1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/jiffies.h> 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/skbuff.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <linux/bitops.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 38 { 39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 40 41 u64_stats_update_begin(&tstats->syncp); 42 tstats->rx_packets++; 43 tstats->rx_bytes += len; 44 u64_stats_update_end(&tstats->syncp); 45 } 46 47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 48 enum nl80211_iftype type) 49 { 50 __le16 fc = hdr->frame_control; 51 52 if (ieee80211_is_data(fc)) { 53 if (len < 24) /* drop incorrect hdr len (data) */ 54 return NULL; 55 56 if (ieee80211_has_a4(fc)) 57 return NULL; 58 if (ieee80211_has_tods(fc)) 59 return hdr->addr1; 60 if (ieee80211_has_fromds(fc)) 61 return hdr->addr2; 62 63 return hdr->addr3; 64 } 65 66 if (ieee80211_is_mgmt(fc)) { 67 if (len < 24) /* drop incorrect hdr len (mgmt) */ 68 return NULL; 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_ctl(fc)) { 73 if (ieee80211_is_pspoll(fc)) 74 return hdr->addr1; 75 76 if (ieee80211_is_back_req(fc)) { 77 switch (type) { 78 case NL80211_IFTYPE_STATION: 79 return hdr->addr2; 80 case NL80211_IFTYPE_AP: 81 case NL80211_IFTYPE_AP_VLAN: 82 return hdr->addr1; 83 default: 84 break; /* fall through to the return */ 85 } 86 } 87 } 88 89 return NULL; 90 } 91 92 /* 93 * monitor mode reception 94 * 95 * This function cleans up the SKB, i.e. it removes all the stuff 96 * only useful for monitoring. 97 */ 98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 99 struct sk_buff *skb, 100 unsigned int rtap_vendor_space) 101 { 102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 103 if (likely(skb->len > FCS_LEN)) 104 __pskb_trim(skb, skb->len - FCS_LEN); 105 else { 106 /* driver bug */ 107 WARN_ON(1); 108 dev_kfree_skb(skb); 109 return NULL; 110 } 111 } 112 113 __pskb_pull(skb, rtap_vendor_space); 114 115 return skb; 116 } 117 118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 119 unsigned int rtap_vendor_space) 120 { 121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 122 struct ieee80211_hdr *hdr; 123 124 hdr = (void *)(skb->data + rtap_vendor_space); 125 126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 127 RX_FLAG_FAILED_PLCP_CRC | 128 RX_FLAG_ONLY_MONITOR)) 129 return true; 130 131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 132 return true; 133 134 if (ieee80211_is_ctl(hdr->frame_control) && 135 !ieee80211_is_pspoll(hdr->frame_control) && 136 !ieee80211_is_back_req(hdr->frame_control)) 137 return true; 138 139 return false; 140 } 141 142 static int 143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 144 struct ieee80211_rx_status *status, 145 struct sk_buff *skb) 146 { 147 int len; 148 149 /* always present fields */ 150 len = sizeof(struct ieee80211_radiotap_header) + 8; 151 152 /* allocate extra bitmaps */ 153 if (status->chains) 154 len += 4 * hweight8(status->chains); 155 156 if (ieee80211_have_rx_timestamp(status)) { 157 len = ALIGN(len, 8); 158 len += 8; 159 } 160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 161 len += 1; 162 163 /* antenna field, if we don't have per-chain info */ 164 if (!status->chains) 165 len += 1; 166 167 /* padding for RX_FLAGS if necessary */ 168 len = ALIGN(len, 2); 169 170 if (status->flag & RX_FLAG_HT) /* HT info */ 171 len += 3; 172 173 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 174 len = ALIGN(len, 4); 175 len += 8; 176 } 177 178 if (status->flag & RX_FLAG_VHT) { 179 len = ALIGN(len, 2); 180 len += 12; 181 } 182 183 if (local->hw.radiotap_timestamp.units_pos >= 0) { 184 len = ALIGN(len, 8); 185 len += 12; 186 } 187 188 if (status->chains) { 189 /* antenna and antenna signal fields */ 190 len += 2 * hweight8(status->chains); 191 } 192 193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 194 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 195 196 /* vendor presence bitmap */ 197 len += 4; 198 /* alignment for fixed 6-byte vendor data header */ 199 len = ALIGN(len, 2); 200 /* vendor data header */ 201 len += 6; 202 if (WARN_ON(rtap->align == 0)) 203 rtap->align = 1; 204 len = ALIGN(len, rtap->align); 205 len += rtap->len + rtap->pad; 206 } 207 208 return len; 209 } 210 211 /* 212 * ieee80211_add_rx_radiotap_header - add radiotap header 213 * 214 * add a radiotap header containing all the fields which the hardware provided. 215 */ 216 static void 217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 218 struct sk_buff *skb, 219 struct ieee80211_rate *rate, 220 int rtap_len, bool has_fcs) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 struct ieee80211_radiotap_header *rthdr; 224 unsigned char *pos; 225 __le32 *it_present; 226 u32 it_present_val; 227 u16 rx_flags = 0; 228 u16 channel_flags = 0; 229 int mpdulen, chain; 230 unsigned long chains = status->chains; 231 struct ieee80211_vendor_radiotap rtap = {}; 232 233 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 234 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 235 /* rtap.len and rtap.pad are undone immediately */ 236 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 237 } 238 239 mpdulen = skb->len; 240 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 241 mpdulen += FCS_LEN; 242 243 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 244 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 245 it_present = &rthdr->it_present; 246 247 /* radiotap header, set always present flags */ 248 rthdr->it_len = cpu_to_le16(rtap_len); 249 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 250 BIT(IEEE80211_RADIOTAP_CHANNEL) | 251 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 252 253 if (!status->chains) 254 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 255 256 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 257 it_present_val |= 258 BIT(IEEE80211_RADIOTAP_EXT) | 259 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 260 put_unaligned_le32(it_present_val, it_present); 261 it_present++; 262 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 263 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 264 } 265 266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 267 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 268 BIT(IEEE80211_RADIOTAP_EXT); 269 put_unaligned_le32(it_present_val, it_present); 270 it_present++; 271 it_present_val = rtap.present; 272 } 273 274 put_unaligned_le32(it_present_val, it_present); 275 276 pos = (void *)(it_present + 1); 277 278 /* the order of the following fields is important */ 279 280 /* IEEE80211_RADIOTAP_TSFT */ 281 if (ieee80211_have_rx_timestamp(status)) { 282 /* padding */ 283 while ((pos - (u8 *)rthdr) & 7) 284 *pos++ = 0; 285 put_unaligned_le64( 286 ieee80211_calculate_rx_timestamp(local, status, 287 mpdulen, 0), 288 pos); 289 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 290 pos += 8; 291 } 292 293 /* IEEE80211_RADIOTAP_FLAGS */ 294 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 295 *pos |= IEEE80211_RADIOTAP_F_FCS; 296 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 297 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 298 if (status->flag & RX_FLAG_SHORTPRE) 299 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 300 pos++; 301 302 /* IEEE80211_RADIOTAP_RATE */ 303 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 304 /* 305 * Without rate information don't add it. If we have, 306 * MCS information is a separate field in radiotap, 307 * added below. The byte here is needed as padding 308 * for the channel though, so initialise it to 0. 309 */ 310 *pos = 0; 311 } else { 312 int shift = 0; 313 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 314 if (status->flag & RX_FLAG_10MHZ) 315 shift = 1; 316 else if (status->flag & RX_FLAG_5MHZ) 317 shift = 2; 318 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 319 } 320 pos++; 321 322 /* IEEE80211_RADIOTAP_CHANNEL */ 323 put_unaligned_le16(status->freq, pos); 324 pos += 2; 325 if (status->flag & RX_FLAG_10MHZ) 326 channel_flags |= IEEE80211_CHAN_HALF; 327 else if (status->flag & RX_FLAG_5MHZ) 328 channel_flags |= IEEE80211_CHAN_QUARTER; 329 330 if (status->band == NL80211_BAND_5GHZ) 331 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 332 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 333 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 334 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 335 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 336 else if (rate) 337 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 338 else 339 channel_flags |= IEEE80211_CHAN_2GHZ; 340 put_unaligned_le16(channel_flags, pos); 341 pos += 2; 342 343 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 344 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 345 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 346 *pos = status->signal; 347 rthdr->it_present |= 348 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 349 pos++; 350 } 351 352 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 353 354 if (!status->chains) { 355 /* IEEE80211_RADIOTAP_ANTENNA */ 356 *pos = status->antenna; 357 pos++; 358 } 359 360 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 361 362 /* IEEE80211_RADIOTAP_RX_FLAGS */ 363 /* ensure 2 byte alignment for the 2 byte field as required */ 364 if ((pos - (u8 *)rthdr) & 1) 365 *pos++ = 0; 366 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 367 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 368 put_unaligned_le16(rx_flags, pos); 369 pos += 2; 370 371 if (status->flag & RX_FLAG_HT) { 372 unsigned int stbc; 373 374 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 375 *pos++ = local->hw.radiotap_mcs_details; 376 *pos = 0; 377 if (status->flag & RX_FLAG_SHORT_GI) 378 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 379 if (status->flag & RX_FLAG_40MHZ) 380 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 381 if (status->flag & RX_FLAG_HT_GF) 382 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 383 if (status->flag & RX_FLAG_LDPC) 384 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 385 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 386 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 387 pos++; 388 *pos++ = status->rate_idx; 389 } 390 391 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 392 u16 flags = 0; 393 394 /* ensure 4 byte alignment */ 395 while ((pos - (u8 *)rthdr) & 3) 396 pos++; 397 rthdr->it_present |= 398 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 399 put_unaligned_le32(status->ampdu_reference, pos); 400 pos += 4; 401 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 402 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 403 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 404 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 405 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 406 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 407 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 408 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 409 put_unaligned_le16(flags, pos); 410 pos += 2; 411 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 412 *pos++ = status->ampdu_delimiter_crc; 413 else 414 *pos++ = 0; 415 *pos++ = 0; 416 } 417 418 if (status->flag & RX_FLAG_VHT) { 419 u16 known = local->hw.radiotap_vht_details; 420 421 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 422 put_unaligned_le16(known, pos); 423 pos += 2; 424 /* flags */ 425 if (status->flag & RX_FLAG_SHORT_GI) 426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 427 /* in VHT, STBC is binary */ 428 if (status->flag & RX_FLAG_STBC_MASK) 429 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 430 if (status->vht_flag & RX_VHT_FLAG_BF) 431 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 432 pos++; 433 /* bandwidth */ 434 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 435 *pos++ = 4; 436 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 437 *pos++ = 11; 438 else if (status->flag & RX_FLAG_40MHZ) 439 *pos++ = 1; 440 else /* 20 MHz */ 441 *pos++ = 0; 442 /* MCS/NSS */ 443 *pos = (status->rate_idx << 4) | status->vht_nss; 444 pos += 4; 445 /* coding field */ 446 if (status->flag & RX_FLAG_LDPC) 447 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 448 pos++; 449 /* group ID */ 450 pos++; 451 /* partial_aid */ 452 pos += 2; 453 } 454 455 if (local->hw.radiotap_timestamp.units_pos >= 0) { 456 u16 accuracy = 0; 457 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 458 459 rthdr->it_present |= 460 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 461 462 /* ensure 8 byte alignment */ 463 while ((pos - (u8 *)rthdr) & 7) 464 pos++; 465 466 put_unaligned_le64(status->device_timestamp, pos); 467 pos += sizeof(u64); 468 469 if (local->hw.radiotap_timestamp.accuracy >= 0) { 470 accuracy = local->hw.radiotap_timestamp.accuracy; 471 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 472 } 473 put_unaligned_le16(accuracy, pos); 474 pos += sizeof(u16); 475 476 *pos++ = local->hw.radiotap_timestamp.units_pos; 477 *pos++ = flags; 478 } 479 480 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 481 *pos++ = status->chain_signal[chain]; 482 *pos++ = chain; 483 } 484 485 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 486 /* ensure 2 byte alignment for the vendor field as required */ 487 if ((pos - (u8 *)rthdr) & 1) 488 *pos++ = 0; 489 *pos++ = rtap.oui[0]; 490 *pos++ = rtap.oui[1]; 491 *pos++ = rtap.oui[2]; 492 *pos++ = rtap.subns; 493 put_unaligned_le16(rtap.len, pos); 494 pos += 2; 495 /* align the actual payload as requested */ 496 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 497 *pos++ = 0; 498 /* data (and possible padding) already follows */ 499 } 500 } 501 502 /* 503 * This function copies a received frame to all monitor interfaces and 504 * returns a cleaned-up SKB that no longer includes the FCS nor the 505 * radiotap header the driver might have added. 506 */ 507 static struct sk_buff * 508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 509 struct ieee80211_rate *rate) 510 { 511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 512 struct ieee80211_sub_if_data *sdata; 513 int rt_hdrlen, needed_headroom; 514 struct sk_buff *skb, *skb2; 515 struct net_device *prev_dev = NULL; 516 int present_fcs_len = 0; 517 unsigned int rtap_vendor_space = 0; 518 struct ieee80211_mgmt *mgmt; 519 struct ieee80211_sub_if_data *monitor_sdata = 520 rcu_dereference(local->monitor_sdata); 521 522 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 523 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 524 525 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 526 } 527 528 /* 529 * First, we may need to make a copy of the skb because 530 * (1) we need to modify it for radiotap (if not present), and 531 * (2) the other RX handlers will modify the skb we got. 532 * 533 * We don't need to, of course, if we aren't going to return 534 * the SKB because it has a bad FCS/PLCP checksum. 535 */ 536 537 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 538 present_fcs_len = FCS_LEN; 539 540 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 541 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 542 dev_kfree_skb(origskb); 543 return NULL; 544 } 545 546 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 547 if (should_drop_frame(origskb, present_fcs_len, 548 rtap_vendor_space)) { 549 dev_kfree_skb(origskb); 550 return NULL; 551 } 552 553 return remove_monitor_info(local, origskb, rtap_vendor_space); 554 } 555 556 /* room for the radiotap header based on driver features */ 557 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 558 needed_headroom = rt_hdrlen - rtap_vendor_space; 559 560 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 561 /* only need to expand headroom if necessary */ 562 skb = origskb; 563 origskb = NULL; 564 565 /* 566 * This shouldn't trigger often because most devices have an 567 * RX header they pull before we get here, and that should 568 * be big enough for our radiotap information. We should 569 * probably export the length to drivers so that we can have 570 * them allocate enough headroom to start with. 571 */ 572 if (skb_headroom(skb) < needed_headroom && 573 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 574 dev_kfree_skb(skb); 575 return NULL; 576 } 577 } else { 578 /* 579 * Need to make a copy and possibly remove radiotap header 580 * and FCS from the original. 581 */ 582 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 583 584 origskb = remove_monitor_info(local, origskb, 585 rtap_vendor_space); 586 587 if (!skb) 588 return origskb; 589 } 590 591 /* prepend radiotap information */ 592 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 593 594 skb_reset_mac_header(skb); 595 skb->ip_summed = CHECKSUM_UNNECESSARY; 596 skb->pkt_type = PACKET_OTHERHOST; 597 skb->protocol = htons(ETH_P_802_2); 598 599 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 600 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 601 continue; 602 603 if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) 604 continue; 605 606 if (!ieee80211_sdata_running(sdata)) 607 continue; 608 609 if (prev_dev) { 610 skb2 = skb_clone(skb, GFP_ATOMIC); 611 if (skb2) { 612 skb2->dev = prev_dev; 613 netif_receive_skb(skb2); 614 } 615 } 616 617 prev_dev = sdata->dev; 618 ieee80211_rx_stats(sdata->dev, skb->len); 619 } 620 621 mgmt = (void *)skb->data; 622 if (monitor_sdata && 623 skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN && 624 ieee80211_is_action(mgmt->frame_control) && 625 mgmt->u.action.category == WLAN_CATEGORY_VHT && 626 mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT && 627 is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) && 628 ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) { 629 struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC); 630 631 if (mu_skb) { 632 mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 633 skb_queue_tail(&monitor_sdata->skb_queue, mu_skb); 634 ieee80211_queue_work(&local->hw, &monitor_sdata->work); 635 } 636 } 637 638 if (prev_dev) { 639 skb->dev = prev_dev; 640 netif_receive_skb(skb); 641 } else 642 dev_kfree_skb(skb); 643 644 return origskb; 645 } 646 647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 648 { 649 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 650 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 651 int tid, seqno_idx, security_idx; 652 653 /* does the frame have a qos control field? */ 654 if (ieee80211_is_data_qos(hdr->frame_control)) { 655 u8 *qc = ieee80211_get_qos_ctl(hdr); 656 /* frame has qos control */ 657 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 658 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 659 status->rx_flags |= IEEE80211_RX_AMSDU; 660 661 seqno_idx = tid; 662 security_idx = tid; 663 } else { 664 /* 665 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 666 * 667 * Sequence numbers for management frames, QoS data 668 * frames with a broadcast/multicast address in the 669 * Address 1 field, and all non-QoS data frames sent 670 * by QoS STAs are assigned using an additional single 671 * modulo-4096 counter, [...] 672 * 673 * We also use that counter for non-QoS STAs. 674 */ 675 seqno_idx = IEEE80211_NUM_TIDS; 676 security_idx = 0; 677 if (ieee80211_is_mgmt(hdr->frame_control)) 678 security_idx = IEEE80211_NUM_TIDS; 679 tid = 0; 680 } 681 682 rx->seqno_idx = seqno_idx; 683 rx->security_idx = security_idx; 684 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 685 * For now, set skb->priority to 0 for other cases. */ 686 rx->skb->priority = (tid > 7) ? 0 : tid; 687 } 688 689 /** 690 * DOC: Packet alignment 691 * 692 * Drivers always need to pass packets that are aligned to two-byte boundaries 693 * to the stack. 694 * 695 * Additionally, should, if possible, align the payload data in a way that 696 * guarantees that the contained IP header is aligned to a four-byte 697 * boundary. In the case of regular frames, this simply means aligning the 698 * payload to a four-byte boundary (because either the IP header is directly 699 * contained, or IV/RFC1042 headers that have a length divisible by four are 700 * in front of it). If the payload data is not properly aligned and the 701 * architecture doesn't support efficient unaligned operations, mac80211 702 * will align the data. 703 * 704 * With A-MSDU frames, however, the payload data address must yield two modulo 705 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 706 * push the IP header further back to a multiple of four again. Thankfully, the 707 * specs were sane enough this time around to require padding each A-MSDU 708 * subframe to a length that is a multiple of four. 709 * 710 * Padding like Atheros hardware adds which is between the 802.11 header and 711 * the payload is not supported, the driver is required to move the 802.11 712 * header to be directly in front of the payload in that case. 713 */ 714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 715 { 716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 717 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 718 #endif 719 } 720 721 722 /* rx handlers */ 723 724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 725 { 726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 727 728 if (is_multicast_ether_addr(hdr->addr1)) 729 return 0; 730 731 return ieee80211_is_robust_mgmt_frame(skb); 732 } 733 734 735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 736 { 737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 738 739 if (!is_multicast_ether_addr(hdr->addr1)) 740 return 0; 741 742 return ieee80211_is_robust_mgmt_frame(skb); 743 } 744 745 746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 748 { 749 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 750 struct ieee80211_mmie *mmie; 751 struct ieee80211_mmie_16 *mmie16; 752 753 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 754 return -1; 755 756 if (!ieee80211_is_robust_mgmt_frame(skb)) 757 return -1; /* not a robust management frame */ 758 759 mmie = (struct ieee80211_mmie *) 760 (skb->data + skb->len - sizeof(*mmie)); 761 if (mmie->element_id == WLAN_EID_MMIE && 762 mmie->length == sizeof(*mmie) - 2) 763 return le16_to_cpu(mmie->key_id); 764 765 mmie16 = (struct ieee80211_mmie_16 *) 766 (skb->data + skb->len - sizeof(*mmie16)); 767 if (skb->len >= 24 + sizeof(*mmie16) && 768 mmie16->element_id == WLAN_EID_MMIE && 769 mmie16->length == sizeof(*mmie16) - 2) 770 return le16_to_cpu(mmie16->key_id); 771 772 return -1; 773 } 774 775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 776 struct sk_buff *skb) 777 { 778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 779 __le16 fc; 780 int hdrlen; 781 u8 keyid; 782 783 fc = hdr->frame_control; 784 hdrlen = ieee80211_hdrlen(fc); 785 786 if (skb->len < hdrlen + cs->hdr_len) 787 return -EINVAL; 788 789 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 790 keyid &= cs->key_idx_mask; 791 keyid >>= cs->key_idx_shift; 792 793 return keyid; 794 } 795 796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 797 { 798 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 799 char *dev_addr = rx->sdata->vif.addr; 800 801 if (ieee80211_is_data(hdr->frame_control)) { 802 if (is_multicast_ether_addr(hdr->addr1)) { 803 if (ieee80211_has_tods(hdr->frame_control) || 804 !ieee80211_has_fromds(hdr->frame_control)) 805 return RX_DROP_MONITOR; 806 if (ether_addr_equal(hdr->addr3, dev_addr)) 807 return RX_DROP_MONITOR; 808 } else { 809 if (!ieee80211_has_a4(hdr->frame_control)) 810 return RX_DROP_MONITOR; 811 if (ether_addr_equal(hdr->addr4, dev_addr)) 812 return RX_DROP_MONITOR; 813 } 814 } 815 816 /* If there is not an established peer link and this is not a peer link 817 * establisment frame, beacon or probe, drop the frame. 818 */ 819 820 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 821 struct ieee80211_mgmt *mgmt; 822 823 if (!ieee80211_is_mgmt(hdr->frame_control)) 824 return RX_DROP_MONITOR; 825 826 if (ieee80211_is_action(hdr->frame_control)) { 827 u8 category; 828 829 /* make sure category field is present */ 830 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 831 return RX_DROP_MONITOR; 832 833 mgmt = (struct ieee80211_mgmt *)hdr; 834 category = mgmt->u.action.category; 835 if (category != WLAN_CATEGORY_MESH_ACTION && 836 category != WLAN_CATEGORY_SELF_PROTECTED) 837 return RX_DROP_MONITOR; 838 return RX_CONTINUE; 839 } 840 841 if (ieee80211_is_probe_req(hdr->frame_control) || 842 ieee80211_is_probe_resp(hdr->frame_control) || 843 ieee80211_is_beacon(hdr->frame_control) || 844 ieee80211_is_auth(hdr->frame_control)) 845 return RX_CONTINUE; 846 847 return RX_DROP_MONITOR; 848 } 849 850 return RX_CONTINUE; 851 } 852 853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 854 int index) 855 { 856 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 857 struct sk_buff *tail = skb_peek_tail(frames); 858 struct ieee80211_rx_status *status; 859 860 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 861 return true; 862 863 if (!tail) 864 return false; 865 866 status = IEEE80211_SKB_RXCB(tail); 867 if (status->flag & RX_FLAG_AMSDU_MORE) 868 return false; 869 870 return true; 871 } 872 873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 874 struct tid_ampdu_rx *tid_agg_rx, 875 int index, 876 struct sk_buff_head *frames) 877 { 878 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 879 struct sk_buff *skb; 880 struct ieee80211_rx_status *status; 881 882 lockdep_assert_held(&tid_agg_rx->reorder_lock); 883 884 if (skb_queue_empty(skb_list)) 885 goto no_frame; 886 887 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 888 __skb_queue_purge(skb_list); 889 goto no_frame; 890 } 891 892 /* release frames from the reorder ring buffer */ 893 tid_agg_rx->stored_mpdu_num--; 894 while ((skb = __skb_dequeue(skb_list))) { 895 status = IEEE80211_SKB_RXCB(skb); 896 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 897 __skb_queue_tail(frames, skb); 898 } 899 900 no_frame: 901 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 902 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 903 } 904 905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 906 struct tid_ampdu_rx *tid_agg_rx, 907 u16 head_seq_num, 908 struct sk_buff_head *frames) 909 { 910 int index; 911 912 lockdep_assert_held(&tid_agg_rx->reorder_lock); 913 914 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 915 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 916 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 917 frames); 918 } 919 } 920 921 /* 922 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 923 * the skb was added to the buffer longer than this time ago, the earlier 924 * frames that have not yet been received are assumed to be lost and the skb 925 * can be released for processing. This may also release other skb's from the 926 * reorder buffer if there are no additional gaps between the frames. 927 * 928 * Callers must hold tid_agg_rx->reorder_lock. 929 */ 930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 931 932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 933 struct tid_ampdu_rx *tid_agg_rx, 934 struct sk_buff_head *frames) 935 { 936 int index, i, j; 937 938 lockdep_assert_held(&tid_agg_rx->reorder_lock); 939 940 /* release the buffer until next missing frame */ 941 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 943 tid_agg_rx->stored_mpdu_num) { 944 /* 945 * No buffers ready to be released, but check whether any 946 * frames in the reorder buffer have timed out. 947 */ 948 int skipped = 1; 949 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 950 j = (j + 1) % tid_agg_rx->buf_size) { 951 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 952 skipped++; 953 continue; 954 } 955 if (skipped && 956 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 957 HT_RX_REORDER_BUF_TIMEOUT)) 958 goto set_release_timer; 959 960 /* don't leave incomplete A-MSDUs around */ 961 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 962 i = (i + 1) % tid_agg_rx->buf_size) 963 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 964 965 ht_dbg_ratelimited(sdata, 966 "release an RX reorder frame due to timeout on earlier frames\n"); 967 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 968 frames); 969 970 /* 971 * Increment the head seq# also for the skipped slots. 972 */ 973 tid_agg_rx->head_seq_num = 974 (tid_agg_rx->head_seq_num + 975 skipped) & IEEE80211_SN_MASK; 976 skipped = 0; 977 } 978 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 979 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 980 frames); 981 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 982 } 983 984 if (tid_agg_rx->stored_mpdu_num) { 985 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 986 987 for (; j != (index - 1) % tid_agg_rx->buf_size; 988 j = (j + 1) % tid_agg_rx->buf_size) { 989 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 990 break; 991 } 992 993 set_release_timer: 994 995 if (!tid_agg_rx->removed) 996 mod_timer(&tid_agg_rx->reorder_timer, 997 tid_agg_rx->reorder_time[j] + 1 + 998 HT_RX_REORDER_BUF_TIMEOUT); 999 } else { 1000 del_timer(&tid_agg_rx->reorder_timer); 1001 } 1002 } 1003 1004 /* 1005 * As this function belongs to the RX path it must be under 1006 * rcu_read_lock protection. It returns false if the frame 1007 * can be processed immediately, true if it was consumed. 1008 */ 1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1010 struct tid_ampdu_rx *tid_agg_rx, 1011 struct sk_buff *skb, 1012 struct sk_buff_head *frames) 1013 { 1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1016 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1017 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1018 u16 head_seq_num, buf_size; 1019 int index; 1020 bool ret = true; 1021 1022 spin_lock(&tid_agg_rx->reorder_lock); 1023 1024 /* 1025 * Offloaded BA sessions have no known starting sequence number so pick 1026 * one from first Rxed frame for this tid after BA was started. 1027 */ 1028 if (unlikely(tid_agg_rx->auto_seq)) { 1029 tid_agg_rx->auto_seq = false; 1030 tid_agg_rx->ssn = mpdu_seq_num; 1031 tid_agg_rx->head_seq_num = mpdu_seq_num; 1032 } 1033 1034 buf_size = tid_agg_rx->buf_size; 1035 head_seq_num = tid_agg_rx->head_seq_num; 1036 1037 /* frame with out of date sequence number */ 1038 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1039 dev_kfree_skb(skb); 1040 goto out; 1041 } 1042 1043 /* 1044 * If frame the sequence number exceeds our buffering window 1045 * size release some previous frames to make room for this one. 1046 */ 1047 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1048 head_seq_num = ieee80211_sn_inc( 1049 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1050 /* release stored frames up to new head to stack */ 1051 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1052 head_seq_num, frames); 1053 } 1054 1055 /* Now the new frame is always in the range of the reordering buffer */ 1056 1057 index = mpdu_seq_num % tid_agg_rx->buf_size; 1058 1059 /* check if we already stored this frame */ 1060 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1061 dev_kfree_skb(skb); 1062 goto out; 1063 } 1064 1065 /* 1066 * If the current MPDU is in the right order and nothing else 1067 * is stored we can process it directly, no need to buffer it. 1068 * If it is first but there's something stored, we may be able 1069 * to release frames after this one. 1070 */ 1071 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1072 tid_agg_rx->stored_mpdu_num == 0) { 1073 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1074 tid_agg_rx->head_seq_num = 1075 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1076 ret = false; 1077 goto out; 1078 } 1079 1080 /* put the frame in the reordering buffer */ 1081 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1082 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1083 tid_agg_rx->reorder_time[index] = jiffies; 1084 tid_agg_rx->stored_mpdu_num++; 1085 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1086 } 1087 1088 out: 1089 spin_unlock(&tid_agg_rx->reorder_lock); 1090 return ret; 1091 } 1092 1093 /* 1094 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1095 * true if the MPDU was buffered, false if it should be processed. 1096 */ 1097 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1098 struct sk_buff_head *frames) 1099 { 1100 struct sk_buff *skb = rx->skb; 1101 struct ieee80211_local *local = rx->local; 1102 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1103 struct sta_info *sta = rx->sta; 1104 struct tid_ampdu_rx *tid_agg_rx; 1105 u16 sc; 1106 u8 tid, ack_policy; 1107 1108 if (!ieee80211_is_data_qos(hdr->frame_control) || 1109 is_multicast_ether_addr(hdr->addr1)) 1110 goto dont_reorder; 1111 1112 /* 1113 * filter the QoS data rx stream according to 1114 * STA/TID and check if this STA/TID is on aggregation 1115 */ 1116 1117 if (!sta) 1118 goto dont_reorder; 1119 1120 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1121 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1122 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1123 1124 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1125 if (!tid_agg_rx) { 1126 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1127 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1128 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1129 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1130 WLAN_BACK_RECIPIENT, 1131 WLAN_REASON_QSTA_REQUIRE_SETUP); 1132 goto dont_reorder; 1133 } 1134 1135 /* qos null data frames are excluded */ 1136 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1137 goto dont_reorder; 1138 1139 /* not part of a BA session */ 1140 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1141 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1142 goto dont_reorder; 1143 1144 /* new, potentially un-ordered, ampdu frame - process it */ 1145 1146 /* reset session timer */ 1147 if (tid_agg_rx->timeout) 1148 tid_agg_rx->last_rx = jiffies; 1149 1150 /* if this mpdu is fragmented - terminate rx aggregation session */ 1151 sc = le16_to_cpu(hdr->seq_ctrl); 1152 if (sc & IEEE80211_SCTL_FRAG) { 1153 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1154 skb_queue_tail(&rx->sdata->skb_queue, skb); 1155 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1156 return; 1157 } 1158 1159 /* 1160 * No locking needed -- we will only ever process one 1161 * RX packet at a time, and thus own tid_agg_rx. All 1162 * other code manipulating it needs to (and does) make 1163 * sure that we cannot get to it any more before doing 1164 * anything with it. 1165 */ 1166 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1167 frames)) 1168 return; 1169 1170 dont_reorder: 1171 __skb_queue_tail(frames, skb); 1172 } 1173 1174 static ieee80211_rx_result debug_noinline 1175 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1176 { 1177 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1178 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1179 1180 if (status->flag & RX_FLAG_DUP_VALIDATED) 1181 return RX_CONTINUE; 1182 1183 /* 1184 * Drop duplicate 802.11 retransmissions 1185 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1186 */ 1187 1188 if (rx->skb->len < 24) 1189 return RX_CONTINUE; 1190 1191 if (ieee80211_is_ctl(hdr->frame_control) || 1192 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1193 is_multicast_ether_addr(hdr->addr1)) 1194 return RX_CONTINUE; 1195 1196 if (!rx->sta) 1197 return RX_CONTINUE; 1198 1199 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1200 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1201 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1202 rx->sta->rx_stats.num_duplicates++; 1203 return RX_DROP_UNUSABLE; 1204 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1205 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1206 } 1207 1208 return RX_CONTINUE; 1209 } 1210 1211 static ieee80211_rx_result debug_noinline 1212 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1213 { 1214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1215 1216 /* Drop disallowed frame classes based on STA auth/assoc state; 1217 * IEEE 802.11, Chap 5.5. 1218 * 1219 * mac80211 filters only based on association state, i.e. it drops 1220 * Class 3 frames from not associated stations. hostapd sends 1221 * deauth/disassoc frames when needed. In addition, hostapd is 1222 * responsible for filtering on both auth and assoc states. 1223 */ 1224 1225 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1226 return ieee80211_rx_mesh_check(rx); 1227 1228 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1229 ieee80211_is_pspoll(hdr->frame_control)) && 1230 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1231 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1232 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1233 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1234 /* 1235 * accept port control frames from the AP even when it's not 1236 * yet marked ASSOC to prevent a race where we don't set the 1237 * assoc bit quickly enough before it sends the first frame 1238 */ 1239 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1240 ieee80211_is_data_present(hdr->frame_control)) { 1241 unsigned int hdrlen; 1242 __be16 ethertype; 1243 1244 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1245 1246 if (rx->skb->len < hdrlen + 8) 1247 return RX_DROP_MONITOR; 1248 1249 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1250 if (ethertype == rx->sdata->control_port_protocol) 1251 return RX_CONTINUE; 1252 } 1253 1254 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1255 cfg80211_rx_spurious_frame(rx->sdata->dev, 1256 hdr->addr2, 1257 GFP_ATOMIC)) 1258 return RX_DROP_UNUSABLE; 1259 1260 return RX_DROP_MONITOR; 1261 } 1262 1263 return RX_CONTINUE; 1264 } 1265 1266 1267 static ieee80211_rx_result debug_noinline 1268 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1269 { 1270 struct ieee80211_local *local; 1271 struct ieee80211_hdr *hdr; 1272 struct sk_buff *skb; 1273 1274 local = rx->local; 1275 skb = rx->skb; 1276 hdr = (struct ieee80211_hdr *) skb->data; 1277 1278 if (!local->pspolling) 1279 return RX_CONTINUE; 1280 1281 if (!ieee80211_has_fromds(hdr->frame_control)) 1282 /* this is not from AP */ 1283 return RX_CONTINUE; 1284 1285 if (!ieee80211_is_data(hdr->frame_control)) 1286 return RX_CONTINUE; 1287 1288 if (!ieee80211_has_moredata(hdr->frame_control)) { 1289 /* AP has no more frames buffered for us */ 1290 local->pspolling = false; 1291 return RX_CONTINUE; 1292 } 1293 1294 /* more data bit is set, let's request a new frame from the AP */ 1295 ieee80211_send_pspoll(local, rx->sdata); 1296 1297 return RX_CONTINUE; 1298 } 1299 1300 static void sta_ps_start(struct sta_info *sta) 1301 { 1302 struct ieee80211_sub_if_data *sdata = sta->sdata; 1303 struct ieee80211_local *local = sdata->local; 1304 struct ps_data *ps; 1305 int tid; 1306 1307 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1308 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1309 ps = &sdata->bss->ps; 1310 else 1311 return; 1312 1313 atomic_inc(&ps->num_sta_ps); 1314 set_sta_flag(sta, WLAN_STA_PS_STA); 1315 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1316 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1317 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1318 sta->sta.addr, sta->sta.aid); 1319 1320 ieee80211_clear_fast_xmit(sta); 1321 1322 if (!sta->sta.txq[0]) 1323 return; 1324 1325 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1326 if (txq_has_queue(sta->sta.txq[tid])) 1327 set_bit(tid, &sta->txq_buffered_tids); 1328 else 1329 clear_bit(tid, &sta->txq_buffered_tids); 1330 } 1331 } 1332 1333 static void sta_ps_end(struct sta_info *sta) 1334 { 1335 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1336 sta->sta.addr, sta->sta.aid); 1337 1338 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1339 /* 1340 * Clear the flag only if the other one is still set 1341 * so that the TX path won't start TX'ing new frames 1342 * directly ... In the case that the driver flag isn't 1343 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1344 */ 1345 clear_sta_flag(sta, WLAN_STA_PS_STA); 1346 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1347 sta->sta.addr, sta->sta.aid); 1348 return; 1349 } 1350 1351 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1352 clear_sta_flag(sta, WLAN_STA_PS_STA); 1353 ieee80211_sta_ps_deliver_wakeup(sta); 1354 } 1355 1356 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1357 { 1358 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1359 bool in_ps; 1360 1361 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1362 1363 /* Don't let the same PS state be set twice */ 1364 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1365 if ((start && in_ps) || (!start && !in_ps)) 1366 return -EINVAL; 1367 1368 if (start) 1369 sta_ps_start(sta); 1370 else 1371 sta_ps_end(sta); 1372 1373 return 0; 1374 } 1375 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1376 1377 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1378 { 1379 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1380 1381 if (test_sta_flag(sta, WLAN_STA_SP)) 1382 return; 1383 1384 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1385 ieee80211_sta_ps_deliver_poll_response(sta); 1386 else 1387 set_sta_flag(sta, WLAN_STA_PSPOLL); 1388 } 1389 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1390 1391 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1392 { 1393 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1394 u8 ac = ieee802_1d_to_ac[tid & 7]; 1395 1396 /* 1397 * If this AC is not trigger-enabled do nothing unless the 1398 * driver is calling us after it already checked. 1399 * 1400 * NB: This could/should check a separate bitmap of trigger- 1401 * enabled queues, but for now we only implement uAPSD w/o 1402 * TSPEC changes to the ACs, so they're always the same. 1403 */ 1404 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1405 tid != IEEE80211_NUM_TIDS) 1406 return; 1407 1408 /* if we are in a service period, do nothing */ 1409 if (test_sta_flag(sta, WLAN_STA_SP)) 1410 return; 1411 1412 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1413 ieee80211_sta_ps_deliver_uapsd(sta); 1414 else 1415 set_sta_flag(sta, WLAN_STA_UAPSD); 1416 } 1417 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1418 1419 static ieee80211_rx_result debug_noinline 1420 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1421 { 1422 struct ieee80211_sub_if_data *sdata = rx->sdata; 1423 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1424 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1425 1426 if (!rx->sta) 1427 return RX_CONTINUE; 1428 1429 if (sdata->vif.type != NL80211_IFTYPE_AP && 1430 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1431 return RX_CONTINUE; 1432 1433 /* 1434 * The device handles station powersave, so don't do anything about 1435 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1436 * it to mac80211 since they're handled.) 1437 */ 1438 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1439 return RX_CONTINUE; 1440 1441 /* 1442 * Don't do anything if the station isn't already asleep. In 1443 * the uAPSD case, the station will probably be marked asleep, 1444 * in the PS-Poll case the station must be confused ... 1445 */ 1446 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1447 return RX_CONTINUE; 1448 1449 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1450 ieee80211_sta_pspoll(&rx->sta->sta); 1451 1452 /* Free PS Poll skb here instead of returning RX_DROP that would 1453 * count as an dropped frame. */ 1454 dev_kfree_skb(rx->skb); 1455 1456 return RX_QUEUED; 1457 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1458 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1459 ieee80211_has_pm(hdr->frame_control) && 1460 (ieee80211_is_data_qos(hdr->frame_control) || 1461 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1462 u8 tid; 1463 1464 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1465 1466 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1467 } 1468 1469 return RX_CONTINUE; 1470 } 1471 1472 static ieee80211_rx_result debug_noinline 1473 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1474 { 1475 struct sta_info *sta = rx->sta; 1476 struct sk_buff *skb = rx->skb; 1477 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1479 int i; 1480 1481 if (!sta) 1482 return RX_CONTINUE; 1483 1484 /* 1485 * Update last_rx only for IBSS packets which are for the current 1486 * BSSID and for station already AUTHORIZED to avoid keeping the 1487 * current IBSS network alive in cases where other STAs start 1488 * using different BSSID. This will also give the station another 1489 * chance to restart the authentication/authorization in case 1490 * something went wrong the first time. 1491 */ 1492 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1493 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1494 NL80211_IFTYPE_ADHOC); 1495 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1496 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1497 sta->rx_stats.last_rx = jiffies; 1498 if (ieee80211_is_data(hdr->frame_control) && 1499 !is_multicast_ether_addr(hdr->addr1)) 1500 sta->rx_stats.last_rate = 1501 sta_stats_encode_rate(status); 1502 } 1503 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1504 sta->rx_stats.last_rx = jiffies; 1505 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1506 /* 1507 * Mesh beacons will update last_rx when if they are found to 1508 * match the current local configuration when processed. 1509 */ 1510 sta->rx_stats.last_rx = jiffies; 1511 if (ieee80211_is_data(hdr->frame_control)) 1512 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1513 } 1514 1515 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1516 ieee80211_sta_rx_notify(rx->sdata, hdr); 1517 1518 sta->rx_stats.fragments++; 1519 1520 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1521 sta->rx_stats.bytes += rx->skb->len; 1522 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1523 1524 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1525 sta->rx_stats.last_signal = status->signal; 1526 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1527 } 1528 1529 if (status->chains) { 1530 sta->rx_stats.chains = status->chains; 1531 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1532 int signal = status->chain_signal[i]; 1533 1534 if (!(status->chains & BIT(i))) 1535 continue; 1536 1537 sta->rx_stats.chain_signal_last[i] = signal; 1538 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1539 -signal); 1540 } 1541 } 1542 1543 /* 1544 * Change STA power saving mode only at the end of a frame 1545 * exchange sequence. 1546 */ 1547 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1548 !ieee80211_has_morefrags(hdr->frame_control) && 1549 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1550 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1551 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1552 /* PM bit is only checked in frames where it isn't reserved, 1553 * in AP mode it's reserved in non-bufferable management frames 1554 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1555 */ 1556 (!ieee80211_is_mgmt(hdr->frame_control) || 1557 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1558 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1559 if (!ieee80211_has_pm(hdr->frame_control)) 1560 sta_ps_end(sta); 1561 } else { 1562 if (ieee80211_has_pm(hdr->frame_control)) 1563 sta_ps_start(sta); 1564 } 1565 } 1566 1567 /* mesh power save support */ 1568 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1569 ieee80211_mps_rx_h_sta_process(sta, hdr); 1570 1571 /* 1572 * Drop (qos-)data::nullfunc frames silently, since they 1573 * are used only to control station power saving mode. 1574 */ 1575 if (ieee80211_is_nullfunc(hdr->frame_control) || 1576 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1577 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1578 1579 /* 1580 * If we receive a 4-addr nullfunc frame from a STA 1581 * that was not moved to a 4-addr STA vlan yet send 1582 * the event to userspace and for older hostapd drop 1583 * the frame to the monitor interface. 1584 */ 1585 if (ieee80211_has_a4(hdr->frame_control) && 1586 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1587 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1588 !rx->sdata->u.vlan.sta))) { 1589 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1590 cfg80211_rx_unexpected_4addr_frame( 1591 rx->sdata->dev, sta->sta.addr, 1592 GFP_ATOMIC); 1593 return RX_DROP_MONITOR; 1594 } 1595 /* 1596 * Update counter and free packet here to avoid 1597 * counting this as a dropped packed. 1598 */ 1599 sta->rx_stats.packets++; 1600 dev_kfree_skb(rx->skb); 1601 return RX_QUEUED; 1602 } 1603 1604 return RX_CONTINUE; 1605 } /* ieee80211_rx_h_sta_process */ 1606 1607 static ieee80211_rx_result debug_noinline 1608 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1609 { 1610 struct sk_buff *skb = rx->skb; 1611 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1613 int keyidx; 1614 int hdrlen; 1615 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1616 struct ieee80211_key *sta_ptk = NULL; 1617 int mmie_keyidx = -1; 1618 __le16 fc; 1619 const struct ieee80211_cipher_scheme *cs = NULL; 1620 1621 /* 1622 * Key selection 101 1623 * 1624 * There are four types of keys: 1625 * - GTK (group keys) 1626 * - IGTK (group keys for management frames) 1627 * - PTK (pairwise keys) 1628 * - STK (station-to-station pairwise keys) 1629 * 1630 * When selecting a key, we have to distinguish between multicast 1631 * (including broadcast) and unicast frames, the latter can only 1632 * use PTKs and STKs while the former always use GTKs and IGTKs. 1633 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1634 * unicast frames can also use key indices like GTKs. Hence, if we 1635 * don't have a PTK/STK we check the key index for a WEP key. 1636 * 1637 * Note that in a regular BSS, multicast frames are sent by the 1638 * AP only, associated stations unicast the frame to the AP first 1639 * which then multicasts it on their behalf. 1640 * 1641 * There is also a slight problem in IBSS mode: GTKs are negotiated 1642 * with each station, that is something we don't currently handle. 1643 * The spec seems to expect that one negotiates the same key with 1644 * every station but there's no such requirement; VLANs could be 1645 * possible. 1646 */ 1647 1648 /* start without a key */ 1649 rx->key = NULL; 1650 fc = hdr->frame_control; 1651 1652 if (rx->sta) { 1653 int keyid = rx->sta->ptk_idx; 1654 1655 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1656 cs = rx->sta->cipher_scheme; 1657 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1658 if (unlikely(keyid < 0)) 1659 return RX_DROP_UNUSABLE; 1660 } 1661 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1662 } 1663 1664 if (!ieee80211_has_protected(fc)) 1665 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1666 1667 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1668 rx->key = sta_ptk; 1669 if ((status->flag & RX_FLAG_DECRYPTED) && 1670 (status->flag & RX_FLAG_IV_STRIPPED)) 1671 return RX_CONTINUE; 1672 /* Skip decryption if the frame is not protected. */ 1673 if (!ieee80211_has_protected(fc)) 1674 return RX_CONTINUE; 1675 } else if (mmie_keyidx >= 0) { 1676 /* Broadcast/multicast robust management frame / BIP */ 1677 if ((status->flag & RX_FLAG_DECRYPTED) && 1678 (status->flag & RX_FLAG_IV_STRIPPED)) 1679 return RX_CONTINUE; 1680 1681 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1682 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1683 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1684 if (rx->sta) { 1685 if (ieee80211_is_group_privacy_action(skb) && 1686 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1687 return RX_DROP_MONITOR; 1688 1689 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1690 } 1691 if (!rx->key) 1692 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1693 } else if (!ieee80211_has_protected(fc)) { 1694 /* 1695 * The frame was not protected, so skip decryption. However, we 1696 * need to set rx->key if there is a key that could have been 1697 * used so that the frame may be dropped if encryption would 1698 * have been expected. 1699 */ 1700 struct ieee80211_key *key = NULL; 1701 struct ieee80211_sub_if_data *sdata = rx->sdata; 1702 int i; 1703 1704 if (ieee80211_is_mgmt(fc) && 1705 is_multicast_ether_addr(hdr->addr1) && 1706 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1707 rx->key = key; 1708 else { 1709 if (rx->sta) { 1710 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1711 key = rcu_dereference(rx->sta->gtk[i]); 1712 if (key) 1713 break; 1714 } 1715 } 1716 if (!key) { 1717 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1718 key = rcu_dereference(sdata->keys[i]); 1719 if (key) 1720 break; 1721 } 1722 } 1723 if (key) 1724 rx->key = key; 1725 } 1726 return RX_CONTINUE; 1727 } else { 1728 u8 keyid; 1729 1730 /* 1731 * The device doesn't give us the IV so we won't be 1732 * able to look up the key. That's ok though, we 1733 * don't need to decrypt the frame, we just won't 1734 * be able to keep statistics accurate. 1735 * Except for key threshold notifications, should 1736 * we somehow allow the driver to tell us which key 1737 * the hardware used if this flag is set? 1738 */ 1739 if ((status->flag & RX_FLAG_DECRYPTED) && 1740 (status->flag & RX_FLAG_IV_STRIPPED)) 1741 return RX_CONTINUE; 1742 1743 hdrlen = ieee80211_hdrlen(fc); 1744 1745 if (cs) { 1746 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1747 1748 if (unlikely(keyidx < 0)) 1749 return RX_DROP_UNUSABLE; 1750 } else { 1751 if (rx->skb->len < 8 + hdrlen) 1752 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1753 /* 1754 * no need to call ieee80211_wep_get_keyidx, 1755 * it verifies a bunch of things we've done already 1756 */ 1757 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1758 keyidx = keyid >> 6; 1759 } 1760 1761 /* check per-station GTK first, if multicast packet */ 1762 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1763 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1764 1765 /* if not found, try default key */ 1766 if (!rx->key) { 1767 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1768 1769 /* 1770 * RSNA-protected unicast frames should always be 1771 * sent with pairwise or station-to-station keys, 1772 * but for WEP we allow using a key index as well. 1773 */ 1774 if (rx->key && 1775 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1776 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1777 !is_multicast_ether_addr(hdr->addr1)) 1778 rx->key = NULL; 1779 } 1780 } 1781 1782 if (rx->key) { 1783 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1784 return RX_DROP_MONITOR; 1785 1786 /* TODO: add threshold stuff again */ 1787 } else { 1788 return RX_DROP_MONITOR; 1789 } 1790 1791 switch (rx->key->conf.cipher) { 1792 case WLAN_CIPHER_SUITE_WEP40: 1793 case WLAN_CIPHER_SUITE_WEP104: 1794 result = ieee80211_crypto_wep_decrypt(rx); 1795 break; 1796 case WLAN_CIPHER_SUITE_TKIP: 1797 result = ieee80211_crypto_tkip_decrypt(rx); 1798 break; 1799 case WLAN_CIPHER_SUITE_CCMP: 1800 result = ieee80211_crypto_ccmp_decrypt( 1801 rx, IEEE80211_CCMP_MIC_LEN); 1802 break; 1803 case WLAN_CIPHER_SUITE_CCMP_256: 1804 result = ieee80211_crypto_ccmp_decrypt( 1805 rx, IEEE80211_CCMP_256_MIC_LEN); 1806 break; 1807 case WLAN_CIPHER_SUITE_AES_CMAC: 1808 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1809 break; 1810 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1811 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1812 break; 1813 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1814 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1815 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1816 break; 1817 case WLAN_CIPHER_SUITE_GCMP: 1818 case WLAN_CIPHER_SUITE_GCMP_256: 1819 result = ieee80211_crypto_gcmp_decrypt(rx); 1820 break; 1821 default: 1822 result = ieee80211_crypto_hw_decrypt(rx); 1823 } 1824 1825 /* the hdr variable is invalid after the decrypt handlers */ 1826 1827 /* either the frame has been decrypted or will be dropped */ 1828 status->flag |= RX_FLAG_DECRYPTED; 1829 1830 return result; 1831 } 1832 1833 static inline struct ieee80211_fragment_entry * 1834 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1835 unsigned int frag, unsigned int seq, int rx_queue, 1836 struct sk_buff **skb) 1837 { 1838 struct ieee80211_fragment_entry *entry; 1839 1840 entry = &sdata->fragments[sdata->fragment_next++]; 1841 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1842 sdata->fragment_next = 0; 1843 1844 if (!skb_queue_empty(&entry->skb_list)) 1845 __skb_queue_purge(&entry->skb_list); 1846 1847 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1848 *skb = NULL; 1849 entry->first_frag_time = jiffies; 1850 entry->seq = seq; 1851 entry->rx_queue = rx_queue; 1852 entry->last_frag = frag; 1853 entry->check_sequential_pn = false; 1854 entry->extra_len = 0; 1855 1856 return entry; 1857 } 1858 1859 static inline struct ieee80211_fragment_entry * 1860 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1861 unsigned int frag, unsigned int seq, 1862 int rx_queue, struct ieee80211_hdr *hdr) 1863 { 1864 struct ieee80211_fragment_entry *entry; 1865 int i, idx; 1866 1867 idx = sdata->fragment_next; 1868 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1869 struct ieee80211_hdr *f_hdr; 1870 1871 idx--; 1872 if (idx < 0) 1873 idx = IEEE80211_FRAGMENT_MAX - 1; 1874 1875 entry = &sdata->fragments[idx]; 1876 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1877 entry->rx_queue != rx_queue || 1878 entry->last_frag + 1 != frag) 1879 continue; 1880 1881 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1882 1883 /* 1884 * Check ftype and addresses are equal, else check next fragment 1885 */ 1886 if (((hdr->frame_control ^ f_hdr->frame_control) & 1887 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1888 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1889 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1890 continue; 1891 1892 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1893 __skb_queue_purge(&entry->skb_list); 1894 continue; 1895 } 1896 return entry; 1897 } 1898 1899 return NULL; 1900 } 1901 1902 static ieee80211_rx_result debug_noinline 1903 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1904 { 1905 struct ieee80211_hdr *hdr; 1906 u16 sc; 1907 __le16 fc; 1908 unsigned int frag, seq; 1909 struct ieee80211_fragment_entry *entry; 1910 struct sk_buff *skb; 1911 struct ieee80211_rx_status *status; 1912 1913 hdr = (struct ieee80211_hdr *)rx->skb->data; 1914 fc = hdr->frame_control; 1915 1916 if (ieee80211_is_ctl(fc)) 1917 return RX_CONTINUE; 1918 1919 sc = le16_to_cpu(hdr->seq_ctrl); 1920 frag = sc & IEEE80211_SCTL_FRAG; 1921 1922 if (is_multicast_ether_addr(hdr->addr1)) { 1923 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1924 goto out_no_led; 1925 } 1926 1927 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1928 goto out; 1929 1930 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1931 1932 if (skb_linearize(rx->skb)) 1933 return RX_DROP_UNUSABLE; 1934 1935 /* 1936 * skb_linearize() might change the skb->data and 1937 * previously cached variables (in this case, hdr) need to 1938 * be refreshed with the new data. 1939 */ 1940 hdr = (struct ieee80211_hdr *)rx->skb->data; 1941 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1942 1943 if (frag == 0) { 1944 /* This is the first fragment of a new frame. */ 1945 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1946 rx->seqno_idx, &(rx->skb)); 1947 if (rx->key && 1948 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 1949 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 1950 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 1951 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 1952 ieee80211_has_protected(fc)) { 1953 int queue = rx->security_idx; 1954 1955 /* Store CCMP/GCMP PN so that we can verify that the 1956 * next fragment has a sequential PN value. 1957 */ 1958 entry->check_sequential_pn = true; 1959 memcpy(entry->last_pn, 1960 rx->key->u.ccmp.rx_pn[queue], 1961 IEEE80211_CCMP_PN_LEN); 1962 BUILD_BUG_ON(offsetof(struct ieee80211_key, 1963 u.ccmp.rx_pn) != 1964 offsetof(struct ieee80211_key, 1965 u.gcmp.rx_pn)); 1966 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 1967 sizeof(rx->key->u.gcmp.rx_pn[queue])); 1968 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 1969 IEEE80211_GCMP_PN_LEN); 1970 } 1971 return RX_QUEUED; 1972 } 1973 1974 /* This is a fragment for a frame that should already be pending in 1975 * fragment cache. Add this fragment to the end of the pending entry. 1976 */ 1977 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1978 rx->seqno_idx, hdr); 1979 if (!entry) { 1980 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1981 return RX_DROP_MONITOR; 1982 } 1983 1984 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 1985 * MPDU PN values are not incrementing in steps of 1." 1986 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 1987 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 1988 */ 1989 if (entry->check_sequential_pn) { 1990 int i; 1991 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1992 int queue; 1993 1994 if (!rx->key || 1995 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 1996 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 1997 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 1998 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 1999 return RX_DROP_UNUSABLE; 2000 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2001 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2002 pn[i]++; 2003 if (pn[i]) 2004 break; 2005 } 2006 queue = rx->security_idx; 2007 rpn = rx->key->u.ccmp.rx_pn[queue]; 2008 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2009 return RX_DROP_UNUSABLE; 2010 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2011 } 2012 2013 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2014 __skb_queue_tail(&entry->skb_list, rx->skb); 2015 entry->last_frag = frag; 2016 entry->extra_len += rx->skb->len; 2017 if (ieee80211_has_morefrags(fc)) { 2018 rx->skb = NULL; 2019 return RX_QUEUED; 2020 } 2021 2022 rx->skb = __skb_dequeue(&entry->skb_list); 2023 if (skb_tailroom(rx->skb) < entry->extra_len) { 2024 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2025 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2026 GFP_ATOMIC))) { 2027 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2028 __skb_queue_purge(&entry->skb_list); 2029 return RX_DROP_UNUSABLE; 2030 } 2031 } 2032 while ((skb = __skb_dequeue(&entry->skb_list))) { 2033 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 2034 dev_kfree_skb(skb); 2035 } 2036 2037 /* Complete frame has been reassembled - process it now */ 2038 status = IEEE80211_SKB_RXCB(rx->skb); 2039 2040 out: 2041 ieee80211_led_rx(rx->local); 2042 out_no_led: 2043 if (rx->sta) 2044 rx->sta->rx_stats.packets++; 2045 return RX_CONTINUE; 2046 } 2047 2048 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2049 { 2050 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2051 return -EACCES; 2052 2053 return 0; 2054 } 2055 2056 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2057 { 2058 struct sk_buff *skb = rx->skb; 2059 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2060 2061 /* 2062 * Pass through unencrypted frames if the hardware has 2063 * decrypted them already. 2064 */ 2065 if (status->flag & RX_FLAG_DECRYPTED) 2066 return 0; 2067 2068 /* Drop unencrypted frames if key is set. */ 2069 if (unlikely(!ieee80211_has_protected(fc) && 2070 !ieee80211_is_nullfunc(fc) && 2071 ieee80211_is_data(fc) && rx->key)) 2072 return -EACCES; 2073 2074 return 0; 2075 } 2076 2077 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2078 { 2079 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2080 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2081 __le16 fc = hdr->frame_control; 2082 2083 /* 2084 * Pass through unencrypted frames if the hardware has 2085 * decrypted them already. 2086 */ 2087 if (status->flag & RX_FLAG_DECRYPTED) 2088 return 0; 2089 2090 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2091 if (unlikely(!ieee80211_has_protected(fc) && 2092 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2093 rx->key)) { 2094 if (ieee80211_is_deauth(fc) || 2095 ieee80211_is_disassoc(fc)) 2096 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2097 rx->skb->data, 2098 rx->skb->len); 2099 return -EACCES; 2100 } 2101 /* BIP does not use Protected field, so need to check MMIE */ 2102 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2103 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2104 if (ieee80211_is_deauth(fc) || 2105 ieee80211_is_disassoc(fc)) 2106 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2107 rx->skb->data, 2108 rx->skb->len); 2109 return -EACCES; 2110 } 2111 /* 2112 * When using MFP, Action frames are not allowed prior to 2113 * having configured keys. 2114 */ 2115 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2116 ieee80211_is_robust_mgmt_frame(rx->skb))) 2117 return -EACCES; 2118 } 2119 2120 return 0; 2121 } 2122 2123 static int 2124 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2125 { 2126 struct ieee80211_sub_if_data *sdata = rx->sdata; 2127 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2128 bool check_port_control = false; 2129 struct ethhdr *ehdr; 2130 int ret; 2131 2132 *port_control = false; 2133 if (ieee80211_has_a4(hdr->frame_control) && 2134 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2135 return -1; 2136 2137 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2138 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2139 2140 if (!sdata->u.mgd.use_4addr) 2141 return -1; 2142 else 2143 check_port_control = true; 2144 } 2145 2146 if (is_multicast_ether_addr(hdr->addr1) && 2147 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2148 return -1; 2149 2150 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2151 if (ret < 0) 2152 return ret; 2153 2154 ehdr = (struct ethhdr *) rx->skb->data; 2155 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2156 *port_control = true; 2157 else if (check_port_control) 2158 return -1; 2159 2160 return 0; 2161 } 2162 2163 /* 2164 * requires that rx->skb is a frame with ethernet header 2165 */ 2166 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2167 { 2168 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2169 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2170 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2171 2172 /* 2173 * Allow EAPOL frames to us/the PAE group address regardless 2174 * of whether the frame was encrypted or not. 2175 */ 2176 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2177 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2178 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2179 return true; 2180 2181 if (ieee80211_802_1x_port_control(rx) || 2182 ieee80211_drop_unencrypted(rx, fc)) 2183 return false; 2184 2185 return true; 2186 } 2187 2188 /* 2189 * requires that rx->skb is a frame with ethernet header 2190 */ 2191 static void 2192 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2193 { 2194 struct ieee80211_sub_if_data *sdata = rx->sdata; 2195 struct net_device *dev = sdata->dev; 2196 struct sk_buff *skb, *xmit_skb; 2197 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2198 struct sta_info *dsta; 2199 2200 skb = rx->skb; 2201 xmit_skb = NULL; 2202 2203 ieee80211_rx_stats(dev, skb->len); 2204 2205 if (rx->sta) { 2206 /* The seqno index has the same property as needed 2207 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2208 * for non-QoS-data frames. Here we know it's a data 2209 * frame, so count MSDUs. 2210 */ 2211 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2212 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2213 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2214 } 2215 2216 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2217 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2218 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2219 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2220 if (is_multicast_ether_addr(ehdr->h_dest) && 2221 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2222 /* 2223 * send multicast frames both to higher layers in 2224 * local net stack and back to the wireless medium 2225 */ 2226 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2227 if (!xmit_skb) 2228 net_info_ratelimited("%s: failed to clone multicast frame\n", 2229 dev->name); 2230 } else if (!is_multicast_ether_addr(ehdr->h_dest)) { 2231 dsta = sta_info_get(sdata, skb->data); 2232 if (dsta) { 2233 /* 2234 * The destination station is associated to 2235 * this AP (in this VLAN), so send the frame 2236 * directly to it and do not pass it to local 2237 * net stack. 2238 */ 2239 xmit_skb = skb; 2240 skb = NULL; 2241 } 2242 } 2243 } 2244 2245 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2246 if (skb) { 2247 /* 'align' will only take the values 0 or 2 here since all 2248 * frames are required to be aligned to 2-byte boundaries 2249 * when being passed to mac80211; the code here works just 2250 * as well if that isn't true, but mac80211 assumes it can 2251 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2252 */ 2253 int align; 2254 2255 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2256 if (align) { 2257 if (WARN_ON(skb_headroom(skb) < 3)) { 2258 dev_kfree_skb(skb); 2259 skb = NULL; 2260 } else { 2261 u8 *data = skb->data; 2262 size_t len = skb_headlen(skb); 2263 skb->data -= align; 2264 memmove(skb->data, data, len); 2265 skb_set_tail_pointer(skb, len); 2266 } 2267 } 2268 } 2269 #endif 2270 2271 if (skb) { 2272 /* deliver to local stack */ 2273 skb->protocol = eth_type_trans(skb, dev); 2274 memset(skb->cb, 0, sizeof(skb->cb)); 2275 if (rx->napi) 2276 napi_gro_receive(rx->napi, skb); 2277 else 2278 netif_receive_skb(skb); 2279 } 2280 2281 if (xmit_skb) { 2282 /* 2283 * Send to wireless media and increase priority by 256 to 2284 * keep the received priority instead of reclassifying 2285 * the frame (see cfg80211_classify8021d). 2286 */ 2287 xmit_skb->priority += 256; 2288 xmit_skb->protocol = htons(ETH_P_802_3); 2289 skb_reset_network_header(xmit_skb); 2290 skb_reset_mac_header(xmit_skb); 2291 dev_queue_xmit(xmit_skb); 2292 } 2293 } 2294 2295 static ieee80211_rx_result debug_noinline 2296 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2297 { 2298 struct net_device *dev = rx->sdata->dev; 2299 struct sk_buff *skb = rx->skb; 2300 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2301 __le16 fc = hdr->frame_control; 2302 struct sk_buff_head frame_list; 2303 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2304 struct ethhdr ethhdr; 2305 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2306 2307 if (unlikely(!ieee80211_is_data(fc))) 2308 return RX_CONTINUE; 2309 2310 if (unlikely(!ieee80211_is_data_present(fc))) 2311 return RX_DROP_MONITOR; 2312 2313 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2314 return RX_CONTINUE; 2315 2316 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2317 switch (rx->sdata->vif.type) { 2318 case NL80211_IFTYPE_AP_VLAN: 2319 if (!rx->sdata->u.vlan.sta) 2320 return RX_DROP_UNUSABLE; 2321 break; 2322 case NL80211_IFTYPE_STATION: 2323 if (!rx->sdata->u.mgd.use_4addr) 2324 return RX_DROP_UNUSABLE; 2325 break; 2326 default: 2327 return RX_DROP_UNUSABLE; 2328 } 2329 check_da = NULL; 2330 check_sa = NULL; 2331 } else switch (rx->sdata->vif.type) { 2332 case NL80211_IFTYPE_AP: 2333 case NL80211_IFTYPE_AP_VLAN: 2334 check_da = NULL; 2335 break; 2336 case NL80211_IFTYPE_STATION: 2337 if (!rx->sta || 2338 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2339 check_sa = NULL; 2340 break; 2341 case NL80211_IFTYPE_MESH_POINT: 2342 check_sa = NULL; 2343 break; 2344 default: 2345 break; 2346 } 2347 2348 if (is_multicast_ether_addr(hdr->addr1)) 2349 return RX_DROP_UNUSABLE; 2350 2351 skb->dev = dev; 2352 __skb_queue_head_init(&frame_list); 2353 2354 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2355 rx->sdata->vif.addr, 2356 rx->sdata->vif.type)) 2357 return RX_DROP_UNUSABLE; 2358 2359 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2360 rx->sdata->vif.type, 2361 rx->local->hw.extra_tx_headroom, 2362 check_da, check_sa); 2363 2364 while (!skb_queue_empty(&frame_list)) { 2365 rx->skb = __skb_dequeue(&frame_list); 2366 2367 if (!ieee80211_frame_allowed(rx, fc)) { 2368 dev_kfree_skb(rx->skb); 2369 continue; 2370 } 2371 2372 ieee80211_deliver_skb(rx); 2373 } 2374 2375 return RX_QUEUED; 2376 } 2377 2378 #ifdef CONFIG_MAC80211_MESH 2379 static ieee80211_rx_result 2380 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2381 { 2382 struct ieee80211_hdr *fwd_hdr, *hdr; 2383 struct ieee80211_tx_info *info; 2384 struct ieee80211s_hdr *mesh_hdr; 2385 struct sk_buff *skb = rx->skb, *fwd_skb; 2386 struct ieee80211_local *local = rx->local; 2387 struct ieee80211_sub_if_data *sdata = rx->sdata; 2388 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2389 u16 ac, q, hdrlen; 2390 2391 hdr = (struct ieee80211_hdr *) skb->data; 2392 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2393 2394 /* make sure fixed part of mesh header is there, also checks skb len */ 2395 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2396 return RX_DROP_MONITOR; 2397 2398 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2399 2400 /* make sure full mesh header is there, also checks skb len */ 2401 if (!pskb_may_pull(rx->skb, 2402 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2403 return RX_DROP_MONITOR; 2404 2405 /* reload pointers */ 2406 hdr = (struct ieee80211_hdr *) skb->data; 2407 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2408 2409 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2410 return RX_DROP_MONITOR; 2411 2412 /* frame is in RMC, don't forward */ 2413 if (ieee80211_is_data(hdr->frame_control) && 2414 is_multicast_ether_addr(hdr->addr1) && 2415 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2416 return RX_DROP_MONITOR; 2417 2418 if (!ieee80211_is_data(hdr->frame_control)) 2419 return RX_CONTINUE; 2420 2421 if (!mesh_hdr->ttl) 2422 return RX_DROP_MONITOR; 2423 2424 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2425 struct mesh_path *mppath; 2426 char *proxied_addr; 2427 char *mpp_addr; 2428 2429 if (is_multicast_ether_addr(hdr->addr1)) { 2430 mpp_addr = hdr->addr3; 2431 proxied_addr = mesh_hdr->eaddr1; 2432 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2433 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2434 mpp_addr = hdr->addr4; 2435 proxied_addr = mesh_hdr->eaddr2; 2436 } else { 2437 return RX_DROP_MONITOR; 2438 } 2439 2440 rcu_read_lock(); 2441 mppath = mpp_path_lookup(sdata, proxied_addr); 2442 if (!mppath) { 2443 mpp_path_add(sdata, proxied_addr, mpp_addr); 2444 } else { 2445 spin_lock_bh(&mppath->state_lock); 2446 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2447 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2448 mppath->exp_time = jiffies; 2449 spin_unlock_bh(&mppath->state_lock); 2450 } 2451 rcu_read_unlock(); 2452 } 2453 2454 /* Frame has reached destination. Don't forward */ 2455 if (!is_multicast_ether_addr(hdr->addr1) && 2456 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2457 return RX_CONTINUE; 2458 2459 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2460 q = sdata->vif.hw_queue[ac]; 2461 if (ieee80211_queue_stopped(&local->hw, q)) { 2462 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2463 return RX_DROP_MONITOR; 2464 } 2465 skb_set_queue_mapping(skb, q); 2466 2467 if (!--mesh_hdr->ttl) { 2468 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2469 goto out; 2470 } 2471 2472 if (!ifmsh->mshcfg.dot11MeshForwarding) 2473 goto out; 2474 2475 fwd_skb = skb_copy_expand(skb, local->tx_headroom, 0, GFP_ATOMIC); 2476 if (!fwd_skb) { 2477 net_info_ratelimited("%s: failed to clone mesh frame\n", 2478 sdata->name); 2479 goto out; 2480 } 2481 2482 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2483 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2484 info = IEEE80211_SKB_CB(fwd_skb); 2485 memset(info, 0, sizeof(*info)); 2486 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2487 info->control.vif = &rx->sdata->vif; 2488 info->control.jiffies = jiffies; 2489 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2490 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2491 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2492 /* update power mode indication when forwarding */ 2493 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2494 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2495 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2496 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2497 } else { 2498 /* unable to resolve next hop */ 2499 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2500 fwd_hdr->addr3, 0, 2501 WLAN_REASON_MESH_PATH_NOFORWARD, 2502 fwd_hdr->addr2); 2503 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2504 kfree_skb(fwd_skb); 2505 return RX_DROP_MONITOR; 2506 } 2507 2508 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2509 ieee80211_add_pending_skb(local, fwd_skb); 2510 out: 2511 if (is_multicast_ether_addr(hdr->addr1)) 2512 return RX_CONTINUE; 2513 return RX_DROP_MONITOR; 2514 } 2515 #endif 2516 2517 static ieee80211_rx_result debug_noinline 2518 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2519 { 2520 struct ieee80211_sub_if_data *sdata = rx->sdata; 2521 struct ieee80211_local *local = rx->local; 2522 struct net_device *dev = sdata->dev; 2523 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2524 __le16 fc = hdr->frame_control; 2525 bool port_control; 2526 int err; 2527 2528 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2529 return RX_CONTINUE; 2530 2531 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2532 return RX_DROP_MONITOR; 2533 2534 /* 2535 * Send unexpected-4addr-frame event to hostapd. For older versions, 2536 * also drop the frame to cooked monitor interfaces. 2537 */ 2538 if (ieee80211_has_a4(hdr->frame_control) && 2539 sdata->vif.type == NL80211_IFTYPE_AP) { 2540 if (rx->sta && 2541 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2542 cfg80211_rx_unexpected_4addr_frame( 2543 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2544 return RX_DROP_MONITOR; 2545 } 2546 2547 err = __ieee80211_data_to_8023(rx, &port_control); 2548 if (unlikely(err)) 2549 return RX_DROP_UNUSABLE; 2550 2551 if (!ieee80211_frame_allowed(rx, fc)) 2552 return RX_DROP_MONITOR; 2553 2554 /* directly handle TDLS channel switch requests/responses */ 2555 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2556 cpu_to_be16(ETH_P_TDLS))) { 2557 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2558 2559 if (pskb_may_pull(rx->skb, 2560 offsetof(struct ieee80211_tdls_data, u)) && 2561 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2562 tf->category == WLAN_CATEGORY_TDLS && 2563 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2564 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2565 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2566 schedule_work(&local->tdls_chsw_work); 2567 if (rx->sta) 2568 rx->sta->rx_stats.packets++; 2569 2570 return RX_QUEUED; 2571 } 2572 } 2573 2574 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2575 unlikely(port_control) && sdata->bss) { 2576 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2577 u.ap); 2578 dev = sdata->dev; 2579 rx->sdata = sdata; 2580 } 2581 2582 rx->skb->dev = dev; 2583 2584 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2585 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2586 !is_multicast_ether_addr( 2587 ((struct ethhdr *)rx->skb->data)->h_dest) && 2588 (!local->scanning && 2589 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2590 mod_timer(&local->dynamic_ps_timer, jiffies + 2591 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2592 2593 ieee80211_deliver_skb(rx); 2594 2595 return RX_QUEUED; 2596 } 2597 2598 static ieee80211_rx_result debug_noinline 2599 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2600 { 2601 struct sk_buff *skb = rx->skb; 2602 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2603 struct tid_ampdu_rx *tid_agg_rx; 2604 u16 start_seq_num; 2605 u16 tid; 2606 2607 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2608 return RX_CONTINUE; 2609 2610 if (ieee80211_is_back_req(bar->frame_control)) { 2611 struct { 2612 __le16 control, start_seq_num; 2613 } __packed bar_data; 2614 struct ieee80211_event event = { 2615 .type = BAR_RX_EVENT, 2616 }; 2617 2618 if (!rx->sta) 2619 return RX_DROP_MONITOR; 2620 2621 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2622 &bar_data, sizeof(bar_data))) 2623 return RX_DROP_MONITOR; 2624 2625 tid = le16_to_cpu(bar_data.control) >> 12; 2626 2627 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2628 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2629 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2630 WLAN_BACK_RECIPIENT, 2631 WLAN_REASON_QSTA_REQUIRE_SETUP); 2632 2633 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2634 if (!tid_agg_rx) 2635 return RX_DROP_MONITOR; 2636 2637 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2638 event.u.ba.tid = tid; 2639 event.u.ba.ssn = start_seq_num; 2640 event.u.ba.sta = &rx->sta->sta; 2641 2642 /* reset session timer */ 2643 if (tid_agg_rx->timeout) 2644 mod_timer(&tid_agg_rx->session_timer, 2645 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2646 2647 spin_lock(&tid_agg_rx->reorder_lock); 2648 /* release stored frames up to start of BAR */ 2649 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2650 start_seq_num, frames); 2651 spin_unlock(&tid_agg_rx->reorder_lock); 2652 2653 drv_event_callback(rx->local, rx->sdata, &event); 2654 2655 kfree_skb(skb); 2656 return RX_QUEUED; 2657 } 2658 2659 /* 2660 * After this point, we only want management frames, 2661 * so we can drop all remaining control frames to 2662 * cooked monitor interfaces. 2663 */ 2664 return RX_DROP_MONITOR; 2665 } 2666 2667 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2668 struct ieee80211_mgmt *mgmt, 2669 size_t len) 2670 { 2671 struct ieee80211_local *local = sdata->local; 2672 struct sk_buff *skb; 2673 struct ieee80211_mgmt *resp; 2674 2675 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2676 /* Not to own unicast address */ 2677 return; 2678 } 2679 2680 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2681 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2682 /* Not from the current AP or not associated yet. */ 2683 return; 2684 } 2685 2686 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2687 /* Too short SA Query request frame */ 2688 return; 2689 } 2690 2691 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2692 if (skb == NULL) 2693 return; 2694 2695 skb_reserve(skb, local->hw.extra_tx_headroom); 2696 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2697 memset(resp, 0, 24); 2698 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2699 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2700 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2701 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2702 IEEE80211_STYPE_ACTION); 2703 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2704 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2705 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2706 memcpy(resp->u.action.u.sa_query.trans_id, 2707 mgmt->u.action.u.sa_query.trans_id, 2708 WLAN_SA_QUERY_TR_ID_LEN); 2709 2710 ieee80211_tx_skb(sdata, skb); 2711 } 2712 2713 static ieee80211_rx_result debug_noinline 2714 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2715 { 2716 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2717 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2718 2719 /* 2720 * From here on, look only at management frames. 2721 * Data and control frames are already handled, 2722 * and unknown (reserved) frames are useless. 2723 */ 2724 if (rx->skb->len < 24) 2725 return RX_DROP_MONITOR; 2726 2727 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2728 return RX_DROP_MONITOR; 2729 2730 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2731 ieee80211_is_beacon(mgmt->frame_control) && 2732 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2733 int sig = 0; 2734 2735 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 2736 sig = status->signal; 2737 2738 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2739 rx->skb->data, rx->skb->len, 2740 status->freq, sig); 2741 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2742 } 2743 2744 if (ieee80211_drop_unencrypted_mgmt(rx)) 2745 return RX_DROP_UNUSABLE; 2746 2747 return RX_CONTINUE; 2748 } 2749 2750 static ieee80211_rx_result debug_noinline 2751 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2752 { 2753 struct ieee80211_local *local = rx->local; 2754 struct ieee80211_sub_if_data *sdata = rx->sdata; 2755 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2756 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2757 int len = rx->skb->len; 2758 2759 if (!ieee80211_is_action(mgmt->frame_control)) 2760 return RX_CONTINUE; 2761 2762 /* drop too small frames */ 2763 if (len < IEEE80211_MIN_ACTION_SIZE) 2764 return RX_DROP_UNUSABLE; 2765 2766 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2767 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2768 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2769 return RX_DROP_UNUSABLE; 2770 2771 switch (mgmt->u.action.category) { 2772 case WLAN_CATEGORY_HT: 2773 /* reject HT action frames from stations not supporting HT */ 2774 if (!rx->sta->sta.ht_cap.ht_supported) 2775 goto invalid; 2776 2777 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2778 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2779 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2780 sdata->vif.type != NL80211_IFTYPE_AP && 2781 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2782 break; 2783 2784 /* verify action & smps_control/chanwidth are present */ 2785 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2786 goto invalid; 2787 2788 switch (mgmt->u.action.u.ht_smps.action) { 2789 case WLAN_HT_ACTION_SMPS: { 2790 struct ieee80211_supported_band *sband; 2791 enum ieee80211_smps_mode smps_mode; 2792 2793 /* convert to HT capability */ 2794 switch (mgmt->u.action.u.ht_smps.smps_control) { 2795 case WLAN_HT_SMPS_CONTROL_DISABLED: 2796 smps_mode = IEEE80211_SMPS_OFF; 2797 break; 2798 case WLAN_HT_SMPS_CONTROL_STATIC: 2799 smps_mode = IEEE80211_SMPS_STATIC; 2800 break; 2801 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2802 smps_mode = IEEE80211_SMPS_DYNAMIC; 2803 break; 2804 default: 2805 goto invalid; 2806 } 2807 2808 /* if no change do nothing */ 2809 if (rx->sta->sta.smps_mode == smps_mode) 2810 goto handled; 2811 rx->sta->sta.smps_mode = smps_mode; 2812 2813 sband = rx->local->hw.wiphy->bands[status->band]; 2814 2815 rate_control_rate_update(local, sband, rx->sta, 2816 IEEE80211_RC_SMPS_CHANGED); 2817 goto handled; 2818 } 2819 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2820 struct ieee80211_supported_band *sband; 2821 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2822 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2823 2824 /* If it doesn't support 40 MHz it can't change ... */ 2825 if (!(rx->sta->sta.ht_cap.cap & 2826 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2827 goto handled; 2828 2829 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2830 max_bw = IEEE80211_STA_RX_BW_20; 2831 else 2832 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2833 2834 /* set cur_max_bandwidth and recalc sta bw */ 2835 rx->sta->cur_max_bandwidth = max_bw; 2836 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2837 2838 if (rx->sta->sta.bandwidth == new_bw) 2839 goto handled; 2840 2841 rx->sta->sta.bandwidth = new_bw; 2842 sband = rx->local->hw.wiphy->bands[status->band]; 2843 2844 rate_control_rate_update(local, sband, rx->sta, 2845 IEEE80211_RC_BW_CHANGED); 2846 goto handled; 2847 } 2848 default: 2849 goto invalid; 2850 } 2851 2852 break; 2853 case WLAN_CATEGORY_PUBLIC: 2854 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2855 goto invalid; 2856 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2857 break; 2858 if (!rx->sta) 2859 break; 2860 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2861 break; 2862 if (mgmt->u.action.u.ext_chan_switch.action_code != 2863 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2864 break; 2865 if (len < offsetof(struct ieee80211_mgmt, 2866 u.action.u.ext_chan_switch.variable)) 2867 goto invalid; 2868 goto queue; 2869 case WLAN_CATEGORY_VHT: 2870 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2871 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2872 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2873 sdata->vif.type != NL80211_IFTYPE_AP && 2874 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2875 break; 2876 2877 /* verify action code is present */ 2878 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2879 goto invalid; 2880 2881 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2882 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2883 u8 opmode; 2884 2885 /* verify opmode is present */ 2886 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2887 goto invalid; 2888 2889 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2890 2891 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2892 opmode, status->band); 2893 goto handled; 2894 } 2895 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2896 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2897 goto invalid; 2898 goto queue; 2899 } 2900 default: 2901 break; 2902 } 2903 break; 2904 case WLAN_CATEGORY_BACK: 2905 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2906 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2907 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2908 sdata->vif.type != NL80211_IFTYPE_AP && 2909 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2910 break; 2911 2912 /* verify action_code is present */ 2913 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2914 break; 2915 2916 switch (mgmt->u.action.u.addba_req.action_code) { 2917 case WLAN_ACTION_ADDBA_REQ: 2918 if (len < (IEEE80211_MIN_ACTION_SIZE + 2919 sizeof(mgmt->u.action.u.addba_req))) 2920 goto invalid; 2921 break; 2922 case WLAN_ACTION_ADDBA_RESP: 2923 if (len < (IEEE80211_MIN_ACTION_SIZE + 2924 sizeof(mgmt->u.action.u.addba_resp))) 2925 goto invalid; 2926 break; 2927 case WLAN_ACTION_DELBA: 2928 if (len < (IEEE80211_MIN_ACTION_SIZE + 2929 sizeof(mgmt->u.action.u.delba))) 2930 goto invalid; 2931 break; 2932 default: 2933 goto invalid; 2934 } 2935 2936 goto queue; 2937 case WLAN_CATEGORY_SPECTRUM_MGMT: 2938 /* verify action_code is present */ 2939 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2940 break; 2941 2942 switch (mgmt->u.action.u.measurement.action_code) { 2943 case WLAN_ACTION_SPCT_MSR_REQ: 2944 if (status->band != NL80211_BAND_5GHZ) 2945 break; 2946 2947 if (len < (IEEE80211_MIN_ACTION_SIZE + 2948 sizeof(mgmt->u.action.u.measurement))) 2949 break; 2950 2951 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2952 break; 2953 2954 ieee80211_process_measurement_req(sdata, mgmt, len); 2955 goto handled; 2956 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2957 u8 *bssid; 2958 if (len < (IEEE80211_MIN_ACTION_SIZE + 2959 sizeof(mgmt->u.action.u.chan_switch))) 2960 break; 2961 2962 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2963 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2964 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2965 break; 2966 2967 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2968 bssid = sdata->u.mgd.bssid; 2969 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2970 bssid = sdata->u.ibss.bssid; 2971 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2972 bssid = mgmt->sa; 2973 else 2974 break; 2975 2976 if (!ether_addr_equal(mgmt->bssid, bssid)) 2977 break; 2978 2979 goto queue; 2980 } 2981 } 2982 break; 2983 case WLAN_CATEGORY_SA_QUERY: 2984 if (len < (IEEE80211_MIN_ACTION_SIZE + 2985 sizeof(mgmt->u.action.u.sa_query))) 2986 break; 2987 2988 switch (mgmt->u.action.u.sa_query.action) { 2989 case WLAN_ACTION_SA_QUERY_REQUEST: 2990 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2991 break; 2992 ieee80211_process_sa_query_req(sdata, mgmt, len); 2993 goto handled; 2994 } 2995 break; 2996 case WLAN_CATEGORY_SELF_PROTECTED: 2997 if (len < (IEEE80211_MIN_ACTION_SIZE + 2998 sizeof(mgmt->u.action.u.self_prot.action_code))) 2999 break; 3000 3001 switch (mgmt->u.action.u.self_prot.action_code) { 3002 case WLAN_SP_MESH_PEERING_OPEN: 3003 case WLAN_SP_MESH_PEERING_CLOSE: 3004 case WLAN_SP_MESH_PEERING_CONFIRM: 3005 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3006 goto invalid; 3007 if (sdata->u.mesh.user_mpm) 3008 /* userspace handles this frame */ 3009 break; 3010 goto queue; 3011 case WLAN_SP_MGK_INFORM: 3012 case WLAN_SP_MGK_ACK: 3013 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3014 goto invalid; 3015 break; 3016 } 3017 break; 3018 case WLAN_CATEGORY_MESH_ACTION: 3019 if (len < (IEEE80211_MIN_ACTION_SIZE + 3020 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3021 break; 3022 3023 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3024 break; 3025 if (mesh_action_is_path_sel(mgmt) && 3026 !mesh_path_sel_is_hwmp(sdata)) 3027 break; 3028 goto queue; 3029 } 3030 3031 return RX_CONTINUE; 3032 3033 invalid: 3034 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3035 /* will return in the next handlers */ 3036 return RX_CONTINUE; 3037 3038 handled: 3039 if (rx->sta) 3040 rx->sta->rx_stats.packets++; 3041 dev_kfree_skb(rx->skb); 3042 return RX_QUEUED; 3043 3044 queue: 3045 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3046 skb_queue_tail(&sdata->skb_queue, rx->skb); 3047 ieee80211_queue_work(&local->hw, &sdata->work); 3048 if (rx->sta) 3049 rx->sta->rx_stats.packets++; 3050 return RX_QUEUED; 3051 } 3052 3053 static ieee80211_rx_result debug_noinline 3054 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3055 { 3056 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3057 int sig = 0; 3058 3059 /* skip known-bad action frames and return them in the next handler */ 3060 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3061 return RX_CONTINUE; 3062 3063 /* 3064 * Getting here means the kernel doesn't know how to handle 3065 * it, but maybe userspace does ... include returned frames 3066 * so userspace can register for those to know whether ones 3067 * it transmitted were processed or returned. 3068 */ 3069 3070 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) 3071 sig = status->signal; 3072 3073 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3074 rx->skb->data, rx->skb->len, 0)) { 3075 if (rx->sta) 3076 rx->sta->rx_stats.packets++; 3077 dev_kfree_skb(rx->skb); 3078 return RX_QUEUED; 3079 } 3080 3081 return RX_CONTINUE; 3082 } 3083 3084 static ieee80211_rx_result debug_noinline 3085 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3086 { 3087 struct ieee80211_local *local = rx->local; 3088 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3089 struct sk_buff *nskb; 3090 struct ieee80211_sub_if_data *sdata = rx->sdata; 3091 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3092 3093 if (!ieee80211_is_action(mgmt->frame_control)) 3094 return RX_CONTINUE; 3095 3096 /* 3097 * For AP mode, hostapd is responsible for handling any action 3098 * frames that we didn't handle, including returning unknown 3099 * ones. For all other modes we will return them to the sender, 3100 * setting the 0x80 bit in the action category, as required by 3101 * 802.11-2012 9.24.4. 3102 * Newer versions of hostapd shall also use the management frame 3103 * registration mechanisms, but older ones still use cooked 3104 * monitor interfaces so push all frames there. 3105 */ 3106 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3107 (sdata->vif.type == NL80211_IFTYPE_AP || 3108 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3109 return RX_DROP_MONITOR; 3110 3111 if (is_multicast_ether_addr(mgmt->da)) 3112 return RX_DROP_MONITOR; 3113 3114 /* do not return rejected action frames */ 3115 if (mgmt->u.action.category & 0x80) 3116 return RX_DROP_UNUSABLE; 3117 3118 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3119 GFP_ATOMIC); 3120 if (nskb) { 3121 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3122 3123 nmgmt->u.action.category |= 0x80; 3124 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3125 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3126 3127 memset(nskb->cb, 0, sizeof(nskb->cb)); 3128 3129 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3130 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3131 3132 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3133 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3134 IEEE80211_TX_CTL_NO_CCK_RATE; 3135 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3136 info->hw_queue = 3137 local->hw.offchannel_tx_hw_queue; 3138 } 3139 3140 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3141 status->band); 3142 } 3143 dev_kfree_skb(rx->skb); 3144 return RX_QUEUED; 3145 } 3146 3147 static ieee80211_rx_result debug_noinline 3148 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3149 { 3150 struct ieee80211_sub_if_data *sdata = rx->sdata; 3151 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3152 __le16 stype; 3153 3154 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3155 3156 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3157 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3158 sdata->vif.type != NL80211_IFTYPE_OCB && 3159 sdata->vif.type != NL80211_IFTYPE_STATION) 3160 return RX_DROP_MONITOR; 3161 3162 switch (stype) { 3163 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3164 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3165 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3166 /* process for all: mesh, mlme, ibss */ 3167 break; 3168 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3169 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3170 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3171 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3172 if (is_multicast_ether_addr(mgmt->da) && 3173 !is_broadcast_ether_addr(mgmt->da)) 3174 return RX_DROP_MONITOR; 3175 3176 /* process only for station */ 3177 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3178 return RX_DROP_MONITOR; 3179 break; 3180 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3181 /* process only for ibss and mesh */ 3182 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3183 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3184 return RX_DROP_MONITOR; 3185 break; 3186 default: 3187 return RX_DROP_MONITOR; 3188 } 3189 3190 /* queue up frame and kick off work to process it */ 3191 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 3192 skb_queue_tail(&sdata->skb_queue, rx->skb); 3193 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3194 if (rx->sta) 3195 rx->sta->rx_stats.packets++; 3196 3197 return RX_QUEUED; 3198 } 3199 3200 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3201 struct ieee80211_rate *rate) 3202 { 3203 struct ieee80211_sub_if_data *sdata; 3204 struct ieee80211_local *local = rx->local; 3205 struct sk_buff *skb = rx->skb, *skb2; 3206 struct net_device *prev_dev = NULL; 3207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3208 int needed_headroom; 3209 3210 /* 3211 * If cooked monitor has been processed already, then 3212 * don't do it again. If not, set the flag. 3213 */ 3214 if (rx->flags & IEEE80211_RX_CMNTR) 3215 goto out_free_skb; 3216 rx->flags |= IEEE80211_RX_CMNTR; 3217 3218 /* If there are no cooked monitor interfaces, just free the SKB */ 3219 if (!local->cooked_mntrs) 3220 goto out_free_skb; 3221 3222 /* vendor data is long removed here */ 3223 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3224 /* room for the radiotap header based on driver features */ 3225 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3226 3227 if (skb_headroom(skb) < needed_headroom && 3228 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3229 goto out_free_skb; 3230 3231 /* prepend radiotap information */ 3232 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3233 false); 3234 3235 skb_reset_mac_header(skb); 3236 skb->ip_summed = CHECKSUM_UNNECESSARY; 3237 skb->pkt_type = PACKET_OTHERHOST; 3238 skb->protocol = htons(ETH_P_802_2); 3239 3240 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3241 if (!ieee80211_sdata_running(sdata)) 3242 continue; 3243 3244 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3245 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3246 continue; 3247 3248 if (prev_dev) { 3249 skb2 = skb_clone(skb, GFP_ATOMIC); 3250 if (skb2) { 3251 skb2->dev = prev_dev; 3252 netif_receive_skb(skb2); 3253 } 3254 } 3255 3256 prev_dev = sdata->dev; 3257 ieee80211_rx_stats(sdata->dev, skb->len); 3258 } 3259 3260 if (prev_dev) { 3261 skb->dev = prev_dev; 3262 netif_receive_skb(skb); 3263 return; 3264 } 3265 3266 out_free_skb: 3267 dev_kfree_skb(skb); 3268 } 3269 3270 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3271 ieee80211_rx_result res) 3272 { 3273 switch (res) { 3274 case RX_DROP_MONITOR: 3275 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3276 if (rx->sta) 3277 rx->sta->rx_stats.dropped++; 3278 /* fall through */ 3279 case RX_CONTINUE: { 3280 struct ieee80211_rate *rate = NULL; 3281 struct ieee80211_supported_band *sband; 3282 struct ieee80211_rx_status *status; 3283 3284 status = IEEE80211_SKB_RXCB((rx->skb)); 3285 3286 sband = rx->local->hw.wiphy->bands[status->band]; 3287 if (!(status->flag & RX_FLAG_HT) && 3288 !(status->flag & RX_FLAG_VHT)) 3289 rate = &sband->bitrates[status->rate_idx]; 3290 3291 ieee80211_rx_cooked_monitor(rx, rate); 3292 break; 3293 } 3294 case RX_DROP_UNUSABLE: 3295 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3296 if (rx->sta) 3297 rx->sta->rx_stats.dropped++; 3298 dev_kfree_skb(rx->skb); 3299 break; 3300 case RX_QUEUED: 3301 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3302 break; 3303 } 3304 } 3305 3306 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3307 struct sk_buff_head *frames) 3308 { 3309 ieee80211_rx_result res = RX_DROP_MONITOR; 3310 struct sk_buff *skb; 3311 3312 #define CALL_RXH(rxh) \ 3313 do { \ 3314 res = rxh(rx); \ 3315 if (res != RX_CONTINUE) \ 3316 goto rxh_next; \ 3317 } while (0) 3318 3319 /* Lock here to avoid hitting all of the data used in the RX 3320 * path (e.g. key data, station data, ...) concurrently when 3321 * a frame is released from the reorder buffer due to timeout 3322 * from the timer, potentially concurrently with RX from the 3323 * driver. 3324 */ 3325 spin_lock_bh(&rx->local->rx_path_lock); 3326 3327 while ((skb = __skb_dequeue(frames))) { 3328 /* 3329 * all the other fields are valid across frames 3330 * that belong to an aMPDU since they are on the 3331 * same TID from the same station 3332 */ 3333 rx->skb = skb; 3334 3335 CALL_RXH(ieee80211_rx_h_check_more_data); 3336 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3337 CALL_RXH(ieee80211_rx_h_sta_process); 3338 CALL_RXH(ieee80211_rx_h_decrypt); 3339 CALL_RXH(ieee80211_rx_h_defragment); 3340 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3341 /* must be after MMIC verify so header is counted in MPDU mic */ 3342 #ifdef CONFIG_MAC80211_MESH 3343 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3344 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3345 #endif 3346 CALL_RXH(ieee80211_rx_h_amsdu); 3347 CALL_RXH(ieee80211_rx_h_data); 3348 3349 /* special treatment -- needs the queue */ 3350 res = ieee80211_rx_h_ctrl(rx, frames); 3351 if (res != RX_CONTINUE) 3352 goto rxh_next; 3353 3354 CALL_RXH(ieee80211_rx_h_mgmt_check); 3355 CALL_RXH(ieee80211_rx_h_action); 3356 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3357 CALL_RXH(ieee80211_rx_h_action_return); 3358 CALL_RXH(ieee80211_rx_h_mgmt); 3359 3360 rxh_next: 3361 ieee80211_rx_handlers_result(rx, res); 3362 3363 #undef CALL_RXH 3364 } 3365 3366 spin_unlock_bh(&rx->local->rx_path_lock); 3367 } 3368 3369 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3370 { 3371 struct sk_buff_head reorder_release; 3372 ieee80211_rx_result res = RX_DROP_MONITOR; 3373 3374 __skb_queue_head_init(&reorder_release); 3375 3376 #define CALL_RXH(rxh) \ 3377 do { \ 3378 res = rxh(rx); \ 3379 if (res != RX_CONTINUE) \ 3380 goto rxh_next; \ 3381 } while (0) 3382 3383 CALL_RXH(ieee80211_rx_h_check_dup); 3384 CALL_RXH(ieee80211_rx_h_check); 3385 3386 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3387 3388 ieee80211_rx_handlers(rx, &reorder_release); 3389 return; 3390 3391 rxh_next: 3392 ieee80211_rx_handlers_result(rx, res); 3393 3394 #undef CALL_RXH 3395 } 3396 3397 /* 3398 * This function makes calls into the RX path, therefore 3399 * it has to be invoked under RCU read lock. 3400 */ 3401 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3402 { 3403 struct sk_buff_head frames; 3404 struct ieee80211_rx_data rx = { 3405 .sta = sta, 3406 .sdata = sta->sdata, 3407 .local = sta->local, 3408 /* This is OK -- must be QoS data frame */ 3409 .security_idx = tid, 3410 .seqno_idx = tid, 3411 .napi = NULL, /* must be NULL to not have races */ 3412 }; 3413 struct tid_ampdu_rx *tid_agg_rx; 3414 3415 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3416 if (!tid_agg_rx) 3417 return; 3418 3419 __skb_queue_head_init(&frames); 3420 3421 spin_lock(&tid_agg_rx->reorder_lock); 3422 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3423 spin_unlock(&tid_agg_rx->reorder_lock); 3424 3425 if (!skb_queue_empty(&frames)) { 3426 struct ieee80211_event event = { 3427 .type = BA_FRAME_TIMEOUT, 3428 .u.ba.tid = tid, 3429 .u.ba.sta = &sta->sta, 3430 }; 3431 drv_event_callback(rx.local, rx.sdata, &event); 3432 } 3433 3434 ieee80211_rx_handlers(&rx, &frames); 3435 } 3436 3437 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3438 u16 ssn, u64 filtered, 3439 u16 received_mpdus) 3440 { 3441 struct sta_info *sta; 3442 struct tid_ampdu_rx *tid_agg_rx; 3443 struct sk_buff_head frames; 3444 struct ieee80211_rx_data rx = { 3445 /* This is OK -- must be QoS data frame */ 3446 .security_idx = tid, 3447 .seqno_idx = tid, 3448 }; 3449 int i, diff; 3450 3451 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3452 return; 3453 3454 __skb_queue_head_init(&frames); 3455 3456 sta = container_of(pubsta, struct sta_info, sta); 3457 3458 rx.sta = sta; 3459 rx.sdata = sta->sdata; 3460 rx.local = sta->local; 3461 3462 rcu_read_lock(); 3463 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3464 if (!tid_agg_rx) 3465 goto out; 3466 3467 spin_lock_bh(&tid_agg_rx->reorder_lock); 3468 3469 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3470 int release; 3471 3472 /* release all frames in the reorder buffer */ 3473 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3474 IEEE80211_SN_MODULO; 3475 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3476 release, &frames); 3477 /* update ssn to match received ssn */ 3478 tid_agg_rx->head_seq_num = ssn; 3479 } else { 3480 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3481 &frames); 3482 } 3483 3484 /* handle the case that received ssn is behind the mac ssn. 3485 * it can be tid_agg_rx->buf_size behind and still be valid */ 3486 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3487 if (diff >= tid_agg_rx->buf_size) { 3488 tid_agg_rx->reorder_buf_filtered = 0; 3489 goto release; 3490 } 3491 filtered = filtered >> diff; 3492 ssn += diff; 3493 3494 /* update bitmap */ 3495 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3496 int index = (ssn + i) % tid_agg_rx->buf_size; 3497 3498 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3499 if (filtered & BIT_ULL(i)) 3500 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3501 } 3502 3503 /* now process also frames that the filter marking released */ 3504 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3505 3506 release: 3507 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3508 3509 ieee80211_rx_handlers(&rx, &frames); 3510 3511 out: 3512 rcu_read_unlock(); 3513 } 3514 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3515 3516 /* main receive path */ 3517 3518 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3519 { 3520 struct ieee80211_sub_if_data *sdata = rx->sdata; 3521 struct sk_buff *skb = rx->skb; 3522 struct ieee80211_hdr *hdr = (void *)skb->data; 3523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3524 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3525 int multicast = is_multicast_ether_addr(hdr->addr1); 3526 3527 switch (sdata->vif.type) { 3528 case NL80211_IFTYPE_STATION: 3529 if (!bssid && !sdata->u.mgd.use_4addr) 3530 return false; 3531 if (multicast) 3532 return true; 3533 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3534 case NL80211_IFTYPE_ADHOC: 3535 if (!bssid) 3536 return false; 3537 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3538 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3539 return false; 3540 if (ieee80211_is_beacon(hdr->frame_control)) 3541 return true; 3542 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3543 return false; 3544 if (!multicast && 3545 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3546 return false; 3547 if (!rx->sta) { 3548 int rate_idx; 3549 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3550 rate_idx = 0; /* TODO: HT/VHT rates */ 3551 else 3552 rate_idx = status->rate_idx; 3553 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3554 BIT(rate_idx)); 3555 } 3556 return true; 3557 case NL80211_IFTYPE_OCB: 3558 if (!bssid) 3559 return false; 3560 if (!ieee80211_is_data_present(hdr->frame_control)) 3561 return false; 3562 if (!is_broadcast_ether_addr(bssid)) 3563 return false; 3564 if (!multicast && 3565 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3566 return false; 3567 if (!rx->sta) { 3568 int rate_idx; 3569 if (status->flag & RX_FLAG_HT) 3570 rate_idx = 0; /* TODO: HT rates */ 3571 else 3572 rate_idx = status->rate_idx; 3573 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3574 BIT(rate_idx)); 3575 } 3576 return true; 3577 case NL80211_IFTYPE_MESH_POINT: 3578 if (multicast) 3579 return true; 3580 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3581 case NL80211_IFTYPE_AP_VLAN: 3582 case NL80211_IFTYPE_AP: 3583 if (!bssid) 3584 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3585 3586 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3587 /* 3588 * Accept public action frames even when the 3589 * BSSID doesn't match, this is used for P2P 3590 * and location updates. Note that mac80211 3591 * itself never looks at these frames. 3592 */ 3593 if (!multicast && 3594 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3595 return false; 3596 if (ieee80211_is_public_action(hdr, skb->len)) 3597 return true; 3598 return ieee80211_is_beacon(hdr->frame_control); 3599 } 3600 3601 if (!ieee80211_has_tods(hdr->frame_control)) { 3602 /* ignore data frames to TDLS-peers */ 3603 if (ieee80211_is_data(hdr->frame_control)) 3604 return false; 3605 /* ignore action frames to TDLS-peers */ 3606 if (ieee80211_is_action(hdr->frame_control) && 3607 !is_broadcast_ether_addr(bssid) && 3608 !ether_addr_equal(bssid, hdr->addr1)) 3609 return false; 3610 } 3611 return true; 3612 case NL80211_IFTYPE_WDS: 3613 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3614 return false; 3615 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3616 case NL80211_IFTYPE_P2P_DEVICE: 3617 return ieee80211_is_public_action(hdr, skb->len) || 3618 ieee80211_is_probe_req(hdr->frame_control) || 3619 ieee80211_is_probe_resp(hdr->frame_control) || 3620 ieee80211_is_beacon(hdr->frame_control); 3621 case NL80211_IFTYPE_NAN: 3622 /* Currently no frames on NAN interface are allowed */ 3623 return false; 3624 default: 3625 break; 3626 } 3627 3628 WARN_ON_ONCE(1); 3629 return false; 3630 } 3631 3632 void ieee80211_check_fast_rx(struct sta_info *sta) 3633 { 3634 struct ieee80211_sub_if_data *sdata = sta->sdata; 3635 struct ieee80211_local *local = sdata->local; 3636 struct ieee80211_key *key; 3637 struct ieee80211_fast_rx fastrx = { 3638 .dev = sdata->dev, 3639 .vif_type = sdata->vif.type, 3640 .control_port_protocol = sdata->control_port_protocol, 3641 }, *old, *new = NULL; 3642 bool assign = false; 3643 3644 /* use sparse to check that we don't return without updating */ 3645 __acquire(check_fast_rx); 3646 3647 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3648 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3649 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3650 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3651 3652 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3653 3654 /* fast-rx doesn't do reordering */ 3655 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3656 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3657 goto clear; 3658 3659 switch (sdata->vif.type) { 3660 case NL80211_IFTYPE_STATION: 3661 /* 4-addr is harder to deal with, later maybe */ 3662 if (sdata->u.mgd.use_4addr) 3663 goto clear; 3664 /* software powersave is a huge mess, avoid all of it */ 3665 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3666 goto clear; 3667 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3668 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3669 goto clear; 3670 if (sta->sta.tdls) { 3671 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3672 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3673 fastrx.expected_ds_bits = 0; 3674 } else { 3675 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3676 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3677 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3678 fastrx.expected_ds_bits = 3679 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3680 } 3681 break; 3682 case NL80211_IFTYPE_AP_VLAN: 3683 case NL80211_IFTYPE_AP: 3684 /* parallel-rx requires this, at least with calls to 3685 * ieee80211_sta_ps_transition() 3686 */ 3687 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3688 goto clear; 3689 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3690 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3691 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3692 3693 fastrx.internal_forward = 3694 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3695 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3696 !sdata->u.vlan.sta); 3697 break; 3698 default: 3699 goto clear; 3700 } 3701 3702 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3703 goto clear; 3704 3705 rcu_read_lock(); 3706 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3707 if (key) { 3708 switch (key->conf.cipher) { 3709 case WLAN_CIPHER_SUITE_TKIP: 3710 /* we don't want to deal with MMIC in fast-rx */ 3711 goto clear_rcu; 3712 case WLAN_CIPHER_SUITE_CCMP: 3713 case WLAN_CIPHER_SUITE_CCMP_256: 3714 case WLAN_CIPHER_SUITE_GCMP: 3715 case WLAN_CIPHER_SUITE_GCMP_256: 3716 break; 3717 default: 3718 /* we also don't want to deal with WEP or cipher scheme 3719 * since those require looking up the key idx in the 3720 * frame, rather than assuming the PTK is used 3721 * (we need to revisit this once we implement the real 3722 * PTK index, which is now valid in the spec, but we 3723 * haven't implemented that part yet) 3724 */ 3725 goto clear_rcu; 3726 } 3727 3728 fastrx.key = true; 3729 fastrx.icv_len = key->conf.icv_len; 3730 } 3731 3732 assign = true; 3733 clear_rcu: 3734 rcu_read_unlock(); 3735 clear: 3736 __release(check_fast_rx); 3737 3738 if (assign) 3739 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3740 3741 spin_lock_bh(&sta->lock); 3742 old = rcu_dereference_protected(sta->fast_rx, true); 3743 rcu_assign_pointer(sta->fast_rx, new); 3744 spin_unlock_bh(&sta->lock); 3745 3746 if (old) 3747 kfree_rcu(old, rcu_head); 3748 } 3749 3750 void ieee80211_clear_fast_rx(struct sta_info *sta) 3751 { 3752 struct ieee80211_fast_rx *old; 3753 3754 spin_lock_bh(&sta->lock); 3755 old = rcu_dereference_protected(sta->fast_rx, true); 3756 RCU_INIT_POINTER(sta->fast_rx, NULL); 3757 spin_unlock_bh(&sta->lock); 3758 3759 if (old) 3760 kfree_rcu(old, rcu_head); 3761 } 3762 3763 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3764 { 3765 struct ieee80211_local *local = sdata->local; 3766 struct sta_info *sta; 3767 3768 lockdep_assert_held(&local->sta_mtx); 3769 3770 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3771 if (sdata != sta->sdata && 3772 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3773 continue; 3774 ieee80211_check_fast_rx(sta); 3775 } 3776 } 3777 3778 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3779 { 3780 struct ieee80211_local *local = sdata->local; 3781 3782 mutex_lock(&local->sta_mtx); 3783 __ieee80211_check_fast_rx_iface(sdata); 3784 mutex_unlock(&local->sta_mtx); 3785 } 3786 3787 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3788 struct ieee80211_fast_rx *fast_rx) 3789 { 3790 struct sk_buff *skb = rx->skb; 3791 struct ieee80211_hdr *hdr = (void *)skb->data; 3792 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3793 struct sta_info *sta = rx->sta; 3794 int orig_len = skb->len; 3795 int snap_offs = ieee80211_hdrlen(hdr->frame_control); 3796 struct { 3797 u8 snap[sizeof(rfc1042_header)]; 3798 __be16 proto; 3799 } *payload __aligned(2); 3800 struct { 3801 u8 da[ETH_ALEN]; 3802 u8 sa[ETH_ALEN]; 3803 } addrs __aligned(2); 3804 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3805 3806 if (fast_rx->uses_rss) 3807 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3808 3809 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3810 * to a common data structure; drivers can implement that per queue 3811 * but we don't have that information in mac80211 3812 */ 3813 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3814 return false; 3815 3816 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3817 3818 /* If using encryption, we also need to have: 3819 * - PN_VALIDATED: similar, but the implementation is tricky 3820 * - DECRYPTED: necessary for PN_VALIDATED 3821 */ 3822 if (fast_rx->key && 3823 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3824 return false; 3825 3826 /* we don't deal with A-MSDU deaggregation here */ 3827 if (status->rx_flags & IEEE80211_RX_AMSDU) 3828 return false; 3829 3830 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3831 return false; 3832 3833 if (unlikely(ieee80211_is_frag(hdr))) 3834 return false; 3835 3836 /* Since our interface address cannot be multicast, this 3837 * implicitly also rejects multicast frames without the 3838 * explicit check. 3839 * 3840 * We shouldn't get any *data* frames not addressed to us 3841 * (AP mode will accept multicast *management* frames), but 3842 * punting here will make it go through the full checks in 3843 * ieee80211_accept_frame(). 3844 */ 3845 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3846 return false; 3847 3848 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3849 IEEE80211_FCTL_TODS)) != 3850 fast_rx->expected_ds_bits) 3851 goto drop; 3852 3853 /* assign the key to drop unencrypted frames (later) 3854 * and strip the IV/MIC if necessary 3855 */ 3856 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3857 /* GCMP header length is the same */ 3858 snap_offs += IEEE80211_CCMP_HDR_LEN; 3859 } 3860 3861 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3862 goto drop; 3863 payload = (void *)(skb->data + snap_offs); 3864 3865 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 3866 return false; 3867 3868 /* Don't handle these here since they require special code. 3869 * Accept AARP and IPX even though they should come with a 3870 * bridge-tunnel header - but if we get them this way then 3871 * there's little point in discarding them. 3872 */ 3873 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 3874 payload->proto == fast_rx->control_port_protocol)) 3875 return false; 3876 3877 /* after this point, don't punt to the slowpath! */ 3878 3879 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 3880 pskb_trim(skb, skb->len - fast_rx->icv_len)) 3881 goto drop; 3882 3883 if (unlikely(fast_rx->sta_notify)) { 3884 ieee80211_sta_rx_notify(rx->sdata, hdr); 3885 fast_rx->sta_notify = false; 3886 } 3887 3888 /* statistics part of ieee80211_rx_h_sta_process() */ 3889 stats->last_rx = jiffies; 3890 stats->last_rate = sta_stats_encode_rate(status); 3891 3892 stats->fragments++; 3893 3894 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 3895 stats->last_signal = status->signal; 3896 if (!fast_rx->uses_rss) 3897 ewma_signal_add(&sta->rx_stats_avg.signal, 3898 -status->signal); 3899 } 3900 3901 if (status->chains) { 3902 int i; 3903 3904 stats->chains = status->chains; 3905 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 3906 int signal = status->chain_signal[i]; 3907 3908 if (!(status->chains & BIT(i))) 3909 continue; 3910 3911 stats->chain_signal_last[i] = signal; 3912 if (!fast_rx->uses_rss) 3913 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 3914 -signal); 3915 } 3916 } 3917 /* end of statistics */ 3918 3919 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 3920 goto drop; 3921 3922 /* do the header conversion - first grab the addresses */ 3923 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 3924 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 3925 /* remove the SNAP but leave the ethertype */ 3926 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 3927 /* push the addresses in front */ 3928 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 3929 3930 skb->dev = fast_rx->dev; 3931 3932 ieee80211_rx_stats(fast_rx->dev, skb->len); 3933 3934 /* The seqno index has the same property as needed 3935 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 3936 * for non-QoS-data frames. Here we know it's a data 3937 * frame, so count MSDUs. 3938 */ 3939 u64_stats_update_begin(&stats->syncp); 3940 stats->msdu[rx->seqno_idx]++; 3941 stats->bytes += orig_len; 3942 u64_stats_update_end(&stats->syncp); 3943 3944 if (fast_rx->internal_forward) { 3945 struct sta_info *dsta = sta_info_get(rx->sdata, skb->data); 3946 3947 if (dsta) { 3948 /* 3949 * Send to wireless media and increase priority by 256 3950 * to keep the received priority instead of 3951 * reclassifying the frame (see cfg80211_classify8021d). 3952 */ 3953 skb->priority += 256; 3954 skb->protocol = htons(ETH_P_802_3); 3955 skb_reset_network_header(skb); 3956 skb_reset_mac_header(skb); 3957 dev_queue_xmit(skb); 3958 return true; 3959 } 3960 } 3961 3962 /* deliver to local stack */ 3963 skb->protocol = eth_type_trans(skb, fast_rx->dev); 3964 memset(skb->cb, 0, sizeof(skb->cb)); 3965 if (rx->napi) 3966 napi_gro_receive(rx->napi, skb); 3967 else 3968 netif_receive_skb(skb); 3969 3970 return true; 3971 drop: 3972 dev_kfree_skb(skb); 3973 stats->dropped++; 3974 return true; 3975 } 3976 3977 /* 3978 * This function returns whether or not the SKB 3979 * was destined for RX processing or not, which, 3980 * if consume is true, is equivalent to whether 3981 * or not the skb was consumed. 3982 */ 3983 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3984 struct sk_buff *skb, bool consume) 3985 { 3986 struct ieee80211_local *local = rx->local; 3987 struct ieee80211_sub_if_data *sdata = rx->sdata; 3988 3989 rx->skb = skb; 3990 3991 /* See if we can do fast-rx; if we have to copy we already lost, 3992 * so punt in that case. We should never have to deliver a data 3993 * frame to multiple interfaces anyway. 3994 * 3995 * We skip the ieee80211_accept_frame() call and do the necessary 3996 * checking inside ieee80211_invoke_fast_rx(). 3997 */ 3998 if (consume && rx->sta) { 3999 struct ieee80211_fast_rx *fast_rx; 4000 4001 fast_rx = rcu_dereference(rx->sta->fast_rx); 4002 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4003 return true; 4004 } 4005 4006 if (!ieee80211_accept_frame(rx)) 4007 return false; 4008 4009 if (!consume) { 4010 skb = skb_copy(skb, GFP_ATOMIC); 4011 if (!skb) { 4012 if (net_ratelimit()) 4013 wiphy_debug(local->hw.wiphy, 4014 "failed to copy skb for %s\n", 4015 sdata->name); 4016 return true; 4017 } 4018 4019 rx->skb = skb; 4020 } 4021 4022 ieee80211_invoke_rx_handlers(rx); 4023 return true; 4024 } 4025 4026 /* 4027 * This is the actual Rx frames handler. as it belongs to Rx path it must 4028 * be called with rcu_read_lock protection. 4029 */ 4030 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4031 struct ieee80211_sta *pubsta, 4032 struct sk_buff *skb, 4033 struct napi_struct *napi) 4034 { 4035 struct ieee80211_local *local = hw_to_local(hw); 4036 struct ieee80211_sub_if_data *sdata; 4037 struct ieee80211_hdr *hdr; 4038 __le16 fc; 4039 struct ieee80211_rx_data rx; 4040 struct ieee80211_sub_if_data *prev; 4041 struct rhlist_head *tmp; 4042 int err = 0; 4043 4044 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4045 memset(&rx, 0, sizeof(rx)); 4046 rx.skb = skb; 4047 rx.local = local; 4048 rx.napi = napi; 4049 4050 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4051 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4052 4053 if (ieee80211_is_mgmt(fc)) { 4054 /* drop frame if too short for header */ 4055 if (skb->len < ieee80211_hdrlen(fc)) 4056 err = -ENOBUFS; 4057 else 4058 err = skb_linearize(skb); 4059 } else { 4060 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4061 } 4062 4063 if (err) { 4064 dev_kfree_skb(skb); 4065 return; 4066 } 4067 4068 hdr = (struct ieee80211_hdr *)skb->data; 4069 ieee80211_parse_qos(&rx); 4070 ieee80211_verify_alignment(&rx); 4071 4072 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4073 ieee80211_is_beacon(hdr->frame_control))) 4074 ieee80211_scan_rx(local, skb); 4075 4076 if (pubsta) { 4077 rx.sta = container_of(pubsta, struct sta_info, sta); 4078 rx.sdata = rx.sta->sdata; 4079 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4080 return; 4081 goto out; 4082 } else if (ieee80211_is_data(fc)) { 4083 struct sta_info *sta, *prev_sta; 4084 4085 prev_sta = NULL; 4086 4087 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4088 if (!prev_sta) { 4089 prev_sta = sta; 4090 continue; 4091 } 4092 4093 rx.sta = prev_sta; 4094 rx.sdata = prev_sta->sdata; 4095 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4096 4097 prev_sta = sta; 4098 } 4099 4100 if (prev_sta) { 4101 rx.sta = prev_sta; 4102 rx.sdata = prev_sta->sdata; 4103 4104 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4105 return; 4106 goto out; 4107 } 4108 } 4109 4110 prev = NULL; 4111 4112 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4113 if (!ieee80211_sdata_running(sdata)) 4114 continue; 4115 4116 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4117 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4118 continue; 4119 4120 /* 4121 * frame is destined for this interface, but if it's 4122 * not also for the previous one we handle that after 4123 * the loop to avoid copying the SKB once too much 4124 */ 4125 4126 if (!prev) { 4127 prev = sdata; 4128 continue; 4129 } 4130 4131 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4132 rx.sdata = prev; 4133 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4134 4135 prev = sdata; 4136 } 4137 4138 if (prev) { 4139 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4140 rx.sdata = prev; 4141 4142 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4143 return; 4144 } 4145 4146 out: 4147 dev_kfree_skb(skb); 4148 } 4149 4150 /* 4151 * This is the receive path handler. It is called by a low level driver when an 4152 * 802.11 MPDU is received from the hardware. 4153 */ 4154 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4155 struct sk_buff *skb, struct napi_struct *napi) 4156 { 4157 struct ieee80211_local *local = hw_to_local(hw); 4158 struct ieee80211_rate *rate = NULL; 4159 struct ieee80211_supported_band *sband; 4160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4161 4162 WARN_ON_ONCE(softirq_count() == 0); 4163 4164 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4165 goto drop; 4166 4167 sband = local->hw.wiphy->bands[status->band]; 4168 if (WARN_ON(!sband)) 4169 goto drop; 4170 4171 /* 4172 * If we're suspending, it is possible although not too likely 4173 * that we'd be receiving frames after having already partially 4174 * quiesced the stack. We can't process such frames then since 4175 * that might, for example, cause stations to be added or other 4176 * driver callbacks be invoked. 4177 */ 4178 if (unlikely(local->quiescing || local->suspended)) 4179 goto drop; 4180 4181 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4182 if (unlikely(local->in_reconfig)) 4183 goto drop; 4184 4185 /* 4186 * The same happens when we're not even started, 4187 * but that's worth a warning. 4188 */ 4189 if (WARN_ON(!local->started)) 4190 goto drop; 4191 4192 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4193 /* 4194 * Validate the rate, unless a PLCP error means that 4195 * we probably can't have a valid rate here anyway. 4196 */ 4197 4198 if (status->flag & RX_FLAG_HT) { 4199 /* 4200 * rate_idx is MCS index, which can be [0-76] 4201 * as documented on: 4202 * 4203 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4204 * 4205 * Anything else would be some sort of driver or 4206 * hardware error. The driver should catch hardware 4207 * errors. 4208 */ 4209 if (WARN(status->rate_idx > 76, 4210 "Rate marked as an HT rate but passed " 4211 "status->rate_idx is not " 4212 "an MCS index [0-76]: %d (0x%02x)\n", 4213 status->rate_idx, 4214 status->rate_idx)) 4215 goto drop; 4216 } else if (status->flag & RX_FLAG_VHT) { 4217 if (WARN_ONCE(status->rate_idx > 9 || 4218 !status->vht_nss || 4219 status->vht_nss > 8, 4220 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4221 status->rate_idx, status->vht_nss)) 4222 goto drop; 4223 } else { 4224 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4225 goto drop; 4226 rate = &sband->bitrates[status->rate_idx]; 4227 } 4228 } 4229 4230 status->rx_flags = 0; 4231 4232 /* 4233 * key references and virtual interfaces are protected using RCU 4234 * and this requires that we are in a read-side RCU section during 4235 * receive processing 4236 */ 4237 rcu_read_lock(); 4238 4239 /* 4240 * Frames with failed FCS/PLCP checksum are not returned, 4241 * all other frames are returned without radiotap header 4242 * if it was previously present. 4243 * Also, frames with less than 16 bytes are dropped. 4244 */ 4245 skb = ieee80211_rx_monitor(local, skb, rate); 4246 if (!skb) { 4247 rcu_read_unlock(); 4248 return; 4249 } 4250 4251 ieee80211_tpt_led_trig_rx(local, 4252 ((struct ieee80211_hdr *)skb->data)->frame_control, 4253 skb->len); 4254 4255 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4256 4257 rcu_read_unlock(); 4258 4259 return; 4260 drop: 4261 kfree_skb(skb); 4262 } 4263 EXPORT_SYMBOL(ieee80211_rx_napi); 4264 4265 /* This is a version of the rx handler that can be called from hard irq 4266 * context. Post the skb on the queue and schedule the tasklet */ 4267 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4268 { 4269 struct ieee80211_local *local = hw_to_local(hw); 4270 4271 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4272 4273 skb->pkt_type = IEEE80211_RX_MSG; 4274 skb_queue_tail(&local->skb_queue, skb); 4275 tasklet_schedule(&local->tasklet); 4276 } 4277 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4278