unaligned_le64( 224 ieee80211_calculate_rx_timestamp(local, status, 225 mpdulen, 0), 226 pos); 227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 228 pos += 8; 229 } 230 231 /* IEEE80211_RADIOTAP_FLAGS */ 232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 233 *pos |= IEEE80211_RADIOTAP_F_FCS; 234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 235 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 236 if (status->flag & RX_FLAG_SHORTPRE) 237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 238 pos++; 239 240 /* IEEE80211_RADIOTAP_RATE */ 241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 242 /* 243 * Without rate information don't add it. If we have, 244 * MCS information is a separate field in radiotap, 245 * added below. The byte here is needed as padding 246 * for the channel though, so initialise it to 0. 247 */ 248 *pos = 0; 249 } else { 250 int shift = 0; 251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 252 if (status->flag & RX_FLAG_10MHZ) 253 shift = 1; 254 else if (status->flag & RX_FLAG_5MHZ) 255 shift = 2; 256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 257 } 258 pos++; 259 260 /* IEEE80211_RADIOTAP_CHANNEL */ 261 put_unaligned_le16(status->freq, pos); 262 pos += 2; 263 if (status->flag & RX_FLAG_10MHZ) 264 channel_flags |= IEEE80211_CHAN_HALF; 265 else if (status->flag & RX_FLAG_5MHZ) 266 channel_flags |= IEEE80211_CHAN_QUARTER; 267 268 if (status->band == IEEE80211_BAND_5GHZ) 269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 274 else if (rate) 275 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 276 else 277 channel_flags |= IEEE80211_CHAN_2GHZ; 278 put_unaligned_le16(channel_flags, pos); 279 pos += 2; 280 281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 284 *pos = status->signal; 285 rthdr->it_present |= 286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 287 pos++; 288 } 289 290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 291 292 if (!status->chains) { 293 /* IEEE80211_RADIOTAP_ANTENNA */ 294 *pos = status->antenna; 295 pos++; 296 } 297 298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 299 300 /* IEEE80211_RADIOTAP_RX_FLAGS */ 301 /* ensure 2 byte alignment for the 2 byte field as required */ 302 if ((pos - (u8 *)rthdr) & 1) 303 *pos++ = 0; 304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 306 put_unaligned_le16(rx_flags, pos); 307 pos += 2; 308 309 if (status->flag & RX_FLAG_HT) { 310 unsigned int stbc; 311 312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 313 *pos++ = local->hw.radiotap_mcs_details; 314 *pos = 0; 315 if (status->flag & RX_FLAG_SHORT_GI) 316 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 317 if (status->flag & RX_FLAG_40MHZ) 318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 319 if (status->flag & RX_FLAG_HT_GF) 320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 321 if (status->flag & RX_FLAG_LDPC) 322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 325 pos++; 326 *pos++ = status->rate_idx; 327 } 328 329 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 330 u16 flags = 0; 331 332 /* ensure 4 byte alignment */ 333 while ((pos - (u8 *)rthdr) & 3) 334 pos++; 335 rthdr->it_present |= 336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 337 put_unaligned_le32(status->ampdu_reference, pos); 338 pos += 4; 339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 345 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 351 put_unaligned_le16(flags, pos); 352 pos += 2; 353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 354 *pos++ = status->ampdu_delimiter_crc; 355 else 356 *pos++ = 0; 357 *pos++ = 0; 358 } 359 360 if (status->flag & RX_FLAG_VHT) { 361 u16 known = local->hw.radiotap_vht_details; 362 363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 364 /* known field - how to handle 80+80? */ 365 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ) 366 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 367 put_unaligned_le16(known, pos); 368 pos += 2; 369 /* flags */ 370 if (status->flag & RX_FLAG_SHORT_GI) 371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 372 /* in VHT, STBC is binary */ 373 if (status->flag & RX_FLAG_STBC_MASK) 374 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 375 if (status->vht_flag & RX_VHT_FLAG_BF) 376 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 377 pos++; 378 /* bandwidth */ 379 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 380 *pos++ = 4; 381 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ) 382 *pos++ = 0; /* marked not known above */ 383 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 384 *pos++ = 11; 385 else if (status->flag & RX_FLAG_40MHZ) 386 *pos++ = 1; 387 else /* 20 MHz */ 388 *pos++ = 0; 389 /* MCS/NSS */ 390 *pos = (status->rate_idx << 4) | status->vht_nss; 391 pos += 4; 392 /* coding field */ 393 if (status->flag & RX_FLAG_LDPC) 394 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 395 pos++; 396 /* group ID */ 397 pos++; 398 /* partial_aid */ 399 pos += 2; 400 } 401 402 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 403 *pos++ = status->chain_signal[chain]; 404 *pos++ = chain; 405 } 406 407 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 408 /* ensure 2 byte alignment for the vendor field as required */ 409 if ((pos - (u8 *)rthdr) & 1) 410 *pos++ = 0; 411 *pos++ = rtap.oui[0]; 412 *pos++ = rtap.oui[1]; 413 *pos++ = rtap.oui[2]; 414 *pos++ = rtap.subns; 415 put_unaligned_le16(rtap.len, pos); 416 pos += 2; 417 /* align the actual payload as requested */ 418 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 419 *pos++ = 0; 420 /* data (and possible padding) already follows */ 421 } 422 } 423 424 /* 425 * This function copies a received frame to all monitor interfaces and 426 * returns a cleaned-up SKB that no longer includes the FCS nor the 427 * radiotap header the driver might have added. 428 */ 429 static struct sk_buff * 430 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 431 struct ieee80211_rate *rate) 432 { 433 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 434 struct ieee80211_sub_if_data *sdata; 435 int rt_hdrlen, needed_headroom; 436 struct sk_buff *skb, *skb2; 437 struct net_device *prev_dev = NULL; 438 int present_fcs_len = 0; 439 unsigned int rtap_vendor_space = 0; 440 441 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 442 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 443 444 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 445 } 446 447 /* 448 * First, we may need to make a copy of the skb because 449 * (1) we need to modify it for radiotap (if not present), and 450 * (2) the other RX handlers will modify the skb we got. 451 * 452 * We don't need to, of course, if we aren't going to return 453 * the SKB because it has a bad FCS/PLCP checksum. 454 */ 455 456 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 457 present_fcs_len = FCS_LEN; 458 459 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 460 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 461 dev_kfree_skb(origskb); 462 return NULL; 463 } 464 465 if (!local->monitors) { 466 if (should_drop_frame(origskb, present_fcs_len, 467 rtap_vendor_space)) { 468 dev_kfree_skb(origskb); 469 return NULL; 470 } 471 472 return remove_monitor_info(local, origskb, rtap_vendor_space); 473 } 474 475 /* room for the radiotap header based on driver features */ 476 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 477 needed_headroom = rt_hdrlen - rtap_vendor_space; 478 479 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 480 /* only need to expand headroom if necessary */ 481 skb = origskb; 482 origskb = NULL; 483 484 /* 485 * This shouldn't trigger often because most devices have an 486 * RX header they pull before we get here, and that should 487 * be big enough for our radiotap information. We should 488 * probably export the length to drivers so that we can have 489 * them allocate enough headroom to start with. 490 */ 491 if (skb_headroom(skb) < needed_headroom && 492 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 493 dev_kfree_skb(skb); 494 return NULL; 495 } 496 } else { 497 /* 498 * Need to make a copy and possibly remove radiotap header 499 * and FCS from the original. 500 */ 501 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 502 503 origskb = remove_monitor_info(local, origskb, 504 rtap_vendor_space); 505 506 if (!skb) 507 return origskb; 508 } 509 510 /* prepend radiotap information */ 511 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 512 513 skb_reset_mac_header(skb); 514 skb->ip_summed = CHECKSUM_UNNECESSARY; 515 skb->pkt_type = PACKET_OTHERHOST; 516 skb->protocol = htons(ETH_P_802_2); 517 518 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 519 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 520 continue; 521 522 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 523 continue; 524 525 if (!ieee80211_sdata_running(sdata)) 526 continue; 527 528 if (prev_dev) { 529 skb2 = skb_clone(skb, GFP_ATOMIC); 530 if (skb2) { 531 skb2->dev = prev_dev; 532 netif_receive_skb(skb2); 533 } 534 } 535 536 prev_dev = sdata->dev; 537 sdata->dev->stats.rx_packets++; 538 sdata->dev->stats.rx_bytes += skb->len; 539 } 540 541 if (prev_dev) { 542 skb->dev = prev_dev; 543 netif_receive_skb(skb); 544 } else 545 dev_kfree_skb(skb); 546 547 return origskb; 548 } 549 550 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 551 { 552 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 553 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 554 int tid, seqno_idx, security_idx; 555 556 /* does the frame have a qos control field? */ 557 if (ieee80211_is_data_qos(hdr->frame_control)) { 558 u8 *qc = ieee80211_get_qos_ctl(hdr); 559 /* frame has qos control */ 560 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 561 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 562 status->rx_flags |= IEEE80211_RX_AMSDU; 563 564 seqno_idx = tid; 565 security_idx = tid; 566 } else { 567 /* 568 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 569 * 570 * Sequence numbers for management frames, QoS data 571 * frames with a broadcast/multicast address in the 572 * Address 1 field, and all non-QoS data frames sent 573 * by QoS STAs are assigned using an additional single 574 * modulo-4096 counter, [...] 575 * 576 * We also use that counter for non-QoS STAs. 577 */ 578 seqno_idx = IEEE80211_NUM_TIDS; 579 security_idx = 0; 580 if (ieee80211_is_mgmt(hdr->frame_control)) 581 security_idx = IEEE80211_NUM_TIDS; 582 tid = 0; 583 } 584 585 rx->seqno_idx = seqno_idx; 586 rx->security_idx = security_idx; 587 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 588 * For now, set skb->priority to 0 for other cases. */ 589 rx->skb->priority = (tid > 7) ? 0 : tid; 590 } 591 592 /** 593 * DOC: Packet alignment 594 * 595 * Drivers always need to pass packets that are aligned to two-byte boundaries 596 * to the stack. 597 * 598 * Additionally, should, if possible, align the payload data in a way that 599 * guarantees that the contained IP header is aligned to a four-byte 600 * boundary. In the case of regular frames, this simply means aligning the 601 * payload to a four-byte boundary (because either the IP header is directly 602 * contained, or IV/RFC1042 headers that have a length divisible by four are 603 * in front of it). If the payload data is not properly aligned and the 604 * architecture doesn't support efficient unaligned operations, mac80211 605 * will align the data. 606 * 607 * With A-MSDU frames, however, the payload data address must yield two modulo 608 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 609 * push the IP header further back to a multiple of four again. Thankfully, the 610 * specs were sane enough this time around to require padding each A-MSDU 611 * subframe to a length that is a multiple of four. 612 * 613 * Padding like Atheros hardware adds which is between the 802.11 header and 614 * the payload is not supported, the driver is required to move the 802.11 615 * header to be directly in front of the payload in that case. 616 */ 617 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 618 { 619 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 620 WARN_ONCE((unsigned long)rx->skb->data & 1, 621 "unaligned packet at 0x%p\n", rx->skb->data); 622 #endif 623 } 624 625 626 /* rx handlers */ 627 628 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 629 { 630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 631 632 if (is_multicast_ether_addr(hdr->addr1)) 633 return 0; 634 635 return ieee80211_is_robust_mgmt_frame(skb); 636 } 637 638 639 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 640 { 641 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 642 643 if (!is_multicast_ether_addr(hdr->addr1)) 644 return 0; 645 646 return ieee80211_is_robust_mgmt_frame(skb); 647 } 648 649 650 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 651 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 652 { 653 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 654 struct ieee80211_mmie *mmie; 655 656 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 657 return -1; 658 659 if (!ieee80211_is_robust_mgmt_frame(skb)) 660 return -1; /* not a robust management frame */ 661 662 mmie = (struct ieee80211_mmie *) 663 (skb->data + skb->len - sizeof(*mmie)); 664 if (mmie->element_id != WLAN_EID_MMIE || 665 mmie->length != sizeof(*mmie) - 2) 666 return -1; 667 668 return le16_to_cpu(mmie->key_id); 669 } 670 671 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 672 struct sk_buff *skb) 673 { 674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 675 __le16 fc; 676 int hdrlen; 677 u8 keyid; 678 679 fc = hdr->frame_control; 680 hdrlen = ieee80211_hdrlen(fc); 681 682 if (skb->len < hdrlen + cs->hdr_len) 683 return -EINVAL; 684 685 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 686 keyid &= cs->key_idx_mask; 687 keyid >>= cs->key_idx_shift; 688 689 return keyid; 690 } 691 692 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 693 { 694 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 695 char *dev_addr = rx->sdata->vif.addr; 696 697 if (ieee80211_is_data(hdr->frame_control)) { 698 if (is_multicast_ether_addr(hdr->addr1)) { 699 if (ieee80211_has_tods(hdr->frame_control) || 700 !ieee80211_has_fromds(hdr->frame_control)) 701 return RX_DROP_MONITOR; 702 if (ether_addr_equal(hdr->addr3, dev_addr)) 703 return RX_DROP_MONITOR; 704 } else { 705 if (!ieee80211_has_a4(hdr->frame_control)) 706 return RX_DROP_MONITOR; 707 if (ether_addr_equal(hdr->addr4, dev_addr)) 708 return RX_DROP_MONITOR; 709 } 710 } 711 712 /* If there is not an established peer link and this is not a peer link 713 * establisment frame, beacon or probe, drop the frame. 714 */ 715 716 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 717 struct ieee80211_mgmt *mgmt; 718 719 if (!ieee80211_is_mgmt(hdr->frame_control)) 720 return RX_DROP_MONITOR; 721 722 if (ieee80211_is_action(hdr->frame_control)) { 723 u8 category; 724 725 /* make sure category field is present */ 726 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 727 return RX_DROP_MONITOR; 728 729 mgmt = (struct ieee80211_mgmt *)hdr; 730 category = mgmt->u.action.category; 731 if (category != WLAN_CATEGORY_MESH_ACTION && 732 category != WLAN_CATEGORY_SELF_PROTECTED) 733 return RX_DROP_MONITOR; 734 return RX_CONTINUE; 735 } 736 737 if (ieee80211_is_probe_req(hdr->frame_control) || 738 ieee80211_is_probe_resp(hdr->frame_control) || 739 ieee80211_is_beacon(hdr->frame_control) || 740 ieee80211_is_auth(hdr->frame_control)) 741 return RX_CONTINUE; 742 743 return RX_DROP_MONITOR; 744 } 745 746 return RX_CONTINUE; 747 } 748 749 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 750 struct tid_ampdu_rx *tid_agg_rx, 751 int index, 752 struct sk_buff_head *frames) 753 { 754 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 755 struct sk_buff *skb; 756 struct ieee80211_rx_status *status; 757 758 lockdep_assert_held(&tid_agg_rx->reorder_lock); 759 760 if (skb_queue_empty(skb_list)) 761 goto no_frame; 762 763 if (!ieee80211_rx_reorder_ready(skb_list)) { 764 __skb_queue_purge(skb_list); 765 goto no_frame; 766 } 767 768 /* release frames from the reorder ring buffer */ 769 tid_agg_rx->stored_mpdu_num--; 770 while ((skb = __skb_dequeue(skb_list))) { 771 status = IEEE80211_SKB_RXCB(skb); 772 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 773 __skb_queue_tail(frames, skb); 774 } 775 776 no_frame: 777 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 778 } 779 780 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 781 struct tid_ampdu_rx *tid_agg_rx, 782 u16 head_seq_num, 783 struct sk_buff_head *frames) 784 { 785 int index; 786 787 lockdep_assert_held(&tid_agg_rx->reorder_lock); 788 789 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 790 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 791 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 792 frames); 793 } 794 } 795 796 /* 797 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 798 * the skb was added to the buffer longer than this time ago, the earlier 799 * frames that have not yet been received are assumed to be lost and the skb 800 * can be released for processing. This may also release other skb's from the 801 * reorder buffer if there are no additional gaps between the frames. 802 * 803 * Callers must hold tid_agg_rx->reorder_lock. 804 */ 805 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 806 807 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 808 struct tid_ampdu_rx *tid_agg_rx, 809 struct sk_buff_head *frames) 810 { 811 int index, i, j; 812 813 lockdep_assert_held(&tid_agg_rx->reorder_lock); 814 815 /* release the buffer until next missing frame */ 816 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 817 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && 818 tid_agg_rx->stored_mpdu_num) { 819 /* 820 * No buffers ready to be released, but check whether any 821 * frames in the reorder buffer have timed out. 822 */ 823 int skipped = 1; 824 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 825 j = (j + 1) % tid_agg_rx->buf_size) { 826 if (!ieee80211_rx_reorder_ready( 827 &tid_agg_rx->reorder_buf[j])) { 828 skipped++; 829 continue; 830 } 831 if (skipped && 832 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 833 HT_RX_REORDER_BUF_TIMEOUT)) 834 goto set_release_timer; 835 836 /* don't leave incomplete A-MSDUs around */ 837 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 838 i = (i + 1) % tid_agg_rx->buf_size) 839 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 840 841 ht_dbg_ratelimited(sdata, 842 "release an RX reorder frame due to timeout on earlier frames\n"); 843 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 844 frames); 845 846 /* 847 * Increment the head seq# also for the skipped slots. 848 */ 849 tid_agg_rx->head_seq_num = 850 (tid_agg_rx->head_seq_num + 851 skipped) & IEEE80211_SN_MASK; 852 skipped = 0; 853 } 854 } else while (ieee80211_rx_reorder_ready( 855 &tid_agg_rx->reorder_buf[index])) { 856 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 857 frames); 858 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 859 } 860 861 if (tid_agg_rx->stored_mpdu_num) { 862 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 863 864 for (; j != (index - 1) % tid_agg_rx->buf_size; 865 j = (j + 1) % tid_agg_rx->buf_size) { 866 if (ieee80211_rx_reorder_ready( 867 &tid_agg_rx->reorder_buf[j])) 868 break; 869 } 870 871 set_release_timer: 872 873 mod_timer(&tid_agg_rx->reorder_timer, 874 tid_agg_rx->reorder_time[j] + 1 + 875 HT_RX_REORDER_BUF_TIMEOUT); 876 } else { 877 del_timer(&tid_agg_rx->reorder_timer); 878 } 879 } 880 881 /* 882 * As this function belongs to the RX path it must be under 883 * rcu_read_lock protection. It returns false if the frame 884 * can be processed immediately, true if it was consumed. 885 */ 886 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 887 struct tid_ampdu_rx *tid_agg_rx, 888 struct sk_buff *skb, 889 struct sk_buff_head *frames) 890 { 891 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 892 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 893 u16 sc = le16_to_cpu(hdr->seq_ctrl); 894 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 895 u16 head_seq_num, buf_size; 896 int index; 897 bool ret = true; 898 899 spin_lock(&tid_agg_rx->reorder_lock); 900 901 /* 902 * Offloaded BA sessions have no known starting sequence number so pick 903 * one from first Rxed frame for this tid after BA was started. 904 */ 905 if (unlikely(tid_agg_rx->auto_seq)) { 906 tid_agg_rx->auto_seq = false; 907 tid_agg_rx->ssn = mpdu_seq_num; 908 tid_agg_rx->head_seq_num = mpdu_seq_num; 909 } 910 911 buf_size = tid_agg_rx->buf_size; 912 head_seq_num = tid_agg_rx->head_seq_num; 913 914 /* frame with out of date sequence number */ 915 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 916 dev_kfree_skb(skb); 917 goto out; 918 } 919 920 /* 921 * If frame the sequence number exceeds our buffering window 922 * size release some previous frames to make room for this one. 923 */ 924 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 925 head_seq_num = ieee80211_sn_inc( 926 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 927 /* release stored frames up to new head to stack */ 928 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 929 head_seq_num, frames); 930 } 931 932 /* Now the new frame is always in the range of the reordering buffer */ 933 934 index = mpdu_seq_num % tid_agg_rx->buf_size; 935 936 /* check if we already stored this frame */ 937 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { 938 dev_kfree_skb(skb); 939 goto out; 940 } 941 942 /* 943 * If the current MPDU is in the right order and nothing else 944 * is stored we can process it directly, no need to buffer it. 945 * If it is first but there's something stored, we may be able 946 * to release frames after this one. 947 */ 948 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 949 tid_agg_rx->stored_mpdu_num == 0) { 950 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 951 tid_agg_rx->head_seq_num = 952 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 953 ret = false; 954 goto out; 955 } 956 957 /* put the frame in the reordering buffer */ 958 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 959 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 960 tid_agg_rx->reorder_time[index] = jiffies; 961 tid_agg_rx->stored_mpdu_num++; 962 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 963 } 964 965 out: 966 spin_unlock(&tid_agg_rx->reorder_lock); 967 return ret; 968 } 969 970 /* 971 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 972 * true if the MPDU was buffered, false if it should be processed. 973 */ 974 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 975 struct sk_buff_head *frames) 976 { 977 struct sk_buff *skb = rx->skb; 978 struct ieee80211_local *local = rx->local; 979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 980 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 981 struct sta_info *sta = rx->sta; 982 struct tid_ampdu_rx *tid_agg_rx; 983 u16 sc; 984 u8 tid, ack_policy; 985 986 if (!ieee80211_is_data_qos(hdr->frame_control) || 987 is_multicast_ether_addr(hdr->addr1)) 988 goto dont_reorder; 989 990 /* 991 * filter the QoS data rx stream according to 992 * STA/TID and check if this STA/TID is on aggregation 993 */ 994 995 if (!sta) 996 goto dont_reorder; 997 998 ack_policy = *ieee80211_get_qos_ctl(hdr) & 999 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1000 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1001 1002 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1003 if (!tid_agg_rx) 1004 goto dont_reorder; 1005 1006 /* qos null data frames are excluded */ 1007 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1008 goto dont_reorder; 1009 1010 /* not part of a BA session */ 1011 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1012 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1013 goto dont_reorder; 1014 1015 /* not actually part of this BA session */ 1016 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1017 goto dont_reorder; 1018 1019 /* new, potentially un-ordered, ampdu frame - process it */ 1020 1021 /* reset session timer */ 1022 if (tid_agg_rx->timeout) 1023 tid_agg_rx->last_rx = jiffies; 1024 1025 /* if this mpdu is fragmented - terminate rx aggregation session */ 1026 sc = le16_to_cpu(hdr->seq_ctrl); 1027 if (sc & IEEE80211_SCTL_FRAG) { 1028 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1029 skb_queue_tail(&rx->sdata->skb_queue, skb); 1030 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1031 return; 1032 } 1033 1034 /* 1035 * No locking needed -- we will only ever process one 1036 * RX packet at a time, and thus own tid_agg_rx. All 1037 * other code manipulating it needs to (and does) make 1038 * sure that we cannot get to it any more before doing 1039 * anything with it. 1040 */ 1041 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1042 frames)) 1043 return; 1044 1045 dont_reorder: 1046 __skb_queue_tail(frames, skb); 1047 } 1048 1049 static ieee80211_rx_result debug_noinline 1050 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1051 { 1052 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1053 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1054 1055 /* 1056 * Drop duplicate 802.11 retransmissions 1057 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1058 */ 1059 1060 if (rx->skb->len < 24) 1061 return RX_CONTINUE; 1062 1063 if (ieee80211_is_ctl(hdr->frame_control) || 1064 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1065 is_multicast_ether_addr(hdr->addr1)) 1066 return RX_CONTINUE; 1067 1068 if (rx->sta) { 1069 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1070 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1071 hdr->seq_ctrl)) { 1072 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1073 rx->local->dot11FrameDuplicateCount++; 1074 rx->sta->num_duplicates++; 1075 } 1076 return RX_DROP_UNUSABLE; 1077 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1078 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1079 } 1080 } 1081 1082 return RX_CONTINUE; 1083 } 1084 1085 static ieee80211_rx_result debug_noinline 1086 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1087 { 1088 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1089 1090 if (unlikely(rx->skb->len < 16)) { 1091 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1092 return RX_DROP_MONITOR; 1093 } 1094 1095 /* Drop disallowed frame classes based on STA auth/assoc state; 1096 * IEEE 802.11, Chap 5.5. 1097 * 1098 * mac80211 filters only based on association state, i.e. it drops 1099 * Class 3 frames from not associated stations. hostapd sends 1100 * deauth/disassoc frames when needed. In addition, hostapd is 1101 * responsible for filtering on both auth and assoc states. 1102 */ 1103 1104 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1105 return ieee80211_rx_mesh_check(rx); 1106 1107 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1108 ieee80211_is_pspoll(hdr->frame_control)) && 1109 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1110 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1111 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1112 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1113 /* 1114 * accept port control frames from the AP even when it's not 1115 * yet marked ASSOC to prevent a race where we don't set the 1116 * assoc bit quickly enough before it sends the first frame 1117 */ 1118 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1119 ieee80211_is_data_present(hdr->frame_control)) { 1120 unsigned int hdrlen; 1121 __be16 ethertype; 1122 1123 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1124 1125 if (rx->skb->len < hdrlen + 8) 1126 return RX_DROP_MONITOR; 1127 1128 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1129 if (ethertype == rx->sdata->control_port_protocol) 1130 return RX_CONTINUE; 1131 } 1132 1133 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1134 cfg80211_rx_spurious_frame(rx->sdata->dev, 1135 hdr->addr2, 1136 GFP_ATOMIC)) 1137 return RX_DROP_UNUSABLE; 1138 1139 return RX_DROP_MONITOR; 1140 } 1141 1142 return RX_CONTINUE; 1143 } 1144 1145 1146 static ieee80211_rx_result debug_noinline 1147 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1148 { 1149 struct ieee80211_local *local; 1150 struct ieee80211_hdr *hdr; 1151 struct sk_buff *skb; 1152 1153 local = rx->local; 1154 skb = rx->skb; 1155 hdr = (struct ieee80211_hdr *) skb->data; 1156 1157 if (!local->pspolling) 1158 return RX_CONTINUE; 1159 1160 if (!ieee80211_has_fromds(hdr->frame_control)) 1161 /* this is not from AP */ 1162 return RX_CONTINUE; 1163 1164 if (!ieee80211_is_data(hdr->frame_control)) 1165 return RX_CONTINUE; 1166 1167 if (!ieee80211_has_moredata(hdr->frame_control)) { 1168 /* AP has no more frames buffered for us */ 1169 local->pspolling = false; 1170 return RX_CONTINUE; 1171 } 1172 1173 /* more data bit is set, let's request a new frame from the AP */ 1174 ieee80211_send_pspoll(local, rx->sdata); 1175 1176 return RX_CONTINUE; 1177 } 1178 1179 static void sta_ps_start(struct sta_info *sta) 1180 { 1181 struct ieee80211_sub_if_data *sdata = sta->sdata; 1182 struct ieee80211_local *local = sdata->local; 1183 struct ps_data *ps; 1184 1185 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1186 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1187 ps = &sdata->bss->ps; 1188 else 1189 return; 1190 1191 atomic_inc(&ps->num_sta_ps); 1192 set_sta_flag(sta, WLAN_STA_PS_STA); 1193 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1194 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1195 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1196 sta->sta.addr, sta->sta.aid); 1197 } 1198 1199 static void sta_ps_end(struct sta_info *sta) 1200 { 1201 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1202 sta->sta.addr, sta->sta.aid); 1203 1204 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1205 /* 1206 * Clear the flag only if the other one is still set 1207 * so that the TX path won't start TX'ing new frames 1208 * directly ... In the case that the driver flag isn't 1209 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1210 */ 1211 clear_sta_flag(sta, WLAN_STA_PS_STA); 1212 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1213 sta->sta.addr, sta->sta.aid); 1214 return; 1215 } 1216 1217 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1218 clear_sta_flag(sta, WLAN_STA_PS_STA); 1219 ieee80211_sta_ps_deliver_wakeup(sta); 1220 } 1221 1222 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1223 { 1224 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1225 bool in_ps; 1226 1227 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1228 1229 /* Don't let the same PS state be set twice */ 1230 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1231 if ((start && in_ps) || (!start && !in_ps)) 1232 return -EINVAL; 1233 1234 if (start) 1235 sta_ps_start(sta_inf); 1236 else 1237 sta_ps_end(sta_inf); 1238 1239 return 0; 1240 } 1241 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1242 1243 static ieee80211_rx_result debug_noinline 1244 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1245 { 1246 struct ieee80211_sub_if_data *sdata = rx->sdata; 1247 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1248 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1249 int tid, ac; 1250 1251 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1252 return RX_CONTINUE; 1253 1254 if (sdata->vif.type != NL80211_IFTYPE_AP && 1255 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1256 return RX_CONTINUE; 1257 1258 /* 1259 * The device handles station powersave, so don't do anything about 1260 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1261 * it to mac80211 since they're handled.) 1262 */ 1263 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1264 return RX_CONTINUE; 1265 1266 /* 1267 * Don't do anything if the station isn't already asleep. In 1268 * the uAPSD case, the station will probably be marked asleep, 1269 * in the PS-Poll case the station must be confused ... 1270 */ 1271 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1272 return RX_CONTINUE; 1273 1274 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1275 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1276 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1277 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1278 else 1279 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1280 } 1281 1282 /* Free PS Poll skb here instead of returning RX_DROP that would 1283 * count as an dropped frame. */ 1284 dev_kfree_skb(rx->skb); 1285 1286 return RX_QUEUED; 1287 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1288 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1289 ieee80211_has_pm(hdr->frame_control) && 1290 (ieee80211_is_data_qos(hdr->frame_control) || 1291 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1292 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1293 ac = ieee802_1d_to_ac[tid & 7]; 1294 1295 /* 1296 * If this AC is not trigger-enabled do nothing. 1297 * 1298 * NB: This could/should check a separate bitmap of trigger- 1299 * enabled queues, but for now we only implement uAPSD w/o 1300 * TSPEC changes to the ACs, so they're always the same. 1301 */ 1302 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1303 return RX_CONTINUE; 1304 1305 /* if we are in a service period, do nothing */ 1306 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1307 return RX_CONTINUE; 1308 1309 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1310 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1311 else 1312 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1313 } 1314 1315 return RX_CONTINUE; 1316 } 1317 1318 static ieee80211_rx_result debug_noinline 1319 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1320 { 1321 struct sta_info *sta = rx->sta; 1322 struct sk_buff *skb = rx->skb; 1323 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1324 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1325 int i; 1326 1327 if (!sta) 1328 return RX_CONTINUE; 1329 1330 /* 1331 * Update last_rx only for IBSS packets which are for the current 1332 * BSSID and for station already AUTHORIZED to avoid keeping the 1333 * current IBSS network alive in cases where other STAs start 1334 * using different BSSID. This will also give the station another 1335 * chance to restart the authentication/authorization in case 1336 * something went wrong the first time. 1337 */ 1338 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1339 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1340 NL80211_IFTYPE_ADHOC); 1341 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1342 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1343 sta->last_rx = jiffies; 1344 if (ieee80211_is_data(hdr->frame_control) && 1345 !is_multicast_ether_addr(hdr->addr1)) { 1346 sta->last_rx_rate_idx = status->rate_idx; 1347 sta->last_rx_rate_flag = status->flag; 1348 sta->last_rx_rate_vht_flag = status->vht_flag; 1349 sta->last_rx_rate_vht_nss = status->vht_nss; 1350 } 1351 } 1352 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1353 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1354 NL80211_IFTYPE_OCB); 1355 /* OCB uses wild-card BSSID */ 1356 if (is_broadcast_ether_addr(bssid)) 1357 sta->last_rx = jiffies; 1358 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1359 /* 1360 * Mesh beacons will update last_rx when if they are found to 1361 * match the current local configuration when processed. 1362 */ 1363 sta->last_rx = jiffies; 1364 if (ieee80211_is_data(hdr->frame_control)) { 1365 sta->last_rx_rate_idx = status->rate_idx; 1366 sta->last_rx_rate_flag = status->flag; 1367 sta->last_rx_rate_vht_flag = status->vht_flag; 1368 sta->last_rx_rate_vht_nss = status->vht_nss; 1369 } 1370 } 1371 1372 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1373 return RX_CONTINUE; 1374 1375 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1376 ieee80211_sta_rx_notify(rx->sdata, hdr); 1377 1378 sta->rx_fragments++; 1379 sta->rx_bytes += rx->skb->len; 1380 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1381 sta->last_signal = status->signal; 1382 ewma_add(&sta->avg_signal, -status->signal); 1383 } 1384 1385 if (status->chains) { 1386 sta->chains = status->chains; 1387 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1388 int signal = status->chain_signal[i]; 1389 1390 if (!(status->chains & BIT(i))) 1391 continue; 1392 1393 sta->chain_signal_last[i] = signal; 1394 ewma_add(&sta->chain_signal_avg[i], -signal); 1395 } 1396 } 1397 1398 /* 1399 * Change STA power saving mode only at the end of a frame 1400 * exchange sequence. 1401 */ 1402 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1403 !ieee80211_has_morefrags(hdr->frame_control) && 1404 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1405 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1406 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1407 /* PM bit is only checked in frames where it isn't reserved, 1408 * in AP mode it's reserved in non-bufferable management frames 1409 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1410 */ 1411 (!ieee80211_is_mgmt(hdr->frame_control) || 1412 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1413 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1414 if (!ieee80211_has_pm(hdr->frame_control)) 1415 sta_ps_end(sta); 1416 } else { 1417 if (ieee80211_has_pm(hdr->frame_control)) 1418 sta_ps_start(sta); 1419 } 1420 } 1421 1422 /* mesh power save support */ 1423 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1424 ieee80211_mps_rx_h_sta_process(sta, hdr); 1425 1426 /* 1427 * Drop (qos-)data::nullfunc frames silently, since they 1428 * are used only to control station power saving mode. 1429 */ 1430 if (ieee80211_is_nullfunc(hdr->frame_control) || 1431 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1432 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1433 1434 /* 1435 * If we receive a 4-addr nullfunc frame from a STA 1436 * that was not moved to a 4-addr STA vlan yet send 1437 * the event to userspace and for older hostapd drop 1438 * the frame to the monitor interface. 1439 */ 1440 if (ieee80211_has_a4(hdr->frame_control) && 1441 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1442 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1443 !rx->sdata->u.vlan.sta))) { 1444 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1445 cfg80211_rx_unexpected_4addr_frame( 1446 rx->sdata->dev, sta->sta.addr, 1447 GFP_ATOMIC); 1448 return RX_DROP_MONITOR; 1449 } 1450 /* 1451 * Update counter and free packet here to avoid 1452 * counting this as a dropped packed. 1453 */ 1454 sta->rx_packets++; 1455 dev_kfree_skb(rx->skb); 1456 return RX_QUEUED; 1457 } 1458 1459 return RX_CONTINUE; 1460 } /* ieee80211_rx_h_sta_process */ 1461 1462 static ieee80211_rx_result debug_noinline 1463 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1464 { 1465 struct sk_buff *skb = rx->skb; 1466 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1467 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1468 int keyidx; 1469 int hdrlen; 1470 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1471 struct ieee80211_key *sta_ptk = NULL; 1472 int mmie_keyidx = -1; 1473 __le16 fc; 1474 const struct ieee80211_cipher_scheme *cs = NULL; 1475 1476 /* 1477 * Key selection 101 1478 * 1479 * There are four types of keys: 1480 * - GTK (group keys) 1481 * - IGTK (group keys for management frames) 1482 * - PTK (pairwise keys) 1483 * - STK (station-to-station pairwise keys) 1484 * 1485 * When selecting a key, we have to distinguish between multicast 1486 * (including broadcast) and unicast frames, the latter can only 1487 * use PTKs and STKs while the former always use GTKs and IGTKs. 1488 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1489 * unicast frames can also use key indices like GTKs. Hence, if we 1490 * don't have a PTK/STK we check the key index for a WEP key. 1491 * 1492 * Note that in a regular BSS, multicast frames are sent by the 1493 * AP only, associated stations unicast the frame to the AP first 1494 * which then multicasts it on their behalf. 1495 * 1496 * There is also a slight problem in IBSS mode: GTKs are negotiated 1497 * with each station, that is something we don't currently handle. 1498 * The spec seems to expect that one negotiates the same key with 1499 * every station but there's no such requirement; VLANs could be 1500 * possible. 1501 */ 1502 1503 /* 1504 * No point in finding a key and decrypting if the frame is neither 1505 * addressed to us nor a multicast frame. 1506 */ 1507 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1508 return RX_CONTINUE; 1509 1510 /* start without a key */ 1511 rx->key = NULL; 1512 fc = hdr->frame_control; 1513 1514 if (rx->sta) { 1515 int keyid = rx->sta->ptk_idx; 1516 1517 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1518 cs = rx->sta->cipher_scheme; 1519 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1520 if (unlikely(keyid < 0)) 1521 return RX_DROP_UNUSABLE; 1522 } 1523 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1524 } 1525 1526 if (!ieee80211_has_protected(fc)) 1527 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1528 1529 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1530 rx->key = sta_ptk; 1531 if ((status->flag & RX_FLAG_DECRYPTED) && 1532 (status->flag & RX_FLAG_IV_STRIPPED)) 1533 return RX_CONTINUE; 1534 /* Skip decryption if the frame is not protected. */ 1535 if (!ieee80211_has_protected(fc)) 1536 return RX_CONTINUE; 1537 } else if (mmie_keyidx >= 0) { 1538 /* Broadcast/multicast robust management frame / BIP */ 1539 if ((status->flag & RX_FLAG_DECRYPTED) && 1540 (status->flag & RX_FLAG_IV_STRIPPED)) 1541 return RX_CONTINUE; 1542 1543 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1544 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1545 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1546 if (rx->sta) 1547 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1548 if (!rx->key) 1549 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1550 } else if (!ieee80211_has_protected(fc)) { 1551 /* 1552 * The frame was not protected, so skip decryption. However, we 1553 * need to set rx->key if there is a key that could have been 1554 * used so that the frame may be dropped if encryption would 1555 * have been expected. 1556 */ 1557 struct ieee80211_key *key = NULL; 1558 struct ieee80211_sub_if_data *sdata = rx->sdata; 1559 int i; 1560 1561 if (ieee80211_is_mgmt(fc) && 1562 is_multicast_ether_addr(hdr->addr1) && 1563 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1564 rx->key = key; 1565 else { 1566 if (rx->sta) { 1567 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1568 key = rcu_dereference(rx->sta->gtk[i]); 1569 if (key) 1570 break; 1571 } 1572 } 1573 if (!key) { 1574 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1575 key = rcu_dereference(sdata->keys[i]); 1576 if (key) 1577 break; 1578 } 1579 } 1580 if (key) 1581 rx->key = key; 1582 } 1583 return RX_CONTINUE; 1584 } else { 1585 u8 keyid; 1586 1587 /* 1588 * The device doesn't give us the IV so we won't be 1589 * able to look up the key. That's ok though, we 1590 * don't need to decrypt the frame, we just won't 1591 * be able to keep statistics accurate. 1592 * Except for key threshold notifications, should 1593 * we somehow allow the driver to tell us which key 1594 * the hardware used if this flag is set? 1595 */ 1596 if ((status->flag & RX_FLAG_DECRYPTED) && 1597 (status->flag & RX_FLAG_IV_STRIPPED)) 1598 return RX_CONTINUE; 1599 1600 hdrlen = ieee80211_hdrlen(fc); 1601 1602 if (cs) { 1603 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1604 1605 if (unlikely(keyidx < 0)) 1606 return RX_DROP_UNUSABLE; 1607 } else { 1608 if (rx->skb->len < 8 + hdrlen) 1609 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1610 /* 1611 * no need to call ieee80211_wep_get_keyidx, 1612 * it verifies a bunch of things we've done already 1613 */ 1614 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1615 keyidx = keyid >> 6; 1616 } 1617 1618 /* check per-station GTK first, if multicast packet */ 1619 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1620 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1621 1622 /* if not found, try default key */ 1623 if (!rx->key) { 1624 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1625 1626 /* 1627 * RSNA-protected unicast frames should always be 1628 * sent with pairwise or station-to-station keys, 1629 * but for WEP we allow using a key index as well. 1630 */ 1631 if (rx->key && 1632 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1633 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1634 !is_multicast_ether_addr(hdr->addr1)) 1635 rx->key = NULL; 1636 } 1637 } 1638 1639 if (rx->key) { 1640 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1641 return RX_DROP_MONITOR; 1642 1643 rx->key->tx_rx_count++; 1644 /* TODO: add threshold stuff again */ 1645 } else { 1646 return RX_DROP_MONITOR; 1647 } 1648 1649 switch (rx->key->conf.cipher) { 1650 case WLAN_CIPHER_SUITE_WEP40: 1651 case WLAN_CIPHER_SUITE_WEP104: 1652 result = ieee80211_crypto_wep_decrypt(rx); 1653 break; 1654 case WLAN_CIPHER_SUITE_TKIP: 1655 result = ieee80211_crypto_tkip_decrypt(rx); 1656 break; 1657 case WLAN_CIPHER_SUITE_CCMP: 1658 result = ieee80211_crypto_ccmp_decrypt(rx); 1659 break; 1660 case WLAN_CIPHER_SUITE_AES_CMAC: 1661 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1662 break; 1663 default: 1664 result = ieee80211_crypto_hw_decrypt(rx); 1665 } 1666 1667 /* the hdr variable is invalid after the decrypt handlers */ 1668 1669 /* either the frame has been decrypted or will be dropped */ 1670 status->flag |= RX_FLAG_DECRYPTED; 1671 1672 return result; 1673 } 1674 1675 static inline struct ieee80211_fragment_entry * 1676 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1677 unsigned int frag, unsigned int seq, int rx_queue, 1678 struct sk_buff **skb) 1679 { 1680 struct ieee80211_fragment_entry *entry; 1681 1682 entry = &sdata->fragments[sdata->fragment_next++]; 1683 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1684 sdata->fragment_next = 0; 1685 1686 if (!skb_queue_empty(&entry->skb_list)) 1687 __skb_queue_purge(&entry->skb_list); 1688 1689 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1690 *skb = NULL; 1691 entry->first_frag_time = jiffies; 1692 entry->seq = seq; 1693 entry->rx_queue = rx_queue; 1694 entry->last_frag = frag; 1695 entry->ccmp = 0; 1696 entry->extra_len = 0; 1697 1698 return entry; 1699 } 1700 1701 static inline struct ieee80211_fragment_entry * 1702 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1703 unsigned int frag, unsigned int seq, 1704 int rx_queue, struct ieee80211_hdr *hdr) 1705 { 1706 struct ieee80211_fragment_entry *entry; 1707 int i, idx; 1708 1709 idx = sdata->fragment_next; 1710 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1711 struct ieee80211_hdr *f_hdr; 1712 1713 idx--; 1714 if (idx < 0) 1715 idx = IEEE80211_FRAGMENT_MAX - 1; 1716 1717 entry = &sdata->fragments[idx]; 1718 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1719 entry->rx_queue != rx_queue || 1720 entry->last_frag + 1 != frag) 1721 continue; 1722 1723 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1724 1725 /* 1726 * Check ftype and addresses are equal, else check next fragment 1727 */ 1728 if (((hdr->frame_control ^ f_hdr->frame_control) & 1729 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1730 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1731 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1732 continue; 1733 1734 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1735 __skb_queue_purge(&entry->skb_list); 1736 continue; 1737 } 1738 return entry; 1739 } 1740 1741 return NULL; 1742 } 1743 1744 static ieee80211_rx_result debug_noinline 1745 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1746 { 1747 struct ieee80211_hdr *hdr; 1748 u16 sc; 1749 __le16 fc; 1750 unsigned int frag, seq; 1751 struct ieee80211_fragment_entry *entry; 1752 struct sk_buff *skb; 1753 struct ieee80211_rx_status *status; 1754 1755 hdr = (struct ieee80211_hdr *)rx->skb->data; 1756 fc = hdr->frame_control; 1757 1758 if (ieee80211_is_ctl(fc)) 1759 return RX_CONTINUE; 1760 1761 sc = le16_to_cpu(hdr->seq_ctrl); 1762 frag = sc & IEEE80211_SCTL_FRAG; 1763 1764 if (is_multicast_ether_addr(hdr->addr1)) { 1765 rx->local->dot11MulticastReceivedFrameCount++; 1766 goto out_no_led; 1767 } 1768 1769 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1770 goto out; 1771 1772 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1773 1774 if (skb_linearize(rx->skb)) 1775 return RX_DROP_UNUSABLE; 1776 1777 /* 1778 * skb_linearize() might change the skb->data and 1779 * previously cached variables (in this case, hdr) need to 1780 * be refreshed with the new data. 1781 */ 1782 hdr = (struct ieee80211_hdr *)rx->skb->data; 1783 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1784 1785 if (frag == 0) { 1786 /* This is the first fragment of a new frame. */ 1787 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1788 rx->seqno_idx, &(rx->skb)); 1789 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1790 ieee80211_has_protected(fc)) { 1791 int queue = rx->security_idx; 1792 /* Store CCMP PN so that we can verify that the next 1793 * fragment has a sequential PN value. */ 1794 entry->ccmp = 1; 1795 memcpy(entry->last_pn, 1796 rx->key->u.ccmp.rx_pn[queue], 1797 IEEE80211_CCMP_PN_LEN); 1798 } 1799 return RX_QUEUED; 1800 } 1801 1802 /* This is a fragment for a frame that should already be pending in 1803 * fragment cache. Add this fragment to the end of the pending entry. 1804 */ 1805 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1806 rx->seqno_idx, hdr); 1807 if (!entry) { 1808 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1809 return RX_DROP_MONITOR; 1810 } 1811 1812 /* Verify that MPDUs within one MSDU have sequential PN values. 1813 * (IEEE 802.11i, 8.3.3.4.5) */ 1814 if (entry->ccmp) { 1815 int i; 1816 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1817 int queue; 1818 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1819 return RX_DROP_UNUSABLE; 1820 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1821 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1822 pn[i]++; 1823 if (pn[i]) 1824 break; 1825 } 1826 queue = rx->security_idx; 1827 rpn = rx->key->u.ccmp.rx_pn[queue]; 1828 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1829 return RX_DROP_UNUSABLE; 1830 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1831 } 1832 1833 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1834 __skb_queue_tail(&entry->skb_list, rx->skb); 1835 entry->last_frag = frag; 1836 entry->extra_len += rx->skb->len; 1837 if (ieee80211_has_morefrags(fc)) { 1838 rx->skb = NULL; 1839 return RX_QUEUED; 1840 } 1841 1842 rx->skb = __skb_dequeue(&entry->skb_list); 1843 if (skb_tailroom(rx->skb) < entry->extra_len) { 1844 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1845 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1846 GFP_ATOMIC))) { 1847 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1848 __skb_queue_purge(&entry->skb_list); 1849 return RX_DROP_UNUSABLE; 1850 } 1851 } 1852 while ((skb = __skb_dequeue(&entry->skb_list))) { 1853 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1854 dev_kfree_skb(skb); 1855 } 1856 1857 /* Complete frame has been reassembled - process it now */ 1858 status = IEEE80211_SKB_RXCB(rx->skb); 1859 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1860 1861 out: 1862 ieee80211_led_rx(rx->local); 1863 out_no_led: 1864 if (rx->sta) 1865 rx->sta->rx_packets++; 1866 return RX_CONTINUE; 1867 } 1868 1869 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1870 { 1871 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1872 return -EACCES; 1873 1874 return 0; 1875 } 1876 1877 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1878 { 1879 struct sk_buff *skb = rx->skb; 1880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1881 1882 /* 1883 * Pass through unencrypted frames if the hardware has 1884 * decrypted them already. 1885 */ 1886 if (status->flag & RX_FLAG_DECRYPTED) 1887 return 0; 1888 1889 /* Drop unencrypted frames if key is set. */ 1890 if (unlikely(!ieee80211_has_protected(fc) && 1891 !ieee80211_is_nullfunc(fc) && 1892 ieee80211_is_data(fc) && 1893 (rx->key || rx->sdata->drop_unencrypted))) 1894 return -EACCES; 1895 1896 return 0; 1897 } 1898 1899 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1900 { 1901 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1902 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1903 __le16 fc = hdr->frame_control; 1904 1905 /* 1906 * Pass through unencrypted frames if the hardware has 1907 * decrypted them already. 1908 */ 1909 if (status->flag & RX_FLAG_DECRYPTED) 1910 return 0; 1911 1912 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1913 if (unlikely(!ieee80211_has_protected(fc) && 1914 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1915 rx->key)) { 1916 if (ieee80211_is_deauth(fc) || 1917 ieee80211_is_disassoc(fc)) 1918 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1919 rx->skb->data, 1920 rx->skb->len); 1921 return -EACCES; 1922 } 1923 /* BIP does not use Protected field, so need to check MMIE */ 1924 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1925 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1926 if (ieee80211_is_deauth(fc) || 1927 ieee80211_is_disassoc(fc)) 1928 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1929 rx->skb->data, 1930 rx->skb->len); 1931 return -EACCES; 1932 } 1933 /* 1934 * When using MFP, Action frames are not allowed prior to 1935 * having configured keys. 1936 */ 1937 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1938 ieee80211_is_robust_mgmt_frame(rx->skb))) 1939 return -EACCES; 1940 } 1941 1942 return 0; 1943 } 1944 1945 static int 1946 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1947 { 1948 struct ieee80211_sub_if_data *sdata = rx->sdata; 1949 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1950 bool check_port_control = false; 1951 struct ethhdr *ehdr; 1952 int ret; 1953 1954 *port_control = false; 1955 if (ieee80211_has_a4(hdr->frame_control) && 1956 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1957 return -1; 1958 1959 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1960 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1961 1962 if (!sdata->u.mgd.use_4addr) 1963 return -1; 1964 else 1965 check_port_control = true; 1966 } 1967 1968 if (is_multicast_ether_addr(hdr->addr1) && 1969 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1970 return -1; 1971 1972 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1973 if (ret < 0) 1974 return ret; 1975 1976 ehdr = (struct ethhdr *) rx->skb->data; 1977 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1978 *port_control = true; 1979 else if (check_port_control) 1980 return -1; 1981 1982 return 0; 1983 } 1984 1985 /* 1986 * requires that rx->skb is a frame with ethernet header 1987 */ 1988 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1989 { 1990 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1991 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1992 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1993 1994 /* 1995 * Allow EAPOL frames to us/the PAE group address regardless 1996 * of whether the frame was encrypted or not. 1997 */ 1998 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1999 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2000 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2001 return true; 2002 2003 if (ieee80211_802_1x_port_control(rx) || 2004 ieee80211_drop_unencrypted(rx, fc)) 2005 return false; 2006 2007 return true; 2008 } 2009 2010 /* 2011 * requires that rx->skb is a frame with ethernet header 2012 */ 2013 static void 2014 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2015 { 2016 struct ieee80211_sub_if_data *sdata = rx->sdata; 2017 struct net_device *dev = sdata->dev; 2018 struct sk_buff *skb, *xmit_skb; 2019 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2020 struct sta_info *dsta; 2021 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2022 2023 skb = rx->skb; 2024 xmit_skb = NULL; 2025 2026 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2027 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2028 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2029 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 2030 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2031 if (is_multicast_ether_addr(ehdr->h_dest)) { 2032 /* 2033 * send multicast frames both to higher layers in 2034 * local net stack and back to the wireless medium 2035 */ 2036 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2037 if (!xmit_skb) 2038 net_info_ratelimited("%s: failed to clone multicast frame\n", 2039 dev->name); 2040 } else { 2041 dsta = sta_info_get(sdata, skb->data); 2042 if (dsta) { 2043 /* 2044 * The destination station is associated to 2045 * this AP (in this VLAN), so send the frame 2046 * directly to it and do not pass it to local 2047 * net stack. 2048 */ 2049 xmit_skb = skb; 2050 skb = NULL; 2051 } 2052 } 2053 } 2054 2055 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2056 if (skb) { 2057 /* 'align' will only take the values 0 or 2 here since all 2058 * frames are required to be aligned to 2-byte boundaries 2059 * when being passed to mac80211; the code here works just 2060 * as well if that isn't true, but mac80211 assumes it can 2061 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2062 */ 2063 int align; 2064 2065 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2066 if (align) { 2067 if (WARN_ON(skb_headroom(skb) < 3)) { 2068 dev_kfree_skb(skb); 2069 skb = NULL; 2070 } else { 2071 u8 *data = skb->data; 2072 size_t len = skb_headlen(skb); 2073 skb->data -= align; 2074 memmove(skb->data, data, len); 2075 skb_set_tail_pointer(skb, len); 2076 } 2077 } 2078 } 2079 #endif 2080 2081 if (skb) { 2082 /* deliver to local stack */ 2083 skb->protocol = eth_type_trans(skb, dev); 2084 memset(skb->cb, 0, sizeof(skb->cb)); 2085 if (rx->local->napi) 2086 napi_gro_receive(rx->local->napi, skb); 2087 else 2088 netif_receive_skb(skb); 2089 } 2090 2091 if (xmit_skb) { 2092 /* 2093 * Send to wireless media and increase priority by 256 to 2094 * keep the received priority instead of reclassifying 2095 * the frame (see cfg80211_classify8021d). 2096 */ 2097 xmit_skb->priority += 256; 2098 xmit_skb->protocol = htons(ETH_P_802_3); 2099 skb_reset_network_header(xmit_skb); 2100 skb_reset_mac_header(xmit_skb); 2101 dev_queue_xmit(xmit_skb); 2102 } 2103 } 2104 2105 static ieee80211_rx_result debug_noinline 2106 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2107 { 2108 struct net_device *dev = rx->sdata->dev; 2109 struct sk_buff *skb = rx->skb; 2110 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2111 __le16 fc = hdr->frame_control; 2112 struct sk_buff_head frame_list; 2113 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2114 2115 if (unlikely(!ieee80211_is_data(fc))) 2116 return RX_CONTINUE; 2117 2118 if (unlikely(!ieee80211_is_data_present(fc))) 2119 return RX_DROP_MONITOR; 2120 2121 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2122 return RX_CONTINUE; 2123 2124 if (ieee80211_has_a4(hdr->frame_control) && 2125 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2126 !rx->sdata->u.vlan.sta) 2127 return RX_DROP_UNUSABLE; 2128 2129 if (is_multicast_ether_addr(hdr->addr1) && 2130 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2131 rx->sdata->u.vlan.sta) || 2132 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2133 rx->sdata->u.mgd.use_4addr))) 2134 return RX_DROP_UNUSABLE; 2135 2136 skb->dev = dev; 2137 __skb_queue_head_init(&frame_list); 2138 2139 if (skb_linearize(skb)) 2140 return RX_DROP_UNUSABLE; 2141 2142 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2143 rx->sdata->vif.type, 2144 rx->local->hw.extra_tx_headroom, true); 2145 2146 while (!skb_queue_empty(&frame_list)) { 2147 rx->skb = __skb_dequeue(&frame_list); 2148 2149 if (!ieee80211_frame_allowed(rx, fc)) { 2150 dev_kfree_skb(rx->skb); 2151 continue; 2152 } 2153 dev->stats.rx_packets++; 2154 dev->stats.rx_bytes += rx->skb->len; 2155 2156 ieee80211_deliver_skb(rx); 2157 } 2158 2159 return RX_QUEUED; 2160 } 2161 2162 #ifdef CONFIG_MAC80211_MESH 2163 static ieee80211_rx_result 2164 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2165 { 2166 struct ieee80211_hdr *fwd_hdr, *hdr; 2167 struct ieee80211_tx_info *info; 2168 struct ieee80211s_hdr *mesh_hdr; 2169 struct sk_buff *skb = rx->skb, *fwd_skb; 2170 struct ieee80211_local *local = rx->local; 2171 struct ieee80211_sub_if_data *sdata = rx->sdata; 2172 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2173 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2174 u16 q, hdrlen; 2175 2176 hdr = (struct ieee80211_hdr *) skb->data; 2177 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2178 2179 /* make sure fixed part of mesh header is there, also checks skb len */ 2180 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2181 return RX_DROP_MONITOR; 2182 2183 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2184 2185 /* make sure full mesh header is there, also checks skb len */ 2186 if (!pskb_may_pull(rx->skb, 2187 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2188 return RX_DROP_MONITOR; 2189 2190 /* reload pointers */ 2191 hdr = (struct ieee80211_hdr *) skb->data; 2192 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2193 2194 /* frame is in RMC, don't forward */ 2195 if (ieee80211_is_data(hdr->frame_control) && 2196 is_multicast_ether_addr(hdr->addr1) && 2197 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2198 return RX_DROP_MONITOR; 2199 2200 if (!ieee80211_is_data(hdr->frame_control) || 2201 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2202 return RX_CONTINUE; 2203 2204 if (!mesh_hdr->ttl) 2205 return RX_DROP_MONITOR; 2206 2207 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2208 struct mesh_path *mppath; 2209 char *proxied_addr; 2210 char *mpp_addr; 2211 2212 if (is_multicast_ether_addr(hdr->addr1)) { 2213 mpp_addr = hdr->addr3; 2214 proxied_addr = mesh_hdr->eaddr1; 2215 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2216 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2217 mpp_addr = hdr->addr4; 2218 proxied_addr = mesh_hdr->eaddr2; 2219 } else { 2220 return RX_DROP_MONITOR; 2221 } 2222 2223 rcu_read_lock(); 2224 mppath = mpp_path_lookup(sdata, proxied_addr); 2225 if (!mppath) { 2226 mpp_path_add(sdata, proxied_addr, mpp_addr); 2227 } else { 2228 spin_lock_bh(&mppath->state_lock); 2229 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2230 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2231 spin_unlock_bh(&mppath->state_lock); 2232 } 2233 rcu_read_unlock(); 2234 } 2235 2236 /* Frame has reached destination. Don't forward */ 2237 if (!is_multicast_ether_addr(hdr->addr1) && 2238 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2239 return RX_CONTINUE; 2240 2241 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2242 if (ieee80211_queue_stopped(&local->hw, q)) { 2243 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2244 return RX_DROP_MONITOR; 2245 } 2246 skb_set_queue_mapping(skb, q); 2247 2248 if (!--mesh_hdr->ttl) { 2249 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2250 goto out; 2251 } 2252 2253 if (!ifmsh->mshcfg.dot11MeshForwarding) 2254 goto out; 2255 2256 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2257 if (!fwd_skb) { 2258 net_info_ratelimited("%s: failed to clone mesh frame\n", 2259 sdata->name); 2260 goto out; 2261 } 2262 2263 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2264 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2265 info = IEEE80211_SKB_CB(fwd_skb); 2266 memset(info, 0, sizeof(*info)); 2267 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2268 info->control.vif = &rx->sdata->vif; 2269 info->control.jiffies = jiffies; 2270 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2271 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2272 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2273 /* update power mode indication when forwarding */ 2274 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2275 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2276 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2277 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2278 } else { 2279 /* unable to resolve next hop */ 2280 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2281 fwd_hdr->addr3, 0, 2282 WLAN_REASON_MESH_PATH_NOFORWARD, 2283 fwd_hdr->addr2); 2284 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2285 kfree_skb(fwd_skb); 2286 return RX_DROP_MONITOR; 2287 } 2288 2289 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2290 ieee80211_add_pending_skb(local, fwd_skb); 2291 out: 2292 if (is_multicast_ether_addr(hdr->addr1) || 2293 sdata->dev->flags & IFF_PROMISC) 2294 return RX_CONTINUE; 2295 else 2296 return RX_DROP_MONITOR; 2297 } 2298 #endif 2299 2300 static ieee80211_rx_result debug_noinline 2301 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2302 { 2303 struct ieee80211_sub_if_data *sdata = rx->sdata; 2304 struct ieee80211_local *local = rx->local; 2305 struct net_device *dev = sdata->dev; 2306 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2307 __le16 fc = hdr->frame_control; 2308 bool port_control; 2309 int err; 2310 2311 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2312 return RX_CONTINUE; 2313 2314 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2315 return RX_DROP_MONITOR; 2316 2317 /* 2318 * Send unexpected-4addr-frame event to hostapd. For older versions, 2319 * also drop the frame to cooked monitor interfaces. 2320 */ 2321 if (ieee80211_has_a4(hdr->frame_control) && 2322 sdata->vif.type == NL80211_IFTYPE_AP) { 2323 if (rx->sta && 2324 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2325 cfg80211_rx_unexpected_4addr_frame( 2326 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2327 return RX_DROP_MONITOR; 2328 } 2329 2330 err = __ieee80211_data_to_8023(rx, &port_control); 2331 if (unlikely(err)) 2332 return RX_DROP_UNUSABLE; 2333 2334 if (!ieee80211_frame_allowed(rx, fc)) 2335 return RX_DROP_MONITOR; 2336 2337 /* directly handle TDLS channel switch requests/responses */ 2338 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2339 cpu_to_be16(ETH_P_TDLS))) { 2340 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2341 2342 if (pskb_may_pull(rx->skb, 2343 offsetof(struct ieee80211_tdls_data, u)) && 2344 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2345 tf->category == WLAN_CATEGORY_TDLS && 2346 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2347 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2348 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW; 2349 skb_queue_tail(&sdata->skb_queue, rx->skb); 2350 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2351 if (rx->sta) 2352 rx->sta->rx_packets++; 2353 2354 return RX_QUEUED; 2355 } 2356 } 2357 2358 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2359 unlikely(port_control) && sdata->bss) { 2360 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2361 u.ap); 2362 dev = sdata->dev; 2363 rx->sdata = sdata; 2364 } 2365 2366 rx->skb->dev = dev; 2367 2368 dev->stats.rx_packets++; 2369 dev->stats.rx_bytes += rx->skb->len; 2370 2371 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2372 !is_multicast_ether_addr( 2373 ((struct ethhdr *)rx->skb->data)->h_dest) && 2374 (!local->scanning && 2375 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2376 mod_timer(&local->dynamic_ps_timer, jiffies + 2377 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2378 } 2379 2380 ieee80211_deliver_skb(rx); 2381 2382 return RX_QUEUED; 2383 } 2384 2385 static ieee80211_rx_result debug_noinline 2386 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2387 { 2388 struct sk_buff *skb = rx->skb; 2389 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2390 struct tid_ampdu_rx *tid_agg_rx; 2391 u16 start_seq_num; 2392 u16 tid; 2393 2394 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2395 return RX_CONTINUE; 2396 2397 if (ieee80211_is_back_req(bar->frame_control)) { 2398 struct { 2399 __le16 control, start_seq_num; 2400 } __packed bar_data; 2401 2402 if (!rx->sta) 2403 return RX_DROP_MONITOR; 2404 2405 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2406 &bar_data, sizeof(bar_data))) 2407 return RX_DROP_MONITOR; 2408 2409 tid = le16_to_cpu(bar_data.control) >> 12; 2410 2411 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2412 if (!tid_agg_rx) 2413 return RX_DROP_MONITOR; 2414 2415 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2416 2417 /* reset session timer */ 2418 if (tid_agg_rx->timeout) 2419 mod_timer(&tid_agg_rx->session_timer, 2420 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2421 2422 spin_lock(&tid_agg_rx->reorder_lock); 2423 /* release stored frames up to start of BAR */ 2424 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2425 start_seq_num, frames); 2426 spin_unlock(&tid_agg_rx->reorder_lock); 2427 2428 kfree_skb(skb); 2429 return RX_QUEUED; 2430 } 2431 2432 /* 2433 * After this point, we only want management frames, 2434 * so we can drop all remaining control frames to 2435 * cooked monitor interfaces. 2436 */ 2437 return RX_DROP_MONITOR; 2438 } 2439 2440 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2441 struct ieee80211_mgmt *mgmt, 2442 size_t len) 2443 { 2444 struct ieee80211_local *local = sdata->local; 2445 struct sk_buff *skb; 2446 struct ieee80211_mgmt *resp; 2447 2448 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2449 /* Not to own unicast address */ 2450 return; 2451 } 2452 2453 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2454 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2455 /* Not from the current AP or not associated yet. */ 2456 return; 2457 } 2458 2459 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2460 /* Too short SA Query request frame */ 2461 return; 2462 } 2463 2464 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2465 if (skb == NULL) 2466 return; 2467 2468 skb_reserve(skb, local->hw.extra_tx_headroom); 2469 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2470 memset(resp, 0, 24); 2471 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2472 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2473 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2474 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2475 IEEE80211_STYPE_ACTION); 2476 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2477 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2478 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2479 memcpy(resp->u.action.u.sa_query.trans_id, 2480 mgmt->u.action.u.sa_query.trans_id, 2481 WLAN_SA_QUERY_TR_ID_LEN); 2482 2483 ieee80211_tx_skb(sdata, skb); 2484 } 2485 2486 static ieee80211_rx_result debug_noinline 2487 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2488 { 2489 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2490 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2491 2492 /* 2493 * From here on, look only at management frames. 2494 * Data and control frames are already handled, 2495 * and unknown (reserved) frames are useless. 2496 */ 2497 if (rx->skb->len < 24) 2498 return RX_DROP_MONITOR; 2499 2500 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2501 return RX_DROP_MONITOR; 2502 2503 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2504 ieee80211_is_beacon(mgmt->frame_control) && 2505 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2506 int sig = 0; 2507 2508 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2509 sig = status->signal; 2510 2511 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2512 rx->skb->data, rx->skb->len, 2513 status->freq, sig); 2514 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2515 } 2516 2517 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2518 return RX_DROP_MONITOR; 2519 2520 if (ieee80211_drop_unencrypted_mgmt(rx)) 2521 return RX_DROP_UNUSABLE; 2522 2523 return RX_CONTINUE; 2524 } 2525 2526 static ieee80211_rx_result debug_noinline 2527 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2528 { 2529 struct ieee80211_local *local = rx->local; 2530 struct ieee80211_sub_if_data *sdata = rx->sdata; 2531 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2532 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2533 int len = rx->skb->len; 2534 2535 if (!ieee80211_is_action(mgmt->frame_control)) 2536 return RX_CONTINUE; 2537 2538 /* drop too small frames */ 2539 if (len < IEEE80211_MIN_ACTION_SIZE) 2540 return RX_DROP_UNUSABLE; 2541 2542 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2543 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2544 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2545 return RX_DROP_UNUSABLE; 2546 2547 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2548 return RX_DROP_UNUSABLE; 2549 2550 switch (mgmt->u.action.category) { 2551 case WLAN_CATEGORY_HT: 2552 /* reject HT action frames from stations not supporting HT */ 2553 if (!rx->sta->sta.ht_cap.ht_supported) 2554 goto invalid; 2555 2556 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2557 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2558 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2559 sdata->vif.type != NL80211_IFTYPE_AP && 2560 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2561 break; 2562 2563 /* verify action & smps_control/chanwidth are present */ 2564 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2565 goto invalid; 2566 2567 switch (mgmt->u.action.u.ht_smps.action) { 2568 case WLAN_HT_ACTION_SMPS: { 2569 struct ieee80211_supported_band *sband; 2570 enum ieee80211_smps_mode smps_mode; 2571 2572 /* convert to HT capability */ 2573 switch (mgmt->u.action.u.ht_smps.smps_control) { 2574 case WLAN_HT_SMPS_CONTROL_DISABLED: 2575 smps_mode = IEEE80211_SMPS_OFF; 2576 break; 2577 case WLAN_HT_SMPS_CONTROL_STATIC: 2578 smps_mode = IEEE80211_SMPS_STATIC; 2579 break; 2580 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2581 smps_mode = IEEE80211_SMPS_DYNAMIC; 2582 break; 2583 default: 2584 goto invalid; 2585 } 2586 2587 /* if no change do nothing */ 2588 if (rx->sta->sta.smps_mode == smps_mode) 2589 goto handled; 2590 rx->sta->sta.smps_mode = smps_mode; 2591 2592 sband = rx->local->hw.wiphy->bands[status->band]; 2593 2594 rate_control_rate_update(local, sband, rx->sta, 2595 IEEE80211_RC_SMPS_CHANGED); 2596 goto handled; 2597 } 2598 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2599 struct ieee80211_supported_band *sband; 2600 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2601 enum ieee80211_sta_rx_bandwidth new_bw; 2602 2603 /* If it doesn't support 40 MHz it can't change ... */ 2604 if (!(rx->sta->sta.ht_cap.cap & 2605 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2606 goto handled; 2607 2608 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2609 new_bw = IEEE80211_STA_RX_BW_20; 2610 else 2611 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2612 2613 if (rx->sta->sta.bandwidth == new_bw) 2614 goto handled; 2615 2616 sband = rx->local->hw.wiphy->bands[status->band]; 2617 2618 rate_control_rate_update(local, sband, rx->sta, 2619 IEEE80211_RC_BW_CHANGED); 2620 goto handled; 2621 } 2622 default: 2623 goto invalid; 2624 } 2625 2626 break; 2627 case WLAN_CATEGORY_PUBLIC: 2628 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2629 goto invalid; 2630 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2631 break; 2632 if (!rx->sta) 2633 break; 2634 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2635 break; 2636 if (mgmt->u.action.u.ext_chan_switch.action_code != 2637 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2638 break; 2639 if (len < offsetof(struct ieee80211_mgmt, 2640 u.action.u.ext_chan_switch.variable)) 2641 goto invalid; 2642 goto queue; 2643 case WLAN_CATEGORY_VHT: 2644 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2645 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2646 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2647 sdata->vif.type != NL80211_IFTYPE_AP && 2648 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2649 break; 2650 2651 /* verify action code is present */ 2652 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2653 goto invalid; 2654 2655 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2656 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2657 u8 opmode; 2658 2659 /* verify opmode is present */ 2660 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2661 goto invalid; 2662 2663 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2664 2665 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2666 opmode, status->band, 2667 false); 2668 goto handled; 2669 } 2670 default: 2671 break; 2672 } 2673 break; 2674 case WLAN_CATEGORY_BACK: 2675 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2676 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2677 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2678 sdata->vif.type != NL80211_IFTYPE_AP && 2679 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2680 break; 2681 2682 /* verify action_code is present */ 2683 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2684 break; 2685 2686 switch (mgmt->u.action.u.addba_req.action_code) { 2687 case WLAN_ACTION_ADDBA_REQ: 2688 if (len < (IEEE80211_MIN_ACTION_SIZE + 2689 sizeof(mgmt->u.action.u.addba_req))) 2690 goto invalid; 2691 break; 2692 case WLAN_ACTION_ADDBA_RESP: 2693 if (len < (IEEE80211_MIN_ACTION_SIZE + 2694 sizeof(mgmt->u.action.u.addba_resp))) 2695 goto invalid; 2696 break; 2697 case WLAN_ACTION_DELBA: 2698 if (len < (IEEE80211_MIN_ACTION_SIZE + 2699 sizeof(mgmt->u.action.u.delba))) 2700 goto invalid; 2701 break; 2702 default: 2703 goto invalid; 2704 } 2705 2706 goto queue; 2707 case WLAN_CATEGORY_SPECTRUM_MGMT: 2708 /* verify action_code is present */ 2709 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2710 break; 2711 2712 switch (mgmt->u.action.u.measurement.action_code) { 2713 case WLAN_ACTION_SPCT_MSR_REQ: 2714 if (status->band != IEEE80211_BAND_5GHZ) 2715 break; 2716 2717 if (len < (IEEE80211_MIN_ACTION_SIZE + 2718 sizeof(mgmt->u.action.u.measurement))) 2719 break; 2720 2721 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2722 break; 2723 2724 ieee80211_process_measurement_req(sdata, mgmt, len); 2725 goto handled; 2726 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2727 u8 *bssid; 2728 if (len < (IEEE80211_MIN_ACTION_SIZE + 2729 sizeof(mgmt->u.action.u.chan_switch))) 2730 break; 2731 2732 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2733 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2734 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2735 break; 2736 2737 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2738 bssid = sdata->u.mgd.bssid; 2739 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2740 bssid = sdata->u.ibss.bssid; 2741 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2742 bssid = mgmt->sa; 2743 else 2744 break; 2745 2746 if (!ether_addr_equal(mgmt->bssid, bssid)) 2747 break; 2748 2749 goto queue; 2750 } 2751 } 2752 break; 2753 case WLAN_CATEGORY_SA_QUERY: 2754 if (len < (IEEE80211_MIN_ACTION_SIZE + 2755 sizeof(mgmt->u.action.u.sa_query))) 2756 break; 2757 2758 switch (mgmt->u.action.u.sa_query.action) { 2759 case WLAN_ACTION_SA_QUERY_REQUEST: 2760 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2761 break; 2762 ieee80211_process_sa_query_req(sdata, mgmt, len); 2763 goto handled; 2764 } 2765 break; 2766 case WLAN_CATEGORY_SELF_PROTECTED: 2767 if (len < (IEEE80211_MIN_ACTION_SIZE + 2768 sizeof(mgmt->u.action.u.self_prot.action_code))) 2769 break; 2770 2771 switch (mgmt->u.action.u.self_prot.action_code) { 2772 case WLAN_SP_MESH_PEERING_OPEN: 2773 case WLAN_SP_MESH_PEERING_CLOSE: 2774 case WLAN_SP_MESH_PEERING_CONFIRM: 2775 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2776 goto invalid; 2777 if (sdata->u.mesh.user_mpm) 2778 /* userspace handles this frame */ 2779 break; 2780 goto queue; 2781 case WLAN_SP_MGK_INFORM: 2782 case WLAN_SP_MGK_ACK: 2783 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2784 goto invalid; 2785 break; 2786 } 2787 break; 2788 case WLAN_CATEGORY_MESH_ACTION: 2789 if (len < (IEEE80211_MIN_ACTION_SIZE + 2790 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2791 break; 2792 2793 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2794 break; 2795 if (mesh_action_is_path_sel(mgmt) && 2796 !mesh_path_sel_is_hwmp(sdata)) 2797 break; 2798 goto queue; 2799 } 2800 2801 return RX_CONTINUE; 2802 2803 invalid: 2804 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2805 /* will return in the next handlers */ 2806 return RX_CONTINUE; 2807 2808 handled: 2809 if (rx->sta) 2810 rx->sta->rx_packets++; 2811 dev_kfree_skb(rx->skb); 2812 return RX_QUEUED; 2813 2814 queue: 2815 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2816 skb_queue_tail(&sdata->skb_queue, rx->skb); 2817 ieee80211_queue_work(&local->hw, &sdata->work); 2818 if (rx->sta) 2819 rx->sta->rx_packets++; 2820 return RX_QUEUED; 2821 } 2822 2823 static ieee80211_rx_result debug_noinline 2824 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2825 { 2826 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2827 int sig = 0; 2828 2829 /* skip known-bad action frames and return them in the next handler */ 2830 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2831 return RX_CONTINUE; 2832 2833 /* 2834 * Getting here means the kernel doesn't know how to handle 2835 * it, but maybe userspace does ... include returned frames 2836 * so userspace can register for those to know whether ones 2837 * it transmitted were processed or returned. 2838 */ 2839 2840 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2841 sig = status->signal; 2842 2843 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2844 rx->skb->data, rx->skb->len, 0)) { 2845 if (rx->sta) 2846 rx->sta->rx_packets++; 2847 dev_kfree_skb(rx->skb); 2848 return RX_QUEUED; 2849 } 2850 2851 return RX_CONTINUE; 2852 } 2853 2854 static ieee80211_rx_result debug_noinline 2855 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2856 { 2857 struct ieee80211_local *local = rx->local; 2858 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2859 struct sk_buff *nskb; 2860 struct ieee80211_sub_if_data *sdata = rx->sdata; 2861 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2862 2863 if (!ieee80211_is_action(mgmt->frame_control)) 2864 return RX_CONTINUE; 2865 2866 /* 2867 * For AP mode, hostapd is responsible for handling any action 2868 * frames that we didn't handle, including returning unknown 2869 * ones. For all other modes we will return them to the sender, 2870 * setting the 0x80 bit in the action category, as required by 2871 * 802.11-2012 9.24.4. 2872 * Newer versions of hostapd shall also use the management frame 2873 * registration mechanisms, but older ones still use cooked 2874 * monitor interfaces so push all frames there. 2875 */ 2876 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2877 (sdata->vif.type == NL80211_IFTYPE_AP || 2878 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2879 return RX_DROP_MONITOR; 2880 2881 if (is_multicast_ether_addr(mgmt->da)) 2882 return RX_DROP_MONITOR; 2883 2884 /* do not return rejected action frames */ 2885 if (mgmt->u.action.category & 0x80) 2886 return RX_DROP_UNUSABLE; 2887 2888 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2889 GFP_ATOMIC); 2890 if (nskb) { 2891 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2892 2893 nmgmt->u.action.category |= 0x80; 2894 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2895 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2896 2897 memset(nskb->cb, 0, sizeof(nskb->cb)); 2898 2899 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2900 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2901 2902 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2903 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2904 IEEE80211_TX_CTL_NO_CCK_RATE; 2905 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2906 info->hw_queue = 2907 local->hw.offchannel_tx_hw_queue; 2908 } 2909 2910 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2911 status->band); 2912 } 2913 dev_kfree_skb(rx->skb); 2914 return RX_QUEUED; 2915 } 2916 2917 static ieee80211_rx_result debug_noinline 2918 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2919 { 2920 struct ieee80211_sub_if_data *sdata = rx->sdata; 2921 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2922 __le16 stype; 2923 2924 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2925 2926 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2927 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2928 sdata->vif.type != NL80211_IFTYPE_OCB && 2929 sdata->vif.type != NL80211_IFTYPE_STATION) 2930 return RX_DROP_MONITOR; 2931 2932 switch (stype) { 2933 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2934 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2935 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2936 /* process for all: mesh, mlme, ibss */ 2937 break; 2938 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2939 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2940 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2941 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2942 if (is_multicast_ether_addr(mgmt->da) && 2943 !is_broadcast_ether_addr(mgmt->da)) 2944 return RX_DROP_MONITOR; 2945 2946 /* process only for station */ 2947 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2948 return RX_DROP_MONITOR; 2949 break; 2950 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2951 /* process only for ibss and mesh */ 2952 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2953 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2954 return RX_DROP_MONITOR; 2955 break; 2956 default: 2957 return RX_DROP_MONITOR; 2958 } 2959 2960 /* queue up frame and kick off work to process it */ 2961 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2962 skb_queue_tail(&sdata->skb_queue, rx->skb); 2963 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2964 if (rx->sta) 2965 rx->sta->rx_packets++; 2966 2967 return RX_QUEUED; 2968 } 2969 2970 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2971 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2972 struct ieee80211_rate *rate) 2973 { 2974 struct ieee80211_sub_if_data *sdata; 2975 struct ieee80211_local *local = rx->local; 2976 struct sk_buff *skb = rx->skb, *skb2; 2977 struct net_device *prev_dev = NULL; 2978 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2979 int needed_headroom; 2980 2981 /* 2982 * If cooked monitor has been processed already, then 2983 * don't do it again. If not, set the flag. 2984 */ 2985 if (rx->flags & IEEE80211_RX_CMNTR) 2986 goto out_free_skb; 2987 rx->flags |= IEEE80211_RX_CMNTR; 2988 2989 /* If there are no cooked monitor interfaces, just free the SKB */ 2990 if (!local->cooked_mntrs) 2991 goto out_free_skb; 2992 2993 /* vendor data is long removed here */ 2994 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 2995 /* room for the radiotap header based on driver features */ 2996 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 2997 2998 if (skb_headroom(skb) < needed_headroom && 2999 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3000 goto out_free_skb; 3001 3002 /* prepend radiotap information */ 3003 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3004 false); 3005 3006 skb_set_mac_header(skb, 0); 3007 skb->ip_summed = CHECKSUM_UNNECESSARY; 3008 skb->pkt_type = PACKET_OTHERHOST; 3009 skb->protocol = htons(ETH_P_802_2); 3010 3011 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3012 if (!ieee80211_sdata_running(sdata)) 3013 continue; 3014 3015 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3016 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 3017 continue; 3018 3019 if (prev_dev) { 3020 skb2 = skb_clone(skb, GFP_ATOMIC); 3021 if (skb2) { 3022 skb2->dev = prev_dev; 3023 netif_receive_skb(skb2); 3024 } 3025 } 3026 3027 prev_dev = sdata->dev; 3028 sdata->dev->stats.rx_packets++; 3029 sdata->dev->stats.rx_bytes += skb->len; 3030 } 3031 3032 if (prev_dev) { 3033 skb->dev = prev_dev; 3034 netif_receive_skb(skb); 3035 return; 3036 } 3037 3038 out_free_skb: 3039 dev_kfree_skb(skb); 3040 } 3041 3042 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3043 ieee80211_rx_result res) 3044 { 3045 switch (res) { 3046 case RX_DROP_MONITOR: 3047 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3048 if (rx->sta) 3049 rx->sta->rx_dropped++; 3050 /* fall through */ 3051 case RX_CONTINUE: { 3052 struct ieee80211_rate *rate = NULL; 3053 struct ieee80211_supported_band *sband; 3054 struct ieee80211_rx_status *status; 3055 3056 status = IEEE80211_SKB_RXCB((rx->skb)); 3057 3058 sband = rx->local->hw.wiphy->bands[status->band]; 3059 if (!(status->flag & RX_FLAG_HT) && 3060 !(status->flag & RX_FLAG_VHT)) 3061 rate = &sband->bitrates[status->rate_idx]; 3062 3063 ieee80211_rx_cooked_monitor(rx, rate); 3064 break; 3065 } 3066 case RX_DROP_UNUSABLE: 3067 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3068 if (rx->sta) 3069 rx->sta->rx_dropped++; 3070 dev_kfree_skb(rx->skb); 3071 break; 3072 case RX_QUEUED: 3073 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3074 break; 3075 } 3076 } 3077 3078 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3079 struct sk_buff_head *frames) 3080 { 3081 ieee80211_rx_result res = RX_DROP_MONITOR; 3082 struct sk_buff *skb; 3083 3084 #define CALL_RXH(rxh) \ 3085 do { \ 3086 res = rxh(rx); \ 3087 if (res != RX_CONTINUE) \ 3088 goto rxh_next; \ 3089 } while (0); 3090 3091 spin_lock_bh(&rx->local->rx_path_lock); 3092 3093 while ((skb = __skb_dequeue(frames))) { 3094 /* 3095 * all the other fields are valid across frames 3096 * that belong to an aMPDU since they are on the 3097 * same TID from the same station 3098 */ 3099 rx->skb = skb; 3100 3101 CALL_RXH(ieee80211_rx_h_check_more_data) 3102 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 3103 CALL_RXH(ieee80211_rx_h_sta_process) 3104 CALL_RXH(ieee80211_rx_h_decrypt) 3105 CALL_RXH(ieee80211_rx_h_defragment) 3106 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 3107 /* must be after MMIC verify so header is counted in MPDU mic */ 3108 #ifdef CONFIG_MAC80211_MESH 3109 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3110 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3111 #endif 3112 CALL_RXH(ieee80211_rx_h_amsdu) 3113 CALL_RXH(ieee80211_rx_h_data) 3114 3115 /* special treatment -- needs the queue */ 3116 res = ieee80211_rx_h_ctrl(rx, frames); 3117 if (res != RX_CONTINUE) 3118 goto rxh_next; 3119 3120 CALL_RXH(ieee80211_rx_h_mgmt_check) 3121 CALL_RXH(ieee80211_rx_h_action) 3122 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3123 CALL_RXH(ieee80211_rx_h_action_return) 3124 CALL_RXH(ieee80211_rx_h_mgmt) 3125 3126 rxh_next: 3127 ieee80211_rx_handlers_result(rx, res); 3128 3129 #undef CALL_RXH 3130 } 3131 3132 spin_unlock_bh(&rx->local->rx_path_lock); 3133 } 3134 3135 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3136 { 3137 struct sk_buff_head reorder_release; 3138 ieee80211_rx_result res = RX_DROP_MONITOR; 3139 3140 __skb_queue_head_init(&reorder_release); 3141 3142 #define CALL_RXH(rxh) \ 3143 do { \ 3144 res = rxh(rx); \ 3145 if (res != RX_CONTINUE) \ 3146 goto rxh_next; \ 3147 } while (0); 3148 3149 CALL_RXH(ieee80211_rx_h_check_dup) 3150 CALL_RXH(ieee80211_rx_h_check) 3151 3152 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3153 3154 ieee80211_rx_handlers(rx, &reorder_release); 3155 return; 3156 3157 rxh_next: 3158 ieee80211_rx_handlers_result(rx, res); 3159 3160 #undef CALL_RXH 3161 } 3162 3163 /* 3164 * This function makes calls into the RX path, therefore 3165 * it has to be invoked under RCU read lock. 3166 */ 3167 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3168 { 3169 struct sk_buff_head frames; 3170 struct ieee80211_rx_data rx = { 3171 .sta = sta, 3172 .sdata = sta->sdata, 3173 .local = sta->local, 3174 /* This is OK -- must be QoS data frame */ 3175 .security_idx = tid, 3176 .seqno_idx = tid, 3177 .flags = 0, 3178 }; 3179 struct tid_ampdu_rx *tid_agg_rx; 3180 3181 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3182 if (!tid_agg_rx) 3183 return; 3184 3185 __skb_queue_head_init(&frames); 3186 3187 spin_lock(&tid_agg_rx->reorder_lock); 3188 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3189 spin_unlock(&tid_agg_rx->reorder_lock); 3190 3191 ieee80211_rx_handlers(&rx, &frames); 3192 } 3193 3194 /* main receive path */ 3195 3196 static bool prepare_for_handlers(struct ieee80211_rx_data *rx, 3197 struct ieee80211_hdr *hdr) 3198 { 3199 struct ieee80211_sub_if_data *sdata = rx->sdata; 3200 struct sk_buff *skb = rx->skb; 3201 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3202 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3203 int multicast = is_multicast_ether_addr(hdr->addr1); 3204 3205 switch (sdata->vif.type) { 3206 case NL80211_IFTYPE_STATION: 3207 if (!bssid && !sdata->u.mgd.use_4addr) 3208 return false; 3209 if (!multicast && 3210 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3211 if (!(sdata->dev->flags & IFF_PROMISC) || 3212 sdata->u.mgd.use_4addr) 3213 return false; 3214 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3215 } 3216 break; 3217 case NL80211_IFTYPE_ADHOC: 3218 if (!bssid) 3219 return false; 3220 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3221 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3222 return false; 3223 if (ieee80211_is_beacon(hdr->frame_control)) { 3224 return true; 3225 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3226 return false; 3227 } else if (!multicast && 3228 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3229 if (!(sdata->dev->flags & IFF_PROMISC)) 3230 return false; 3231 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3232 } else if (!rx->sta) { 3233 int rate_idx; 3234 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3235 rate_idx = 0; /* TODO: HT/VHT rates */ 3236 else 3237 rate_idx = status->rate_idx; 3238 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3239 BIT(rate_idx)); 3240 } 3241 break; 3242 case NL80211_IFTYPE_OCB: 3243 if (!bssid) 3244 return false; 3245 if (ieee80211_is_beacon(hdr->frame_control)) { 3246 return false; 3247 } else if (!is_broadcast_ether_addr(bssid)) { 3248 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n"); 3249 return false; 3250 } else if (!multicast && 3251 !ether_addr_equal(sdata->dev->dev_addr, 3252 hdr->addr1)) { 3253 /* if we are in promisc mode we also accept 3254 * packets not destined for us 3255 */ 3256 if (!(sdata->dev->flags & IFF_PROMISC)) 3257 return false; 3258 rx->flags &= ~IEEE80211_RX_RA_MATCH; 3259 } else if (!rx->sta) { 3260 int rate_idx; 3261 if (status->flag & RX_FLAG_HT) 3262 rate_idx = 0; /* TODO: HT rates */ 3263 else 3264 rate_idx = status->rate_idx; 3265 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3266 BIT(rate_idx)); 3267 } 3268 break; 3269 case NL80211_IFTYPE_MESH_POINT: 3270 if (!multicast && 3271 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3272 if (!(sdata->dev->flags & IFF_PROMISC)) 3273 return false; 3274 3275 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3276 } 3277 break; 3278 case NL80211_IFTYPE_AP_VLAN: 3279 case NL80211_IFTYPE_AP: 3280 if (!bssid) { 3281 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3282 return false; 3283 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3284 /* 3285 * Accept public action frames even when the 3286 * BSSID doesn't match, this is used for P2P 3287 * and location updates. Note that mac80211 3288 * itself never looks at these frames. 3289 */ 3290 if (!multicast && 3291 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3292 return false; 3293 if (ieee80211_is_public_action(hdr, skb->len)) 3294 return true; 3295 if (!ieee80211_is_beacon(hdr->frame_control)) 3296 return false; 3297 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3298 } else if (!ieee80211_has_tods(hdr->frame_control)) { 3299 /* ignore data frames to TDLS-peers */ 3300 if (ieee80211_is_data(hdr->frame_control)) 3301 return false; 3302 /* ignore action frames to TDLS-peers */ 3303 if (ieee80211_is_action(hdr->frame_control) && 3304 !ether_addr_equal(bssid, hdr->addr1)) 3305 return false; 3306 } 3307 break; 3308 case NL80211_IFTYPE_WDS: 3309 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3310 return false; 3311 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3312 return false; 3313 break; 3314 case NL80211_IFTYPE_P2P_DEVICE: 3315 if (!ieee80211_is_public_action(hdr, skb->len) && 3316 !ieee80211_is_probe_req(hdr->frame_control) && 3317 !ieee80211_is_probe_resp(hdr->frame_control) && 3318 !ieee80211_is_beacon(hdr->frame_control)) 3319 return false; 3320 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3321 !multicast) 3322 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3323 break; 3324 default: 3325 /* should never get here */ 3326 WARN_ON_ONCE(1); 3327 break; 3328 } 3329 3330 return true; 3331 } 3332 3333 /* 3334 * This function returns whether or not the SKB 3335 * was destined for RX processing or not, which, 3336 * if consume is true, is equivalent to whether 3337 * or not the skb was consumed. 3338 */ 3339 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3340 struct sk_buff *skb, bool consume) 3341 { 3342 struct ieee80211_local *local = rx->local; 3343 struct ieee80211_sub_if_data *sdata = rx->sdata; 3344 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3345 struct ieee80211_hdr *hdr = (void *)skb->data; 3346 3347 rx->skb = skb; 3348 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3349 3350 if (!prepare_for_handlers(rx, hdr)) 3351 return false; 3352 3353 if (!consume) { 3354 skb = skb_copy(skb, GFP_ATOMIC); 3355 if (!skb) { 3356 if (net_ratelimit()) 3357 wiphy_debug(local->hw.wiphy, 3358 "failed to copy skb for %s\n", 3359 sdata->name); 3360 return true; 3361 } 3362 3363 rx->skb = skb; 3364 } 3365 3366 ieee80211_invoke_rx_handlers(rx); 3367 return true; 3368 } 3369 3370 /* 3371 * This is the actual Rx frames handler. as it belongs to Rx path it must 3372 * be called with rcu_read_lock protection. 3373 */ 3374 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3375 struct sk_buff *skb) 3376 { 3377 struct ieee80211_local *local = hw_to_local(hw); 3378 struct ieee80211_sub_if_data *sdata; 3379 struct ieee80211_hdr *hdr; 3380 __le16 fc; 3381 struct ieee80211_rx_data rx; 3382 struct ieee80211_sub_if_data *prev; 3383 struct sta_info *sta, *tmp, *prev_sta; 3384 int err = 0; 3385 3386 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3387 memset(&rx, 0, sizeof(rx)); 3388 rx.skb = skb; 3389 rx.local = local; 3390 3391 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3392 local->dot11ReceivedFragmentCount++; 3393 3394 if (ieee80211_is_mgmt(fc)) { 3395 /* drop frame if too short for header */ 3396 if (skb->len < ieee80211_hdrlen(fc)) 3397 err = -ENOBUFS; 3398 else 3399 err = skb_linearize(skb); 3400 } else { 3401 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3402 } 3403 3404 if (err) { 3405 dev_kfree_skb(skb); 3406 return; 3407 } 3408 3409 hdr = (struct ieee80211_hdr *)skb->data; 3410 ieee80211_parse_qos(&rx); 3411 ieee80211_verify_alignment(&rx); 3412 3413 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3414 ieee80211_is_beacon(hdr->frame_control))) 3415 ieee80211_scan_rx(local, skb); 3416 3417 if (ieee80211_is_data(fc)) { 3418 prev_sta = NULL; 3419 3420 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3421 if (!prev_sta) { 3422 prev_sta = sta; 3423 continue; 3424 } 3425 3426 rx.sta = prev_sta; 3427 rx.sdata = prev_sta->sdata; 3428 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3429 3430 prev_sta = sta; 3431 } 3432 3433 if (prev_sta) { 3434 rx.sta = prev_sta; 3435 rx.sdata = prev_sta->sdata; 3436 3437 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3438 return; 3439 goto out; 3440 } 3441 } 3442 3443 prev = NULL; 3444 3445 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3446 if (!ieee80211_sdata_running(sdata)) 3447 continue; 3448 3449 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3450 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3451 continue; 3452 3453 /* 3454 * frame is destined for this interface, but if it's 3455 * not also for the previous one we handle that after 3456 * the loop to avoid copying the SKB once too much 3457 */ 3458 3459 if (!prev) { 3460 prev = sdata; 3461 continue; 3462 } 3463 3464 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3465 rx.sdata = prev; 3466 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3467 3468 prev = sdata; 3469 } 3470 3471 if (prev) { 3472 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3473 rx.sdata = prev; 3474 3475 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3476 return; 3477 } 3478 3479 out: 3480 dev_kfree_skb(skb); 3481 } 3482 3483 /* 3484 * This is the receive path handler. It is called by a low level driver when an 3485 * 802.11 MPDU is received from the hardware. 3486 */ 3487 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3488 { 3489 struct ieee80211_local *local = hw_to_local(hw); 3490 struct ieee80211_rate *rate = NULL; 3491 struct ieee80211_supported_band *sband; 3492 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3493 3494 WARN_ON_ONCE(softirq_count() == 0); 3495 3496 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3497 goto drop; 3498 3499 sband = local->hw.wiphy->bands[status->band]; 3500 if (WARN_ON(!sband)) 3501 goto drop; 3502 3503 /* 3504 * If we're suspending, it is possible although not too likely 3505 * that we'd be receiving frames after having already partially 3506 * quiesced the stack. We can't process such frames then since 3507 * that might, for example, cause stations to be added or other 3508 * driver callbacks be invoked. 3509 */ 3510 if (unlikely(local->quiescing || local->suspended)) 3511 goto drop; 3512 3513 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3514 if (unlikely(local->in_reconfig)) 3515 goto drop; 3516 3517 /* 3518 * The same happens when we're not even started, 3519 * but that's worth a warning. 3520 */ 3521 if (WARN_ON(!local->started)) 3522 goto drop; 3523 3524 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3525 /* 3526 * Validate the rate, unless a PLCP error means that 3527 * we probably can't have a valid rate here anyway. 3528 */ 3529 3530 if (status->flag & RX_FLAG_HT) { 3531 /* 3532 * rate_idx is MCS index, which can be [0-76] 3533 * as documented on: 3534 * 3535 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3536 * 3537 * Anything else would be some sort of driver or 3538 * hardware error. The driver should catch hardware 3539 * errors. 3540 */ 3541 if (WARN(status->rate_idx > 76, 3542 "Rate marked as an HT rate but passed " 3543 "status->rate_idx is not " 3544 "an MCS index [0-76]: %d (0x%02x)\n", 3545 status->rate_idx, 3546 status->rate_idx)) 3547 goto drop; 3548 } else if (status->flag & RX_FLAG_VHT) { 3549 if (WARN_ONCE(status->rate_idx > 9 || 3550 !status->vht_nss || 3551 status->vht_nss > 8, 3552 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3553 status->rate_idx, status->vht_nss)) 3554 goto drop; 3555 } else { 3556 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3557 goto drop; 3558 rate = &sband->bitrates[status->rate_idx]; 3559 } 3560 } 3561 3562 status->rx_flags = 0; 3563 3564 /* 3565 * key references and virtual interfaces are protected using RCU 3566 * and this requires that we are in a read-side RCU section during 3567 * receive processing 3568 */ 3569 rcu_read_lock(); 3570 3571 /* 3572 * Frames with failed FCS/PLCP checksum are not returned, 3573 * all other frames are returned without radiotap header 3574 * if it was previously present. 3575 * Also, frames with less than 16 bytes are dropped. 3576 */ 3577 skb = ieee80211_rx_monitor(local, skb, rate); 3578 if (!skb) { 3579 rcu_read_unlock(); 3580 return; 3581 } 3582 3583 ieee80211_tpt_led_trig_rx(local, 3584 ((struct ieee80211_hdr *)skb->data)->frame_control, 3585 skb->len); 3586 __ieee80211_rx_handle_packet(hw, skb); 3587 3588 rcu_read_unlock(); 3589 3590 return; 3591 drop: 3592 kfree_skb(skb); 3593 } 3594 EXPORT_SYMBOL(ieee80211_rx); 3595 3596 /* This is a version of the rx handler that can be called from hard irq 3597 * context. Post the skb on the queue and schedule the tasklet */ 3598 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3599 { 3600 struct ieee80211_local *local = hw_to_local(hw); 3601 3602 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3603 3604 skb->pkt_type = IEEE80211_RX_MSG; 3605 skb_queue_tail(&local->skb_queue, skb); 3606 tasklet_schedule(&local->tasklet); 3607 } 3608 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3609