1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static void remove_monitor_info(struct sk_buff *skb, 97 unsigned int present_fcs_len, 98 unsigned int rtap_space) 99 { 100 if (present_fcs_len) 101 __pskb_trim(skb, skb->len - present_fcs_len); 102 __pskb_pull(skb, rtap_space); 103 } 104 105 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 106 unsigned int rtap_space) 107 { 108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 109 struct ieee80211_hdr *hdr; 110 111 hdr = (void *)(skb->data + rtap_space); 112 113 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 114 RX_FLAG_FAILED_PLCP_CRC | 115 RX_FLAG_ONLY_MONITOR | 116 RX_FLAG_NO_PSDU)) 117 return true; 118 119 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 120 return true; 121 122 if (ieee80211_is_ctl(hdr->frame_control) && 123 !ieee80211_is_pspoll(hdr->frame_control) && 124 !ieee80211_is_back_req(hdr->frame_control)) 125 return true; 126 127 return false; 128 } 129 130 static int 131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 132 struct ieee80211_rx_status *status, 133 struct sk_buff *skb) 134 { 135 int len; 136 137 /* always present fields */ 138 len = sizeof(struct ieee80211_radiotap_header) + 8; 139 140 /* allocate extra bitmaps */ 141 if (status->chains) 142 len += 4 * hweight8(status->chains); 143 /* vendor presence bitmap */ 144 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 145 len += 4; 146 147 if (ieee80211_have_rx_timestamp(status)) { 148 len = ALIGN(len, 8); 149 len += 8; 150 } 151 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 152 len += 1; 153 154 /* antenna field, if we don't have per-chain info */ 155 if (!status->chains) 156 len += 1; 157 158 /* padding for RX_FLAGS if necessary */ 159 len = ALIGN(len, 2); 160 161 if (status->encoding == RX_ENC_HT) /* HT info */ 162 len += 3; 163 164 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 165 len = ALIGN(len, 4); 166 len += 8; 167 } 168 169 if (status->encoding == RX_ENC_VHT) { 170 len = ALIGN(len, 2); 171 len += 12; 172 } 173 174 if (local->hw.radiotap_timestamp.units_pos >= 0) { 175 len = ALIGN(len, 8); 176 len += 12; 177 } 178 179 if (status->encoding == RX_ENC_HE && 180 status->flag & RX_FLAG_RADIOTAP_HE) { 181 len = ALIGN(len, 2); 182 len += 12; 183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 184 } 185 186 if (status->encoding == RX_ENC_HE && 187 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 188 len = ALIGN(len, 2); 189 len += 12; 190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 191 } 192 193 if (status->flag & RX_FLAG_NO_PSDU) 194 len += 1; 195 196 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 197 len = ALIGN(len, 2); 198 len += 4; 199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 200 } 201 202 if (status->chains) { 203 /* antenna and antenna signal fields */ 204 len += 2 * hweight8(status->chains); 205 } 206 207 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 208 struct ieee80211_vendor_radiotap *rtap; 209 int vendor_data_offset = 0; 210 211 /* 212 * The position to look at depends on the existence (or non- 213 * existence) of other elements, so take that into account... 214 */ 215 if (status->flag & RX_FLAG_RADIOTAP_HE) 216 vendor_data_offset += 217 sizeof(struct ieee80211_radiotap_he); 218 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 219 vendor_data_offset += 220 sizeof(struct ieee80211_radiotap_he_mu); 221 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 222 vendor_data_offset += 223 sizeof(struct ieee80211_radiotap_lsig); 224 225 rtap = (void *)&skb->data[vendor_data_offset]; 226 227 /* alignment for fixed 6-byte vendor data header */ 228 len = ALIGN(len, 2); 229 /* vendor data header */ 230 len += 6; 231 if (WARN_ON(rtap->align == 0)) 232 rtap->align = 1; 233 len = ALIGN(len, rtap->align); 234 len += rtap->len + rtap->pad; 235 } 236 237 return len; 238 } 239 240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 241 struct sk_buff *skb, 242 int rtap_space) 243 { 244 struct { 245 struct ieee80211_hdr_3addr hdr; 246 u8 category; 247 u8 action_code; 248 } __packed __aligned(2) action; 249 250 if (!sdata) 251 return; 252 253 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 254 255 if (skb->len < rtap_space + sizeof(action) + 256 VHT_MUMIMO_GROUPS_DATA_LEN) 257 return; 258 259 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 260 return; 261 262 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 263 264 if (!ieee80211_is_action(action.hdr.frame_control)) 265 return; 266 267 if (action.category != WLAN_CATEGORY_VHT) 268 return; 269 270 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 271 return; 272 273 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 274 return; 275 276 skb = skb_copy(skb, GFP_ATOMIC); 277 if (!skb) 278 return; 279 280 skb_queue_tail(&sdata->skb_queue, skb); 281 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 282 } 283 284 /* 285 * ieee80211_add_rx_radiotap_header - add radiotap header 286 * 287 * add a radiotap header containing all the fields which the hardware provided. 288 */ 289 static void 290 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 291 struct sk_buff *skb, 292 struct ieee80211_rate *rate, 293 int rtap_len, bool has_fcs) 294 { 295 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 296 struct ieee80211_radiotap_header *rthdr; 297 unsigned char *pos; 298 __le32 *it_present; 299 u32 it_present_val; 300 u16 rx_flags = 0; 301 u16 channel_flags = 0; 302 int mpdulen, chain; 303 unsigned long chains = status->chains; 304 struct ieee80211_vendor_radiotap rtap = {}; 305 struct ieee80211_radiotap_he he = {}; 306 struct ieee80211_radiotap_he_mu he_mu = {}; 307 struct ieee80211_radiotap_lsig lsig = {}; 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE) { 310 he = *(struct ieee80211_radiotap_he *)skb->data; 311 skb_pull(skb, sizeof(he)); 312 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 313 } 314 315 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 316 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 317 skb_pull(skb, sizeof(he_mu)); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 321 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 322 skb_pull(skb, sizeof(lsig)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 326 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 327 /* rtap.len and rtap.pad are undone immediately */ 328 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 329 } 330 331 mpdulen = skb->len; 332 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 333 mpdulen += FCS_LEN; 334 335 rthdr = skb_push(skb, rtap_len); 336 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 337 it_present = &rthdr->it_present; 338 339 /* radiotap header, set always present flags */ 340 rthdr->it_len = cpu_to_le16(rtap_len); 341 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 342 BIT(IEEE80211_RADIOTAP_CHANNEL) | 343 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 344 345 if (!status->chains) 346 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 347 348 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 349 it_present_val |= 350 BIT(IEEE80211_RADIOTAP_EXT) | 351 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 352 put_unaligned_le32(it_present_val, it_present); 353 it_present++; 354 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 355 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 356 } 357 358 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 359 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 360 BIT(IEEE80211_RADIOTAP_EXT); 361 put_unaligned_le32(it_present_val, it_present); 362 it_present++; 363 it_present_val = rtap.present; 364 } 365 366 put_unaligned_le32(it_present_val, it_present); 367 368 pos = (void *)(it_present + 1); 369 370 /* the order of the following fields is important */ 371 372 /* IEEE80211_RADIOTAP_TSFT */ 373 if (ieee80211_have_rx_timestamp(status)) { 374 /* padding */ 375 while ((pos - (u8 *)rthdr) & 7) 376 *pos++ = 0; 377 put_unaligned_le64( 378 ieee80211_calculate_rx_timestamp(local, status, 379 mpdulen, 0), 380 pos); 381 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 382 pos += 8; 383 } 384 385 /* IEEE80211_RADIOTAP_FLAGS */ 386 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 387 *pos |= IEEE80211_RADIOTAP_F_FCS; 388 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 389 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 390 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 391 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 392 pos++; 393 394 /* IEEE80211_RADIOTAP_RATE */ 395 if (!rate || status->encoding != RX_ENC_LEGACY) { 396 /* 397 * Without rate information don't add it. If we have, 398 * MCS information is a separate field in radiotap, 399 * added below. The byte here is needed as padding 400 * for the channel though, so initialise it to 0. 401 */ 402 *pos = 0; 403 } else { 404 int shift = 0; 405 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 406 if (status->bw == RATE_INFO_BW_10) 407 shift = 1; 408 else if (status->bw == RATE_INFO_BW_5) 409 shift = 2; 410 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 411 } 412 pos++; 413 414 /* IEEE80211_RADIOTAP_CHANNEL */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ) 423 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 424 else if (status->encoding != RX_ENC_LEGACY) 425 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 426 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 427 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 428 else if (rate) 429 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 430 else 431 channel_flags |= IEEE80211_CHAN_2GHZ; 432 put_unaligned_le16(channel_flags, pos); 433 pos += 2; 434 435 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 436 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 437 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 438 *pos = status->signal; 439 rthdr->it_present |= 440 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 441 pos++; 442 } 443 444 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 445 446 if (!status->chains) { 447 /* IEEE80211_RADIOTAP_ANTENNA */ 448 *pos = status->antenna; 449 pos++; 450 } 451 452 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 453 454 /* IEEE80211_RADIOTAP_RX_FLAGS */ 455 /* ensure 2 byte alignment for the 2 byte field as required */ 456 if ((pos - (u8 *)rthdr) & 1) 457 *pos++ = 0; 458 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 459 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 460 put_unaligned_le16(rx_flags, pos); 461 pos += 2; 462 463 if (status->encoding == RX_ENC_HT) { 464 unsigned int stbc; 465 466 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 467 *pos++ = local->hw.radiotap_mcs_details; 468 *pos = 0; 469 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 470 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 471 if (status->bw == RATE_INFO_BW_40) 472 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 473 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 474 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 475 if (status->enc_flags & RX_ENC_FLAG_LDPC) 476 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 477 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 478 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 479 pos++; 480 *pos++ = status->rate_idx; 481 } 482 483 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 484 u16 flags = 0; 485 486 /* ensure 4 byte alignment */ 487 while ((pos - (u8 *)rthdr) & 3) 488 pos++; 489 rthdr->it_present |= 490 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 491 put_unaligned_le32(status->ampdu_reference, pos); 492 pos += 4; 493 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 494 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 495 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 496 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 497 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 498 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 499 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 500 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 501 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 502 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 503 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 504 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 505 put_unaligned_le16(flags, pos); 506 pos += 2; 507 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 508 *pos++ = status->ampdu_delimiter_crc; 509 else 510 *pos++ = 0; 511 *pos++ = 0; 512 } 513 514 if (status->encoding == RX_ENC_VHT) { 515 u16 known = local->hw.radiotap_vht_details; 516 517 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 518 put_unaligned_le16(known, pos); 519 pos += 2; 520 /* flags */ 521 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 522 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 523 /* in VHT, STBC is binary */ 524 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 525 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 526 if (status->enc_flags & RX_ENC_FLAG_BF) 527 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 528 pos++; 529 /* bandwidth */ 530 switch (status->bw) { 531 case RATE_INFO_BW_80: 532 *pos++ = 4; 533 break; 534 case RATE_INFO_BW_160: 535 *pos++ = 11; 536 break; 537 case RATE_INFO_BW_40: 538 *pos++ = 1; 539 break; 540 default: 541 *pos++ = 0; 542 } 543 /* MCS/NSS */ 544 *pos = (status->rate_idx << 4) | status->nss; 545 pos += 4; 546 /* coding field */ 547 if (status->enc_flags & RX_ENC_FLAG_LDPC) 548 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 549 pos++; 550 /* group ID */ 551 pos++; 552 /* partial_aid */ 553 pos += 2; 554 } 555 556 if (local->hw.radiotap_timestamp.units_pos >= 0) { 557 u16 accuracy = 0; 558 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 559 560 rthdr->it_present |= 561 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 562 563 /* ensure 8 byte alignment */ 564 while ((pos - (u8 *)rthdr) & 7) 565 pos++; 566 567 put_unaligned_le64(status->device_timestamp, pos); 568 pos += sizeof(u64); 569 570 if (local->hw.radiotap_timestamp.accuracy >= 0) { 571 accuracy = local->hw.radiotap_timestamp.accuracy; 572 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 573 } 574 put_unaligned_le16(accuracy, pos); 575 pos += sizeof(u16); 576 577 *pos++ = local->hw.radiotap_timestamp.units_pos; 578 *pos++ = flags; 579 } 580 581 if (status->encoding == RX_ENC_HE && 582 status->flag & RX_FLAG_RADIOTAP_HE) { 583 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 584 585 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 586 he.data6 |= HE_PREP(DATA6_NSTS, 587 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 588 status->enc_flags)); 589 he.data3 |= HE_PREP(DATA3_STBC, 1); 590 } else { 591 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 592 } 593 594 #define CHECK_GI(s) \ 595 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 596 (int)NL80211_RATE_INFO_HE_GI_##s) 597 598 CHECK_GI(0_8); 599 CHECK_GI(1_6); 600 CHECK_GI(3_2); 601 602 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 603 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 604 he.data3 |= HE_PREP(DATA3_CODING, 605 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 606 607 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 608 609 switch (status->bw) { 610 case RATE_INFO_BW_20: 611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 613 break; 614 case RATE_INFO_BW_40: 615 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 616 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 617 break; 618 case RATE_INFO_BW_80: 619 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 620 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 621 break; 622 case RATE_INFO_BW_160: 623 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 624 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 625 break; 626 case RATE_INFO_BW_HE_RU: 627 #define CHECK_RU_ALLOC(s) \ 628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 629 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 630 631 CHECK_RU_ALLOC(26); 632 CHECK_RU_ALLOC(52); 633 CHECK_RU_ALLOC(106); 634 CHECK_RU_ALLOC(242); 635 CHECK_RU_ALLOC(484); 636 CHECK_RU_ALLOC(996); 637 CHECK_RU_ALLOC(2x996); 638 639 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 640 status->he_ru + 4); 641 break; 642 default: 643 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 644 } 645 646 /* ensure 2 byte alignment */ 647 while ((pos - (u8 *)rthdr) & 1) 648 pos++; 649 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 650 memcpy(pos, &he, sizeof(he)); 651 pos += sizeof(he); 652 } 653 654 if (status->encoding == RX_ENC_HE && 655 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 656 /* ensure 2 byte alignment */ 657 while ((pos - (u8 *)rthdr) & 1) 658 pos++; 659 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 660 memcpy(pos, &he_mu, sizeof(he_mu)); 661 pos += sizeof(he_mu); 662 } 663 664 if (status->flag & RX_FLAG_NO_PSDU) { 665 rthdr->it_present |= 666 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 667 *pos++ = status->zero_length_psdu_type; 668 } 669 670 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 671 /* ensure 2 byte alignment */ 672 while ((pos - (u8 *)rthdr) & 1) 673 pos++; 674 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 675 memcpy(pos, &lsig, sizeof(lsig)); 676 pos += sizeof(lsig); 677 } 678 679 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 680 *pos++ = status->chain_signal[chain]; 681 *pos++ = chain; 682 } 683 684 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 685 /* ensure 2 byte alignment for the vendor field as required */ 686 if ((pos - (u8 *)rthdr) & 1) 687 *pos++ = 0; 688 *pos++ = rtap.oui[0]; 689 *pos++ = rtap.oui[1]; 690 *pos++ = rtap.oui[2]; 691 *pos++ = rtap.subns; 692 put_unaligned_le16(rtap.len, pos); 693 pos += 2; 694 /* align the actual payload as requested */ 695 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 696 *pos++ = 0; 697 /* data (and possible padding) already follows */ 698 } 699 } 700 701 static struct sk_buff * 702 ieee80211_make_monitor_skb(struct ieee80211_local *local, 703 struct sk_buff **origskb, 704 struct ieee80211_rate *rate, 705 int rtap_space, bool use_origskb) 706 { 707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 708 int rt_hdrlen, needed_headroom; 709 struct sk_buff *skb; 710 711 /* room for the radiotap header based on driver features */ 712 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 713 needed_headroom = rt_hdrlen - rtap_space; 714 715 if (use_origskb) { 716 /* only need to expand headroom if necessary */ 717 skb = *origskb; 718 *origskb = NULL; 719 720 /* 721 * This shouldn't trigger often because most devices have an 722 * RX header they pull before we get here, and that should 723 * be big enough for our radiotap information. We should 724 * probably export the length to drivers so that we can have 725 * them allocate enough headroom to start with. 726 */ 727 if (skb_headroom(skb) < needed_headroom && 728 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 729 dev_kfree_skb(skb); 730 return NULL; 731 } 732 } else { 733 /* 734 * Need to make a copy and possibly remove radiotap header 735 * and FCS from the original. 736 */ 737 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 738 739 if (!skb) 740 return NULL; 741 } 742 743 /* prepend radiotap information */ 744 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 745 746 skb_reset_mac_header(skb); 747 skb->ip_summed = CHECKSUM_UNNECESSARY; 748 skb->pkt_type = PACKET_OTHERHOST; 749 skb->protocol = htons(ETH_P_802_2); 750 751 return skb; 752 } 753 754 /* 755 * This function copies a received frame to all monitor interfaces and 756 * returns a cleaned-up SKB that no longer includes the FCS nor the 757 * radiotap header the driver might have added. 758 */ 759 static struct sk_buff * 760 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 761 struct ieee80211_rate *rate) 762 { 763 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 764 struct ieee80211_sub_if_data *sdata; 765 struct sk_buff *monskb = NULL; 766 int present_fcs_len = 0; 767 unsigned int rtap_space = 0; 768 struct ieee80211_sub_if_data *monitor_sdata = 769 rcu_dereference(local->monitor_sdata); 770 bool only_monitor = false; 771 unsigned int min_head_len; 772 773 if (status->flag & RX_FLAG_RADIOTAP_HE) 774 rtap_space += sizeof(struct ieee80211_radiotap_he); 775 776 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 777 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 778 779 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 780 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 781 782 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 783 struct ieee80211_vendor_radiotap *rtap = 784 (void *)(origskb->data + rtap_space); 785 786 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 787 } 788 789 min_head_len = rtap_space; 790 791 /* 792 * First, we may need to make a copy of the skb because 793 * (1) we need to modify it for radiotap (if not present), and 794 * (2) the other RX handlers will modify the skb we got. 795 * 796 * We don't need to, of course, if we aren't going to return 797 * the SKB because it has a bad FCS/PLCP checksum. 798 */ 799 800 if (!(status->flag & RX_FLAG_NO_PSDU)) { 801 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 802 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 803 /* driver bug */ 804 WARN_ON(1); 805 dev_kfree_skb(origskb); 806 return NULL; 807 } 808 present_fcs_len = FCS_LEN; 809 } 810 811 /* also consider the hdr->frame_control */ 812 min_head_len += 2; 813 } 814 815 /* ensure that the expected data elements are in skb head */ 816 if (!pskb_may_pull(origskb, min_head_len)) { 817 dev_kfree_skb(origskb); 818 return NULL; 819 } 820 821 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 822 823 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 824 if (only_monitor) { 825 dev_kfree_skb(origskb); 826 return NULL; 827 } 828 829 remove_monitor_info(origskb, present_fcs_len, rtap_space); 830 return origskb; 831 } 832 833 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 834 835 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 836 bool last_monitor = list_is_last(&sdata->u.mntr.list, 837 &local->mon_list); 838 839 if (!monskb) 840 monskb = ieee80211_make_monitor_skb(local, &origskb, 841 rate, rtap_space, 842 only_monitor && 843 last_monitor); 844 845 if (monskb) { 846 struct sk_buff *skb; 847 848 if (last_monitor) { 849 skb = monskb; 850 monskb = NULL; 851 } else { 852 skb = skb_clone(monskb, GFP_ATOMIC); 853 } 854 855 if (skb) { 856 skb->dev = sdata->dev; 857 ieee80211_rx_stats(skb->dev, skb->len); 858 netif_receive_skb(skb); 859 } 860 } 861 862 if (last_monitor) 863 break; 864 } 865 866 /* this happens if last_monitor was erroneously false */ 867 dev_kfree_skb(monskb); 868 869 /* ditto */ 870 if (!origskb) 871 return NULL; 872 873 remove_monitor_info(origskb, present_fcs_len, rtap_space); 874 return origskb; 875 } 876 877 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 878 { 879 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 881 int tid, seqno_idx, security_idx; 882 883 /* does the frame have a qos control field? */ 884 if (ieee80211_is_data_qos(hdr->frame_control)) { 885 u8 *qc = ieee80211_get_qos_ctl(hdr); 886 /* frame has qos control */ 887 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 888 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 889 status->rx_flags |= IEEE80211_RX_AMSDU; 890 891 seqno_idx = tid; 892 security_idx = tid; 893 } else { 894 /* 895 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 896 * 897 * Sequence numbers for management frames, QoS data 898 * frames with a broadcast/multicast address in the 899 * Address 1 field, and all non-QoS data frames sent 900 * by QoS STAs are assigned using an additional single 901 * modulo-4096 counter, [...] 902 * 903 * We also use that counter for non-QoS STAs. 904 */ 905 seqno_idx = IEEE80211_NUM_TIDS; 906 security_idx = 0; 907 if (ieee80211_is_mgmt(hdr->frame_control)) 908 security_idx = IEEE80211_NUM_TIDS; 909 tid = 0; 910 } 911 912 rx->seqno_idx = seqno_idx; 913 rx->security_idx = security_idx; 914 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 915 * For now, set skb->priority to 0 for other cases. */ 916 rx->skb->priority = (tid > 7) ? 0 : tid; 917 } 918 919 /** 920 * DOC: Packet alignment 921 * 922 * Drivers always need to pass packets that are aligned to two-byte boundaries 923 * to the stack. 924 * 925 * Additionally, should, if possible, align the payload data in a way that 926 * guarantees that the contained IP header is aligned to a four-byte 927 * boundary. In the case of regular frames, this simply means aligning the 928 * payload to a four-byte boundary (because either the IP header is directly 929 * contained, or IV/RFC1042 headers that have a length divisible by four are 930 * in front of it). If the payload data is not properly aligned and the 931 * architecture doesn't support efficient unaligned operations, mac80211 932 * will align the data. 933 * 934 * With A-MSDU frames, however, the payload data address must yield two modulo 935 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 936 * push the IP header further back to a multiple of four again. Thankfully, the 937 * specs were sane enough this time around to require padding each A-MSDU 938 * subframe to a length that is a multiple of four. 939 * 940 * Padding like Atheros hardware adds which is between the 802.11 header and 941 * the payload is not supported, the driver is required to move the 802.11 942 * header to be directly in front of the payload in that case. 943 */ 944 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 945 { 946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 947 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 948 #endif 949 } 950 951 952 /* rx handlers */ 953 954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 955 { 956 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 957 958 if (is_multicast_ether_addr(hdr->addr1)) 959 return 0; 960 961 return ieee80211_is_robust_mgmt_frame(skb); 962 } 963 964 965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 966 { 967 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 968 969 if (!is_multicast_ether_addr(hdr->addr1)) 970 return 0; 971 972 return ieee80211_is_robust_mgmt_frame(skb); 973 } 974 975 976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 977 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 978 { 979 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 980 struct ieee80211_mmie *mmie; 981 struct ieee80211_mmie_16 *mmie16; 982 983 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 984 return -1; 985 986 if (!ieee80211_is_robust_mgmt_frame(skb)) 987 return -1; /* not a robust management frame */ 988 989 mmie = (struct ieee80211_mmie *) 990 (skb->data + skb->len - sizeof(*mmie)); 991 if (mmie->element_id == WLAN_EID_MMIE && 992 mmie->length == sizeof(*mmie) - 2) 993 return le16_to_cpu(mmie->key_id); 994 995 mmie16 = (struct ieee80211_mmie_16 *) 996 (skb->data + skb->len - sizeof(*mmie16)); 997 if (skb->len >= 24 + sizeof(*mmie16) && 998 mmie16->element_id == WLAN_EID_MMIE && 999 mmie16->length == sizeof(*mmie16) - 2) 1000 return le16_to_cpu(mmie16->key_id); 1001 1002 return -1; 1003 } 1004 1005 static int ieee80211_get_keyid(struct sk_buff *skb, 1006 const struct ieee80211_cipher_scheme *cs) 1007 { 1008 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1009 __le16 fc; 1010 int hdrlen; 1011 int minlen; 1012 u8 key_idx_off; 1013 u8 key_idx_shift; 1014 u8 keyid; 1015 1016 fc = hdr->frame_control; 1017 hdrlen = ieee80211_hdrlen(fc); 1018 1019 if (cs) { 1020 minlen = hdrlen + cs->hdr_len; 1021 key_idx_off = hdrlen + cs->key_idx_off; 1022 key_idx_shift = cs->key_idx_shift; 1023 } else { 1024 /* WEP, TKIP, CCMP and GCMP */ 1025 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1026 key_idx_off = hdrlen + 3; 1027 key_idx_shift = 6; 1028 } 1029 1030 if (unlikely(skb->len < minlen)) 1031 return -EINVAL; 1032 1033 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1034 1035 if (cs) 1036 keyid &= cs->key_idx_mask; 1037 keyid >>= key_idx_shift; 1038 1039 /* cs could use more than the usual two bits for the keyid */ 1040 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1041 return -EINVAL; 1042 1043 return keyid; 1044 } 1045 1046 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1047 { 1048 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1049 char *dev_addr = rx->sdata->vif.addr; 1050 1051 if (ieee80211_is_data(hdr->frame_control)) { 1052 if (is_multicast_ether_addr(hdr->addr1)) { 1053 if (ieee80211_has_tods(hdr->frame_control) || 1054 !ieee80211_has_fromds(hdr->frame_control)) 1055 return RX_DROP_MONITOR; 1056 if (ether_addr_equal(hdr->addr3, dev_addr)) 1057 return RX_DROP_MONITOR; 1058 } else { 1059 if (!ieee80211_has_a4(hdr->frame_control)) 1060 return RX_DROP_MONITOR; 1061 if (ether_addr_equal(hdr->addr4, dev_addr)) 1062 return RX_DROP_MONITOR; 1063 } 1064 } 1065 1066 /* If there is not an established peer link and this is not a peer link 1067 * establisment frame, beacon or probe, drop the frame. 1068 */ 1069 1070 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1071 struct ieee80211_mgmt *mgmt; 1072 1073 if (!ieee80211_is_mgmt(hdr->frame_control)) 1074 return RX_DROP_MONITOR; 1075 1076 if (ieee80211_is_action(hdr->frame_control)) { 1077 u8 category; 1078 1079 /* make sure category field is present */ 1080 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1081 return RX_DROP_MONITOR; 1082 1083 mgmt = (struct ieee80211_mgmt *)hdr; 1084 category = mgmt->u.action.category; 1085 if (category != WLAN_CATEGORY_MESH_ACTION && 1086 category != WLAN_CATEGORY_SELF_PROTECTED) 1087 return RX_DROP_MONITOR; 1088 return RX_CONTINUE; 1089 } 1090 1091 if (ieee80211_is_probe_req(hdr->frame_control) || 1092 ieee80211_is_probe_resp(hdr->frame_control) || 1093 ieee80211_is_beacon(hdr->frame_control) || 1094 ieee80211_is_auth(hdr->frame_control)) 1095 return RX_CONTINUE; 1096 1097 return RX_DROP_MONITOR; 1098 } 1099 1100 return RX_CONTINUE; 1101 } 1102 1103 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1104 int index) 1105 { 1106 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1107 struct sk_buff *tail = skb_peek_tail(frames); 1108 struct ieee80211_rx_status *status; 1109 1110 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1111 return true; 1112 1113 if (!tail) 1114 return false; 1115 1116 status = IEEE80211_SKB_RXCB(tail); 1117 if (status->flag & RX_FLAG_AMSDU_MORE) 1118 return false; 1119 1120 return true; 1121 } 1122 1123 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1124 struct tid_ampdu_rx *tid_agg_rx, 1125 int index, 1126 struct sk_buff_head *frames) 1127 { 1128 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1129 struct sk_buff *skb; 1130 struct ieee80211_rx_status *status; 1131 1132 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1133 1134 if (skb_queue_empty(skb_list)) 1135 goto no_frame; 1136 1137 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1138 __skb_queue_purge(skb_list); 1139 goto no_frame; 1140 } 1141 1142 /* release frames from the reorder ring buffer */ 1143 tid_agg_rx->stored_mpdu_num--; 1144 while ((skb = __skb_dequeue(skb_list))) { 1145 status = IEEE80211_SKB_RXCB(skb); 1146 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1147 __skb_queue_tail(frames, skb); 1148 } 1149 1150 no_frame: 1151 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1152 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1153 } 1154 1155 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1156 struct tid_ampdu_rx *tid_agg_rx, 1157 u16 head_seq_num, 1158 struct sk_buff_head *frames) 1159 { 1160 int index; 1161 1162 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1163 1164 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1165 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1166 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1167 frames); 1168 } 1169 } 1170 1171 /* 1172 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1173 * the skb was added to the buffer longer than this time ago, the earlier 1174 * frames that have not yet been received are assumed to be lost and the skb 1175 * can be released for processing. This may also release other skb's from the 1176 * reorder buffer if there are no additional gaps between the frames. 1177 * 1178 * Callers must hold tid_agg_rx->reorder_lock. 1179 */ 1180 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1181 1182 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1183 struct tid_ampdu_rx *tid_agg_rx, 1184 struct sk_buff_head *frames) 1185 { 1186 int index, i, j; 1187 1188 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1189 1190 /* release the buffer until next missing frame */ 1191 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1192 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1193 tid_agg_rx->stored_mpdu_num) { 1194 /* 1195 * No buffers ready to be released, but check whether any 1196 * frames in the reorder buffer have timed out. 1197 */ 1198 int skipped = 1; 1199 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1200 j = (j + 1) % tid_agg_rx->buf_size) { 1201 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1202 skipped++; 1203 continue; 1204 } 1205 if (skipped && 1206 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1207 HT_RX_REORDER_BUF_TIMEOUT)) 1208 goto set_release_timer; 1209 1210 /* don't leave incomplete A-MSDUs around */ 1211 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1212 i = (i + 1) % tid_agg_rx->buf_size) 1213 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1214 1215 ht_dbg_ratelimited(sdata, 1216 "release an RX reorder frame due to timeout on earlier frames\n"); 1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1218 frames); 1219 1220 /* 1221 * Increment the head seq# also for the skipped slots. 1222 */ 1223 tid_agg_rx->head_seq_num = 1224 (tid_agg_rx->head_seq_num + 1225 skipped) & IEEE80211_SN_MASK; 1226 skipped = 0; 1227 } 1228 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1229 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1230 frames); 1231 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1232 } 1233 1234 if (tid_agg_rx->stored_mpdu_num) { 1235 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1236 1237 for (; j != (index - 1) % tid_agg_rx->buf_size; 1238 j = (j + 1) % tid_agg_rx->buf_size) { 1239 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1240 break; 1241 } 1242 1243 set_release_timer: 1244 1245 if (!tid_agg_rx->removed) 1246 mod_timer(&tid_agg_rx->reorder_timer, 1247 tid_agg_rx->reorder_time[j] + 1 + 1248 HT_RX_REORDER_BUF_TIMEOUT); 1249 } else { 1250 del_timer(&tid_agg_rx->reorder_timer); 1251 } 1252 } 1253 1254 /* 1255 * As this function belongs to the RX path it must be under 1256 * rcu_read_lock protection. It returns false if the frame 1257 * can be processed immediately, true if it was consumed. 1258 */ 1259 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1260 struct tid_ampdu_rx *tid_agg_rx, 1261 struct sk_buff *skb, 1262 struct sk_buff_head *frames) 1263 { 1264 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1266 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1267 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1268 u16 head_seq_num, buf_size; 1269 int index; 1270 bool ret = true; 1271 1272 spin_lock(&tid_agg_rx->reorder_lock); 1273 1274 /* 1275 * Offloaded BA sessions have no known starting sequence number so pick 1276 * one from first Rxed frame for this tid after BA was started. 1277 */ 1278 if (unlikely(tid_agg_rx->auto_seq)) { 1279 tid_agg_rx->auto_seq = false; 1280 tid_agg_rx->ssn = mpdu_seq_num; 1281 tid_agg_rx->head_seq_num = mpdu_seq_num; 1282 } 1283 1284 buf_size = tid_agg_rx->buf_size; 1285 head_seq_num = tid_agg_rx->head_seq_num; 1286 1287 /* 1288 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1289 * be reordered. 1290 */ 1291 if (unlikely(!tid_agg_rx->started)) { 1292 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1293 ret = false; 1294 goto out; 1295 } 1296 tid_agg_rx->started = true; 1297 } 1298 1299 /* frame with out of date sequence number */ 1300 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1301 dev_kfree_skb(skb); 1302 goto out; 1303 } 1304 1305 /* 1306 * If frame the sequence number exceeds our buffering window 1307 * size release some previous frames to make room for this one. 1308 */ 1309 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1310 head_seq_num = ieee80211_sn_inc( 1311 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1312 /* release stored frames up to new head to stack */ 1313 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1314 head_seq_num, frames); 1315 } 1316 1317 /* Now the new frame is always in the range of the reordering buffer */ 1318 1319 index = mpdu_seq_num % tid_agg_rx->buf_size; 1320 1321 /* check if we already stored this frame */ 1322 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1323 dev_kfree_skb(skb); 1324 goto out; 1325 } 1326 1327 /* 1328 * If the current MPDU is in the right order and nothing else 1329 * is stored we can process it directly, no need to buffer it. 1330 * If it is first but there's something stored, we may be able 1331 * to release frames after this one. 1332 */ 1333 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1334 tid_agg_rx->stored_mpdu_num == 0) { 1335 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1336 tid_agg_rx->head_seq_num = 1337 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1338 ret = false; 1339 goto out; 1340 } 1341 1342 /* put the frame in the reordering buffer */ 1343 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1344 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1345 tid_agg_rx->reorder_time[index] = jiffies; 1346 tid_agg_rx->stored_mpdu_num++; 1347 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1348 } 1349 1350 out: 1351 spin_unlock(&tid_agg_rx->reorder_lock); 1352 return ret; 1353 } 1354 1355 /* 1356 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1357 * true if the MPDU was buffered, false if it should be processed. 1358 */ 1359 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1360 struct sk_buff_head *frames) 1361 { 1362 struct sk_buff *skb = rx->skb; 1363 struct ieee80211_local *local = rx->local; 1364 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1365 struct sta_info *sta = rx->sta; 1366 struct tid_ampdu_rx *tid_agg_rx; 1367 u16 sc; 1368 u8 tid, ack_policy; 1369 1370 if (!ieee80211_is_data_qos(hdr->frame_control) || 1371 is_multicast_ether_addr(hdr->addr1)) 1372 goto dont_reorder; 1373 1374 /* 1375 * filter the QoS data rx stream according to 1376 * STA/TID and check if this STA/TID is on aggregation 1377 */ 1378 1379 if (!sta) 1380 goto dont_reorder; 1381 1382 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1383 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1384 tid = ieee80211_get_tid(hdr); 1385 1386 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1387 if (!tid_agg_rx) { 1388 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1389 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1390 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1391 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1392 WLAN_BACK_RECIPIENT, 1393 WLAN_REASON_QSTA_REQUIRE_SETUP); 1394 goto dont_reorder; 1395 } 1396 1397 /* qos null data frames are excluded */ 1398 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1399 goto dont_reorder; 1400 1401 /* not part of a BA session */ 1402 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1403 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1404 goto dont_reorder; 1405 1406 /* new, potentially un-ordered, ampdu frame - process it */ 1407 1408 /* reset session timer */ 1409 if (tid_agg_rx->timeout) 1410 tid_agg_rx->last_rx = jiffies; 1411 1412 /* if this mpdu is fragmented - terminate rx aggregation session */ 1413 sc = le16_to_cpu(hdr->seq_ctrl); 1414 if (sc & IEEE80211_SCTL_FRAG) { 1415 skb_queue_tail(&rx->sdata->skb_queue, skb); 1416 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1417 return; 1418 } 1419 1420 /* 1421 * No locking needed -- we will only ever process one 1422 * RX packet at a time, and thus own tid_agg_rx. All 1423 * other code manipulating it needs to (and does) make 1424 * sure that we cannot get to it any more before doing 1425 * anything with it. 1426 */ 1427 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1428 frames)) 1429 return; 1430 1431 dont_reorder: 1432 __skb_queue_tail(frames, skb); 1433 } 1434 1435 static ieee80211_rx_result debug_noinline 1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1437 { 1438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1439 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1440 1441 if (status->flag & RX_FLAG_DUP_VALIDATED) 1442 return RX_CONTINUE; 1443 1444 /* 1445 * Drop duplicate 802.11 retransmissions 1446 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1447 */ 1448 1449 if (rx->skb->len < 24) 1450 return RX_CONTINUE; 1451 1452 if (ieee80211_is_ctl(hdr->frame_control) || 1453 ieee80211_is_any_nullfunc(hdr->frame_control) || 1454 is_multicast_ether_addr(hdr->addr1)) 1455 return RX_CONTINUE; 1456 1457 if (!rx->sta) 1458 return RX_CONTINUE; 1459 1460 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1461 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1462 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1463 rx->sta->rx_stats.num_duplicates++; 1464 return RX_DROP_UNUSABLE; 1465 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1466 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1467 } 1468 1469 return RX_CONTINUE; 1470 } 1471 1472 static ieee80211_rx_result debug_noinline 1473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1474 { 1475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1476 1477 /* Drop disallowed frame classes based on STA auth/assoc state; 1478 * IEEE 802.11, Chap 5.5. 1479 * 1480 * mac80211 filters only based on association state, i.e. it drops 1481 * Class 3 frames from not associated stations. hostapd sends 1482 * deauth/disassoc frames when needed. In addition, hostapd is 1483 * responsible for filtering on both auth and assoc states. 1484 */ 1485 1486 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1487 return ieee80211_rx_mesh_check(rx); 1488 1489 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1490 ieee80211_is_pspoll(hdr->frame_control)) && 1491 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1492 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1493 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1494 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1495 /* 1496 * accept port control frames from the AP even when it's not 1497 * yet marked ASSOC to prevent a race where we don't set the 1498 * assoc bit quickly enough before it sends the first frame 1499 */ 1500 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1501 ieee80211_is_data_present(hdr->frame_control)) { 1502 unsigned int hdrlen; 1503 __be16 ethertype; 1504 1505 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1506 1507 if (rx->skb->len < hdrlen + 8) 1508 return RX_DROP_MONITOR; 1509 1510 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1511 if (ethertype == rx->sdata->control_port_protocol) 1512 return RX_CONTINUE; 1513 } 1514 1515 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1516 cfg80211_rx_spurious_frame(rx->sdata->dev, 1517 hdr->addr2, 1518 GFP_ATOMIC)) 1519 return RX_DROP_UNUSABLE; 1520 1521 return RX_DROP_MONITOR; 1522 } 1523 1524 return RX_CONTINUE; 1525 } 1526 1527 1528 static ieee80211_rx_result debug_noinline 1529 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1530 { 1531 struct ieee80211_local *local; 1532 struct ieee80211_hdr *hdr; 1533 struct sk_buff *skb; 1534 1535 local = rx->local; 1536 skb = rx->skb; 1537 hdr = (struct ieee80211_hdr *) skb->data; 1538 1539 if (!local->pspolling) 1540 return RX_CONTINUE; 1541 1542 if (!ieee80211_has_fromds(hdr->frame_control)) 1543 /* this is not from AP */ 1544 return RX_CONTINUE; 1545 1546 if (!ieee80211_is_data(hdr->frame_control)) 1547 return RX_CONTINUE; 1548 1549 if (!ieee80211_has_moredata(hdr->frame_control)) { 1550 /* AP has no more frames buffered for us */ 1551 local->pspolling = false; 1552 return RX_CONTINUE; 1553 } 1554 1555 /* more data bit is set, let's request a new frame from the AP */ 1556 ieee80211_send_pspoll(local, rx->sdata); 1557 1558 return RX_CONTINUE; 1559 } 1560 1561 static void sta_ps_start(struct sta_info *sta) 1562 { 1563 struct ieee80211_sub_if_data *sdata = sta->sdata; 1564 struct ieee80211_local *local = sdata->local; 1565 struct ps_data *ps; 1566 int tid; 1567 1568 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1569 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1570 ps = &sdata->bss->ps; 1571 else 1572 return; 1573 1574 atomic_inc(&ps->num_sta_ps); 1575 set_sta_flag(sta, WLAN_STA_PS_STA); 1576 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1577 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1578 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1579 sta->sta.addr, sta->sta.aid); 1580 1581 ieee80211_clear_fast_xmit(sta); 1582 1583 if (!sta->sta.txq[0]) 1584 return; 1585 1586 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1587 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1588 struct txq_info *txqi = to_txq_info(txq); 1589 1590 spin_lock(&local->active_txq_lock[txq->ac]); 1591 if (!list_empty(&txqi->schedule_order)) 1592 list_del_init(&txqi->schedule_order); 1593 spin_unlock(&local->active_txq_lock[txq->ac]); 1594 1595 if (txq_has_queue(txq)) 1596 set_bit(tid, &sta->txq_buffered_tids); 1597 else 1598 clear_bit(tid, &sta->txq_buffered_tids); 1599 } 1600 } 1601 1602 static void sta_ps_end(struct sta_info *sta) 1603 { 1604 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1605 sta->sta.addr, sta->sta.aid); 1606 1607 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1608 /* 1609 * Clear the flag only if the other one is still set 1610 * so that the TX path won't start TX'ing new frames 1611 * directly ... In the case that the driver flag isn't 1612 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1613 */ 1614 clear_sta_flag(sta, WLAN_STA_PS_STA); 1615 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1616 sta->sta.addr, sta->sta.aid); 1617 return; 1618 } 1619 1620 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1621 clear_sta_flag(sta, WLAN_STA_PS_STA); 1622 ieee80211_sta_ps_deliver_wakeup(sta); 1623 } 1624 1625 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1626 { 1627 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1628 bool in_ps; 1629 1630 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1631 1632 /* Don't let the same PS state be set twice */ 1633 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1634 if ((start && in_ps) || (!start && !in_ps)) 1635 return -EINVAL; 1636 1637 if (start) 1638 sta_ps_start(sta); 1639 else 1640 sta_ps_end(sta); 1641 1642 return 0; 1643 } 1644 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1645 1646 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1647 { 1648 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1649 1650 if (test_sta_flag(sta, WLAN_STA_SP)) 1651 return; 1652 1653 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1654 ieee80211_sta_ps_deliver_poll_response(sta); 1655 else 1656 set_sta_flag(sta, WLAN_STA_PSPOLL); 1657 } 1658 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1659 1660 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1661 { 1662 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1663 int ac = ieee80211_ac_from_tid(tid); 1664 1665 /* 1666 * If this AC is not trigger-enabled do nothing unless the 1667 * driver is calling us after it already checked. 1668 * 1669 * NB: This could/should check a separate bitmap of trigger- 1670 * enabled queues, but for now we only implement uAPSD w/o 1671 * TSPEC changes to the ACs, so they're always the same. 1672 */ 1673 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1674 tid != IEEE80211_NUM_TIDS) 1675 return; 1676 1677 /* if we are in a service period, do nothing */ 1678 if (test_sta_flag(sta, WLAN_STA_SP)) 1679 return; 1680 1681 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1682 ieee80211_sta_ps_deliver_uapsd(sta); 1683 else 1684 set_sta_flag(sta, WLAN_STA_UAPSD); 1685 } 1686 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1687 1688 static ieee80211_rx_result debug_noinline 1689 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1690 { 1691 struct ieee80211_sub_if_data *sdata = rx->sdata; 1692 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1693 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1694 1695 if (!rx->sta) 1696 return RX_CONTINUE; 1697 1698 if (sdata->vif.type != NL80211_IFTYPE_AP && 1699 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1700 return RX_CONTINUE; 1701 1702 /* 1703 * The device handles station powersave, so don't do anything about 1704 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1705 * it to mac80211 since they're handled.) 1706 */ 1707 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1708 return RX_CONTINUE; 1709 1710 /* 1711 * Don't do anything if the station isn't already asleep. In 1712 * the uAPSD case, the station will probably be marked asleep, 1713 * in the PS-Poll case the station must be confused ... 1714 */ 1715 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1716 return RX_CONTINUE; 1717 1718 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1719 ieee80211_sta_pspoll(&rx->sta->sta); 1720 1721 /* Free PS Poll skb here instead of returning RX_DROP that would 1722 * count as an dropped frame. */ 1723 dev_kfree_skb(rx->skb); 1724 1725 return RX_QUEUED; 1726 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1727 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1728 ieee80211_has_pm(hdr->frame_control) && 1729 (ieee80211_is_data_qos(hdr->frame_control) || 1730 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1731 u8 tid = ieee80211_get_tid(hdr); 1732 1733 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1734 } 1735 1736 return RX_CONTINUE; 1737 } 1738 1739 static ieee80211_rx_result debug_noinline 1740 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1741 { 1742 struct sta_info *sta = rx->sta; 1743 struct sk_buff *skb = rx->skb; 1744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1745 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1746 int i; 1747 1748 if (!sta) 1749 return RX_CONTINUE; 1750 1751 /* 1752 * Update last_rx only for IBSS packets which are for the current 1753 * BSSID and for station already AUTHORIZED to avoid keeping the 1754 * current IBSS network alive in cases where other STAs start 1755 * using different BSSID. This will also give the station another 1756 * chance to restart the authentication/authorization in case 1757 * something went wrong the first time. 1758 */ 1759 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1760 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1761 NL80211_IFTYPE_ADHOC); 1762 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1763 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1764 sta->rx_stats.last_rx = jiffies; 1765 if (ieee80211_is_data(hdr->frame_control) && 1766 !is_multicast_ether_addr(hdr->addr1)) 1767 sta->rx_stats.last_rate = 1768 sta_stats_encode_rate(status); 1769 } 1770 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1771 sta->rx_stats.last_rx = jiffies; 1772 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1773 /* 1774 * Mesh beacons will update last_rx when if they are found to 1775 * match the current local configuration when processed. 1776 */ 1777 sta->rx_stats.last_rx = jiffies; 1778 if (ieee80211_is_data(hdr->frame_control)) 1779 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1780 } 1781 1782 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1783 ieee80211_sta_rx_notify(rx->sdata, hdr); 1784 1785 sta->rx_stats.fragments++; 1786 1787 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1788 sta->rx_stats.bytes += rx->skb->len; 1789 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1790 1791 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1792 sta->rx_stats.last_signal = status->signal; 1793 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1794 } 1795 1796 if (status->chains) { 1797 sta->rx_stats.chains = status->chains; 1798 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1799 int signal = status->chain_signal[i]; 1800 1801 if (!(status->chains & BIT(i))) 1802 continue; 1803 1804 sta->rx_stats.chain_signal_last[i] = signal; 1805 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1806 -signal); 1807 } 1808 } 1809 1810 /* 1811 * Change STA power saving mode only at the end of a frame 1812 * exchange sequence, and only for a data or management 1813 * frame as specified in IEEE 802.11-2016 11.2.3.2 1814 */ 1815 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1816 !ieee80211_has_morefrags(hdr->frame_control) && 1817 !is_multicast_ether_addr(hdr->addr1) && 1818 (ieee80211_is_mgmt(hdr->frame_control) || 1819 ieee80211_is_data(hdr->frame_control)) && 1820 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1821 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1822 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1823 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1824 if (!ieee80211_has_pm(hdr->frame_control)) 1825 sta_ps_end(sta); 1826 } else { 1827 if (ieee80211_has_pm(hdr->frame_control)) 1828 sta_ps_start(sta); 1829 } 1830 } 1831 1832 /* mesh power save support */ 1833 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1834 ieee80211_mps_rx_h_sta_process(sta, hdr); 1835 1836 /* 1837 * Drop (qos-)data::nullfunc frames silently, since they 1838 * are used only to control station power saving mode. 1839 */ 1840 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1841 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1842 1843 /* 1844 * If we receive a 4-addr nullfunc frame from a STA 1845 * that was not moved to a 4-addr STA vlan yet send 1846 * the event to userspace and for older hostapd drop 1847 * the frame to the monitor interface. 1848 */ 1849 if (ieee80211_has_a4(hdr->frame_control) && 1850 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1852 !rx->sdata->u.vlan.sta))) { 1853 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1854 cfg80211_rx_unexpected_4addr_frame( 1855 rx->sdata->dev, sta->sta.addr, 1856 GFP_ATOMIC); 1857 return RX_DROP_MONITOR; 1858 } 1859 /* 1860 * Update counter and free packet here to avoid 1861 * counting this as a dropped packed. 1862 */ 1863 sta->rx_stats.packets++; 1864 dev_kfree_skb(rx->skb); 1865 return RX_QUEUED; 1866 } 1867 1868 return RX_CONTINUE; 1869 } /* ieee80211_rx_h_sta_process */ 1870 1871 static ieee80211_rx_result debug_noinline 1872 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1873 { 1874 struct sk_buff *skb = rx->skb; 1875 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1876 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1877 int keyidx; 1878 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1879 struct ieee80211_key *sta_ptk = NULL; 1880 struct ieee80211_key *ptk_idx = NULL; 1881 int mmie_keyidx = -1; 1882 __le16 fc; 1883 const struct ieee80211_cipher_scheme *cs = NULL; 1884 1885 /* 1886 * Key selection 101 1887 * 1888 * There are four types of keys: 1889 * - GTK (group keys) 1890 * - IGTK (group keys for management frames) 1891 * - PTK (pairwise keys) 1892 * - STK (station-to-station pairwise keys) 1893 * 1894 * When selecting a key, we have to distinguish between multicast 1895 * (including broadcast) and unicast frames, the latter can only 1896 * use PTKs and STKs while the former always use GTKs and IGTKs. 1897 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1898 * unicast frames can also use key indices like GTKs. Hence, if we 1899 * don't have a PTK/STK we check the key index for a WEP key. 1900 * 1901 * Note that in a regular BSS, multicast frames are sent by the 1902 * AP only, associated stations unicast the frame to the AP first 1903 * which then multicasts it on their behalf. 1904 * 1905 * There is also a slight problem in IBSS mode: GTKs are negotiated 1906 * with each station, that is something we don't currently handle. 1907 * The spec seems to expect that one negotiates the same key with 1908 * every station but there's no such requirement; VLANs could be 1909 * possible. 1910 */ 1911 1912 /* start without a key */ 1913 rx->key = NULL; 1914 fc = hdr->frame_control; 1915 1916 if (rx->sta) { 1917 int keyid = rx->sta->ptk_idx; 1918 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1919 1920 if (ieee80211_has_protected(fc)) { 1921 cs = rx->sta->cipher_scheme; 1922 keyid = ieee80211_get_keyid(rx->skb, cs); 1923 1924 if (unlikely(keyid < 0)) 1925 return RX_DROP_UNUSABLE; 1926 1927 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1928 } 1929 } 1930 1931 if (!ieee80211_has_protected(fc)) 1932 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1933 1934 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1935 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1936 if ((status->flag & RX_FLAG_DECRYPTED) && 1937 (status->flag & RX_FLAG_IV_STRIPPED)) 1938 return RX_CONTINUE; 1939 /* Skip decryption if the frame is not protected. */ 1940 if (!ieee80211_has_protected(fc)) 1941 return RX_CONTINUE; 1942 } else if (mmie_keyidx >= 0) { 1943 /* Broadcast/multicast robust management frame / BIP */ 1944 if ((status->flag & RX_FLAG_DECRYPTED) && 1945 (status->flag & RX_FLAG_IV_STRIPPED)) 1946 return RX_CONTINUE; 1947 1948 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1949 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1950 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1951 if (rx->sta) { 1952 if (ieee80211_is_group_privacy_action(skb) && 1953 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1954 return RX_DROP_MONITOR; 1955 1956 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1957 } 1958 if (!rx->key) 1959 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1960 } else if (!ieee80211_has_protected(fc)) { 1961 /* 1962 * The frame was not protected, so skip decryption. However, we 1963 * need to set rx->key if there is a key that could have been 1964 * used so that the frame may be dropped if encryption would 1965 * have been expected. 1966 */ 1967 struct ieee80211_key *key = NULL; 1968 struct ieee80211_sub_if_data *sdata = rx->sdata; 1969 int i; 1970 1971 if (ieee80211_is_mgmt(fc) && 1972 is_multicast_ether_addr(hdr->addr1) && 1973 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1974 rx->key = key; 1975 else { 1976 if (rx->sta) { 1977 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1978 key = rcu_dereference(rx->sta->gtk[i]); 1979 if (key) 1980 break; 1981 } 1982 } 1983 if (!key) { 1984 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1985 key = rcu_dereference(sdata->keys[i]); 1986 if (key) 1987 break; 1988 } 1989 } 1990 if (key) 1991 rx->key = key; 1992 } 1993 return RX_CONTINUE; 1994 } else { 1995 /* 1996 * The device doesn't give us the IV so we won't be 1997 * able to look up the key. That's ok though, we 1998 * don't need to decrypt the frame, we just won't 1999 * be able to keep statistics accurate. 2000 * Except for key threshold notifications, should 2001 * we somehow allow the driver to tell us which key 2002 * the hardware used if this flag is set? 2003 */ 2004 if ((status->flag & RX_FLAG_DECRYPTED) && 2005 (status->flag & RX_FLAG_IV_STRIPPED)) 2006 return RX_CONTINUE; 2007 2008 keyidx = ieee80211_get_keyid(rx->skb, cs); 2009 2010 if (unlikely(keyidx < 0)) 2011 return RX_DROP_UNUSABLE; 2012 2013 /* check per-station GTK first, if multicast packet */ 2014 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2015 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2016 2017 /* if not found, try default key */ 2018 if (!rx->key) { 2019 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2020 2021 /* 2022 * RSNA-protected unicast frames should always be 2023 * sent with pairwise or station-to-station keys, 2024 * but for WEP we allow using a key index as well. 2025 */ 2026 if (rx->key && 2027 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2028 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2029 !is_multicast_ether_addr(hdr->addr1)) 2030 rx->key = NULL; 2031 } 2032 } 2033 2034 if (rx->key) { 2035 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2036 return RX_DROP_MONITOR; 2037 2038 /* TODO: add threshold stuff again */ 2039 } else { 2040 return RX_DROP_MONITOR; 2041 } 2042 2043 switch (rx->key->conf.cipher) { 2044 case WLAN_CIPHER_SUITE_WEP40: 2045 case WLAN_CIPHER_SUITE_WEP104: 2046 result = ieee80211_crypto_wep_decrypt(rx); 2047 break; 2048 case WLAN_CIPHER_SUITE_TKIP: 2049 result = ieee80211_crypto_tkip_decrypt(rx); 2050 break; 2051 case WLAN_CIPHER_SUITE_CCMP: 2052 result = ieee80211_crypto_ccmp_decrypt( 2053 rx, IEEE80211_CCMP_MIC_LEN); 2054 break; 2055 case WLAN_CIPHER_SUITE_CCMP_256: 2056 result = ieee80211_crypto_ccmp_decrypt( 2057 rx, IEEE80211_CCMP_256_MIC_LEN); 2058 break; 2059 case WLAN_CIPHER_SUITE_AES_CMAC: 2060 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2061 break; 2062 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2063 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2064 break; 2065 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2066 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2067 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2068 break; 2069 case WLAN_CIPHER_SUITE_GCMP: 2070 case WLAN_CIPHER_SUITE_GCMP_256: 2071 result = ieee80211_crypto_gcmp_decrypt(rx); 2072 break; 2073 default: 2074 result = ieee80211_crypto_hw_decrypt(rx); 2075 } 2076 2077 /* the hdr variable is invalid after the decrypt handlers */ 2078 2079 /* either the frame has been decrypted or will be dropped */ 2080 status->flag |= RX_FLAG_DECRYPTED; 2081 2082 return result; 2083 } 2084 2085 static inline struct ieee80211_fragment_entry * 2086 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2087 unsigned int frag, unsigned int seq, int rx_queue, 2088 struct sk_buff **skb) 2089 { 2090 struct ieee80211_fragment_entry *entry; 2091 2092 entry = &sdata->fragments[sdata->fragment_next++]; 2093 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2094 sdata->fragment_next = 0; 2095 2096 if (!skb_queue_empty(&entry->skb_list)) 2097 __skb_queue_purge(&entry->skb_list); 2098 2099 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2100 *skb = NULL; 2101 entry->first_frag_time = jiffies; 2102 entry->seq = seq; 2103 entry->rx_queue = rx_queue; 2104 entry->last_frag = frag; 2105 entry->check_sequential_pn = false; 2106 entry->extra_len = 0; 2107 2108 return entry; 2109 } 2110 2111 static inline struct ieee80211_fragment_entry * 2112 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2113 unsigned int frag, unsigned int seq, 2114 int rx_queue, struct ieee80211_hdr *hdr) 2115 { 2116 struct ieee80211_fragment_entry *entry; 2117 int i, idx; 2118 2119 idx = sdata->fragment_next; 2120 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2121 struct ieee80211_hdr *f_hdr; 2122 struct sk_buff *f_skb; 2123 2124 idx--; 2125 if (idx < 0) 2126 idx = IEEE80211_FRAGMENT_MAX - 1; 2127 2128 entry = &sdata->fragments[idx]; 2129 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2130 entry->rx_queue != rx_queue || 2131 entry->last_frag + 1 != frag) 2132 continue; 2133 2134 f_skb = __skb_peek(&entry->skb_list); 2135 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2136 2137 /* 2138 * Check ftype and addresses are equal, else check next fragment 2139 */ 2140 if (((hdr->frame_control ^ f_hdr->frame_control) & 2141 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2142 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2143 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2144 continue; 2145 2146 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2147 __skb_queue_purge(&entry->skb_list); 2148 continue; 2149 } 2150 return entry; 2151 } 2152 2153 return NULL; 2154 } 2155 2156 static ieee80211_rx_result debug_noinline 2157 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2158 { 2159 struct ieee80211_hdr *hdr; 2160 u16 sc; 2161 __le16 fc; 2162 unsigned int frag, seq; 2163 struct ieee80211_fragment_entry *entry; 2164 struct sk_buff *skb; 2165 2166 hdr = (struct ieee80211_hdr *)rx->skb->data; 2167 fc = hdr->frame_control; 2168 2169 if (ieee80211_is_ctl(fc)) 2170 return RX_CONTINUE; 2171 2172 sc = le16_to_cpu(hdr->seq_ctrl); 2173 frag = sc & IEEE80211_SCTL_FRAG; 2174 2175 if (is_multicast_ether_addr(hdr->addr1)) { 2176 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2177 goto out_no_led; 2178 } 2179 2180 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2181 goto out; 2182 2183 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2184 2185 if (skb_linearize(rx->skb)) 2186 return RX_DROP_UNUSABLE; 2187 2188 /* 2189 * skb_linearize() might change the skb->data and 2190 * previously cached variables (in this case, hdr) need to 2191 * be refreshed with the new data. 2192 */ 2193 hdr = (struct ieee80211_hdr *)rx->skb->data; 2194 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2195 2196 if (frag == 0) { 2197 /* This is the first fragment of a new frame. */ 2198 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2199 rx->seqno_idx, &(rx->skb)); 2200 if (rx->key && 2201 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2202 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2203 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2204 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2205 ieee80211_has_protected(fc)) { 2206 int queue = rx->security_idx; 2207 2208 /* Store CCMP/GCMP PN so that we can verify that the 2209 * next fragment has a sequential PN value. 2210 */ 2211 entry->check_sequential_pn = true; 2212 memcpy(entry->last_pn, 2213 rx->key->u.ccmp.rx_pn[queue], 2214 IEEE80211_CCMP_PN_LEN); 2215 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2216 u.ccmp.rx_pn) != 2217 offsetof(struct ieee80211_key, 2218 u.gcmp.rx_pn)); 2219 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2220 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2221 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2222 IEEE80211_GCMP_PN_LEN); 2223 } 2224 return RX_QUEUED; 2225 } 2226 2227 /* This is a fragment for a frame that should already be pending in 2228 * fragment cache. Add this fragment to the end of the pending entry. 2229 */ 2230 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2231 rx->seqno_idx, hdr); 2232 if (!entry) { 2233 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2234 return RX_DROP_MONITOR; 2235 } 2236 2237 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2238 * MPDU PN values are not incrementing in steps of 1." 2239 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2240 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2241 */ 2242 if (entry->check_sequential_pn) { 2243 int i; 2244 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2245 int queue; 2246 2247 if (!rx->key || 2248 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2249 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2250 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2251 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2252 return RX_DROP_UNUSABLE; 2253 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2254 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2255 pn[i]++; 2256 if (pn[i]) 2257 break; 2258 } 2259 queue = rx->security_idx; 2260 rpn = rx->key->u.ccmp.rx_pn[queue]; 2261 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2262 return RX_DROP_UNUSABLE; 2263 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2264 } 2265 2266 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2267 __skb_queue_tail(&entry->skb_list, rx->skb); 2268 entry->last_frag = frag; 2269 entry->extra_len += rx->skb->len; 2270 if (ieee80211_has_morefrags(fc)) { 2271 rx->skb = NULL; 2272 return RX_QUEUED; 2273 } 2274 2275 rx->skb = __skb_dequeue(&entry->skb_list); 2276 if (skb_tailroom(rx->skb) < entry->extra_len) { 2277 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2278 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2279 GFP_ATOMIC))) { 2280 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2281 __skb_queue_purge(&entry->skb_list); 2282 return RX_DROP_UNUSABLE; 2283 } 2284 } 2285 while ((skb = __skb_dequeue(&entry->skb_list))) { 2286 skb_put_data(rx->skb, skb->data, skb->len); 2287 dev_kfree_skb(skb); 2288 } 2289 2290 out: 2291 ieee80211_led_rx(rx->local); 2292 out_no_led: 2293 if (rx->sta) 2294 rx->sta->rx_stats.packets++; 2295 return RX_CONTINUE; 2296 } 2297 2298 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2299 { 2300 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2301 return -EACCES; 2302 2303 return 0; 2304 } 2305 2306 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2307 { 2308 struct sk_buff *skb = rx->skb; 2309 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2310 2311 /* 2312 * Pass through unencrypted frames if the hardware has 2313 * decrypted them already. 2314 */ 2315 if (status->flag & RX_FLAG_DECRYPTED) 2316 return 0; 2317 2318 /* Drop unencrypted frames if key is set. */ 2319 if (unlikely(!ieee80211_has_protected(fc) && 2320 !ieee80211_is_any_nullfunc(fc) && 2321 ieee80211_is_data(fc) && rx->key)) 2322 return -EACCES; 2323 2324 return 0; 2325 } 2326 2327 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2328 { 2329 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2330 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2331 __le16 fc = hdr->frame_control; 2332 2333 /* 2334 * Pass through unencrypted frames if the hardware has 2335 * decrypted them already. 2336 */ 2337 if (status->flag & RX_FLAG_DECRYPTED) 2338 return 0; 2339 2340 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2341 if (unlikely(!ieee80211_has_protected(fc) && 2342 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2343 rx->key)) { 2344 if (ieee80211_is_deauth(fc) || 2345 ieee80211_is_disassoc(fc)) 2346 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2347 rx->skb->data, 2348 rx->skb->len); 2349 return -EACCES; 2350 } 2351 /* BIP does not use Protected field, so need to check MMIE */ 2352 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2353 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2354 if (ieee80211_is_deauth(fc) || 2355 ieee80211_is_disassoc(fc)) 2356 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2357 rx->skb->data, 2358 rx->skb->len); 2359 return -EACCES; 2360 } 2361 /* 2362 * When using MFP, Action frames are not allowed prior to 2363 * having configured keys. 2364 */ 2365 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2366 ieee80211_is_robust_mgmt_frame(rx->skb))) 2367 return -EACCES; 2368 } 2369 2370 return 0; 2371 } 2372 2373 static int 2374 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2375 { 2376 struct ieee80211_sub_if_data *sdata = rx->sdata; 2377 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2378 bool check_port_control = false; 2379 struct ethhdr *ehdr; 2380 int ret; 2381 2382 *port_control = false; 2383 if (ieee80211_has_a4(hdr->frame_control) && 2384 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2385 return -1; 2386 2387 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2388 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2389 2390 if (!sdata->u.mgd.use_4addr) 2391 return -1; 2392 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2393 check_port_control = true; 2394 } 2395 2396 if (is_multicast_ether_addr(hdr->addr1) && 2397 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2398 return -1; 2399 2400 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2401 if (ret < 0) 2402 return ret; 2403 2404 ehdr = (struct ethhdr *) rx->skb->data; 2405 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2406 *port_control = true; 2407 else if (check_port_control) 2408 return -1; 2409 2410 return 0; 2411 } 2412 2413 /* 2414 * requires that rx->skb is a frame with ethernet header 2415 */ 2416 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2417 { 2418 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2419 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2420 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2421 2422 /* 2423 * Allow EAPOL frames to us/the PAE group address regardless 2424 * of whether the frame was encrypted or not. 2425 */ 2426 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2427 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2428 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2429 return true; 2430 2431 if (ieee80211_802_1x_port_control(rx) || 2432 ieee80211_drop_unencrypted(rx, fc)) 2433 return false; 2434 2435 return true; 2436 } 2437 2438 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2439 struct ieee80211_rx_data *rx) 2440 { 2441 struct ieee80211_sub_if_data *sdata = rx->sdata; 2442 struct net_device *dev = sdata->dev; 2443 2444 if (unlikely((skb->protocol == sdata->control_port_protocol || 2445 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) && 2446 sdata->control_port_over_nl80211)) { 2447 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2448 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2449 2450 cfg80211_rx_control_port(dev, skb, noencrypt); 2451 dev_kfree_skb(skb); 2452 } else { 2453 memset(skb->cb, 0, sizeof(skb->cb)); 2454 2455 /* deliver to local stack */ 2456 if (rx->napi) 2457 napi_gro_receive(rx->napi, skb); 2458 else 2459 netif_receive_skb(skb); 2460 } 2461 } 2462 2463 /* 2464 * requires that rx->skb is a frame with ethernet header 2465 */ 2466 static void 2467 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2468 { 2469 struct ieee80211_sub_if_data *sdata = rx->sdata; 2470 struct net_device *dev = sdata->dev; 2471 struct sk_buff *skb, *xmit_skb; 2472 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2473 struct sta_info *dsta; 2474 2475 skb = rx->skb; 2476 xmit_skb = NULL; 2477 2478 ieee80211_rx_stats(dev, skb->len); 2479 2480 if (rx->sta) { 2481 /* The seqno index has the same property as needed 2482 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2483 * for non-QoS-data frames. Here we know it's a data 2484 * frame, so count MSDUs. 2485 */ 2486 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2487 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2488 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2489 } 2490 2491 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2492 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2493 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2494 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2495 if (is_multicast_ether_addr(ehdr->h_dest) && 2496 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2497 /* 2498 * send multicast frames both to higher layers in 2499 * local net stack and back to the wireless medium 2500 */ 2501 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2502 if (!xmit_skb) 2503 net_info_ratelimited("%s: failed to clone multicast frame\n", 2504 dev->name); 2505 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2506 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2507 dsta = sta_info_get(sdata, ehdr->h_dest); 2508 if (dsta) { 2509 /* 2510 * The destination station is associated to 2511 * this AP (in this VLAN), so send the frame 2512 * directly to it and do not pass it to local 2513 * net stack. 2514 */ 2515 xmit_skb = skb; 2516 skb = NULL; 2517 } 2518 } 2519 } 2520 2521 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2522 if (skb) { 2523 /* 'align' will only take the values 0 or 2 here since all 2524 * frames are required to be aligned to 2-byte boundaries 2525 * when being passed to mac80211; the code here works just 2526 * as well if that isn't true, but mac80211 assumes it can 2527 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2528 */ 2529 int align; 2530 2531 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2532 if (align) { 2533 if (WARN_ON(skb_headroom(skb) < 3)) { 2534 dev_kfree_skb(skb); 2535 skb = NULL; 2536 } else { 2537 u8 *data = skb->data; 2538 size_t len = skb_headlen(skb); 2539 skb->data -= align; 2540 memmove(skb->data, data, len); 2541 skb_set_tail_pointer(skb, len); 2542 } 2543 } 2544 } 2545 #endif 2546 2547 if (skb) { 2548 skb->protocol = eth_type_trans(skb, dev); 2549 ieee80211_deliver_skb_to_local_stack(skb, rx); 2550 } 2551 2552 if (xmit_skb) { 2553 /* 2554 * Send to wireless media and increase priority by 256 to 2555 * keep the received priority instead of reclassifying 2556 * the frame (see cfg80211_classify8021d). 2557 */ 2558 xmit_skb->priority += 256; 2559 xmit_skb->protocol = htons(ETH_P_802_3); 2560 skb_reset_network_header(xmit_skb); 2561 skb_reset_mac_header(xmit_skb); 2562 dev_queue_xmit(xmit_skb); 2563 } 2564 } 2565 2566 static ieee80211_rx_result debug_noinline 2567 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2568 { 2569 struct net_device *dev = rx->sdata->dev; 2570 struct sk_buff *skb = rx->skb; 2571 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2572 __le16 fc = hdr->frame_control; 2573 struct sk_buff_head frame_list; 2574 struct ethhdr ethhdr; 2575 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2576 2577 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2578 check_da = NULL; 2579 check_sa = NULL; 2580 } else switch (rx->sdata->vif.type) { 2581 case NL80211_IFTYPE_AP: 2582 case NL80211_IFTYPE_AP_VLAN: 2583 check_da = NULL; 2584 break; 2585 case NL80211_IFTYPE_STATION: 2586 if (!rx->sta || 2587 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2588 check_sa = NULL; 2589 break; 2590 case NL80211_IFTYPE_MESH_POINT: 2591 check_sa = NULL; 2592 break; 2593 default: 2594 break; 2595 } 2596 2597 skb->dev = dev; 2598 __skb_queue_head_init(&frame_list); 2599 2600 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2601 rx->sdata->vif.addr, 2602 rx->sdata->vif.type, 2603 data_offset)) 2604 return RX_DROP_UNUSABLE; 2605 2606 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2607 rx->sdata->vif.type, 2608 rx->local->hw.extra_tx_headroom, 2609 check_da, check_sa); 2610 2611 while (!skb_queue_empty(&frame_list)) { 2612 rx->skb = __skb_dequeue(&frame_list); 2613 2614 if (!ieee80211_frame_allowed(rx, fc)) { 2615 dev_kfree_skb(rx->skb); 2616 continue; 2617 } 2618 2619 ieee80211_deliver_skb(rx); 2620 } 2621 2622 return RX_QUEUED; 2623 } 2624 2625 static ieee80211_rx_result debug_noinline 2626 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2627 { 2628 struct sk_buff *skb = rx->skb; 2629 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2631 __le16 fc = hdr->frame_control; 2632 2633 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2634 return RX_CONTINUE; 2635 2636 if (unlikely(!ieee80211_is_data(fc))) 2637 return RX_CONTINUE; 2638 2639 if (unlikely(!ieee80211_is_data_present(fc))) 2640 return RX_DROP_MONITOR; 2641 2642 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2643 switch (rx->sdata->vif.type) { 2644 case NL80211_IFTYPE_AP_VLAN: 2645 if (!rx->sdata->u.vlan.sta) 2646 return RX_DROP_UNUSABLE; 2647 break; 2648 case NL80211_IFTYPE_STATION: 2649 if (!rx->sdata->u.mgd.use_4addr) 2650 return RX_DROP_UNUSABLE; 2651 break; 2652 default: 2653 return RX_DROP_UNUSABLE; 2654 } 2655 } 2656 2657 if (is_multicast_ether_addr(hdr->addr1)) 2658 return RX_DROP_UNUSABLE; 2659 2660 return __ieee80211_rx_h_amsdu(rx, 0); 2661 } 2662 2663 #ifdef CONFIG_MAC80211_MESH 2664 static ieee80211_rx_result 2665 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2666 { 2667 struct ieee80211_hdr *fwd_hdr, *hdr; 2668 struct ieee80211_tx_info *info; 2669 struct ieee80211s_hdr *mesh_hdr; 2670 struct sk_buff *skb = rx->skb, *fwd_skb; 2671 struct ieee80211_local *local = rx->local; 2672 struct ieee80211_sub_if_data *sdata = rx->sdata; 2673 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2674 u16 ac, q, hdrlen; 2675 int tailroom = 0; 2676 2677 hdr = (struct ieee80211_hdr *) skb->data; 2678 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2679 2680 /* make sure fixed part of mesh header is there, also checks skb len */ 2681 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2682 return RX_DROP_MONITOR; 2683 2684 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2685 2686 /* make sure full mesh header is there, also checks skb len */ 2687 if (!pskb_may_pull(rx->skb, 2688 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2689 return RX_DROP_MONITOR; 2690 2691 /* reload pointers */ 2692 hdr = (struct ieee80211_hdr *) skb->data; 2693 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2694 2695 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2696 return RX_DROP_MONITOR; 2697 2698 /* frame is in RMC, don't forward */ 2699 if (ieee80211_is_data(hdr->frame_control) && 2700 is_multicast_ether_addr(hdr->addr1) && 2701 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2702 return RX_DROP_MONITOR; 2703 2704 if (!ieee80211_is_data(hdr->frame_control)) 2705 return RX_CONTINUE; 2706 2707 if (!mesh_hdr->ttl) 2708 return RX_DROP_MONITOR; 2709 2710 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2711 struct mesh_path *mppath; 2712 char *proxied_addr; 2713 char *mpp_addr; 2714 2715 if (is_multicast_ether_addr(hdr->addr1)) { 2716 mpp_addr = hdr->addr3; 2717 proxied_addr = mesh_hdr->eaddr1; 2718 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2719 MESH_FLAGS_AE_A5_A6) { 2720 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2721 mpp_addr = hdr->addr4; 2722 proxied_addr = mesh_hdr->eaddr2; 2723 } else { 2724 return RX_DROP_MONITOR; 2725 } 2726 2727 rcu_read_lock(); 2728 mppath = mpp_path_lookup(sdata, proxied_addr); 2729 if (!mppath) { 2730 mpp_path_add(sdata, proxied_addr, mpp_addr); 2731 } else { 2732 spin_lock_bh(&mppath->state_lock); 2733 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2734 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2735 mppath->exp_time = jiffies; 2736 spin_unlock_bh(&mppath->state_lock); 2737 } 2738 rcu_read_unlock(); 2739 } 2740 2741 /* Frame has reached destination. Don't forward */ 2742 if (!is_multicast_ether_addr(hdr->addr1) && 2743 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2744 return RX_CONTINUE; 2745 2746 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2747 q = sdata->vif.hw_queue[ac]; 2748 if (ieee80211_queue_stopped(&local->hw, q)) { 2749 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2750 return RX_DROP_MONITOR; 2751 } 2752 skb_set_queue_mapping(skb, q); 2753 2754 if (!--mesh_hdr->ttl) { 2755 if (!is_multicast_ether_addr(hdr->addr1)) 2756 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2757 dropped_frames_ttl); 2758 goto out; 2759 } 2760 2761 if (!ifmsh->mshcfg.dot11MeshForwarding) 2762 goto out; 2763 2764 if (sdata->crypto_tx_tailroom_needed_cnt) 2765 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2766 2767 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2768 sdata->encrypt_headroom, 2769 tailroom, GFP_ATOMIC); 2770 if (!fwd_skb) 2771 goto out; 2772 2773 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2774 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2775 info = IEEE80211_SKB_CB(fwd_skb); 2776 memset(info, 0, sizeof(*info)); 2777 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2778 info->control.vif = &rx->sdata->vif; 2779 info->control.jiffies = jiffies; 2780 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2781 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2782 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2783 /* update power mode indication when forwarding */ 2784 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2785 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2786 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2787 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2788 } else { 2789 /* unable to resolve next hop */ 2790 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2791 fwd_hdr->addr3, 0, 2792 WLAN_REASON_MESH_PATH_NOFORWARD, 2793 fwd_hdr->addr2); 2794 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2795 kfree_skb(fwd_skb); 2796 return RX_DROP_MONITOR; 2797 } 2798 2799 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2800 ieee80211_add_pending_skb(local, fwd_skb); 2801 out: 2802 if (is_multicast_ether_addr(hdr->addr1)) 2803 return RX_CONTINUE; 2804 return RX_DROP_MONITOR; 2805 } 2806 #endif 2807 2808 static ieee80211_rx_result debug_noinline 2809 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2810 { 2811 struct ieee80211_sub_if_data *sdata = rx->sdata; 2812 struct ieee80211_local *local = rx->local; 2813 struct net_device *dev = sdata->dev; 2814 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2815 __le16 fc = hdr->frame_control; 2816 bool port_control; 2817 int err; 2818 2819 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2820 return RX_CONTINUE; 2821 2822 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2823 return RX_DROP_MONITOR; 2824 2825 /* 2826 * Send unexpected-4addr-frame event to hostapd. For older versions, 2827 * also drop the frame to cooked monitor interfaces. 2828 */ 2829 if (ieee80211_has_a4(hdr->frame_control) && 2830 sdata->vif.type == NL80211_IFTYPE_AP) { 2831 if (rx->sta && 2832 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2833 cfg80211_rx_unexpected_4addr_frame( 2834 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2835 return RX_DROP_MONITOR; 2836 } 2837 2838 err = __ieee80211_data_to_8023(rx, &port_control); 2839 if (unlikely(err)) 2840 return RX_DROP_UNUSABLE; 2841 2842 if (!ieee80211_frame_allowed(rx, fc)) 2843 return RX_DROP_MONITOR; 2844 2845 /* directly handle TDLS channel switch requests/responses */ 2846 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2847 cpu_to_be16(ETH_P_TDLS))) { 2848 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2849 2850 if (pskb_may_pull(rx->skb, 2851 offsetof(struct ieee80211_tdls_data, u)) && 2852 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2853 tf->category == WLAN_CATEGORY_TDLS && 2854 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2855 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2856 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2857 schedule_work(&local->tdls_chsw_work); 2858 if (rx->sta) 2859 rx->sta->rx_stats.packets++; 2860 2861 return RX_QUEUED; 2862 } 2863 } 2864 2865 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2866 unlikely(port_control) && sdata->bss) { 2867 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2868 u.ap); 2869 dev = sdata->dev; 2870 rx->sdata = sdata; 2871 } 2872 2873 rx->skb->dev = dev; 2874 2875 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2876 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2877 !is_multicast_ether_addr( 2878 ((struct ethhdr *)rx->skb->data)->h_dest) && 2879 (!local->scanning && 2880 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2881 mod_timer(&local->dynamic_ps_timer, jiffies + 2882 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2883 2884 ieee80211_deliver_skb(rx); 2885 2886 return RX_QUEUED; 2887 } 2888 2889 static ieee80211_rx_result debug_noinline 2890 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2891 { 2892 struct sk_buff *skb = rx->skb; 2893 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2894 struct tid_ampdu_rx *tid_agg_rx; 2895 u16 start_seq_num; 2896 u16 tid; 2897 2898 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2899 return RX_CONTINUE; 2900 2901 if (ieee80211_is_back_req(bar->frame_control)) { 2902 struct { 2903 __le16 control, start_seq_num; 2904 } __packed bar_data; 2905 struct ieee80211_event event = { 2906 .type = BAR_RX_EVENT, 2907 }; 2908 2909 if (!rx->sta) 2910 return RX_DROP_MONITOR; 2911 2912 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2913 &bar_data, sizeof(bar_data))) 2914 return RX_DROP_MONITOR; 2915 2916 tid = le16_to_cpu(bar_data.control) >> 12; 2917 2918 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2919 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2920 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2921 WLAN_BACK_RECIPIENT, 2922 WLAN_REASON_QSTA_REQUIRE_SETUP); 2923 2924 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2925 if (!tid_agg_rx) 2926 return RX_DROP_MONITOR; 2927 2928 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2929 event.u.ba.tid = tid; 2930 event.u.ba.ssn = start_seq_num; 2931 event.u.ba.sta = &rx->sta->sta; 2932 2933 /* reset session timer */ 2934 if (tid_agg_rx->timeout) 2935 mod_timer(&tid_agg_rx->session_timer, 2936 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2937 2938 spin_lock(&tid_agg_rx->reorder_lock); 2939 /* release stored frames up to start of BAR */ 2940 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2941 start_seq_num, frames); 2942 spin_unlock(&tid_agg_rx->reorder_lock); 2943 2944 drv_event_callback(rx->local, rx->sdata, &event); 2945 2946 kfree_skb(skb); 2947 return RX_QUEUED; 2948 } 2949 2950 /* 2951 * After this point, we only want management frames, 2952 * so we can drop all remaining control frames to 2953 * cooked monitor interfaces. 2954 */ 2955 return RX_DROP_MONITOR; 2956 } 2957 2958 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2959 struct ieee80211_mgmt *mgmt, 2960 size_t len) 2961 { 2962 struct ieee80211_local *local = sdata->local; 2963 struct sk_buff *skb; 2964 struct ieee80211_mgmt *resp; 2965 2966 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2967 /* Not to own unicast address */ 2968 return; 2969 } 2970 2971 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2972 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2973 /* Not from the current AP or not associated yet. */ 2974 return; 2975 } 2976 2977 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2978 /* Too short SA Query request frame */ 2979 return; 2980 } 2981 2982 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2983 if (skb == NULL) 2984 return; 2985 2986 skb_reserve(skb, local->hw.extra_tx_headroom); 2987 resp = skb_put_zero(skb, 24); 2988 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2989 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2990 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2991 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2992 IEEE80211_STYPE_ACTION); 2993 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2994 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2995 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2996 memcpy(resp->u.action.u.sa_query.trans_id, 2997 mgmt->u.action.u.sa_query.trans_id, 2998 WLAN_SA_QUERY_TR_ID_LEN); 2999 3000 ieee80211_tx_skb(sdata, skb); 3001 } 3002 3003 static ieee80211_rx_result debug_noinline 3004 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3005 { 3006 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3007 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3008 3009 /* 3010 * From here on, look only at management frames. 3011 * Data and control frames are already handled, 3012 * and unknown (reserved) frames are useless. 3013 */ 3014 if (rx->skb->len < 24) 3015 return RX_DROP_MONITOR; 3016 3017 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3018 return RX_DROP_MONITOR; 3019 3020 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3021 ieee80211_is_beacon(mgmt->frame_control) && 3022 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3023 int sig = 0; 3024 3025 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3026 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3027 sig = status->signal; 3028 3029 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 3030 rx->skb->data, rx->skb->len, 3031 status->freq, sig); 3032 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3033 } 3034 3035 if (ieee80211_drop_unencrypted_mgmt(rx)) 3036 return RX_DROP_UNUSABLE; 3037 3038 return RX_CONTINUE; 3039 } 3040 3041 static ieee80211_rx_result debug_noinline 3042 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3043 { 3044 struct ieee80211_local *local = rx->local; 3045 struct ieee80211_sub_if_data *sdata = rx->sdata; 3046 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3047 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3048 int len = rx->skb->len; 3049 3050 if (!ieee80211_is_action(mgmt->frame_control)) 3051 return RX_CONTINUE; 3052 3053 /* drop too small frames */ 3054 if (len < IEEE80211_MIN_ACTION_SIZE) 3055 return RX_DROP_UNUSABLE; 3056 3057 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3058 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3059 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3060 return RX_DROP_UNUSABLE; 3061 3062 switch (mgmt->u.action.category) { 3063 case WLAN_CATEGORY_HT: 3064 /* reject HT action frames from stations not supporting HT */ 3065 if (!rx->sta->sta.ht_cap.ht_supported) 3066 goto invalid; 3067 3068 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3069 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3070 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3071 sdata->vif.type != NL80211_IFTYPE_AP && 3072 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3073 break; 3074 3075 /* verify action & smps_control/chanwidth are present */ 3076 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3077 goto invalid; 3078 3079 switch (mgmt->u.action.u.ht_smps.action) { 3080 case WLAN_HT_ACTION_SMPS: { 3081 struct ieee80211_supported_band *sband; 3082 enum ieee80211_smps_mode smps_mode; 3083 struct sta_opmode_info sta_opmode = {}; 3084 3085 if (sdata->vif.type != NL80211_IFTYPE_AP && 3086 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3087 goto handled; 3088 3089 /* convert to HT capability */ 3090 switch (mgmt->u.action.u.ht_smps.smps_control) { 3091 case WLAN_HT_SMPS_CONTROL_DISABLED: 3092 smps_mode = IEEE80211_SMPS_OFF; 3093 break; 3094 case WLAN_HT_SMPS_CONTROL_STATIC: 3095 smps_mode = IEEE80211_SMPS_STATIC; 3096 break; 3097 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3098 smps_mode = IEEE80211_SMPS_DYNAMIC; 3099 break; 3100 default: 3101 goto invalid; 3102 } 3103 3104 /* if no change do nothing */ 3105 if (rx->sta->sta.smps_mode == smps_mode) 3106 goto handled; 3107 rx->sta->sta.smps_mode = smps_mode; 3108 sta_opmode.smps_mode = 3109 ieee80211_smps_mode_to_smps_mode(smps_mode); 3110 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3111 3112 sband = rx->local->hw.wiphy->bands[status->band]; 3113 3114 rate_control_rate_update(local, sband, rx->sta, 3115 IEEE80211_RC_SMPS_CHANGED); 3116 cfg80211_sta_opmode_change_notify(sdata->dev, 3117 rx->sta->addr, 3118 &sta_opmode, 3119 GFP_ATOMIC); 3120 goto handled; 3121 } 3122 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3123 struct ieee80211_supported_band *sband; 3124 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3125 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3126 struct sta_opmode_info sta_opmode = {}; 3127 3128 /* If it doesn't support 40 MHz it can't change ... */ 3129 if (!(rx->sta->sta.ht_cap.cap & 3130 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3131 goto handled; 3132 3133 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3134 max_bw = IEEE80211_STA_RX_BW_20; 3135 else 3136 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3137 3138 /* set cur_max_bandwidth and recalc sta bw */ 3139 rx->sta->cur_max_bandwidth = max_bw; 3140 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3141 3142 if (rx->sta->sta.bandwidth == new_bw) 3143 goto handled; 3144 3145 rx->sta->sta.bandwidth = new_bw; 3146 sband = rx->local->hw.wiphy->bands[status->band]; 3147 sta_opmode.bw = 3148 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3149 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3150 3151 rate_control_rate_update(local, sband, rx->sta, 3152 IEEE80211_RC_BW_CHANGED); 3153 cfg80211_sta_opmode_change_notify(sdata->dev, 3154 rx->sta->addr, 3155 &sta_opmode, 3156 GFP_ATOMIC); 3157 goto handled; 3158 } 3159 default: 3160 goto invalid; 3161 } 3162 3163 break; 3164 case WLAN_CATEGORY_PUBLIC: 3165 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3166 goto invalid; 3167 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3168 break; 3169 if (!rx->sta) 3170 break; 3171 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3172 break; 3173 if (mgmt->u.action.u.ext_chan_switch.action_code != 3174 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3175 break; 3176 if (len < offsetof(struct ieee80211_mgmt, 3177 u.action.u.ext_chan_switch.variable)) 3178 goto invalid; 3179 goto queue; 3180 case WLAN_CATEGORY_VHT: 3181 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3182 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3183 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3184 sdata->vif.type != NL80211_IFTYPE_AP && 3185 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3186 break; 3187 3188 /* verify action code is present */ 3189 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3190 goto invalid; 3191 3192 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3193 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3194 /* verify opmode is present */ 3195 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3196 goto invalid; 3197 goto queue; 3198 } 3199 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3200 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3201 goto invalid; 3202 goto queue; 3203 } 3204 default: 3205 break; 3206 } 3207 break; 3208 case WLAN_CATEGORY_BACK: 3209 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3210 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3211 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3212 sdata->vif.type != NL80211_IFTYPE_AP && 3213 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3214 break; 3215 3216 /* verify action_code is present */ 3217 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3218 break; 3219 3220 switch (mgmt->u.action.u.addba_req.action_code) { 3221 case WLAN_ACTION_ADDBA_REQ: 3222 if (len < (IEEE80211_MIN_ACTION_SIZE + 3223 sizeof(mgmt->u.action.u.addba_req))) 3224 goto invalid; 3225 break; 3226 case WLAN_ACTION_ADDBA_RESP: 3227 if (len < (IEEE80211_MIN_ACTION_SIZE + 3228 sizeof(mgmt->u.action.u.addba_resp))) 3229 goto invalid; 3230 break; 3231 case WLAN_ACTION_DELBA: 3232 if (len < (IEEE80211_MIN_ACTION_SIZE + 3233 sizeof(mgmt->u.action.u.delba))) 3234 goto invalid; 3235 break; 3236 default: 3237 goto invalid; 3238 } 3239 3240 goto queue; 3241 case WLAN_CATEGORY_SPECTRUM_MGMT: 3242 /* verify action_code is present */ 3243 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3244 break; 3245 3246 switch (mgmt->u.action.u.measurement.action_code) { 3247 case WLAN_ACTION_SPCT_MSR_REQ: 3248 if (status->band != NL80211_BAND_5GHZ) 3249 break; 3250 3251 if (len < (IEEE80211_MIN_ACTION_SIZE + 3252 sizeof(mgmt->u.action.u.measurement))) 3253 break; 3254 3255 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3256 break; 3257 3258 ieee80211_process_measurement_req(sdata, mgmt, len); 3259 goto handled; 3260 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3261 u8 *bssid; 3262 if (len < (IEEE80211_MIN_ACTION_SIZE + 3263 sizeof(mgmt->u.action.u.chan_switch))) 3264 break; 3265 3266 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3267 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3268 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3269 break; 3270 3271 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3272 bssid = sdata->u.mgd.bssid; 3273 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3274 bssid = sdata->u.ibss.bssid; 3275 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3276 bssid = mgmt->sa; 3277 else 3278 break; 3279 3280 if (!ether_addr_equal(mgmt->bssid, bssid)) 3281 break; 3282 3283 goto queue; 3284 } 3285 } 3286 break; 3287 case WLAN_CATEGORY_SA_QUERY: 3288 if (len < (IEEE80211_MIN_ACTION_SIZE + 3289 sizeof(mgmt->u.action.u.sa_query))) 3290 break; 3291 3292 switch (mgmt->u.action.u.sa_query.action) { 3293 case WLAN_ACTION_SA_QUERY_REQUEST: 3294 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3295 break; 3296 ieee80211_process_sa_query_req(sdata, mgmt, len); 3297 goto handled; 3298 } 3299 break; 3300 case WLAN_CATEGORY_SELF_PROTECTED: 3301 if (len < (IEEE80211_MIN_ACTION_SIZE + 3302 sizeof(mgmt->u.action.u.self_prot.action_code))) 3303 break; 3304 3305 switch (mgmt->u.action.u.self_prot.action_code) { 3306 case WLAN_SP_MESH_PEERING_OPEN: 3307 case WLAN_SP_MESH_PEERING_CLOSE: 3308 case WLAN_SP_MESH_PEERING_CONFIRM: 3309 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3310 goto invalid; 3311 if (sdata->u.mesh.user_mpm) 3312 /* userspace handles this frame */ 3313 break; 3314 goto queue; 3315 case WLAN_SP_MGK_INFORM: 3316 case WLAN_SP_MGK_ACK: 3317 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3318 goto invalid; 3319 break; 3320 } 3321 break; 3322 case WLAN_CATEGORY_MESH_ACTION: 3323 if (len < (IEEE80211_MIN_ACTION_SIZE + 3324 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3325 break; 3326 3327 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3328 break; 3329 if (mesh_action_is_path_sel(mgmt) && 3330 !mesh_path_sel_is_hwmp(sdata)) 3331 break; 3332 goto queue; 3333 } 3334 3335 return RX_CONTINUE; 3336 3337 invalid: 3338 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3339 /* will return in the next handlers */ 3340 return RX_CONTINUE; 3341 3342 handled: 3343 if (rx->sta) 3344 rx->sta->rx_stats.packets++; 3345 dev_kfree_skb(rx->skb); 3346 return RX_QUEUED; 3347 3348 queue: 3349 skb_queue_tail(&sdata->skb_queue, rx->skb); 3350 ieee80211_queue_work(&local->hw, &sdata->work); 3351 if (rx->sta) 3352 rx->sta->rx_stats.packets++; 3353 return RX_QUEUED; 3354 } 3355 3356 static ieee80211_rx_result debug_noinline 3357 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3358 { 3359 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3360 int sig = 0; 3361 3362 /* skip known-bad action frames and return them in the next handler */ 3363 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3364 return RX_CONTINUE; 3365 3366 /* 3367 * Getting here means the kernel doesn't know how to handle 3368 * it, but maybe userspace does ... include returned frames 3369 * so userspace can register for those to know whether ones 3370 * it transmitted were processed or returned. 3371 */ 3372 3373 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3374 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3375 sig = status->signal; 3376 3377 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3378 rx->skb->data, rx->skb->len, 0)) { 3379 if (rx->sta) 3380 rx->sta->rx_stats.packets++; 3381 dev_kfree_skb(rx->skb); 3382 return RX_QUEUED; 3383 } 3384 3385 return RX_CONTINUE; 3386 } 3387 3388 static ieee80211_rx_result debug_noinline 3389 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3390 { 3391 struct ieee80211_local *local = rx->local; 3392 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3393 struct sk_buff *nskb; 3394 struct ieee80211_sub_if_data *sdata = rx->sdata; 3395 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3396 3397 if (!ieee80211_is_action(mgmt->frame_control)) 3398 return RX_CONTINUE; 3399 3400 /* 3401 * For AP mode, hostapd is responsible for handling any action 3402 * frames that we didn't handle, including returning unknown 3403 * ones. For all other modes we will return them to the sender, 3404 * setting the 0x80 bit in the action category, as required by 3405 * 802.11-2012 9.24.4. 3406 * Newer versions of hostapd shall also use the management frame 3407 * registration mechanisms, but older ones still use cooked 3408 * monitor interfaces so push all frames there. 3409 */ 3410 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3411 (sdata->vif.type == NL80211_IFTYPE_AP || 3412 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3413 return RX_DROP_MONITOR; 3414 3415 if (is_multicast_ether_addr(mgmt->da)) 3416 return RX_DROP_MONITOR; 3417 3418 /* do not return rejected action frames */ 3419 if (mgmt->u.action.category & 0x80) 3420 return RX_DROP_UNUSABLE; 3421 3422 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3423 GFP_ATOMIC); 3424 if (nskb) { 3425 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3426 3427 nmgmt->u.action.category |= 0x80; 3428 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3429 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3430 3431 memset(nskb->cb, 0, sizeof(nskb->cb)); 3432 3433 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3434 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3435 3436 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3437 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3438 IEEE80211_TX_CTL_NO_CCK_RATE; 3439 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3440 info->hw_queue = 3441 local->hw.offchannel_tx_hw_queue; 3442 } 3443 3444 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3445 status->band, 0); 3446 } 3447 dev_kfree_skb(rx->skb); 3448 return RX_QUEUED; 3449 } 3450 3451 static ieee80211_rx_result debug_noinline 3452 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3453 { 3454 struct ieee80211_sub_if_data *sdata = rx->sdata; 3455 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3456 __le16 stype; 3457 3458 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3459 3460 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3461 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3462 sdata->vif.type != NL80211_IFTYPE_OCB && 3463 sdata->vif.type != NL80211_IFTYPE_STATION) 3464 return RX_DROP_MONITOR; 3465 3466 switch (stype) { 3467 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3468 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3469 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3470 /* process for all: mesh, mlme, ibss */ 3471 break; 3472 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3473 if (is_multicast_ether_addr(mgmt->da) && 3474 !is_broadcast_ether_addr(mgmt->da)) 3475 return RX_DROP_MONITOR; 3476 3477 /* process only for station/IBSS */ 3478 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3479 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3480 return RX_DROP_MONITOR; 3481 break; 3482 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3483 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3484 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3485 if (is_multicast_ether_addr(mgmt->da) && 3486 !is_broadcast_ether_addr(mgmt->da)) 3487 return RX_DROP_MONITOR; 3488 3489 /* process only for station */ 3490 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3491 return RX_DROP_MONITOR; 3492 break; 3493 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3494 /* process only for ibss and mesh */ 3495 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3496 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3497 return RX_DROP_MONITOR; 3498 break; 3499 default: 3500 return RX_DROP_MONITOR; 3501 } 3502 3503 /* queue up frame and kick off work to process it */ 3504 skb_queue_tail(&sdata->skb_queue, rx->skb); 3505 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3506 if (rx->sta) 3507 rx->sta->rx_stats.packets++; 3508 3509 return RX_QUEUED; 3510 } 3511 3512 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3513 struct ieee80211_rate *rate) 3514 { 3515 struct ieee80211_sub_if_data *sdata; 3516 struct ieee80211_local *local = rx->local; 3517 struct sk_buff *skb = rx->skb, *skb2; 3518 struct net_device *prev_dev = NULL; 3519 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3520 int needed_headroom; 3521 3522 /* 3523 * If cooked monitor has been processed already, then 3524 * don't do it again. If not, set the flag. 3525 */ 3526 if (rx->flags & IEEE80211_RX_CMNTR) 3527 goto out_free_skb; 3528 rx->flags |= IEEE80211_RX_CMNTR; 3529 3530 /* If there are no cooked monitor interfaces, just free the SKB */ 3531 if (!local->cooked_mntrs) 3532 goto out_free_skb; 3533 3534 /* vendor data is long removed here */ 3535 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3536 /* room for the radiotap header based on driver features */ 3537 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3538 3539 if (skb_headroom(skb) < needed_headroom && 3540 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3541 goto out_free_skb; 3542 3543 /* prepend radiotap information */ 3544 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3545 false); 3546 3547 skb_reset_mac_header(skb); 3548 skb->ip_summed = CHECKSUM_UNNECESSARY; 3549 skb->pkt_type = PACKET_OTHERHOST; 3550 skb->protocol = htons(ETH_P_802_2); 3551 3552 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3553 if (!ieee80211_sdata_running(sdata)) 3554 continue; 3555 3556 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3557 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3558 continue; 3559 3560 if (prev_dev) { 3561 skb2 = skb_clone(skb, GFP_ATOMIC); 3562 if (skb2) { 3563 skb2->dev = prev_dev; 3564 netif_receive_skb(skb2); 3565 } 3566 } 3567 3568 prev_dev = sdata->dev; 3569 ieee80211_rx_stats(sdata->dev, skb->len); 3570 } 3571 3572 if (prev_dev) { 3573 skb->dev = prev_dev; 3574 netif_receive_skb(skb); 3575 return; 3576 } 3577 3578 out_free_skb: 3579 dev_kfree_skb(skb); 3580 } 3581 3582 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3583 ieee80211_rx_result res) 3584 { 3585 switch (res) { 3586 case RX_DROP_MONITOR: 3587 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3588 if (rx->sta) 3589 rx->sta->rx_stats.dropped++; 3590 /* fall through */ 3591 case RX_CONTINUE: { 3592 struct ieee80211_rate *rate = NULL; 3593 struct ieee80211_supported_band *sband; 3594 struct ieee80211_rx_status *status; 3595 3596 status = IEEE80211_SKB_RXCB((rx->skb)); 3597 3598 sband = rx->local->hw.wiphy->bands[status->band]; 3599 if (status->encoding == RX_ENC_LEGACY) 3600 rate = &sband->bitrates[status->rate_idx]; 3601 3602 ieee80211_rx_cooked_monitor(rx, rate); 3603 break; 3604 } 3605 case RX_DROP_UNUSABLE: 3606 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3607 if (rx->sta) 3608 rx->sta->rx_stats.dropped++; 3609 dev_kfree_skb(rx->skb); 3610 break; 3611 case RX_QUEUED: 3612 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3613 break; 3614 } 3615 } 3616 3617 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3618 struct sk_buff_head *frames) 3619 { 3620 ieee80211_rx_result res = RX_DROP_MONITOR; 3621 struct sk_buff *skb; 3622 3623 #define CALL_RXH(rxh) \ 3624 do { \ 3625 res = rxh(rx); \ 3626 if (res != RX_CONTINUE) \ 3627 goto rxh_next; \ 3628 } while (0) 3629 3630 /* Lock here to avoid hitting all of the data used in the RX 3631 * path (e.g. key data, station data, ...) concurrently when 3632 * a frame is released from the reorder buffer due to timeout 3633 * from the timer, potentially concurrently with RX from the 3634 * driver. 3635 */ 3636 spin_lock_bh(&rx->local->rx_path_lock); 3637 3638 while ((skb = __skb_dequeue(frames))) { 3639 /* 3640 * all the other fields are valid across frames 3641 * that belong to an aMPDU since they are on the 3642 * same TID from the same station 3643 */ 3644 rx->skb = skb; 3645 3646 CALL_RXH(ieee80211_rx_h_check_more_data); 3647 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3648 CALL_RXH(ieee80211_rx_h_sta_process); 3649 CALL_RXH(ieee80211_rx_h_decrypt); 3650 CALL_RXH(ieee80211_rx_h_defragment); 3651 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3652 /* must be after MMIC verify so header is counted in MPDU mic */ 3653 #ifdef CONFIG_MAC80211_MESH 3654 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3655 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3656 #endif 3657 CALL_RXH(ieee80211_rx_h_amsdu); 3658 CALL_RXH(ieee80211_rx_h_data); 3659 3660 /* special treatment -- needs the queue */ 3661 res = ieee80211_rx_h_ctrl(rx, frames); 3662 if (res != RX_CONTINUE) 3663 goto rxh_next; 3664 3665 CALL_RXH(ieee80211_rx_h_mgmt_check); 3666 CALL_RXH(ieee80211_rx_h_action); 3667 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3668 CALL_RXH(ieee80211_rx_h_action_return); 3669 CALL_RXH(ieee80211_rx_h_mgmt); 3670 3671 rxh_next: 3672 ieee80211_rx_handlers_result(rx, res); 3673 3674 #undef CALL_RXH 3675 } 3676 3677 spin_unlock_bh(&rx->local->rx_path_lock); 3678 } 3679 3680 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3681 { 3682 struct sk_buff_head reorder_release; 3683 ieee80211_rx_result res = RX_DROP_MONITOR; 3684 3685 __skb_queue_head_init(&reorder_release); 3686 3687 #define CALL_RXH(rxh) \ 3688 do { \ 3689 res = rxh(rx); \ 3690 if (res != RX_CONTINUE) \ 3691 goto rxh_next; \ 3692 } while (0) 3693 3694 CALL_RXH(ieee80211_rx_h_check_dup); 3695 CALL_RXH(ieee80211_rx_h_check); 3696 3697 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3698 3699 ieee80211_rx_handlers(rx, &reorder_release); 3700 return; 3701 3702 rxh_next: 3703 ieee80211_rx_handlers_result(rx, res); 3704 3705 #undef CALL_RXH 3706 } 3707 3708 /* 3709 * This function makes calls into the RX path, therefore 3710 * it has to be invoked under RCU read lock. 3711 */ 3712 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3713 { 3714 struct sk_buff_head frames; 3715 struct ieee80211_rx_data rx = { 3716 .sta = sta, 3717 .sdata = sta->sdata, 3718 .local = sta->local, 3719 /* This is OK -- must be QoS data frame */ 3720 .security_idx = tid, 3721 .seqno_idx = tid, 3722 .napi = NULL, /* must be NULL to not have races */ 3723 }; 3724 struct tid_ampdu_rx *tid_agg_rx; 3725 3726 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3727 if (!tid_agg_rx) 3728 return; 3729 3730 __skb_queue_head_init(&frames); 3731 3732 spin_lock(&tid_agg_rx->reorder_lock); 3733 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3734 spin_unlock(&tid_agg_rx->reorder_lock); 3735 3736 if (!skb_queue_empty(&frames)) { 3737 struct ieee80211_event event = { 3738 .type = BA_FRAME_TIMEOUT, 3739 .u.ba.tid = tid, 3740 .u.ba.sta = &sta->sta, 3741 }; 3742 drv_event_callback(rx.local, rx.sdata, &event); 3743 } 3744 3745 ieee80211_rx_handlers(&rx, &frames); 3746 } 3747 3748 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3749 u16 ssn, u64 filtered, 3750 u16 received_mpdus) 3751 { 3752 struct sta_info *sta; 3753 struct tid_ampdu_rx *tid_agg_rx; 3754 struct sk_buff_head frames; 3755 struct ieee80211_rx_data rx = { 3756 /* This is OK -- must be QoS data frame */ 3757 .security_idx = tid, 3758 .seqno_idx = tid, 3759 }; 3760 int i, diff; 3761 3762 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3763 return; 3764 3765 __skb_queue_head_init(&frames); 3766 3767 sta = container_of(pubsta, struct sta_info, sta); 3768 3769 rx.sta = sta; 3770 rx.sdata = sta->sdata; 3771 rx.local = sta->local; 3772 3773 rcu_read_lock(); 3774 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3775 if (!tid_agg_rx) 3776 goto out; 3777 3778 spin_lock_bh(&tid_agg_rx->reorder_lock); 3779 3780 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3781 int release; 3782 3783 /* release all frames in the reorder buffer */ 3784 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3785 IEEE80211_SN_MODULO; 3786 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3787 release, &frames); 3788 /* update ssn to match received ssn */ 3789 tid_agg_rx->head_seq_num = ssn; 3790 } else { 3791 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3792 &frames); 3793 } 3794 3795 /* handle the case that received ssn is behind the mac ssn. 3796 * it can be tid_agg_rx->buf_size behind and still be valid */ 3797 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3798 if (diff >= tid_agg_rx->buf_size) { 3799 tid_agg_rx->reorder_buf_filtered = 0; 3800 goto release; 3801 } 3802 filtered = filtered >> diff; 3803 ssn += diff; 3804 3805 /* update bitmap */ 3806 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3807 int index = (ssn + i) % tid_agg_rx->buf_size; 3808 3809 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3810 if (filtered & BIT_ULL(i)) 3811 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3812 } 3813 3814 /* now process also frames that the filter marking released */ 3815 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3816 3817 release: 3818 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3819 3820 ieee80211_rx_handlers(&rx, &frames); 3821 3822 out: 3823 rcu_read_unlock(); 3824 } 3825 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3826 3827 /* main receive path */ 3828 3829 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3830 { 3831 struct ieee80211_sub_if_data *sdata = rx->sdata; 3832 struct sk_buff *skb = rx->skb; 3833 struct ieee80211_hdr *hdr = (void *)skb->data; 3834 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3835 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3836 bool multicast = is_multicast_ether_addr(hdr->addr1); 3837 3838 switch (sdata->vif.type) { 3839 case NL80211_IFTYPE_STATION: 3840 if (!bssid && !sdata->u.mgd.use_4addr) 3841 return false; 3842 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3843 return false; 3844 if (multicast) 3845 return true; 3846 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3847 case NL80211_IFTYPE_ADHOC: 3848 if (!bssid) 3849 return false; 3850 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3851 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3852 return false; 3853 if (ieee80211_is_beacon(hdr->frame_control)) 3854 return true; 3855 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3856 return false; 3857 if (!multicast && 3858 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3859 return false; 3860 if (!rx->sta) { 3861 int rate_idx; 3862 if (status->encoding != RX_ENC_LEGACY) 3863 rate_idx = 0; /* TODO: HT/VHT rates */ 3864 else 3865 rate_idx = status->rate_idx; 3866 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3867 BIT(rate_idx)); 3868 } 3869 return true; 3870 case NL80211_IFTYPE_OCB: 3871 if (!bssid) 3872 return false; 3873 if (!ieee80211_is_data_present(hdr->frame_control)) 3874 return false; 3875 if (!is_broadcast_ether_addr(bssid)) 3876 return false; 3877 if (!multicast && 3878 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3879 return false; 3880 if (!rx->sta) { 3881 int rate_idx; 3882 if (status->encoding != RX_ENC_LEGACY) 3883 rate_idx = 0; /* TODO: HT rates */ 3884 else 3885 rate_idx = status->rate_idx; 3886 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3887 BIT(rate_idx)); 3888 } 3889 return true; 3890 case NL80211_IFTYPE_MESH_POINT: 3891 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3892 return false; 3893 if (multicast) 3894 return true; 3895 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3896 case NL80211_IFTYPE_AP_VLAN: 3897 case NL80211_IFTYPE_AP: 3898 if (!bssid) 3899 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3900 3901 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3902 /* 3903 * Accept public action frames even when the 3904 * BSSID doesn't match, this is used for P2P 3905 * and location updates. Note that mac80211 3906 * itself never looks at these frames. 3907 */ 3908 if (!multicast && 3909 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3910 return false; 3911 if (ieee80211_is_public_action(hdr, skb->len)) 3912 return true; 3913 return ieee80211_is_beacon(hdr->frame_control); 3914 } 3915 3916 if (!ieee80211_has_tods(hdr->frame_control)) { 3917 /* ignore data frames to TDLS-peers */ 3918 if (ieee80211_is_data(hdr->frame_control)) 3919 return false; 3920 /* ignore action frames to TDLS-peers */ 3921 if (ieee80211_is_action(hdr->frame_control) && 3922 !is_broadcast_ether_addr(bssid) && 3923 !ether_addr_equal(bssid, hdr->addr1)) 3924 return false; 3925 } 3926 3927 /* 3928 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3929 * the BSSID - we've checked that already but may have accepted 3930 * the wildcard (ff:ff:ff:ff:ff:ff). 3931 * 3932 * It also says: 3933 * The BSSID of the Data frame is determined as follows: 3934 * a) If the STA is contained within an AP or is associated 3935 * with an AP, the BSSID is the address currently in use 3936 * by the STA contained in the AP. 3937 * 3938 * So we should not accept data frames with an address that's 3939 * multicast. 3940 * 3941 * Accepting it also opens a security problem because stations 3942 * could encrypt it with the GTK and inject traffic that way. 3943 */ 3944 if (ieee80211_is_data(hdr->frame_control) && multicast) 3945 return false; 3946 3947 return true; 3948 case NL80211_IFTYPE_WDS: 3949 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3950 return false; 3951 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3952 case NL80211_IFTYPE_P2P_DEVICE: 3953 return ieee80211_is_public_action(hdr, skb->len) || 3954 ieee80211_is_probe_req(hdr->frame_control) || 3955 ieee80211_is_probe_resp(hdr->frame_control) || 3956 ieee80211_is_beacon(hdr->frame_control); 3957 case NL80211_IFTYPE_NAN: 3958 /* Currently no frames on NAN interface are allowed */ 3959 return false; 3960 default: 3961 break; 3962 } 3963 3964 WARN_ON_ONCE(1); 3965 return false; 3966 } 3967 3968 void ieee80211_check_fast_rx(struct sta_info *sta) 3969 { 3970 struct ieee80211_sub_if_data *sdata = sta->sdata; 3971 struct ieee80211_local *local = sdata->local; 3972 struct ieee80211_key *key; 3973 struct ieee80211_fast_rx fastrx = { 3974 .dev = sdata->dev, 3975 .vif_type = sdata->vif.type, 3976 .control_port_protocol = sdata->control_port_protocol, 3977 }, *old, *new = NULL; 3978 bool assign = false; 3979 3980 /* use sparse to check that we don't return without updating */ 3981 __acquire(check_fast_rx); 3982 3983 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3984 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3985 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3986 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3987 3988 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3989 3990 /* fast-rx doesn't do reordering */ 3991 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3992 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3993 goto clear; 3994 3995 switch (sdata->vif.type) { 3996 case NL80211_IFTYPE_STATION: 3997 if (sta->sta.tdls) { 3998 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3999 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4000 fastrx.expected_ds_bits = 0; 4001 } else { 4002 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 4003 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4004 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4005 fastrx.expected_ds_bits = 4006 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4007 } 4008 4009 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4010 fastrx.expected_ds_bits |= 4011 cpu_to_le16(IEEE80211_FCTL_TODS); 4012 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4013 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4014 } 4015 4016 if (!sdata->u.mgd.powersave) 4017 break; 4018 4019 /* software powersave is a huge mess, avoid all of it */ 4020 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4021 goto clear; 4022 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4023 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4024 goto clear; 4025 break; 4026 case NL80211_IFTYPE_AP_VLAN: 4027 case NL80211_IFTYPE_AP: 4028 /* parallel-rx requires this, at least with calls to 4029 * ieee80211_sta_ps_transition() 4030 */ 4031 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4032 goto clear; 4033 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4034 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4035 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4036 4037 fastrx.internal_forward = 4038 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4039 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4040 !sdata->u.vlan.sta); 4041 4042 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4043 sdata->u.vlan.sta) { 4044 fastrx.expected_ds_bits |= 4045 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4046 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4047 fastrx.internal_forward = 0; 4048 } 4049 4050 break; 4051 default: 4052 goto clear; 4053 } 4054 4055 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4056 goto clear; 4057 4058 rcu_read_lock(); 4059 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4060 if (key) { 4061 switch (key->conf.cipher) { 4062 case WLAN_CIPHER_SUITE_TKIP: 4063 /* we don't want to deal with MMIC in fast-rx */ 4064 goto clear_rcu; 4065 case WLAN_CIPHER_SUITE_CCMP: 4066 case WLAN_CIPHER_SUITE_CCMP_256: 4067 case WLAN_CIPHER_SUITE_GCMP: 4068 case WLAN_CIPHER_SUITE_GCMP_256: 4069 break; 4070 default: 4071 /* We also don't want to deal with 4072 * WEP or cipher scheme. 4073 */ 4074 goto clear_rcu; 4075 } 4076 4077 fastrx.key = true; 4078 fastrx.icv_len = key->conf.icv_len; 4079 } 4080 4081 assign = true; 4082 clear_rcu: 4083 rcu_read_unlock(); 4084 clear: 4085 __release(check_fast_rx); 4086 4087 if (assign) 4088 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4089 4090 spin_lock_bh(&sta->lock); 4091 old = rcu_dereference_protected(sta->fast_rx, true); 4092 rcu_assign_pointer(sta->fast_rx, new); 4093 spin_unlock_bh(&sta->lock); 4094 4095 if (old) 4096 kfree_rcu(old, rcu_head); 4097 } 4098 4099 void ieee80211_clear_fast_rx(struct sta_info *sta) 4100 { 4101 struct ieee80211_fast_rx *old; 4102 4103 spin_lock_bh(&sta->lock); 4104 old = rcu_dereference_protected(sta->fast_rx, true); 4105 RCU_INIT_POINTER(sta->fast_rx, NULL); 4106 spin_unlock_bh(&sta->lock); 4107 4108 if (old) 4109 kfree_rcu(old, rcu_head); 4110 } 4111 4112 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4113 { 4114 struct ieee80211_local *local = sdata->local; 4115 struct sta_info *sta; 4116 4117 lockdep_assert_held(&local->sta_mtx); 4118 4119 list_for_each_entry_rcu(sta, &local->sta_list, list) { 4120 if (sdata != sta->sdata && 4121 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4122 continue; 4123 ieee80211_check_fast_rx(sta); 4124 } 4125 } 4126 4127 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4128 { 4129 struct ieee80211_local *local = sdata->local; 4130 4131 mutex_lock(&local->sta_mtx); 4132 __ieee80211_check_fast_rx_iface(sdata); 4133 mutex_unlock(&local->sta_mtx); 4134 } 4135 4136 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4137 struct ieee80211_fast_rx *fast_rx) 4138 { 4139 struct sk_buff *skb = rx->skb; 4140 struct ieee80211_hdr *hdr = (void *)skb->data; 4141 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4142 struct sta_info *sta = rx->sta; 4143 int orig_len = skb->len; 4144 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4145 int snap_offs = hdrlen; 4146 struct { 4147 u8 snap[sizeof(rfc1042_header)]; 4148 __be16 proto; 4149 } *payload __aligned(2); 4150 struct { 4151 u8 da[ETH_ALEN]; 4152 u8 sa[ETH_ALEN]; 4153 } addrs __aligned(2); 4154 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4155 4156 if (fast_rx->uses_rss) 4157 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4158 4159 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4160 * to a common data structure; drivers can implement that per queue 4161 * but we don't have that information in mac80211 4162 */ 4163 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4164 return false; 4165 4166 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4167 4168 /* If using encryption, we also need to have: 4169 * - PN_VALIDATED: similar, but the implementation is tricky 4170 * - DECRYPTED: necessary for PN_VALIDATED 4171 */ 4172 if (fast_rx->key && 4173 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4174 return false; 4175 4176 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4177 return false; 4178 4179 if (unlikely(ieee80211_is_frag(hdr))) 4180 return false; 4181 4182 /* Since our interface address cannot be multicast, this 4183 * implicitly also rejects multicast frames without the 4184 * explicit check. 4185 * 4186 * We shouldn't get any *data* frames not addressed to us 4187 * (AP mode will accept multicast *management* frames), but 4188 * punting here will make it go through the full checks in 4189 * ieee80211_accept_frame(). 4190 */ 4191 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4192 return false; 4193 4194 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4195 IEEE80211_FCTL_TODS)) != 4196 fast_rx->expected_ds_bits) 4197 return false; 4198 4199 /* assign the key to drop unencrypted frames (later) 4200 * and strip the IV/MIC if necessary 4201 */ 4202 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4203 /* GCMP header length is the same */ 4204 snap_offs += IEEE80211_CCMP_HDR_LEN; 4205 } 4206 4207 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4208 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4209 goto drop; 4210 4211 payload = (void *)(skb->data + snap_offs); 4212 4213 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4214 return false; 4215 4216 /* Don't handle these here since they require special code. 4217 * Accept AARP and IPX even though they should come with a 4218 * bridge-tunnel header - but if we get them this way then 4219 * there's little point in discarding them. 4220 */ 4221 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4222 payload->proto == fast_rx->control_port_protocol)) 4223 return false; 4224 } 4225 4226 /* after this point, don't punt to the slowpath! */ 4227 4228 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4229 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4230 goto drop; 4231 4232 if (unlikely(fast_rx->sta_notify)) { 4233 ieee80211_sta_rx_notify(rx->sdata, hdr); 4234 fast_rx->sta_notify = false; 4235 } 4236 4237 /* statistics part of ieee80211_rx_h_sta_process() */ 4238 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4239 stats->last_signal = status->signal; 4240 if (!fast_rx->uses_rss) 4241 ewma_signal_add(&sta->rx_stats_avg.signal, 4242 -status->signal); 4243 } 4244 4245 if (status->chains) { 4246 int i; 4247 4248 stats->chains = status->chains; 4249 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4250 int signal = status->chain_signal[i]; 4251 4252 if (!(status->chains & BIT(i))) 4253 continue; 4254 4255 stats->chain_signal_last[i] = signal; 4256 if (!fast_rx->uses_rss) 4257 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4258 -signal); 4259 } 4260 } 4261 /* end of statistics */ 4262 4263 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4264 goto drop; 4265 4266 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4267 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4268 RX_QUEUED) 4269 goto drop; 4270 4271 return true; 4272 } 4273 4274 stats->last_rx = jiffies; 4275 stats->last_rate = sta_stats_encode_rate(status); 4276 4277 stats->fragments++; 4278 stats->packets++; 4279 4280 /* do the header conversion - first grab the addresses */ 4281 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4282 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4283 /* remove the SNAP but leave the ethertype */ 4284 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4285 /* push the addresses in front */ 4286 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4287 4288 skb->dev = fast_rx->dev; 4289 4290 ieee80211_rx_stats(fast_rx->dev, skb->len); 4291 4292 /* The seqno index has the same property as needed 4293 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4294 * for non-QoS-data frames. Here we know it's a data 4295 * frame, so count MSDUs. 4296 */ 4297 u64_stats_update_begin(&stats->syncp); 4298 stats->msdu[rx->seqno_idx]++; 4299 stats->bytes += orig_len; 4300 u64_stats_update_end(&stats->syncp); 4301 4302 if (fast_rx->internal_forward) { 4303 struct sk_buff *xmit_skb = NULL; 4304 if (is_multicast_ether_addr(addrs.da)) { 4305 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4306 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4307 sta_info_get(rx->sdata, addrs.da)) { 4308 xmit_skb = skb; 4309 skb = NULL; 4310 } 4311 4312 if (xmit_skb) { 4313 /* 4314 * Send to wireless media and increase priority by 256 4315 * to keep the received priority instead of 4316 * reclassifying the frame (see cfg80211_classify8021d). 4317 */ 4318 xmit_skb->priority += 256; 4319 xmit_skb->protocol = htons(ETH_P_802_3); 4320 skb_reset_network_header(xmit_skb); 4321 skb_reset_mac_header(xmit_skb); 4322 dev_queue_xmit(xmit_skb); 4323 } 4324 4325 if (!skb) 4326 return true; 4327 } 4328 4329 /* deliver to local stack */ 4330 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4331 memset(skb->cb, 0, sizeof(skb->cb)); 4332 if (rx->napi) 4333 napi_gro_receive(rx->napi, skb); 4334 else 4335 netif_receive_skb(skb); 4336 4337 return true; 4338 drop: 4339 dev_kfree_skb(skb); 4340 stats->dropped++; 4341 return true; 4342 } 4343 4344 /* 4345 * This function returns whether or not the SKB 4346 * was destined for RX processing or not, which, 4347 * if consume is true, is equivalent to whether 4348 * or not the skb was consumed. 4349 */ 4350 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4351 struct sk_buff *skb, bool consume) 4352 { 4353 struct ieee80211_local *local = rx->local; 4354 struct ieee80211_sub_if_data *sdata = rx->sdata; 4355 4356 rx->skb = skb; 4357 4358 /* See if we can do fast-rx; if we have to copy we already lost, 4359 * so punt in that case. We should never have to deliver a data 4360 * frame to multiple interfaces anyway. 4361 * 4362 * We skip the ieee80211_accept_frame() call and do the necessary 4363 * checking inside ieee80211_invoke_fast_rx(). 4364 */ 4365 if (consume && rx->sta) { 4366 struct ieee80211_fast_rx *fast_rx; 4367 4368 fast_rx = rcu_dereference(rx->sta->fast_rx); 4369 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4370 return true; 4371 } 4372 4373 if (!ieee80211_accept_frame(rx)) 4374 return false; 4375 4376 if (!consume) { 4377 skb = skb_copy(skb, GFP_ATOMIC); 4378 if (!skb) { 4379 if (net_ratelimit()) 4380 wiphy_debug(local->hw.wiphy, 4381 "failed to copy skb for %s\n", 4382 sdata->name); 4383 return true; 4384 } 4385 4386 rx->skb = skb; 4387 } 4388 4389 ieee80211_invoke_rx_handlers(rx); 4390 return true; 4391 } 4392 4393 /* 4394 * This is the actual Rx frames handler. as it belongs to Rx path it must 4395 * be called with rcu_read_lock protection. 4396 */ 4397 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4398 struct ieee80211_sta *pubsta, 4399 struct sk_buff *skb, 4400 struct napi_struct *napi) 4401 { 4402 struct ieee80211_local *local = hw_to_local(hw); 4403 struct ieee80211_sub_if_data *sdata; 4404 struct ieee80211_hdr *hdr; 4405 __le16 fc; 4406 struct ieee80211_rx_data rx; 4407 struct ieee80211_sub_if_data *prev; 4408 struct rhlist_head *tmp; 4409 int err = 0; 4410 4411 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4412 memset(&rx, 0, sizeof(rx)); 4413 rx.skb = skb; 4414 rx.local = local; 4415 rx.napi = napi; 4416 4417 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4418 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4419 4420 if (ieee80211_is_mgmt(fc)) { 4421 /* drop frame if too short for header */ 4422 if (skb->len < ieee80211_hdrlen(fc)) 4423 err = -ENOBUFS; 4424 else 4425 err = skb_linearize(skb); 4426 } else { 4427 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4428 } 4429 4430 if (err) { 4431 dev_kfree_skb(skb); 4432 return; 4433 } 4434 4435 hdr = (struct ieee80211_hdr *)skb->data; 4436 ieee80211_parse_qos(&rx); 4437 ieee80211_verify_alignment(&rx); 4438 4439 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4440 ieee80211_is_beacon(hdr->frame_control))) 4441 ieee80211_scan_rx(local, skb); 4442 4443 if (ieee80211_is_data(fc)) { 4444 struct sta_info *sta, *prev_sta; 4445 4446 if (pubsta) { 4447 rx.sta = container_of(pubsta, struct sta_info, sta); 4448 rx.sdata = rx.sta->sdata; 4449 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4450 return; 4451 goto out; 4452 } 4453 4454 prev_sta = NULL; 4455 4456 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4457 if (!prev_sta) { 4458 prev_sta = sta; 4459 continue; 4460 } 4461 4462 rx.sta = prev_sta; 4463 rx.sdata = prev_sta->sdata; 4464 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4465 4466 prev_sta = sta; 4467 } 4468 4469 if (prev_sta) { 4470 rx.sta = prev_sta; 4471 rx.sdata = prev_sta->sdata; 4472 4473 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4474 return; 4475 goto out; 4476 } 4477 } 4478 4479 prev = NULL; 4480 4481 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4482 if (!ieee80211_sdata_running(sdata)) 4483 continue; 4484 4485 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4486 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4487 continue; 4488 4489 /* 4490 * frame is destined for this interface, but if it's 4491 * not also for the previous one we handle that after 4492 * the loop to avoid copying the SKB once too much 4493 */ 4494 4495 if (!prev) { 4496 prev = sdata; 4497 continue; 4498 } 4499 4500 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4501 rx.sdata = prev; 4502 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4503 4504 prev = sdata; 4505 } 4506 4507 if (prev) { 4508 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4509 rx.sdata = prev; 4510 4511 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4512 return; 4513 } 4514 4515 out: 4516 dev_kfree_skb(skb); 4517 } 4518 4519 /* 4520 * This is the receive path handler. It is called by a low level driver when an 4521 * 802.11 MPDU is received from the hardware. 4522 */ 4523 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4524 struct sk_buff *skb, struct napi_struct *napi) 4525 { 4526 struct ieee80211_local *local = hw_to_local(hw); 4527 struct ieee80211_rate *rate = NULL; 4528 struct ieee80211_supported_band *sband; 4529 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4530 4531 WARN_ON_ONCE(softirq_count() == 0); 4532 4533 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4534 goto drop; 4535 4536 sband = local->hw.wiphy->bands[status->band]; 4537 if (WARN_ON(!sband)) 4538 goto drop; 4539 4540 /* 4541 * If we're suspending, it is possible although not too likely 4542 * that we'd be receiving frames after having already partially 4543 * quiesced the stack. We can't process such frames then since 4544 * that might, for example, cause stations to be added or other 4545 * driver callbacks be invoked. 4546 */ 4547 if (unlikely(local->quiescing || local->suspended)) 4548 goto drop; 4549 4550 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4551 if (unlikely(local->in_reconfig)) 4552 goto drop; 4553 4554 /* 4555 * The same happens when we're not even started, 4556 * but that's worth a warning. 4557 */ 4558 if (WARN_ON(!local->started)) 4559 goto drop; 4560 4561 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4562 /* 4563 * Validate the rate, unless a PLCP error means that 4564 * we probably can't have a valid rate here anyway. 4565 */ 4566 4567 switch (status->encoding) { 4568 case RX_ENC_HT: 4569 /* 4570 * rate_idx is MCS index, which can be [0-76] 4571 * as documented on: 4572 * 4573 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4574 * 4575 * Anything else would be some sort of driver or 4576 * hardware error. The driver should catch hardware 4577 * errors. 4578 */ 4579 if (WARN(status->rate_idx > 76, 4580 "Rate marked as an HT rate but passed " 4581 "status->rate_idx is not " 4582 "an MCS index [0-76]: %d (0x%02x)\n", 4583 status->rate_idx, 4584 status->rate_idx)) 4585 goto drop; 4586 break; 4587 case RX_ENC_VHT: 4588 if (WARN_ONCE(status->rate_idx > 9 || 4589 !status->nss || 4590 status->nss > 8, 4591 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4592 status->rate_idx, status->nss)) 4593 goto drop; 4594 break; 4595 case RX_ENC_HE: 4596 if (WARN_ONCE(status->rate_idx > 11 || 4597 !status->nss || 4598 status->nss > 8, 4599 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4600 status->rate_idx, status->nss)) 4601 goto drop; 4602 break; 4603 default: 4604 WARN_ON_ONCE(1); 4605 /* fall through */ 4606 case RX_ENC_LEGACY: 4607 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4608 goto drop; 4609 rate = &sband->bitrates[status->rate_idx]; 4610 } 4611 } 4612 4613 status->rx_flags = 0; 4614 4615 /* 4616 * key references and virtual interfaces are protected using RCU 4617 * and this requires that we are in a read-side RCU section during 4618 * receive processing 4619 */ 4620 rcu_read_lock(); 4621 4622 /* 4623 * Frames with failed FCS/PLCP checksum are not returned, 4624 * all other frames are returned without radiotap header 4625 * if it was previously present. 4626 * Also, frames with less than 16 bytes are dropped. 4627 */ 4628 skb = ieee80211_rx_monitor(local, skb, rate); 4629 if (!skb) { 4630 rcu_read_unlock(); 4631 return; 4632 } 4633 4634 ieee80211_tpt_led_trig_rx(local, 4635 ((struct ieee80211_hdr *)skb->data)->frame_control, 4636 skb->len); 4637 4638 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4639 4640 rcu_read_unlock(); 4641 4642 return; 4643 drop: 4644 kfree_skb(skb); 4645 } 4646 EXPORT_SYMBOL(ieee80211_rx_napi); 4647 4648 /* This is a version of the rx handler that can be called from hard irq 4649 * context. Post the skb on the queue and schedule the tasklet */ 4650 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4651 { 4652 struct ieee80211_local *local = hw_to_local(hw); 4653 4654 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4655 4656 skb->pkt_type = IEEE80211_RX_MSG; 4657 skb_queue_tail(&local->skb_queue, skb); 4658 tasklet_schedule(&local->tasklet); 4659 } 4660 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4661