1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 47 struct ieee80211_hdr *hdr; 48 unsigned int hdrlen; 49 __le16 fc; 50 51 if (present_fcs_len) 52 __pskb_trim(skb, skb->len - present_fcs_len); 53 pskb_pull(skb, rtap_space); 54 55 /* After pulling radiotap header, clear all flags that indicate 56 * info in skb->data. 57 */ 58 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | 59 RX_FLAG_RADIOTAP_LSIG | 60 RX_FLAG_RADIOTAP_HE_MU | 61 RX_FLAG_RADIOTAP_HE); 62 63 hdr = (void *)skb->data; 64 fc = hdr->frame_control; 65 66 /* 67 * Remove the HT-Control field (if present) on management 68 * frames after we've sent the frame to monitoring. We 69 * (currently) don't need it, and don't properly parse 70 * frames with it present, due to the assumption of a 71 * fixed management header length. 72 */ 73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 74 return skb; 75 76 hdrlen = ieee80211_hdrlen(fc); 77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 78 79 if (!pskb_may_pull(skb, hdrlen)) { 80 dev_kfree_skb(skb); 81 return NULL; 82 } 83 84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 85 hdrlen - IEEE80211_HT_CTL_LEN); 86 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 87 88 return skb; 89 } 90 91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 92 unsigned int rtap_space) 93 { 94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 95 struct ieee80211_hdr *hdr; 96 97 hdr = (void *)(skb->data + rtap_space); 98 99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 100 RX_FLAG_FAILED_PLCP_CRC | 101 RX_FLAG_ONLY_MONITOR | 102 RX_FLAG_NO_PSDU)) 103 return true; 104 105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 106 return true; 107 108 if (ieee80211_is_ctl(hdr->frame_control) && 109 !ieee80211_is_pspoll(hdr->frame_control) && 110 !ieee80211_is_back_req(hdr->frame_control)) 111 return true; 112 113 return false; 114 } 115 116 static int 117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 118 struct ieee80211_rx_status *status, 119 struct sk_buff *skb) 120 { 121 int len; 122 123 /* always present fields */ 124 len = sizeof(struct ieee80211_radiotap_header) + 8; 125 126 /* allocate extra bitmaps */ 127 if (status->chains) 128 len += 4 * hweight8(status->chains); 129 130 if (ieee80211_have_rx_timestamp(status)) { 131 len = ALIGN(len, 8); 132 len += 8; 133 } 134 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 135 len += 1; 136 137 /* antenna field, if we don't have per-chain info */ 138 if (!status->chains) 139 len += 1; 140 141 /* padding for RX_FLAGS if necessary */ 142 len = ALIGN(len, 2); 143 144 if (status->encoding == RX_ENC_HT) /* HT info */ 145 len += 3; 146 147 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 148 len = ALIGN(len, 4); 149 len += 8; 150 } 151 152 if (status->encoding == RX_ENC_VHT) { 153 len = ALIGN(len, 2); 154 len += 12; 155 } 156 157 if (local->hw.radiotap_timestamp.units_pos >= 0) { 158 len = ALIGN(len, 8); 159 len += 12; 160 } 161 162 if (status->encoding == RX_ENC_HE && 163 status->flag & RX_FLAG_RADIOTAP_HE) { 164 len = ALIGN(len, 2); 165 len += 12; 166 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 167 } 168 169 if (status->encoding == RX_ENC_HE && 170 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 171 len = ALIGN(len, 2); 172 len += 12; 173 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 174 } 175 176 if (status->flag & RX_FLAG_NO_PSDU) 177 len += 1; 178 179 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 180 len = ALIGN(len, 2); 181 len += 4; 182 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 183 } 184 185 if (status->chains) { 186 /* antenna and antenna signal fields */ 187 len += 2 * hweight8(status->chains); 188 } 189 190 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 191 int tlv_offset = 0; 192 193 /* 194 * The position to look at depends on the existence (or non- 195 * existence) of other elements, so take that into account... 196 */ 197 if (status->flag & RX_FLAG_RADIOTAP_HE) 198 tlv_offset += 199 sizeof(struct ieee80211_radiotap_he); 200 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 201 tlv_offset += 202 sizeof(struct ieee80211_radiotap_he_mu); 203 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 204 tlv_offset += 205 sizeof(struct ieee80211_radiotap_lsig); 206 207 /* ensure 4 byte alignment for TLV */ 208 len = ALIGN(len, 4); 209 210 /* TLVs until the mac header */ 211 len += skb_mac_header(skb) - &skb->data[tlv_offset]; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 int link_id, 219 struct sta_info *sta, 220 struct sk_buff *skb) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 224 if (link_id >= 0) { 225 status->link_valid = 1; 226 status->link_id = link_id; 227 } else { 228 status->link_valid = 0; 229 } 230 231 skb_queue_tail(&sdata->skb_queue, skb); 232 wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); 233 if (sta) 234 sta->deflink.rx_stats.packets++; 235 } 236 237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 238 int link_id, 239 struct sta_info *sta, 240 struct sk_buff *skb) 241 { 242 skb->protocol = 0; 243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 244 } 245 246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 247 struct sk_buff *skb, 248 int rtap_space) 249 { 250 struct { 251 struct ieee80211_hdr_3addr hdr; 252 u8 category; 253 u8 action_code; 254 } __packed __aligned(2) action; 255 256 if (!sdata) 257 return; 258 259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 260 261 if (skb->len < rtap_space + sizeof(action) + 262 VHT_MUMIMO_GROUPS_DATA_LEN) 263 return; 264 265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 266 return; 267 268 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 269 270 if (!ieee80211_is_action(action.hdr.frame_control)) 271 return; 272 273 if (action.category != WLAN_CATEGORY_VHT) 274 return; 275 276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 277 return; 278 279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 280 return; 281 282 skb = skb_copy(skb, GFP_ATOMIC); 283 if (!skb) 284 return; 285 286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 287 } 288 289 /* 290 * ieee80211_add_rx_radiotap_header - add radiotap header 291 * 292 * add a radiotap header containing all the fields which the hardware provided. 293 */ 294 static void 295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 296 struct sk_buff *skb, 297 struct ieee80211_rate *rate, 298 int rtap_len, bool has_fcs) 299 { 300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 301 struct ieee80211_radiotap_header *rthdr; 302 unsigned char *pos; 303 __le32 *it_present; 304 u32 it_present_val; 305 u16 rx_flags = 0; 306 u16 channel_flags = 0; 307 u32 tlvs_len = 0; 308 int mpdulen, chain; 309 unsigned long chains = status->chains; 310 struct ieee80211_radiotap_he he = {}; 311 struct ieee80211_radiotap_he_mu he_mu = {}; 312 struct ieee80211_radiotap_lsig lsig = {}; 313 314 if (status->flag & RX_FLAG_RADIOTAP_HE) { 315 he = *(struct ieee80211_radiotap_he *)skb->data; 316 skb_pull(skb, sizeof(he)); 317 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 322 skb_pull(skb, sizeof(he_mu)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 327 skb_pull(skb, sizeof(lsig)); 328 } 329 330 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 331 /* data is pointer at tlv all other info was pulled off */ 332 tlvs_len = skb_mac_header(skb) - skb->data; 333 } 334 335 mpdulen = skb->len; 336 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 337 mpdulen += FCS_LEN; 338 339 rthdr = skb_push(skb, rtap_len - tlvs_len); 340 memset(rthdr, 0, rtap_len - tlvs_len); 341 it_present = &rthdr->it_present; 342 343 /* radiotap header, set always present flags */ 344 rthdr->it_len = cpu_to_le16(rtap_len); 345 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 346 BIT(IEEE80211_RADIOTAP_CHANNEL) | 347 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 348 349 if (!status->chains) 350 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 351 352 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 353 it_present_val |= 354 BIT(IEEE80211_RADIOTAP_EXT) | 355 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 356 put_unaligned_le32(it_present_val, it_present); 357 it_present++; 358 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 359 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 360 } 361 362 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 363 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); 364 365 put_unaligned_le32(it_present_val, it_present); 366 367 /* This references through an offset into it_optional[] rather 368 * than via it_present otherwise later uses of pos will cause 369 * the compiler to think we have walked past the end of the 370 * struct member. 371 */ 372 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 373 374 /* the order of the following fields is important */ 375 376 /* IEEE80211_RADIOTAP_TSFT */ 377 if (ieee80211_have_rx_timestamp(status)) { 378 /* padding */ 379 while ((pos - (u8 *)rthdr) & 7) 380 *pos++ = 0; 381 put_unaligned_le64( 382 ieee80211_calculate_rx_timestamp(local, status, 383 mpdulen, 0), 384 pos); 385 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 386 pos += 8; 387 } 388 389 /* IEEE80211_RADIOTAP_FLAGS */ 390 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 391 *pos |= IEEE80211_RADIOTAP_F_FCS; 392 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 393 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 394 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 395 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 396 pos++; 397 398 /* IEEE80211_RADIOTAP_RATE */ 399 if (!rate || status->encoding != RX_ENC_LEGACY) { 400 /* 401 * Without rate information don't add it. If we have, 402 * MCS information is a separate field in radiotap, 403 * added below. The byte here is needed as padding 404 * for the channel though, so initialise it to 0. 405 */ 406 *pos = 0; 407 } else { 408 int shift = 0; 409 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 410 if (status->bw == RATE_INFO_BW_10) 411 shift = 1; 412 else if (status->bw == RATE_INFO_BW_5) 413 shift = 2; 414 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 415 } 416 pos++; 417 418 /* IEEE80211_RADIOTAP_CHANNEL */ 419 /* TODO: frequency offset in KHz */ 420 put_unaligned_le16(status->freq, pos); 421 pos += 2; 422 if (status->bw == RATE_INFO_BW_10) 423 channel_flags |= IEEE80211_CHAN_HALF; 424 else if (status->bw == RATE_INFO_BW_5) 425 channel_flags |= IEEE80211_CHAN_QUARTER; 426 427 if (status->band == NL80211_BAND_5GHZ || 428 status->band == NL80211_BAND_6GHZ) 429 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 430 else if (status->encoding != RX_ENC_LEGACY) 431 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 432 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 433 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 434 else if (rate) 435 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 436 else 437 channel_flags |= IEEE80211_CHAN_2GHZ; 438 put_unaligned_le16(channel_flags, pos); 439 pos += 2; 440 441 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 442 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 443 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 444 *pos = status->signal; 445 rthdr->it_present |= 446 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 447 pos++; 448 } 449 450 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 451 452 if (!status->chains) { 453 /* IEEE80211_RADIOTAP_ANTENNA */ 454 *pos = status->antenna; 455 pos++; 456 } 457 458 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 459 460 /* IEEE80211_RADIOTAP_RX_FLAGS */ 461 /* ensure 2 byte alignment for the 2 byte field as required */ 462 if ((pos - (u8 *)rthdr) & 1) 463 *pos++ = 0; 464 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 465 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 466 put_unaligned_le16(rx_flags, pos); 467 pos += 2; 468 469 if (status->encoding == RX_ENC_HT) { 470 unsigned int stbc; 471 472 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 473 *pos = local->hw.radiotap_mcs_details; 474 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 475 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 476 if (status->enc_flags & RX_ENC_FLAG_LDPC) 477 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 478 pos++; 479 *pos = 0; 480 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 481 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 482 if (status->bw == RATE_INFO_BW_40) 483 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 484 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 485 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 486 if (status->enc_flags & RX_ENC_FLAG_LDPC) 487 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 488 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 489 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 490 pos++; 491 *pos++ = status->rate_idx; 492 } 493 494 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 495 u16 flags = 0; 496 497 /* ensure 4 byte alignment */ 498 while ((pos - (u8 *)rthdr) & 3) 499 pos++; 500 rthdr->it_present |= 501 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 502 put_unaligned_le32(status->ampdu_reference, pos); 503 pos += 4; 504 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 505 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 506 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 507 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 509 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 510 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 511 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 512 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 513 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 514 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 515 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 516 put_unaligned_le16(flags, pos); 517 pos += 2; 518 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 519 *pos++ = status->ampdu_delimiter_crc; 520 else 521 *pos++ = 0; 522 *pos++ = 0; 523 } 524 525 if (status->encoding == RX_ENC_VHT) { 526 u16 known = local->hw.radiotap_vht_details; 527 528 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 529 put_unaligned_le16(known, pos); 530 pos += 2; 531 /* flags */ 532 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 534 /* in VHT, STBC is binary */ 535 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 536 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 537 if (status->enc_flags & RX_ENC_FLAG_BF) 538 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 539 pos++; 540 /* bandwidth */ 541 switch (status->bw) { 542 case RATE_INFO_BW_80: 543 *pos++ = 4; 544 break; 545 case RATE_INFO_BW_160: 546 *pos++ = 11; 547 break; 548 case RATE_INFO_BW_40: 549 *pos++ = 1; 550 break; 551 default: 552 *pos++ = 0; 553 } 554 /* MCS/NSS */ 555 *pos = (status->rate_idx << 4) | status->nss; 556 pos += 4; 557 /* coding field */ 558 if (status->enc_flags & RX_ENC_FLAG_LDPC) 559 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 560 pos++; 561 /* group ID */ 562 pos++; 563 /* partial_aid */ 564 pos += 2; 565 } 566 567 if (local->hw.radiotap_timestamp.units_pos >= 0) { 568 u16 accuracy = 0; 569 u8 flags; 570 u64 ts; 571 572 rthdr->it_present |= 573 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 574 575 /* ensure 8 byte alignment */ 576 while ((pos - (u8 *)rthdr) & 7) 577 pos++; 578 579 if (status->flag & RX_FLAG_MACTIME_IS_RTAP_TS64) { 580 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_64BIT; 581 ts = status->mactime; 582 } else { 583 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 584 ts = status->device_timestamp; 585 } 586 587 put_unaligned_le64(ts, pos); 588 pos += sizeof(u64); 589 590 if (local->hw.radiotap_timestamp.accuracy >= 0) { 591 accuracy = local->hw.radiotap_timestamp.accuracy; 592 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 593 } 594 put_unaligned_le16(accuracy, pos); 595 pos += sizeof(u16); 596 597 *pos++ = local->hw.radiotap_timestamp.units_pos; 598 *pos++ = flags; 599 } 600 601 if (status->encoding == RX_ENC_HE && 602 status->flag & RX_FLAG_RADIOTAP_HE) { 603 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 604 605 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 606 he.data6 |= HE_PREP(DATA6_NSTS, 607 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 608 status->enc_flags)); 609 he.data3 |= HE_PREP(DATA3_STBC, 1); 610 } else { 611 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 612 } 613 614 #define CHECK_GI(s) \ 615 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 616 (int)NL80211_RATE_INFO_HE_GI_##s) 617 618 CHECK_GI(0_8); 619 CHECK_GI(1_6); 620 CHECK_GI(3_2); 621 622 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 623 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 624 he.data3 |= HE_PREP(DATA3_CODING, 625 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 626 627 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 628 629 switch (status->bw) { 630 case RATE_INFO_BW_20: 631 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 632 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 633 break; 634 case RATE_INFO_BW_40: 635 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 636 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 637 break; 638 case RATE_INFO_BW_80: 639 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 640 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 641 break; 642 case RATE_INFO_BW_160: 643 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 644 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 645 break; 646 case RATE_INFO_BW_HE_RU: 647 #define CHECK_RU_ALLOC(s) \ 648 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 649 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 650 651 CHECK_RU_ALLOC(26); 652 CHECK_RU_ALLOC(52); 653 CHECK_RU_ALLOC(106); 654 CHECK_RU_ALLOC(242); 655 CHECK_RU_ALLOC(484); 656 CHECK_RU_ALLOC(996); 657 CHECK_RU_ALLOC(2x996); 658 659 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 660 status->he_ru + 4); 661 break; 662 default: 663 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 664 } 665 666 /* ensure 2 byte alignment */ 667 while ((pos - (u8 *)rthdr) & 1) 668 pos++; 669 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 670 memcpy(pos, &he, sizeof(he)); 671 pos += sizeof(he); 672 } 673 674 if (status->encoding == RX_ENC_HE && 675 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 676 /* ensure 2 byte alignment */ 677 while ((pos - (u8 *)rthdr) & 1) 678 pos++; 679 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 680 memcpy(pos, &he_mu, sizeof(he_mu)); 681 pos += sizeof(he_mu); 682 } 683 684 if (status->flag & RX_FLAG_NO_PSDU) { 685 rthdr->it_present |= 686 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 687 *pos++ = status->zero_length_psdu_type; 688 } 689 690 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 691 /* ensure 2 byte alignment */ 692 while ((pos - (u8 *)rthdr) & 1) 693 pos++; 694 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 695 memcpy(pos, &lsig, sizeof(lsig)); 696 pos += sizeof(lsig); 697 } 698 699 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 700 *pos++ = status->chain_signal[chain]; 701 *pos++ = chain; 702 } 703 } 704 705 static struct sk_buff * 706 ieee80211_make_monitor_skb(struct ieee80211_local *local, 707 struct sk_buff **origskb, 708 struct ieee80211_rate *rate, 709 int rtap_space, bool use_origskb) 710 { 711 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 712 int rt_hdrlen, needed_headroom; 713 struct sk_buff *skb; 714 715 /* room for the radiotap header based on driver features */ 716 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 717 needed_headroom = rt_hdrlen - rtap_space; 718 719 if (use_origskb) { 720 /* only need to expand headroom if necessary */ 721 skb = *origskb; 722 *origskb = NULL; 723 724 /* 725 * This shouldn't trigger often because most devices have an 726 * RX header they pull before we get here, and that should 727 * be big enough for our radiotap information. We should 728 * probably export the length to drivers so that we can have 729 * them allocate enough headroom to start with. 730 */ 731 if (skb_headroom(skb) < needed_headroom && 732 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 733 dev_kfree_skb(skb); 734 return NULL; 735 } 736 } else { 737 /* 738 * Need to make a copy and possibly remove radiotap header 739 * and FCS from the original. 740 */ 741 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 742 0, GFP_ATOMIC); 743 744 if (!skb) 745 return NULL; 746 } 747 748 /* prepend radiotap information */ 749 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 750 751 skb_reset_mac_header(skb); 752 skb->ip_summed = CHECKSUM_UNNECESSARY; 753 skb->pkt_type = PACKET_OTHERHOST; 754 skb->protocol = htons(ETH_P_802_2); 755 756 return skb; 757 } 758 759 /* 760 * This function copies a received frame to all monitor interfaces and 761 * returns a cleaned-up SKB that no longer includes the FCS nor the 762 * radiotap header the driver might have added. 763 */ 764 static struct sk_buff * 765 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 766 struct ieee80211_rate *rate) 767 { 768 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 769 struct ieee80211_sub_if_data *sdata; 770 struct sk_buff *monskb = NULL; 771 int present_fcs_len = 0; 772 unsigned int rtap_space = 0; 773 struct ieee80211_sub_if_data *monitor_sdata = 774 rcu_dereference(local->monitor_sdata); 775 bool only_monitor = false; 776 unsigned int min_head_len; 777 778 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && 779 !skb_mac_header_was_set(origskb))) { 780 /* with this skb no way to know where frame payload starts */ 781 dev_kfree_skb(origskb); 782 return NULL; 783 } 784 785 if (status->flag & RX_FLAG_RADIOTAP_HE) 786 rtap_space += sizeof(struct ieee80211_radiotap_he); 787 788 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 789 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 790 791 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 792 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 793 794 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 795 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; 796 797 min_head_len = rtap_space; 798 799 /* 800 * First, we may need to make a copy of the skb because 801 * (1) we need to modify it for radiotap (if not present), and 802 * (2) the other RX handlers will modify the skb we got. 803 * 804 * We don't need to, of course, if we aren't going to return 805 * the SKB because it has a bad FCS/PLCP checksum. 806 */ 807 808 if (!(status->flag & RX_FLAG_NO_PSDU)) { 809 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 810 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 811 /* driver bug */ 812 WARN_ON(1); 813 dev_kfree_skb(origskb); 814 return NULL; 815 } 816 present_fcs_len = FCS_LEN; 817 } 818 819 /* also consider the hdr->frame_control */ 820 min_head_len += 2; 821 } 822 823 /* ensure that the expected data elements are in skb head */ 824 if (!pskb_may_pull(origskb, min_head_len)) { 825 dev_kfree_skb(origskb); 826 return NULL; 827 } 828 829 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 830 831 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 832 if (only_monitor) { 833 dev_kfree_skb(origskb); 834 return NULL; 835 } 836 837 return ieee80211_clean_skb(origskb, present_fcs_len, 838 rtap_space); 839 } 840 841 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 842 843 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 844 bool last_monitor = list_is_last(&sdata->u.mntr.list, 845 &local->mon_list); 846 847 if (!monskb) 848 monskb = ieee80211_make_monitor_skb(local, &origskb, 849 rate, rtap_space, 850 only_monitor && 851 last_monitor); 852 853 if (monskb) { 854 struct sk_buff *skb; 855 856 if (last_monitor) { 857 skb = monskb; 858 monskb = NULL; 859 } else { 860 skb = skb_clone(monskb, GFP_ATOMIC); 861 } 862 863 if (skb) { 864 skb->dev = sdata->dev; 865 dev_sw_netstats_rx_add(skb->dev, skb->len); 866 netif_receive_skb(skb); 867 } 868 } 869 870 if (last_monitor) 871 break; 872 } 873 874 /* this happens if last_monitor was erroneously false */ 875 dev_kfree_skb(monskb); 876 877 /* ditto */ 878 if (!origskb) 879 return NULL; 880 881 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 882 } 883 884 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 885 { 886 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 887 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 888 int tid, seqno_idx, security_idx; 889 890 /* does the frame have a qos control field? */ 891 if (ieee80211_is_data_qos(hdr->frame_control)) { 892 u8 *qc = ieee80211_get_qos_ctl(hdr); 893 /* frame has qos control */ 894 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 895 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 896 status->rx_flags |= IEEE80211_RX_AMSDU; 897 898 seqno_idx = tid; 899 security_idx = tid; 900 } else { 901 /* 902 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 903 * 904 * Sequence numbers for management frames, QoS data 905 * frames with a broadcast/multicast address in the 906 * Address 1 field, and all non-QoS data frames sent 907 * by QoS STAs are assigned using an additional single 908 * modulo-4096 counter, [...] 909 * 910 * We also use that counter for non-QoS STAs. 911 */ 912 seqno_idx = IEEE80211_NUM_TIDS; 913 security_idx = 0; 914 if (ieee80211_is_mgmt(hdr->frame_control)) 915 security_idx = IEEE80211_NUM_TIDS; 916 tid = 0; 917 } 918 919 rx->seqno_idx = seqno_idx; 920 rx->security_idx = security_idx; 921 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 922 * For now, set skb->priority to 0 for other cases. */ 923 rx->skb->priority = (tid > 7) ? 0 : tid; 924 } 925 926 /** 927 * DOC: Packet alignment 928 * 929 * Drivers always need to pass packets that are aligned to two-byte boundaries 930 * to the stack. 931 * 932 * Additionally, they should, if possible, align the payload data in a way that 933 * guarantees that the contained IP header is aligned to a four-byte 934 * boundary. In the case of regular frames, this simply means aligning the 935 * payload to a four-byte boundary (because either the IP header is directly 936 * contained, or IV/RFC1042 headers that have a length divisible by four are 937 * in front of it). If the payload data is not properly aligned and the 938 * architecture doesn't support efficient unaligned operations, mac80211 939 * will align the data. 940 * 941 * With A-MSDU frames, however, the payload data address must yield two modulo 942 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 943 * push the IP header further back to a multiple of four again. Thankfully, the 944 * specs were sane enough this time around to require padding each A-MSDU 945 * subframe to a length that is a multiple of four. 946 * 947 * Padding like Atheros hardware adds which is between the 802.11 header and 948 * the payload is not supported; the driver is required to move the 802.11 949 * header to be directly in front of the payload in that case. 950 */ 951 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 952 { 953 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 954 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 955 #endif 956 } 957 958 959 /* rx handlers */ 960 961 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 962 { 963 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 964 965 if (is_multicast_ether_addr(hdr->addr1)) 966 return 0; 967 968 return ieee80211_is_robust_mgmt_frame(skb); 969 } 970 971 972 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 973 { 974 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 975 976 if (!is_multicast_ether_addr(hdr->addr1)) 977 return 0; 978 979 return ieee80211_is_robust_mgmt_frame(skb); 980 } 981 982 983 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 984 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 985 { 986 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 987 struct ieee80211_mmie *mmie; 988 struct ieee80211_mmie_16 *mmie16; 989 990 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 991 return -1; 992 993 if (!ieee80211_is_robust_mgmt_frame(skb) && 994 !ieee80211_is_beacon(hdr->frame_control)) 995 return -1; /* not a robust management frame */ 996 997 mmie = (struct ieee80211_mmie *) 998 (skb->data + skb->len - sizeof(*mmie)); 999 if (mmie->element_id == WLAN_EID_MMIE && 1000 mmie->length == sizeof(*mmie) - 2) 1001 return le16_to_cpu(mmie->key_id); 1002 1003 mmie16 = (struct ieee80211_mmie_16 *) 1004 (skb->data + skb->len - sizeof(*mmie16)); 1005 if (skb->len >= 24 + sizeof(*mmie16) && 1006 mmie16->element_id == WLAN_EID_MMIE && 1007 mmie16->length == sizeof(*mmie16) - 2) 1008 return le16_to_cpu(mmie16->key_id); 1009 1010 return -1; 1011 } 1012 1013 static int ieee80211_get_keyid(struct sk_buff *skb) 1014 { 1015 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1016 __le16 fc = hdr->frame_control; 1017 int hdrlen = ieee80211_hdrlen(fc); 1018 u8 keyid; 1019 1020 /* WEP, TKIP, CCMP and GCMP */ 1021 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1022 return -EINVAL; 1023 1024 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1025 1026 keyid >>= 6; 1027 1028 return keyid; 1029 } 1030 1031 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1032 { 1033 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1034 char *dev_addr = rx->sdata->vif.addr; 1035 1036 if (ieee80211_is_data(hdr->frame_control)) { 1037 if (is_multicast_ether_addr(hdr->addr1)) { 1038 if (ieee80211_has_tods(hdr->frame_control) || 1039 !ieee80211_has_fromds(hdr->frame_control)) 1040 return RX_DROP_MONITOR; 1041 if (ether_addr_equal(hdr->addr3, dev_addr)) 1042 return RX_DROP_MONITOR; 1043 } else { 1044 if (!ieee80211_has_a4(hdr->frame_control)) 1045 return RX_DROP_MONITOR; 1046 if (ether_addr_equal(hdr->addr4, dev_addr)) 1047 return RX_DROP_MONITOR; 1048 } 1049 } 1050 1051 /* If there is not an established peer link and this is not a peer link 1052 * establisment frame, beacon or probe, drop the frame. 1053 */ 1054 1055 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1056 struct ieee80211_mgmt *mgmt; 1057 1058 if (!ieee80211_is_mgmt(hdr->frame_control)) 1059 return RX_DROP_MONITOR; 1060 1061 if (ieee80211_is_action(hdr->frame_control)) { 1062 u8 category; 1063 1064 /* make sure category field is present */ 1065 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1066 return RX_DROP_MONITOR; 1067 1068 mgmt = (struct ieee80211_mgmt *)hdr; 1069 category = mgmt->u.action.category; 1070 if (category != WLAN_CATEGORY_MESH_ACTION && 1071 category != WLAN_CATEGORY_SELF_PROTECTED) 1072 return RX_DROP_MONITOR; 1073 return RX_CONTINUE; 1074 } 1075 1076 if (ieee80211_is_probe_req(hdr->frame_control) || 1077 ieee80211_is_probe_resp(hdr->frame_control) || 1078 ieee80211_is_beacon(hdr->frame_control) || 1079 ieee80211_is_auth(hdr->frame_control)) 1080 return RX_CONTINUE; 1081 1082 return RX_DROP_MONITOR; 1083 } 1084 1085 return RX_CONTINUE; 1086 } 1087 1088 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1089 int index) 1090 { 1091 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1092 struct sk_buff *tail = skb_peek_tail(frames); 1093 struct ieee80211_rx_status *status; 1094 1095 if (tid_agg_rx->reorder_buf_filtered && 1096 tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1097 return true; 1098 1099 if (!tail) 1100 return false; 1101 1102 status = IEEE80211_SKB_RXCB(tail); 1103 if (status->flag & RX_FLAG_AMSDU_MORE) 1104 return false; 1105 1106 return true; 1107 } 1108 1109 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1110 struct tid_ampdu_rx *tid_agg_rx, 1111 int index, 1112 struct sk_buff_head *frames) 1113 { 1114 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1115 struct sk_buff *skb; 1116 struct ieee80211_rx_status *status; 1117 1118 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1119 1120 if (skb_queue_empty(skb_list)) 1121 goto no_frame; 1122 1123 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1124 __skb_queue_purge(skb_list); 1125 goto no_frame; 1126 } 1127 1128 /* release frames from the reorder ring buffer */ 1129 tid_agg_rx->stored_mpdu_num--; 1130 while ((skb = __skb_dequeue(skb_list))) { 1131 status = IEEE80211_SKB_RXCB(skb); 1132 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1133 __skb_queue_tail(frames, skb); 1134 } 1135 1136 no_frame: 1137 if (tid_agg_rx->reorder_buf_filtered) 1138 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1139 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1140 } 1141 1142 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1143 struct tid_ampdu_rx *tid_agg_rx, 1144 u16 head_seq_num, 1145 struct sk_buff_head *frames) 1146 { 1147 int index; 1148 1149 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1150 1151 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1152 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1153 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1154 frames); 1155 } 1156 } 1157 1158 /* 1159 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1160 * the skb was added to the buffer longer than this time ago, the earlier 1161 * frames that have not yet been received are assumed to be lost and the skb 1162 * can be released for processing. This may also release other skb's from the 1163 * reorder buffer if there are no additional gaps between the frames. 1164 * 1165 * Callers must hold tid_agg_rx->reorder_lock. 1166 */ 1167 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1168 1169 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1170 struct tid_ampdu_rx *tid_agg_rx, 1171 struct sk_buff_head *frames) 1172 { 1173 int index, i, j; 1174 1175 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1176 1177 /* release the buffer until next missing frame */ 1178 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1179 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1180 tid_agg_rx->stored_mpdu_num) { 1181 /* 1182 * No buffers ready to be released, but check whether any 1183 * frames in the reorder buffer have timed out. 1184 */ 1185 int skipped = 1; 1186 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1187 j = (j + 1) % tid_agg_rx->buf_size) { 1188 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1189 skipped++; 1190 continue; 1191 } 1192 if (skipped && 1193 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1194 HT_RX_REORDER_BUF_TIMEOUT)) 1195 goto set_release_timer; 1196 1197 /* don't leave incomplete A-MSDUs around */ 1198 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1199 i = (i + 1) % tid_agg_rx->buf_size) 1200 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1201 1202 ht_dbg_ratelimited(sdata, 1203 "release an RX reorder frame due to timeout on earlier frames\n"); 1204 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1205 frames); 1206 1207 /* 1208 * Increment the head seq# also for the skipped slots. 1209 */ 1210 tid_agg_rx->head_seq_num = 1211 (tid_agg_rx->head_seq_num + 1212 skipped) & IEEE80211_SN_MASK; 1213 skipped = 0; 1214 } 1215 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1216 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1217 frames); 1218 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1219 } 1220 1221 if (tid_agg_rx->stored_mpdu_num) { 1222 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1223 1224 for (; j != (index - 1) % tid_agg_rx->buf_size; 1225 j = (j + 1) % tid_agg_rx->buf_size) { 1226 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1227 break; 1228 } 1229 1230 set_release_timer: 1231 1232 if (!tid_agg_rx->removed) 1233 mod_timer(&tid_agg_rx->reorder_timer, 1234 tid_agg_rx->reorder_time[j] + 1 + 1235 HT_RX_REORDER_BUF_TIMEOUT); 1236 } else { 1237 del_timer(&tid_agg_rx->reorder_timer); 1238 } 1239 } 1240 1241 /* 1242 * As this function belongs to the RX path it must be under 1243 * rcu_read_lock protection. It returns false if the frame 1244 * can be processed immediately, true if it was consumed. 1245 */ 1246 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1247 struct tid_ampdu_rx *tid_agg_rx, 1248 struct sk_buff *skb, 1249 struct sk_buff_head *frames) 1250 { 1251 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1252 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1253 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1254 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1255 u16 head_seq_num, buf_size; 1256 int index; 1257 bool ret = true; 1258 1259 spin_lock(&tid_agg_rx->reorder_lock); 1260 1261 /* 1262 * Offloaded BA sessions have no known starting sequence number so pick 1263 * one from first Rxed frame for this tid after BA was started. 1264 */ 1265 if (unlikely(tid_agg_rx->auto_seq)) { 1266 tid_agg_rx->auto_seq = false; 1267 tid_agg_rx->ssn = mpdu_seq_num; 1268 tid_agg_rx->head_seq_num = mpdu_seq_num; 1269 } 1270 1271 buf_size = tid_agg_rx->buf_size; 1272 head_seq_num = tid_agg_rx->head_seq_num; 1273 1274 /* 1275 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1276 * be reordered. 1277 */ 1278 if (unlikely(!tid_agg_rx->started)) { 1279 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1280 ret = false; 1281 goto out; 1282 } 1283 tid_agg_rx->started = true; 1284 } 1285 1286 /* frame with out of date sequence number */ 1287 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1288 dev_kfree_skb(skb); 1289 goto out; 1290 } 1291 1292 /* 1293 * If frame the sequence number exceeds our buffering window 1294 * size release some previous frames to make room for this one. 1295 */ 1296 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1297 head_seq_num = ieee80211_sn_inc( 1298 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1299 /* release stored frames up to new head to stack */ 1300 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1301 head_seq_num, frames); 1302 } 1303 1304 /* Now the new frame is always in the range of the reordering buffer */ 1305 1306 index = mpdu_seq_num % tid_agg_rx->buf_size; 1307 1308 /* check if we already stored this frame */ 1309 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1310 dev_kfree_skb(skb); 1311 goto out; 1312 } 1313 1314 /* 1315 * If the current MPDU is in the right order and nothing else 1316 * is stored we can process it directly, no need to buffer it. 1317 * If it is first but there's something stored, we may be able 1318 * to release frames after this one. 1319 */ 1320 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1321 tid_agg_rx->stored_mpdu_num == 0) { 1322 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1323 tid_agg_rx->head_seq_num = 1324 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1325 ret = false; 1326 goto out; 1327 } 1328 1329 /* put the frame in the reordering buffer */ 1330 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1331 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1332 tid_agg_rx->reorder_time[index] = jiffies; 1333 tid_agg_rx->stored_mpdu_num++; 1334 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1335 } 1336 1337 out: 1338 spin_unlock(&tid_agg_rx->reorder_lock); 1339 return ret; 1340 } 1341 1342 /* 1343 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1344 * true if the MPDU was buffered, false if it should be processed. 1345 */ 1346 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1347 struct sk_buff_head *frames) 1348 { 1349 struct sk_buff *skb = rx->skb; 1350 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1351 struct sta_info *sta = rx->sta; 1352 struct tid_ampdu_rx *tid_agg_rx; 1353 u16 sc; 1354 u8 tid, ack_policy; 1355 1356 if (!ieee80211_is_data_qos(hdr->frame_control) || 1357 is_multicast_ether_addr(hdr->addr1)) 1358 goto dont_reorder; 1359 1360 /* 1361 * filter the QoS data rx stream according to 1362 * STA/TID and check if this STA/TID is on aggregation 1363 */ 1364 1365 if (!sta) 1366 goto dont_reorder; 1367 1368 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1369 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1370 tid = ieee80211_get_tid(hdr); 1371 1372 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1373 if (!tid_agg_rx) { 1374 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1375 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1376 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1377 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1378 WLAN_BACK_RECIPIENT, 1379 WLAN_REASON_QSTA_REQUIRE_SETUP); 1380 goto dont_reorder; 1381 } 1382 1383 /* qos null data frames are excluded */ 1384 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1385 goto dont_reorder; 1386 1387 /* not part of a BA session */ 1388 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1389 goto dont_reorder; 1390 1391 /* new, potentially un-ordered, ampdu frame - process it */ 1392 1393 /* reset session timer */ 1394 if (tid_agg_rx->timeout) 1395 tid_agg_rx->last_rx = jiffies; 1396 1397 /* if this mpdu is fragmented - terminate rx aggregation session */ 1398 sc = le16_to_cpu(hdr->seq_ctrl); 1399 if (sc & IEEE80211_SCTL_FRAG) { 1400 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1401 return; 1402 } 1403 1404 /* 1405 * No locking needed -- we will only ever process one 1406 * RX packet at a time, and thus own tid_agg_rx. All 1407 * other code manipulating it needs to (and does) make 1408 * sure that we cannot get to it any more before doing 1409 * anything with it. 1410 */ 1411 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1412 frames)) 1413 return; 1414 1415 dont_reorder: 1416 __skb_queue_tail(frames, skb); 1417 } 1418 1419 static ieee80211_rx_result debug_noinline 1420 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1421 { 1422 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1423 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1424 1425 if (status->flag & RX_FLAG_DUP_VALIDATED) 1426 return RX_CONTINUE; 1427 1428 /* 1429 * Drop duplicate 802.11 retransmissions 1430 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1431 */ 1432 1433 if (rx->skb->len < 24) 1434 return RX_CONTINUE; 1435 1436 if (ieee80211_is_ctl(hdr->frame_control) || 1437 ieee80211_is_any_nullfunc(hdr->frame_control) || 1438 is_multicast_ether_addr(hdr->addr1)) 1439 return RX_CONTINUE; 1440 1441 if (!rx->sta) 1442 return RX_CONTINUE; 1443 1444 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1445 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1446 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1447 rx->link_sta->rx_stats.num_duplicates++; 1448 return RX_DROP_U_DUP; 1449 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1450 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1451 } 1452 1453 return RX_CONTINUE; 1454 } 1455 1456 static ieee80211_rx_result debug_noinline 1457 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1458 { 1459 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1460 1461 /* Drop disallowed frame classes based on STA auth/assoc state; 1462 * IEEE 802.11, Chap 5.5. 1463 * 1464 * mac80211 filters only based on association state, i.e. it drops 1465 * Class 3 frames from not associated stations. hostapd sends 1466 * deauth/disassoc frames when needed. In addition, hostapd is 1467 * responsible for filtering on both auth and assoc states. 1468 */ 1469 1470 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1471 return ieee80211_rx_mesh_check(rx); 1472 1473 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1474 ieee80211_is_pspoll(hdr->frame_control)) && 1475 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1476 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1477 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1478 /* 1479 * accept port control frames from the AP even when it's not 1480 * yet marked ASSOC to prevent a race where we don't set the 1481 * assoc bit quickly enough before it sends the first frame 1482 */ 1483 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1484 ieee80211_is_data_present(hdr->frame_control)) { 1485 unsigned int hdrlen; 1486 __be16 ethertype; 1487 1488 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1489 1490 if (rx->skb->len < hdrlen + 8) 1491 return RX_DROP_MONITOR; 1492 1493 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1494 if (ethertype == rx->sdata->control_port_protocol) 1495 return RX_CONTINUE; 1496 } 1497 1498 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1499 cfg80211_rx_spurious_frame(rx->sdata->dev, 1500 hdr->addr2, 1501 GFP_ATOMIC)) 1502 return RX_DROP_U_SPURIOUS; 1503 1504 return RX_DROP_MONITOR; 1505 } 1506 1507 return RX_CONTINUE; 1508 } 1509 1510 1511 static ieee80211_rx_result debug_noinline 1512 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1513 { 1514 struct ieee80211_local *local; 1515 struct ieee80211_hdr *hdr; 1516 struct sk_buff *skb; 1517 1518 local = rx->local; 1519 skb = rx->skb; 1520 hdr = (struct ieee80211_hdr *) skb->data; 1521 1522 if (!local->pspolling) 1523 return RX_CONTINUE; 1524 1525 if (!ieee80211_has_fromds(hdr->frame_control)) 1526 /* this is not from AP */ 1527 return RX_CONTINUE; 1528 1529 if (!ieee80211_is_data(hdr->frame_control)) 1530 return RX_CONTINUE; 1531 1532 if (!ieee80211_has_moredata(hdr->frame_control)) { 1533 /* AP has no more frames buffered for us */ 1534 local->pspolling = false; 1535 return RX_CONTINUE; 1536 } 1537 1538 /* more data bit is set, let's request a new frame from the AP */ 1539 ieee80211_send_pspoll(local, rx->sdata); 1540 1541 return RX_CONTINUE; 1542 } 1543 1544 static void sta_ps_start(struct sta_info *sta) 1545 { 1546 struct ieee80211_sub_if_data *sdata = sta->sdata; 1547 struct ieee80211_local *local = sdata->local; 1548 struct ps_data *ps; 1549 int tid; 1550 1551 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1552 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1553 ps = &sdata->bss->ps; 1554 else 1555 return; 1556 1557 atomic_inc(&ps->num_sta_ps); 1558 set_sta_flag(sta, WLAN_STA_PS_STA); 1559 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1560 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1561 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1562 sta->sta.addr, sta->sta.aid); 1563 1564 ieee80211_clear_fast_xmit(sta); 1565 1566 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1567 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1568 struct txq_info *txqi = to_txq_info(txq); 1569 1570 spin_lock(&local->active_txq_lock[txq->ac]); 1571 if (!list_empty(&txqi->schedule_order)) 1572 list_del_init(&txqi->schedule_order); 1573 spin_unlock(&local->active_txq_lock[txq->ac]); 1574 1575 if (txq_has_queue(txq)) 1576 set_bit(tid, &sta->txq_buffered_tids); 1577 else 1578 clear_bit(tid, &sta->txq_buffered_tids); 1579 } 1580 } 1581 1582 static void sta_ps_end(struct sta_info *sta) 1583 { 1584 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1585 sta->sta.addr, sta->sta.aid); 1586 1587 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1588 /* 1589 * Clear the flag only if the other one is still set 1590 * so that the TX path won't start TX'ing new frames 1591 * directly ... In the case that the driver flag isn't 1592 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1593 */ 1594 clear_sta_flag(sta, WLAN_STA_PS_STA); 1595 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1596 sta->sta.addr, sta->sta.aid); 1597 return; 1598 } 1599 1600 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1601 clear_sta_flag(sta, WLAN_STA_PS_STA); 1602 ieee80211_sta_ps_deliver_wakeup(sta); 1603 } 1604 1605 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1606 { 1607 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1608 bool in_ps; 1609 1610 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1611 1612 /* Don't let the same PS state be set twice */ 1613 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1614 if ((start && in_ps) || (!start && !in_ps)) 1615 return -EINVAL; 1616 1617 if (start) 1618 sta_ps_start(sta); 1619 else 1620 sta_ps_end(sta); 1621 1622 return 0; 1623 } 1624 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1625 1626 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1627 { 1628 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1629 1630 if (test_sta_flag(sta, WLAN_STA_SP)) 1631 return; 1632 1633 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1634 ieee80211_sta_ps_deliver_poll_response(sta); 1635 else 1636 set_sta_flag(sta, WLAN_STA_PSPOLL); 1637 } 1638 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1639 1640 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1641 { 1642 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1643 int ac = ieee80211_ac_from_tid(tid); 1644 1645 /* 1646 * If this AC is not trigger-enabled do nothing unless the 1647 * driver is calling us after it already checked. 1648 * 1649 * NB: This could/should check a separate bitmap of trigger- 1650 * enabled queues, but for now we only implement uAPSD w/o 1651 * TSPEC changes to the ACs, so they're always the same. 1652 */ 1653 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1654 tid != IEEE80211_NUM_TIDS) 1655 return; 1656 1657 /* if we are in a service period, do nothing */ 1658 if (test_sta_flag(sta, WLAN_STA_SP)) 1659 return; 1660 1661 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1662 ieee80211_sta_ps_deliver_uapsd(sta); 1663 else 1664 set_sta_flag(sta, WLAN_STA_UAPSD); 1665 } 1666 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1667 1668 static ieee80211_rx_result debug_noinline 1669 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1670 { 1671 struct ieee80211_sub_if_data *sdata = rx->sdata; 1672 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1673 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1674 1675 if (!rx->sta) 1676 return RX_CONTINUE; 1677 1678 if (sdata->vif.type != NL80211_IFTYPE_AP && 1679 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1680 return RX_CONTINUE; 1681 1682 /* 1683 * The device handles station powersave, so don't do anything about 1684 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1685 * it to mac80211 since they're handled.) 1686 */ 1687 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1688 return RX_CONTINUE; 1689 1690 /* 1691 * Don't do anything if the station isn't already asleep. In 1692 * the uAPSD case, the station will probably be marked asleep, 1693 * in the PS-Poll case the station must be confused ... 1694 */ 1695 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1696 return RX_CONTINUE; 1697 1698 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1699 ieee80211_sta_pspoll(&rx->sta->sta); 1700 1701 /* Free PS Poll skb here instead of returning RX_DROP that would 1702 * count as an dropped frame. */ 1703 dev_kfree_skb(rx->skb); 1704 1705 return RX_QUEUED; 1706 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1707 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1708 ieee80211_has_pm(hdr->frame_control) && 1709 (ieee80211_is_data_qos(hdr->frame_control) || 1710 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1711 u8 tid = ieee80211_get_tid(hdr); 1712 1713 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1714 } 1715 1716 return RX_CONTINUE; 1717 } 1718 1719 static ieee80211_rx_result debug_noinline 1720 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1721 { 1722 struct sta_info *sta = rx->sta; 1723 struct link_sta_info *link_sta = rx->link_sta; 1724 struct sk_buff *skb = rx->skb; 1725 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1727 int i; 1728 1729 if (!sta || !link_sta) 1730 return RX_CONTINUE; 1731 1732 /* 1733 * Update last_rx only for IBSS packets which are for the current 1734 * BSSID and for station already AUTHORIZED to avoid keeping the 1735 * current IBSS network alive in cases where other STAs start 1736 * using different BSSID. This will also give the station another 1737 * chance to restart the authentication/authorization in case 1738 * something went wrong the first time. 1739 */ 1740 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1741 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1742 NL80211_IFTYPE_ADHOC); 1743 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1744 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1745 link_sta->rx_stats.last_rx = jiffies; 1746 if (ieee80211_is_data_present(hdr->frame_control) && 1747 !is_multicast_ether_addr(hdr->addr1)) 1748 link_sta->rx_stats.last_rate = 1749 sta_stats_encode_rate(status); 1750 } 1751 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1752 link_sta->rx_stats.last_rx = jiffies; 1753 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1754 !is_multicast_ether_addr(hdr->addr1)) { 1755 /* 1756 * Mesh beacons will update last_rx when if they are found to 1757 * match the current local configuration when processed. 1758 */ 1759 link_sta->rx_stats.last_rx = jiffies; 1760 if (ieee80211_is_data_present(hdr->frame_control)) 1761 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1762 } 1763 1764 link_sta->rx_stats.fragments++; 1765 1766 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1767 link_sta->rx_stats.bytes += rx->skb->len; 1768 u64_stats_update_end(&link_sta->rx_stats.syncp); 1769 1770 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1771 link_sta->rx_stats.last_signal = status->signal; 1772 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1773 -status->signal); 1774 } 1775 1776 if (status->chains) { 1777 link_sta->rx_stats.chains = status->chains; 1778 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1779 int signal = status->chain_signal[i]; 1780 1781 if (!(status->chains & BIT(i))) 1782 continue; 1783 1784 link_sta->rx_stats.chain_signal_last[i] = signal; 1785 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1786 -signal); 1787 } 1788 } 1789 1790 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1791 return RX_CONTINUE; 1792 1793 /* 1794 * Change STA power saving mode only at the end of a frame 1795 * exchange sequence, and only for a data or management 1796 * frame as specified in IEEE 802.11-2016 11.2.3.2 1797 */ 1798 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1799 !ieee80211_has_morefrags(hdr->frame_control) && 1800 !is_multicast_ether_addr(hdr->addr1) && 1801 (ieee80211_is_mgmt(hdr->frame_control) || 1802 ieee80211_is_data(hdr->frame_control)) && 1803 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1804 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1805 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1806 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1807 if (!ieee80211_has_pm(hdr->frame_control)) 1808 sta_ps_end(sta); 1809 } else { 1810 if (ieee80211_has_pm(hdr->frame_control)) 1811 sta_ps_start(sta); 1812 } 1813 } 1814 1815 /* mesh power save support */ 1816 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1817 ieee80211_mps_rx_h_sta_process(sta, hdr); 1818 1819 /* 1820 * Drop (qos-)data::nullfunc frames silently, since they 1821 * are used only to control station power saving mode. 1822 */ 1823 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1824 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1825 1826 /* 1827 * If we receive a 4-addr nullfunc frame from a STA 1828 * that was not moved to a 4-addr STA vlan yet send 1829 * the event to userspace and for older hostapd drop 1830 * the frame to the monitor interface. 1831 */ 1832 if (ieee80211_has_a4(hdr->frame_control) && 1833 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1834 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1835 !rx->sdata->u.vlan.sta))) { 1836 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1837 cfg80211_rx_unexpected_4addr_frame( 1838 rx->sdata->dev, sta->sta.addr, 1839 GFP_ATOMIC); 1840 return RX_DROP_M_UNEXPECTED_4ADDR_FRAME; 1841 } 1842 /* 1843 * Update counter and free packet here to avoid 1844 * counting this as a dropped packed. 1845 */ 1846 link_sta->rx_stats.packets++; 1847 dev_kfree_skb(rx->skb); 1848 return RX_QUEUED; 1849 } 1850 1851 return RX_CONTINUE; 1852 } /* ieee80211_rx_h_sta_process */ 1853 1854 static struct ieee80211_key * 1855 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1856 { 1857 struct ieee80211_key *key = NULL; 1858 int idx2; 1859 1860 /* Make sure key gets set if either BIGTK key index is set so that 1861 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1862 * Beacon frames and Beacon frames that claim to use another BIGTK key 1863 * index (i.e., a key that we do not have). 1864 */ 1865 1866 if (idx < 0) { 1867 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1868 idx2 = idx + 1; 1869 } else { 1870 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1871 idx2 = idx + 1; 1872 else 1873 idx2 = idx - 1; 1874 } 1875 1876 if (rx->link_sta) 1877 key = rcu_dereference(rx->link_sta->gtk[idx]); 1878 if (!key) 1879 key = rcu_dereference(rx->link->gtk[idx]); 1880 if (!key && rx->link_sta) 1881 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1882 if (!key) 1883 key = rcu_dereference(rx->link->gtk[idx2]); 1884 1885 return key; 1886 } 1887 1888 static ieee80211_rx_result debug_noinline 1889 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1890 { 1891 struct sk_buff *skb = rx->skb; 1892 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1893 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1894 int keyidx; 1895 ieee80211_rx_result result = RX_DROP_U_DECRYPT_FAIL; 1896 struct ieee80211_key *sta_ptk = NULL; 1897 struct ieee80211_key *ptk_idx = NULL; 1898 int mmie_keyidx = -1; 1899 __le16 fc; 1900 1901 if (ieee80211_is_ext(hdr->frame_control)) 1902 return RX_CONTINUE; 1903 1904 /* 1905 * Key selection 101 1906 * 1907 * There are five types of keys: 1908 * - GTK (group keys) 1909 * - IGTK (group keys for management frames) 1910 * - BIGTK (group keys for Beacon frames) 1911 * - PTK (pairwise keys) 1912 * - STK (station-to-station pairwise keys) 1913 * 1914 * When selecting a key, we have to distinguish between multicast 1915 * (including broadcast) and unicast frames, the latter can only 1916 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1917 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1918 * then unicast frames can also use key indices like GTKs. Hence, if we 1919 * don't have a PTK/STK we check the key index for a WEP key. 1920 * 1921 * Note that in a regular BSS, multicast frames are sent by the 1922 * AP only, associated stations unicast the frame to the AP first 1923 * which then multicasts it on their behalf. 1924 * 1925 * There is also a slight problem in IBSS mode: GTKs are negotiated 1926 * with each station, that is something we don't currently handle. 1927 * The spec seems to expect that one negotiates the same key with 1928 * every station but there's no such requirement; VLANs could be 1929 * possible. 1930 */ 1931 1932 /* start without a key */ 1933 rx->key = NULL; 1934 fc = hdr->frame_control; 1935 1936 if (rx->sta) { 1937 int keyid = rx->sta->ptk_idx; 1938 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1939 1940 if (ieee80211_has_protected(fc) && 1941 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1942 keyid = ieee80211_get_keyid(rx->skb); 1943 1944 if (unlikely(keyid < 0)) 1945 return RX_DROP_U_NO_KEY_ID; 1946 1947 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1948 } 1949 } 1950 1951 if (!ieee80211_has_protected(fc)) 1952 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1953 1954 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1955 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1956 if ((status->flag & RX_FLAG_DECRYPTED) && 1957 (status->flag & RX_FLAG_IV_STRIPPED)) 1958 return RX_CONTINUE; 1959 /* Skip decryption if the frame is not protected. */ 1960 if (!ieee80211_has_protected(fc)) 1961 return RX_CONTINUE; 1962 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1963 /* Broadcast/multicast robust management frame / BIP */ 1964 if ((status->flag & RX_FLAG_DECRYPTED) && 1965 (status->flag & RX_FLAG_IV_STRIPPED)) 1966 return RX_CONTINUE; 1967 1968 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1969 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1970 NUM_DEFAULT_BEACON_KEYS) { 1971 if (rx->sdata->dev) 1972 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1973 skb->data, 1974 skb->len); 1975 return RX_DROP_M_BAD_BCN_KEYIDX; 1976 } 1977 1978 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1979 if (!rx->key) 1980 return RX_CONTINUE; /* Beacon protection not in use */ 1981 } else if (mmie_keyidx >= 0) { 1982 /* Broadcast/multicast robust management frame / BIP */ 1983 if ((status->flag & RX_FLAG_DECRYPTED) && 1984 (status->flag & RX_FLAG_IV_STRIPPED)) 1985 return RX_CONTINUE; 1986 1987 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1988 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1989 return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */ 1990 if (rx->link_sta) { 1991 if (ieee80211_is_group_privacy_action(skb) && 1992 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1993 return RX_DROP_MONITOR; 1994 1995 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 1996 } 1997 if (!rx->key) 1998 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 1999 } else if (!ieee80211_has_protected(fc)) { 2000 /* 2001 * The frame was not protected, so skip decryption. However, we 2002 * need to set rx->key if there is a key that could have been 2003 * used so that the frame may be dropped if encryption would 2004 * have been expected. 2005 */ 2006 struct ieee80211_key *key = NULL; 2007 int i; 2008 2009 if (ieee80211_is_beacon(fc)) { 2010 key = ieee80211_rx_get_bigtk(rx, -1); 2011 } else if (ieee80211_is_mgmt(fc) && 2012 is_multicast_ether_addr(hdr->addr1)) { 2013 key = rcu_dereference(rx->link->default_mgmt_key); 2014 } else { 2015 if (rx->link_sta) { 2016 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2017 key = rcu_dereference(rx->link_sta->gtk[i]); 2018 if (key) 2019 break; 2020 } 2021 } 2022 if (!key) { 2023 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2024 key = rcu_dereference(rx->link->gtk[i]); 2025 if (key) 2026 break; 2027 } 2028 } 2029 } 2030 if (key) 2031 rx->key = key; 2032 return RX_CONTINUE; 2033 } else { 2034 /* 2035 * The device doesn't give us the IV so we won't be 2036 * able to look up the key. That's ok though, we 2037 * don't need to decrypt the frame, we just won't 2038 * be able to keep statistics accurate. 2039 * Except for key threshold notifications, should 2040 * we somehow allow the driver to tell us which key 2041 * the hardware used if this flag is set? 2042 */ 2043 if ((status->flag & RX_FLAG_DECRYPTED) && 2044 (status->flag & RX_FLAG_IV_STRIPPED)) 2045 return RX_CONTINUE; 2046 2047 keyidx = ieee80211_get_keyid(rx->skb); 2048 2049 if (unlikely(keyidx < 0)) 2050 return RX_DROP_U_NO_KEY_ID; 2051 2052 /* check per-station GTK first, if multicast packet */ 2053 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2054 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2055 2056 /* if not found, try default key */ 2057 if (!rx->key) { 2058 if (is_multicast_ether_addr(hdr->addr1)) 2059 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2060 if (!rx->key) 2061 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2062 2063 /* 2064 * RSNA-protected unicast frames should always be 2065 * sent with pairwise or station-to-station keys, 2066 * but for WEP we allow using a key index as well. 2067 */ 2068 if (rx->key && 2069 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2070 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2071 !is_multicast_ether_addr(hdr->addr1)) 2072 rx->key = NULL; 2073 } 2074 } 2075 2076 if (rx->key) { 2077 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2078 return RX_DROP_MONITOR; 2079 2080 /* TODO: add threshold stuff again */ 2081 } else { 2082 return RX_DROP_MONITOR; 2083 } 2084 2085 switch (rx->key->conf.cipher) { 2086 case WLAN_CIPHER_SUITE_WEP40: 2087 case WLAN_CIPHER_SUITE_WEP104: 2088 result = ieee80211_crypto_wep_decrypt(rx); 2089 break; 2090 case WLAN_CIPHER_SUITE_TKIP: 2091 result = ieee80211_crypto_tkip_decrypt(rx); 2092 break; 2093 case WLAN_CIPHER_SUITE_CCMP: 2094 result = ieee80211_crypto_ccmp_decrypt( 2095 rx, IEEE80211_CCMP_MIC_LEN); 2096 break; 2097 case WLAN_CIPHER_SUITE_CCMP_256: 2098 result = ieee80211_crypto_ccmp_decrypt( 2099 rx, IEEE80211_CCMP_256_MIC_LEN); 2100 break; 2101 case WLAN_CIPHER_SUITE_AES_CMAC: 2102 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2103 break; 2104 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2105 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2106 break; 2107 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2108 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2109 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2110 break; 2111 case WLAN_CIPHER_SUITE_GCMP: 2112 case WLAN_CIPHER_SUITE_GCMP_256: 2113 result = ieee80211_crypto_gcmp_decrypt(rx); 2114 break; 2115 default: 2116 result = RX_DROP_U_BAD_CIPHER; 2117 } 2118 2119 /* the hdr variable is invalid after the decrypt handlers */ 2120 2121 /* either the frame has been decrypted or will be dropped */ 2122 status->flag |= RX_FLAG_DECRYPTED; 2123 2124 if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) && 2125 rx->sdata->dev)) 2126 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2127 skb->data, skb->len); 2128 2129 return result; 2130 } 2131 2132 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2133 { 2134 int i; 2135 2136 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2137 skb_queue_head_init(&cache->entries[i].skb_list); 2138 } 2139 2140 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2141 { 2142 int i; 2143 2144 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2145 __skb_queue_purge(&cache->entries[i].skb_list); 2146 } 2147 2148 static inline struct ieee80211_fragment_entry * 2149 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2150 unsigned int frag, unsigned int seq, int rx_queue, 2151 struct sk_buff **skb) 2152 { 2153 struct ieee80211_fragment_entry *entry; 2154 2155 entry = &cache->entries[cache->next++]; 2156 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2157 cache->next = 0; 2158 2159 __skb_queue_purge(&entry->skb_list); 2160 2161 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2162 *skb = NULL; 2163 entry->first_frag_time = jiffies; 2164 entry->seq = seq; 2165 entry->rx_queue = rx_queue; 2166 entry->last_frag = frag; 2167 entry->check_sequential_pn = false; 2168 entry->extra_len = 0; 2169 2170 return entry; 2171 } 2172 2173 static inline struct ieee80211_fragment_entry * 2174 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2175 unsigned int frag, unsigned int seq, 2176 int rx_queue, struct ieee80211_hdr *hdr) 2177 { 2178 struct ieee80211_fragment_entry *entry; 2179 int i, idx; 2180 2181 idx = cache->next; 2182 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2183 struct ieee80211_hdr *f_hdr; 2184 struct sk_buff *f_skb; 2185 2186 idx--; 2187 if (idx < 0) 2188 idx = IEEE80211_FRAGMENT_MAX - 1; 2189 2190 entry = &cache->entries[idx]; 2191 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2192 entry->rx_queue != rx_queue || 2193 entry->last_frag + 1 != frag) 2194 continue; 2195 2196 f_skb = __skb_peek(&entry->skb_list); 2197 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2198 2199 /* 2200 * Check ftype and addresses are equal, else check next fragment 2201 */ 2202 if (((hdr->frame_control ^ f_hdr->frame_control) & 2203 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2204 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2205 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2206 continue; 2207 2208 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2209 __skb_queue_purge(&entry->skb_list); 2210 continue; 2211 } 2212 return entry; 2213 } 2214 2215 return NULL; 2216 } 2217 2218 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2219 { 2220 return rx->key && 2221 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2222 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2223 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2224 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2225 ieee80211_has_protected(fc); 2226 } 2227 2228 static ieee80211_rx_result debug_noinline 2229 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2230 { 2231 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2232 struct ieee80211_hdr *hdr; 2233 u16 sc; 2234 __le16 fc; 2235 unsigned int frag, seq; 2236 struct ieee80211_fragment_entry *entry; 2237 struct sk_buff *skb; 2238 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2239 2240 hdr = (struct ieee80211_hdr *)rx->skb->data; 2241 fc = hdr->frame_control; 2242 2243 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2244 return RX_CONTINUE; 2245 2246 sc = le16_to_cpu(hdr->seq_ctrl); 2247 frag = sc & IEEE80211_SCTL_FRAG; 2248 2249 if (rx->sta) 2250 cache = &rx->sta->frags; 2251 2252 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2253 goto out; 2254 2255 if (is_multicast_ether_addr(hdr->addr1)) 2256 return RX_DROP_MONITOR; 2257 2258 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2259 2260 if (skb_linearize(rx->skb)) 2261 return RX_DROP_U_OOM; 2262 2263 /* 2264 * skb_linearize() might change the skb->data and 2265 * previously cached variables (in this case, hdr) need to 2266 * be refreshed with the new data. 2267 */ 2268 hdr = (struct ieee80211_hdr *)rx->skb->data; 2269 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2270 2271 if (frag == 0) { 2272 /* This is the first fragment of a new frame. */ 2273 entry = ieee80211_reassemble_add(cache, frag, seq, 2274 rx->seqno_idx, &(rx->skb)); 2275 if (requires_sequential_pn(rx, fc)) { 2276 int queue = rx->security_idx; 2277 2278 /* Store CCMP/GCMP PN so that we can verify that the 2279 * next fragment has a sequential PN value. 2280 */ 2281 entry->check_sequential_pn = true; 2282 entry->is_protected = true; 2283 entry->key_color = rx->key->color; 2284 memcpy(entry->last_pn, 2285 rx->key->u.ccmp.rx_pn[queue], 2286 IEEE80211_CCMP_PN_LEN); 2287 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2288 u.ccmp.rx_pn) != 2289 offsetof(struct ieee80211_key, 2290 u.gcmp.rx_pn)); 2291 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2292 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2293 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2294 IEEE80211_GCMP_PN_LEN); 2295 } else if (rx->key && 2296 (ieee80211_has_protected(fc) || 2297 (status->flag & RX_FLAG_DECRYPTED))) { 2298 entry->is_protected = true; 2299 entry->key_color = rx->key->color; 2300 } 2301 return RX_QUEUED; 2302 } 2303 2304 /* This is a fragment for a frame that should already be pending in 2305 * fragment cache. Add this fragment to the end of the pending entry. 2306 */ 2307 entry = ieee80211_reassemble_find(cache, frag, seq, 2308 rx->seqno_idx, hdr); 2309 if (!entry) { 2310 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2311 return RX_DROP_MONITOR; 2312 } 2313 2314 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2315 * MPDU PN values are not incrementing in steps of 1." 2316 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2317 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2318 */ 2319 if (entry->check_sequential_pn) { 2320 int i; 2321 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2322 2323 if (!requires_sequential_pn(rx, fc)) 2324 return RX_DROP_U_NONSEQ_PN; 2325 2326 /* Prevent mixed key and fragment cache attacks */ 2327 if (entry->key_color != rx->key->color) 2328 return RX_DROP_U_BAD_KEY_COLOR; 2329 2330 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2331 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2332 pn[i]++; 2333 if (pn[i]) 2334 break; 2335 } 2336 2337 rpn = rx->ccm_gcm.pn; 2338 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2339 return RX_DROP_U_REPLAY; 2340 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2341 } else if (entry->is_protected && 2342 (!rx->key || 2343 (!ieee80211_has_protected(fc) && 2344 !(status->flag & RX_FLAG_DECRYPTED)) || 2345 rx->key->color != entry->key_color)) { 2346 /* Drop this as a mixed key or fragment cache attack, even 2347 * if for TKIP Michael MIC should protect us, and WEP is a 2348 * lost cause anyway. 2349 */ 2350 return RX_DROP_U_EXPECT_DEFRAG_PROT; 2351 } else if (entry->is_protected && rx->key && 2352 entry->key_color != rx->key->color && 2353 (status->flag & RX_FLAG_DECRYPTED)) { 2354 return RX_DROP_U_BAD_KEY_COLOR; 2355 } 2356 2357 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2358 __skb_queue_tail(&entry->skb_list, rx->skb); 2359 entry->last_frag = frag; 2360 entry->extra_len += rx->skb->len; 2361 if (ieee80211_has_morefrags(fc)) { 2362 rx->skb = NULL; 2363 return RX_QUEUED; 2364 } 2365 2366 rx->skb = __skb_dequeue(&entry->skb_list); 2367 if (skb_tailroom(rx->skb) < entry->extra_len) { 2368 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2369 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2370 GFP_ATOMIC))) { 2371 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2372 __skb_queue_purge(&entry->skb_list); 2373 return RX_DROP_U_OOM; 2374 } 2375 } 2376 while ((skb = __skb_dequeue(&entry->skb_list))) { 2377 skb_put_data(rx->skb, skb->data, skb->len); 2378 dev_kfree_skb(skb); 2379 } 2380 2381 out: 2382 ieee80211_led_rx(rx->local); 2383 if (rx->sta) 2384 rx->link_sta->rx_stats.packets++; 2385 return RX_CONTINUE; 2386 } 2387 2388 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2389 { 2390 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2391 return -EACCES; 2392 2393 return 0; 2394 } 2395 2396 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2397 { 2398 struct sk_buff *skb = rx->skb; 2399 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2400 2401 /* 2402 * Pass through unencrypted frames if the hardware has 2403 * decrypted them already. 2404 */ 2405 if (status->flag & RX_FLAG_DECRYPTED) 2406 return 0; 2407 2408 /* Drop unencrypted frames if key is set. */ 2409 if (unlikely(!ieee80211_has_protected(fc) && 2410 !ieee80211_is_any_nullfunc(fc) && 2411 ieee80211_is_data(fc) && rx->key)) 2412 return -EACCES; 2413 2414 return 0; 2415 } 2416 2417 static ieee80211_rx_result 2418 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2419 { 2420 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2421 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2422 __le16 fc = mgmt->frame_control; 2423 2424 /* 2425 * Pass through unencrypted frames if the hardware has 2426 * decrypted them already. 2427 */ 2428 if (status->flag & RX_FLAG_DECRYPTED) 2429 return RX_CONTINUE; 2430 2431 /* drop unicast protected dual (that wasn't protected) */ 2432 if (ieee80211_is_action(fc) && 2433 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 2434 return RX_DROP_U_UNPROT_DUAL; 2435 2436 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2437 if (unlikely(!ieee80211_has_protected(fc) && 2438 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) { 2439 if (ieee80211_is_deauth(fc) || 2440 ieee80211_is_disassoc(fc)) { 2441 /* 2442 * Permit unprotected deauth/disassoc frames 2443 * during 4-way-HS (key is installed after HS). 2444 */ 2445 if (!rx->key) 2446 return RX_CONTINUE; 2447 2448 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2449 rx->skb->data, 2450 rx->skb->len); 2451 } 2452 return RX_DROP_U_UNPROT_UCAST_MGMT; 2453 } 2454 /* BIP does not use Protected field, so need to check MMIE */ 2455 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2456 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2457 if (ieee80211_is_deauth(fc) || 2458 ieee80211_is_disassoc(fc)) 2459 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2460 rx->skb->data, 2461 rx->skb->len); 2462 return RX_DROP_U_UNPROT_MCAST_MGMT; 2463 } 2464 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2465 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2466 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2467 rx->skb->data, 2468 rx->skb->len); 2469 return RX_DROP_U_UNPROT_BEACON; 2470 } 2471 /* 2472 * When using MFP, Action frames are not allowed prior to 2473 * having configured keys. 2474 */ 2475 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2476 ieee80211_is_robust_mgmt_frame(rx->skb))) 2477 return RX_DROP_U_UNPROT_ACTION; 2478 2479 /* drop unicast public action frames when using MPF */ 2480 if (is_unicast_ether_addr(mgmt->da) && 2481 ieee80211_is_protected_dual_of_public_action(rx->skb)) 2482 return RX_DROP_U_UNPROT_UNICAST_PUB_ACTION; 2483 } 2484 2485 /* 2486 * Drop robust action frames before assoc regardless of MFP state, 2487 * after assoc we also have decided on MFP or not. 2488 */ 2489 if (ieee80211_is_action(fc) && 2490 ieee80211_is_robust_mgmt_frame(rx->skb) && 2491 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC))) 2492 return RX_DROP_U_UNPROT_ROBUST_ACTION; 2493 2494 return RX_CONTINUE; 2495 } 2496 2497 static ieee80211_rx_result 2498 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2499 { 2500 struct ieee80211_sub_if_data *sdata = rx->sdata; 2501 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2502 bool check_port_control = false; 2503 struct ethhdr *ehdr; 2504 int ret; 2505 2506 *port_control = false; 2507 if (ieee80211_has_a4(hdr->frame_control) && 2508 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2509 return RX_DROP_U_UNEXPECTED_VLAN_4ADDR; 2510 2511 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2512 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2513 if (!sdata->u.mgd.use_4addr) 2514 return RX_DROP_U_UNEXPECTED_STA_4ADDR; 2515 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2516 check_port_control = true; 2517 } 2518 2519 if (is_multicast_ether_addr(hdr->addr1) && 2520 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2521 return RX_DROP_U_UNEXPECTED_VLAN_MCAST; 2522 2523 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2524 if (ret < 0) 2525 return RX_DROP_U_INVALID_8023; 2526 2527 ehdr = (struct ethhdr *) rx->skb->data; 2528 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2529 *port_control = true; 2530 else if (check_port_control) 2531 return RX_DROP_U_NOT_PORT_CONTROL; 2532 2533 return RX_CONTINUE; 2534 } 2535 2536 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2537 const u8 *addr, int *out_link_id) 2538 { 2539 unsigned int link_id; 2540 2541 /* non-MLO, or MLD address replaced by hardware */ 2542 if (ether_addr_equal(sdata->vif.addr, addr)) 2543 return true; 2544 2545 if (!ieee80211_vif_is_mld(&sdata->vif)) 2546 return false; 2547 2548 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2549 struct ieee80211_bss_conf *conf; 2550 2551 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2552 2553 if (!conf) 2554 continue; 2555 if (ether_addr_equal(conf->addr, addr)) { 2556 if (out_link_id) 2557 *out_link_id = link_id; 2558 return true; 2559 } 2560 } 2561 2562 return false; 2563 } 2564 2565 /* 2566 * requires that rx->skb is a frame with ethernet header 2567 */ 2568 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2569 { 2570 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2571 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2572 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2573 2574 /* 2575 * Allow EAPOL frames to us/the PAE group address regardless of 2576 * whether the frame was encrypted or not, and always disallow 2577 * all other destination addresses for them. 2578 */ 2579 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2580 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2581 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2582 2583 if (ieee80211_802_1x_port_control(rx) || 2584 ieee80211_drop_unencrypted(rx, fc)) 2585 return false; 2586 2587 return true; 2588 } 2589 2590 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2591 struct ieee80211_rx_data *rx) 2592 { 2593 struct ieee80211_sub_if_data *sdata = rx->sdata; 2594 struct net_device *dev = sdata->dev; 2595 2596 if (unlikely((skb->protocol == sdata->control_port_protocol || 2597 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2598 !sdata->control_port_no_preauth)) && 2599 sdata->control_port_over_nl80211)) { 2600 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2601 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2602 2603 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); 2604 dev_kfree_skb(skb); 2605 } else { 2606 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2607 2608 memset(skb->cb, 0, sizeof(skb->cb)); 2609 2610 /* 2611 * 802.1X over 802.11 requires that the authenticator address 2612 * be used for EAPOL frames. However, 802.1X allows the use of 2613 * the PAE group address instead. If the interface is part of 2614 * a bridge and we pass the frame with the PAE group address, 2615 * then the bridge will forward it to the network (even if the 2616 * client was not associated yet), which isn't supposed to 2617 * happen. 2618 * To avoid that, rewrite the destination address to our own 2619 * address, so that the authenticator (e.g. hostapd) will see 2620 * the frame, but bridge won't forward it anywhere else. Note 2621 * that due to earlier filtering, the only other address can 2622 * be the PAE group address, unless the hardware allowed them 2623 * through in 802.3 offloaded mode. 2624 */ 2625 if (unlikely(skb->protocol == sdata->control_port_protocol && 2626 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2627 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2628 2629 /* deliver to local stack */ 2630 if (rx->list) 2631 list_add_tail(&skb->list, rx->list); 2632 else 2633 netif_receive_skb(skb); 2634 } 2635 } 2636 2637 /* 2638 * requires that rx->skb is a frame with ethernet header 2639 */ 2640 static void 2641 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2642 { 2643 struct ieee80211_sub_if_data *sdata = rx->sdata; 2644 struct net_device *dev = sdata->dev; 2645 struct sk_buff *skb, *xmit_skb; 2646 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2647 struct sta_info *dsta; 2648 2649 skb = rx->skb; 2650 xmit_skb = NULL; 2651 2652 dev_sw_netstats_rx_add(dev, skb->len); 2653 2654 if (rx->sta) { 2655 /* The seqno index has the same property as needed 2656 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2657 * for non-QoS-data frames. Here we know it's a data 2658 * frame, so count MSDUs. 2659 */ 2660 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2661 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2662 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2663 } 2664 2665 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2666 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2667 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2668 ehdr->h_proto != rx->sdata->control_port_protocol && 2669 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2670 if (is_multicast_ether_addr(ehdr->h_dest) && 2671 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2672 /* 2673 * send multicast frames both to higher layers in 2674 * local net stack and back to the wireless medium 2675 */ 2676 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2677 if (!xmit_skb) 2678 net_info_ratelimited("%s: failed to clone multicast frame\n", 2679 dev->name); 2680 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2681 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2682 dsta = sta_info_get(sdata, ehdr->h_dest); 2683 if (dsta) { 2684 /* 2685 * The destination station is associated to 2686 * this AP (in this VLAN), so send the frame 2687 * directly to it and do not pass it to local 2688 * net stack. 2689 */ 2690 xmit_skb = skb; 2691 skb = NULL; 2692 } 2693 } 2694 } 2695 2696 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2697 if (skb) { 2698 /* 'align' will only take the values 0 or 2 here since all 2699 * frames are required to be aligned to 2-byte boundaries 2700 * when being passed to mac80211; the code here works just 2701 * as well if that isn't true, but mac80211 assumes it can 2702 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2703 */ 2704 int align; 2705 2706 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2707 if (align) { 2708 if (WARN_ON(skb_headroom(skb) < 3)) { 2709 dev_kfree_skb(skb); 2710 skb = NULL; 2711 } else { 2712 u8 *data = skb->data; 2713 size_t len = skb_headlen(skb); 2714 skb->data -= align; 2715 memmove(skb->data, data, len); 2716 skb_set_tail_pointer(skb, len); 2717 } 2718 } 2719 } 2720 #endif 2721 2722 if (skb) { 2723 skb->protocol = eth_type_trans(skb, dev); 2724 ieee80211_deliver_skb_to_local_stack(skb, rx); 2725 } 2726 2727 if (xmit_skb) { 2728 /* 2729 * Send to wireless media and increase priority by 256 to 2730 * keep the received priority instead of reclassifying 2731 * the frame (see cfg80211_classify8021d). 2732 */ 2733 xmit_skb->priority += 256; 2734 xmit_skb->protocol = htons(ETH_P_802_3); 2735 skb_reset_network_header(xmit_skb); 2736 skb_reset_mac_header(xmit_skb); 2737 dev_queue_xmit(xmit_skb); 2738 } 2739 } 2740 2741 #ifdef CONFIG_MAC80211_MESH 2742 static bool 2743 ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata, 2744 struct sk_buff *skb, int hdrlen) 2745 { 2746 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2747 struct ieee80211_mesh_fast_tx *entry = NULL; 2748 struct ieee80211s_hdr *mesh_hdr; 2749 struct tid_ampdu_tx *tid_tx; 2750 struct sta_info *sta; 2751 struct ethhdr eth; 2752 u8 tid; 2753 2754 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth)); 2755 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2756 entry = mesh_fast_tx_get(sdata, mesh_hdr->eaddr1); 2757 else if (!(mesh_hdr->flags & MESH_FLAGS_AE)) 2758 entry = mesh_fast_tx_get(sdata, skb->data); 2759 if (!entry) 2760 return false; 2761 2762 sta = rcu_dereference(entry->mpath->next_hop); 2763 if (!sta) 2764 return false; 2765 2766 if (skb_linearize(skb)) 2767 return false; 2768 2769 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; 2770 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); 2771 if (tid_tx) { 2772 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) 2773 return false; 2774 2775 if (tid_tx->timeout) 2776 tid_tx->last_tx = jiffies; 2777 } 2778 2779 ieee80211_aggr_check(sdata, sta, skb); 2780 2781 if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 2782 &skb->protocol)) 2783 hdrlen += ETH_ALEN; 2784 else 2785 skb->protocol = htons(skb->len - hdrlen); 2786 skb_set_network_header(skb, hdrlen + 2); 2787 2788 skb->dev = sdata->dev; 2789 memcpy(ð, skb->data, ETH_HLEN - 2); 2790 skb_pull(skb, 2); 2791 __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, 2792 eth.h_dest, eth.h_source); 2793 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2794 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2795 2796 return true; 2797 } 2798 #endif 2799 2800 static ieee80211_rx_result 2801 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2802 struct sk_buff *skb) 2803 { 2804 #ifdef CONFIG_MAC80211_MESH 2805 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2806 struct ieee80211_local *local = sdata->local; 2807 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2808 struct ieee80211_hdr hdr = { 2809 .frame_control = cpu_to_le16(fc) 2810 }; 2811 struct ieee80211_hdr *fwd_hdr; 2812 struct ieee80211s_hdr *mesh_hdr; 2813 struct ieee80211_tx_info *info; 2814 struct sk_buff *fwd_skb; 2815 struct ethhdr *eth; 2816 bool multicast; 2817 int tailroom = 0; 2818 int hdrlen, mesh_hdrlen; 2819 u8 *qos; 2820 2821 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2822 return RX_CONTINUE; 2823 2824 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2825 return RX_DROP_MONITOR; 2826 2827 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2828 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2829 2830 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2831 return RX_DROP_MONITOR; 2832 2833 eth = (struct ethhdr *)skb->data; 2834 multicast = is_multicast_ether_addr(eth->h_dest); 2835 2836 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2837 if (!mesh_hdr->ttl) 2838 return RX_DROP_MONITOR; 2839 2840 /* frame is in RMC, don't forward */ 2841 if (is_multicast_ether_addr(eth->h_dest) && 2842 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2843 return RX_DROP_MONITOR; 2844 2845 /* forward packet */ 2846 if (sdata->crypto_tx_tailroom_needed_cnt) 2847 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2848 2849 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2850 struct mesh_path *mppath; 2851 char *proxied_addr; 2852 bool update = false; 2853 2854 if (multicast) 2855 proxied_addr = mesh_hdr->eaddr1; 2856 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2857 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2858 proxied_addr = mesh_hdr->eaddr2; 2859 else 2860 return RX_DROP_MONITOR; 2861 2862 rcu_read_lock(); 2863 mppath = mpp_path_lookup(sdata, proxied_addr); 2864 if (!mppath) { 2865 mpp_path_add(sdata, proxied_addr, eth->h_source); 2866 } else { 2867 spin_lock_bh(&mppath->state_lock); 2868 if (!ether_addr_equal(mppath->mpp, eth->h_source)) { 2869 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2870 update = true; 2871 } 2872 mppath->exp_time = jiffies; 2873 spin_unlock_bh(&mppath->state_lock); 2874 } 2875 2876 /* flush fast xmit cache if the address path changed */ 2877 if (update) 2878 mesh_fast_tx_flush_addr(sdata, proxied_addr); 2879 2880 rcu_read_unlock(); 2881 } 2882 2883 /* Frame has reached destination. Don't forward */ 2884 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2885 goto rx_accept; 2886 2887 if (!--mesh_hdr->ttl) { 2888 if (multicast) 2889 goto rx_accept; 2890 2891 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2892 return RX_DROP_MONITOR; 2893 } 2894 2895 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2896 if (is_multicast_ether_addr(eth->h_dest)) 2897 goto rx_accept; 2898 2899 return RX_DROP_MONITOR; 2900 } 2901 2902 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2903 2904 if (!multicast && 2905 ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen)) 2906 return RX_QUEUED; 2907 2908 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2909 eth->h_dest, eth->h_source); 2910 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2911 if (multicast) { 2912 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2913 2914 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2915 IEEE80211_ENCRYPT_HEADROOM, 2916 tailroom, GFP_ATOMIC); 2917 if (!fwd_skb) 2918 goto rx_accept; 2919 } else { 2920 fwd_skb = skb; 2921 skb = NULL; 2922 2923 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2924 return RX_DROP_U_OOM; 2925 2926 if (skb_linearize(fwd_skb)) 2927 return RX_DROP_U_OOM; 2928 } 2929 2930 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2931 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2932 qos = ieee80211_get_qos_ctl(fwd_hdr); 2933 qos[0] = qos[1] = 0; 2934 2935 skb_reset_mac_header(fwd_skb); 2936 hdrlen += mesh_hdrlen; 2937 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2938 &fwd_skb->protocol)) 2939 hdrlen += ETH_ALEN; 2940 else 2941 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2942 skb_set_network_header(fwd_skb, hdrlen + 2); 2943 2944 info = IEEE80211_SKB_CB(fwd_skb); 2945 memset(info, 0, sizeof(*info)); 2946 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2947 info->control.vif = &sdata->vif; 2948 info->control.jiffies = jiffies; 2949 fwd_skb->dev = sdata->dev; 2950 if (multicast) { 2951 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2952 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2953 /* update power mode indication when forwarding */ 2954 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2955 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2956 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2957 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2958 } else { 2959 /* unable to resolve next hop */ 2960 if (sta) 2961 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2962 hdr.addr3, 0, 2963 WLAN_REASON_MESH_PATH_NOFORWARD, 2964 sta->sta.addr); 2965 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2966 kfree_skb(fwd_skb); 2967 goto rx_accept; 2968 } 2969 2970 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2971 ieee80211_add_pending_skb(local, fwd_skb); 2972 2973 rx_accept: 2974 if (!skb) 2975 return RX_QUEUED; 2976 2977 ieee80211_strip_8023_mesh_hdr(skb); 2978 #endif 2979 2980 return RX_CONTINUE; 2981 } 2982 2983 static ieee80211_rx_result debug_noinline 2984 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2985 { 2986 struct net_device *dev = rx->sdata->dev; 2987 struct sk_buff *skb = rx->skb; 2988 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2989 __le16 fc = hdr->frame_control; 2990 struct sk_buff_head frame_list; 2991 ieee80211_rx_result res; 2992 struct ethhdr ethhdr; 2993 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2994 2995 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2996 check_da = NULL; 2997 check_sa = NULL; 2998 } else switch (rx->sdata->vif.type) { 2999 case NL80211_IFTYPE_AP: 3000 case NL80211_IFTYPE_AP_VLAN: 3001 check_da = NULL; 3002 break; 3003 case NL80211_IFTYPE_STATION: 3004 if (!rx->sta || 3005 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 3006 check_sa = NULL; 3007 break; 3008 case NL80211_IFTYPE_MESH_POINT: 3009 check_sa = NULL; 3010 check_da = NULL; 3011 break; 3012 default: 3013 break; 3014 } 3015 3016 skb->dev = dev; 3017 __skb_queue_head_init(&frame_list); 3018 3019 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 3020 rx->sdata->vif.addr, 3021 rx->sdata->vif.type, 3022 data_offset, true)) 3023 return RX_DROP_U_BAD_AMSDU; 3024 3025 if (rx->sta->amsdu_mesh_control < 0) { 3026 s8 valid = -1; 3027 int i; 3028 3029 for (i = 0; i <= 2; i++) { 3030 if (!ieee80211_is_valid_amsdu(skb, i)) 3031 continue; 3032 3033 if (valid >= 0) { 3034 /* ambiguous */ 3035 valid = -1; 3036 break; 3037 } 3038 3039 valid = i; 3040 } 3041 3042 rx->sta->amsdu_mesh_control = valid; 3043 } 3044 3045 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 3046 rx->sdata->vif.type, 3047 rx->local->hw.extra_tx_headroom, 3048 check_da, check_sa, 3049 rx->sta->amsdu_mesh_control); 3050 3051 while (!skb_queue_empty(&frame_list)) { 3052 rx->skb = __skb_dequeue(&frame_list); 3053 3054 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3055 switch (res) { 3056 case RX_QUEUED: 3057 continue; 3058 case RX_CONTINUE: 3059 break; 3060 default: 3061 goto free; 3062 } 3063 3064 if (!ieee80211_frame_allowed(rx, fc)) 3065 goto free; 3066 3067 ieee80211_deliver_skb(rx); 3068 continue; 3069 3070 free: 3071 dev_kfree_skb(rx->skb); 3072 } 3073 3074 return RX_QUEUED; 3075 } 3076 3077 static ieee80211_rx_result debug_noinline 3078 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 3079 { 3080 struct sk_buff *skb = rx->skb; 3081 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3082 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3083 __le16 fc = hdr->frame_control; 3084 3085 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 3086 return RX_CONTINUE; 3087 3088 if (unlikely(!ieee80211_is_data(fc))) 3089 return RX_CONTINUE; 3090 3091 if (unlikely(!ieee80211_is_data_present(fc))) 3092 return RX_DROP_MONITOR; 3093 3094 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3095 switch (rx->sdata->vif.type) { 3096 case NL80211_IFTYPE_AP_VLAN: 3097 if (!rx->sdata->u.vlan.sta) 3098 return RX_DROP_U_BAD_4ADDR; 3099 break; 3100 case NL80211_IFTYPE_STATION: 3101 if (!rx->sdata->u.mgd.use_4addr) 3102 return RX_DROP_U_BAD_4ADDR; 3103 break; 3104 case NL80211_IFTYPE_MESH_POINT: 3105 break; 3106 default: 3107 return RX_DROP_U_BAD_4ADDR; 3108 } 3109 } 3110 3111 if (is_multicast_ether_addr(hdr->addr1) || !rx->sta) 3112 return RX_DROP_U_BAD_AMSDU; 3113 3114 if (rx->key) { 3115 /* 3116 * We should not receive A-MSDUs on pre-HT connections, 3117 * and HT connections cannot use old ciphers. Thus drop 3118 * them, as in those cases we couldn't even have SPP 3119 * A-MSDUs or such. 3120 */ 3121 switch (rx->key->conf.cipher) { 3122 case WLAN_CIPHER_SUITE_WEP40: 3123 case WLAN_CIPHER_SUITE_WEP104: 3124 case WLAN_CIPHER_SUITE_TKIP: 3125 return RX_DROP_U_BAD_AMSDU_CIPHER; 3126 default: 3127 break; 3128 } 3129 } 3130 3131 return __ieee80211_rx_h_amsdu(rx, 0); 3132 } 3133 3134 static ieee80211_rx_result debug_noinline 3135 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3136 { 3137 struct ieee80211_sub_if_data *sdata = rx->sdata; 3138 struct ieee80211_local *local = rx->local; 3139 struct net_device *dev = sdata->dev; 3140 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3141 __le16 fc = hdr->frame_control; 3142 ieee80211_rx_result res; 3143 bool port_control; 3144 3145 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3146 return RX_CONTINUE; 3147 3148 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3149 return RX_DROP_MONITOR; 3150 3151 /* 3152 * Send unexpected-4addr-frame event to hostapd. For older versions, 3153 * also drop the frame to cooked monitor interfaces. 3154 */ 3155 if (ieee80211_has_a4(hdr->frame_control) && 3156 sdata->vif.type == NL80211_IFTYPE_AP) { 3157 if (rx->sta && 3158 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3159 cfg80211_rx_unexpected_4addr_frame( 3160 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3161 return RX_DROP_MONITOR; 3162 } 3163 3164 res = __ieee80211_data_to_8023(rx, &port_control); 3165 if (unlikely(res != RX_CONTINUE)) 3166 return res; 3167 3168 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3169 if (res != RX_CONTINUE) 3170 return res; 3171 3172 if (!ieee80211_frame_allowed(rx, fc)) 3173 return RX_DROP_MONITOR; 3174 3175 /* directly handle TDLS channel switch requests/responses */ 3176 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3177 cpu_to_be16(ETH_P_TDLS))) { 3178 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3179 3180 if (pskb_may_pull(rx->skb, 3181 offsetof(struct ieee80211_tdls_data, u)) && 3182 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3183 tf->category == WLAN_CATEGORY_TDLS && 3184 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3185 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3186 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3187 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3188 rx->sta, rx->skb); 3189 return RX_QUEUED; 3190 } 3191 } 3192 3193 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3194 unlikely(port_control) && sdata->bss) { 3195 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3196 u.ap); 3197 dev = sdata->dev; 3198 rx->sdata = sdata; 3199 } 3200 3201 rx->skb->dev = dev; 3202 3203 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3204 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3205 !is_multicast_ether_addr( 3206 ((struct ethhdr *)rx->skb->data)->h_dest) && 3207 (!local->scanning && 3208 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3209 mod_timer(&local->dynamic_ps_timer, jiffies + 3210 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3211 3212 ieee80211_deliver_skb(rx); 3213 3214 return RX_QUEUED; 3215 } 3216 3217 static ieee80211_rx_result debug_noinline 3218 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3219 { 3220 struct sk_buff *skb = rx->skb; 3221 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3222 struct tid_ampdu_rx *tid_agg_rx; 3223 u16 start_seq_num; 3224 u16 tid; 3225 3226 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3227 return RX_CONTINUE; 3228 3229 if (ieee80211_is_back_req(bar->frame_control)) { 3230 struct { 3231 __le16 control, start_seq_num; 3232 } __packed bar_data; 3233 struct ieee80211_event event = { 3234 .type = BAR_RX_EVENT, 3235 }; 3236 3237 if (!rx->sta) 3238 return RX_DROP_MONITOR; 3239 3240 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3241 &bar_data, sizeof(bar_data))) 3242 return RX_DROP_MONITOR; 3243 3244 tid = le16_to_cpu(bar_data.control) >> 12; 3245 3246 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3247 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3248 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3249 WLAN_BACK_RECIPIENT, 3250 WLAN_REASON_QSTA_REQUIRE_SETUP); 3251 3252 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3253 if (!tid_agg_rx) 3254 return RX_DROP_MONITOR; 3255 3256 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3257 event.u.ba.tid = tid; 3258 event.u.ba.ssn = start_seq_num; 3259 event.u.ba.sta = &rx->sta->sta; 3260 3261 /* reset session timer */ 3262 if (tid_agg_rx->timeout) 3263 mod_timer(&tid_agg_rx->session_timer, 3264 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3265 3266 spin_lock(&tid_agg_rx->reorder_lock); 3267 /* release stored frames up to start of BAR */ 3268 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3269 start_seq_num, frames); 3270 spin_unlock(&tid_agg_rx->reorder_lock); 3271 3272 drv_event_callback(rx->local, rx->sdata, &event); 3273 3274 kfree_skb(skb); 3275 return RX_QUEUED; 3276 } 3277 3278 /* 3279 * After this point, we only want management frames, 3280 * so we can drop all remaining control frames to 3281 * cooked monitor interfaces. 3282 */ 3283 return RX_DROP_MONITOR; 3284 } 3285 3286 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3287 struct ieee80211_mgmt *mgmt, 3288 size_t len) 3289 { 3290 struct ieee80211_local *local = sdata->local; 3291 struct sk_buff *skb; 3292 struct ieee80211_mgmt *resp; 3293 3294 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3295 /* Not to own unicast address */ 3296 return; 3297 } 3298 3299 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3300 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3301 /* Not from the current AP or not associated yet. */ 3302 return; 3303 } 3304 3305 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3306 /* Too short SA Query request frame */ 3307 return; 3308 } 3309 3310 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3311 if (skb == NULL) 3312 return; 3313 3314 skb_reserve(skb, local->hw.extra_tx_headroom); 3315 resp = skb_put_zero(skb, 24); 3316 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3317 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3318 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3319 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3320 IEEE80211_STYPE_ACTION); 3321 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3322 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3323 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3324 memcpy(resp->u.action.u.sa_query.trans_id, 3325 mgmt->u.action.u.sa_query.trans_id, 3326 WLAN_SA_QUERY_TR_ID_LEN); 3327 3328 ieee80211_tx_skb(sdata, skb); 3329 } 3330 3331 static void 3332 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3333 { 3334 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3335 const struct element *ie; 3336 size_t baselen; 3337 3338 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3339 NL80211_EXT_FEATURE_BSS_COLOR)) 3340 return; 3341 3342 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3343 return; 3344 3345 if (rx->sdata->vif.bss_conf.csa_active) 3346 return; 3347 3348 baselen = mgmt->u.beacon.variable - rx->skb->data; 3349 if (baselen > rx->skb->len) 3350 return; 3351 3352 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3353 mgmt->u.beacon.variable, 3354 rx->skb->len - baselen); 3355 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3356 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3357 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3358 const struct ieee80211_he_operation *he_oper; 3359 u8 color; 3360 3361 he_oper = (void *)(ie->data + 1); 3362 if (le32_get_bits(he_oper->he_oper_params, 3363 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3364 return; 3365 3366 color = le32_get_bits(he_oper->he_oper_params, 3367 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3368 if (color == bss_conf->he_bss_color.color) 3369 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3370 BIT_ULL(color), 3371 GFP_ATOMIC); 3372 } 3373 } 3374 3375 static ieee80211_rx_result debug_noinline 3376 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3377 { 3378 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3380 3381 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3382 return RX_CONTINUE; 3383 3384 /* 3385 * From here on, look only at management frames. 3386 * Data and control frames are already handled, 3387 * and unknown (reserved) frames are useless. 3388 */ 3389 if (rx->skb->len < 24) 3390 return RX_DROP_MONITOR; 3391 3392 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3393 return RX_DROP_MONITOR; 3394 3395 /* drop too small action frames */ 3396 if (ieee80211_is_action(mgmt->frame_control) && 3397 rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 3398 return RX_DROP_U_RUNT_ACTION; 3399 3400 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3401 ieee80211_is_beacon(mgmt->frame_control) && 3402 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3403 int sig = 0; 3404 3405 /* sw bss color collision detection */ 3406 ieee80211_rx_check_bss_color_collision(rx); 3407 3408 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3409 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3410 sig = status->signal; 3411 3412 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3413 rx->skb->data, rx->skb->len, 3414 ieee80211_rx_status_to_khz(status), 3415 sig); 3416 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3417 } 3418 3419 return ieee80211_drop_unencrypted_mgmt(rx); 3420 } 3421 3422 static bool 3423 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3424 { 3425 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3426 struct ieee80211_sub_if_data *sdata = rx->sdata; 3427 3428 /* TWT actions are only supported in AP for the moment */ 3429 if (sdata->vif.type != NL80211_IFTYPE_AP) 3430 return false; 3431 3432 if (!rx->local->ops->add_twt_setup) 3433 return false; 3434 3435 if (!sdata->vif.bss_conf.twt_responder) 3436 return false; 3437 3438 if (!rx->sta) 3439 return false; 3440 3441 switch (mgmt->u.action.u.s1g.action_code) { 3442 case WLAN_S1G_TWT_SETUP: { 3443 struct ieee80211_twt_setup *twt; 3444 3445 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3446 1 + /* action code */ 3447 sizeof(struct ieee80211_twt_setup) + 3448 2 /* TWT req_type agrt */) 3449 break; 3450 3451 twt = (void *)mgmt->u.action.u.s1g.variable; 3452 if (twt->element_id != WLAN_EID_S1G_TWT) 3453 break; 3454 3455 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3456 4 + /* action code + token + tlv */ 3457 twt->length) 3458 break; 3459 3460 return true; /* queue the frame */ 3461 } 3462 case WLAN_S1G_TWT_TEARDOWN: 3463 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3464 break; 3465 3466 return true; /* queue the frame */ 3467 default: 3468 break; 3469 } 3470 3471 return false; 3472 } 3473 3474 static ieee80211_rx_result debug_noinline 3475 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3476 { 3477 struct ieee80211_local *local = rx->local; 3478 struct ieee80211_sub_if_data *sdata = rx->sdata; 3479 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3480 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3481 int len = rx->skb->len; 3482 3483 if (!ieee80211_is_action(mgmt->frame_control)) 3484 return RX_CONTINUE; 3485 3486 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3487 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3488 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3489 return RX_DROP_U_ACTION_UNKNOWN_SRC; 3490 3491 switch (mgmt->u.action.category) { 3492 case WLAN_CATEGORY_HT: 3493 /* reject HT action frames from stations not supporting HT */ 3494 if (!rx->link_sta->pub->ht_cap.ht_supported) 3495 goto invalid; 3496 3497 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3498 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3499 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3500 sdata->vif.type != NL80211_IFTYPE_AP && 3501 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3502 break; 3503 3504 /* verify action & smps_control/chanwidth are present */ 3505 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3506 goto invalid; 3507 3508 switch (mgmt->u.action.u.ht_smps.action) { 3509 case WLAN_HT_ACTION_SMPS: { 3510 struct ieee80211_supported_band *sband; 3511 enum ieee80211_smps_mode smps_mode; 3512 struct sta_opmode_info sta_opmode = {}; 3513 3514 if (sdata->vif.type != NL80211_IFTYPE_AP && 3515 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3516 goto handled; 3517 3518 /* convert to HT capability */ 3519 switch (mgmt->u.action.u.ht_smps.smps_control) { 3520 case WLAN_HT_SMPS_CONTROL_DISABLED: 3521 smps_mode = IEEE80211_SMPS_OFF; 3522 break; 3523 case WLAN_HT_SMPS_CONTROL_STATIC: 3524 smps_mode = IEEE80211_SMPS_STATIC; 3525 break; 3526 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3527 smps_mode = IEEE80211_SMPS_DYNAMIC; 3528 break; 3529 default: 3530 goto invalid; 3531 } 3532 3533 /* if no change do nothing */ 3534 if (rx->link_sta->pub->smps_mode == smps_mode) 3535 goto handled; 3536 rx->link_sta->pub->smps_mode = smps_mode; 3537 sta_opmode.smps_mode = 3538 ieee80211_smps_mode_to_smps_mode(smps_mode); 3539 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3540 3541 sband = rx->local->hw.wiphy->bands[status->band]; 3542 3543 rate_control_rate_update(local, sband, rx->sta, 0, 3544 IEEE80211_RC_SMPS_CHANGED); 3545 cfg80211_sta_opmode_change_notify(sdata->dev, 3546 rx->sta->addr, 3547 &sta_opmode, 3548 GFP_ATOMIC); 3549 goto handled; 3550 } 3551 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3552 struct ieee80211_supported_band *sband; 3553 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3554 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3555 struct sta_opmode_info sta_opmode = {}; 3556 3557 /* If it doesn't support 40 MHz it can't change ... */ 3558 if (!(rx->link_sta->pub->ht_cap.cap & 3559 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3560 goto handled; 3561 3562 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3563 max_bw = IEEE80211_STA_RX_BW_20; 3564 else 3565 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3566 3567 /* set cur_max_bandwidth and recalc sta bw */ 3568 rx->link_sta->cur_max_bandwidth = max_bw; 3569 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3570 3571 if (rx->link_sta->pub->bandwidth == new_bw) 3572 goto handled; 3573 3574 rx->link_sta->pub->bandwidth = new_bw; 3575 sband = rx->local->hw.wiphy->bands[status->band]; 3576 sta_opmode.bw = 3577 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3578 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3579 3580 rate_control_rate_update(local, sband, rx->sta, 0, 3581 IEEE80211_RC_BW_CHANGED); 3582 cfg80211_sta_opmode_change_notify(sdata->dev, 3583 rx->sta->addr, 3584 &sta_opmode, 3585 GFP_ATOMIC); 3586 goto handled; 3587 } 3588 default: 3589 goto invalid; 3590 } 3591 3592 break; 3593 case WLAN_CATEGORY_PUBLIC: 3594 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3595 goto invalid; 3596 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3597 break; 3598 if (!rx->sta) 3599 break; 3600 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3601 break; 3602 if (mgmt->u.action.u.ext_chan_switch.action_code != 3603 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3604 break; 3605 if (len < offsetof(struct ieee80211_mgmt, 3606 u.action.u.ext_chan_switch.variable)) 3607 goto invalid; 3608 goto queue; 3609 case WLAN_CATEGORY_VHT: 3610 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3611 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3612 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3613 sdata->vif.type != NL80211_IFTYPE_AP && 3614 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3615 break; 3616 3617 /* verify action code is present */ 3618 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3619 goto invalid; 3620 3621 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3622 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3623 /* verify opmode is present */ 3624 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3625 goto invalid; 3626 goto queue; 3627 } 3628 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3629 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3630 goto invalid; 3631 goto queue; 3632 } 3633 default: 3634 break; 3635 } 3636 break; 3637 case WLAN_CATEGORY_BACK: 3638 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3639 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3640 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3641 sdata->vif.type != NL80211_IFTYPE_AP && 3642 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3643 break; 3644 3645 /* verify action_code is present */ 3646 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3647 break; 3648 3649 switch (mgmt->u.action.u.addba_req.action_code) { 3650 case WLAN_ACTION_ADDBA_REQ: 3651 if (len < (IEEE80211_MIN_ACTION_SIZE + 3652 sizeof(mgmt->u.action.u.addba_req))) 3653 goto invalid; 3654 break; 3655 case WLAN_ACTION_ADDBA_RESP: 3656 if (len < (IEEE80211_MIN_ACTION_SIZE + 3657 sizeof(mgmt->u.action.u.addba_resp))) 3658 goto invalid; 3659 break; 3660 case WLAN_ACTION_DELBA: 3661 if (len < (IEEE80211_MIN_ACTION_SIZE + 3662 sizeof(mgmt->u.action.u.delba))) 3663 goto invalid; 3664 break; 3665 default: 3666 goto invalid; 3667 } 3668 3669 goto queue; 3670 case WLAN_CATEGORY_SPECTRUM_MGMT: 3671 /* verify action_code is present */ 3672 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3673 break; 3674 3675 switch (mgmt->u.action.u.measurement.action_code) { 3676 case WLAN_ACTION_SPCT_MSR_REQ: 3677 if (status->band != NL80211_BAND_5GHZ) 3678 break; 3679 3680 if (len < (IEEE80211_MIN_ACTION_SIZE + 3681 sizeof(mgmt->u.action.u.measurement))) 3682 break; 3683 3684 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3685 break; 3686 3687 ieee80211_process_measurement_req(sdata, mgmt, len); 3688 goto handled; 3689 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3690 u8 *bssid; 3691 if (len < (IEEE80211_MIN_ACTION_SIZE + 3692 sizeof(mgmt->u.action.u.chan_switch))) 3693 break; 3694 3695 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3696 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3697 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3698 break; 3699 3700 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3701 bssid = sdata->deflink.u.mgd.bssid; 3702 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3703 bssid = sdata->u.ibss.bssid; 3704 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3705 bssid = mgmt->sa; 3706 else 3707 break; 3708 3709 if (!ether_addr_equal(mgmt->bssid, bssid)) 3710 break; 3711 3712 goto queue; 3713 } 3714 } 3715 break; 3716 case WLAN_CATEGORY_SELF_PROTECTED: 3717 if (len < (IEEE80211_MIN_ACTION_SIZE + 3718 sizeof(mgmt->u.action.u.self_prot.action_code))) 3719 break; 3720 3721 switch (mgmt->u.action.u.self_prot.action_code) { 3722 case WLAN_SP_MESH_PEERING_OPEN: 3723 case WLAN_SP_MESH_PEERING_CLOSE: 3724 case WLAN_SP_MESH_PEERING_CONFIRM: 3725 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3726 goto invalid; 3727 if (sdata->u.mesh.user_mpm) 3728 /* userspace handles this frame */ 3729 break; 3730 goto queue; 3731 case WLAN_SP_MGK_INFORM: 3732 case WLAN_SP_MGK_ACK: 3733 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3734 goto invalid; 3735 break; 3736 } 3737 break; 3738 case WLAN_CATEGORY_MESH_ACTION: 3739 if (len < (IEEE80211_MIN_ACTION_SIZE + 3740 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3741 break; 3742 3743 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3744 break; 3745 if (mesh_action_is_path_sel(mgmt) && 3746 !mesh_path_sel_is_hwmp(sdata)) 3747 break; 3748 goto queue; 3749 case WLAN_CATEGORY_S1G: 3750 if (len < offsetofend(typeof(*mgmt), 3751 u.action.u.s1g.action_code)) 3752 break; 3753 3754 switch (mgmt->u.action.u.s1g.action_code) { 3755 case WLAN_S1G_TWT_SETUP: 3756 case WLAN_S1G_TWT_TEARDOWN: 3757 if (ieee80211_process_rx_twt_action(rx)) 3758 goto queue; 3759 break; 3760 default: 3761 break; 3762 } 3763 break; 3764 } 3765 3766 return RX_CONTINUE; 3767 3768 invalid: 3769 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3770 /* will return in the next handlers */ 3771 return RX_CONTINUE; 3772 3773 handled: 3774 if (rx->sta) 3775 rx->link_sta->rx_stats.packets++; 3776 dev_kfree_skb(rx->skb); 3777 return RX_QUEUED; 3778 3779 queue: 3780 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3781 return RX_QUEUED; 3782 } 3783 3784 static ieee80211_rx_result debug_noinline 3785 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3786 { 3787 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3788 struct cfg80211_rx_info info = { 3789 .freq = ieee80211_rx_status_to_khz(status), 3790 .buf = rx->skb->data, 3791 .len = rx->skb->len, 3792 .link_id = rx->link_id, 3793 .have_link_id = rx->link_id >= 0, 3794 }; 3795 3796 /* skip known-bad action frames and return them in the next handler */ 3797 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3798 return RX_CONTINUE; 3799 3800 /* 3801 * Getting here means the kernel doesn't know how to handle 3802 * it, but maybe userspace does ... include returned frames 3803 * so userspace can register for those to know whether ones 3804 * it transmitted were processed or returned. 3805 */ 3806 3807 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3808 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3809 info.sig_dbm = status->signal; 3810 3811 if (ieee80211_is_timing_measurement(rx->skb) || 3812 ieee80211_is_ftm(rx->skb)) { 3813 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3814 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3815 } 3816 3817 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3818 if (rx->sta) 3819 rx->link_sta->rx_stats.packets++; 3820 dev_kfree_skb(rx->skb); 3821 return RX_QUEUED; 3822 } 3823 3824 return RX_CONTINUE; 3825 } 3826 3827 static ieee80211_rx_result debug_noinline 3828 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3829 { 3830 struct ieee80211_sub_if_data *sdata = rx->sdata; 3831 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3832 int len = rx->skb->len; 3833 3834 if (!ieee80211_is_action(mgmt->frame_control)) 3835 return RX_CONTINUE; 3836 3837 switch (mgmt->u.action.category) { 3838 case WLAN_CATEGORY_SA_QUERY: 3839 if (len < (IEEE80211_MIN_ACTION_SIZE + 3840 sizeof(mgmt->u.action.u.sa_query))) 3841 break; 3842 3843 switch (mgmt->u.action.u.sa_query.action) { 3844 case WLAN_ACTION_SA_QUERY_REQUEST: 3845 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3846 break; 3847 ieee80211_process_sa_query_req(sdata, mgmt, len); 3848 goto handled; 3849 } 3850 break; 3851 } 3852 3853 return RX_CONTINUE; 3854 3855 handled: 3856 if (rx->sta) 3857 rx->link_sta->rx_stats.packets++; 3858 dev_kfree_skb(rx->skb); 3859 return RX_QUEUED; 3860 } 3861 3862 static ieee80211_rx_result debug_noinline 3863 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3864 { 3865 struct ieee80211_local *local = rx->local; 3866 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3867 struct sk_buff *nskb; 3868 struct ieee80211_sub_if_data *sdata = rx->sdata; 3869 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3870 3871 if (!ieee80211_is_action(mgmt->frame_control)) 3872 return RX_CONTINUE; 3873 3874 /* 3875 * For AP mode, hostapd is responsible for handling any action 3876 * frames that we didn't handle, including returning unknown 3877 * ones. For all other modes we will return them to the sender, 3878 * setting the 0x80 bit in the action category, as required by 3879 * 802.11-2012 9.24.4. 3880 * Newer versions of hostapd shall also use the management frame 3881 * registration mechanisms, but older ones still use cooked 3882 * monitor interfaces so push all frames there. 3883 */ 3884 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3885 (sdata->vif.type == NL80211_IFTYPE_AP || 3886 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3887 return RX_DROP_MONITOR; 3888 3889 if (is_multicast_ether_addr(mgmt->da)) 3890 return RX_DROP_MONITOR; 3891 3892 /* do not return rejected action frames */ 3893 if (mgmt->u.action.category & 0x80) 3894 return RX_DROP_U_REJECTED_ACTION_RESPONSE; 3895 3896 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3897 GFP_ATOMIC); 3898 if (nskb) { 3899 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3900 3901 nmgmt->u.action.category |= 0x80; 3902 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3903 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3904 3905 memset(nskb->cb, 0, sizeof(nskb->cb)); 3906 3907 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3908 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3909 3910 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3911 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3912 IEEE80211_TX_CTL_NO_CCK_RATE; 3913 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3914 info->hw_queue = 3915 local->hw.offchannel_tx_hw_queue; 3916 } 3917 3918 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3919 status->band); 3920 } 3921 dev_kfree_skb(rx->skb); 3922 return RX_QUEUED; 3923 } 3924 3925 static ieee80211_rx_result debug_noinline 3926 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3927 { 3928 struct ieee80211_sub_if_data *sdata = rx->sdata; 3929 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3930 3931 if (!ieee80211_is_ext(hdr->frame_control)) 3932 return RX_CONTINUE; 3933 3934 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3935 return RX_DROP_MONITOR; 3936 3937 /* for now only beacons are ext, so queue them */ 3938 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3939 3940 return RX_QUEUED; 3941 } 3942 3943 static ieee80211_rx_result debug_noinline 3944 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3945 { 3946 struct ieee80211_sub_if_data *sdata = rx->sdata; 3947 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3948 __le16 stype; 3949 3950 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3951 3952 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3953 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3954 sdata->vif.type != NL80211_IFTYPE_OCB && 3955 sdata->vif.type != NL80211_IFTYPE_STATION) 3956 return RX_DROP_MONITOR; 3957 3958 switch (stype) { 3959 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3960 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3961 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3962 /* process for all: mesh, mlme, ibss */ 3963 break; 3964 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3965 if (is_multicast_ether_addr(mgmt->da) && 3966 !is_broadcast_ether_addr(mgmt->da)) 3967 return RX_DROP_MONITOR; 3968 3969 /* process only for station/IBSS */ 3970 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3971 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3972 return RX_DROP_MONITOR; 3973 break; 3974 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3975 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3976 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3977 if (is_multicast_ether_addr(mgmt->da) && 3978 !is_broadcast_ether_addr(mgmt->da)) 3979 return RX_DROP_MONITOR; 3980 3981 /* process only for station */ 3982 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3983 return RX_DROP_MONITOR; 3984 break; 3985 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3986 /* process only for ibss and mesh */ 3987 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3988 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3989 return RX_DROP_MONITOR; 3990 break; 3991 default: 3992 return RX_DROP_MONITOR; 3993 } 3994 3995 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3996 3997 return RX_QUEUED; 3998 } 3999 4000 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 4001 struct ieee80211_rate *rate, 4002 ieee80211_rx_result reason) 4003 { 4004 struct ieee80211_sub_if_data *sdata; 4005 struct ieee80211_local *local = rx->local; 4006 struct sk_buff *skb = rx->skb, *skb2; 4007 struct net_device *prev_dev = NULL; 4008 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4009 int needed_headroom; 4010 4011 /* 4012 * If cooked monitor has been processed already, then 4013 * don't do it again. If not, set the flag. 4014 */ 4015 if (rx->flags & IEEE80211_RX_CMNTR) 4016 goto out_free_skb; 4017 rx->flags |= IEEE80211_RX_CMNTR; 4018 4019 /* If there are no cooked monitor interfaces, just free the SKB */ 4020 if (!local->cooked_mntrs) 4021 goto out_free_skb; 4022 4023 /* room for the radiotap header based on driver features */ 4024 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 4025 4026 if (skb_headroom(skb) < needed_headroom && 4027 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 4028 goto out_free_skb; 4029 4030 /* prepend radiotap information */ 4031 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 4032 false); 4033 4034 skb_reset_mac_header(skb); 4035 skb->ip_summed = CHECKSUM_UNNECESSARY; 4036 skb->pkt_type = PACKET_OTHERHOST; 4037 skb->protocol = htons(ETH_P_802_2); 4038 4039 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4040 if (!ieee80211_sdata_running(sdata)) 4041 continue; 4042 4043 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 4044 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 4045 continue; 4046 4047 if (prev_dev) { 4048 skb2 = skb_clone(skb, GFP_ATOMIC); 4049 if (skb2) { 4050 skb2->dev = prev_dev; 4051 netif_receive_skb(skb2); 4052 } 4053 } 4054 4055 prev_dev = sdata->dev; 4056 dev_sw_netstats_rx_add(sdata->dev, skb->len); 4057 } 4058 4059 if (prev_dev) { 4060 skb->dev = prev_dev; 4061 netif_receive_skb(skb); 4062 return; 4063 } 4064 4065 out_free_skb: 4066 kfree_skb_reason(skb, (__force u32)reason); 4067 } 4068 4069 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 4070 ieee80211_rx_result res) 4071 { 4072 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4073 struct ieee80211_supported_band *sband; 4074 struct ieee80211_rate *rate = NULL; 4075 4076 if (res == RX_QUEUED) { 4077 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 4078 return; 4079 } 4080 4081 if (res != RX_CONTINUE) { 4082 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 4083 if (rx->sta) 4084 rx->link_sta->rx_stats.dropped++; 4085 } 4086 4087 if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) == 4088 SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) { 4089 kfree_skb_reason(rx->skb, (__force u32)res); 4090 return; 4091 } 4092 4093 sband = rx->local->hw.wiphy->bands[status->band]; 4094 if (status->encoding == RX_ENC_LEGACY) 4095 rate = &sband->bitrates[status->rate_idx]; 4096 4097 ieee80211_rx_cooked_monitor(rx, rate, res); 4098 } 4099 4100 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 4101 struct sk_buff_head *frames) 4102 { 4103 ieee80211_rx_result res = RX_DROP_MONITOR; 4104 struct sk_buff *skb; 4105 4106 #define CALL_RXH(rxh) \ 4107 do { \ 4108 res = rxh(rx); \ 4109 if (res != RX_CONTINUE) \ 4110 goto rxh_next; \ 4111 } while (0) 4112 4113 /* Lock here to avoid hitting all of the data used in the RX 4114 * path (e.g. key data, station data, ...) concurrently when 4115 * a frame is released from the reorder buffer due to timeout 4116 * from the timer, potentially concurrently with RX from the 4117 * driver. 4118 */ 4119 spin_lock_bh(&rx->local->rx_path_lock); 4120 4121 while ((skb = __skb_dequeue(frames))) { 4122 /* 4123 * all the other fields are valid across frames 4124 * that belong to an aMPDU since they are on the 4125 * same TID from the same station 4126 */ 4127 rx->skb = skb; 4128 4129 if (WARN_ON_ONCE(!rx->link)) 4130 goto rxh_next; 4131 4132 CALL_RXH(ieee80211_rx_h_check_more_data); 4133 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4134 CALL_RXH(ieee80211_rx_h_sta_process); 4135 CALL_RXH(ieee80211_rx_h_decrypt); 4136 CALL_RXH(ieee80211_rx_h_defragment); 4137 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4138 /* must be after MMIC verify so header is counted in MPDU mic */ 4139 CALL_RXH(ieee80211_rx_h_amsdu); 4140 CALL_RXH(ieee80211_rx_h_data); 4141 4142 /* special treatment -- needs the queue */ 4143 res = ieee80211_rx_h_ctrl(rx, frames); 4144 if (res != RX_CONTINUE) 4145 goto rxh_next; 4146 4147 CALL_RXH(ieee80211_rx_h_mgmt_check); 4148 CALL_RXH(ieee80211_rx_h_action); 4149 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4150 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4151 CALL_RXH(ieee80211_rx_h_action_return); 4152 CALL_RXH(ieee80211_rx_h_ext); 4153 CALL_RXH(ieee80211_rx_h_mgmt); 4154 4155 rxh_next: 4156 ieee80211_rx_handlers_result(rx, res); 4157 4158 #undef CALL_RXH 4159 } 4160 4161 spin_unlock_bh(&rx->local->rx_path_lock); 4162 } 4163 4164 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4165 { 4166 struct sk_buff_head reorder_release; 4167 ieee80211_rx_result res = RX_DROP_MONITOR; 4168 4169 __skb_queue_head_init(&reorder_release); 4170 4171 #define CALL_RXH(rxh) \ 4172 do { \ 4173 res = rxh(rx); \ 4174 if (res != RX_CONTINUE) \ 4175 goto rxh_next; \ 4176 } while (0) 4177 4178 CALL_RXH(ieee80211_rx_h_check_dup); 4179 CALL_RXH(ieee80211_rx_h_check); 4180 4181 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4182 4183 ieee80211_rx_handlers(rx, &reorder_release); 4184 return; 4185 4186 rxh_next: 4187 ieee80211_rx_handlers_result(rx, res); 4188 4189 #undef CALL_RXH 4190 } 4191 4192 static bool 4193 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4194 { 4195 return !!(sta->valid_links & BIT(link_id)); 4196 } 4197 4198 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4199 u8 link_id) 4200 { 4201 rx->link_id = link_id; 4202 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4203 4204 if (!rx->sta) 4205 return rx->link; 4206 4207 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4208 return false; 4209 4210 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4211 4212 return rx->link && rx->link_sta; 4213 } 4214 4215 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4216 struct sta_info *sta, int link_id) 4217 { 4218 rx->link_id = link_id; 4219 rx->sta = sta; 4220 4221 if (sta) { 4222 rx->local = sta->sdata->local; 4223 if (!rx->sdata) 4224 rx->sdata = sta->sdata; 4225 rx->link_sta = &sta->deflink; 4226 } else { 4227 rx->link_sta = NULL; 4228 } 4229 4230 if (link_id < 0) 4231 rx->link = &rx->sdata->deflink; 4232 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4233 return false; 4234 4235 return true; 4236 } 4237 4238 /* 4239 * This function makes calls into the RX path, therefore 4240 * it has to be invoked under RCU read lock. 4241 */ 4242 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4243 { 4244 struct sk_buff_head frames; 4245 struct ieee80211_rx_data rx = { 4246 /* This is OK -- must be QoS data frame */ 4247 .security_idx = tid, 4248 .seqno_idx = tid, 4249 }; 4250 struct tid_ampdu_rx *tid_agg_rx; 4251 int link_id = -1; 4252 4253 /* FIXME: statistics won't be right with this */ 4254 if (sta->sta.valid_links) 4255 link_id = ffs(sta->sta.valid_links) - 1; 4256 4257 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4258 return; 4259 4260 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4261 if (!tid_agg_rx) 4262 return; 4263 4264 __skb_queue_head_init(&frames); 4265 4266 spin_lock(&tid_agg_rx->reorder_lock); 4267 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4268 spin_unlock(&tid_agg_rx->reorder_lock); 4269 4270 if (!skb_queue_empty(&frames)) { 4271 struct ieee80211_event event = { 4272 .type = BA_FRAME_TIMEOUT, 4273 .u.ba.tid = tid, 4274 .u.ba.sta = &sta->sta, 4275 }; 4276 drv_event_callback(rx.local, rx.sdata, &event); 4277 } 4278 4279 ieee80211_rx_handlers(&rx, &frames); 4280 } 4281 4282 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4283 u16 ssn, u64 filtered, 4284 u16 received_mpdus) 4285 { 4286 struct ieee80211_local *local; 4287 struct sta_info *sta; 4288 struct tid_ampdu_rx *tid_agg_rx; 4289 struct sk_buff_head frames; 4290 struct ieee80211_rx_data rx = { 4291 /* This is OK -- must be QoS data frame */ 4292 .security_idx = tid, 4293 .seqno_idx = tid, 4294 }; 4295 int i, diff; 4296 4297 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4298 return; 4299 4300 __skb_queue_head_init(&frames); 4301 4302 sta = container_of(pubsta, struct sta_info, sta); 4303 4304 local = sta->sdata->local; 4305 WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64, 4306 "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n", 4307 local->hw.max_rx_aggregation_subframes); 4308 4309 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4310 return; 4311 4312 rcu_read_lock(); 4313 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4314 if (!tid_agg_rx) 4315 goto out; 4316 4317 spin_lock_bh(&tid_agg_rx->reorder_lock); 4318 4319 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4320 int release; 4321 4322 /* release all frames in the reorder buffer */ 4323 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4324 IEEE80211_SN_MODULO; 4325 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4326 release, &frames); 4327 /* update ssn to match received ssn */ 4328 tid_agg_rx->head_seq_num = ssn; 4329 } else { 4330 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4331 &frames); 4332 } 4333 4334 /* handle the case that received ssn is behind the mac ssn. 4335 * it can be tid_agg_rx->buf_size behind and still be valid */ 4336 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4337 if (diff >= tid_agg_rx->buf_size) { 4338 tid_agg_rx->reorder_buf_filtered = 0; 4339 goto release; 4340 } 4341 filtered = filtered >> diff; 4342 ssn += diff; 4343 4344 /* update bitmap */ 4345 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4346 int index = (ssn + i) % tid_agg_rx->buf_size; 4347 4348 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4349 if (filtered & BIT_ULL(i)) 4350 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4351 } 4352 4353 /* now process also frames that the filter marking released */ 4354 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4355 4356 release: 4357 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4358 4359 ieee80211_rx_handlers(&rx, &frames); 4360 4361 out: 4362 rcu_read_unlock(); 4363 } 4364 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4365 4366 /* main receive path */ 4367 4368 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4369 { 4370 return ether_addr_equal(raddr, addr) || 4371 is_broadcast_ether_addr(raddr); 4372 } 4373 4374 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4375 { 4376 struct ieee80211_sub_if_data *sdata = rx->sdata; 4377 struct sk_buff *skb = rx->skb; 4378 struct ieee80211_hdr *hdr = (void *)skb->data; 4379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4380 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4381 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4382 ieee80211_is_s1g_beacon(hdr->frame_control); 4383 4384 switch (sdata->vif.type) { 4385 case NL80211_IFTYPE_STATION: 4386 if (!bssid && !sdata->u.mgd.use_4addr) 4387 return false; 4388 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4389 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4390 return false; 4391 if (multicast) 4392 return true; 4393 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4394 case NL80211_IFTYPE_ADHOC: 4395 if (!bssid) 4396 return false; 4397 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4398 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4399 !is_valid_ether_addr(hdr->addr2)) 4400 return false; 4401 if (ieee80211_is_beacon(hdr->frame_control)) 4402 return true; 4403 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4404 return false; 4405 if (!multicast && 4406 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4407 return false; 4408 if (!rx->sta) { 4409 int rate_idx; 4410 if (status->encoding != RX_ENC_LEGACY) 4411 rate_idx = 0; /* TODO: HT/VHT rates */ 4412 else 4413 rate_idx = status->rate_idx; 4414 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4415 BIT(rate_idx)); 4416 } 4417 return true; 4418 case NL80211_IFTYPE_OCB: 4419 if (!bssid) 4420 return false; 4421 if (!ieee80211_is_data_present(hdr->frame_control)) 4422 return false; 4423 if (!is_broadcast_ether_addr(bssid)) 4424 return false; 4425 if (!multicast && 4426 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4427 return false; 4428 if (!rx->sta) { 4429 int rate_idx; 4430 if (status->encoding != RX_ENC_LEGACY) 4431 rate_idx = 0; /* TODO: HT rates */ 4432 else 4433 rate_idx = status->rate_idx; 4434 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4435 BIT(rate_idx)); 4436 } 4437 return true; 4438 case NL80211_IFTYPE_MESH_POINT: 4439 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4440 return false; 4441 if (multicast) 4442 return true; 4443 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4444 case NL80211_IFTYPE_AP_VLAN: 4445 case NL80211_IFTYPE_AP: 4446 if (!bssid) 4447 return ieee80211_is_our_addr(sdata, hdr->addr1, 4448 &rx->link_id); 4449 4450 if (!is_broadcast_ether_addr(bssid) && 4451 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4452 /* 4453 * Accept public action frames even when the 4454 * BSSID doesn't match, this is used for P2P 4455 * and location updates. Note that mac80211 4456 * itself never looks at these frames. 4457 */ 4458 if (!multicast && 4459 !ieee80211_is_our_addr(sdata, hdr->addr1, 4460 &rx->link_id)) 4461 return false; 4462 if (ieee80211_is_public_action(hdr, skb->len)) 4463 return true; 4464 return ieee80211_is_beacon(hdr->frame_control); 4465 } 4466 4467 if (!ieee80211_has_tods(hdr->frame_control)) { 4468 /* ignore data frames to TDLS-peers */ 4469 if (ieee80211_is_data(hdr->frame_control)) 4470 return false; 4471 /* ignore action frames to TDLS-peers */ 4472 if (ieee80211_is_action(hdr->frame_control) && 4473 !is_broadcast_ether_addr(bssid) && 4474 !ether_addr_equal(bssid, hdr->addr1)) 4475 return false; 4476 } 4477 4478 /* 4479 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4480 * the BSSID - we've checked that already but may have accepted 4481 * the wildcard (ff:ff:ff:ff:ff:ff). 4482 * 4483 * It also says: 4484 * The BSSID of the Data frame is determined as follows: 4485 * a) If the STA is contained within an AP or is associated 4486 * with an AP, the BSSID is the address currently in use 4487 * by the STA contained in the AP. 4488 * 4489 * So we should not accept data frames with an address that's 4490 * multicast. 4491 * 4492 * Accepting it also opens a security problem because stations 4493 * could encrypt it with the GTK and inject traffic that way. 4494 */ 4495 if (ieee80211_is_data(hdr->frame_control) && multicast) 4496 return false; 4497 4498 return true; 4499 case NL80211_IFTYPE_P2P_DEVICE: 4500 return ieee80211_is_public_action(hdr, skb->len) || 4501 ieee80211_is_probe_req(hdr->frame_control) || 4502 ieee80211_is_probe_resp(hdr->frame_control) || 4503 ieee80211_is_beacon(hdr->frame_control); 4504 case NL80211_IFTYPE_NAN: 4505 /* Currently no frames on NAN interface are allowed */ 4506 return false; 4507 default: 4508 break; 4509 } 4510 4511 WARN_ON_ONCE(1); 4512 return false; 4513 } 4514 4515 void ieee80211_check_fast_rx(struct sta_info *sta) 4516 { 4517 struct ieee80211_sub_if_data *sdata = sta->sdata; 4518 struct ieee80211_local *local = sdata->local; 4519 struct ieee80211_key *key; 4520 struct ieee80211_fast_rx fastrx = { 4521 .dev = sdata->dev, 4522 .vif_type = sdata->vif.type, 4523 .control_port_protocol = sdata->control_port_protocol, 4524 }, *old, *new = NULL; 4525 u32 offload_flags; 4526 bool set_offload = false; 4527 bool assign = false; 4528 bool offload; 4529 4530 /* use sparse to check that we don't return without updating */ 4531 __acquire(check_fast_rx); 4532 4533 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4534 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4535 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4536 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4537 4538 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4539 4540 /* fast-rx doesn't do reordering */ 4541 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4542 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4543 goto clear; 4544 4545 switch (sdata->vif.type) { 4546 case NL80211_IFTYPE_STATION: 4547 if (sta->sta.tdls) { 4548 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4549 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4550 fastrx.expected_ds_bits = 0; 4551 } else { 4552 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4553 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4554 fastrx.expected_ds_bits = 4555 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4556 } 4557 4558 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4559 fastrx.expected_ds_bits |= 4560 cpu_to_le16(IEEE80211_FCTL_TODS); 4561 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4562 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4563 } 4564 4565 if (!sdata->u.mgd.powersave) 4566 break; 4567 4568 /* software powersave is a huge mess, avoid all of it */ 4569 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4570 goto clear; 4571 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4572 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4573 goto clear; 4574 break; 4575 case NL80211_IFTYPE_AP_VLAN: 4576 case NL80211_IFTYPE_AP: 4577 /* parallel-rx requires this, at least with calls to 4578 * ieee80211_sta_ps_transition() 4579 */ 4580 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4581 goto clear; 4582 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4583 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4584 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4585 4586 fastrx.internal_forward = 4587 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4588 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4589 !sdata->u.vlan.sta); 4590 4591 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4592 sdata->u.vlan.sta) { 4593 fastrx.expected_ds_bits |= 4594 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4595 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4596 fastrx.internal_forward = 0; 4597 } 4598 4599 break; 4600 case NL80211_IFTYPE_MESH_POINT: 4601 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS | 4602 IEEE80211_FCTL_TODS); 4603 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4604 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4605 break; 4606 default: 4607 goto clear; 4608 } 4609 4610 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4611 goto clear; 4612 4613 rcu_read_lock(); 4614 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4615 if (!key) 4616 key = rcu_dereference(sdata->default_unicast_key); 4617 if (key) { 4618 switch (key->conf.cipher) { 4619 case WLAN_CIPHER_SUITE_TKIP: 4620 /* we don't want to deal with MMIC in fast-rx */ 4621 goto clear_rcu; 4622 case WLAN_CIPHER_SUITE_CCMP: 4623 case WLAN_CIPHER_SUITE_CCMP_256: 4624 case WLAN_CIPHER_SUITE_GCMP: 4625 case WLAN_CIPHER_SUITE_GCMP_256: 4626 break; 4627 default: 4628 /* We also don't want to deal with 4629 * WEP or cipher scheme. 4630 */ 4631 goto clear_rcu; 4632 } 4633 4634 fastrx.key = true; 4635 fastrx.icv_len = key->conf.icv_len; 4636 } 4637 4638 assign = true; 4639 clear_rcu: 4640 rcu_read_unlock(); 4641 clear: 4642 __release(check_fast_rx); 4643 4644 if (assign) 4645 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4646 4647 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4648 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4649 4650 if (assign && offload) 4651 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4652 else 4653 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4654 4655 if (set_offload) 4656 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4657 4658 spin_lock_bh(&sta->lock); 4659 old = rcu_dereference_protected(sta->fast_rx, true); 4660 rcu_assign_pointer(sta->fast_rx, new); 4661 spin_unlock_bh(&sta->lock); 4662 4663 if (old) 4664 kfree_rcu(old, rcu_head); 4665 } 4666 4667 void ieee80211_clear_fast_rx(struct sta_info *sta) 4668 { 4669 struct ieee80211_fast_rx *old; 4670 4671 spin_lock_bh(&sta->lock); 4672 old = rcu_dereference_protected(sta->fast_rx, true); 4673 RCU_INIT_POINTER(sta->fast_rx, NULL); 4674 spin_unlock_bh(&sta->lock); 4675 4676 if (old) 4677 kfree_rcu(old, rcu_head); 4678 } 4679 4680 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4681 { 4682 struct ieee80211_local *local = sdata->local; 4683 struct sta_info *sta; 4684 4685 lockdep_assert_wiphy(local->hw.wiphy); 4686 4687 list_for_each_entry(sta, &local->sta_list, list) { 4688 if (sdata != sta->sdata && 4689 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4690 continue; 4691 ieee80211_check_fast_rx(sta); 4692 } 4693 } 4694 4695 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4696 { 4697 struct ieee80211_local *local = sdata->local; 4698 4699 lockdep_assert_wiphy(local->hw.wiphy); 4700 4701 __ieee80211_check_fast_rx_iface(sdata); 4702 } 4703 4704 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4705 struct ieee80211_fast_rx *fast_rx, 4706 int orig_len) 4707 { 4708 struct ieee80211_sta_rx_stats *stats; 4709 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4710 struct sta_info *sta = rx->sta; 4711 struct link_sta_info *link_sta; 4712 struct sk_buff *skb = rx->skb; 4713 void *sa = skb->data + ETH_ALEN; 4714 void *da = skb->data; 4715 4716 if (rx->link_id >= 0) { 4717 link_sta = rcu_dereference(sta->link[rx->link_id]); 4718 if (WARN_ON_ONCE(!link_sta)) { 4719 dev_kfree_skb(rx->skb); 4720 return; 4721 } 4722 } else { 4723 link_sta = &sta->deflink; 4724 } 4725 4726 stats = &link_sta->rx_stats; 4727 if (fast_rx->uses_rss) 4728 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4729 4730 /* statistics part of ieee80211_rx_h_sta_process() */ 4731 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4732 stats->last_signal = status->signal; 4733 if (!fast_rx->uses_rss) 4734 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4735 -status->signal); 4736 } 4737 4738 if (status->chains) { 4739 int i; 4740 4741 stats->chains = status->chains; 4742 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4743 int signal = status->chain_signal[i]; 4744 4745 if (!(status->chains & BIT(i))) 4746 continue; 4747 4748 stats->chain_signal_last[i] = signal; 4749 if (!fast_rx->uses_rss) 4750 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4751 -signal); 4752 } 4753 } 4754 /* end of statistics */ 4755 4756 stats->last_rx = jiffies; 4757 stats->last_rate = sta_stats_encode_rate(status); 4758 4759 stats->fragments++; 4760 stats->packets++; 4761 4762 skb->dev = fast_rx->dev; 4763 4764 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4765 4766 /* The seqno index has the same property as needed 4767 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4768 * for non-QoS-data frames. Here we know it's a data 4769 * frame, so count MSDUs. 4770 */ 4771 u64_stats_update_begin(&stats->syncp); 4772 stats->msdu[rx->seqno_idx]++; 4773 stats->bytes += orig_len; 4774 u64_stats_update_end(&stats->syncp); 4775 4776 if (fast_rx->internal_forward) { 4777 struct sk_buff *xmit_skb = NULL; 4778 if (is_multicast_ether_addr(da)) { 4779 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4780 } else if (!ether_addr_equal(da, sa) && 4781 sta_info_get(rx->sdata, da)) { 4782 xmit_skb = skb; 4783 skb = NULL; 4784 } 4785 4786 if (xmit_skb) { 4787 /* 4788 * Send to wireless media and increase priority by 256 4789 * to keep the received priority instead of 4790 * reclassifying the frame (see cfg80211_classify8021d). 4791 */ 4792 xmit_skb->priority += 256; 4793 xmit_skb->protocol = htons(ETH_P_802_3); 4794 skb_reset_network_header(xmit_skb); 4795 skb_reset_mac_header(xmit_skb); 4796 dev_queue_xmit(xmit_skb); 4797 } 4798 4799 if (!skb) 4800 return; 4801 } 4802 4803 /* deliver to local stack */ 4804 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4805 ieee80211_deliver_skb_to_local_stack(skb, rx); 4806 } 4807 4808 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4809 struct ieee80211_fast_rx *fast_rx) 4810 { 4811 struct sk_buff *skb = rx->skb; 4812 struct ieee80211_hdr *hdr = (void *)skb->data; 4813 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4814 static ieee80211_rx_result res; 4815 int orig_len = skb->len; 4816 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4817 int snap_offs = hdrlen; 4818 struct { 4819 u8 snap[sizeof(rfc1042_header)]; 4820 __be16 proto; 4821 } *payload __aligned(2); 4822 struct { 4823 u8 da[ETH_ALEN]; 4824 u8 sa[ETH_ALEN]; 4825 } addrs __aligned(2); 4826 struct ieee80211_sta_rx_stats *stats; 4827 4828 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4829 * to a common data structure; drivers can implement that per queue 4830 * but we don't have that information in mac80211 4831 */ 4832 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4833 return false; 4834 4835 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4836 4837 /* If using encryption, we also need to have: 4838 * - PN_VALIDATED: similar, but the implementation is tricky 4839 * - DECRYPTED: necessary for PN_VALIDATED 4840 */ 4841 if (fast_rx->key && 4842 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4843 return false; 4844 4845 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4846 return false; 4847 4848 if (unlikely(ieee80211_is_frag(hdr))) 4849 return false; 4850 4851 /* Since our interface address cannot be multicast, this 4852 * implicitly also rejects multicast frames without the 4853 * explicit check. 4854 * 4855 * We shouldn't get any *data* frames not addressed to us 4856 * (AP mode will accept multicast *management* frames), but 4857 * punting here will make it go through the full checks in 4858 * ieee80211_accept_frame(). 4859 */ 4860 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4861 return false; 4862 4863 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4864 IEEE80211_FCTL_TODS)) != 4865 fast_rx->expected_ds_bits) 4866 return false; 4867 4868 /* assign the key to drop unencrypted frames (later) 4869 * and strip the IV/MIC if necessary 4870 */ 4871 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4872 /* GCMP header length is the same */ 4873 snap_offs += IEEE80211_CCMP_HDR_LEN; 4874 } 4875 4876 if (!ieee80211_vif_is_mesh(&rx->sdata->vif) && 4877 !(status->rx_flags & IEEE80211_RX_AMSDU)) { 4878 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4879 return false; 4880 4881 payload = (void *)(skb->data + snap_offs); 4882 4883 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4884 return false; 4885 4886 /* Don't handle these here since they require special code. 4887 * Accept AARP and IPX even though they should come with a 4888 * bridge-tunnel header - but if we get them this way then 4889 * there's little point in discarding them. 4890 */ 4891 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4892 payload->proto == fast_rx->control_port_protocol)) 4893 return false; 4894 } 4895 4896 /* after this point, don't punt to the slowpath! */ 4897 4898 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4899 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4900 goto drop; 4901 4902 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4903 goto drop; 4904 4905 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4906 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4907 RX_QUEUED) 4908 goto drop; 4909 4910 return true; 4911 } 4912 4913 /* do the header conversion - first grab the addresses */ 4914 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4915 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4916 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) { 4917 skb_pull(skb, snap_offs - 2); 4918 put_unaligned_be16(skb->len - 2, skb->data); 4919 } else { 4920 skb_postpull_rcsum(skb, skb->data + snap_offs, 4921 sizeof(rfc1042_header) + 2); 4922 4923 /* remove the SNAP but leave the ethertype */ 4924 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4925 } 4926 /* push the addresses in front */ 4927 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4928 4929 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 4930 switch (res) { 4931 case RX_QUEUED: 4932 return true; 4933 case RX_CONTINUE: 4934 break; 4935 default: 4936 goto drop; 4937 } 4938 4939 ieee80211_rx_8023(rx, fast_rx, orig_len); 4940 4941 return true; 4942 drop: 4943 dev_kfree_skb(skb); 4944 4945 if (fast_rx->uses_rss) 4946 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 4947 else 4948 stats = &rx->link_sta->rx_stats; 4949 4950 stats->dropped++; 4951 return true; 4952 } 4953 4954 /* 4955 * This function returns whether or not the SKB 4956 * was destined for RX processing or not, which, 4957 * if consume is true, is equivalent to whether 4958 * or not the skb was consumed. 4959 */ 4960 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4961 struct sk_buff *skb, bool consume) 4962 { 4963 struct ieee80211_local *local = rx->local; 4964 struct ieee80211_sub_if_data *sdata = rx->sdata; 4965 struct ieee80211_hdr *hdr = (void *)skb->data; 4966 struct link_sta_info *link_sta = rx->link_sta; 4967 struct ieee80211_link_data *link = rx->link; 4968 4969 rx->skb = skb; 4970 4971 /* See if we can do fast-rx; if we have to copy we already lost, 4972 * so punt in that case. We should never have to deliver a data 4973 * frame to multiple interfaces anyway. 4974 * 4975 * We skip the ieee80211_accept_frame() call and do the necessary 4976 * checking inside ieee80211_invoke_fast_rx(). 4977 */ 4978 if (consume && rx->sta) { 4979 struct ieee80211_fast_rx *fast_rx; 4980 4981 fast_rx = rcu_dereference(rx->sta->fast_rx); 4982 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4983 return true; 4984 } 4985 4986 if (!ieee80211_accept_frame(rx)) 4987 return false; 4988 4989 if (!consume) { 4990 struct skb_shared_hwtstamps *shwt; 4991 4992 rx->skb = skb_copy(skb, GFP_ATOMIC); 4993 if (!rx->skb) { 4994 if (net_ratelimit()) 4995 wiphy_debug(local->hw.wiphy, 4996 "failed to copy skb for %s\n", 4997 sdata->name); 4998 return true; 4999 } 5000 5001 /* skb_copy() does not copy the hw timestamps, so copy it 5002 * explicitly 5003 */ 5004 shwt = skb_hwtstamps(rx->skb); 5005 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 5006 5007 /* Update the hdr pointer to the new skb for translation below */ 5008 hdr = (struct ieee80211_hdr *)rx->skb->data; 5009 } 5010 5011 if (unlikely(rx->sta && rx->sta->sta.mlo) && 5012 is_unicast_ether_addr(hdr->addr1) && 5013 !ieee80211_is_probe_resp(hdr->frame_control) && 5014 !ieee80211_is_beacon(hdr->frame_control)) { 5015 /* translate to MLD addresses */ 5016 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 5017 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 5018 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 5019 ether_addr_copy(hdr->addr2, rx->sta->addr); 5020 /* translate A3 only if it's the BSSID */ 5021 if (!ieee80211_has_tods(hdr->frame_control) && 5022 !ieee80211_has_fromds(hdr->frame_control)) { 5023 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 5024 ether_addr_copy(hdr->addr3, rx->sta->addr); 5025 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 5026 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 5027 } 5028 /* not needed for A4 since it can only carry the SA */ 5029 } 5030 5031 ieee80211_invoke_rx_handlers(rx); 5032 return true; 5033 } 5034 5035 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 5036 struct ieee80211_sta *pubsta, 5037 struct sk_buff *skb, 5038 struct list_head *list) 5039 { 5040 struct ieee80211_local *local = hw_to_local(hw); 5041 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5042 struct ieee80211_fast_rx *fast_rx; 5043 struct ieee80211_rx_data rx; 5044 struct sta_info *sta; 5045 int link_id = -1; 5046 5047 memset(&rx, 0, sizeof(rx)); 5048 rx.skb = skb; 5049 rx.local = local; 5050 rx.list = list; 5051 rx.link_id = -1; 5052 5053 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5054 5055 /* drop frame if too short for header */ 5056 if (skb->len < sizeof(struct ethhdr)) 5057 goto drop; 5058 5059 if (!pubsta) 5060 goto drop; 5061 5062 if (status->link_valid) 5063 link_id = status->link_id; 5064 5065 /* 5066 * TODO: Should the frame be dropped if the right link_id is not 5067 * available? Or may be it is fine in the current form to proceed with 5068 * the frame processing because with frame being in 802.3 format, 5069 * link_id is used only for stats purpose and updating the stats on 5070 * the deflink is fine? 5071 */ 5072 sta = container_of(pubsta, struct sta_info, sta); 5073 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5074 goto drop; 5075 5076 fast_rx = rcu_dereference(rx.sta->fast_rx); 5077 if (!fast_rx) 5078 goto drop; 5079 5080 ieee80211_rx_8023(&rx, fast_rx, skb->len); 5081 return; 5082 5083 drop: 5084 dev_kfree_skb(skb); 5085 } 5086 5087 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 5088 struct sk_buff *skb, bool consume) 5089 { 5090 struct link_sta_info *link_sta; 5091 struct ieee80211_hdr *hdr = (void *)skb->data; 5092 struct sta_info *sta; 5093 int link_id = -1; 5094 5095 /* 5096 * Look up link station first, in case there's a 5097 * chance that they might have a link address that 5098 * is identical to the MLD address, that way we'll 5099 * have the link information if needed. 5100 */ 5101 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 5102 if (link_sta) { 5103 sta = link_sta->sta; 5104 link_id = link_sta->link_id; 5105 } else { 5106 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5107 5108 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 5109 if (status->link_valid) 5110 link_id = status->link_id; 5111 } 5112 5113 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 5114 return false; 5115 5116 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 5117 } 5118 5119 /* 5120 * This is the actual Rx frames handler. as it belongs to Rx path it must 5121 * be called with rcu_read_lock protection. 5122 */ 5123 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 5124 struct ieee80211_sta *pubsta, 5125 struct sk_buff *skb, 5126 struct list_head *list) 5127 { 5128 struct ieee80211_local *local = hw_to_local(hw); 5129 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5130 struct ieee80211_sub_if_data *sdata; 5131 struct ieee80211_hdr *hdr; 5132 __le16 fc; 5133 struct ieee80211_rx_data rx; 5134 struct ieee80211_sub_if_data *prev; 5135 struct rhlist_head *tmp; 5136 int err = 0; 5137 5138 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5139 memset(&rx, 0, sizeof(rx)); 5140 rx.skb = skb; 5141 rx.local = local; 5142 rx.list = list; 5143 rx.link_id = -1; 5144 5145 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5146 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5147 5148 if (ieee80211_is_mgmt(fc)) { 5149 /* drop frame if too short for header */ 5150 if (skb->len < ieee80211_hdrlen(fc)) 5151 err = -ENOBUFS; 5152 else 5153 err = skb_linearize(skb); 5154 } else { 5155 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5156 } 5157 5158 if (err) { 5159 dev_kfree_skb(skb); 5160 return; 5161 } 5162 5163 hdr = (struct ieee80211_hdr *)skb->data; 5164 ieee80211_parse_qos(&rx); 5165 ieee80211_verify_alignment(&rx); 5166 5167 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5168 ieee80211_is_beacon(hdr->frame_control) || 5169 ieee80211_is_s1g_beacon(hdr->frame_control))) 5170 ieee80211_scan_rx(local, skb); 5171 5172 if (ieee80211_is_data(fc)) { 5173 struct sta_info *sta, *prev_sta; 5174 int link_id = -1; 5175 5176 if (status->link_valid) 5177 link_id = status->link_id; 5178 5179 if (pubsta) { 5180 sta = container_of(pubsta, struct sta_info, sta); 5181 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5182 goto out; 5183 5184 /* 5185 * In MLO connection, fetch the link_id using addr2 5186 * when the driver does not pass link_id in status. 5187 * When the address translation is already performed by 5188 * driver/hw, the valid link_id must be passed in 5189 * status. 5190 */ 5191 5192 if (!status->link_valid && pubsta->mlo) { 5193 struct ieee80211_hdr *hdr = (void *)skb->data; 5194 struct link_sta_info *link_sta; 5195 5196 link_sta = link_sta_info_get_bss(rx.sdata, 5197 hdr->addr2); 5198 if (!link_sta) 5199 goto out; 5200 5201 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5202 } 5203 5204 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5205 return; 5206 goto out; 5207 } 5208 5209 prev_sta = NULL; 5210 5211 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5212 if (!prev_sta) { 5213 prev_sta = sta; 5214 continue; 5215 } 5216 5217 rx.sdata = prev_sta->sdata; 5218 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5219 goto out; 5220 5221 if (!status->link_valid && prev_sta->sta.mlo) 5222 continue; 5223 5224 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5225 5226 prev_sta = sta; 5227 } 5228 5229 if (prev_sta) { 5230 rx.sdata = prev_sta->sdata; 5231 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5232 goto out; 5233 5234 if (!status->link_valid && prev_sta->sta.mlo) 5235 goto out; 5236 5237 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5238 return; 5239 goto out; 5240 } 5241 } 5242 5243 prev = NULL; 5244 5245 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5246 if (!ieee80211_sdata_running(sdata)) 5247 continue; 5248 5249 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5250 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5251 continue; 5252 5253 /* 5254 * frame is destined for this interface, but if it's 5255 * not also for the previous one we handle that after 5256 * the loop to avoid copying the SKB once too much 5257 */ 5258 5259 if (!prev) { 5260 prev = sdata; 5261 continue; 5262 } 5263 5264 rx.sdata = prev; 5265 ieee80211_rx_for_interface(&rx, skb, false); 5266 5267 prev = sdata; 5268 } 5269 5270 if (prev) { 5271 rx.sdata = prev; 5272 5273 if (ieee80211_rx_for_interface(&rx, skb, true)) 5274 return; 5275 } 5276 5277 out: 5278 dev_kfree_skb(skb); 5279 } 5280 5281 /* 5282 * This is the receive path handler. It is called by a low level driver when an 5283 * 802.11 MPDU is received from the hardware. 5284 */ 5285 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5286 struct sk_buff *skb, struct list_head *list) 5287 { 5288 struct ieee80211_local *local = hw_to_local(hw); 5289 struct ieee80211_rate *rate = NULL; 5290 struct ieee80211_supported_band *sband; 5291 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5292 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5293 5294 WARN_ON_ONCE(softirq_count() == 0); 5295 5296 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5297 goto drop; 5298 5299 sband = local->hw.wiphy->bands[status->band]; 5300 if (WARN_ON(!sband)) 5301 goto drop; 5302 5303 /* 5304 * If we're suspending, it is possible although not too likely 5305 * that we'd be receiving frames after having already partially 5306 * quiesced the stack. We can't process such frames then since 5307 * that might, for example, cause stations to be added or other 5308 * driver callbacks be invoked. 5309 */ 5310 if (unlikely(local->quiescing || local->suspended)) 5311 goto drop; 5312 5313 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5314 if (unlikely(local->in_reconfig)) 5315 goto drop; 5316 5317 /* 5318 * The same happens when we're not even started, 5319 * but that's worth a warning. 5320 */ 5321 if (WARN_ON(!local->started)) 5322 goto drop; 5323 5324 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5325 /* 5326 * Validate the rate, unless a PLCP error means that 5327 * we probably can't have a valid rate here anyway. 5328 */ 5329 5330 switch (status->encoding) { 5331 case RX_ENC_HT: 5332 /* 5333 * rate_idx is MCS index, which can be [0-76] 5334 * as documented on: 5335 * 5336 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5337 * 5338 * Anything else would be some sort of driver or 5339 * hardware error. The driver should catch hardware 5340 * errors. 5341 */ 5342 if (WARN(status->rate_idx > 76, 5343 "Rate marked as an HT rate but passed " 5344 "status->rate_idx is not " 5345 "an MCS index [0-76]: %d (0x%02x)\n", 5346 status->rate_idx, 5347 status->rate_idx)) 5348 goto drop; 5349 break; 5350 case RX_ENC_VHT: 5351 if (WARN_ONCE(status->rate_idx > 11 || 5352 !status->nss || 5353 status->nss > 8, 5354 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5355 status->rate_idx, status->nss)) 5356 goto drop; 5357 break; 5358 case RX_ENC_HE: 5359 if (WARN_ONCE(status->rate_idx > 11 || 5360 !status->nss || 5361 status->nss > 8, 5362 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5363 status->rate_idx, status->nss)) 5364 goto drop; 5365 break; 5366 case RX_ENC_EHT: 5367 if (WARN_ONCE(status->rate_idx > 15 || 5368 !status->nss || 5369 status->nss > 8 || 5370 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5371 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5372 status->rate_idx, status->nss, status->eht.gi)) 5373 goto drop; 5374 break; 5375 default: 5376 WARN_ON_ONCE(1); 5377 fallthrough; 5378 case RX_ENC_LEGACY: 5379 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5380 goto drop; 5381 rate = &sband->bitrates[status->rate_idx]; 5382 } 5383 } 5384 5385 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5386 goto drop; 5387 5388 status->rx_flags = 0; 5389 5390 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5391 5392 /* 5393 * Frames with failed FCS/PLCP checksum are not returned, 5394 * all other frames are returned without radiotap header 5395 * if it was previously present. 5396 * Also, frames with less than 16 bytes are dropped. 5397 */ 5398 if (!(status->flag & RX_FLAG_8023)) 5399 skb = ieee80211_rx_monitor(local, skb, rate); 5400 if (skb) { 5401 if ((status->flag & RX_FLAG_8023) || 5402 ieee80211_is_data_present(hdr->frame_control)) 5403 ieee80211_tpt_led_trig_rx(local, skb->len); 5404 5405 if (status->flag & RX_FLAG_8023) 5406 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5407 else 5408 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5409 } 5410 5411 kcov_remote_stop(); 5412 return; 5413 drop: 5414 kfree_skb(skb); 5415 } 5416 EXPORT_SYMBOL(ieee80211_rx_list); 5417 5418 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5419 struct sk_buff *skb, struct napi_struct *napi) 5420 { 5421 struct sk_buff *tmp; 5422 LIST_HEAD(list); 5423 5424 5425 /* 5426 * key references and virtual interfaces are protected using RCU 5427 * and this requires that we are in a read-side RCU section during 5428 * receive processing 5429 */ 5430 rcu_read_lock(); 5431 ieee80211_rx_list(hw, pubsta, skb, &list); 5432 rcu_read_unlock(); 5433 5434 if (!napi) { 5435 netif_receive_skb_list(&list); 5436 return; 5437 } 5438 5439 list_for_each_entry_safe(skb, tmp, &list, list) { 5440 skb_list_del_init(skb); 5441 napi_gro_receive(napi, skb); 5442 } 5443 } 5444 EXPORT_SYMBOL(ieee80211_rx_napi); 5445 5446 /* This is a version of the rx handler that can be called from hard irq 5447 * context. Post the skb on the queue and schedule the tasklet */ 5448 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5449 { 5450 struct ieee80211_local *local = hw_to_local(hw); 5451 5452 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5453 5454 skb->pkt_type = IEEE80211_RX_MSG; 5455 skb_queue_tail(&local->skb_queue, skb); 5456 tasklet_schedule(&local->tasklet); 5457 } 5458 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5459