xref: /linux/net/mac80211/rx.c (revision 3494bec0f6ac8ac06e0ad7c35933db345b2c5a83)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2020 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38 
39 	u64_stats_update_begin(&tstats->syncp);
40 	tstats->rx_packets++;
41 	tstats->rx_bytes += len;
42 	u64_stats_update_end(&tstats->syncp);
43 }
44 
45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 			       enum nl80211_iftype type)
47 {
48 	__le16 fc = hdr->frame_control;
49 
50 	if (ieee80211_is_data(fc)) {
51 		if (len < 24) /* drop incorrect hdr len (data) */
52 			return NULL;
53 
54 		if (ieee80211_has_a4(fc))
55 			return NULL;
56 		if (ieee80211_has_tods(fc))
57 			return hdr->addr1;
58 		if (ieee80211_has_fromds(fc))
59 			return hdr->addr2;
60 
61 		return hdr->addr3;
62 	}
63 
64 	if (ieee80211_is_mgmt(fc)) {
65 		if (len < 24) /* drop incorrect hdr len (mgmt) */
66 			return NULL;
67 		return hdr->addr3;
68 	}
69 
70 	if (ieee80211_is_ctl(fc)) {
71 		if (ieee80211_is_pspoll(fc))
72 			return hdr->addr1;
73 
74 		if (ieee80211_is_back_req(fc)) {
75 			switch (type) {
76 			case NL80211_IFTYPE_STATION:
77 				return hdr->addr2;
78 			case NL80211_IFTYPE_AP:
79 			case NL80211_IFTYPE_AP_VLAN:
80 				return hdr->addr1;
81 			default:
82 				break; /* fall through to the return */
83 			}
84 		}
85 	}
86 
87 	return NULL;
88 }
89 
90 /*
91  * monitor mode reception
92  *
93  * This function cleans up the SKB, i.e. it removes all the stuff
94  * only useful for monitoring.
95  */
96 static void remove_monitor_info(struct sk_buff *skb,
97 				unsigned int present_fcs_len,
98 				unsigned int rtap_space)
99 {
100 	if (present_fcs_len)
101 		__pskb_trim(skb, skb->len - present_fcs_len);
102 	__pskb_pull(skb, rtap_space);
103 }
104 
105 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
106 				     unsigned int rtap_space)
107 {
108 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 	struct ieee80211_hdr *hdr;
110 
111 	hdr = (void *)(skb->data + rtap_space);
112 
113 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
114 			    RX_FLAG_FAILED_PLCP_CRC |
115 			    RX_FLAG_ONLY_MONITOR |
116 			    RX_FLAG_NO_PSDU))
117 		return true;
118 
119 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
120 		return true;
121 
122 	if (ieee80211_is_ctl(hdr->frame_control) &&
123 	    !ieee80211_is_pspoll(hdr->frame_control) &&
124 	    !ieee80211_is_back_req(hdr->frame_control))
125 		return true;
126 
127 	return false;
128 }
129 
130 static int
131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
132 			     struct ieee80211_rx_status *status,
133 			     struct sk_buff *skb)
134 {
135 	int len;
136 
137 	/* always present fields */
138 	len = sizeof(struct ieee80211_radiotap_header) + 8;
139 
140 	/* allocate extra bitmaps */
141 	if (status->chains)
142 		len += 4 * hweight8(status->chains);
143 	/* vendor presence bitmap */
144 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
145 		len += 4;
146 
147 	if (ieee80211_have_rx_timestamp(status)) {
148 		len = ALIGN(len, 8);
149 		len += 8;
150 	}
151 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
152 		len += 1;
153 
154 	/* antenna field, if we don't have per-chain info */
155 	if (!status->chains)
156 		len += 1;
157 
158 	/* padding for RX_FLAGS if necessary */
159 	len = ALIGN(len, 2);
160 
161 	if (status->encoding == RX_ENC_HT) /* HT info */
162 		len += 3;
163 
164 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
165 		len = ALIGN(len, 4);
166 		len += 8;
167 	}
168 
169 	if (status->encoding == RX_ENC_VHT) {
170 		len = ALIGN(len, 2);
171 		len += 12;
172 	}
173 
174 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
175 		len = ALIGN(len, 8);
176 		len += 12;
177 	}
178 
179 	if (status->encoding == RX_ENC_HE &&
180 	    status->flag & RX_FLAG_RADIOTAP_HE) {
181 		len = ALIGN(len, 2);
182 		len += 12;
183 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
184 	}
185 
186 	if (status->encoding == RX_ENC_HE &&
187 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
188 		len = ALIGN(len, 2);
189 		len += 12;
190 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
191 	}
192 
193 	if (status->flag & RX_FLAG_NO_PSDU)
194 		len += 1;
195 
196 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
197 		len = ALIGN(len, 2);
198 		len += 4;
199 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
200 	}
201 
202 	if (status->chains) {
203 		/* antenna and antenna signal fields */
204 		len += 2 * hweight8(status->chains);
205 	}
206 
207 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
208 		struct ieee80211_vendor_radiotap *rtap;
209 		int vendor_data_offset = 0;
210 
211 		/*
212 		 * The position to look at depends on the existence (or non-
213 		 * existence) of other elements, so take that into account...
214 		 */
215 		if (status->flag & RX_FLAG_RADIOTAP_HE)
216 			vendor_data_offset +=
217 				sizeof(struct ieee80211_radiotap_he);
218 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
219 			vendor_data_offset +=
220 				sizeof(struct ieee80211_radiotap_he_mu);
221 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
222 			vendor_data_offset +=
223 				sizeof(struct ieee80211_radiotap_lsig);
224 
225 		rtap = (void *)&skb->data[vendor_data_offset];
226 
227 		/* alignment for fixed 6-byte vendor data header */
228 		len = ALIGN(len, 2);
229 		/* vendor data header */
230 		len += 6;
231 		if (WARN_ON(rtap->align == 0))
232 			rtap->align = 1;
233 		len = ALIGN(len, rtap->align);
234 		len += rtap->len + rtap->pad;
235 	}
236 
237 	return len;
238 }
239 
240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
241 					 struct sk_buff *skb,
242 					 int rtap_space)
243 {
244 	struct {
245 		struct ieee80211_hdr_3addr hdr;
246 		u8 category;
247 		u8 action_code;
248 	} __packed __aligned(2) action;
249 
250 	if (!sdata)
251 		return;
252 
253 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
254 
255 	if (skb->len < rtap_space + sizeof(action) +
256 		       VHT_MUMIMO_GROUPS_DATA_LEN)
257 		return;
258 
259 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
260 		return;
261 
262 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
263 
264 	if (!ieee80211_is_action(action.hdr.frame_control))
265 		return;
266 
267 	if (action.category != WLAN_CATEGORY_VHT)
268 		return;
269 
270 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
271 		return;
272 
273 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
274 		return;
275 
276 	skb = skb_copy(skb, GFP_ATOMIC);
277 	if (!skb)
278 		return;
279 
280 	skb_queue_tail(&sdata->skb_queue, skb);
281 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
282 }
283 
284 /*
285  * ieee80211_add_rx_radiotap_header - add radiotap header
286  *
287  * add a radiotap header containing all the fields which the hardware provided.
288  */
289 static void
290 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
291 				 struct sk_buff *skb,
292 				 struct ieee80211_rate *rate,
293 				 int rtap_len, bool has_fcs)
294 {
295 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
296 	struct ieee80211_radiotap_header *rthdr;
297 	unsigned char *pos;
298 	__le32 *it_present;
299 	u32 it_present_val;
300 	u16 rx_flags = 0;
301 	u16 channel_flags = 0;
302 	int mpdulen, chain;
303 	unsigned long chains = status->chains;
304 	struct ieee80211_vendor_radiotap rtap = {};
305 	struct ieee80211_radiotap_he he = {};
306 	struct ieee80211_radiotap_he_mu he_mu = {};
307 	struct ieee80211_radiotap_lsig lsig = {};
308 
309 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
310 		he = *(struct ieee80211_radiotap_he *)skb->data;
311 		skb_pull(skb, sizeof(he));
312 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
313 	}
314 
315 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
316 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
317 		skb_pull(skb, sizeof(he_mu));
318 	}
319 
320 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
321 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
322 		skb_pull(skb, sizeof(lsig));
323 	}
324 
325 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
326 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
327 		/* rtap.len and rtap.pad are undone immediately */
328 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
329 	}
330 
331 	mpdulen = skb->len;
332 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
333 		mpdulen += FCS_LEN;
334 
335 	rthdr = skb_push(skb, rtap_len);
336 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
337 	it_present = &rthdr->it_present;
338 
339 	/* radiotap header, set always present flags */
340 	rthdr->it_len = cpu_to_le16(rtap_len);
341 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
342 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
343 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
344 
345 	if (!status->chains)
346 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
347 
348 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
349 		it_present_val |=
350 			BIT(IEEE80211_RADIOTAP_EXT) |
351 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
352 		put_unaligned_le32(it_present_val, it_present);
353 		it_present++;
354 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
355 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
356 	}
357 
358 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
359 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
360 				  BIT(IEEE80211_RADIOTAP_EXT);
361 		put_unaligned_le32(it_present_val, it_present);
362 		it_present++;
363 		it_present_val = rtap.present;
364 	}
365 
366 	put_unaligned_le32(it_present_val, it_present);
367 
368 	pos = (void *)(it_present + 1);
369 
370 	/* the order of the following fields is important */
371 
372 	/* IEEE80211_RADIOTAP_TSFT */
373 	if (ieee80211_have_rx_timestamp(status)) {
374 		/* padding */
375 		while ((pos - (u8 *)rthdr) & 7)
376 			*pos++ = 0;
377 		put_unaligned_le64(
378 			ieee80211_calculate_rx_timestamp(local, status,
379 							 mpdulen, 0),
380 			pos);
381 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
382 		pos += 8;
383 	}
384 
385 	/* IEEE80211_RADIOTAP_FLAGS */
386 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
387 		*pos |= IEEE80211_RADIOTAP_F_FCS;
388 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
389 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
390 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
391 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
392 	pos++;
393 
394 	/* IEEE80211_RADIOTAP_RATE */
395 	if (!rate || status->encoding != RX_ENC_LEGACY) {
396 		/*
397 		 * Without rate information don't add it. If we have,
398 		 * MCS information is a separate field in radiotap,
399 		 * added below. The byte here is needed as padding
400 		 * for the channel though, so initialise it to 0.
401 		 */
402 		*pos = 0;
403 	} else {
404 		int shift = 0;
405 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
406 		if (status->bw == RATE_INFO_BW_10)
407 			shift = 1;
408 		else if (status->bw == RATE_INFO_BW_5)
409 			shift = 2;
410 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
411 	}
412 	pos++;
413 
414 	/* IEEE80211_RADIOTAP_CHANNEL */
415 	put_unaligned_le16(status->freq, pos);
416 	pos += 2;
417 	if (status->bw == RATE_INFO_BW_10)
418 		channel_flags |= IEEE80211_CHAN_HALF;
419 	else if (status->bw == RATE_INFO_BW_5)
420 		channel_flags |= IEEE80211_CHAN_QUARTER;
421 
422 	if (status->band == NL80211_BAND_5GHZ)
423 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
424 	else if (status->encoding != RX_ENC_LEGACY)
425 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
426 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
427 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
428 	else if (rate)
429 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
430 	else
431 		channel_flags |= IEEE80211_CHAN_2GHZ;
432 	put_unaligned_le16(channel_flags, pos);
433 	pos += 2;
434 
435 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
436 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
437 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
438 		*pos = status->signal;
439 		rthdr->it_present |=
440 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
441 		pos++;
442 	}
443 
444 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
445 
446 	if (!status->chains) {
447 		/* IEEE80211_RADIOTAP_ANTENNA */
448 		*pos = status->antenna;
449 		pos++;
450 	}
451 
452 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
453 
454 	/* IEEE80211_RADIOTAP_RX_FLAGS */
455 	/* ensure 2 byte alignment for the 2 byte field as required */
456 	if ((pos - (u8 *)rthdr) & 1)
457 		*pos++ = 0;
458 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
459 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
460 	put_unaligned_le16(rx_flags, pos);
461 	pos += 2;
462 
463 	if (status->encoding == RX_ENC_HT) {
464 		unsigned int stbc;
465 
466 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
467 		*pos++ = local->hw.radiotap_mcs_details;
468 		*pos = 0;
469 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
470 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
471 		if (status->bw == RATE_INFO_BW_40)
472 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
473 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
474 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
475 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
476 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
477 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
478 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
479 		pos++;
480 		*pos++ = status->rate_idx;
481 	}
482 
483 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
484 		u16 flags = 0;
485 
486 		/* ensure 4 byte alignment */
487 		while ((pos - (u8 *)rthdr) & 3)
488 			pos++;
489 		rthdr->it_present |=
490 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
491 		put_unaligned_le32(status->ampdu_reference, pos);
492 		pos += 4;
493 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
494 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
495 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
496 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
497 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
498 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
499 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
500 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
501 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
502 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
503 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
504 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
505 		put_unaligned_le16(flags, pos);
506 		pos += 2;
507 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
508 			*pos++ = status->ampdu_delimiter_crc;
509 		else
510 			*pos++ = 0;
511 		*pos++ = 0;
512 	}
513 
514 	if (status->encoding == RX_ENC_VHT) {
515 		u16 known = local->hw.radiotap_vht_details;
516 
517 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
518 		put_unaligned_le16(known, pos);
519 		pos += 2;
520 		/* flags */
521 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
522 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
523 		/* in VHT, STBC is binary */
524 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
525 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
526 		if (status->enc_flags & RX_ENC_FLAG_BF)
527 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
528 		pos++;
529 		/* bandwidth */
530 		switch (status->bw) {
531 		case RATE_INFO_BW_80:
532 			*pos++ = 4;
533 			break;
534 		case RATE_INFO_BW_160:
535 			*pos++ = 11;
536 			break;
537 		case RATE_INFO_BW_40:
538 			*pos++ = 1;
539 			break;
540 		default:
541 			*pos++ = 0;
542 		}
543 		/* MCS/NSS */
544 		*pos = (status->rate_idx << 4) | status->nss;
545 		pos += 4;
546 		/* coding field */
547 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
548 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
549 		pos++;
550 		/* group ID */
551 		pos++;
552 		/* partial_aid */
553 		pos += 2;
554 	}
555 
556 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
557 		u16 accuracy = 0;
558 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
559 
560 		rthdr->it_present |=
561 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
562 
563 		/* ensure 8 byte alignment */
564 		while ((pos - (u8 *)rthdr) & 7)
565 			pos++;
566 
567 		put_unaligned_le64(status->device_timestamp, pos);
568 		pos += sizeof(u64);
569 
570 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
571 			accuracy = local->hw.radiotap_timestamp.accuracy;
572 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
573 		}
574 		put_unaligned_le16(accuracy, pos);
575 		pos += sizeof(u16);
576 
577 		*pos++ = local->hw.radiotap_timestamp.units_pos;
578 		*pos++ = flags;
579 	}
580 
581 	if (status->encoding == RX_ENC_HE &&
582 	    status->flag & RX_FLAG_RADIOTAP_HE) {
583 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
584 
585 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
586 			he.data6 |= HE_PREP(DATA6_NSTS,
587 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
588 						      status->enc_flags));
589 			he.data3 |= HE_PREP(DATA3_STBC, 1);
590 		} else {
591 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
592 		}
593 
594 #define CHECK_GI(s) \
595 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
596 		     (int)NL80211_RATE_INFO_HE_GI_##s)
597 
598 		CHECK_GI(0_8);
599 		CHECK_GI(1_6);
600 		CHECK_GI(3_2);
601 
602 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
603 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
604 		he.data3 |= HE_PREP(DATA3_CODING,
605 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
606 
607 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
608 
609 		switch (status->bw) {
610 		case RATE_INFO_BW_20:
611 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
613 			break;
614 		case RATE_INFO_BW_40:
615 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
616 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
617 			break;
618 		case RATE_INFO_BW_80:
619 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
620 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
621 			break;
622 		case RATE_INFO_BW_160:
623 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
624 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
625 			break;
626 		case RATE_INFO_BW_HE_RU:
627 #define CHECK_RU_ALLOC(s) \
628 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
629 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
630 
631 			CHECK_RU_ALLOC(26);
632 			CHECK_RU_ALLOC(52);
633 			CHECK_RU_ALLOC(106);
634 			CHECK_RU_ALLOC(242);
635 			CHECK_RU_ALLOC(484);
636 			CHECK_RU_ALLOC(996);
637 			CHECK_RU_ALLOC(2x996);
638 
639 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
640 					    status->he_ru + 4);
641 			break;
642 		default:
643 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
644 		}
645 
646 		/* ensure 2 byte alignment */
647 		while ((pos - (u8 *)rthdr) & 1)
648 			pos++;
649 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
650 		memcpy(pos, &he, sizeof(he));
651 		pos += sizeof(he);
652 	}
653 
654 	if (status->encoding == RX_ENC_HE &&
655 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
656 		/* ensure 2 byte alignment */
657 		while ((pos - (u8 *)rthdr) & 1)
658 			pos++;
659 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
660 		memcpy(pos, &he_mu, sizeof(he_mu));
661 		pos += sizeof(he_mu);
662 	}
663 
664 	if (status->flag & RX_FLAG_NO_PSDU) {
665 		rthdr->it_present |=
666 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
667 		*pos++ = status->zero_length_psdu_type;
668 	}
669 
670 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
671 		/* ensure 2 byte alignment */
672 		while ((pos - (u8 *)rthdr) & 1)
673 			pos++;
674 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
675 		memcpy(pos, &lsig, sizeof(lsig));
676 		pos += sizeof(lsig);
677 	}
678 
679 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
680 		*pos++ = status->chain_signal[chain];
681 		*pos++ = chain;
682 	}
683 
684 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
685 		/* ensure 2 byte alignment for the vendor field as required */
686 		if ((pos - (u8 *)rthdr) & 1)
687 			*pos++ = 0;
688 		*pos++ = rtap.oui[0];
689 		*pos++ = rtap.oui[1];
690 		*pos++ = rtap.oui[2];
691 		*pos++ = rtap.subns;
692 		put_unaligned_le16(rtap.len, pos);
693 		pos += 2;
694 		/* align the actual payload as requested */
695 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
696 			*pos++ = 0;
697 		/* data (and possible padding) already follows */
698 	}
699 }
700 
701 static struct sk_buff *
702 ieee80211_make_monitor_skb(struct ieee80211_local *local,
703 			   struct sk_buff **origskb,
704 			   struct ieee80211_rate *rate,
705 			   int rtap_space, bool use_origskb)
706 {
707 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
708 	int rt_hdrlen, needed_headroom;
709 	struct sk_buff *skb;
710 
711 	/* room for the radiotap header based on driver features */
712 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
713 	needed_headroom = rt_hdrlen - rtap_space;
714 
715 	if (use_origskb) {
716 		/* only need to expand headroom if necessary */
717 		skb = *origskb;
718 		*origskb = NULL;
719 
720 		/*
721 		 * This shouldn't trigger often because most devices have an
722 		 * RX header they pull before we get here, and that should
723 		 * be big enough for our radiotap information. We should
724 		 * probably export the length to drivers so that we can have
725 		 * them allocate enough headroom to start with.
726 		 */
727 		if (skb_headroom(skb) < needed_headroom &&
728 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
729 			dev_kfree_skb(skb);
730 			return NULL;
731 		}
732 	} else {
733 		/*
734 		 * Need to make a copy and possibly remove radiotap header
735 		 * and FCS from the original.
736 		 */
737 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
738 
739 		if (!skb)
740 			return NULL;
741 	}
742 
743 	/* prepend radiotap information */
744 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
745 
746 	skb_reset_mac_header(skb);
747 	skb->ip_summed = CHECKSUM_UNNECESSARY;
748 	skb->pkt_type = PACKET_OTHERHOST;
749 	skb->protocol = htons(ETH_P_802_2);
750 
751 	return skb;
752 }
753 
754 /*
755  * This function copies a received frame to all monitor interfaces and
756  * returns a cleaned-up SKB that no longer includes the FCS nor the
757  * radiotap header the driver might have added.
758  */
759 static struct sk_buff *
760 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
761 		     struct ieee80211_rate *rate)
762 {
763 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
764 	struct ieee80211_sub_if_data *sdata;
765 	struct sk_buff *monskb = NULL;
766 	int present_fcs_len = 0;
767 	unsigned int rtap_space = 0;
768 	struct ieee80211_sub_if_data *monitor_sdata =
769 		rcu_dereference(local->monitor_sdata);
770 	bool only_monitor = false;
771 	unsigned int min_head_len;
772 
773 	if (status->flag & RX_FLAG_RADIOTAP_HE)
774 		rtap_space += sizeof(struct ieee80211_radiotap_he);
775 
776 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
777 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
778 
779 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
780 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
781 
782 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
783 		struct ieee80211_vendor_radiotap *rtap =
784 			(void *)(origskb->data + rtap_space);
785 
786 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
787 	}
788 
789 	min_head_len = rtap_space;
790 
791 	/*
792 	 * First, we may need to make a copy of the skb because
793 	 *  (1) we need to modify it for radiotap (if not present), and
794 	 *  (2) the other RX handlers will modify the skb we got.
795 	 *
796 	 * We don't need to, of course, if we aren't going to return
797 	 * the SKB because it has a bad FCS/PLCP checksum.
798 	 */
799 
800 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
801 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
802 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
803 				/* driver bug */
804 				WARN_ON(1);
805 				dev_kfree_skb(origskb);
806 				return NULL;
807 			}
808 			present_fcs_len = FCS_LEN;
809 		}
810 
811 		/* also consider the hdr->frame_control */
812 		min_head_len += 2;
813 	}
814 
815 	/* ensure that the expected data elements are in skb head */
816 	if (!pskb_may_pull(origskb, min_head_len)) {
817 		dev_kfree_skb(origskb);
818 		return NULL;
819 	}
820 
821 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
822 
823 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
824 		if (only_monitor) {
825 			dev_kfree_skb(origskb);
826 			return NULL;
827 		}
828 
829 		remove_monitor_info(origskb, present_fcs_len, rtap_space);
830 		return origskb;
831 	}
832 
833 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
834 
835 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
836 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
837 						 &local->mon_list);
838 
839 		if (!monskb)
840 			monskb = ieee80211_make_monitor_skb(local, &origskb,
841 							    rate, rtap_space,
842 							    only_monitor &&
843 							    last_monitor);
844 
845 		if (monskb) {
846 			struct sk_buff *skb;
847 
848 			if (last_monitor) {
849 				skb = monskb;
850 				monskb = NULL;
851 			} else {
852 				skb = skb_clone(monskb, GFP_ATOMIC);
853 			}
854 
855 			if (skb) {
856 				skb->dev = sdata->dev;
857 				ieee80211_rx_stats(skb->dev, skb->len);
858 				netif_receive_skb(skb);
859 			}
860 		}
861 
862 		if (last_monitor)
863 			break;
864 	}
865 
866 	/* this happens if last_monitor was erroneously false */
867 	dev_kfree_skb(monskb);
868 
869 	/* ditto */
870 	if (!origskb)
871 		return NULL;
872 
873 	remove_monitor_info(origskb, present_fcs_len, rtap_space);
874 	return origskb;
875 }
876 
877 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
878 {
879 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
880 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
881 	int tid, seqno_idx, security_idx;
882 
883 	/* does the frame have a qos control field? */
884 	if (ieee80211_is_data_qos(hdr->frame_control)) {
885 		u8 *qc = ieee80211_get_qos_ctl(hdr);
886 		/* frame has qos control */
887 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
888 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
889 			status->rx_flags |= IEEE80211_RX_AMSDU;
890 
891 		seqno_idx = tid;
892 		security_idx = tid;
893 	} else {
894 		/*
895 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
896 		 *
897 		 *	Sequence numbers for management frames, QoS data
898 		 *	frames with a broadcast/multicast address in the
899 		 *	Address 1 field, and all non-QoS data frames sent
900 		 *	by QoS STAs are assigned using an additional single
901 		 *	modulo-4096 counter, [...]
902 		 *
903 		 * We also use that counter for non-QoS STAs.
904 		 */
905 		seqno_idx = IEEE80211_NUM_TIDS;
906 		security_idx = 0;
907 		if (ieee80211_is_mgmt(hdr->frame_control))
908 			security_idx = IEEE80211_NUM_TIDS;
909 		tid = 0;
910 	}
911 
912 	rx->seqno_idx = seqno_idx;
913 	rx->security_idx = security_idx;
914 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
915 	 * For now, set skb->priority to 0 for other cases. */
916 	rx->skb->priority = (tid > 7) ? 0 : tid;
917 }
918 
919 /**
920  * DOC: Packet alignment
921  *
922  * Drivers always need to pass packets that are aligned to two-byte boundaries
923  * to the stack.
924  *
925  * Additionally, should, if possible, align the payload data in a way that
926  * guarantees that the contained IP header is aligned to a four-byte
927  * boundary. In the case of regular frames, this simply means aligning the
928  * payload to a four-byte boundary (because either the IP header is directly
929  * contained, or IV/RFC1042 headers that have a length divisible by four are
930  * in front of it).  If the payload data is not properly aligned and the
931  * architecture doesn't support efficient unaligned operations, mac80211
932  * will align the data.
933  *
934  * With A-MSDU frames, however, the payload data address must yield two modulo
935  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
936  * push the IP header further back to a multiple of four again. Thankfully, the
937  * specs were sane enough this time around to require padding each A-MSDU
938  * subframe to a length that is a multiple of four.
939  *
940  * Padding like Atheros hardware adds which is between the 802.11 header and
941  * the payload is not supported, the driver is required to move the 802.11
942  * header to be directly in front of the payload in that case.
943  */
944 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
945 {
946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
947 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
948 #endif
949 }
950 
951 
952 /* rx handlers */
953 
954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
955 {
956 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
957 
958 	if (is_multicast_ether_addr(hdr->addr1))
959 		return 0;
960 
961 	return ieee80211_is_robust_mgmt_frame(skb);
962 }
963 
964 
965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
966 {
967 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
968 
969 	if (!is_multicast_ether_addr(hdr->addr1))
970 		return 0;
971 
972 	return ieee80211_is_robust_mgmt_frame(skb);
973 }
974 
975 
976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
977 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
978 {
979 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
980 	struct ieee80211_mmie *mmie;
981 	struct ieee80211_mmie_16 *mmie16;
982 
983 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
984 		return -1;
985 
986 	if (!ieee80211_is_robust_mgmt_frame(skb))
987 		return -1; /* not a robust management frame */
988 
989 	mmie = (struct ieee80211_mmie *)
990 		(skb->data + skb->len - sizeof(*mmie));
991 	if (mmie->element_id == WLAN_EID_MMIE &&
992 	    mmie->length == sizeof(*mmie) - 2)
993 		return le16_to_cpu(mmie->key_id);
994 
995 	mmie16 = (struct ieee80211_mmie_16 *)
996 		(skb->data + skb->len - sizeof(*mmie16));
997 	if (skb->len >= 24 + sizeof(*mmie16) &&
998 	    mmie16->element_id == WLAN_EID_MMIE &&
999 	    mmie16->length == sizeof(*mmie16) - 2)
1000 		return le16_to_cpu(mmie16->key_id);
1001 
1002 	return -1;
1003 }
1004 
1005 static int ieee80211_get_keyid(struct sk_buff *skb,
1006 			       const struct ieee80211_cipher_scheme *cs)
1007 {
1008 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1009 	__le16 fc;
1010 	int hdrlen;
1011 	int minlen;
1012 	u8 key_idx_off;
1013 	u8 key_idx_shift;
1014 	u8 keyid;
1015 
1016 	fc = hdr->frame_control;
1017 	hdrlen = ieee80211_hdrlen(fc);
1018 
1019 	if (cs) {
1020 		minlen = hdrlen + cs->hdr_len;
1021 		key_idx_off = hdrlen + cs->key_idx_off;
1022 		key_idx_shift = cs->key_idx_shift;
1023 	} else {
1024 		/* WEP, TKIP, CCMP and GCMP */
1025 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1026 		key_idx_off = hdrlen + 3;
1027 		key_idx_shift = 6;
1028 	}
1029 
1030 	if (unlikely(skb->len < minlen))
1031 		return -EINVAL;
1032 
1033 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1034 
1035 	if (cs)
1036 		keyid &= cs->key_idx_mask;
1037 	keyid >>= key_idx_shift;
1038 
1039 	/* cs could use more than the usual two bits for the keyid */
1040 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1041 		return -EINVAL;
1042 
1043 	return keyid;
1044 }
1045 
1046 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1047 {
1048 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1049 	char *dev_addr = rx->sdata->vif.addr;
1050 
1051 	if (ieee80211_is_data(hdr->frame_control)) {
1052 		if (is_multicast_ether_addr(hdr->addr1)) {
1053 			if (ieee80211_has_tods(hdr->frame_control) ||
1054 			    !ieee80211_has_fromds(hdr->frame_control))
1055 				return RX_DROP_MONITOR;
1056 			if (ether_addr_equal(hdr->addr3, dev_addr))
1057 				return RX_DROP_MONITOR;
1058 		} else {
1059 			if (!ieee80211_has_a4(hdr->frame_control))
1060 				return RX_DROP_MONITOR;
1061 			if (ether_addr_equal(hdr->addr4, dev_addr))
1062 				return RX_DROP_MONITOR;
1063 		}
1064 	}
1065 
1066 	/* If there is not an established peer link and this is not a peer link
1067 	 * establisment frame, beacon or probe, drop the frame.
1068 	 */
1069 
1070 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1071 		struct ieee80211_mgmt *mgmt;
1072 
1073 		if (!ieee80211_is_mgmt(hdr->frame_control))
1074 			return RX_DROP_MONITOR;
1075 
1076 		if (ieee80211_is_action(hdr->frame_control)) {
1077 			u8 category;
1078 
1079 			/* make sure category field is present */
1080 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1081 				return RX_DROP_MONITOR;
1082 
1083 			mgmt = (struct ieee80211_mgmt *)hdr;
1084 			category = mgmt->u.action.category;
1085 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1086 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1087 				return RX_DROP_MONITOR;
1088 			return RX_CONTINUE;
1089 		}
1090 
1091 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1092 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1093 		    ieee80211_is_beacon(hdr->frame_control) ||
1094 		    ieee80211_is_auth(hdr->frame_control))
1095 			return RX_CONTINUE;
1096 
1097 		return RX_DROP_MONITOR;
1098 	}
1099 
1100 	return RX_CONTINUE;
1101 }
1102 
1103 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1104 					      int index)
1105 {
1106 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1107 	struct sk_buff *tail = skb_peek_tail(frames);
1108 	struct ieee80211_rx_status *status;
1109 
1110 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1111 		return true;
1112 
1113 	if (!tail)
1114 		return false;
1115 
1116 	status = IEEE80211_SKB_RXCB(tail);
1117 	if (status->flag & RX_FLAG_AMSDU_MORE)
1118 		return false;
1119 
1120 	return true;
1121 }
1122 
1123 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1124 					    struct tid_ampdu_rx *tid_agg_rx,
1125 					    int index,
1126 					    struct sk_buff_head *frames)
1127 {
1128 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1129 	struct sk_buff *skb;
1130 	struct ieee80211_rx_status *status;
1131 
1132 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1133 
1134 	if (skb_queue_empty(skb_list))
1135 		goto no_frame;
1136 
1137 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1138 		__skb_queue_purge(skb_list);
1139 		goto no_frame;
1140 	}
1141 
1142 	/* release frames from the reorder ring buffer */
1143 	tid_agg_rx->stored_mpdu_num--;
1144 	while ((skb = __skb_dequeue(skb_list))) {
1145 		status = IEEE80211_SKB_RXCB(skb);
1146 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1147 		__skb_queue_tail(frames, skb);
1148 	}
1149 
1150 no_frame:
1151 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1152 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1153 }
1154 
1155 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1156 					     struct tid_ampdu_rx *tid_agg_rx,
1157 					     u16 head_seq_num,
1158 					     struct sk_buff_head *frames)
1159 {
1160 	int index;
1161 
1162 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1163 
1164 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1165 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1166 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1167 						frames);
1168 	}
1169 }
1170 
1171 /*
1172  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1173  * the skb was added to the buffer longer than this time ago, the earlier
1174  * frames that have not yet been received are assumed to be lost and the skb
1175  * can be released for processing. This may also release other skb's from the
1176  * reorder buffer if there are no additional gaps between the frames.
1177  *
1178  * Callers must hold tid_agg_rx->reorder_lock.
1179  */
1180 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1181 
1182 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1183 					  struct tid_ampdu_rx *tid_agg_rx,
1184 					  struct sk_buff_head *frames)
1185 {
1186 	int index, i, j;
1187 
1188 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1189 
1190 	/* release the buffer until next missing frame */
1191 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1192 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1193 	    tid_agg_rx->stored_mpdu_num) {
1194 		/*
1195 		 * No buffers ready to be released, but check whether any
1196 		 * frames in the reorder buffer have timed out.
1197 		 */
1198 		int skipped = 1;
1199 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1200 		     j = (j + 1) % tid_agg_rx->buf_size) {
1201 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1202 				skipped++;
1203 				continue;
1204 			}
1205 			if (skipped &&
1206 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1207 					HT_RX_REORDER_BUF_TIMEOUT))
1208 				goto set_release_timer;
1209 
1210 			/* don't leave incomplete A-MSDUs around */
1211 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1212 			     i = (i + 1) % tid_agg_rx->buf_size)
1213 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1214 
1215 			ht_dbg_ratelimited(sdata,
1216 					   "release an RX reorder frame due to timeout on earlier frames\n");
1217 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1218 							frames);
1219 
1220 			/*
1221 			 * Increment the head seq# also for the skipped slots.
1222 			 */
1223 			tid_agg_rx->head_seq_num =
1224 				(tid_agg_rx->head_seq_num +
1225 				 skipped) & IEEE80211_SN_MASK;
1226 			skipped = 0;
1227 		}
1228 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1229 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1230 						frames);
1231 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1232 	}
1233 
1234 	if (tid_agg_rx->stored_mpdu_num) {
1235 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1236 
1237 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1238 		     j = (j + 1) % tid_agg_rx->buf_size) {
1239 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1240 				break;
1241 		}
1242 
1243  set_release_timer:
1244 
1245 		if (!tid_agg_rx->removed)
1246 			mod_timer(&tid_agg_rx->reorder_timer,
1247 				  tid_agg_rx->reorder_time[j] + 1 +
1248 				  HT_RX_REORDER_BUF_TIMEOUT);
1249 	} else {
1250 		del_timer(&tid_agg_rx->reorder_timer);
1251 	}
1252 }
1253 
1254 /*
1255  * As this function belongs to the RX path it must be under
1256  * rcu_read_lock protection. It returns false if the frame
1257  * can be processed immediately, true if it was consumed.
1258  */
1259 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1260 					     struct tid_ampdu_rx *tid_agg_rx,
1261 					     struct sk_buff *skb,
1262 					     struct sk_buff_head *frames)
1263 {
1264 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1265 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1266 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1267 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1268 	u16 head_seq_num, buf_size;
1269 	int index;
1270 	bool ret = true;
1271 
1272 	spin_lock(&tid_agg_rx->reorder_lock);
1273 
1274 	/*
1275 	 * Offloaded BA sessions have no known starting sequence number so pick
1276 	 * one from first Rxed frame for this tid after BA was started.
1277 	 */
1278 	if (unlikely(tid_agg_rx->auto_seq)) {
1279 		tid_agg_rx->auto_seq = false;
1280 		tid_agg_rx->ssn = mpdu_seq_num;
1281 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1282 	}
1283 
1284 	buf_size = tid_agg_rx->buf_size;
1285 	head_seq_num = tid_agg_rx->head_seq_num;
1286 
1287 	/*
1288 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1289 	 * be reordered.
1290 	 */
1291 	if (unlikely(!tid_agg_rx->started)) {
1292 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1293 			ret = false;
1294 			goto out;
1295 		}
1296 		tid_agg_rx->started = true;
1297 	}
1298 
1299 	/* frame with out of date sequence number */
1300 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1301 		dev_kfree_skb(skb);
1302 		goto out;
1303 	}
1304 
1305 	/*
1306 	 * If frame the sequence number exceeds our buffering window
1307 	 * size release some previous frames to make room for this one.
1308 	 */
1309 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1310 		head_seq_num = ieee80211_sn_inc(
1311 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1312 		/* release stored frames up to new head to stack */
1313 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1314 						 head_seq_num, frames);
1315 	}
1316 
1317 	/* Now the new frame is always in the range of the reordering buffer */
1318 
1319 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1320 
1321 	/* check if we already stored this frame */
1322 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1323 		dev_kfree_skb(skb);
1324 		goto out;
1325 	}
1326 
1327 	/*
1328 	 * If the current MPDU is in the right order and nothing else
1329 	 * is stored we can process it directly, no need to buffer it.
1330 	 * If it is first but there's something stored, we may be able
1331 	 * to release frames after this one.
1332 	 */
1333 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1334 	    tid_agg_rx->stored_mpdu_num == 0) {
1335 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1336 			tid_agg_rx->head_seq_num =
1337 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1338 		ret = false;
1339 		goto out;
1340 	}
1341 
1342 	/* put the frame in the reordering buffer */
1343 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1344 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1345 		tid_agg_rx->reorder_time[index] = jiffies;
1346 		tid_agg_rx->stored_mpdu_num++;
1347 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1348 	}
1349 
1350  out:
1351 	spin_unlock(&tid_agg_rx->reorder_lock);
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1357  * true if the MPDU was buffered, false if it should be processed.
1358  */
1359 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1360 				       struct sk_buff_head *frames)
1361 {
1362 	struct sk_buff *skb = rx->skb;
1363 	struct ieee80211_local *local = rx->local;
1364 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1365 	struct sta_info *sta = rx->sta;
1366 	struct tid_ampdu_rx *tid_agg_rx;
1367 	u16 sc;
1368 	u8 tid, ack_policy;
1369 
1370 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1371 	    is_multicast_ether_addr(hdr->addr1))
1372 		goto dont_reorder;
1373 
1374 	/*
1375 	 * filter the QoS data rx stream according to
1376 	 * STA/TID and check if this STA/TID is on aggregation
1377 	 */
1378 
1379 	if (!sta)
1380 		goto dont_reorder;
1381 
1382 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1383 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1384 	tid = ieee80211_get_tid(hdr);
1385 
1386 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1387 	if (!tid_agg_rx) {
1388 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1389 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1390 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1391 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1392 					     WLAN_BACK_RECIPIENT,
1393 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1394 		goto dont_reorder;
1395 	}
1396 
1397 	/* qos null data frames are excluded */
1398 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1399 		goto dont_reorder;
1400 
1401 	/* not part of a BA session */
1402 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1403 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1404 		goto dont_reorder;
1405 
1406 	/* new, potentially un-ordered, ampdu frame - process it */
1407 
1408 	/* reset session timer */
1409 	if (tid_agg_rx->timeout)
1410 		tid_agg_rx->last_rx = jiffies;
1411 
1412 	/* if this mpdu is fragmented - terminate rx aggregation session */
1413 	sc = le16_to_cpu(hdr->seq_ctrl);
1414 	if (sc & IEEE80211_SCTL_FRAG) {
1415 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1416 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1417 		return;
1418 	}
1419 
1420 	/*
1421 	 * No locking needed -- we will only ever process one
1422 	 * RX packet at a time, and thus own tid_agg_rx. All
1423 	 * other code manipulating it needs to (and does) make
1424 	 * sure that we cannot get to it any more before doing
1425 	 * anything with it.
1426 	 */
1427 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1428 					     frames))
1429 		return;
1430 
1431  dont_reorder:
1432 	__skb_queue_tail(frames, skb);
1433 }
1434 
1435 static ieee80211_rx_result debug_noinline
1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1437 {
1438 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1439 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1440 
1441 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1442 		return RX_CONTINUE;
1443 
1444 	/*
1445 	 * Drop duplicate 802.11 retransmissions
1446 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1447 	 */
1448 
1449 	if (rx->skb->len < 24)
1450 		return RX_CONTINUE;
1451 
1452 	if (ieee80211_is_ctl(hdr->frame_control) ||
1453 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1454 	    is_multicast_ether_addr(hdr->addr1))
1455 		return RX_CONTINUE;
1456 
1457 	if (!rx->sta)
1458 		return RX_CONTINUE;
1459 
1460 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1461 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1462 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1463 		rx->sta->rx_stats.num_duplicates++;
1464 		return RX_DROP_UNUSABLE;
1465 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1466 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1467 	}
1468 
1469 	return RX_CONTINUE;
1470 }
1471 
1472 static ieee80211_rx_result debug_noinline
1473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1474 {
1475 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1476 
1477 	/* Drop disallowed frame classes based on STA auth/assoc state;
1478 	 * IEEE 802.11, Chap 5.5.
1479 	 *
1480 	 * mac80211 filters only based on association state, i.e. it drops
1481 	 * Class 3 frames from not associated stations. hostapd sends
1482 	 * deauth/disassoc frames when needed. In addition, hostapd is
1483 	 * responsible for filtering on both auth and assoc states.
1484 	 */
1485 
1486 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1487 		return ieee80211_rx_mesh_check(rx);
1488 
1489 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1490 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1491 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1492 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1493 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1494 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1495 		/*
1496 		 * accept port control frames from the AP even when it's not
1497 		 * yet marked ASSOC to prevent a race where we don't set the
1498 		 * assoc bit quickly enough before it sends the first frame
1499 		 */
1500 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1501 		    ieee80211_is_data_present(hdr->frame_control)) {
1502 			unsigned int hdrlen;
1503 			__be16 ethertype;
1504 
1505 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1506 
1507 			if (rx->skb->len < hdrlen + 8)
1508 				return RX_DROP_MONITOR;
1509 
1510 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1511 			if (ethertype == rx->sdata->control_port_protocol)
1512 				return RX_CONTINUE;
1513 		}
1514 
1515 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1516 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1517 					       hdr->addr2,
1518 					       GFP_ATOMIC))
1519 			return RX_DROP_UNUSABLE;
1520 
1521 		return RX_DROP_MONITOR;
1522 	}
1523 
1524 	return RX_CONTINUE;
1525 }
1526 
1527 
1528 static ieee80211_rx_result debug_noinline
1529 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1530 {
1531 	struct ieee80211_local *local;
1532 	struct ieee80211_hdr *hdr;
1533 	struct sk_buff *skb;
1534 
1535 	local = rx->local;
1536 	skb = rx->skb;
1537 	hdr = (struct ieee80211_hdr *) skb->data;
1538 
1539 	if (!local->pspolling)
1540 		return RX_CONTINUE;
1541 
1542 	if (!ieee80211_has_fromds(hdr->frame_control))
1543 		/* this is not from AP */
1544 		return RX_CONTINUE;
1545 
1546 	if (!ieee80211_is_data(hdr->frame_control))
1547 		return RX_CONTINUE;
1548 
1549 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1550 		/* AP has no more frames buffered for us */
1551 		local->pspolling = false;
1552 		return RX_CONTINUE;
1553 	}
1554 
1555 	/* more data bit is set, let's request a new frame from the AP */
1556 	ieee80211_send_pspoll(local, rx->sdata);
1557 
1558 	return RX_CONTINUE;
1559 }
1560 
1561 static void sta_ps_start(struct sta_info *sta)
1562 {
1563 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1564 	struct ieee80211_local *local = sdata->local;
1565 	struct ps_data *ps;
1566 	int tid;
1567 
1568 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1569 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1570 		ps = &sdata->bss->ps;
1571 	else
1572 		return;
1573 
1574 	atomic_inc(&ps->num_sta_ps);
1575 	set_sta_flag(sta, WLAN_STA_PS_STA);
1576 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1577 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1578 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1579 	       sta->sta.addr, sta->sta.aid);
1580 
1581 	ieee80211_clear_fast_xmit(sta);
1582 
1583 	if (!sta->sta.txq[0])
1584 		return;
1585 
1586 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1587 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1588 		struct txq_info *txqi = to_txq_info(txq);
1589 
1590 		spin_lock(&local->active_txq_lock[txq->ac]);
1591 		if (!list_empty(&txqi->schedule_order))
1592 			list_del_init(&txqi->schedule_order);
1593 		spin_unlock(&local->active_txq_lock[txq->ac]);
1594 
1595 		if (txq_has_queue(txq))
1596 			set_bit(tid, &sta->txq_buffered_tids);
1597 		else
1598 			clear_bit(tid, &sta->txq_buffered_tids);
1599 	}
1600 }
1601 
1602 static void sta_ps_end(struct sta_info *sta)
1603 {
1604 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1605 	       sta->sta.addr, sta->sta.aid);
1606 
1607 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1608 		/*
1609 		 * Clear the flag only if the other one is still set
1610 		 * so that the TX path won't start TX'ing new frames
1611 		 * directly ... In the case that the driver flag isn't
1612 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1613 		 */
1614 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1615 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1616 		       sta->sta.addr, sta->sta.aid);
1617 		return;
1618 	}
1619 
1620 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1621 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1622 	ieee80211_sta_ps_deliver_wakeup(sta);
1623 }
1624 
1625 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1626 {
1627 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1628 	bool in_ps;
1629 
1630 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1631 
1632 	/* Don't let the same PS state be set twice */
1633 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1634 	if ((start && in_ps) || (!start && !in_ps))
1635 		return -EINVAL;
1636 
1637 	if (start)
1638 		sta_ps_start(sta);
1639 	else
1640 		sta_ps_end(sta);
1641 
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1645 
1646 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1647 {
1648 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1649 
1650 	if (test_sta_flag(sta, WLAN_STA_SP))
1651 		return;
1652 
1653 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1654 		ieee80211_sta_ps_deliver_poll_response(sta);
1655 	else
1656 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1657 }
1658 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1659 
1660 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1661 {
1662 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1663 	int ac = ieee80211_ac_from_tid(tid);
1664 
1665 	/*
1666 	 * If this AC is not trigger-enabled do nothing unless the
1667 	 * driver is calling us after it already checked.
1668 	 *
1669 	 * NB: This could/should check a separate bitmap of trigger-
1670 	 * enabled queues, but for now we only implement uAPSD w/o
1671 	 * TSPEC changes to the ACs, so they're always the same.
1672 	 */
1673 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1674 	    tid != IEEE80211_NUM_TIDS)
1675 		return;
1676 
1677 	/* if we are in a service period, do nothing */
1678 	if (test_sta_flag(sta, WLAN_STA_SP))
1679 		return;
1680 
1681 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1682 		ieee80211_sta_ps_deliver_uapsd(sta);
1683 	else
1684 		set_sta_flag(sta, WLAN_STA_UAPSD);
1685 }
1686 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1687 
1688 static ieee80211_rx_result debug_noinline
1689 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1690 {
1691 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1692 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1693 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1694 
1695 	if (!rx->sta)
1696 		return RX_CONTINUE;
1697 
1698 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1699 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1700 		return RX_CONTINUE;
1701 
1702 	/*
1703 	 * The device handles station powersave, so don't do anything about
1704 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1705 	 * it to mac80211 since they're handled.)
1706 	 */
1707 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1708 		return RX_CONTINUE;
1709 
1710 	/*
1711 	 * Don't do anything if the station isn't already asleep. In
1712 	 * the uAPSD case, the station will probably be marked asleep,
1713 	 * in the PS-Poll case the station must be confused ...
1714 	 */
1715 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1716 		return RX_CONTINUE;
1717 
1718 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1719 		ieee80211_sta_pspoll(&rx->sta->sta);
1720 
1721 		/* Free PS Poll skb here instead of returning RX_DROP that would
1722 		 * count as an dropped frame. */
1723 		dev_kfree_skb(rx->skb);
1724 
1725 		return RX_QUEUED;
1726 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1727 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1728 		   ieee80211_has_pm(hdr->frame_control) &&
1729 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1730 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1731 		u8 tid = ieee80211_get_tid(hdr);
1732 
1733 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1734 	}
1735 
1736 	return RX_CONTINUE;
1737 }
1738 
1739 static ieee80211_rx_result debug_noinline
1740 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1741 {
1742 	struct sta_info *sta = rx->sta;
1743 	struct sk_buff *skb = rx->skb;
1744 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1745 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1746 	int i;
1747 
1748 	if (!sta)
1749 		return RX_CONTINUE;
1750 
1751 	/*
1752 	 * Update last_rx only for IBSS packets which are for the current
1753 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1754 	 * current IBSS network alive in cases where other STAs start
1755 	 * using different BSSID. This will also give the station another
1756 	 * chance to restart the authentication/authorization in case
1757 	 * something went wrong the first time.
1758 	 */
1759 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1760 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1761 						NL80211_IFTYPE_ADHOC);
1762 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1763 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1764 			sta->rx_stats.last_rx = jiffies;
1765 			if (ieee80211_is_data(hdr->frame_control) &&
1766 			    !is_multicast_ether_addr(hdr->addr1))
1767 				sta->rx_stats.last_rate =
1768 					sta_stats_encode_rate(status);
1769 		}
1770 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1771 		sta->rx_stats.last_rx = jiffies;
1772 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1773 		/*
1774 		 * Mesh beacons will update last_rx when if they are found to
1775 		 * match the current local configuration when processed.
1776 		 */
1777 		sta->rx_stats.last_rx = jiffies;
1778 		if (ieee80211_is_data(hdr->frame_control))
1779 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1780 	}
1781 
1782 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1783 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1784 
1785 	sta->rx_stats.fragments++;
1786 
1787 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1788 	sta->rx_stats.bytes += rx->skb->len;
1789 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1790 
1791 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1792 		sta->rx_stats.last_signal = status->signal;
1793 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1794 	}
1795 
1796 	if (status->chains) {
1797 		sta->rx_stats.chains = status->chains;
1798 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1799 			int signal = status->chain_signal[i];
1800 
1801 			if (!(status->chains & BIT(i)))
1802 				continue;
1803 
1804 			sta->rx_stats.chain_signal_last[i] = signal;
1805 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1806 					-signal);
1807 		}
1808 	}
1809 
1810 	/*
1811 	 * Change STA power saving mode only at the end of a frame
1812 	 * exchange sequence, and only for a data or management
1813 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1814 	 */
1815 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1816 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1817 	    !is_multicast_ether_addr(hdr->addr1) &&
1818 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1819 	     ieee80211_is_data(hdr->frame_control)) &&
1820 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1821 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1822 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1823 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1824 			if (!ieee80211_has_pm(hdr->frame_control))
1825 				sta_ps_end(sta);
1826 		} else {
1827 			if (ieee80211_has_pm(hdr->frame_control))
1828 				sta_ps_start(sta);
1829 		}
1830 	}
1831 
1832 	/* mesh power save support */
1833 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1834 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1835 
1836 	/*
1837 	 * Drop (qos-)data::nullfunc frames silently, since they
1838 	 * are used only to control station power saving mode.
1839 	 */
1840 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1841 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1842 
1843 		/*
1844 		 * If we receive a 4-addr nullfunc frame from a STA
1845 		 * that was not moved to a 4-addr STA vlan yet send
1846 		 * the event to userspace and for older hostapd drop
1847 		 * the frame to the monitor interface.
1848 		 */
1849 		if (ieee80211_has_a4(hdr->frame_control) &&
1850 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1851 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1852 		      !rx->sdata->u.vlan.sta))) {
1853 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1854 				cfg80211_rx_unexpected_4addr_frame(
1855 					rx->sdata->dev, sta->sta.addr,
1856 					GFP_ATOMIC);
1857 			return RX_DROP_MONITOR;
1858 		}
1859 		/*
1860 		 * Update counter and free packet here to avoid
1861 		 * counting this as a dropped packed.
1862 		 */
1863 		sta->rx_stats.packets++;
1864 		dev_kfree_skb(rx->skb);
1865 		return RX_QUEUED;
1866 	}
1867 
1868 	return RX_CONTINUE;
1869 } /* ieee80211_rx_h_sta_process */
1870 
1871 static ieee80211_rx_result debug_noinline
1872 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1873 {
1874 	struct sk_buff *skb = rx->skb;
1875 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1876 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1877 	int keyidx;
1878 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1879 	struct ieee80211_key *sta_ptk = NULL;
1880 	struct ieee80211_key *ptk_idx = NULL;
1881 	int mmie_keyidx = -1;
1882 	__le16 fc;
1883 	const struct ieee80211_cipher_scheme *cs = NULL;
1884 
1885 	/*
1886 	 * Key selection 101
1887 	 *
1888 	 * There are four types of keys:
1889 	 *  - GTK (group keys)
1890 	 *  - IGTK (group keys for management frames)
1891 	 *  - PTK (pairwise keys)
1892 	 *  - STK (station-to-station pairwise keys)
1893 	 *
1894 	 * When selecting a key, we have to distinguish between multicast
1895 	 * (including broadcast) and unicast frames, the latter can only
1896 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1897 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1898 	 * unicast frames can also use key indices like GTKs. Hence, if we
1899 	 * don't have a PTK/STK we check the key index for a WEP key.
1900 	 *
1901 	 * Note that in a regular BSS, multicast frames are sent by the
1902 	 * AP only, associated stations unicast the frame to the AP first
1903 	 * which then multicasts it on their behalf.
1904 	 *
1905 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1906 	 * with each station, that is something we don't currently handle.
1907 	 * The spec seems to expect that one negotiates the same key with
1908 	 * every station but there's no such requirement; VLANs could be
1909 	 * possible.
1910 	 */
1911 
1912 	/* start without a key */
1913 	rx->key = NULL;
1914 	fc = hdr->frame_control;
1915 
1916 	if (rx->sta) {
1917 		int keyid = rx->sta->ptk_idx;
1918 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1919 
1920 		if (ieee80211_has_protected(fc)) {
1921 			cs = rx->sta->cipher_scheme;
1922 			keyid = ieee80211_get_keyid(rx->skb, cs);
1923 
1924 			if (unlikely(keyid < 0))
1925 				return RX_DROP_UNUSABLE;
1926 
1927 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1928 		}
1929 	}
1930 
1931 	if (!ieee80211_has_protected(fc))
1932 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1933 
1934 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1935 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1936 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1937 		    (status->flag & RX_FLAG_IV_STRIPPED))
1938 			return RX_CONTINUE;
1939 		/* Skip decryption if the frame is not protected. */
1940 		if (!ieee80211_has_protected(fc))
1941 			return RX_CONTINUE;
1942 	} else if (mmie_keyidx >= 0) {
1943 		/* Broadcast/multicast robust management frame / BIP */
1944 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1945 		    (status->flag & RX_FLAG_IV_STRIPPED))
1946 			return RX_CONTINUE;
1947 
1948 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1949 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1950 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1951 		if (rx->sta) {
1952 			if (ieee80211_is_group_privacy_action(skb) &&
1953 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1954 				return RX_DROP_MONITOR;
1955 
1956 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1957 		}
1958 		if (!rx->key)
1959 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1960 	} else if (!ieee80211_has_protected(fc)) {
1961 		/*
1962 		 * The frame was not protected, so skip decryption. However, we
1963 		 * need to set rx->key if there is a key that could have been
1964 		 * used so that the frame may be dropped if encryption would
1965 		 * have been expected.
1966 		 */
1967 		struct ieee80211_key *key = NULL;
1968 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1969 		int i;
1970 
1971 		if (ieee80211_is_mgmt(fc) &&
1972 		    is_multicast_ether_addr(hdr->addr1) &&
1973 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1974 			rx->key = key;
1975 		else {
1976 			if (rx->sta) {
1977 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1978 					key = rcu_dereference(rx->sta->gtk[i]);
1979 					if (key)
1980 						break;
1981 				}
1982 			}
1983 			if (!key) {
1984 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1985 					key = rcu_dereference(sdata->keys[i]);
1986 					if (key)
1987 						break;
1988 				}
1989 			}
1990 			if (key)
1991 				rx->key = key;
1992 		}
1993 		return RX_CONTINUE;
1994 	} else {
1995 		/*
1996 		 * The device doesn't give us the IV so we won't be
1997 		 * able to look up the key. That's ok though, we
1998 		 * don't need to decrypt the frame, we just won't
1999 		 * be able to keep statistics accurate.
2000 		 * Except for key threshold notifications, should
2001 		 * we somehow allow the driver to tell us which key
2002 		 * the hardware used if this flag is set?
2003 		 */
2004 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2005 		    (status->flag & RX_FLAG_IV_STRIPPED))
2006 			return RX_CONTINUE;
2007 
2008 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2009 
2010 		if (unlikely(keyidx < 0))
2011 			return RX_DROP_UNUSABLE;
2012 
2013 		/* check per-station GTK first, if multicast packet */
2014 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2015 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2016 
2017 		/* if not found, try default key */
2018 		if (!rx->key) {
2019 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2020 
2021 			/*
2022 			 * RSNA-protected unicast frames should always be
2023 			 * sent with pairwise or station-to-station keys,
2024 			 * but for WEP we allow using a key index as well.
2025 			 */
2026 			if (rx->key &&
2027 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2028 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2029 			    !is_multicast_ether_addr(hdr->addr1))
2030 				rx->key = NULL;
2031 		}
2032 	}
2033 
2034 	if (rx->key) {
2035 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2036 			return RX_DROP_MONITOR;
2037 
2038 		/* TODO: add threshold stuff again */
2039 	} else {
2040 		return RX_DROP_MONITOR;
2041 	}
2042 
2043 	switch (rx->key->conf.cipher) {
2044 	case WLAN_CIPHER_SUITE_WEP40:
2045 	case WLAN_CIPHER_SUITE_WEP104:
2046 		result = ieee80211_crypto_wep_decrypt(rx);
2047 		break;
2048 	case WLAN_CIPHER_SUITE_TKIP:
2049 		result = ieee80211_crypto_tkip_decrypt(rx);
2050 		break;
2051 	case WLAN_CIPHER_SUITE_CCMP:
2052 		result = ieee80211_crypto_ccmp_decrypt(
2053 			rx, IEEE80211_CCMP_MIC_LEN);
2054 		break;
2055 	case WLAN_CIPHER_SUITE_CCMP_256:
2056 		result = ieee80211_crypto_ccmp_decrypt(
2057 			rx, IEEE80211_CCMP_256_MIC_LEN);
2058 		break;
2059 	case WLAN_CIPHER_SUITE_AES_CMAC:
2060 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2061 		break;
2062 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2063 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2064 		break;
2065 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2066 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2067 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2068 		break;
2069 	case WLAN_CIPHER_SUITE_GCMP:
2070 	case WLAN_CIPHER_SUITE_GCMP_256:
2071 		result = ieee80211_crypto_gcmp_decrypt(rx);
2072 		break;
2073 	default:
2074 		result = ieee80211_crypto_hw_decrypt(rx);
2075 	}
2076 
2077 	/* the hdr variable is invalid after the decrypt handlers */
2078 
2079 	/* either the frame has been decrypted or will be dropped */
2080 	status->flag |= RX_FLAG_DECRYPTED;
2081 
2082 	return result;
2083 }
2084 
2085 static inline struct ieee80211_fragment_entry *
2086 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2087 			 unsigned int frag, unsigned int seq, int rx_queue,
2088 			 struct sk_buff **skb)
2089 {
2090 	struct ieee80211_fragment_entry *entry;
2091 
2092 	entry = &sdata->fragments[sdata->fragment_next++];
2093 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2094 		sdata->fragment_next = 0;
2095 
2096 	if (!skb_queue_empty(&entry->skb_list))
2097 		__skb_queue_purge(&entry->skb_list);
2098 
2099 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2100 	*skb = NULL;
2101 	entry->first_frag_time = jiffies;
2102 	entry->seq = seq;
2103 	entry->rx_queue = rx_queue;
2104 	entry->last_frag = frag;
2105 	entry->check_sequential_pn = false;
2106 	entry->extra_len = 0;
2107 
2108 	return entry;
2109 }
2110 
2111 static inline struct ieee80211_fragment_entry *
2112 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2113 			  unsigned int frag, unsigned int seq,
2114 			  int rx_queue, struct ieee80211_hdr *hdr)
2115 {
2116 	struct ieee80211_fragment_entry *entry;
2117 	int i, idx;
2118 
2119 	idx = sdata->fragment_next;
2120 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2121 		struct ieee80211_hdr *f_hdr;
2122 		struct sk_buff *f_skb;
2123 
2124 		idx--;
2125 		if (idx < 0)
2126 			idx = IEEE80211_FRAGMENT_MAX - 1;
2127 
2128 		entry = &sdata->fragments[idx];
2129 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2130 		    entry->rx_queue != rx_queue ||
2131 		    entry->last_frag + 1 != frag)
2132 			continue;
2133 
2134 		f_skb = __skb_peek(&entry->skb_list);
2135 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2136 
2137 		/*
2138 		 * Check ftype and addresses are equal, else check next fragment
2139 		 */
2140 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2141 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2142 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2143 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2144 			continue;
2145 
2146 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2147 			__skb_queue_purge(&entry->skb_list);
2148 			continue;
2149 		}
2150 		return entry;
2151 	}
2152 
2153 	return NULL;
2154 }
2155 
2156 static ieee80211_rx_result debug_noinline
2157 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2158 {
2159 	struct ieee80211_hdr *hdr;
2160 	u16 sc;
2161 	__le16 fc;
2162 	unsigned int frag, seq;
2163 	struct ieee80211_fragment_entry *entry;
2164 	struct sk_buff *skb;
2165 
2166 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2167 	fc = hdr->frame_control;
2168 
2169 	if (ieee80211_is_ctl(fc))
2170 		return RX_CONTINUE;
2171 
2172 	sc = le16_to_cpu(hdr->seq_ctrl);
2173 	frag = sc & IEEE80211_SCTL_FRAG;
2174 
2175 	if (is_multicast_ether_addr(hdr->addr1)) {
2176 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2177 		goto out_no_led;
2178 	}
2179 
2180 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2181 		goto out;
2182 
2183 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2184 
2185 	if (skb_linearize(rx->skb))
2186 		return RX_DROP_UNUSABLE;
2187 
2188 	/*
2189 	 *  skb_linearize() might change the skb->data and
2190 	 *  previously cached variables (in this case, hdr) need to
2191 	 *  be refreshed with the new data.
2192 	 */
2193 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2194 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2195 
2196 	if (frag == 0) {
2197 		/* This is the first fragment of a new frame. */
2198 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2199 						 rx->seqno_idx, &(rx->skb));
2200 		if (rx->key &&
2201 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2202 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2203 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2204 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2205 		    ieee80211_has_protected(fc)) {
2206 			int queue = rx->security_idx;
2207 
2208 			/* Store CCMP/GCMP PN so that we can verify that the
2209 			 * next fragment has a sequential PN value.
2210 			 */
2211 			entry->check_sequential_pn = true;
2212 			memcpy(entry->last_pn,
2213 			       rx->key->u.ccmp.rx_pn[queue],
2214 			       IEEE80211_CCMP_PN_LEN);
2215 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2216 					      u.ccmp.rx_pn) !=
2217 				     offsetof(struct ieee80211_key,
2218 					      u.gcmp.rx_pn));
2219 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2220 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2221 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2222 				     IEEE80211_GCMP_PN_LEN);
2223 		}
2224 		return RX_QUEUED;
2225 	}
2226 
2227 	/* This is a fragment for a frame that should already be pending in
2228 	 * fragment cache. Add this fragment to the end of the pending entry.
2229 	 */
2230 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2231 					  rx->seqno_idx, hdr);
2232 	if (!entry) {
2233 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2234 		return RX_DROP_MONITOR;
2235 	}
2236 
2237 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2238 	 *  MPDU PN values are not incrementing in steps of 1."
2239 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2240 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2241 	 */
2242 	if (entry->check_sequential_pn) {
2243 		int i;
2244 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2245 		int queue;
2246 
2247 		if (!rx->key ||
2248 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2249 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2250 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2251 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2252 			return RX_DROP_UNUSABLE;
2253 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2254 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2255 			pn[i]++;
2256 			if (pn[i])
2257 				break;
2258 		}
2259 		queue = rx->security_idx;
2260 		rpn = rx->key->u.ccmp.rx_pn[queue];
2261 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2262 			return RX_DROP_UNUSABLE;
2263 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2264 	}
2265 
2266 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2267 	__skb_queue_tail(&entry->skb_list, rx->skb);
2268 	entry->last_frag = frag;
2269 	entry->extra_len += rx->skb->len;
2270 	if (ieee80211_has_morefrags(fc)) {
2271 		rx->skb = NULL;
2272 		return RX_QUEUED;
2273 	}
2274 
2275 	rx->skb = __skb_dequeue(&entry->skb_list);
2276 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2277 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2278 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2279 					      GFP_ATOMIC))) {
2280 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2281 			__skb_queue_purge(&entry->skb_list);
2282 			return RX_DROP_UNUSABLE;
2283 		}
2284 	}
2285 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2286 		skb_put_data(rx->skb, skb->data, skb->len);
2287 		dev_kfree_skb(skb);
2288 	}
2289 
2290  out:
2291 	ieee80211_led_rx(rx->local);
2292  out_no_led:
2293 	if (rx->sta)
2294 		rx->sta->rx_stats.packets++;
2295 	return RX_CONTINUE;
2296 }
2297 
2298 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2299 {
2300 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2301 		return -EACCES;
2302 
2303 	return 0;
2304 }
2305 
2306 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2307 {
2308 	struct sk_buff *skb = rx->skb;
2309 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2310 
2311 	/*
2312 	 * Pass through unencrypted frames if the hardware has
2313 	 * decrypted them already.
2314 	 */
2315 	if (status->flag & RX_FLAG_DECRYPTED)
2316 		return 0;
2317 
2318 	/* Drop unencrypted frames if key is set. */
2319 	if (unlikely(!ieee80211_has_protected(fc) &&
2320 		     !ieee80211_is_any_nullfunc(fc) &&
2321 		     ieee80211_is_data(fc) && rx->key))
2322 		return -EACCES;
2323 
2324 	return 0;
2325 }
2326 
2327 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2328 {
2329 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2330 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2331 	__le16 fc = hdr->frame_control;
2332 
2333 	/*
2334 	 * Pass through unencrypted frames if the hardware has
2335 	 * decrypted them already.
2336 	 */
2337 	if (status->flag & RX_FLAG_DECRYPTED)
2338 		return 0;
2339 
2340 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2341 		if (unlikely(!ieee80211_has_protected(fc) &&
2342 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2343 			     rx->key)) {
2344 			if (ieee80211_is_deauth(fc) ||
2345 			    ieee80211_is_disassoc(fc))
2346 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2347 							     rx->skb->data,
2348 							     rx->skb->len);
2349 			return -EACCES;
2350 		}
2351 		/* BIP does not use Protected field, so need to check MMIE */
2352 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2353 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2354 			if (ieee80211_is_deauth(fc) ||
2355 			    ieee80211_is_disassoc(fc))
2356 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2357 							     rx->skb->data,
2358 							     rx->skb->len);
2359 			return -EACCES;
2360 		}
2361 		/*
2362 		 * When using MFP, Action frames are not allowed prior to
2363 		 * having configured keys.
2364 		 */
2365 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2366 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2367 			return -EACCES;
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 static int
2374 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2375 {
2376 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2377 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2378 	bool check_port_control = false;
2379 	struct ethhdr *ehdr;
2380 	int ret;
2381 
2382 	*port_control = false;
2383 	if (ieee80211_has_a4(hdr->frame_control) &&
2384 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2385 		return -1;
2386 
2387 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2388 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2389 
2390 		if (!sdata->u.mgd.use_4addr)
2391 			return -1;
2392 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2393 			check_port_control = true;
2394 	}
2395 
2396 	if (is_multicast_ether_addr(hdr->addr1) &&
2397 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2398 		return -1;
2399 
2400 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2401 	if (ret < 0)
2402 		return ret;
2403 
2404 	ehdr = (struct ethhdr *) rx->skb->data;
2405 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2406 		*port_control = true;
2407 	else if (check_port_control)
2408 		return -1;
2409 
2410 	return 0;
2411 }
2412 
2413 /*
2414  * requires that rx->skb is a frame with ethernet header
2415  */
2416 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2417 {
2418 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2419 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2420 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2421 
2422 	/*
2423 	 * Allow EAPOL frames to us/the PAE group address regardless
2424 	 * of whether the frame was encrypted or not.
2425 	 */
2426 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2427 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2428 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2429 		return true;
2430 
2431 	if (ieee80211_802_1x_port_control(rx) ||
2432 	    ieee80211_drop_unencrypted(rx, fc))
2433 		return false;
2434 
2435 	return true;
2436 }
2437 
2438 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2439 						 struct ieee80211_rx_data *rx)
2440 {
2441 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2442 	struct net_device *dev = sdata->dev;
2443 
2444 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2445 		      skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2446 		     sdata->control_port_over_nl80211)) {
2447 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2448 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2449 
2450 		cfg80211_rx_control_port(dev, skb, noencrypt);
2451 		dev_kfree_skb(skb);
2452 	} else {
2453 		memset(skb->cb, 0, sizeof(skb->cb));
2454 
2455 		/* deliver to local stack */
2456 		if (rx->napi)
2457 			napi_gro_receive(rx->napi, skb);
2458 		else
2459 			netif_receive_skb(skb);
2460 	}
2461 }
2462 
2463 /*
2464  * requires that rx->skb is a frame with ethernet header
2465  */
2466 static void
2467 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2468 {
2469 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2470 	struct net_device *dev = sdata->dev;
2471 	struct sk_buff *skb, *xmit_skb;
2472 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2473 	struct sta_info *dsta;
2474 
2475 	skb = rx->skb;
2476 	xmit_skb = NULL;
2477 
2478 	ieee80211_rx_stats(dev, skb->len);
2479 
2480 	if (rx->sta) {
2481 		/* The seqno index has the same property as needed
2482 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2483 		 * for non-QoS-data frames. Here we know it's a data
2484 		 * frame, so count MSDUs.
2485 		 */
2486 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2487 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2488 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2489 	}
2490 
2491 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2492 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2493 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2494 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2495 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2496 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2497 			/*
2498 			 * send multicast frames both to higher layers in
2499 			 * local net stack and back to the wireless medium
2500 			 */
2501 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2502 			if (!xmit_skb)
2503 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2504 						    dev->name);
2505 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2506 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2507 			dsta = sta_info_get(sdata, ehdr->h_dest);
2508 			if (dsta) {
2509 				/*
2510 				 * The destination station is associated to
2511 				 * this AP (in this VLAN), so send the frame
2512 				 * directly to it and do not pass it to local
2513 				 * net stack.
2514 				 */
2515 				xmit_skb = skb;
2516 				skb = NULL;
2517 			}
2518 		}
2519 	}
2520 
2521 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2522 	if (skb) {
2523 		/* 'align' will only take the values 0 or 2 here since all
2524 		 * frames are required to be aligned to 2-byte boundaries
2525 		 * when being passed to mac80211; the code here works just
2526 		 * as well if that isn't true, but mac80211 assumes it can
2527 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2528 		 */
2529 		int align;
2530 
2531 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2532 		if (align) {
2533 			if (WARN_ON(skb_headroom(skb) < 3)) {
2534 				dev_kfree_skb(skb);
2535 				skb = NULL;
2536 			} else {
2537 				u8 *data = skb->data;
2538 				size_t len = skb_headlen(skb);
2539 				skb->data -= align;
2540 				memmove(skb->data, data, len);
2541 				skb_set_tail_pointer(skb, len);
2542 			}
2543 		}
2544 	}
2545 #endif
2546 
2547 	if (skb) {
2548 		skb->protocol = eth_type_trans(skb, dev);
2549 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2550 	}
2551 
2552 	if (xmit_skb) {
2553 		/*
2554 		 * Send to wireless media and increase priority by 256 to
2555 		 * keep the received priority instead of reclassifying
2556 		 * the frame (see cfg80211_classify8021d).
2557 		 */
2558 		xmit_skb->priority += 256;
2559 		xmit_skb->protocol = htons(ETH_P_802_3);
2560 		skb_reset_network_header(xmit_skb);
2561 		skb_reset_mac_header(xmit_skb);
2562 		dev_queue_xmit(xmit_skb);
2563 	}
2564 }
2565 
2566 static ieee80211_rx_result debug_noinline
2567 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2568 {
2569 	struct net_device *dev = rx->sdata->dev;
2570 	struct sk_buff *skb = rx->skb;
2571 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2572 	__le16 fc = hdr->frame_control;
2573 	struct sk_buff_head frame_list;
2574 	struct ethhdr ethhdr;
2575 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2576 
2577 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2578 		check_da = NULL;
2579 		check_sa = NULL;
2580 	} else switch (rx->sdata->vif.type) {
2581 		case NL80211_IFTYPE_AP:
2582 		case NL80211_IFTYPE_AP_VLAN:
2583 			check_da = NULL;
2584 			break;
2585 		case NL80211_IFTYPE_STATION:
2586 			if (!rx->sta ||
2587 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2588 				check_sa = NULL;
2589 			break;
2590 		case NL80211_IFTYPE_MESH_POINT:
2591 			check_sa = NULL;
2592 			break;
2593 		default:
2594 			break;
2595 	}
2596 
2597 	skb->dev = dev;
2598 	__skb_queue_head_init(&frame_list);
2599 
2600 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2601 					  rx->sdata->vif.addr,
2602 					  rx->sdata->vif.type,
2603 					  data_offset))
2604 		return RX_DROP_UNUSABLE;
2605 
2606 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2607 				 rx->sdata->vif.type,
2608 				 rx->local->hw.extra_tx_headroom,
2609 				 check_da, check_sa);
2610 
2611 	while (!skb_queue_empty(&frame_list)) {
2612 		rx->skb = __skb_dequeue(&frame_list);
2613 
2614 		if (!ieee80211_frame_allowed(rx, fc)) {
2615 			dev_kfree_skb(rx->skb);
2616 			continue;
2617 		}
2618 
2619 		ieee80211_deliver_skb(rx);
2620 	}
2621 
2622 	return RX_QUEUED;
2623 }
2624 
2625 static ieee80211_rx_result debug_noinline
2626 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2627 {
2628 	struct sk_buff *skb = rx->skb;
2629 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2630 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2631 	__le16 fc = hdr->frame_control;
2632 
2633 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2634 		return RX_CONTINUE;
2635 
2636 	if (unlikely(!ieee80211_is_data(fc)))
2637 		return RX_CONTINUE;
2638 
2639 	if (unlikely(!ieee80211_is_data_present(fc)))
2640 		return RX_DROP_MONITOR;
2641 
2642 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2643 		switch (rx->sdata->vif.type) {
2644 		case NL80211_IFTYPE_AP_VLAN:
2645 			if (!rx->sdata->u.vlan.sta)
2646 				return RX_DROP_UNUSABLE;
2647 			break;
2648 		case NL80211_IFTYPE_STATION:
2649 			if (!rx->sdata->u.mgd.use_4addr)
2650 				return RX_DROP_UNUSABLE;
2651 			break;
2652 		default:
2653 			return RX_DROP_UNUSABLE;
2654 		}
2655 	}
2656 
2657 	if (is_multicast_ether_addr(hdr->addr1))
2658 		return RX_DROP_UNUSABLE;
2659 
2660 	return __ieee80211_rx_h_amsdu(rx, 0);
2661 }
2662 
2663 #ifdef CONFIG_MAC80211_MESH
2664 static ieee80211_rx_result
2665 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2666 {
2667 	struct ieee80211_hdr *fwd_hdr, *hdr;
2668 	struct ieee80211_tx_info *info;
2669 	struct ieee80211s_hdr *mesh_hdr;
2670 	struct sk_buff *skb = rx->skb, *fwd_skb;
2671 	struct ieee80211_local *local = rx->local;
2672 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2673 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2674 	u16 ac, q, hdrlen;
2675 	int tailroom = 0;
2676 
2677 	hdr = (struct ieee80211_hdr *) skb->data;
2678 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2679 
2680 	/* make sure fixed part of mesh header is there, also checks skb len */
2681 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2682 		return RX_DROP_MONITOR;
2683 
2684 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2685 
2686 	/* make sure full mesh header is there, also checks skb len */
2687 	if (!pskb_may_pull(rx->skb,
2688 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2689 		return RX_DROP_MONITOR;
2690 
2691 	/* reload pointers */
2692 	hdr = (struct ieee80211_hdr *) skb->data;
2693 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2694 
2695 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2696 		return RX_DROP_MONITOR;
2697 
2698 	/* frame is in RMC, don't forward */
2699 	if (ieee80211_is_data(hdr->frame_control) &&
2700 	    is_multicast_ether_addr(hdr->addr1) &&
2701 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2702 		return RX_DROP_MONITOR;
2703 
2704 	if (!ieee80211_is_data(hdr->frame_control))
2705 		return RX_CONTINUE;
2706 
2707 	if (!mesh_hdr->ttl)
2708 		return RX_DROP_MONITOR;
2709 
2710 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2711 		struct mesh_path *mppath;
2712 		char *proxied_addr;
2713 		char *mpp_addr;
2714 
2715 		if (is_multicast_ether_addr(hdr->addr1)) {
2716 			mpp_addr = hdr->addr3;
2717 			proxied_addr = mesh_hdr->eaddr1;
2718 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2719 			    MESH_FLAGS_AE_A5_A6) {
2720 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2721 			mpp_addr = hdr->addr4;
2722 			proxied_addr = mesh_hdr->eaddr2;
2723 		} else {
2724 			return RX_DROP_MONITOR;
2725 		}
2726 
2727 		rcu_read_lock();
2728 		mppath = mpp_path_lookup(sdata, proxied_addr);
2729 		if (!mppath) {
2730 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2731 		} else {
2732 			spin_lock_bh(&mppath->state_lock);
2733 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2734 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2735 			mppath->exp_time = jiffies;
2736 			spin_unlock_bh(&mppath->state_lock);
2737 		}
2738 		rcu_read_unlock();
2739 	}
2740 
2741 	/* Frame has reached destination.  Don't forward */
2742 	if (!is_multicast_ether_addr(hdr->addr1) &&
2743 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2744 		return RX_CONTINUE;
2745 
2746 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2747 	q = sdata->vif.hw_queue[ac];
2748 	if (ieee80211_queue_stopped(&local->hw, q)) {
2749 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2750 		return RX_DROP_MONITOR;
2751 	}
2752 	skb_set_queue_mapping(skb, q);
2753 
2754 	if (!--mesh_hdr->ttl) {
2755 		if (!is_multicast_ether_addr(hdr->addr1))
2756 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2757 						     dropped_frames_ttl);
2758 		goto out;
2759 	}
2760 
2761 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2762 		goto out;
2763 
2764 	if (sdata->crypto_tx_tailroom_needed_cnt)
2765 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2766 
2767 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2768 				       sdata->encrypt_headroom,
2769 				  tailroom, GFP_ATOMIC);
2770 	if (!fwd_skb)
2771 		goto out;
2772 
2773 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2774 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2775 	info = IEEE80211_SKB_CB(fwd_skb);
2776 	memset(info, 0, sizeof(*info));
2777 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2778 	info->control.vif = &rx->sdata->vif;
2779 	info->control.jiffies = jiffies;
2780 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2781 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2782 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2783 		/* update power mode indication when forwarding */
2784 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2785 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2786 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2787 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2788 	} else {
2789 		/* unable to resolve next hop */
2790 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2791 				   fwd_hdr->addr3, 0,
2792 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2793 				   fwd_hdr->addr2);
2794 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2795 		kfree_skb(fwd_skb);
2796 		return RX_DROP_MONITOR;
2797 	}
2798 
2799 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2800 	ieee80211_add_pending_skb(local, fwd_skb);
2801  out:
2802 	if (is_multicast_ether_addr(hdr->addr1))
2803 		return RX_CONTINUE;
2804 	return RX_DROP_MONITOR;
2805 }
2806 #endif
2807 
2808 static ieee80211_rx_result debug_noinline
2809 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2810 {
2811 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2812 	struct ieee80211_local *local = rx->local;
2813 	struct net_device *dev = sdata->dev;
2814 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2815 	__le16 fc = hdr->frame_control;
2816 	bool port_control;
2817 	int err;
2818 
2819 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2820 		return RX_CONTINUE;
2821 
2822 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2823 		return RX_DROP_MONITOR;
2824 
2825 	/*
2826 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2827 	 * also drop the frame to cooked monitor interfaces.
2828 	 */
2829 	if (ieee80211_has_a4(hdr->frame_control) &&
2830 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2831 		if (rx->sta &&
2832 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2833 			cfg80211_rx_unexpected_4addr_frame(
2834 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2835 		return RX_DROP_MONITOR;
2836 	}
2837 
2838 	err = __ieee80211_data_to_8023(rx, &port_control);
2839 	if (unlikely(err))
2840 		return RX_DROP_UNUSABLE;
2841 
2842 	if (!ieee80211_frame_allowed(rx, fc))
2843 		return RX_DROP_MONITOR;
2844 
2845 	/* directly handle TDLS channel switch requests/responses */
2846 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2847 						cpu_to_be16(ETH_P_TDLS))) {
2848 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2849 
2850 		if (pskb_may_pull(rx->skb,
2851 				  offsetof(struct ieee80211_tdls_data, u)) &&
2852 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2853 		    tf->category == WLAN_CATEGORY_TDLS &&
2854 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2855 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2856 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2857 			schedule_work(&local->tdls_chsw_work);
2858 			if (rx->sta)
2859 				rx->sta->rx_stats.packets++;
2860 
2861 			return RX_QUEUED;
2862 		}
2863 	}
2864 
2865 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2866 	    unlikely(port_control) && sdata->bss) {
2867 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2868 				     u.ap);
2869 		dev = sdata->dev;
2870 		rx->sdata = sdata;
2871 	}
2872 
2873 	rx->skb->dev = dev;
2874 
2875 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2876 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2877 	    !is_multicast_ether_addr(
2878 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2879 	    (!local->scanning &&
2880 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2881 		mod_timer(&local->dynamic_ps_timer, jiffies +
2882 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2883 
2884 	ieee80211_deliver_skb(rx);
2885 
2886 	return RX_QUEUED;
2887 }
2888 
2889 static ieee80211_rx_result debug_noinline
2890 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2891 {
2892 	struct sk_buff *skb = rx->skb;
2893 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2894 	struct tid_ampdu_rx *tid_agg_rx;
2895 	u16 start_seq_num;
2896 	u16 tid;
2897 
2898 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2899 		return RX_CONTINUE;
2900 
2901 	if (ieee80211_is_back_req(bar->frame_control)) {
2902 		struct {
2903 			__le16 control, start_seq_num;
2904 		} __packed bar_data;
2905 		struct ieee80211_event event = {
2906 			.type = BAR_RX_EVENT,
2907 		};
2908 
2909 		if (!rx->sta)
2910 			return RX_DROP_MONITOR;
2911 
2912 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2913 				  &bar_data, sizeof(bar_data)))
2914 			return RX_DROP_MONITOR;
2915 
2916 		tid = le16_to_cpu(bar_data.control) >> 12;
2917 
2918 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2919 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2920 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2921 					     WLAN_BACK_RECIPIENT,
2922 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2923 
2924 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2925 		if (!tid_agg_rx)
2926 			return RX_DROP_MONITOR;
2927 
2928 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2929 		event.u.ba.tid = tid;
2930 		event.u.ba.ssn = start_seq_num;
2931 		event.u.ba.sta = &rx->sta->sta;
2932 
2933 		/* reset session timer */
2934 		if (tid_agg_rx->timeout)
2935 			mod_timer(&tid_agg_rx->session_timer,
2936 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2937 
2938 		spin_lock(&tid_agg_rx->reorder_lock);
2939 		/* release stored frames up to start of BAR */
2940 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2941 						 start_seq_num, frames);
2942 		spin_unlock(&tid_agg_rx->reorder_lock);
2943 
2944 		drv_event_callback(rx->local, rx->sdata, &event);
2945 
2946 		kfree_skb(skb);
2947 		return RX_QUEUED;
2948 	}
2949 
2950 	/*
2951 	 * After this point, we only want management frames,
2952 	 * so we can drop all remaining control frames to
2953 	 * cooked monitor interfaces.
2954 	 */
2955 	return RX_DROP_MONITOR;
2956 }
2957 
2958 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2959 					   struct ieee80211_mgmt *mgmt,
2960 					   size_t len)
2961 {
2962 	struct ieee80211_local *local = sdata->local;
2963 	struct sk_buff *skb;
2964 	struct ieee80211_mgmt *resp;
2965 
2966 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2967 		/* Not to own unicast address */
2968 		return;
2969 	}
2970 
2971 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2972 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2973 		/* Not from the current AP or not associated yet. */
2974 		return;
2975 	}
2976 
2977 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2978 		/* Too short SA Query request frame */
2979 		return;
2980 	}
2981 
2982 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2983 	if (skb == NULL)
2984 		return;
2985 
2986 	skb_reserve(skb, local->hw.extra_tx_headroom);
2987 	resp = skb_put_zero(skb, 24);
2988 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2989 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2990 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2991 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2992 					  IEEE80211_STYPE_ACTION);
2993 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2994 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2995 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2996 	memcpy(resp->u.action.u.sa_query.trans_id,
2997 	       mgmt->u.action.u.sa_query.trans_id,
2998 	       WLAN_SA_QUERY_TR_ID_LEN);
2999 
3000 	ieee80211_tx_skb(sdata, skb);
3001 }
3002 
3003 static ieee80211_rx_result debug_noinline
3004 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3005 {
3006 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3007 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3008 
3009 	/*
3010 	 * From here on, look only at management frames.
3011 	 * Data and control frames are already handled,
3012 	 * and unknown (reserved) frames are useless.
3013 	 */
3014 	if (rx->skb->len < 24)
3015 		return RX_DROP_MONITOR;
3016 
3017 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3018 		return RX_DROP_MONITOR;
3019 
3020 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3021 	    ieee80211_is_beacon(mgmt->frame_control) &&
3022 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3023 		int sig = 0;
3024 
3025 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3026 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3027 			sig = status->signal;
3028 
3029 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
3030 					    rx->skb->data, rx->skb->len,
3031 					    status->freq, sig);
3032 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3033 	}
3034 
3035 	if (ieee80211_drop_unencrypted_mgmt(rx))
3036 		return RX_DROP_UNUSABLE;
3037 
3038 	return RX_CONTINUE;
3039 }
3040 
3041 static ieee80211_rx_result debug_noinline
3042 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3043 {
3044 	struct ieee80211_local *local = rx->local;
3045 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3046 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3047 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3048 	int len = rx->skb->len;
3049 
3050 	if (!ieee80211_is_action(mgmt->frame_control))
3051 		return RX_CONTINUE;
3052 
3053 	/* drop too small frames */
3054 	if (len < IEEE80211_MIN_ACTION_SIZE)
3055 		return RX_DROP_UNUSABLE;
3056 
3057 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3058 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3059 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3060 		return RX_DROP_UNUSABLE;
3061 
3062 	switch (mgmt->u.action.category) {
3063 	case WLAN_CATEGORY_HT:
3064 		/* reject HT action frames from stations not supporting HT */
3065 		if (!rx->sta->sta.ht_cap.ht_supported)
3066 			goto invalid;
3067 
3068 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3069 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3070 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3071 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3072 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3073 			break;
3074 
3075 		/* verify action & smps_control/chanwidth are present */
3076 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3077 			goto invalid;
3078 
3079 		switch (mgmt->u.action.u.ht_smps.action) {
3080 		case WLAN_HT_ACTION_SMPS: {
3081 			struct ieee80211_supported_band *sband;
3082 			enum ieee80211_smps_mode smps_mode;
3083 			struct sta_opmode_info sta_opmode = {};
3084 
3085 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3086 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3087 				goto handled;
3088 
3089 			/* convert to HT capability */
3090 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3091 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3092 				smps_mode = IEEE80211_SMPS_OFF;
3093 				break;
3094 			case WLAN_HT_SMPS_CONTROL_STATIC:
3095 				smps_mode = IEEE80211_SMPS_STATIC;
3096 				break;
3097 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3098 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3099 				break;
3100 			default:
3101 				goto invalid;
3102 			}
3103 
3104 			/* if no change do nothing */
3105 			if (rx->sta->sta.smps_mode == smps_mode)
3106 				goto handled;
3107 			rx->sta->sta.smps_mode = smps_mode;
3108 			sta_opmode.smps_mode =
3109 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3110 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3111 
3112 			sband = rx->local->hw.wiphy->bands[status->band];
3113 
3114 			rate_control_rate_update(local, sband, rx->sta,
3115 						 IEEE80211_RC_SMPS_CHANGED);
3116 			cfg80211_sta_opmode_change_notify(sdata->dev,
3117 							  rx->sta->addr,
3118 							  &sta_opmode,
3119 							  GFP_ATOMIC);
3120 			goto handled;
3121 		}
3122 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3123 			struct ieee80211_supported_band *sband;
3124 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3125 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3126 			struct sta_opmode_info sta_opmode = {};
3127 
3128 			/* If it doesn't support 40 MHz it can't change ... */
3129 			if (!(rx->sta->sta.ht_cap.cap &
3130 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3131 				goto handled;
3132 
3133 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3134 				max_bw = IEEE80211_STA_RX_BW_20;
3135 			else
3136 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3137 
3138 			/* set cur_max_bandwidth and recalc sta bw */
3139 			rx->sta->cur_max_bandwidth = max_bw;
3140 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3141 
3142 			if (rx->sta->sta.bandwidth == new_bw)
3143 				goto handled;
3144 
3145 			rx->sta->sta.bandwidth = new_bw;
3146 			sband = rx->local->hw.wiphy->bands[status->band];
3147 			sta_opmode.bw =
3148 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3149 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3150 
3151 			rate_control_rate_update(local, sband, rx->sta,
3152 						 IEEE80211_RC_BW_CHANGED);
3153 			cfg80211_sta_opmode_change_notify(sdata->dev,
3154 							  rx->sta->addr,
3155 							  &sta_opmode,
3156 							  GFP_ATOMIC);
3157 			goto handled;
3158 		}
3159 		default:
3160 			goto invalid;
3161 		}
3162 
3163 		break;
3164 	case WLAN_CATEGORY_PUBLIC:
3165 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3166 			goto invalid;
3167 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3168 			break;
3169 		if (!rx->sta)
3170 			break;
3171 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3172 			break;
3173 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3174 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3175 			break;
3176 		if (len < offsetof(struct ieee80211_mgmt,
3177 				   u.action.u.ext_chan_switch.variable))
3178 			goto invalid;
3179 		goto queue;
3180 	case WLAN_CATEGORY_VHT:
3181 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3182 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3183 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3184 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3185 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3186 			break;
3187 
3188 		/* verify action code is present */
3189 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3190 			goto invalid;
3191 
3192 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3193 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3194 			/* verify opmode is present */
3195 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3196 				goto invalid;
3197 			goto queue;
3198 		}
3199 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3200 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3201 				goto invalid;
3202 			goto queue;
3203 		}
3204 		default:
3205 			break;
3206 		}
3207 		break;
3208 	case WLAN_CATEGORY_BACK:
3209 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3210 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3211 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3212 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3213 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3214 			break;
3215 
3216 		/* verify action_code is present */
3217 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3218 			break;
3219 
3220 		switch (mgmt->u.action.u.addba_req.action_code) {
3221 		case WLAN_ACTION_ADDBA_REQ:
3222 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3223 				   sizeof(mgmt->u.action.u.addba_req)))
3224 				goto invalid;
3225 			break;
3226 		case WLAN_ACTION_ADDBA_RESP:
3227 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3228 				   sizeof(mgmt->u.action.u.addba_resp)))
3229 				goto invalid;
3230 			break;
3231 		case WLAN_ACTION_DELBA:
3232 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3233 				   sizeof(mgmt->u.action.u.delba)))
3234 				goto invalid;
3235 			break;
3236 		default:
3237 			goto invalid;
3238 		}
3239 
3240 		goto queue;
3241 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3242 		/* verify action_code is present */
3243 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3244 			break;
3245 
3246 		switch (mgmt->u.action.u.measurement.action_code) {
3247 		case WLAN_ACTION_SPCT_MSR_REQ:
3248 			if (status->band != NL80211_BAND_5GHZ)
3249 				break;
3250 
3251 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3252 				   sizeof(mgmt->u.action.u.measurement)))
3253 				break;
3254 
3255 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3256 				break;
3257 
3258 			ieee80211_process_measurement_req(sdata, mgmt, len);
3259 			goto handled;
3260 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3261 			u8 *bssid;
3262 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3263 				   sizeof(mgmt->u.action.u.chan_switch)))
3264 				break;
3265 
3266 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3267 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3268 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3269 				break;
3270 
3271 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3272 				bssid = sdata->u.mgd.bssid;
3273 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3274 				bssid = sdata->u.ibss.bssid;
3275 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3276 				bssid = mgmt->sa;
3277 			else
3278 				break;
3279 
3280 			if (!ether_addr_equal(mgmt->bssid, bssid))
3281 				break;
3282 
3283 			goto queue;
3284 			}
3285 		}
3286 		break;
3287 	case WLAN_CATEGORY_SA_QUERY:
3288 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3289 			   sizeof(mgmt->u.action.u.sa_query)))
3290 			break;
3291 
3292 		switch (mgmt->u.action.u.sa_query.action) {
3293 		case WLAN_ACTION_SA_QUERY_REQUEST:
3294 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3295 				break;
3296 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3297 			goto handled;
3298 		}
3299 		break;
3300 	case WLAN_CATEGORY_SELF_PROTECTED:
3301 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3302 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3303 			break;
3304 
3305 		switch (mgmt->u.action.u.self_prot.action_code) {
3306 		case WLAN_SP_MESH_PEERING_OPEN:
3307 		case WLAN_SP_MESH_PEERING_CLOSE:
3308 		case WLAN_SP_MESH_PEERING_CONFIRM:
3309 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3310 				goto invalid;
3311 			if (sdata->u.mesh.user_mpm)
3312 				/* userspace handles this frame */
3313 				break;
3314 			goto queue;
3315 		case WLAN_SP_MGK_INFORM:
3316 		case WLAN_SP_MGK_ACK:
3317 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3318 				goto invalid;
3319 			break;
3320 		}
3321 		break;
3322 	case WLAN_CATEGORY_MESH_ACTION:
3323 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3324 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3325 			break;
3326 
3327 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3328 			break;
3329 		if (mesh_action_is_path_sel(mgmt) &&
3330 		    !mesh_path_sel_is_hwmp(sdata))
3331 			break;
3332 		goto queue;
3333 	}
3334 
3335 	return RX_CONTINUE;
3336 
3337  invalid:
3338 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3339 	/* will return in the next handlers */
3340 	return RX_CONTINUE;
3341 
3342  handled:
3343 	if (rx->sta)
3344 		rx->sta->rx_stats.packets++;
3345 	dev_kfree_skb(rx->skb);
3346 	return RX_QUEUED;
3347 
3348  queue:
3349 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3350 	ieee80211_queue_work(&local->hw, &sdata->work);
3351 	if (rx->sta)
3352 		rx->sta->rx_stats.packets++;
3353 	return RX_QUEUED;
3354 }
3355 
3356 static ieee80211_rx_result debug_noinline
3357 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3358 {
3359 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3360 	int sig = 0;
3361 
3362 	/* skip known-bad action frames and return them in the next handler */
3363 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3364 		return RX_CONTINUE;
3365 
3366 	/*
3367 	 * Getting here means the kernel doesn't know how to handle
3368 	 * it, but maybe userspace does ... include returned frames
3369 	 * so userspace can register for those to know whether ones
3370 	 * it transmitted were processed or returned.
3371 	 */
3372 
3373 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3374 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3375 		sig = status->signal;
3376 
3377 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3378 			     rx->skb->data, rx->skb->len, 0)) {
3379 		if (rx->sta)
3380 			rx->sta->rx_stats.packets++;
3381 		dev_kfree_skb(rx->skb);
3382 		return RX_QUEUED;
3383 	}
3384 
3385 	return RX_CONTINUE;
3386 }
3387 
3388 static ieee80211_rx_result debug_noinline
3389 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3390 {
3391 	struct ieee80211_local *local = rx->local;
3392 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3393 	struct sk_buff *nskb;
3394 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3395 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3396 
3397 	if (!ieee80211_is_action(mgmt->frame_control))
3398 		return RX_CONTINUE;
3399 
3400 	/*
3401 	 * For AP mode, hostapd is responsible for handling any action
3402 	 * frames that we didn't handle, including returning unknown
3403 	 * ones. For all other modes we will return them to the sender,
3404 	 * setting the 0x80 bit in the action category, as required by
3405 	 * 802.11-2012 9.24.4.
3406 	 * Newer versions of hostapd shall also use the management frame
3407 	 * registration mechanisms, but older ones still use cooked
3408 	 * monitor interfaces so push all frames there.
3409 	 */
3410 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3411 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3412 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3413 		return RX_DROP_MONITOR;
3414 
3415 	if (is_multicast_ether_addr(mgmt->da))
3416 		return RX_DROP_MONITOR;
3417 
3418 	/* do not return rejected action frames */
3419 	if (mgmt->u.action.category & 0x80)
3420 		return RX_DROP_UNUSABLE;
3421 
3422 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3423 			       GFP_ATOMIC);
3424 	if (nskb) {
3425 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3426 
3427 		nmgmt->u.action.category |= 0x80;
3428 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3429 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3430 
3431 		memset(nskb->cb, 0, sizeof(nskb->cb));
3432 
3433 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3434 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3435 
3436 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3437 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3438 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3439 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3440 				info->hw_queue =
3441 					local->hw.offchannel_tx_hw_queue;
3442 		}
3443 
3444 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3445 					    status->band, 0);
3446 	}
3447 	dev_kfree_skb(rx->skb);
3448 	return RX_QUEUED;
3449 }
3450 
3451 static ieee80211_rx_result debug_noinline
3452 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3453 {
3454 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3455 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3456 	__le16 stype;
3457 
3458 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3459 
3460 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3461 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3462 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3463 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3464 		return RX_DROP_MONITOR;
3465 
3466 	switch (stype) {
3467 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3468 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3469 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3470 		/* process for all: mesh, mlme, ibss */
3471 		break;
3472 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3473 		if (is_multicast_ether_addr(mgmt->da) &&
3474 		    !is_broadcast_ether_addr(mgmt->da))
3475 			return RX_DROP_MONITOR;
3476 
3477 		/* process only for station/IBSS */
3478 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3479 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3480 			return RX_DROP_MONITOR;
3481 		break;
3482 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3483 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3484 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3485 		if (is_multicast_ether_addr(mgmt->da) &&
3486 		    !is_broadcast_ether_addr(mgmt->da))
3487 			return RX_DROP_MONITOR;
3488 
3489 		/* process only for station */
3490 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3491 			return RX_DROP_MONITOR;
3492 		break;
3493 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3494 		/* process only for ibss and mesh */
3495 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3496 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3497 			return RX_DROP_MONITOR;
3498 		break;
3499 	default:
3500 		return RX_DROP_MONITOR;
3501 	}
3502 
3503 	/* queue up frame and kick off work to process it */
3504 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3505 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3506 	if (rx->sta)
3507 		rx->sta->rx_stats.packets++;
3508 
3509 	return RX_QUEUED;
3510 }
3511 
3512 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3513 					struct ieee80211_rate *rate)
3514 {
3515 	struct ieee80211_sub_if_data *sdata;
3516 	struct ieee80211_local *local = rx->local;
3517 	struct sk_buff *skb = rx->skb, *skb2;
3518 	struct net_device *prev_dev = NULL;
3519 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3520 	int needed_headroom;
3521 
3522 	/*
3523 	 * If cooked monitor has been processed already, then
3524 	 * don't do it again. If not, set the flag.
3525 	 */
3526 	if (rx->flags & IEEE80211_RX_CMNTR)
3527 		goto out_free_skb;
3528 	rx->flags |= IEEE80211_RX_CMNTR;
3529 
3530 	/* If there are no cooked monitor interfaces, just free the SKB */
3531 	if (!local->cooked_mntrs)
3532 		goto out_free_skb;
3533 
3534 	/* vendor data is long removed here */
3535 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3536 	/* room for the radiotap header based on driver features */
3537 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3538 
3539 	if (skb_headroom(skb) < needed_headroom &&
3540 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3541 		goto out_free_skb;
3542 
3543 	/* prepend radiotap information */
3544 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3545 					 false);
3546 
3547 	skb_reset_mac_header(skb);
3548 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3549 	skb->pkt_type = PACKET_OTHERHOST;
3550 	skb->protocol = htons(ETH_P_802_2);
3551 
3552 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3553 		if (!ieee80211_sdata_running(sdata))
3554 			continue;
3555 
3556 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3557 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3558 			continue;
3559 
3560 		if (prev_dev) {
3561 			skb2 = skb_clone(skb, GFP_ATOMIC);
3562 			if (skb2) {
3563 				skb2->dev = prev_dev;
3564 				netif_receive_skb(skb2);
3565 			}
3566 		}
3567 
3568 		prev_dev = sdata->dev;
3569 		ieee80211_rx_stats(sdata->dev, skb->len);
3570 	}
3571 
3572 	if (prev_dev) {
3573 		skb->dev = prev_dev;
3574 		netif_receive_skb(skb);
3575 		return;
3576 	}
3577 
3578  out_free_skb:
3579 	dev_kfree_skb(skb);
3580 }
3581 
3582 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3583 					 ieee80211_rx_result res)
3584 {
3585 	switch (res) {
3586 	case RX_DROP_MONITOR:
3587 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3588 		if (rx->sta)
3589 			rx->sta->rx_stats.dropped++;
3590 		/* fall through */
3591 	case RX_CONTINUE: {
3592 		struct ieee80211_rate *rate = NULL;
3593 		struct ieee80211_supported_band *sband;
3594 		struct ieee80211_rx_status *status;
3595 
3596 		status = IEEE80211_SKB_RXCB((rx->skb));
3597 
3598 		sband = rx->local->hw.wiphy->bands[status->band];
3599 		if (status->encoding == RX_ENC_LEGACY)
3600 			rate = &sband->bitrates[status->rate_idx];
3601 
3602 		ieee80211_rx_cooked_monitor(rx, rate);
3603 		break;
3604 		}
3605 	case RX_DROP_UNUSABLE:
3606 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3607 		if (rx->sta)
3608 			rx->sta->rx_stats.dropped++;
3609 		dev_kfree_skb(rx->skb);
3610 		break;
3611 	case RX_QUEUED:
3612 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3613 		break;
3614 	}
3615 }
3616 
3617 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3618 				  struct sk_buff_head *frames)
3619 {
3620 	ieee80211_rx_result res = RX_DROP_MONITOR;
3621 	struct sk_buff *skb;
3622 
3623 #define CALL_RXH(rxh)			\
3624 	do {				\
3625 		res = rxh(rx);		\
3626 		if (res != RX_CONTINUE)	\
3627 			goto rxh_next;  \
3628 	} while (0)
3629 
3630 	/* Lock here to avoid hitting all of the data used in the RX
3631 	 * path (e.g. key data, station data, ...) concurrently when
3632 	 * a frame is released from the reorder buffer due to timeout
3633 	 * from the timer, potentially concurrently with RX from the
3634 	 * driver.
3635 	 */
3636 	spin_lock_bh(&rx->local->rx_path_lock);
3637 
3638 	while ((skb = __skb_dequeue(frames))) {
3639 		/*
3640 		 * all the other fields are valid across frames
3641 		 * that belong to an aMPDU since they are on the
3642 		 * same TID from the same station
3643 		 */
3644 		rx->skb = skb;
3645 
3646 		CALL_RXH(ieee80211_rx_h_check_more_data);
3647 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3648 		CALL_RXH(ieee80211_rx_h_sta_process);
3649 		CALL_RXH(ieee80211_rx_h_decrypt);
3650 		CALL_RXH(ieee80211_rx_h_defragment);
3651 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3652 		/* must be after MMIC verify so header is counted in MPDU mic */
3653 #ifdef CONFIG_MAC80211_MESH
3654 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3655 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3656 #endif
3657 		CALL_RXH(ieee80211_rx_h_amsdu);
3658 		CALL_RXH(ieee80211_rx_h_data);
3659 
3660 		/* special treatment -- needs the queue */
3661 		res = ieee80211_rx_h_ctrl(rx, frames);
3662 		if (res != RX_CONTINUE)
3663 			goto rxh_next;
3664 
3665 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3666 		CALL_RXH(ieee80211_rx_h_action);
3667 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3668 		CALL_RXH(ieee80211_rx_h_action_return);
3669 		CALL_RXH(ieee80211_rx_h_mgmt);
3670 
3671  rxh_next:
3672 		ieee80211_rx_handlers_result(rx, res);
3673 
3674 #undef CALL_RXH
3675 	}
3676 
3677 	spin_unlock_bh(&rx->local->rx_path_lock);
3678 }
3679 
3680 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3681 {
3682 	struct sk_buff_head reorder_release;
3683 	ieee80211_rx_result res = RX_DROP_MONITOR;
3684 
3685 	__skb_queue_head_init(&reorder_release);
3686 
3687 #define CALL_RXH(rxh)			\
3688 	do {				\
3689 		res = rxh(rx);		\
3690 		if (res != RX_CONTINUE)	\
3691 			goto rxh_next;  \
3692 	} while (0)
3693 
3694 	CALL_RXH(ieee80211_rx_h_check_dup);
3695 	CALL_RXH(ieee80211_rx_h_check);
3696 
3697 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3698 
3699 	ieee80211_rx_handlers(rx, &reorder_release);
3700 	return;
3701 
3702  rxh_next:
3703 	ieee80211_rx_handlers_result(rx, res);
3704 
3705 #undef CALL_RXH
3706 }
3707 
3708 /*
3709  * This function makes calls into the RX path, therefore
3710  * it has to be invoked under RCU read lock.
3711  */
3712 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3713 {
3714 	struct sk_buff_head frames;
3715 	struct ieee80211_rx_data rx = {
3716 		.sta = sta,
3717 		.sdata = sta->sdata,
3718 		.local = sta->local,
3719 		/* This is OK -- must be QoS data frame */
3720 		.security_idx = tid,
3721 		.seqno_idx = tid,
3722 		.napi = NULL, /* must be NULL to not have races */
3723 	};
3724 	struct tid_ampdu_rx *tid_agg_rx;
3725 
3726 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3727 	if (!tid_agg_rx)
3728 		return;
3729 
3730 	__skb_queue_head_init(&frames);
3731 
3732 	spin_lock(&tid_agg_rx->reorder_lock);
3733 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3734 	spin_unlock(&tid_agg_rx->reorder_lock);
3735 
3736 	if (!skb_queue_empty(&frames)) {
3737 		struct ieee80211_event event = {
3738 			.type = BA_FRAME_TIMEOUT,
3739 			.u.ba.tid = tid,
3740 			.u.ba.sta = &sta->sta,
3741 		};
3742 		drv_event_callback(rx.local, rx.sdata, &event);
3743 	}
3744 
3745 	ieee80211_rx_handlers(&rx, &frames);
3746 }
3747 
3748 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3749 					  u16 ssn, u64 filtered,
3750 					  u16 received_mpdus)
3751 {
3752 	struct sta_info *sta;
3753 	struct tid_ampdu_rx *tid_agg_rx;
3754 	struct sk_buff_head frames;
3755 	struct ieee80211_rx_data rx = {
3756 		/* This is OK -- must be QoS data frame */
3757 		.security_idx = tid,
3758 		.seqno_idx = tid,
3759 	};
3760 	int i, diff;
3761 
3762 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3763 		return;
3764 
3765 	__skb_queue_head_init(&frames);
3766 
3767 	sta = container_of(pubsta, struct sta_info, sta);
3768 
3769 	rx.sta = sta;
3770 	rx.sdata = sta->sdata;
3771 	rx.local = sta->local;
3772 
3773 	rcu_read_lock();
3774 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3775 	if (!tid_agg_rx)
3776 		goto out;
3777 
3778 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3779 
3780 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3781 		int release;
3782 
3783 		/* release all frames in the reorder buffer */
3784 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3785 			   IEEE80211_SN_MODULO;
3786 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3787 						 release, &frames);
3788 		/* update ssn to match received ssn */
3789 		tid_agg_rx->head_seq_num = ssn;
3790 	} else {
3791 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3792 						 &frames);
3793 	}
3794 
3795 	/* handle the case that received ssn is behind the mac ssn.
3796 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3797 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3798 	if (diff >= tid_agg_rx->buf_size) {
3799 		tid_agg_rx->reorder_buf_filtered = 0;
3800 		goto release;
3801 	}
3802 	filtered = filtered >> diff;
3803 	ssn += diff;
3804 
3805 	/* update bitmap */
3806 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3807 		int index = (ssn + i) % tid_agg_rx->buf_size;
3808 
3809 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3810 		if (filtered & BIT_ULL(i))
3811 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3812 	}
3813 
3814 	/* now process also frames that the filter marking released */
3815 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3816 
3817 release:
3818 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3819 
3820 	ieee80211_rx_handlers(&rx, &frames);
3821 
3822  out:
3823 	rcu_read_unlock();
3824 }
3825 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3826 
3827 /* main receive path */
3828 
3829 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3830 {
3831 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3832 	struct sk_buff *skb = rx->skb;
3833 	struct ieee80211_hdr *hdr = (void *)skb->data;
3834 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3835 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3836 	bool multicast = is_multicast_ether_addr(hdr->addr1);
3837 
3838 	switch (sdata->vif.type) {
3839 	case NL80211_IFTYPE_STATION:
3840 		if (!bssid && !sdata->u.mgd.use_4addr)
3841 			return false;
3842 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3843 			return false;
3844 		if (multicast)
3845 			return true;
3846 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3847 	case NL80211_IFTYPE_ADHOC:
3848 		if (!bssid)
3849 			return false;
3850 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3851 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3852 			return false;
3853 		if (ieee80211_is_beacon(hdr->frame_control))
3854 			return true;
3855 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3856 			return false;
3857 		if (!multicast &&
3858 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3859 			return false;
3860 		if (!rx->sta) {
3861 			int rate_idx;
3862 			if (status->encoding != RX_ENC_LEGACY)
3863 				rate_idx = 0; /* TODO: HT/VHT rates */
3864 			else
3865 				rate_idx = status->rate_idx;
3866 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3867 						 BIT(rate_idx));
3868 		}
3869 		return true;
3870 	case NL80211_IFTYPE_OCB:
3871 		if (!bssid)
3872 			return false;
3873 		if (!ieee80211_is_data_present(hdr->frame_control))
3874 			return false;
3875 		if (!is_broadcast_ether_addr(bssid))
3876 			return false;
3877 		if (!multicast &&
3878 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3879 			return false;
3880 		if (!rx->sta) {
3881 			int rate_idx;
3882 			if (status->encoding != RX_ENC_LEGACY)
3883 				rate_idx = 0; /* TODO: HT rates */
3884 			else
3885 				rate_idx = status->rate_idx;
3886 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3887 						BIT(rate_idx));
3888 		}
3889 		return true;
3890 	case NL80211_IFTYPE_MESH_POINT:
3891 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3892 			return false;
3893 		if (multicast)
3894 			return true;
3895 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3896 	case NL80211_IFTYPE_AP_VLAN:
3897 	case NL80211_IFTYPE_AP:
3898 		if (!bssid)
3899 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3900 
3901 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3902 			/*
3903 			 * Accept public action frames even when the
3904 			 * BSSID doesn't match, this is used for P2P
3905 			 * and location updates. Note that mac80211
3906 			 * itself never looks at these frames.
3907 			 */
3908 			if (!multicast &&
3909 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3910 				return false;
3911 			if (ieee80211_is_public_action(hdr, skb->len))
3912 				return true;
3913 			return ieee80211_is_beacon(hdr->frame_control);
3914 		}
3915 
3916 		if (!ieee80211_has_tods(hdr->frame_control)) {
3917 			/* ignore data frames to TDLS-peers */
3918 			if (ieee80211_is_data(hdr->frame_control))
3919 				return false;
3920 			/* ignore action frames to TDLS-peers */
3921 			if (ieee80211_is_action(hdr->frame_control) &&
3922 			    !is_broadcast_ether_addr(bssid) &&
3923 			    !ether_addr_equal(bssid, hdr->addr1))
3924 				return false;
3925 		}
3926 
3927 		/*
3928 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3929 		 * the BSSID - we've checked that already but may have accepted
3930 		 * the wildcard (ff:ff:ff:ff:ff:ff).
3931 		 *
3932 		 * It also says:
3933 		 *	The BSSID of the Data frame is determined as follows:
3934 		 *	a) If the STA is contained within an AP or is associated
3935 		 *	   with an AP, the BSSID is the address currently in use
3936 		 *	   by the STA contained in the AP.
3937 		 *
3938 		 * So we should not accept data frames with an address that's
3939 		 * multicast.
3940 		 *
3941 		 * Accepting it also opens a security problem because stations
3942 		 * could encrypt it with the GTK and inject traffic that way.
3943 		 */
3944 		if (ieee80211_is_data(hdr->frame_control) && multicast)
3945 			return false;
3946 
3947 		return true;
3948 	case NL80211_IFTYPE_WDS:
3949 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3950 			return false;
3951 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3952 	case NL80211_IFTYPE_P2P_DEVICE:
3953 		return ieee80211_is_public_action(hdr, skb->len) ||
3954 		       ieee80211_is_probe_req(hdr->frame_control) ||
3955 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3956 		       ieee80211_is_beacon(hdr->frame_control);
3957 	case NL80211_IFTYPE_NAN:
3958 		/* Currently no frames on NAN interface are allowed */
3959 		return false;
3960 	default:
3961 		break;
3962 	}
3963 
3964 	WARN_ON_ONCE(1);
3965 	return false;
3966 }
3967 
3968 void ieee80211_check_fast_rx(struct sta_info *sta)
3969 {
3970 	struct ieee80211_sub_if_data *sdata = sta->sdata;
3971 	struct ieee80211_local *local = sdata->local;
3972 	struct ieee80211_key *key;
3973 	struct ieee80211_fast_rx fastrx = {
3974 		.dev = sdata->dev,
3975 		.vif_type = sdata->vif.type,
3976 		.control_port_protocol = sdata->control_port_protocol,
3977 	}, *old, *new = NULL;
3978 	bool assign = false;
3979 
3980 	/* use sparse to check that we don't return without updating */
3981 	__acquire(check_fast_rx);
3982 
3983 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3984 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3985 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3986 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3987 
3988 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3989 
3990 	/* fast-rx doesn't do reordering */
3991 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3992 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3993 		goto clear;
3994 
3995 	switch (sdata->vif.type) {
3996 	case NL80211_IFTYPE_STATION:
3997 		if (sta->sta.tdls) {
3998 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3999 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4000 			fastrx.expected_ds_bits = 0;
4001 		} else {
4002 			fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
4003 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4004 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4005 			fastrx.expected_ds_bits =
4006 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4007 		}
4008 
4009 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4010 			fastrx.expected_ds_bits |=
4011 				cpu_to_le16(IEEE80211_FCTL_TODS);
4012 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4013 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4014 		}
4015 
4016 		if (!sdata->u.mgd.powersave)
4017 			break;
4018 
4019 		/* software powersave is a huge mess, avoid all of it */
4020 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4021 			goto clear;
4022 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4023 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4024 			goto clear;
4025 		break;
4026 	case NL80211_IFTYPE_AP_VLAN:
4027 	case NL80211_IFTYPE_AP:
4028 		/* parallel-rx requires this, at least with calls to
4029 		 * ieee80211_sta_ps_transition()
4030 		 */
4031 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4032 			goto clear;
4033 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4034 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4035 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4036 
4037 		fastrx.internal_forward =
4038 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4039 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4040 			 !sdata->u.vlan.sta);
4041 
4042 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4043 		    sdata->u.vlan.sta) {
4044 			fastrx.expected_ds_bits |=
4045 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4046 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4047 			fastrx.internal_forward = 0;
4048 		}
4049 
4050 		break;
4051 	default:
4052 		goto clear;
4053 	}
4054 
4055 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4056 		goto clear;
4057 
4058 	rcu_read_lock();
4059 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4060 	if (key) {
4061 		switch (key->conf.cipher) {
4062 		case WLAN_CIPHER_SUITE_TKIP:
4063 			/* we don't want to deal with MMIC in fast-rx */
4064 			goto clear_rcu;
4065 		case WLAN_CIPHER_SUITE_CCMP:
4066 		case WLAN_CIPHER_SUITE_CCMP_256:
4067 		case WLAN_CIPHER_SUITE_GCMP:
4068 		case WLAN_CIPHER_SUITE_GCMP_256:
4069 			break;
4070 		default:
4071 			/* We also don't want to deal with
4072 			 * WEP or cipher scheme.
4073 			 */
4074 			goto clear_rcu;
4075 		}
4076 
4077 		fastrx.key = true;
4078 		fastrx.icv_len = key->conf.icv_len;
4079 	}
4080 
4081 	assign = true;
4082  clear_rcu:
4083 	rcu_read_unlock();
4084  clear:
4085 	__release(check_fast_rx);
4086 
4087 	if (assign)
4088 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4089 
4090 	spin_lock_bh(&sta->lock);
4091 	old = rcu_dereference_protected(sta->fast_rx, true);
4092 	rcu_assign_pointer(sta->fast_rx, new);
4093 	spin_unlock_bh(&sta->lock);
4094 
4095 	if (old)
4096 		kfree_rcu(old, rcu_head);
4097 }
4098 
4099 void ieee80211_clear_fast_rx(struct sta_info *sta)
4100 {
4101 	struct ieee80211_fast_rx *old;
4102 
4103 	spin_lock_bh(&sta->lock);
4104 	old = rcu_dereference_protected(sta->fast_rx, true);
4105 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4106 	spin_unlock_bh(&sta->lock);
4107 
4108 	if (old)
4109 		kfree_rcu(old, rcu_head);
4110 }
4111 
4112 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4113 {
4114 	struct ieee80211_local *local = sdata->local;
4115 	struct sta_info *sta;
4116 
4117 	lockdep_assert_held(&local->sta_mtx);
4118 
4119 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
4120 		if (sdata != sta->sdata &&
4121 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4122 			continue;
4123 		ieee80211_check_fast_rx(sta);
4124 	}
4125 }
4126 
4127 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4128 {
4129 	struct ieee80211_local *local = sdata->local;
4130 
4131 	mutex_lock(&local->sta_mtx);
4132 	__ieee80211_check_fast_rx_iface(sdata);
4133 	mutex_unlock(&local->sta_mtx);
4134 }
4135 
4136 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4137 				     struct ieee80211_fast_rx *fast_rx)
4138 {
4139 	struct sk_buff *skb = rx->skb;
4140 	struct ieee80211_hdr *hdr = (void *)skb->data;
4141 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4142 	struct sta_info *sta = rx->sta;
4143 	int orig_len = skb->len;
4144 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4145 	int snap_offs = hdrlen;
4146 	struct {
4147 		u8 snap[sizeof(rfc1042_header)];
4148 		__be16 proto;
4149 	} *payload __aligned(2);
4150 	struct {
4151 		u8 da[ETH_ALEN];
4152 		u8 sa[ETH_ALEN];
4153 	} addrs __aligned(2);
4154 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4155 
4156 	if (fast_rx->uses_rss)
4157 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4158 
4159 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4160 	 * to a common data structure; drivers can implement that per queue
4161 	 * but we don't have that information in mac80211
4162 	 */
4163 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4164 		return false;
4165 
4166 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4167 
4168 	/* If using encryption, we also need to have:
4169 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4170 	 *  - DECRYPTED: necessary for PN_VALIDATED
4171 	 */
4172 	if (fast_rx->key &&
4173 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4174 		return false;
4175 
4176 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4177 		return false;
4178 
4179 	if (unlikely(ieee80211_is_frag(hdr)))
4180 		return false;
4181 
4182 	/* Since our interface address cannot be multicast, this
4183 	 * implicitly also rejects multicast frames without the
4184 	 * explicit check.
4185 	 *
4186 	 * We shouldn't get any *data* frames not addressed to us
4187 	 * (AP mode will accept multicast *management* frames), but
4188 	 * punting here will make it go through the full checks in
4189 	 * ieee80211_accept_frame().
4190 	 */
4191 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4192 		return false;
4193 
4194 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4195 					      IEEE80211_FCTL_TODS)) !=
4196 	    fast_rx->expected_ds_bits)
4197 		return false;
4198 
4199 	/* assign the key to drop unencrypted frames (later)
4200 	 * and strip the IV/MIC if necessary
4201 	 */
4202 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4203 		/* GCMP header length is the same */
4204 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4205 	}
4206 
4207 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4208 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4209 			goto drop;
4210 
4211 		payload = (void *)(skb->data + snap_offs);
4212 
4213 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4214 			return false;
4215 
4216 		/* Don't handle these here since they require special code.
4217 		 * Accept AARP and IPX even though they should come with a
4218 		 * bridge-tunnel header - but if we get them this way then
4219 		 * there's little point in discarding them.
4220 		 */
4221 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4222 			     payload->proto == fast_rx->control_port_protocol))
4223 			return false;
4224 	}
4225 
4226 	/* after this point, don't punt to the slowpath! */
4227 
4228 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4229 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4230 		goto drop;
4231 
4232 	if (unlikely(fast_rx->sta_notify)) {
4233 		ieee80211_sta_rx_notify(rx->sdata, hdr);
4234 		fast_rx->sta_notify = false;
4235 	}
4236 
4237 	/* statistics part of ieee80211_rx_h_sta_process() */
4238 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4239 		stats->last_signal = status->signal;
4240 		if (!fast_rx->uses_rss)
4241 			ewma_signal_add(&sta->rx_stats_avg.signal,
4242 					-status->signal);
4243 	}
4244 
4245 	if (status->chains) {
4246 		int i;
4247 
4248 		stats->chains = status->chains;
4249 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4250 			int signal = status->chain_signal[i];
4251 
4252 			if (!(status->chains & BIT(i)))
4253 				continue;
4254 
4255 			stats->chain_signal_last[i] = signal;
4256 			if (!fast_rx->uses_rss)
4257 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4258 						-signal);
4259 		}
4260 	}
4261 	/* end of statistics */
4262 
4263 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4264 		goto drop;
4265 
4266 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4267 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4268 		    RX_QUEUED)
4269 			goto drop;
4270 
4271 		return true;
4272 	}
4273 
4274 	stats->last_rx = jiffies;
4275 	stats->last_rate = sta_stats_encode_rate(status);
4276 
4277 	stats->fragments++;
4278 	stats->packets++;
4279 
4280 	/* do the header conversion - first grab the addresses */
4281 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4282 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4283 	/* remove the SNAP but leave the ethertype */
4284 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4285 	/* push the addresses in front */
4286 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4287 
4288 	skb->dev = fast_rx->dev;
4289 
4290 	ieee80211_rx_stats(fast_rx->dev, skb->len);
4291 
4292 	/* The seqno index has the same property as needed
4293 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4294 	 * for non-QoS-data frames. Here we know it's a data
4295 	 * frame, so count MSDUs.
4296 	 */
4297 	u64_stats_update_begin(&stats->syncp);
4298 	stats->msdu[rx->seqno_idx]++;
4299 	stats->bytes += orig_len;
4300 	u64_stats_update_end(&stats->syncp);
4301 
4302 	if (fast_rx->internal_forward) {
4303 		struct sk_buff *xmit_skb = NULL;
4304 		if (is_multicast_ether_addr(addrs.da)) {
4305 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4306 		} else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4307 			   sta_info_get(rx->sdata, addrs.da)) {
4308 			xmit_skb = skb;
4309 			skb = NULL;
4310 		}
4311 
4312 		if (xmit_skb) {
4313 			/*
4314 			 * Send to wireless media and increase priority by 256
4315 			 * to keep the received priority instead of
4316 			 * reclassifying the frame (see cfg80211_classify8021d).
4317 			 */
4318 			xmit_skb->priority += 256;
4319 			xmit_skb->protocol = htons(ETH_P_802_3);
4320 			skb_reset_network_header(xmit_skb);
4321 			skb_reset_mac_header(xmit_skb);
4322 			dev_queue_xmit(xmit_skb);
4323 		}
4324 
4325 		if (!skb)
4326 			return true;
4327 	}
4328 
4329 	/* deliver to local stack */
4330 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4331 	memset(skb->cb, 0, sizeof(skb->cb));
4332 	if (rx->napi)
4333 		napi_gro_receive(rx->napi, skb);
4334 	else
4335 		netif_receive_skb(skb);
4336 
4337 	return true;
4338  drop:
4339 	dev_kfree_skb(skb);
4340 	stats->dropped++;
4341 	return true;
4342 }
4343 
4344 /*
4345  * This function returns whether or not the SKB
4346  * was destined for RX processing or not, which,
4347  * if consume is true, is equivalent to whether
4348  * or not the skb was consumed.
4349  */
4350 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4351 					    struct sk_buff *skb, bool consume)
4352 {
4353 	struct ieee80211_local *local = rx->local;
4354 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4355 
4356 	rx->skb = skb;
4357 
4358 	/* See if we can do fast-rx; if we have to copy we already lost,
4359 	 * so punt in that case. We should never have to deliver a data
4360 	 * frame to multiple interfaces anyway.
4361 	 *
4362 	 * We skip the ieee80211_accept_frame() call and do the necessary
4363 	 * checking inside ieee80211_invoke_fast_rx().
4364 	 */
4365 	if (consume && rx->sta) {
4366 		struct ieee80211_fast_rx *fast_rx;
4367 
4368 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4369 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4370 			return true;
4371 	}
4372 
4373 	if (!ieee80211_accept_frame(rx))
4374 		return false;
4375 
4376 	if (!consume) {
4377 		skb = skb_copy(skb, GFP_ATOMIC);
4378 		if (!skb) {
4379 			if (net_ratelimit())
4380 				wiphy_debug(local->hw.wiphy,
4381 					"failed to copy skb for %s\n",
4382 					sdata->name);
4383 			return true;
4384 		}
4385 
4386 		rx->skb = skb;
4387 	}
4388 
4389 	ieee80211_invoke_rx_handlers(rx);
4390 	return true;
4391 }
4392 
4393 /*
4394  * This is the actual Rx frames handler. as it belongs to Rx path it must
4395  * be called with rcu_read_lock protection.
4396  */
4397 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4398 					 struct ieee80211_sta *pubsta,
4399 					 struct sk_buff *skb,
4400 					 struct napi_struct *napi)
4401 {
4402 	struct ieee80211_local *local = hw_to_local(hw);
4403 	struct ieee80211_sub_if_data *sdata;
4404 	struct ieee80211_hdr *hdr;
4405 	__le16 fc;
4406 	struct ieee80211_rx_data rx;
4407 	struct ieee80211_sub_if_data *prev;
4408 	struct rhlist_head *tmp;
4409 	int err = 0;
4410 
4411 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4412 	memset(&rx, 0, sizeof(rx));
4413 	rx.skb = skb;
4414 	rx.local = local;
4415 	rx.napi = napi;
4416 
4417 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4418 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4419 
4420 	if (ieee80211_is_mgmt(fc)) {
4421 		/* drop frame if too short for header */
4422 		if (skb->len < ieee80211_hdrlen(fc))
4423 			err = -ENOBUFS;
4424 		else
4425 			err = skb_linearize(skb);
4426 	} else {
4427 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4428 	}
4429 
4430 	if (err) {
4431 		dev_kfree_skb(skb);
4432 		return;
4433 	}
4434 
4435 	hdr = (struct ieee80211_hdr *)skb->data;
4436 	ieee80211_parse_qos(&rx);
4437 	ieee80211_verify_alignment(&rx);
4438 
4439 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4440 		     ieee80211_is_beacon(hdr->frame_control)))
4441 		ieee80211_scan_rx(local, skb);
4442 
4443 	if (ieee80211_is_data(fc)) {
4444 		struct sta_info *sta, *prev_sta;
4445 
4446 		if (pubsta) {
4447 			rx.sta = container_of(pubsta, struct sta_info, sta);
4448 			rx.sdata = rx.sta->sdata;
4449 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4450 				return;
4451 			goto out;
4452 		}
4453 
4454 		prev_sta = NULL;
4455 
4456 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4457 			if (!prev_sta) {
4458 				prev_sta = sta;
4459 				continue;
4460 			}
4461 
4462 			rx.sta = prev_sta;
4463 			rx.sdata = prev_sta->sdata;
4464 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4465 
4466 			prev_sta = sta;
4467 		}
4468 
4469 		if (prev_sta) {
4470 			rx.sta = prev_sta;
4471 			rx.sdata = prev_sta->sdata;
4472 
4473 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4474 				return;
4475 			goto out;
4476 		}
4477 	}
4478 
4479 	prev = NULL;
4480 
4481 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4482 		if (!ieee80211_sdata_running(sdata))
4483 			continue;
4484 
4485 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4486 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4487 			continue;
4488 
4489 		/*
4490 		 * frame is destined for this interface, but if it's
4491 		 * not also for the previous one we handle that after
4492 		 * the loop to avoid copying the SKB once too much
4493 		 */
4494 
4495 		if (!prev) {
4496 			prev = sdata;
4497 			continue;
4498 		}
4499 
4500 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4501 		rx.sdata = prev;
4502 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4503 
4504 		prev = sdata;
4505 	}
4506 
4507 	if (prev) {
4508 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4509 		rx.sdata = prev;
4510 
4511 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4512 			return;
4513 	}
4514 
4515  out:
4516 	dev_kfree_skb(skb);
4517 }
4518 
4519 /*
4520  * This is the receive path handler. It is called by a low level driver when an
4521  * 802.11 MPDU is received from the hardware.
4522  */
4523 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4524 		       struct sk_buff *skb, struct napi_struct *napi)
4525 {
4526 	struct ieee80211_local *local = hw_to_local(hw);
4527 	struct ieee80211_rate *rate = NULL;
4528 	struct ieee80211_supported_band *sband;
4529 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4530 
4531 	WARN_ON_ONCE(softirq_count() == 0);
4532 
4533 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4534 		goto drop;
4535 
4536 	sband = local->hw.wiphy->bands[status->band];
4537 	if (WARN_ON(!sband))
4538 		goto drop;
4539 
4540 	/*
4541 	 * If we're suspending, it is possible although not too likely
4542 	 * that we'd be receiving frames after having already partially
4543 	 * quiesced the stack. We can't process such frames then since
4544 	 * that might, for example, cause stations to be added or other
4545 	 * driver callbacks be invoked.
4546 	 */
4547 	if (unlikely(local->quiescing || local->suspended))
4548 		goto drop;
4549 
4550 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4551 	if (unlikely(local->in_reconfig))
4552 		goto drop;
4553 
4554 	/*
4555 	 * The same happens when we're not even started,
4556 	 * but that's worth a warning.
4557 	 */
4558 	if (WARN_ON(!local->started))
4559 		goto drop;
4560 
4561 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4562 		/*
4563 		 * Validate the rate, unless a PLCP error means that
4564 		 * we probably can't have a valid rate here anyway.
4565 		 */
4566 
4567 		switch (status->encoding) {
4568 		case RX_ENC_HT:
4569 			/*
4570 			 * rate_idx is MCS index, which can be [0-76]
4571 			 * as documented on:
4572 			 *
4573 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4574 			 *
4575 			 * Anything else would be some sort of driver or
4576 			 * hardware error. The driver should catch hardware
4577 			 * errors.
4578 			 */
4579 			if (WARN(status->rate_idx > 76,
4580 				 "Rate marked as an HT rate but passed "
4581 				 "status->rate_idx is not "
4582 				 "an MCS index [0-76]: %d (0x%02x)\n",
4583 				 status->rate_idx,
4584 				 status->rate_idx))
4585 				goto drop;
4586 			break;
4587 		case RX_ENC_VHT:
4588 			if (WARN_ONCE(status->rate_idx > 9 ||
4589 				      !status->nss ||
4590 				      status->nss > 8,
4591 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4592 				      status->rate_idx, status->nss))
4593 				goto drop;
4594 			break;
4595 		case RX_ENC_HE:
4596 			if (WARN_ONCE(status->rate_idx > 11 ||
4597 				      !status->nss ||
4598 				      status->nss > 8,
4599 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4600 				      status->rate_idx, status->nss))
4601 				goto drop;
4602 			break;
4603 		default:
4604 			WARN_ON_ONCE(1);
4605 			/* fall through */
4606 		case RX_ENC_LEGACY:
4607 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4608 				goto drop;
4609 			rate = &sband->bitrates[status->rate_idx];
4610 		}
4611 	}
4612 
4613 	status->rx_flags = 0;
4614 
4615 	/*
4616 	 * key references and virtual interfaces are protected using RCU
4617 	 * and this requires that we are in a read-side RCU section during
4618 	 * receive processing
4619 	 */
4620 	rcu_read_lock();
4621 
4622 	/*
4623 	 * Frames with failed FCS/PLCP checksum are not returned,
4624 	 * all other frames are returned without radiotap header
4625 	 * if it was previously present.
4626 	 * Also, frames with less than 16 bytes are dropped.
4627 	 */
4628 	skb = ieee80211_rx_monitor(local, skb, rate);
4629 	if (!skb) {
4630 		rcu_read_unlock();
4631 		return;
4632 	}
4633 
4634 	ieee80211_tpt_led_trig_rx(local,
4635 			((struct ieee80211_hdr *)skb->data)->frame_control,
4636 			skb->len);
4637 
4638 	__ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4639 
4640 	rcu_read_unlock();
4641 
4642 	return;
4643  drop:
4644 	kfree_skb(skb);
4645 }
4646 EXPORT_SYMBOL(ieee80211_rx_napi);
4647 
4648 /* This is a version of the rx handler that can be called from hard irq
4649  * context. Post the skb on the queue and schedule the tasklet */
4650 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4651 {
4652 	struct ieee80211_local *local = hw_to_local(hw);
4653 
4654 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4655 
4656 	skb->pkt_type = IEEE80211_RX_MSG;
4657 	skb_queue_tail(&local->skb_queue, skb);
4658 	tasklet_schedule(&local->tasklet);
4659 }
4660 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4661