1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2025 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <kunit/visibility.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <linux/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 /* 38 * monitor mode reception 39 * 40 * This function cleans up the SKB, i.e. it removes all the stuff 41 * only useful for monitoring. 42 */ 43 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 44 unsigned int present_fcs_len, 45 unsigned int rtap_space) 46 { 47 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 48 struct ieee80211_hdr *hdr; 49 unsigned int hdrlen; 50 __le16 fc; 51 52 if (present_fcs_len) 53 __pskb_trim(skb, skb->len - present_fcs_len); 54 pskb_pull(skb, rtap_space); 55 56 /* After pulling radiotap header, clear all flags that indicate 57 * info in skb->data. 58 */ 59 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | 60 RX_FLAG_RADIOTAP_LSIG | 61 RX_FLAG_RADIOTAP_HE_MU | 62 RX_FLAG_RADIOTAP_HE); 63 64 hdr = (void *)skb->data; 65 fc = hdr->frame_control; 66 67 /* 68 * Remove the HT-Control field (if present) on management 69 * frames after we've sent the frame to monitoring. We 70 * (currently) don't need it, and don't properly parse 71 * frames with it present, due to the assumption of a 72 * fixed management header length. 73 */ 74 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 75 return skb; 76 77 hdrlen = ieee80211_hdrlen(fc); 78 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 79 80 if (!pskb_may_pull(skb, hdrlen)) { 81 dev_kfree_skb(skb); 82 return NULL; 83 } 84 85 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 86 hdrlen - IEEE80211_HT_CTL_LEN); 87 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 88 89 return skb; 90 } 91 92 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 93 unsigned int rtap_space) 94 { 95 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 96 struct ieee80211_hdr *hdr; 97 98 hdr = (void *)(skb->data + rtap_space); 99 100 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 101 RX_FLAG_FAILED_PLCP_CRC | 102 RX_FLAG_ONLY_MONITOR | 103 RX_FLAG_NO_PSDU)) 104 return true; 105 106 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 107 return true; 108 109 if (ieee80211_is_ctl(hdr->frame_control) && 110 !ieee80211_is_pspoll(hdr->frame_control) && 111 !ieee80211_is_back_req(hdr->frame_control)) 112 return true; 113 114 return false; 115 } 116 117 static int 118 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 119 struct ieee80211_rx_status *status, 120 struct sk_buff *skb) 121 { 122 int len; 123 124 /* always present fields */ 125 len = sizeof(struct ieee80211_radiotap_header) + 8; 126 127 /* allocate extra bitmaps */ 128 if (status->chains) 129 len += 4 * hweight8(status->chains); 130 131 if (ieee80211_have_rx_timestamp(status)) { 132 len = ALIGN(len, 8); 133 len += 8; 134 } 135 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 136 len += 1; 137 138 /* antenna field, if we don't have per-chain info */ 139 if (!status->chains) 140 len += 1; 141 142 /* padding for RX_FLAGS if necessary */ 143 len = ALIGN(len, 2); 144 145 if (status->encoding == RX_ENC_HT) /* HT info */ 146 len += 3; 147 148 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 149 len = ALIGN(len, 4); 150 len += 8; 151 } 152 153 if (status->encoding == RX_ENC_VHT) { 154 len = ALIGN(len, 2); 155 len += 12; 156 } 157 158 if (local->hw.radiotap_timestamp.units_pos >= 0) { 159 len = ALIGN(len, 8); 160 len += 12; 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 168 } 169 170 if (status->encoding == RX_ENC_HE && 171 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 172 len = ALIGN(len, 2); 173 len += 12; 174 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 175 } 176 177 if (status->flag & RX_FLAG_NO_PSDU) 178 len += 1; 179 180 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 181 len = ALIGN(len, 2); 182 len += 4; 183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 184 } 185 186 if (status->chains) { 187 /* antenna and antenna signal fields */ 188 len += 2 * hweight8(status->chains); 189 } 190 191 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 192 int tlv_offset = 0; 193 194 /* 195 * The position to look at depends on the existence (or non- 196 * existence) of other elements, so take that into account... 197 */ 198 if (status->flag & RX_FLAG_RADIOTAP_HE) 199 tlv_offset += 200 sizeof(struct ieee80211_radiotap_he); 201 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 202 tlv_offset += 203 sizeof(struct ieee80211_radiotap_he_mu); 204 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 205 tlv_offset += 206 sizeof(struct ieee80211_radiotap_lsig); 207 208 /* ensure 4 byte alignment for TLV */ 209 len = ALIGN(len, 4); 210 211 /* TLVs until the mac header */ 212 len += skb_mac_header(skb) - &skb->data[tlv_offset]; 213 } 214 215 return len; 216 } 217 218 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 219 int link_id, 220 struct sta_info *sta, 221 struct sk_buff *skb) 222 { 223 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 224 225 if (link_id >= 0) { 226 status->link_valid = 1; 227 status->link_id = link_id; 228 } else { 229 status->link_valid = 0; 230 } 231 232 skb_queue_tail(&sdata->skb_queue, skb); 233 wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); 234 if (sta) 235 sta->deflink.rx_stats.packets++; 236 } 237 238 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 239 int link_id, 240 struct sta_info *sta, 241 struct sk_buff *skb) 242 { 243 skb->protocol = 0; 244 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 245 } 246 247 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 248 struct sk_buff *skb, 249 int rtap_space) 250 { 251 struct { 252 struct ieee80211_hdr_3addr hdr; 253 u8 category; 254 u8 action_code; 255 } __packed __aligned(2) action; 256 257 if (!sdata) 258 return; 259 260 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 261 262 if (skb->len < rtap_space + sizeof(action) + 263 VHT_MUMIMO_GROUPS_DATA_LEN) 264 return; 265 266 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 267 return; 268 269 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 270 271 if (!ieee80211_is_action(action.hdr.frame_control)) 272 return; 273 274 if (action.category != WLAN_CATEGORY_VHT) 275 return; 276 277 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 278 return; 279 280 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 281 return; 282 283 skb = skb_copy(skb, GFP_ATOMIC); 284 if (!skb) 285 return; 286 287 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 288 } 289 290 /* 291 * ieee80211_add_rx_radiotap_header - add radiotap header 292 * 293 * add a radiotap header containing all the fields which the hardware provided. 294 */ 295 static void 296 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 297 struct sk_buff *skb, 298 struct ieee80211_rate *rate, 299 int rtap_len, bool has_fcs) 300 { 301 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 302 struct ieee80211_radiotap_header *rthdr; 303 unsigned char *pos; 304 __le32 *it_present; 305 u32 it_present_val; 306 u16 rx_flags = 0; 307 u16 channel_flags = 0; 308 u32 tlvs_len = 0; 309 int mpdulen, chain; 310 unsigned long chains = status->chains; 311 struct ieee80211_radiotap_he he = {}; 312 struct ieee80211_radiotap_he_mu he_mu = {}; 313 struct ieee80211_radiotap_lsig lsig = {}; 314 315 if (status->flag & RX_FLAG_RADIOTAP_HE) { 316 he = *(struct ieee80211_radiotap_he *)skb->data; 317 skb_pull(skb, sizeof(he)); 318 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 319 } 320 321 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 322 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 323 skb_pull(skb, sizeof(he_mu)); 324 } 325 326 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 327 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 328 skb_pull(skb, sizeof(lsig)); 329 } 330 331 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 332 /* data is pointer at tlv all other info was pulled off */ 333 tlvs_len = skb_mac_header(skb) - skb->data; 334 } 335 336 mpdulen = skb->len; 337 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 338 mpdulen += FCS_LEN; 339 340 rthdr = skb_push(skb, rtap_len - tlvs_len); 341 memset(rthdr, 0, rtap_len - tlvs_len); 342 it_present = &rthdr->it_present; 343 344 /* radiotap header, set always present flags */ 345 rthdr->it_len = cpu_to_le16(rtap_len); 346 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 347 BIT(IEEE80211_RADIOTAP_CHANNEL) | 348 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 349 350 if (!status->chains) 351 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 352 353 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 354 it_present_val |= 355 BIT(IEEE80211_RADIOTAP_EXT) | 356 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 357 put_unaligned_le32(it_present_val, it_present); 358 it_present++; 359 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 360 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 361 } 362 363 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 364 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); 365 366 put_unaligned_le32(it_present_val, it_present); 367 368 /* This references through an offset into it_optional[] rather 369 * than via it_present otherwise later uses of pos will cause 370 * the compiler to think we have walked past the end of the 371 * struct member. 372 */ 373 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 374 375 /* the order of the following fields is important */ 376 377 /* IEEE80211_RADIOTAP_TSFT */ 378 if (ieee80211_have_rx_timestamp(status)) { 379 /* padding */ 380 while ((pos - (u8 *)rthdr) & 7) 381 *pos++ = 0; 382 put_unaligned_le64( 383 ieee80211_calculate_rx_timestamp(local, status, 384 mpdulen, 0), 385 pos); 386 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 387 pos += 8; 388 } 389 390 /* IEEE80211_RADIOTAP_FLAGS */ 391 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 392 *pos |= IEEE80211_RADIOTAP_F_FCS; 393 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 394 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 395 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 396 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 397 pos++; 398 399 /* IEEE80211_RADIOTAP_RATE */ 400 if (!rate || status->encoding != RX_ENC_LEGACY) { 401 /* 402 * Without rate information don't add it. If we have, 403 * MCS information is a separate field in radiotap, 404 * added below. The byte here is needed as padding 405 * for the channel though, so initialise it to 0. 406 */ 407 *pos = 0; 408 } else { 409 int shift = 0; 410 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 411 if (status->bw == RATE_INFO_BW_10) 412 shift = 1; 413 else if (status->bw == RATE_INFO_BW_5) 414 shift = 2; 415 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 416 } 417 pos++; 418 419 /* IEEE80211_RADIOTAP_CHANNEL */ 420 /* TODO: frequency offset in KHz */ 421 put_unaligned_le16(status->freq, pos); 422 pos += 2; 423 if (status->bw == RATE_INFO_BW_10) 424 channel_flags |= IEEE80211_CHAN_HALF; 425 else if (status->bw == RATE_INFO_BW_5) 426 channel_flags |= IEEE80211_CHAN_QUARTER; 427 428 if (status->band == NL80211_BAND_5GHZ || 429 status->band == NL80211_BAND_6GHZ) 430 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 431 else if (status->encoding != RX_ENC_LEGACY) 432 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 433 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 434 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 435 else if (rate) 436 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 437 else 438 channel_flags |= IEEE80211_CHAN_2GHZ; 439 put_unaligned_le16(channel_flags, pos); 440 pos += 2; 441 442 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 443 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 444 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 445 *pos = status->signal; 446 rthdr->it_present |= 447 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 448 pos++; 449 } 450 451 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 452 453 if (!status->chains) { 454 /* IEEE80211_RADIOTAP_ANTENNA */ 455 *pos = status->antenna; 456 pos++; 457 } 458 459 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 460 461 /* IEEE80211_RADIOTAP_RX_FLAGS */ 462 /* ensure 2 byte alignment for the 2 byte field as required */ 463 if ((pos - (u8 *)rthdr) & 1) 464 *pos++ = 0; 465 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 466 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 467 put_unaligned_le16(rx_flags, pos); 468 pos += 2; 469 470 if (status->encoding == RX_ENC_HT) { 471 unsigned int stbc; 472 473 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 474 *pos = local->hw.radiotap_mcs_details; 475 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 476 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 477 if (status->enc_flags & RX_ENC_FLAG_LDPC) 478 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 479 pos++; 480 *pos = 0; 481 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 482 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 483 if (status->bw == RATE_INFO_BW_40) 484 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 485 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 486 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 487 if (status->enc_flags & RX_ENC_FLAG_LDPC) 488 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 489 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 490 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 491 pos++; 492 *pos++ = status->rate_idx; 493 } 494 495 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 496 u16 flags = 0; 497 498 /* ensure 4 byte alignment */ 499 while ((pos - (u8 *)rthdr) & 3) 500 pos++; 501 rthdr->it_present |= 502 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 503 put_unaligned_le32(status->ampdu_reference, pos); 504 pos += 4; 505 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 506 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 507 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 508 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 509 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 510 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 511 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 512 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 513 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 514 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 515 put_unaligned_le16(flags, pos); 516 pos += 2; 517 *pos++ = 0; 518 *pos++ = 0; 519 } 520 521 if (status->encoding == RX_ENC_VHT) { 522 u16 known = local->hw.radiotap_vht_details; 523 524 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 525 put_unaligned_le16(known, pos); 526 pos += 2; 527 /* flags */ 528 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 529 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 530 /* in VHT, STBC is binary */ 531 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 532 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 533 if (status->enc_flags & RX_ENC_FLAG_BF) 534 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 535 pos++; 536 /* bandwidth */ 537 switch (status->bw) { 538 case RATE_INFO_BW_80: 539 *pos++ = 4; 540 break; 541 case RATE_INFO_BW_160: 542 *pos++ = 11; 543 break; 544 case RATE_INFO_BW_40: 545 *pos++ = 1; 546 break; 547 default: 548 *pos++ = 0; 549 } 550 /* MCS/NSS */ 551 *pos = (status->rate_idx << 4) | status->nss; 552 pos += 4; 553 /* coding field */ 554 if (status->enc_flags & RX_ENC_FLAG_LDPC) 555 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 556 pos++; 557 /* group ID */ 558 pos++; 559 /* partial_aid */ 560 pos += 2; 561 } 562 563 if (local->hw.radiotap_timestamp.units_pos >= 0) { 564 u16 accuracy = 0; 565 u8 flags; 566 u64 ts; 567 568 rthdr->it_present |= 569 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 570 571 /* ensure 8 byte alignment */ 572 while ((pos - (u8 *)rthdr) & 7) 573 pos++; 574 575 if (status->flag & RX_FLAG_MACTIME_IS_RTAP_TS64) { 576 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_64BIT; 577 ts = status->mactime; 578 } else { 579 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 580 ts = status->device_timestamp; 581 } 582 583 put_unaligned_le64(ts, pos); 584 pos += sizeof(u64); 585 586 if (local->hw.radiotap_timestamp.accuracy >= 0) { 587 accuracy = local->hw.radiotap_timestamp.accuracy; 588 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 589 } 590 put_unaligned_le16(accuracy, pos); 591 pos += sizeof(u16); 592 593 *pos++ = local->hw.radiotap_timestamp.units_pos; 594 *pos++ = flags; 595 } 596 597 if (status->encoding == RX_ENC_HE && 598 status->flag & RX_FLAG_RADIOTAP_HE) { 599 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 600 601 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 602 he.data6 |= HE_PREP(DATA6_NSTS, 603 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 604 status->enc_flags)); 605 he.data3 |= HE_PREP(DATA3_STBC, 1); 606 } else { 607 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 608 } 609 610 #define CHECK_GI(s) \ 611 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 612 (int)NL80211_RATE_INFO_HE_GI_##s) 613 614 CHECK_GI(0_8); 615 CHECK_GI(1_6); 616 CHECK_GI(3_2); 617 618 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 619 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 620 he.data3 |= HE_PREP(DATA3_CODING, 621 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 622 623 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 624 625 switch (status->bw) { 626 case RATE_INFO_BW_20: 627 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 628 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 629 break; 630 case RATE_INFO_BW_40: 631 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 632 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 633 break; 634 case RATE_INFO_BW_80: 635 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 636 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 637 break; 638 case RATE_INFO_BW_160: 639 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 640 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 641 break; 642 case RATE_INFO_BW_HE_RU: 643 #define CHECK_RU_ALLOC(s) \ 644 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 645 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 646 647 CHECK_RU_ALLOC(26); 648 CHECK_RU_ALLOC(52); 649 CHECK_RU_ALLOC(106); 650 CHECK_RU_ALLOC(242); 651 CHECK_RU_ALLOC(484); 652 CHECK_RU_ALLOC(996); 653 CHECK_RU_ALLOC(2x996); 654 655 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 656 status->he_ru + 4); 657 break; 658 default: 659 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 660 } 661 662 /* ensure 2 byte alignment */ 663 while ((pos - (u8 *)rthdr) & 1) 664 pos++; 665 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 666 memcpy(pos, &he, sizeof(he)); 667 pos += sizeof(he); 668 } 669 670 if (status->encoding == RX_ENC_HE && 671 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 672 /* ensure 2 byte alignment */ 673 while ((pos - (u8 *)rthdr) & 1) 674 pos++; 675 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 676 memcpy(pos, &he_mu, sizeof(he_mu)); 677 pos += sizeof(he_mu); 678 } 679 680 if (status->flag & RX_FLAG_NO_PSDU) { 681 rthdr->it_present |= 682 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 683 *pos++ = status->zero_length_psdu_type; 684 } 685 686 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 687 /* ensure 2 byte alignment */ 688 while ((pos - (u8 *)rthdr) & 1) 689 pos++; 690 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 691 memcpy(pos, &lsig, sizeof(lsig)); 692 pos += sizeof(lsig); 693 } 694 695 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 696 *pos++ = status->chain_signal[chain]; 697 *pos++ = chain; 698 } 699 } 700 701 static struct sk_buff * 702 ieee80211_make_monitor_skb(struct ieee80211_local *local, 703 struct sk_buff **origskb, 704 struct ieee80211_rate *rate, 705 int rtap_space, bool use_origskb) 706 { 707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 708 int rt_hdrlen, needed_headroom; 709 struct sk_buff *skb; 710 711 /* room for the radiotap header based on driver features */ 712 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 713 needed_headroom = rt_hdrlen - rtap_space; 714 715 if (use_origskb) { 716 /* only need to expand headroom if necessary */ 717 skb = *origskb; 718 *origskb = NULL; 719 720 /* 721 * This shouldn't trigger often because most devices have an 722 * RX header they pull before we get here, and that should 723 * be big enough for our radiotap information. We should 724 * probably export the length to drivers so that we can have 725 * them allocate enough headroom to start with. 726 */ 727 if (skb_headroom(skb) < needed_headroom && 728 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 729 dev_kfree_skb(skb); 730 return NULL; 731 } 732 } else { 733 /* 734 * Need to make a copy and possibly remove radiotap header 735 * and FCS from the original. 736 */ 737 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 738 0, GFP_ATOMIC); 739 740 if (!skb) 741 return NULL; 742 } 743 744 /* prepend radiotap information */ 745 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 746 747 skb_reset_mac_header(skb); 748 skb->ip_summed = CHECKSUM_UNNECESSARY; 749 skb->pkt_type = PACKET_OTHERHOST; 750 skb->protocol = htons(ETH_P_802_2); 751 752 return skb; 753 } 754 755 /* 756 * This function copies a received frame to all monitor interfaces and 757 * returns a cleaned-up SKB that no longer includes the FCS nor the 758 * radiotap header the driver might have added. 759 */ 760 static struct sk_buff * 761 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 762 struct ieee80211_rate *rate) 763 { 764 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 765 struct ieee80211_sub_if_data *sdata, *prev_sdata = NULL; 766 struct sk_buff *skb, *monskb = NULL; 767 int present_fcs_len = 0; 768 unsigned int rtap_space = 0; 769 struct ieee80211_sub_if_data *monitor_sdata = 770 rcu_dereference(local->monitor_sdata); 771 bool only_monitor = false; 772 unsigned int min_head_len; 773 774 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && 775 !skb_mac_header_was_set(origskb))) { 776 /* with this skb no way to know where frame payload starts */ 777 dev_kfree_skb(origskb); 778 return NULL; 779 } 780 781 if (status->flag & RX_FLAG_RADIOTAP_HE) 782 rtap_space += sizeof(struct ieee80211_radiotap_he); 783 784 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 785 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 786 787 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 788 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 789 790 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 791 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; 792 793 min_head_len = rtap_space; 794 795 /* 796 * First, we may need to make a copy of the skb because 797 * (1) we need to modify it for radiotap (if not present), and 798 * (2) the other RX handlers will modify the skb we got. 799 * 800 * We don't need to, of course, if we aren't going to return 801 * the SKB because it has a bad FCS/PLCP checksum. 802 */ 803 804 if (!(status->flag & RX_FLAG_NO_PSDU)) { 805 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 806 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 807 /* driver bug */ 808 WARN_ON(1); 809 dev_kfree_skb(origskb); 810 return NULL; 811 } 812 present_fcs_len = FCS_LEN; 813 } 814 815 /* also consider the hdr->frame_control */ 816 min_head_len += 2; 817 } 818 819 /* ensure that the expected data elements are in skb head */ 820 if (!pskb_may_pull(origskb, min_head_len)) { 821 dev_kfree_skb(origskb); 822 return NULL; 823 } 824 825 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 826 827 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 828 if (only_monitor) { 829 dev_kfree_skb(origskb); 830 return NULL; 831 } 832 833 return ieee80211_clean_skb(origskb, present_fcs_len, 834 rtap_space); 835 } 836 837 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 838 839 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 840 struct cfg80211_chan_def *chandef; 841 842 chandef = &sdata->vif.bss_conf.chanreq.oper; 843 if (chandef->chan && 844 chandef->chan->center_freq != status->freq) 845 continue; 846 847 if (!prev_sdata) { 848 prev_sdata = sdata; 849 continue; 850 } 851 852 if (ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 853 ieee80211_handle_mu_mimo_mon(sdata, origskb, rtap_space); 854 855 if (!monskb) 856 monskb = ieee80211_make_monitor_skb(local, &origskb, 857 rate, rtap_space, 858 false); 859 if (!monskb) 860 continue; 861 862 skb = skb_clone(monskb, GFP_ATOMIC); 863 if (!skb) 864 continue; 865 866 skb->dev = prev_sdata->dev; 867 dev_sw_netstats_rx_add(skb->dev, skb->len); 868 netif_receive_skb(skb); 869 prev_sdata = sdata; 870 } 871 872 if (prev_sdata) { 873 if (monskb) 874 skb = monskb; 875 else 876 skb = ieee80211_make_monitor_skb(local, &origskb, 877 rate, rtap_space, 878 only_monitor); 879 if (skb) { 880 skb->dev = prev_sdata->dev; 881 dev_sw_netstats_rx_add(skb->dev, skb->len); 882 netif_receive_skb(skb); 883 } 884 } 885 886 if (!origskb) 887 return NULL; 888 889 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 890 } 891 892 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 893 { 894 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 895 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 896 int tid, seqno_idx, security_idx; 897 898 /* does the frame have a qos control field? */ 899 if (ieee80211_is_data_qos(hdr->frame_control)) { 900 u8 *qc = ieee80211_get_qos_ctl(hdr); 901 /* frame has qos control */ 902 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 903 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 904 status->rx_flags |= IEEE80211_RX_AMSDU; 905 906 seqno_idx = tid; 907 security_idx = tid; 908 } else { 909 /* 910 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 911 * 912 * Sequence numbers for management frames, QoS data 913 * frames with a broadcast/multicast address in the 914 * Address 1 field, and all non-QoS data frames sent 915 * by QoS STAs are assigned using an additional single 916 * modulo-4096 counter, [...] 917 * 918 * We also use that counter for non-QoS STAs. 919 */ 920 seqno_idx = IEEE80211_NUM_TIDS; 921 security_idx = 0; 922 if (ieee80211_is_mgmt(hdr->frame_control)) 923 security_idx = IEEE80211_NUM_TIDS; 924 tid = 0; 925 } 926 927 rx->seqno_idx = seqno_idx; 928 rx->security_idx = security_idx; 929 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 930 * For now, set skb->priority to 0 for other cases. */ 931 rx->skb->priority = (tid > 7) ? 0 : tid; 932 } 933 934 /** 935 * DOC: Packet alignment 936 * 937 * Drivers always need to pass packets that are aligned to two-byte boundaries 938 * to the stack. 939 * 940 * Additionally, they should, if possible, align the payload data in a way that 941 * guarantees that the contained IP header is aligned to a four-byte 942 * boundary. In the case of regular frames, this simply means aligning the 943 * payload to a four-byte boundary (because either the IP header is directly 944 * contained, or IV/RFC1042 headers that have a length divisible by four are 945 * in front of it). If the payload data is not properly aligned and the 946 * architecture doesn't support efficient unaligned operations, mac80211 947 * will align the data. 948 * 949 * With A-MSDU frames, however, the payload data address must yield two modulo 950 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 951 * push the IP header further back to a multiple of four again. Thankfully, the 952 * specs were sane enough this time around to require padding each A-MSDU 953 * subframe to a length that is a multiple of four. 954 * 955 * Padding like Atheros hardware adds which is between the 802.11 header and 956 * the payload is not supported; the driver is required to move the 802.11 957 * header to be directly in front of the payload in that case. 958 */ 959 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 960 { 961 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 962 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 963 #endif 964 } 965 966 967 /* rx handlers */ 968 969 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 970 { 971 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 972 973 if (is_multicast_ether_addr(hdr->addr1)) 974 return 0; 975 976 return ieee80211_is_robust_mgmt_frame(skb); 977 } 978 979 980 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 981 { 982 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 983 984 if (!is_multicast_ether_addr(hdr->addr1)) 985 return 0; 986 987 return ieee80211_is_robust_mgmt_frame(skb); 988 } 989 990 991 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 992 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 993 { 994 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 995 struct ieee80211_mmie *mmie; 996 struct ieee80211_mmie_16 *mmie16; 997 998 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 999 return -1; 1000 1001 if (!ieee80211_is_robust_mgmt_frame(skb) && 1002 !ieee80211_is_beacon(hdr->frame_control)) 1003 return -1; /* not a robust management frame */ 1004 1005 mmie = (struct ieee80211_mmie *) 1006 (skb->data + skb->len - sizeof(*mmie)); 1007 if (mmie->element_id == WLAN_EID_MMIE && 1008 mmie->length == sizeof(*mmie) - 2) 1009 return le16_to_cpu(mmie->key_id); 1010 1011 mmie16 = (struct ieee80211_mmie_16 *) 1012 (skb->data + skb->len - sizeof(*mmie16)); 1013 if (skb->len >= 24 + sizeof(*mmie16) && 1014 mmie16->element_id == WLAN_EID_MMIE && 1015 mmie16->length == sizeof(*mmie16) - 2) 1016 return le16_to_cpu(mmie16->key_id); 1017 1018 return -1; 1019 } 1020 1021 static int ieee80211_get_keyid(struct sk_buff *skb) 1022 { 1023 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1024 __le16 fc = hdr->frame_control; 1025 int hdrlen = ieee80211_hdrlen(fc); 1026 u8 keyid; 1027 1028 /* WEP, TKIP, CCMP and GCMP */ 1029 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1030 return -EINVAL; 1031 1032 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1033 1034 keyid >>= 6; 1035 1036 return keyid; 1037 } 1038 1039 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1040 { 1041 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1042 char *dev_addr = rx->sdata->vif.addr; 1043 1044 if (ieee80211_is_data(hdr->frame_control)) { 1045 if (is_multicast_ether_addr(hdr->addr1)) { 1046 if (ieee80211_has_tods(hdr->frame_control) || 1047 !ieee80211_has_fromds(hdr->frame_control)) 1048 return RX_DROP; 1049 if (ether_addr_equal(hdr->addr3, dev_addr)) 1050 return RX_DROP; 1051 } else { 1052 if (!ieee80211_has_a4(hdr->frame_control)) 1053 return RX_DROP; 1054 if (ether_addr_equal(hdr->addr4, dev_addr)) 1055 return RX_DROP; 1056 } 1057 } 1058 1059 /* If there is not an established peer link and this is not a peer link 1060 * establisment frame, beacon or probe, drop the frame. 1061 */ 1062 1063 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1064 struct ieee80211_mgmt *mgmt; 1065 1066 if (!ieee80211_is_mgmt(hdr->frame_control)) 1067 return RX_DROP; 1068 1069 if (ieee80211_is_action(hdr->frame_control)) { 1070 u8 category; 1071 1072 /* make sure category field is present */ 1073 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1074 return RX_DROP; 1075 1076 mgmt = (struct ieee80211_mgmt *)hdr; 1077 category = mgmt->u.action.category; 1078 if (category != WLAN_CATEGORY_MESH_ACTION && 1079 category != WLAN_CATEGORY_SELF_PROTECTED) 1080 return RX_DROP; 1081 return RX_CONTINUE; 1082 } 1083 1084 if (ieee80211_is_probe_req(hdr->frame_control) || 1085 ieee80211_is_probe_resp(hdr->frame_control) || 1086 ieee80211_is_beacon(hdr->frame_control) || 1087 ieee80211_is_auth(hdr->frame_control)) 1088 return RX_CONTINUE; 1089 1090 return RX_DROP; 1091 } 1092 1093 return RX_CONTINUE; 1094 } 1095 1096 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1097 int index) 1098 { 1099 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1100 struct sk_buff *tail = skb_peek_tail(frames); 1101 struct ieee80211_rx_status *status; 1102 1103 if (tid_agg_rx->reorder_buf_filtered && 1104 tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1105 return true; 1106 1107 if (!tail) 1108 return false; 1109 1110 status = IEEE80211_SKB_RXCB(tail); 1111 if (status->flag & RX_FLAG_AMSDU_MORE) 1112 return false; 1113 1114 return true; 1115 } 1116 1117 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1118 struct tid_ampdu_rx *tid_agg_rx, 1119 int index, 1120 struct sk_buff_head *frames) 1121 { 1122 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1123 struct sk_buff *skb; 1124 struct ieee80211_rx_status *status; 1125 1126 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1127 1128 if (skb_queue_empty(skb_list)) 1129 goto no_frame; 1130 1131 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1132 __skb_queue_purge(skb_list); 1133 goto no_frame; 1134 } 1135 1136 /* release frames from the reorder ring buffer */ 1137 tid_agg_rx->stored_mpdu_num--; 1138 while ((skb = __skb_dequeue(skb_list))) { 1139 status = IEEE80211_SKB_RXCB(skb); 1140 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1141 __skb_queue_tail(frames, skb); 1142 } 1143 1144 no_frame: 1145 if (tid_agg_rx->reorder_buf_filtered) 1146 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1147 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1148 } 1149 1150 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1151 struct tid_ampdu_rx *tid_agg_rx, 1152 u16 head_seq_num, 1153 struct sk_buff_head *frames) 1154 { 1155 int index; 1156 1157 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1158 1159 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1160 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1161 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1162 frames); 1163 } 1164 } 1165 1166 /* 1167 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1168 * the skb was added to the buffer longer than this time ago, the earlier 1169 * frames that have not yet been received are assumed to be lost and the skb 1170 * can be released for processing. This may also release other skb's from the 1171 * reorder buffer if there are no additional gaps between the frames. 1172 * 1173 * Callers must hold tid_agg_rx->reorder_lock. 1174 */ 1175 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1176 1177 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1178 struct tid_ampdu_rx *tid_agg_rx, 1179 struct sk_buff_head *frames) 1180 { 1181 int index, i, j; 1182 1183 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1184 1185 /* release the buffer until next missing frame */ 1186 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1187 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1188 tid_agg_rx->stored_mpdu_num) { 1189 /* 1190 * No buffers ready to be released, but check whether any 1191 * frames in the reorder buffer have timed out. 1192 */ 1193 int skipped = 1; 1194 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1195 j = (j + 1) % tid_agg_rx->buf_size) { 1196 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1197 skipped++; 1198 continue; 1199 } 1200 if (skipped && 1201 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1202 HT_RX_REORDER_BUF_TIMEOUT)) 1203 goto set_release_timer; 1204 1205 /* don't leave incomplete A-MSDUs around */ 1206 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1207 i = (i + 1) % tid_agg_rx->buf_size) 1208 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1209 1210 ht_dbg_ratelimited(sdata, 1211 "release an RX reorder frame due to timeout on earlier frames\n"); 1212 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1213 frames); 1214 1215 /* 1216 * Increment the head seq# also for the skipped slots. 1217 */ 1218 tid_agg_rx->head_seq_num = 1219 (tid_agg_rx->head_seq_num + 1220 skipped) & IEEE80211_SN_MASK; 1221 skipped = 0; 1222 } 1223 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1224 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1225 frames); 1226 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1227 } 1228 1229 if (tid_agg_rx->stored_mpdu_num) { 1230 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1231 1232 for (; j != (index - 1) % tid_agg_rx->buf_size; 1233 j = (j + 1) % tid_agg_rx->buf_size) { 1234 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1235 break; 1236 } 1237 1238 set_release_timer: 1239 1240 if (!tid_agg_rx->removed) 1241 mod_timer(&tid_agg_rx->reorder_timer, 1242 tid_agg_rx->reorder_time[j] + 1 + 1243 HT_RX_REORDER_BUF_TIMEOUT); 1244 } else { 1245 timer_delete(&tid_agg_rx->reorder_timer); 1246 } 1247 } 1248 1249 /* 1250 * As this function belongs to the RX path it must be under 1251 * rcu_read_lock protection. It returns false if the frame 1252 * can be processed immediately, true if it was consumed. 1253 */ 1254 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1255 struct tid_ampdu_rx *tid_agg_rx, 1256 struct sk_buff *skb, 1257 struct sk_buff_head *frames) 1258 { 1259 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1260 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1261 u16 mpdu_seq_num = ieee80211_get_sn(hdr); 1262 u16 head_seq_num, buf_size; 1263 int index; 1264 bool ret = true; 1265 1266 spin_lock(&tid_agg_rx->reorder_lock); 1267 1268 /* 1269 * Offloaded BA sessions have no known starting sequence number so pick 1270 * one from first Rxed frame for this tid after BA was started. 1271 */ 1272 if (unlikely(tid_agg_rx->auto_seq)) { 1273 tid_agg_rx->auto_seq = false; 1274 tid_agg_rx->ssn = mpdu_seq_num; 1275 tid_agg_rx->head_seq_num = mpdu_seq_num; 1276 } 1277 1278 buf_size = tid_agg_rx->buf_size; 1279 head_seq_num = tid_agg_rx->head_seq_num; 1280 1281 /* 1282 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1283 * be reordered. 1284 */ 1285 if (unlikely(!tid_agg_rx->started)) { 1286 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1287 ret = false; 1288 goto out; 1289 } 1290 tid_agg_rx->started = true; 1291 } 1292 1293 /* frame with out of date sequence number */ 1294 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1295 dev_kfree_skb(skb); 1296 goto out; 1297 } 1298 1299 /* 1300 * If frame the sequence number exceeds our buffering window 1301 * size release some previous frames to make room for this one. 1302 */ 1303 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1304 head_seq_num = ieee80211_sn_inc( 1305 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1306 /* release stored frames up to new head to stack */ 1307 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1308 head_seq_num, frames); 1309 } 1310 1311 /* Now the new frame is always in the range of the reordering buffer */ 1312 1313 index = mpdu_seq_num % tid_agg_rx->buf_size; 1314 1315 /* check if we already stored this frame */ 1316 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1317 dev_kfree_skb(skb); 1318 goto out; 1319 } 1320 1321 /* 1322 * If the current MPDU is in the right order and nothing else 1323 * is stored we can process it directly, no need to buffer it. 1324 * If it is first but there's something stored, we may be able 1325 * to release frames after this one. 1326 */ 1327 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1328 tid_agg_rx->stored_mpdu_num == 0) { 1329 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1330 tid_agg_rx->head_seq_num = 1331 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1332 ret = false; 1333 goto out; 1334 } 1335 1336 /* put the frame in the reordering buffer */ 1337 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1338 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1339 tid_agg_rx->reorder_time[index] = jiffies; 1340 tid_agg_rx->stored_mpdu_num++; 1341 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1342 } 1343 1344 out: 1345 spin_unlock(&tid_agg_rx->reorder_lock); 1346 return ret; 1347 } 1348 1349 /* 1350 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1351 * true if the MPDU was buffered, false if it should be processed. 1352 */ 1353 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1354 struct sk_buff_head *frames) 1355 { 1356 struct sk_buff *skb = rx->skb; 1357 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1358 struct sta_info *sta = rx->sta; 1359 struct tid_ampdu_rx *tid_agg_rx; 1360 u16 sc; 1361 u8 tid, ack_policy; 1362 1363 if (!ieee80211_is_data_qos(hdr->frame_control) || 1364 is_multicast_ether_addr(hdr->addr1)) 1365 goto dont_reorder; 1366 1367 /* 1368 * filter the QoS data rx stream according to 1369 * STA/TID and check if this STA/TID is on aggregation 1370 */ 1371 1372 if (!sta) 1373 goto dont_reorder; 1374 1375 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1376 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1377 tid = ieee80211_get_tid(hdr); 1378 1379 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1380 if (!tid_agg_rx) { 1381 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1382 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1383 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1384 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1385 WLAN_BACK_RECIPIENT, 1386 WLAN_REASON_QSTA_REQUIRE_SETUP); 1387 goto dont_reorder; 1388 } 1389 1390 /* qos null data frames are excluded */ 1391 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1392 goto dont_reorder; 1393 1394 /* not part of a BA session */ 1395 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1396 goto dont_reorder; 1397 1398 /* new, potentially un-ordered, ampdu frame - process it */ 1399 1400 /* reset session timer */ 1401 if (tid_agg_rx->timeout) 1402 tid_agg_rx->last_rx = jiffies; 1403 1404 /* if this mpdu is fragmented - terminate rx aggregation session */ 1405 sc = le16_to_cpu(hdr->seq_ctrl); 1406 if (sc & IEEE80211_SCTL_FRAG) { 1407 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1408 return; 1409 } 1410 1411 /* 1412 * No locking needed -- we will only ever process one 1413 * RX packet at a time, and thus own tid_agg_rx. All 1414 * other code manipulating it needs to (and does) make 1415 * sure that we cannot get to it any more before doing 1416 * anything with it. 1417 */ 1418 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1419 frames)) 1420 return; 1421 1422 dont_reorder: 1423 __skb_queue_tail(frames, skb); 1424 } 1425 1426 static ieee80211_rx_result debug_noinline 1427 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1428 { 1429 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1430 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1431 1432 if (status->flag & RX_FLAG_DUP_VALIDATED) 1433 return RX_CONTINUE; 1434 1435 /* 1436 * Drop duplicate 802.11 retransmissions 1437 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1438 */ 1439 1440 if (rx->skb->len < 24) 1441 return RX_CONTINUE; 1442 1443 if (ieee80211_is_ctl(hdr->frame_control) || 1444 ieee80211_is_any_nullfunc(hdr->frame_control)) 1445 return RX_CONTINUE; 1446 1447 if (!rx->sta) 1448 return RX_CONTINUE; 1449 1450 if (unlikely(is_multicast_ether_addr(hdr->addr1))) { 1451 struct ieee80211_sub_if_data *sdata = rx->sdata; 1452 u16 sn = ieee80211_get_sn(hdr); 1453 1454 if (!ieee80211_is_data_present(hdr->frame_control)) 1455 return RX_CONTINUE; 1456 1457 if (!ieee80211_vif_is_mld(&sdata->vif) || 1458 sdata->vif.type != NL80211_IFTYPE_STATION) 1459 return RX_CONTINUE; 1460 1461 if (sdata->u.mgd.mcast_seq_last != IEEE80211_SN_MODULO && 1462 ieee80211_sn_less_eq(sn, sdata->u.mgd.mcast_seq_last)) 1463 return RX_DROP_U_DUP; 1464 1465 sdata->u.mgd.mcast_seq_last = sn; 1466 return RX_CONTINUE; 1467 } 1468 1469 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1470 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1471 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1472 rx->link_sta->rx_stats.num_duplicates++; 1473 return RX_DROP_U_DUP; 1474 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1475 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1476 } 1477 1478 return RX_CONTINUE; 1479 } 1480 1481 static ieee80211_rx_result debug_noinline 1482 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1483 { 1484 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1485 1486 /* Drop disallowed frame classes based on STA auth/assoc state; 1487 * IEEE 802.11, Chap 5.5. 1488 * 1489 * mac80211 filters only based on association state, i.e. it drops 1490 * Class 3 frames from not associated stations. hostapd sends 1491 * deauth/disassoc frames when needed. In addition, hostapd is 1492 * responsible for filtering on both auth and assoc states. 1493 */ 1494 1495 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1496 return ieee80211_rx_mesh_check(rx); 1497 1498 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1499 ieee80211_is_pspoll(hdr->frame_control)) && 1500 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1501 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1502 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1503 /* 1504 * accept port control frames from the AP even when it's not 1505 * yet marked ASSOC to prevent a race where we don't set the 1506 * assoc bit quickly enough before it sends the first frame 1507 */ 1508 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1509 ieee80211_is_data_present(hdr->frame_control)) { 1510 unsigned int hdrlen; 1511 __be16 ethertype; 1512 1513 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1514 1515 if (rx->skb->len < hdrlen + 8) 1516 return RX_DROP; 1517 1518 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1519 if (ethertype == rx->sdata->control_port_protocol) 1520 return RX_CONTINUE; 1521 } 1522 1523 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1524 cfg80211_rx_spurious_frame(rx->sdata->dev, 1525 hdr->addr2, 1526 GFP_ATOMIC)) 1527 return RX_DROP_U_SPURIOUS; 1528 1529 return RX_DROP; 1530 } 1531 1532 return RX_CONTINUE; 1533 } 1534 1535 1536 static ieee80211_rx_result debug_noinline 1537 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1538 { 1539 struct ieee80211_local *local; 1540 struct ieee80211_hdr *hdr; 1541 struct sk_buff *skb; 1542 1543 local = rx->local; 1544 skb = rx->skb; 1545 hdr = (struct ieee80211_hdr *) skb->data; 1546 1547 if (!local->pspolling) 1548 return RX_CONTINUE; 1549 1550 if (!ieee80211_has_fromds(hdr->frame_control)) 1551 /* this is not from AP */ 1552 return RX_CONTINUE; 1553 1554 if (!ieee80211_is_data(hdr->frame_control)) 1555 return RX_CONTINUE; 1556 1557 if (!ieee80211_has_moredata(hdr->frame_control)) { 1558 /* AP has no more frames buffered for us */ 1559 local->pspolling = false; 1560 return RX_CONTINUE; 1561 } 1562 1563 /* more data bit is set, let's request a new frame from the AP */ 1564 ieee80211_send_pspoll(local, rx->sdata); 1565 1566 return RX_CONTINUE; 1567 } 1568 1569 static void sta_ps_start(struct sta_info *sta) 1570 { 1571 struct ieee80211_sub_if_data *sdata = sta->sdata; 1572 struct ieee80211_local *local = sdata->local; 1573 struct ps_data *ps; 1574 int tid; 1575 1576 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1577 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1578 ps = &sdata->bss->ps; 1579 else 1580 return; 1581 1582 atomic_inc(&ps->num_sta_ps); 1583 set_sta_flag(sta, WLAN_STA_PS_STA); 1584 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1585 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1586 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1587 sta->sta.addr, sta->sta.aid); 1588 1589 ieee80211_clear_fast_xmit(sta); 1590 1591 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1592 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1593 struct txq_info *txqi = to_txq_info(txq); 1594 1595 spin_lock(&local->active_txq_lock[txq->ac]); 1596 if (!list_empty(&txqi->schedule_order)) 1597 list_del_init(&txqi->schedule_order); 1598 spin_unlock(&local->active_txq_lock[txq->ac]); 1599 1600 if (txq_has_queue(txq)) 1601 set_bit(tid, &sta->txq_buffered_tids); 1602 else 1603 clear_bit(tid, &sta->txq_buffered_tids); 1604 } 1605 } 1606 1607 static void sta_ps_end(struct sta_info *sta) 1608 { 1609 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1610 sta->sta.addr, sta->sta.aid); 1611 1612 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1613 /* 1614 * Clear the flag only if the other one is still set 1615 * so that the TX path won't start TX'ing new frames 1616 * directly ... In the case that the driver flag isn't 1617 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1618 */ 1619 clear_sta_flag(sta, WLAN_STA_PS_STA); 1620 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1621 sta->sta.addr, sta->sta.aid); 1622 return; 1623 } 1624 1625 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1626 clear_sta_flag(sta, WLAN_STA_PS_STA); 1627 ieee80211_sta_ps_deliver_wakeup(sta); 1628 } 1629 1630 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1631 { 1632 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1633 bool in_ps; 1634 1635 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1636 1637 /* Don't let the same PS state be set twice */ 1638 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1639 if ((start && in_ps) || (!start && !in_ps)) 1640 return -EINVAL; 1641 1642 if (start) 1643 sta_ps_start(sta); 1644 else 1645 sta_ps_end(sta); 1646 1647 return 0; 1648 } 1649 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1650 1651 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1652 { 1653 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1654 1655 if (test_sta_flag(sta, WLAN_STA_SP)) 1656 return; 1657 1658 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1659 ieee80211_sta_ps_deliver_poll_response(sta); 1660 else 1661 set_sta_flag(sta, WLAN_STA_PSPOLL); 1662 } 1663 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1664 1665 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1666 { 1667 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1668 int ac = ieee80211_ac_from_tid(tid); 1669 1670 /* 1671 * If this AC is not trigger-enabled do nothing unless the 1672 * driver is calling us after it already checked. 1673 * 1674 * NB: This could/should check a separate bitmap of trigger- 1675 * enabled queues, but for now we only implement uAPSD w/o 1676 * TSPEC changes to the ACs, so they're always the same. 1677 */ 1678 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1679 tid != IEEE80211_NUM_TIDS) 1680 return; 1681 1682 /* if we are in a service period, do nothing */ 1683 if (test_sta_flag(sta, WLAN_STA_SP)) 1684 return; 1685 1686 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1687 ieee80211_sta_ps_deliver_uapsd(sta); 1688 else 1689 set_sta_flag(sta, WLAN_STA_UAPSD); 1690 } 1691 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1692 1693 static ieee80211_rx_result debug_noinline 1694 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1695 { 1696 struct ieee80211_sub_if_data *sdata = rx->sdata; 1697 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1698 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1699 1700 if (!rx->sta) 1701 return RX_CONTINUE; 1702 1703 if (sdata->vif.type != NL80211_IFTYPE_AP && 1704 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1705 return RX_CONTINUE; 1706 1707 /* 1708 * The device handles station powersave, so don't do anything about 1709 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1710 * it to mac80211 since they're handled.) 1711 */ 1712 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1713 return RX_CONTINUE; 1714 1715 /* 1716 * Don't do anything if the station isn't already asleep. In 1717 * the uAPSD case, the station will probably be marked asleep, 1718 * in the PS-Poll case the station must be confused ... 1719 */ 1720 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1721 return RX_CONTINUE; 1722 1723 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1724 ieee80211_sta_pspoll(&rx->sta->sta); 1725 1726 /* Free PS Poll skb here instead of returning RX_DROP that would 1727 * count as an dropped frame. */ 1728 dev_kfree_skb(rx->skb); 1729 1730 return RX_QUEUED; 1731 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1732 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1733 ieee80211_has_pm(hdr->frame_control) && 1734 (ieee80211_is_data_qos(hdr->frame_control) || 1735 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1736 u8 tid = ieee80211_get_tid(hdr); 1737 1738 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1739 } 1740 1741 return RX_CONTINUE; 1742 } 1743 1744 static ieee80211_rx_result debug_noinline 1745 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1746 { 1747 struct sta_info *sta = rx->sta; 1748 struct link_sta_info *link_sta = rx->link_sta; 1749 struct sk_buff *skb = rx->skb; 1750 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1751 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1752 int i; 1753 1754 if (!sta || !link_sta) 1755 return RX_CONTINUE; 1756 1757 /* 1758 * Update last_rx only for IBSS packets which are for the current 1759 * BSSID and for station already AUTHORIZED to avoid keeping the 1760 * current IBSS network alive in cases where other STAs start 1761 * using different BSSID. This will also give the station another 1762 * chance to restart the authentication/authorization in case 1763 * something went wrong the first time. 1764 */ 1765 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1766 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1767 NL80211_IFTYPE_ADHOC); 1768 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1769 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1770 link_sta->rx_stats.last_rx = jiffies; 1771 if (ieee80211_is_data_present(hdr->frame_control) && 1772 !is_multicast_ether_addr(hdr->addr1)) 1773 link_sta->rx_stats.last_rate = 1774 sta_stats_encode_rate(status); 1775 } 1776 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1777 link_sta->rx_stats.last_rx = jiffies; 1778 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1779 !is_multicast_ether_addr(hdr->addr1)) { 1780 /* 1781 * Mesh beacons will update last_rx when if they are found to 1782 * match the current local configuration when processed. 1783 */ 1784 link_sta->rx_stats.last_rx = jiffies; 1785 if (ieee80211_is_data_present(hdr->frame_control)) 1786 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1787 } 1788 1789 link_sta->rx_stats.fragments++; 1790 1791 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1792 link_sta->rx_stats.bytes += rx->skb->len; 1793 u64_stats_update_end(&link_sta->rx_stats.syncp); 1794 1795 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1796 link_sta->rx_stats.last_signal = status->signal; 1797 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1798 -status->signal); 1799 } 1800 1801 if (status->chains) { 1802 link_sta->rx_stats.chains = status->chains; 1803 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1804 int signal = status->chain_signal[i]; 1805 1806 if (!(status->chains & BIT(i))) 1807 continue; 1808 1809 link_sta->rx_stats.chain_signal_last[i] = signal; 1810 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1811 -signal); 1812 } 1813 } 1814 1815 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1816 return RX_CONTINUE; 1817 1818 /* 1819 * Change STA power saving mode only at the end of a frame 1820 * exchange sequence, and only for a data or management 1821 * frame as specified in IEEE 802.11-2016 11.2.3.2 1822 */ 1823 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1824 !ieee80211_has_morefrags(hdr->frame_control) && 1825 !is_multicast_ether_addr(hdr->addr1) && 1826 (ieee80211_is_mgmt(hdr->frame_control) || 1827 ieee80211_is_data(hdr->frame_control)) && 1828 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1829 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1830 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1831 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1832 if (!ieee80211_has_pm(hdr->frame_control)) 1833 sta_ps_end(sta); 1834 } else { 1835 if (ieee80211_has_pm(hdr->frame_control)) 1836 sta_ps_start(sta); 1837 } 1838 } 1839 1840 /* mesh power save support */ 1841 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1842 ieee80211_mps_rx_h_sta_process(sta, hdr); 1843 1844 /* 1845 * Drop (qos-)data::nullfunc frames silently, since they 1846 * are used only to control station power saving mode. 1847 */ 1848 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1849 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1850 1851 /* 1852 * If we receive a 4-addr nullfunc frame from a STA 1853 * that was not moved to a 4-addr STA vlan yet send 1854 * the event to userspace and for older hostapd drop 1855 * the frame to the monitor interface. 1856 */ 1857 if (ieee80211_has_a4(hdr->frame_control) && 1858 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1859 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1860 !rx->sdata->u.vlan.sta))) { 1861 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1862 cfg80211_rx_unexpected_4addr_frame( 1863 rx->sdata->dev, sta->sta.addr, 1864 GFP_ATOMIC); 1865 return RX_DROP_U_UNEXPECTED_4ADDR_FRAME; 1866 } 1867 /* 1868 * Update counter and free packet here to avoid 1869 * counting this as a dropped packed. 1870 */ 1871 link_sta->rx_stats.packets++; 1872 dev_kfree_skb(rx->skb); 1873 return RX_QUEUED; 1874 } 1875 1876 return RX_CONTINUE; 1877 } /* ieee80211_rx_h_sta_process */ 1878 1879 static struct ieee80211_key * 1880 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1881 { 1882 struct ieee80211_key *key = NULL; 1883 int idx2; 1884 1885 /* Make sure key gets set if either BIGTK key index is set so that 1886 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1887 * Beacon frames and Beacon frames that claim to use another BIGTK key 1888 * index (i.e., a key that we do not have). 1889 */ 1890 1891 if (idx < 0) { 1892 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1893 idx2 = idx + 1; 1894 } else { 1895 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1896 idx2 = idx + 1; 1897 else 1898 idx2 = idx - 1; 1899 } 1900 1901 if (rx->link_sta) 1902 key = rcu_dereference(rx->link_sta->gtk[idx]); 1903 if (!key) 1904 key = rcu_dereference(rx->link->gtk[idx]); 1905 if (!key && rx->link_sta) 1906 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1907 if (!key) 1908 key = rcu_dereference(rx->link->gtk[idx2]); 1909 1910 return key; 1911 } 1912 1913 static ieee80211_rx_result debug_noinline 1914 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1915 { 1916 struct sk_buff *skb = rx->skb; 1917 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1918 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1919 int keyidx; 1920 ieee80211_rx_result result = RX_DROP_U_DECRYPT_FAIL; 1921 struct ieee80211_key *sta_ptk = NULL; 1922 struct ieee80211_key *ptk_idx = NULL; 1923 int mmie_keyidx = -1; 1924 __le16 fc; 1925 1926 if (ieee80211_is_ext(hdr->frame_control)) 1927 return RX_CONTINUE; 1928 1929 /* 1930 * Key selection 101 1931 * 1932 * There are five types of keys: 1933 * - GTK (group keys) 1934 * - IGTK (group keys for management frames) 1935 * - BIGTK (group keys for Beacon frames) 1936 * - PTK (pairwise keys) 1937 * - STK (station-to-station pairwise keys) 1938 * 1939 * When selecting a key, we have to distinguish between multicast 1940 * (including broadcast) and unicast frames, the latter can only 1941 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1942 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1943 * then unicast frames can also use key indices like GTKs. Hence, if we 1944 * don't have a PTK/STK we check the key index for a WEP key. 1945 * 1946 * Note that in a regular BSS, multicast frames are sent by the 1947 * AP only, associated stations unicast the frame to the AP first 1948 * which then multicasts it on their behalf. 1949 * 1950 * There is also a slight problem in IBSS mode: GTKs are negotiated 1951 * with each station, that is something we don't currently handle. 1952 * The spec seems to expect that one negotiates the same key with 1953 * every station but there's no such requirement; VLANs could be 1954 * possible. 1955 */ 1956 1957 /* start without a key */ 1958 rx->key = NULL; 1959 fc = hdr->frame_control; 1960 1961 if (rx->sta) { 1962 int keyid = rx->sta->ptk_idx; 1963 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1964 1965 if (ieee80211_has_protected(fc) && 1966 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1967 keyid = ieee80211_get_keyid(rx->skb); 1968 1969 if (unlikely(keyid < 0)) 1970 return RX_DROP_U_NO_KEY_ID; 1971 1972 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1973 } 1974 } 1975 1976 if (!ieee80211_has_protected(fc)) 1977 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1978 1979 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1980 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1981 if ((status->flag & RX_FLAG_DECRYPTED) && 1982 (status->flag & RX_FLAG_IV_STRIPPED)) 1983 return RX_CONTINUE; 1984 /* Skip decryption if the frame is not protected. */ 1985 if (!ieee80211_has_protected(fc)) 1986 return RX_CONTINUE; 1987 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1988 /* Broadcast/multicast robust management frame / BIP */ 1989 if ((status->flag & RX_FLAG_DECRYPTED) && 1990 (status->flag & RX_FLAG_IV_STRIPPED)) 1991 return RX_CONTINUE; 1992 1993 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1994 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1995 NUM_DEFAULT_BEACON_KEYS) { 1996 if (rx->sdata->dev) 1997 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1998 skb->data, 1999 skb->len); 2000 return RX_DROP_U_BAD_BCN_KEYIDX; 2001 } 2002 2003 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 2004 if (!rx->key) 2005 return RX_CONTINUE; /* Beacon protection not in use */ 2006 } else if (mmie_keyidx >= 0) { 2007 /* Broadcast/multicast robust management frame / BIP */ 2008 if ((status->flag & RX_FLAG_DECRYPTED) && 2009 (status->flag & RX_FLAG_IV_STRIPPED)) 2010 return RX_CONTINUE; 2011 2012 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2013 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2014 return RX_DROP_U_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */ 2015 if (rx->link_sta) { 2016 if (ieee80211_is_group_privacy_action(skb) && 2017 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2018 return RX_DROP; 2019 2020 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 2021 } 2022 if (!rx->key) 2023 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 2024 } else if (!ieee80211_has_protected(fc)) { 2025 /* 2026 * The frame was not protected, so skip decryption. However, we 2027 * need to set rx->key if there is a key that could have been 2028 * used so that the frame may be dropped if encryption would 2029 * have been expected. 2030 */ 2031 struct ieee80211_key *key = NULL; 2032 int i; 2033 2034 if (ieee80211_is_beacon(fc)) { 2035 key = ieee80211_rx_get_bigtk(rx, -1); 2036 } else if (ieee80211_is_mgmt(fc) && 2037 is_multicast_ether_addr(hdr->addr1)) { 2038 key = rcu_dereference(rx->link->default_mgmt_key); 2039 } else { 2040 if (rx->link_sta) { 2041 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2042 key = rcu_dereference(rx->link_sta->gtk[i]); 2043 if (key) 2044 break; 2045 } 2046 } 2047 if (!key) { 2048 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2049 key = rcu_dereference(rx->link->gtk[i]); 2050 if (key) 2051 break; 2052 } 2053 } 2054 } 2055 if (key) 2056 rx->key = key; 2057 return RX_CONTINUE; 2058 } else { 2059 /* 2060 * The device doesn't give us the IV so we won't be 2061 * able to look up the key. That's ok though, we 2062 * don't need to decrypt the frame, we just won't 2063 * be able to keep statistics accurate. 2064 * Except for key threshold notifications, should 2065 * we somehow allow the driver to tell us which key 2066 * the hardware used if this flag is set? 2067 */ 2068 if ((status->flag & RX_FLAG_DECRYPTED) && 2069 (status->flag & RX_FLAG_IV_STRIPPED)) 2070 return RX_CONTINUE; 2071 2072 keyidx = ieee80211_get_keyid(rx->skb); 2073 2074 if (unlikely(keyidx < 0)) 2075 return RX_DROP_U_NO_KEY_ID; 2076 2077 /* check per-station GTK first, if multicast packet */ 2078 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2079 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2080 2081 /* if not found, try default key */ 2082 if (!rx->key) { 2083 if (is_multicast_ether_addr(hdr->addr1)) 2084 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2085 if (!rx->key) 2086 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2087 2088 /* 2089 * RSNA-protected unicast frames should always be 2090 * sent with pairwise or station-to-station keys, 2091 * but for WEP we allow using a key index as well. 2092 */ 2093 if (rx->key && 2094 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2095 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2096 !is_multicast_ether_addr(hdr->addr1)) 2097 rx->key = NULL; 2098 } 2099 } 2100 2101 if (rx->key) { 2102 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2103 return RX_DROP; 2104 2105 /* TODO: add threshold stuff again */ 2106 } else { 2107 return RX_DROP; 2108 } 2109 2110 switch (rx->key->conf.cipher) { 2111 case WLAN_CIPHER_SUITE_WEP40: 2112 case WLAN_CIPHER_SUITE_WEP104: 2113 result = ieee80211_crypto_wep_decrypt(rx); 2114 break; 2115 case WLAN_CIPHER_SUITE_TKIP: 2116 result = ieee80211_crypto_tkip_decrypt(rx); 2117 break; 2118 case WLAN_CIPHER_SUITE_CCMP: 2119 result = ieee80211_crypto_ccmp_decrypt( 2120 rx, IEEE80211_CCMP_MIC_LEN); 2121 break; 2122 case WLAN_CIPHER_SUITE_CCMP_256: 2123 result = ieee80211_crypto_ccmp_decrypt( 2124 rx, IEEE80211_CCMP_256_MIC_LEN); 2125 break; 2126 case WLAN_CIPHER_SUITE_AES_CMAC: 2127 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2128 break; 2129 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2130 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2131 break; 2132 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2133 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2134 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2135 break; 2136 case WLAN_CIPHER_SUITE_GCMP: 2137 case WLAN_CIPHER_SUITE_GCMP_256: 2138 result = ieee80211_crypto_gcmp_decrypt(rx); 2139 break; 2140 default: 2141 result = RX_DROP_U_BAD_CIPHER; 2142 } 2143 2144 /* the hdr variable is invalid after the decrypt handlers */ 2145 2146 /* either the frame has been decrypted or will be dropped */ 2147 status->flag |= RX_FLAG_DECRYPTED; 2148 2149 if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) && 2150 rx->sdata->dev)) 2151 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2152 skb->data, skb->len); 2153 2154 return result; 2155 } 2156 2157 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2158 { 2159 int i; 2160 2161 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2162 skb_queue_head_init(&cache->entries[i].skb_list); 2163 } 2164 2165 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2166 { 2167 int i; 2168 2169 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2170 __skb_queue_purge(&cache->entries[i].skb_list); 2171 } 2172 2173 static inline struct ieee80211_fragment_entry * 2174 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2175 unsigned int frag, unsigned int seq, int rx_queue, 2176 struct sk_buff **skb) 2177 { 2178 struct ieee80211_fragment_entry *entry; 2179 2180 entry = &cache->entries[cache->next++]; 2181 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2182 cache->next = 0; 2183 2184 __skb_queue_purge(&entry->skb_list); 2185 2186 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2187 *skb = NULL; 2188 entry->first_frag_time = jiffies; 2189 entry->seq = seq; 2190 entry->rx_queue = rx_queue; 2191 entry->last_frag = frag; 2192 entry->check_sequential_pn = false; 2193 entry->extra_len = 0; 2194 2195 return entry; 2196 } 2197 2198 static inline struct ieee80211_fragment_entry * 2199 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2200 unsigned int frag, unsigned int seq, 2201 int rx_queue, struct ieee80211_hdr *hdr) 2202 { 2203 struct ieee80211_fragment_entry *entry; 2204 int i, idx; 2205 2206 idx = cache->next; 2207 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2208 struct ieee80211_hdr *f_hdr; 2209 struct sk_buff *f_skb; 2210 2211 idx--; 2212 if (idx < 0) 2213 idx = IEEE80211_FRAGMENT_MAX - 1; 2214 2215 entry = &cache->entries[idx]; 2216 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2217 entry->rx_queue != rx_queue || 2218 entry->last_frag + 1 != frag) 2219 continue; 2220 2221 f_skb = __skb_peek(&entry->skb_list); 2222 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2223 2224 /* 2225 * Check ftype and addresses are equal, else check next fragment 2226 */ 2227 if (((hdr->frame_control ^ f_hdr->frame_control) & 2228 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2229 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2230 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2231 continue; 2232 2233 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2234 __skb_queue_purge(&entry->skb_list); 2235 continue; 2236 } 2237 return entry; 2238 } 2239 2240 return NULL; 2241 } 2242 2243 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2244 { 2245 return rx->key && 2246 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2247 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2248 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2249 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2250 ieee80211_has_protected(fc); 2251 } 2252 2253 static ieee80211_rx_result debug_noinline 2254 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2255 { 2256 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2257 struct ieee80211_hdr *hdr; 2258 u16 sc; 2259 __le16 fc; 2260 unsigned int frag, seq; 2261 struct ieee80211_fragment_entry *entry; 2262 struct sk_buff *skb; 2263 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2264 2265 hdr = (struct ieee80211_hdr *)rx->skb->data; 2266 fc = hdr->frame_control; 2267 2268 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2269 return RX_CONTINUE; 2270 2271 sc = le16_to_cpu(hdr->seq_ctrl); 2272 frag = sc & IEEE80211_SCTL_FRAG; 2273 2274 if (rx->sta) 2275 cache = &rx->sta->frags; 2276 2277 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2278 goto out; 2279 2280 if (is_multicast_ether_addr(hdr->addr1)) 2281 return RX_DROP; 2282 2283 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2284 2285 if (skb_linearize(rx->skb)) 2286 return RX_DROP_U_OOM; 2287 2288 /* 2289 * skb_linearize() might change the skb->data and 2290 * previously cached variables (in this case, hdr) need to 2291 * be refreshed with the new data. 2292 */ 2293 hdr = (struct ieee80211_hdr *)rx->skb->data; 2294 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2295 2296 if (frag == 0) { 2297 /* This is the first fragment of a new frame. */ 2298 entry = ieee80211_reassemble_add(cache, frag, seq, 2299 rx->seqno_idx, &(rx->skb)); 2300 if (requires_sequential_pn(rx, fc)) { 2301 int queue = rx->security_idx; 2302 2303 /* Store CCMP/GCMP PN so that we can verify that the 2304 * next fragment has a sequential PN value. 2305 */ 2306 entry->check_sequential_pn = true; 2307 entry->is_protected = true; 2308 entry->key_color = rx->key->color; 2309 memcpy(entry->last_pn, 2310 rx->key->u.ccmp.rx_pn[queue], 2311 IEEE80211_CCMP_PN_LEN); 2312 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2313 u.ccmp.rx_pn) != 2314 offsetof(struct ieee80211_key, 2315 u.gcmp.rx_pn)); 2316 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2317 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2318 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2319 IEEE80211_GCMP_PN_LEN); 2320 } else if (rx->key && 2321 (ieee80211_has_protected(fc) || 2322 (status->flag & RX_FLAG_DECRYPTED))) { 2323 entry->is_protected = true; 2324 entry->key_color = rx->key->color; 2325 } 2326 return RX_QUEUED; 2327 } 2328 2329 /* This is a fragment for a frame that should already be pending in 2330 * fragment cache. Add this fragment to the end of the pending entry. 2331 */ 2332 entry = ieee80211_reassemble_find(cache, frag, seq, 2333 rx->seqno_idx, hdr); 2334 if (!entry) { 2335 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2336 return RX_DROP; 2337 } 2338 2339 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2340 * MPDU PN values are not incrementing in steps of 1." 2341 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2342 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2343 */ 2344 if (entry->check_sequential_pn) { 2345 int i; 2346 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2347 2348 if (!requires_sequential_pn(rx, fc)) 2349 return RX_DROP_U_NONSEQ_PN; 2350 2351 /* Prevent mixed key and fragment cache attacks */ 2352 if (entry->key_color != rx->key->color) 2353 return RX_DROP_U_BAD_KEY_COLOR; 2354 2355 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2356 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2357 pn[i]++; 2358 if (pn[i]) 2359 break; 2360 } 2361 2362 rpn = rx->ccm_gcm.pn; 2363 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2364 return RX_DROP_U_REPLAY; 2365 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2366 } else if (entry->is_protected && 2367 (!rx->key || 2368 (!ieee80211_has_protected(fc) && 2369 !(status->flag & RX_FLAG_DECRYPTED)) || 2370 rx->key->color != entry->key_color)) { 2371 /* Drop this as a mixed key or fragment cache attack, even 2372 * if for TKIP Michael MIC should protect us, and WEP is a 2373 * lost cause anyway. 2374 */ 2375 return RX_DROP_U_EXPECT_DEFRAG_PROT; 2376 } else if (entry->is_protected && rx->key && 2377 entry->key_color != rx->key->color && 2378 (status->flag & RX_FLAG_DECRYPTED)) { 2379 return RX_DROP_U_BAD_KEY_COLOR; 2380 } 2381 2382 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2383 __skb_queue_tail(&entry->skb_list, rx->skb); 2384 entry->last_frag = frag; 2385 entry->extra_len += rx->skb->len; 2386 if (ieee80211_has_morefrags(fc)) { 2387 rx->skb = NULL; 2388 return RX_QUEUED; 2389 } 2390 2391 rx->skb = __skb_dequeue(&entry->skb_list); 2392 if (skb_tailroom(rx->skb) < entry->extra_len) { 2393 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2394 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2395 GFP_ATOMIC))) { 2396 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2397 __skb_queue_purge(&entry->skb_list); 2398 return RX_DROP_U_OOM; 2399 } 2400 } 2401 while ((skb = __skb_dequeue(&entry->skb_list))) { 2402 skb_put_data(rx->skb, skb->data, skb->len); 2403 dev_kfree_skb(skb); 2404 } 2405 2406 out: 2407 ieee80211_led_rx(rx->local); 2408 if (rx->sta) 2409 rx->link_sta->rx_stats.packets++; 2410 return RX_CONTINUE; 2411 } 2412 2413 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2414 { 2415 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2416 return -EACCES; 2417 2418 return 0; 2419 } 2420 2421 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2422 { 2423 struct sk_buff *skb = rx->skb; 2424 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2425 2426 /* 2427 * Pass through unencrypted frames if the hardware has 2428 * decrypted them already. 2429 */ 2430 if (status->flag & RX_FLAG_DECRYPTED) 2431 return 0; 2432 2433 /* Drop unencrypted frames if key is set. */ 2434 if (unlikely(!ieee80211_has_protected(fc) && 2435 !ieee80211_is_any_nullfunc(fc) && 2436 ieee80211_is_data(fc) && rx->key)) 2437 return -EACCES; 2438 2439 return 0; 2440 } 2441 2442 VISIBLE_IF_MAC80211_KUNIT ieee80211_rx_result 2443 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2444 { 2445 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2446 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2447 __le16 fc = mgmt->frame_control; 2448 2449 /* 2450 * Pass through unencrypted frames if the hardware has 2451 * decrypted them already. 2452 */ 2453 if (status->flag & RX_FLAG_DECRYPTED) 2454 return RX_CONTINUE; 2455 2456 /* drop unicast protected dual (that wasn't protected) */ 2457 if (ieee80211_is_action(fc) && 2458 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 2459 return RX_DROP_U_UNPROT_DUAL; 2460 2461 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2462 if (unlikely(!ieee80211_has_protected(fc) && 2463 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) { 2464 if (ieee80211_is_deauth(fc) || 2465 ieee80211_is_disassoc(fc)) { 2466 /* 2467 * Permit unprotected deauth/disassoc frames 2468 * during 4-way-HS (key is installed after HS). 2469 */ 2470 if (!rx->key) 2471 return RX_CONTINUE; 2472 2473 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2474 rx->skb->data, 2475 rx->skb->len); 2476 } 2477 return RX_DROP_U_UNPROT_UCAST_MGMT; 2478 } 2479 /* BIP does not use Protected field, so need to check MMIE */ 2480 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2481 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2482 if (ieee80211_is_deauth(fc) || 2483 ieee80211_is_disassoc(fc)) 2484 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2485 rx->skb->data, 2486 rx->skb->len); 2487 return RX_DROP_U_UNPROT_MCAST_MGMT; 2488 } 2489 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2490 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2491 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2492 rx->skb->data, 2493 rx->skb->len); 2494 return RX_DROP_U_UNPROT_BEACON; 2495 } 2496 /* 2497 * When using MFP, Action frames are not allowed prior to 2498 * having configured keys. 2499 */ 2500 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2501 ieee80211_is_robust_mgmt_frame(rx->skb))) 2502 return RX_DROP_U_UNPROT_ACTION; 2503 2504 /* drop unicast public action frames when using MPF */ 2505 if (is_unicast_ether_addr(mgmt->da) && 2506 ieee80211_is_protected_dual_of_public_action(rx->skb)) 2507 return RX_DROP_U_UNPROT_UNICAST_PUB_ACTION; 2508 } 2509 2510 /* 2511 * Drop robust action frames before assoc regardless of MFP state, 2512 * after assoc we also have decided on MFP or not. 2513 */ 2514 if (ieee80211_is_action(fc) && 2515 ieee80211_is_robust_mgmt_frame(rx->skb) && 2516 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC))) 2517 return RX_DROP_U_UNPROT_ROBUST_ACTION; 2518 2519 return RX_CONTINUE; 2520 } 2521 EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_drop_unencrypted_mgmt); 2522 2523 static ieee80211_rx_result 2524 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2525 { 2526 struct ieee80211_sub_if_data *sdata = rx->sdata; 2527 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2528 bool check_port_control = false; 2529 struct ethhdr *ehdr; 2530 int ret; 2531 2532 *port_control = false; 2533 if (ieee80211_has_a4(hdr->frame_control) && 2534 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2535 return RX_DROP_U_UNEXPECTED_VLAN_4ADDR; 2536 2537 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2538 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2539 if (!sdata->u.mgd.use_4addr) 2540 return RX_DROP_U_UNEXPECTED_STA_4ADDR; 2541 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2542 check_port_control = true; 2543 } 2544 2545 if (is_multicast_ether_addr(hdr->addr1) && 2546 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2547 return RX_DROP_U_UNEXPECTED_VLAN_MCAST; 2548 2549 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2550 if (ret < 0) 2551 return RX_DROP_U_INVALID_8023; 2552 2553 ehdr = (struct ethhdr *) rx->skb->data; 2554 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2555 *port_control = true; 2556 else if (check_port_control) 2557 return RX_DROP_U_NOT_PORT_CONTROL; 2558 2559 return RX_CONTINUE; 2560 } 2561 2562 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2563 const u8 *addr, int *out_link_id) 2564 { 2565 unsigned int link_id; 2566 2567 /* non-MLO, or MLD address replaced by hardware */ 2568 if (ether_addr_equal(sdata->vif.addr, addr)) 2569 return true; 2570 2571 if (!ieee80211_vif_is_mld(&sdata->vif)) 2572 return false; 2573 2574 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2575 struct ieee80211_bss_conf *conf; 2576 2577 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2578 2579 if (!conf) 2580 continue; 2581 if (ether_addr_equal(conf->addr, addr)) { 2582 if (out_link_id) 2583 *out_link_id = link_id; 2584 return true; 2585 } 2586 } 2587 2588 return false; 2589 } 2590 2591 /* 2592 * requires that rx->skb is a frame with ethernet header 2593 */ 2594 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2595 { 2596 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2597 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2598 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2599 2600 /* 2601 * Allow EAPOL frames to us/the PAE group address regardless of 2602 * whether the frame was encrypted or not, and always disallow 2603 * all other destination addresses for them. 2604 */ 2605 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2606 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2607 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2608 2609 if (ieee80211_802_1x_port_control(rx) || 2610 ieee80211_drop_unencrypted(rx, fc)) 2611 return false; 2612 2613 return true; 2614 } 2615 2616 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2617 struct ieee80211_rx_data *rx) 2618 { 2619 struct ieee80211_sub_if_data *sdata = rx->sdata; 2620 struct net_device *dev = sdata->dev; 2621 2622 if (unlikely((skb->protocol == sdata->control_port_protocol || 2623 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2624 !sdata->control_port_no_preauth)) && 2625 sdata->control_port_over_nl80211)) { 2626 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2627 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2628 2629 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); 2630 dev_kfree_skb(skb); 2631 } else { 2632 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2633 2634 memset(skb->cb, 0, sizeof(skb->cb)); 2635 2636 /* 2637 * 802.1X over 802.11 requires that the authenticator address 2638 * be used for EAPOL frames. However, 802.1X allows the use of 2639 * the PAE group address instead. If the interface is part of 2640 * a bridge and we pass the frame with the PAE group address, 2641 * then the bridge will forward it to the network (even if the 2642 * client was not associated yet), which isn't supposed to 2643 * happen. 2644 * To avoid that, rewrite the destination address to our own 2645 * address, so that the authenticator (e.g. hostapd) will see 2646 * the frame, but bridge won't forward it anywhere else. Note 2647 * that due to earlier filtering, the only other address can 2648 * be the PAE group address, unless the hardware allowed them 2649 * through in 802.3 offloaded mode. 2650 */ 2651 if (unlikely(skb->protocol == sdata->control_port_protocol && 2652 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2653 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2654 2655 /* deliver to local stack */ 2656 if (rx->list) 2657 list_add_tail(&skb->list, rx->list); 2658 else 2659 netif_receive_skb(skb); 2660 } 2661 } 2662 2663 /* 2664 * requires that rx->skb is a frame with ethernet header 2665 */ 2666 static void 2667 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2668 { 2669 struct ieee80211_sub_if_data *sdata = rx->sdata; 2670 struct net_device *dev = sdata->dev; 2671 struct sk_buff *skb, *xmit_skb; 2672 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2673 struct sta_info *dsta; 2674 2675 skb = rx->skb; 2676 xmit_skb = NULL; 2677 2678 dev_sw_netstats_rx_add(dev, skb->len); 2679 2680 if (rx->sta) { 2681 /* The seqno index has the same property as needed 2682 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2683 * for non-QoS-data frames. Here we know it's a data 2684 * frame, so count MSDUs. 2685 */ 2686 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2687 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2688 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2689 } 2690 2691 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2692 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2693 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2694 ehdr->h_proto != rx->sdata->control_port_protocol && 2695 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2696 if (is_multicast_ether_addr(ehdr->h_dest) && 2697 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2698 /* 2699 * send multicast frames both to higher layers in 2700 * local net stack and back to the wireless medium 2701 */ 2702 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2703 if (!xmit_skb) 2704 net_info_ratelimited("%s: failed to clone multicast frame\n", 2705 dev->name); 2706 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2707 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2708 dsta = sta_info_get(sdata, ehdr->h_dest); 2709 if (dsta) { 2710 /* 2711 * The destination station is associated to 2712 * this AP (in this VLAN), so send the frame 2713 * directly to it and do not pass it to local 2714 * net stack. 2715 */ 2716 xmit_skb = skb; 2717 skb = NULL; 2718 } 2719 } 2720 } 2721 2722 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2723 if (skb) { 2724 /* 'align' will only take the values 0 or 2 here since all 2725 * frames are required to be aligned to 2-byte boundaries 2726 * when being passed to mac80211; the code here works just 2727 * as well if that isn't true, but mac80211 assumes it can 2728 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2729 */ 2730 int align; 2731 2732 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2733 if (align) { 2734 if (WARN_ON(skb_headroom(skb) < 3)) { 2735 dev_kfree_skb(skb); 2736 skb = NULL; 2737 } else { 2738 u8 *data = skb->data; 2739 size_t len = skb_headlen(skb); 2740 skb->data -= align; 2741 memmove(skb->data, data, len); 2742 skb_set_tail_pointer(skb, len); 2743 } 2744 } 2745 } 2746 #endif 2747 2748 if (skb) { 2749 skb->protocol = eth_type_trans(skb, dev); 2750 ieee80211_deliver_skb_to_local_stack(skb, rx); 2751 } 2752 2753 if (xmit_skb) { 2754 /* 2755 * Send to wireless media and increase priority by 256 to 2756 * keep the received priority instead of reclassifying 2757 * the frame (see cfg80211_classify8021d). 2758 */ 2759 xmit_skb->priority += 256; 2760 xmit_skb->protocol = htons(ETH_P_802_3); 2761 skb_reset_network_header(xmit_skb); 2762 skb_reset_mac_header(xmit_skb); 2763 dev_queue_xmit(xmit_skb); 2764 } 2765 } 2766 2767 #ifdef CONFIG_MAC80211_MESH 2768 static bool 2769 ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata, 2770 struct sk_buff *skb, int hdrlen) 2771 { 2772 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2773 struct ieee80211_mesh_fast_tx_key key = { 2774 .type = MESH_FAST_TX_TYPE_FORWARDED 2775 }; 2776 struct ieee80211_mesh_fast_tx *entry; 2777 struct ieee80211s_hdr *mesh_hdr; 2778 struct tid_ampdu_tx *tid_tx; 2779 struct sta_info *sta; 2780 struct ethhdr eth; 2781 u8 tid; 2782 2783 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth)); 2784 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2785 ether_addr_copy(key.addr, mesh_hdr->eaddr1); 2786 else if (!(mesh_hdr->flags & MESH_FLAGS_AE)) 2787 ether_addr_copy(key.addr, skb->data); 2788 else 2789 return false; 2790 2791 entry = mesh_fast_tx_get(sdata, &key); 2792 if (!entry) 2793 return false; 2794 2795 sta = rcu_dereference(entry->mpath->next_hop); 2796 if (!sta) 2797 return false; 2798 2799 if (skb_linearize(skb)) 2800 return false; 2801 2802 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; 2803 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); 2804 if (tid_tx) { 2805 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) 2806 return false; 2807 2808 if (tid_tx->timeout) 2809 tid_tx->last_tx = jiffies; 2810 } 2811 2812 ieee80211_aggr_check(sdata, sta, skb); 2813 2814 if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 2815 &skb->protocol)) 2816 hdrlen += ETH_ALEN; 2817 else 2818 skb->protocol = htons(skb->len - hdrlen); 2819 skb_set_network_header(skb, hdrlen + 2); 2820 2821 skb->dev = sdata->dev; 2822 memcpy(ð, skb->data, ETH_HLEN - 2); 2823 skb_pull(skb, 2); 2824 __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, 2825 eth.h_dest, eth.h_source); 2826 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2827 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2828 2829 return true; 2830 } 2831 #endif 2832 2833 static ieee80211_rx_result 2834 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2835 struct sk_buff *skb) 2836 { 2837 #ifdef CONFIG_MAC80211_MESH 2838 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2839 struct ieee80211_local *local = sdata->local; 2840 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2841 struct ieee80211_hdr hdr = { 2842 .frame_control = cpu_to_le16(fc) 2843 }; 2844 struct ieee80211_hdr *fwd_hdr; 2845 struct ieee80211s_hdr *mesh_hdr; 2846 struct ieee80211_tx_info *info; 2847 struct sk_buff *fwd_skb; 2848 struct ethhdr *eth; 2849 bool multicast; 2850 int tailroom = 0; 2851 int hdrlen, mesh_hdrlen; 2852 u8 *qos; 2853 2854 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2855 return RX_CONTINUE; 2856 2857 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2858 return RX_DROP; 2859 2860 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2861 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2862 2863 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2864 return RX_DROP; 2865 2866 eth = (struct ethhdr *)skb->data; 2867 multicast = is_multicast_ether_addr(eth->h_dest); 2868 2869 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2870 if (!mesh_hdr->ttl) 2871 return RX_DROP; 2872 2873 /* frame is in RMC, don't forward */ 2874 if (is_multicast_ether_addr(eth->h_dest) && 2875 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2876 return RX_DROP; 2877 2878 /* forward packet */ 2879 if (sdata->crypto_tx_tailroom_needed_cnt) 2880 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2881 2882 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2883 struct mesh_path *mppath; 2884 char *proxied_addr; 2885 bool update = false; 2886 2887 if (multicast) 2888 proxied_addr = mesh_hdr->eaddr1; 2889 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2890 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2891 proxied_addr = mesh_hdr->eaddr2; 2892 else 2893 return RX_DROP; 2894 2895 rcu_read_lock(); 2896 mppath = mpp_path_lookup(sdata, proxied_addr); 2897 if (!mppath) { 2898 mpp_path_add(sdata, proxied_addr, eth->h_source); 2899 } else { 2900 spin_lock_bh(&mppath->state_lock); 2901 if (!ether_addr_equal(mppath->mpp, eth->h_source)) { 2902 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2903 update = true; 2904 } 2905 mppath->exp_time = jiffies; 2906 spin_unlock_bh(&mppath->state_lock); 2907 } 2908 2909 /* flush fast xmit cache if the address path changed */ 2910 if (update) 2911 mesh_fast_tx_flush_addr(sdata, proxied_addr); 2912 2913 rcu_read_unlock(); 2914 } 2915 2916 /* Frame has reached destination. Don't forward */ 2917 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2918 goto rx_accept; 2919 2920 if (!--mesh_hdr->ttl) { 2921 if (multicast) 2922 goto rx_accept; 2923 2924 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2925 return RX_DROP; 2926 } 2927 2928 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2929 if (is_multicast_ether_addr(eth->h_dest)) 2930 goto rx_accept; 2931 2932 return RX_DROP; 2933 } 2934 2935 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2936 2937 if (!multicast && 2938 ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen)) 2939 return RX_QUEUED; 2940 2941 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2942 eth->h_dest, eth->h_source); 2943 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2944 if (multicast) { 2945 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2946 2947 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2948 IEEE80211_ENCRYPT_HEADROOM, 2949 tailroom, GFP_ATOMIC); 2950 if (!fwd_skb) 2951 goto rx_accept; 2952 } else { 2953 fwd_skb = skb; 2954 skb = NULL; 2955 2956 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2957 return RX_DROP_U_OOM; 2958 2959 if (skb_linearize(fwd_skb)) 2960 return RX_DROP_U_OOM; 2961 } 2962 2963 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2964 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2965 qos = ieee80211_get_qos_ctl(fwd_hdr); 2966 qos[0] = qos[1] = 0; 2967 2968 skb_reset_mac_header(fwd_skb); 2969 hdrlen += mesh_hdrlen; 2970 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2971 &fwd_skb->protocol)) 2972 hdrlen += ETH_ALEN; 2973 else 2974 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2975 skb_set_network_header(fwd_skb, hdrlen + 2); 2976 2977 info = IEEE80211_SKB_CB(fwd_skb); 2978 memset(info, 0, sizeof(*info)); 2979 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2980 info->control.vif = &sdata->vif; 2981 info->control.jiffies = jiffies; 2982 fwd_skb->dev = sdata->dev; 2983 if (multicast) { 2984 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2985 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2986 /* update power mode indication when forwarding */ 2987 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2988 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2989 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2990 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2991 } else { 2992 /* unable to resolve next hop */ 2993 if (sta) 2994 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2995 hdr.addr3, 0, 2996 WLAN_REASON_MESH_PATH_NOFORWARD, 2997 sta->sta.addr); 2998 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2999 kfree_skb(fwd_skb); 3000 goto rx_accept; 3001 } 3002 3003 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 3004 ieee80211_set_qos_hdr(sdata, fwd_skb); 3005 ieee80211_add_pending_skb(local, fwd_skb); 3006 3007 rx_accept: 3008 if (!skb) 3009 return RX_QUEUED; 3010 3011 ieee80211_strip_8023_mesh_hdr(skb); 3012 #endif 3013 3014 return RX_CONTINUE; 3015 } 3016 3017 static ieee80211_rx_result debug_noinline 3018 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 3019 { 3020 struct net_device *dev = rx->sdata->dev; 3021 struct sk_buff *skb = rx->skb; 3022 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3023 __le16 fc = hdr->frame_control; 3024 struct sk_buff_head frame_list; 3025 ieee80211_rx_result res; 3026 struct ethhdr ethhdr; 3027 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 3028 3029 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3030 check_da = NULL; 3031 check_sa = NULL; 3032 } else switch (rx->sdata->vif.type) { 3033 case NL80211_IFTYPE_AP: 3034 case NL80211_IFTYPE_AP_VLAN: 3035 check_da = NULL; 3036 break; 3037 case NL80211_IFTYPE_STATION: 3038 if (!test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 3039 check_sa = NULL; 3040 break; 3041 case NL80211_IFTYPE_MESH_POINT: 3042 check_sa = NULL; 3043 check_da = NULL; 3044 break; 3045 default: 3046 break; 3047 } 3048 3049 skb->dev = dev; 3050 __skb_queue_head_init(&frame_list); 3051 3052 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 3053 rx->sdata->vif.addr, 3054 rx->sdata->vif.type, 3055 data_offset, true)) 3056 return RX_DROP_U_BAD_AMSDU; 3057 3058 if (rx->sta->amsdu_mesh_control < 0) { 3059 s8 valid = -1; 3060 int i; 3061 3062 for (i = 0; i <= 2; i++) { 3063 if (!ieee80211_is_valid_amsdu(skb, i)) 3064 continue; 3065 3066 if (valid >= 0) { 3067 /* ambiguous */ 3068 valid = -1; 3069 break; 3070 } 3071 3072 valid = i; 3073 } 3074 3075 rx->sta->amsdu_mesh_control = valid; 3076 } 3077 3078 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 3079 rx->sdata->vif.type, 3080 rx->local->hw.extra_tx_headroom, 3081 check_da, check_sa, 3082 rx->sta->amsdu_mesh_control); 3083 3084 while (!skb_queue_empty(&frame_list)) { 3085 rx->skb = __skb_dequeue(&frame_list); 3086 3087 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3088 switch (res) { 3089 case RX_QUEUED: 3090 continue; 3091 case RX_CONTINUE: 3092 break; 3093 default: 3094 goto free; 3095 } 3096 3097 if (!ieee80211_frame_allowed(rx, fc)) 3098 goto free; 3099 3100 ieee80211_deliver_skb(rx); 3101 continue; 3102 3103 free: 3104 dev_kfree_skb(rx->skb); 3105 } 3106 3107 return RX_QUEUED; 3108 } 3109 3110 static ieee80211_rx_result debug_noinline 3111 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 3112 { 3113 struct sk_buff *skb = rx->skb; 3114 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3115 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3116 __le16 fc = hdr->frame_control; 3117 3118 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 3119 return RX_CONTINUE; 3120 3121 if (unlikely(!ieee80211_is_data(fc))) 3122 return RX_CONTINUE; 3123 3124 if (unlikely(!ieee80211_is_data_present(fc))) 3125 return RX_DROP; 3126 3127 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3128 switch (rx->sdata->vif.type) { 3129 case NL80211_IFTYPE_AP_VLAN: 3130 if (!rx->sdata->u.vlan.sta) 3131 return RX_DROP_U_BAD_4ADDR; 3132 break; 3133 case NL80211_IFTYPE_STATION: 3134 if (!rx->sdata->u.mgd.use_4addr) 3135 return RX_DROP_U_BAD_4ADDR; 3136 break; 3137 case NL80211_IFTYPE_MESH_POINT: 3138 break; 3139 default: 3140 return RX_DROP_U_BAD_4ADDR; 3141 } 3142 } 3143 3144 if (is_multicast_ether_addr(hdr->addr1) || !rx->sta) 3145 return RX_DROP_U_BAD_AMSDU; 3146 3147 if (rx->key) { 3148 /* 3149 * We should not receive A-MSDUs on pre-HT connections, 3150 * and HT connections cannot use old ciphers. Thus drop 3151 * them, as in those cases we couldn't even have SPP 3152 * A-MSDUs or such. 3153 */ 3154 switch (rx->key->conf.cipher) { 3155 case WLAN_CIPHER_SUITE_WEP40: 3156 case WLAN_CIPHER_SUITE_WEP104: 3157 case WLAN_CIPHER_SUITE_TKIP: 3158 return RX_DROP_U_BAD_AMSDU_CIPHER; 3159 default: 3160 break; 3161 } 3162 } 3163 3164 return __ieee80211_rx_h_amsdu(rx, 0); 3165 } 3166 3167 static ieee80211_rx_result debug_noinline 3168 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3169 { 3170 struct ieee80211_sub_if_data *sdata = rx->sdata; 3171 struct ieee80211_local *local = rx->local; 3172 struct net_device *dev = sdata->dev; 3173 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3174 __le16 fc = hdr->frame_control; 3175 ieee80211_rx_result res; 3176 bool port_control; 3177 3178 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3179 return RX_CONTINUE; 3180 3181 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3182 return RX_DROP; 3183 3184 /* Send unexpected-4addr-frame event to hostapd */ 3185 if (ieee80211_has_a4(hdr->frame_control) && 3186 sdata->vif.type == NL80211_IFTYPE_AP) { 3187 if (rx->sta && 3188 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3189 cfg80211_rx_unexpected_4addr_frame( 3190 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3191 return RX_DROP; 3192 } 3193 3194 res = __ieee80211_data_to_8023(rx, &port_control); 3195 if (unlikely(res != RX_CONTINUE)) 3196 return res; 3197 3198 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3199 if (res != RX_CONTINUE) 3200 return res; 3201 3202 if (!ieee80211_frame_allowed(rx, fc)) 3203 return RX_DROP; 3204 3205 /* directly handle TDLS channel switch requests/responses */ 3206 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3207 cpu_to_be16(ETH_P_TDLS))) { 3208 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3209 3210 if (pskb_may_pull(rx->skb, 3211 offsetof(struct ieee80211_tdls_data, u)) && 3212 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3213 tf->category == WLAN_CATEGORY_TDLS && 3214 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3215 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3216 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3217 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3218 rx->sta, rx->skb); 3219 return RX_QUEUED; 3220 } 3221 } 3222 3223 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3224 unlikely(port_control) && sdata->bss) { 3225 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3226 u.ap); 3227 dev = sdata->dev; 3228 rx->sdata = sdata; 3229 } 3230 3231 rx->skb->dev = dev; 3232 3233 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3234 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3235 !is_multicast_ether_addr( 3236 ((struct ethhdr *)rx->skb->data)->h_dest) && 3237 (!local->scanning && 3238 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3239 mod_timer(&local->dynamic_ps_timer, jiffies + 3240 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3241 3242 ieee80211_deliver_skb(rx); 3243 3244 return RX_QUEUED; 3245 } 3246 3247 static ieee80211_rx_result debug_noinline 3248 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3249 { 3250 struct sk_buff *skb = rx->skb; 3251 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3252 struct tid_ampdu_rx *tid_agg_rx; 3253 u16 start_seq_num; 3254 u16 tid; 3255 3256 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3257 return RX_CONTINUE; 3258 3259 if (ieee80211_is_back_req(bar->frame_control)) { 3260 struct { 3261 __le16 control, start_seq_num; 3262 } __packed bar_data; 3263 struct ieee80211_event event = { 3264 .type = BAR_RX_EVENT, 3265 }; 3266 3267 if (!rx->sta) 3268 return RX_DROP; 3269 3270 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3271 &bar_data, sizeof(bar_data))) 3272 return RX_DROP; 3273 3274 tid = le16_to_cpu(bar_data.control) >> 12; 3275 3276 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3277 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3278 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3279 WLAN_BACK_RECIPIENT, 3280 WLAN_REASON_QSTA_REQUIRE_SETUP); 3281 3282 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3283 if (!tid_agg_rx) 3284 return RX_DROP; 3285 3286 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3287 event.u.ba.tid = tid; 3288 event.u.ba.ssn = start_seq_num; 3289 event.u.ba.sta = &rx->sta->sta; 3290 3291 /* reset session timer */ 3292 if (tid_agg_rx->timeout) 3293 mod_timer(&tid_agg_rx->session_timer, 3294 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3295 3296 spin_lock(&tid_agg_rx->reorder_lock); 3297 /* release stored frames up to start of BAR */ 3298 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3299 start_seq_num, frames); 3300 spin_unlock(&tid_agg_rx->reorder_lock); 3301 3302 drv_event_callback(rx->local, rx->sdata, &event); 3303 3304 kfree_skb(skb); 3305 return RX_QUEUED; 3306 } 3307 3308 return RX_DROP; 3309 } 3310 3311 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3312 struct ieee80211_mgmt *mgmt, 3313 size_t len) 3314 { 3315 struct ieee80211_local *local = sdata->local; 3316 struct sk_buff *skb; 3317 struct ieee80211_mgmt *resp; 3318 3319 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3320 /* Not to own unicast address */ 3321 return; 3322 } 3323 3324 if (!ether_addr_equal(mgmt->sa, sdata->vif.cfg.ap_addr) || 3325 !ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) { 3326 /* Not from the current AP or not associated yet. */ 3327 return; 3328 } 3329 3330 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3331 /* Too short SA Query request frame */ 3332 return; 3333 } 3334 3335 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3336 if (skb == NULL) 3337 return; 3338 3339 skb_reserve(skb, local->hw.extra_tx_headroom); 3340 resp = skb_put_zero(skb, 24); 3341 memcpy(resp->da, sdata->vif.cfg.ap_addr, ETH_ALEN); 3342 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3343 memcpy(resp->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); 3344 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3345 IEEE80211_STYPE_ACTION); 3346 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3347 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3348 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3349 memcpy(resp->u.action.u.sa_query.trans_id, 3350 mgmt->u.action.u.sa_query.trans_id, 3351 WLAN_SA_QUERY_TR_ID_LEN); 3352 3353 ieee80211_tx_skb(sdata, skb); 3354 } 3355 3356 static void 3357 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3358 { 3359 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3360 struct ieee80211_bss_conf *bss_conf; 3361 const struct element *ie; 3362 size_t baselen; 3363 3364 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3365 NL80211_EXT_FEATURE_BSS_COLOR)) 3366 return; 3367 3368 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3369 return; 3370 3371 bss_conf = rx->link->conf; 3372 if (bss_conf->csa_active || bss_conf->color_change_active || 3373 !bss_conf->he_bss_color.enabled) 3374 return; 3375 3376 baselen = mgmt->u.beacon.variable - rx->skb->data; 3377 if (baselen > rx->skb->len) 3378 return; 3379 3380 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3381 mgmt->u.beacon.variable, 3382 rx->skb->len - baselen); 3383 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3384 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3385 const struct ieee80211_he_operation *he_oper; 3386 u8 color; 3387 3388 he_oper = (void *)(ie->data + 1); 3389 if (le32_get_bits(he_oper->he_oper_params, 3390 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3391 return; 3392 3393 color = le32_get_bits(he_oper->he_oper_params, 3394 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3395 if (color == bss_conf->he_bss_color.color) 3396 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3397 BIT_ULL(color), 3398 bss_conf->link_id); 3399 } 3400 } 3401 3402 static ieee80211_rx_result debug_noinline 3403 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3404 { 3405 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3406 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3407 3408 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3409 return RX_CONTINUE; 3410 3411 /* 3412 * From here on, look only at management frames. 3413 * Data and control frames are already handled, 3414 * and unknown (reserved) frames are useless. 3415 */ 3416 if (rx->skb->len < 24) 3417 return RX_DROP; 3418 3419 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3420 return RX_DROP; 3421 3422 /* drop too small action frames */ 3423 if (ieee80211_is_action(mgmt->frame_control) && 3424 rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 3425 return RX_DROP_U_RUNT_ACTION; 3426 3427 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3428 ieee80211_is_beacon(mgmt->frame_control) && 3429 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3430 int sig = 0; 3431 3432 /* sw bss color collision detection */ 3433 ieee80211_rx_check_bss_color_collision(rx); 3434 3435 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3436 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3437 sig = status->signal; 3438 3439 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3440 rx->skb->data, rx->skb->len, 3441 ieee80211_rx_status_to_khz(status), 3442 sig); 3443 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3444 } 3445 3446 return ieee80211_drop_unencrypted_mgmt(rx); 3447 } 3448 3449 static bool 3450 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3451 { 3452 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3453 struct ieee80211_sub_if_data *sdata = rx->sdata; 3454 3455 /* TWT actions are only supported in AP for the moment */ 3456 if (sdata->vif.type != NL80211_IFTYPE_AP) 3457 return false; 3458 3459 if (!rx->local->ops->add_twt_setup) 3460 return false; 3461 3462 if (!sdata->vif.bss_conf.twt_responder) 3463 return false; 3464 3465 if (!rx->sta) 3466 return false; 3467 3468 switch (mgmt->u.action.u.s1g.action_code) { 3469 case WLAN_S1G_TWT_SETUP: { 3470 struct ieee80211_twt_setup *twt; 3471 3472 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3473 1 + /* action code */ 3474 sizeof(struct ieee80211_twt_setup) + 3475 2 /* TWT req_type agrt */) 3476 break; 3477 3478 twt = (void *)mgmt->u.action.u.s1g.variable; 3479 if (twt->element_id != WLAN_EID_S1G_TWT) 3480 break; 3481 3482 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3483 4 + /* action code + token + tlv */ 3484 twt->length) 3485 break; 3486 3487 return true; /* queue the frame */ 3488 } 3489 case WLAN_S1G_TWT_TEARDOWN: 3490 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3491 break; 3492 3493 return true; /* queue the frame */ 3494 default: 3495 break; 3496 } 3497 3498 return false; 3499 } 3500 3501 static ieee80211_rx_result debug_noinline 3502 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3503 { 3504 struct ieee80211_local *local = rx->local; 3505 struct ieee80211_sub_if_data *sdata = rx->sdata; 3506 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3507 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3508 int len = rx->skb->len; 3509 3510 if (!ieee80211_is_action(mgmt->frame_control)) 3511 return RX_CONTINUE; 3512 3513 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3514 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3515 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3516 return RX_DROP_U_ACTION_UNKNOWN_SRC; 3517 3518 switch (mgmt->u.action.category) { 3519 case WLAN_CATEGORY_HT: 3520 /* reject HT action frames from stations not supporting HT */ 3521 if (!rx->link_sta->pub->ht_cap.ht_supported) 3522 goto invalid; 3523 3524 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3525 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3526 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3527 sdata->vif.type != NL80211_IFTYPE_AP && 3528 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3529 break; 3530 3531 /* verify action & smps_control/chanwidth are present */ 3532 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3533 goto invalid; 3534 3535 switch (mgmt->u.action.u.ht_smps.action) { 3536 case WLAN_HT_ACTION_SMPS: { 3537 struct ieee80211_supported_band *sband; 3538 enum ieee80211_smps_mode smps_mode; 3539 struct sta_opmode_info sta_opmode = {}; 3540 3541 if (sdata->vif.type != NL80211_IFTYPE_AP && 3542 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3543 goto handled; 3544 3545 /* convert to HT capability */ 3546 switch (mgmt->u.action.u.ht_smps.smps_control) { 3547 case WLAN_HT_SMPS_CONTROL_DISABLED: 3548 smps_mode = IEEE80211_SMPS_OFF; 3549 break; 3550 case WLAN_HT_SMPS_CONTROL_STATIC: 3551 smps_mode = IEEE80211_SMPS_STATIC; 3552 break; 3553 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3554 smps_mode = IEEE80211_SMPS_DYNAMIC; 3555 break; 3556 default: 3557 goto invalid; 3558 } 3559 3560 /* if no change do nothing */ 3561 if (rx->link_sta->pub->smps_mode == smps_mode) 3562 goto handled; 3563 rx->link_sta->pub->smps_mode = smps_mode; 3564 sta_opmode.smps_mode = 3565 ieee80211_smps_mode_to_smps_mode(smps_mode); 3566 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3567 3568 sband = rx->local->hw.wiphy->bands[status->band]; 3569 3570 rate_control_rate_update(local, sband, rx->link_sta, 3571 IEEE80211_RC_SMPS_CHANGED); 3572 cfg80211_sta_opmode_change_notify(sdata->dev, 3573 rx->sta->addr, 3574 &sta_opmode, 3575 GFP_ATOMIC); 3576 goto handled; 3577 } 3578 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3579 struct ieee80211_supported_band *sband; 3580 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3581 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3582 struct sta_opmode_info sta_opmode = {}; 3583 3584 /* If it doesn't support 40 MHz it can't change ... */ 3585 if (!(rx->link_sta->pub->ht_cap.cap & 3586 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3587 goto handled; 3588 3589 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3590 max_bw = IEEE80211_STA_RX_BW_20; 3591 else 3592 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3593 3594 /* set cur_max_bandwidth and recalc sta bw */ 3595 rx->link_sta->cur_max_bandwidth = max_bw; 3596 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3597 3598 if (rx->link_sta->pub->bandwidth == new_bw) 3599 goto handled; 3600 3601 rx->link_sta->pub->bandwidth = new_bw; 3602 sband = rx->local->hw.wiphy->bands[status->band]; 3603 sta_opmode.bw = 3604 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3605 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3606 3607 rate_control_rate_update(local, sband, rx->link_sta, 3608 IEEE80211_RC_BW_CHANGED); 3609 cfg80211_sta_opmode_change_notify(sdata->dev, 3610 rx->sta->addr, 3611 &sta_opmode, 3612 GFP_ATOMIC); 3613 goto handled; 3614 } 3615 default: 3616 goto invalid; 3617 } 3618 3619 break; 3620 case WLAN_CATEGORY_PUBLIC: 3621 case WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION: 3622 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3623 goto invalid; 3624 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3625 break; 3626 if (!rx->sta) 3627 break; 3628 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3629 break; 3630 if (mgmt->u.action.u.ext_chan_switch.action_code != 3631 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3632 break; 3633 if (len < offsetof(struct ieee80211_mgmt, 3634 u.action.u.ext_chan_switch.variable)) 3635 goto invalid; 3636 goto queue; 3637 case WLAN_CATEGORY_VHT: 3638 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3639 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3640 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3641 sdata->vif.type != NL80211_IFTYPE_AP && 3642 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3643 break; 3644 3645 /* verify action code is present */ 3646 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3647 goto invalid; 3648 3649 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3650 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3651 /* verify opmode is present */ 3652 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3653 goto invalid; 3654 goto queue; 3655 } 3656 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3657 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3658 goto invalid; 3659 goto queue; 3660 } 3661 default: 3662 break; 3663 } 3664 break; 3665 case WLAN_CATEGORY_BACK: 3666 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3667 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3668 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3669 sdata->vif.type != NL80211_IFTYPE_AP && 3670 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3671 break; 3672 3673 /* verify action_code is present */ 3674 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3675 break; 3676 3677 switch (mgmt->u.action.u.addba_req.action_code) { 3678 case WLAN_ACTION_ADDBA_REQ: 3679 if (len < (IEEE80211_MIN_ACTION_SIZE + 3680 sizeof(mgmt->u.action.u.addba_req))) 3681 goto invalid; 3682 break; 3683 case WLAN_ACTION_ADDBA_RESP: 3684 if (len < (IEEE80211_MIN_ACTION_SIZE + 3685 sizeof(mgmt->u.action.u.addba_resp))) 3686 goto invalid; 3687 break; 3688 case WLAN_ACTION_DELBA: 3689 if (len < (IEEE80211_MIN_ACTION_SIZE + 3690 sizeof(mgmt->u.action.u.delba))) 3691 goto invalid; 3692 break; 3693 default: 3694 goto invalid; 3695 } 3696 3697 goto queue; 3698 case WLAN_CATEGORY_SPECTRUM_MGMT: 3699 /* verify action_code is present */ 3700 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3701 break; 3702 3703 switch (mgmt->u.action.u.measurement.action_code) { 3704 case WLAN_ACTION_SPCT_MSR_REQ: 3705 if (status->band != NL80211_BAND_5GHZ) 3706 break; 3707 3708 if (len < (IEEE80211_MIN_ACTION_SIZE + 3709 sizeof(mgmt->u.action.u.measurement))) 3710 break; 3711 3712 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3713 break; 3714 3715 ieee80211_process_measurement_req(sdata, mgmt, len); 3716 goto handled; 3717 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3718 u8 *bssid; 3719 if (len < (IEEE80211_MIN_ACTION_SIZE + 3720 sizeof(mgmt->u.action.u.chan_switch))) 3721 break; 3722 3723 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3724 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3725 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3726 break; 3727 3728 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3729 bssid = sdata->deflink.u.mgd.bssid; 3730 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3731 bssid = sdata->u.ibss.bssid; 3732 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3733 bssid = mgmt->sa; 3734 else 3735 break; 3736 3737 if (!ether_addr_equal(mgmt->bssid, bssid)) 3738 break; 3739 3740 goto queue; 3741 } 3742 } 3743 break; 3744 case WLAN_CATEGORY_SELF_PROTECTED: 3745 if (len < (IEEE80211_MIN_ACTION_SIZE + 3746 sizeof(mgmt->u.action.u.self_prot.action_code))) 3747 break; 3748 3749 switch (mgmt->u.action.u.self_prot.action_code) { 3750 case WLAN_SP_MESH_PEERING_OPEN: 3751 case WLAN_SP_MESH_PEERING_CLOSE: 3752 case WLAN_SP_MESH_PEERING_CONFIRM: 3753 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3754 goto invalid; 3755 if (sdata->u.mesh.user_mpm) 3756 /* userspace handles this frame */ 3757 break; 3758 goto queue; 3759 case WLAN_SP_MGK_INFORM: 3760 case WLAN_SP_MGK_ACK: 3761 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3762 goto invalid; 3763 break; 3764 } 3765 break; 3766 case WLAN_CATEGORY_MESH_ACTION: 3767 if (len < (IEEE80211_MIN_ACTION_SIZE + 3768 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3769 break; 3770 3771 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3772 break; 3773 if (mesh_action_is_path_sel(mgmt) && 3774 !mesh_path_sel_is_hwmp(sdata)) 3775 break; 3776 goto queue; 3777 case WLAN_CATEGORY_S1G: 3778 if (len < offsetofend(typeof(*mgmt), 3779 u.action.u.s1g.action_code)) 3780 break; 3781 3782 switch (mgmt->u.action.u.s1g.action_code) { 3783 case WLAN_S1G_TWT_SETUP: 3784 case WLAN_S1G_TWT_TEARDOWN: 3785 if (ieee80211_process_rx_twt_action(rx)) 3786 goto queue; 3787 break; 3788 default: 3789 break; 3790 } 3791 break; 3792 case WLAN_CATEGORY_PROTECTED_EHT: 3793 if (len < offsetofend(typeof(*mgmt), 3794 u.action.u.ttlm_req.action_code)) 3795 break; 3796 3797 switch (mgmt->u.action.u.ttlm_req.action_code) { 3798 case WLAN_PROTECTED_EHT_ACTION_TTLM_REQ: 3799 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3800 break; 3801 3802 if (len < offsetofend(typeof(*mgmt), 3803 u.action.u.ttlm_req)) 3804 goto invalid; 3805 goto queue; 3806 case WLAN_PROTECTED_EHT_ACTION_TTLM_RES: 3807 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3808 break; 3809 3810 if (len < offsetofend(typeof(*mgmt), 3811 u.action.u.ttlm_res)) 3812 goto invalid; 3813 goto queue; 3814 case WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN: 3815 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3816 break; 3817 3818 if (len < offsetofend(typeof(*mgmt), 3819 u.action.u.ttlm_tear_down)) 3820 goto invalid; 3821 goto queue; 3822 case WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP: 3823 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3824 break; 3825 3826 /* The reconfiguration response action frame must 3827 * least one 'Status Duple' entry (3 octets) 3828 */ 3829 if (len < 3830 offsetofend(typeof(*mgmt), 3831 u.action.u.ml_reconf_resp) + 3) 3832 goto invalid; 3833 goto queue; 3834 case WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP: 3835 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3836 break; 3837 3838 if (len < offsetofend(typeof(*mgmt), 3839 u.action.u.epcs) + 3840 IEEE80211_EPCS_ENA_RESP_BODY_LEN) 3841 goto invalid; 3842 goto queue; 3843 case WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN: 3844 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3845 break; 3846 3847 if (len < offsetofend(typeof(*mgmt), 3848 u.action.u.epcs)) 3849 goto invalid; 3850 goto queue; 3851 default: 3852 break; 3853 } 3854 break; 3855 } 3856 3857 return RX_CONTINUE; 3858 3859 invalid: 3860 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3861 /* will return in the next handlers */ 3862 return RX_CONTINUE; 3863 3864 handled: 3865 if (rx->sta) 3866 rx->link_sta->rx_stats.packets++; 3867 dev_kfree_skb(rx->skb); 3868 return RX_QUEUED; 3869 3870 queue: 3871 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3872 return RX_QUEUED; 3873 } 3874 3875 static ieee80211_rx_result debug_noinline 3876 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3877 { 3878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3879 struct cfg80211_rx_info info = { 3880 .freq = ieee80211_rx_status_to_khz(status), 3881 .buf = rx->skb->data, 3882 .len = rx->skb->len, 3883 .link_id = rx->link_id, 3884 .have_link_id = rx->link_id >= 0, 3885 }; 3886 3887 /* skip known-bad action frames and return them in the next handler */ 3888 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3889 return RX_CONTINUE; 3890 3891 /* 3892 * Getting here means the kernel doesn't know how to handle 3893 * it, but maybe userspace does ... include returned frames 3894 * so userspace can register for those to know whether ones 3895 * it transmitted were processed or returned. 3896 */ 3897 3898 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3899 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3900 info.sig_dbm = status->signal; 3901 3902 if (ieee80211_is_timing_measurement(rx->skb) || 3903 ieee80211_is_ftm(rx->skb)) { 3904 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3905 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3906 } 3907 3908 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3909 if (rx->sta) 3910 rx->link_sta->rx_stats.packets++; 3911 dev_kfree_skb(rx->skb); 3912 return RX_QUEUED; 3913 } 3914 3915 return RX_CONTINUE; 3916 } 3917 3918 static ieee80211_rx_result debug_noinline 3919 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3920 { 3921 struct ieee80211_sub_if_data *sdata = rx->sdata; 3922 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3923 int len = rx->skb->len; 3924 3925 if (!ieee80211_is_action(mgmt->frame_control)) 3926 return RX_CONTINUE; 3927 3928 switch (mgmt->u.action.category) { 3929 case WLAN_CATEGORY_SA_QUERY: 3930 if (len < (IEEE80211_MIN_ACTION_SIZE + 3931 sizeof(mgmt->u.action.u.sa_query))) 3932 break; 3933 3934 switch (mgmt->u.action.u.sa_query.action) { 3935 case WLAN_ACTION_SA_QUERY_REQUEST: 3936 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3937 break; 3938 ieee80211_process_sa_query_req(sdata, mgmt, len); 3939 goto handled; 3940 } 3941 break; 3942 } 3943 3944 return RX_CONTINUE; 3945 3946 handled: 3947 if (rx->sta) 3948 rx->link_sta->rx_stats.packets++; 3949 dev_kfree_skb(rx->skb); 3950 return RX_QUEUED; 3951 } 3952 3953 static ieee80211_rx_result debug_noinline 3954 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3955 { 3956 struct ieee80211_local *local = rx->local; 3957 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3958 struct sk_buff *nskb; 3959 struct ieee80211_sub_if_data *sdata = rx->sdata; 3960 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3961 3962 if (!ieee80211_is_action(mgmt->frame_control)) 3963 return RX_CONTINUE; 3964 3965 /* 3966 * For AP mode, hostapd is responsible for handling any action 3967 * frames that we didn't handle, including returning unknown 3968 * ones. For all other modes we will return them to the sender, 3969 * setting the 0x80 bit in the action category, as required by 3970 * 802.11-2012 9.24.4. 3971 * Newer versions of hostapd use the management frame registration 3972 * mechanisms and old cooked monitor interface is no longer supported. 3973 */ 3974 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3975 (sdata->vif.type == NL80211_IFTYPE_AP || 3976 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3977 return RX_DROP; 3978 3979 if (is_multicast_ether_addr(mgmt->da)) 3980 return RX_DROP; 3981 3982 /* do not return rejected action frames */ 3983 if (mgmt->u.action.category & 0x80) 3984 return RX_DROP_U_REJECTED_ACTION_RESPONSE; 3985 3986 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3987 GFP_ATOMIC); 3988 if (nskb) { 3989 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3990 3991 nmgmt->u.action.category |= 0x80; 3992 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3993 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3994 3995 memset(nskb->cb, 0, sizeof(nskb->cb)); 3996 3997 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3998 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3999 4000 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 4001 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 4002 IEEE80211_TX_CTL_NO_CCK_RATE; 4003 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 4004 info->hw_queue = 4005 local->hw.offchannel_tx_hw_queue; 4006 } 4007 4008 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 4009 status->band); 4010 } 4011 4012 return RX_DROP_U_UNKNOWN_ACTION_REJECTED; 4013 } 4014 4015 static ieee80211_rx_result debug_noinline 4016 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 4017 { 4018 struct ieee80211_sub_if_data *sdata = rx->sdata; 4019 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 4020 4021 if (!ieee80211_is_ext(hdr->frame_control)) 4022 return RX_CONTINUE; 4023 4024 if (sdata->vif.type != NL80211_IFTYPE_STATION) 4025 return RX_DROP; 4026 4027 /* for now only beacons are ext, so queue them */ 4028 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 4029 4030 return RX_QUEUED; 4031 } 4032 4033 static ieee80211_rx_result debug_noinline 4034 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 4035 { 4036 struct ieee80211_sub_if_data *sdata = rx->sdata; 4037 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 4038 __le16 stype; 4039 4040 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 4041 4042 if (!ieee80211_vif_is_mesh(&sdata->vif) && 4043 sdata->vif.type != NL80211_IFTYPE_ADHOC && 4044 sdata->vif.type != NL80211_IFTYPE_OCB && 4045 sdata->vif.type != NL80211_IFTYPE_STATION) 4046 return RX_DROP; 4047 4048 switch (stype) { 4049 case cpu_to_le16(IEEE80211_STYPE_AUTH): 4050 case cpu_to_le16(IEEE80211_STYPE_BEACON): 4051 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 4052 /* process for all: mesh, mlme, ibss */ 4053 break; 4054 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 4055 if (is_multicast_ether_addr(mgmt->da) && 4056 !is_broadcast_ether_addr(mgmt->da)) 4057 return RX_DROP; 4058 4059 /* process only for station/IBSS */ 4060 if (sdata->vif.type != NL80211_IFTYPE_STATION && 4061 sdata->vif.type != NL80211_IFTYPE_ADHOC) 4062 return RX_DROP; 4063 break; 4064 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 4065 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 4066 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 4067 if (is_multicast_ether_addr(mgmt->da) && 4068 !is_broadcast_ether_addr(mgmt->da)) 4069 return RX_DROP; 4070 4071 /* process only for station */ 4072 if (sdata->vif.type != NL80211_IFTYPE_STATION) 4073 return RX_DROP; 4074 break; 4075 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 4076 /* process only for ibss and mesh */ 4077 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4078 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4079 return RX_DROP; 4080 break; 4081 default: 4082 return RX_DROP; 4083 } 4084 4085 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 4086 4087 return RX_QUEUED; 4088 } 4089 4090 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 4091 ieee80211_rx_result res) 4092 { 4093 if (res == RX_QUEUED) { 4094 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 4095 return; 4096 } 4097 4098 if (res != RX_CONTINUE) { 4099 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 4100 if (rx->sta) 4101 rx->link_sta->rx_stats.dropped++; 4102 } 4103 4104 kfree_skb_reason(rx->skb, (__force u32)res); 4105 } 4106 4107 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 4108 struct sk_buff_head *frames) 4109 { 4110 ieee80211_rx_result res = RX_DROP; 4111 struct sk_buff *skb; 4112 4113 #define CALL_RXH(rxh) \ 4114 do { \ 4115 res = rxh(rx); \ 4116 if (res != RX_CONTINUE) \ 4117 goto rxh_next; \ 4118 } while (0) 4119 4120 /* Lock here to avoid hitting all of the data used in the RX 4121 * path (e.g. key data, station data, ...) concurrently when 4122 * a frame is released from the reorder buffer due to timeout 4123 * from the timer, potentially concurrently with RX from the 4124 * driver. 4125 */ 4126 spin_lock_bh(&rx->local->rx_path_lock); 4127 4128 while ((skb = __skb_dequeue(frames))) { 4129 /* 4130 * all the other fields are valid across frames 4131 * that belong to an aMPDU since they are on the 4132 * same TID from the same station 4133 */ 4134 rx->skb = skb; 4135 4136 if (WARN_ON_ONCE(!rx->link)) 4137 goto rxh_next; 4138 4139 CALL_RXH(ieee80211_rx_h_check_more_data); 4140 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4141 CALL_RXH(ieee80211_rx_h_sta_process); 4142 CALL_RXH(ieee80211_rx_h_decrypt); 4143 CALL_RXH(ieee80211_rx_h_defragment); 4144 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4145 /* must be after MMIC verify so header is counted in MPDU mic */ 4146 CALL_RXH(ieee80211_rx_h_amsdu); 4147 CALL_RXH(ieee80211_rx_h_data); 4148 4149 /* special treatment -- needs the queue */ 4150 res = ieee80211_rx_h_ctrl(rx, frames); 4151 if (res != RX_CONTINUE) 4152 goto rxh_next; 4153 4154 CALL_RXH(ieee80211_rx_h_mgmt_check); 4155 CALL_RXH(ieee80211_rx_h_action); 4156 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4157 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4158 CALL_RXH(ieee80211_rx_h_action_return); 4159 CALL_RXH(ieee80211_rx_h_ext); 4160 CALL_RXH(ieee80211_rx_h_mgmt); 4161 4162 rxh_next: 4163 ieee80211_rx_handlers_result(rx, res); 4164 4165 #undef CALL_RXH 4166 } 4167 4168 spin_unlock_bh(&rx->local->rx_path_lock); 4169 } 4170 4171 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4172 { 4173 struct sk_buff_head reorder_release; 4174 ieee80211_rx_result res = RX_DROP; 4175 4176 __skb_queue_head_init(&reorder_release); 4177 4178 #define CALL_RXH(rxh) \ 4179 do { \ 4180 res = rxh(rx); \ 4181 if (res != RX_CONTINUE) \ 4182 goto rxh_next; \ 4183 } while (0) 4184 4185 CALL_RXH(ieee80211_rx_h_check_dup); 4186 CALL_RXH(ieee80211_rx_h_check); 4187 4188 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4189 4190 ieee80211_rx_handlers(rx, &reorder_release); 4191 return; 4192 4193 rxh_next: 4194 ieee80211_rx_handlers_result(rx, res); 4195 4196 #undef CALL_RXH 4197 } 4198 4199 static bool 4200 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4201 { 4202 return !!(sta->valid_links & BIT(link_id)); 4203 } 4204 4205 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4206 u8 link_id) 4207 { 4208 rx->link_id = link_id; 4209 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4210 4211 if (!rx->sta) 4212 return rx->link; 4213 4214 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4215 return false; 4216 4217 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4218 4219 return rx->link && rx->link_sta; 4220 } 4221 4222 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4223 struct sta_info *sta, int link_id) 4224 { 4225 rx->link_id = link_id; 4226 rx->sta = sta; 4227 4228 if (sta) { 4229 rx->local = sta->sdata->local; 4230 if (!rx->sdata) 4231 rx->sdata = sta->sdata; 4232 rx->link_sta = &sta->deflink; 4233 } else { 4234 rx->link_sta = NULL; 4235 } 4236 4237 if (link_id < 0) 4238 rx->link = &rx->sdata->deflink; 4239 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4240 return false; 4241 4242 return true; 4243 } 4244 4245 /* 4246 * This function makes calls into the RX path, therefore 4247 * it has to be invoked under RCU read lock. 4248 */ 4249 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4250 { 4251 struct sk_buff_head frames; 4252 struct ieee80211_rx_data rx = { 4253 /* This is OK -- must be QoS data frame */ 4254 .security_idx = tid, 4255 .seqno_idx = tid, 4256 }; 4257 struct tid_ampdu_rx *tid_agg_rx; 4258 int link_id = -1; 4259 4260 /* FIXME: statistics won't be right with this */ 4261 if (sta->sta.valid_links) 4262 link_id = ffs(sta->sta.valid_links) - 1; 4263 4264 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4265 return; 4266 4267 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4268 if (!tid_agg_rx) 4269 return; 4270 4271 __skb_queue_head_init(&frames); 4272 4273 spin_lock(&tid_agg_rx->reorder_lock); 4274 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4275 spin_unlock(&tid_agg_rx->reorder_lock); 4276 4277 if (!skb_queue_empty(&frames)) { 4278 struct ieee80211_event event = { 4279 .type = BA_FRAME_TIMEOUT, 4280 .u.ba.tid = tid, 4281 .u.ba.sta = &sta->sta, 4282 }; 4283 drv_event_callback(rx.local, rx.sdata, &event); 4284 } 4285 4286 ieee80211_rx_handlers(&rx, &frames); 4287 } 4288 4289 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4290 u16 ssn, u64 filtered, 4291 u16 received_mpdus) 4292 { 4293 struct ieee80211_local *local; 4294 struct sta_info *sta; 4295 struct tid_ampdu_rx *tid_agg_rx; 4296 struct sk_buff_head frames; 4297 struct ieee80211_rx_data rx = { 4298 /* This is OK -- must be QoS data frame */ 4299 .security_idx = tid, 4300 .seqno_idx = tid, 4301 }; 4302 int i, diff; 4303 4304 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4305 return; 4306 4307 __skb_queue_head_init(&frames); 4308 4309 sta = container_of(pubsta, struct sta_info, sta); 4310 4311 local = sta->sdata->local; 4312 WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64, 4313 "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n", 4314 local->hw.max_rx_aggregation_subframes); 4315 4316 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4317 return; 4318 4319 rcu_read_lock(); 4320 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4321 if (!tid_agg_rx) 4322 goto out; 4323 4324 spin_lock_bh(&tid_agg_rx->reorder_lock); 4325 4326 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4327 int release; 4328 4329 /* release all frames in the reorder buffer */ 4330 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4331 IEEE80211_SN_MODULO; 4332 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4333 release, &frames); 4334 /* update ssn to match received ssn */ 4335 tid_agg_rx->head_seq_num = ssn; 4336 } else { 4337 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4338 &frames); 4339 } 4340 4341 /* handle the case that received ssn is behind the mac ssn. 4342 * it can be tid_agg_rx->buf_size behind and still be valid */ 4343 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4344 if (diff >= tid_agg_rx->buf_size) { 4345 tid_agg_rx->reorder_buf_filtered = 0; 4346 goto release; 4347 } 4348 filtered = filtered >> diff; 4349 ssn += diff; 4350 4351 /* update bitmap */ 4352 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4353 int index = (ssn + i) % tid_agg_rx->buf_size; 4354 4355 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4356 if (filtered & BIT_ULL(i)) 4357 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4358 } 4359 4360 /* now process also frames that the filter marking released */ 4361 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4362 4363 release: 4364 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4365 4366 ieee80211_rx_handlers(&rx, &frames); 4367 4368 out: 4369 rcu_read_unlock(); 4370 } 4371 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4372 4373 /* main receive path */ 4374 4375 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4376 { 4377 return ether_addr_equal(raddr, addr) || 4378 is_broadcast_ether_addr(raddr); 4379 } 4380 4381 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4382 { 4383 struct ieee80211_sub_if_data *sdata = rx->sdata; 4384 struct sk_buff *skb = rx->skb; 4385 struct ieee80211_hdr *hdr = (void *)skb->data; 4386 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4387 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4388 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4389 ieee80211_is_s1g_beacon(hdr->frame_control); 4390 4391 switch (sdata->vif.type) { 4392 case NL80211_IFTYPE_STATION: 4393 if (!bssid && !sdata->u.mgd.use_4addr) 4394 return false; 4395 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4396 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4397 return false; 4398 if (multicast) 4399 return true; 4400 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4401 case NL80211_IFTYPE_ADHOC: 4402 if (!bssid) 4403 return false; 4404 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4405 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4406 !is_valid_ether_addr(hdr->addr2)) 4407 return false; 4408 if (ieee80211_is_beacon(hdr->frame_control)) 4409 return true; 4410 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4411 return false; 4412 if (!multicast && 4413 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4414 return false; 4415 if (!rx->sta) { 4416 int rate_idx; 4417 if (status->encoding != RX_ENC_LEGACY) 4418 rate_idx = 0; /* TODO: HT/VHT rates */ 4419 else 4420 rate_idx = status->rate_idx; 4421 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4422 BIT(rate_idx)); 4423 } 4424 return true; 4425 case NL80211_IFTYPE_OCB: 4426 if (!bssid) 4427 return false; 4428 if (!ieee80211_is_data_present(hdr->frame_control)) 4429 return false; 4430 if (!is_broadcast_ether_addr(bssid)) 4431 return false; 4432 if (!multicast && 4433 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4434 return false; 4435 /* reject invalid/our STA address */ 4436 if (!is_valid_ether_addr(hdr->addr2) || 4437 ether_addr_equal(sdata->dev->dev_addr, hdr->addr2)) 4438 return false; 4439 if (!rx->sta) { 4440 int rate_idx; 4441 if (status->encoding != RX_ENC_LEGACY) 4442 rate_idx = 0; /* TODO: HT rates */ 4443 else 4444 rate_idx = status->rate_idx; 4445 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4446 BIT(rate_idx)); 4447 } 4448 return true; 4449 case NL80211_IFTYPE_MESH_POINT: 4450 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4451 return false; 4452 if (multicast) 4453 return true; 4454 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4455 case NL80211_IFTYPE_AP_VLAN: 4456 case NL80211_IFTYPE_AP: 4457 if (!bssid) 4458 return ieee80211_is_our_addr(sdata, hdr->addr1, 4459 &rx->link_id); 4460 4461 if (!is_broadcast_ether_addr(bssid) && 4462 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4463 /* 4464 * Accept public action frames even when the 4465 * BSSID doesn't match, this is used for P2P 4466 * and location updates. Note that mac80211 4467 * itself never looks at these frames. 4468 */ 4469 if (!multicast && 4470 !ieee80211_is_our_addr(sdata, hdr->addr1, 4471 &rx->link_id)) 4472 return false; 4473 if (ieee80211_is_public_action(hdr, skb->len)) 4474 return true; 4475 return ieee80211_is_beacon(hdr->frame_control); 4476 } 4477 4478 if (!ieee80211_has_tods(hdr->frame_control)) { 4479 /* ignore data frames to TDLS-peers */ 4480 if (ieee80211_is_data(hdr->frame_control)) 4481 return false; 4482 /* ignore action frames to TDLS-peers */ 4483 if (ieee80211_is_action(hdr->frame_control) && 4484 !is_broadcast_ether_addr(bssid) && 4485 !ether_addr_equal(bssid, hdr->addr1)) 4486 return false; 4487 } 4488 4489 /* 4490 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4491 * the BSSID - we've checked that already but may have accepted 4492 * the wildcard (ff:ff:ff:ff:ff:ff). 4493 * 4494 * It also says: 4495 * The BSSID of the Data frame is determined as follows: 4496 * a) If the STA is contained within an AP or is associated 4497 * with an AP, the BSSID is the address currently in use 4498 * by the STA contained in the AP. 4499 * 4500 * So we should not accept data frames with an address that's 4501 * multicast. 4502 * 4503 * Accepting it also opens a security problem because stations 4504 * could encrypt it with the GTK and inject traffic that way. 4505 */ 4506 if (ieee80211_is_data(hdr->frame_control) && multicast) 4507 return false; 4508 4509 return true; 4510 case NL80211_IFTYPE_P2P_DEVICE: 4511 return ieee80211_is_public_action(hdr, skb->len) || 4512 ieee80211_is_probe_req(hdr->frame_control) || 4513 ieee80211_is_probe_resp(hdr->frame_control) || 4514 ieee80211_is_beacon(hdr->frame_control) || 4515 (ieee80211_is_auth(hdr->frame_control) && 4516 ether_addr_equal(sdata->vif.addr, hdr->addr1)); 4517 case NL80211_IFTYPE_NAN: 4518 /* Currently no frames on NAN interface are allowed */ 4519 return false; 4520 default: 4521 break; 4522 } 4523 4524 WARN_ON_ONCE(1); 4525 return false; 4526 } 4527 4528 void ieee80211_check_fast_rx(struct sta_info *sta) 4529 { 4530 struct ieee80211_sub_if_data *sdata = sta->sdata; 4531 struct ieee80211_local *local = sdata->local; 4532 struct ieee80211_key *key; 4533 struct ieee80211_fast_rx fastrx = { 4534 .dev = sdata->dev, 4535 .vif_type = sdata->vif.type, 4536 .control_port_protocol = sdata->control_port_protocol, 4537 }, *old, *new = NULL; 4538 u32 offload_flags; 4539 bool set_offload = false; 4540 bool assign = false; 4541 bool offload; 4542 4543 /* use sparse to check that we don't return without updating */ 4544 __acquire(check_fast_rx); 4545 4546 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4547 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4548 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4549 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4550 4551 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4552 4553 /* fast-rx doesn't do reordering */ 4554 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4555 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4556 goto clear; 4557 4558 switch (sdata->vif.type) { 4559 case NL80211_IFTYPE_STATION: 4560 if (sta->sta.tdls) { 4561 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4562 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4563 fastrx.expected_ds_bits = 0; 4564 } else { 4565 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4566 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4567 fastrx.expected_ds_bits = 4568 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4569 } 4570 4571 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4572 fastrx.expected_ds_bits |= 4573 cpu_to_le16(IEEE80211_FCTL_TODS); 4574 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4575 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4576 } 4577 4578 if (!sdata->u.mgd.powersave) 4579 break; 4580 4581 /* software powersave is a huge mess, avoid all of it */ 4582 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4583 goto clear; 4584 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4585 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4586 goto clear; 4587 break; 4588 case NL80211_IFTYPE_AP_VLAN: 4589 case NL80211_IFTYPE_AP: 4590 /* parallel-rx requires this, at least with calls to 4591 * ieee80211_sta_ps_transition() 4592 */ 4593 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4594 goto clear; 4595 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4596 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4597 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4598 4599 fastrx.internal_forward = 4600 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4601 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4602 !sdata->u.vlan.sta); 4603 4604 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4605 sdata->u.vlan.sta) { 4606 fastrx.expected_ds_bits |= 4607 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4608 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4609 fastrx.internal_forward = 0; 4610 } 4611 4612 break; 4613 case NL80211_IFTYPE_MESH_POINT: 4614 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS | 4615 IEEE80211_FCTL_TODS); 4616 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4617 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4618 break; 4619 default: 4620 goto clear; 4621 } 4622 4623 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4624 goto clear; 4625 4626 rcu_read_lock(); 4627 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4628 if (!key) 4629 key = rcu_dereference(sdata->default_unicast_key); 4630 if (key) { 4631 switch (key->conf.cipher) { 4632 case WLAN_CIPHER_SUITE_TKIP: 4633 /* we don't want to deal with MMIC in fast-rx */ 4634 goto clear_rcu; 4635 case WLAN_CIPHER_SUITE_CCMP: 4636 case WLAN_CIPHER_SUITE_CCMP_256: 4637 case WLAN_CIPHER_SUITE_GCMP: 4638 case WLAN_CIPHER_SUITE_GCMP_256: 4639 break; 4640 default: 4641 /* We also don't want to deal with 4642 * WEP or cipher scheme. 4643 */ 4644 goto clear_rcu; 4645 } 4646 4647 fastrx.key = true; 4648 fastrx.icv_len = key->conf.icv_len; 4649 } 4650 4651 assign = true; 4652 clear_rcu: 4653 rcu_read_unlock(); 4654 clear: 4655 __release(check_fast_rx); 4656 4657 if (assign) 4658 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4659 4660 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4661 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4662 4663 if (assign && offload) 4664 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4665 else 4666 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4667 4668 if (set_offload) 4669 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4670 4671 spin_lock_bh(&sta->lock); 4672 old = rcu_dereference_protected(sta->fast_rx, true); 4673 rcu_assign_pointer(sta->fast_rx, new); 4674 spin_unlock_bh(&sta->lock); 4675 4676 if (old) 4677 kfree_rcu(old, rcu_head); 4678 } 4679 4680 void ieee80211_clear_fast_rx(struct sta_info *sta) 4681 { 4682 struct ieee80211_fast_rx *old; 4683 4684 spin_lock_bh(&sta->lock); 4685 old = rcu_dereference_protected(sta->fast_rx, true); 4686 RCU_INIT_POINTER(sta->fast_rx, NULL); 4687 spin_unlock_bh(&sta->lock); 4688 4689 if (old) 4690 kfree_rcu(old, rcu_head); 4691 } 4692 4693 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4694 { 4695 struct ieee80211_local *local = sdata->local; 4696 struct sta_info *sta; 4697 4698 lockdep_assert_wiphy(local->hw.wiphy); 4699 4700 list_for_each_entry(sta, &local->sta_list, list) { 4701 if (sdata != sta->sdata && 4702 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4703 continue; 4704 ieee80211_check_fast_rx(sta); 4705 } 4706 } 4707 4708 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4709 { 4710 struct ieee80211_local *local = sdata->local; 4711 4712 lockdep_assert_wiphy(local->hw.wiphy); 4713 4714 __ieee80211_check_fast_rx_iface(sdata); 4715 } 4716 4717 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4718 struct ieee80211_fast_rx *fast_rx, 4719 int orig_len) 4720 { 4721 struct ieee80211_sta_rx_stats *stats; 4722 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4723 struct sta_info *sta = rx->sta; 4724 struct link_sta_info *link_sta; 4725 struct sk_buff *skb = rx->skb; 4726 void *sa = skb->data + ETH_ALEN; 4727 void *da = skb->data; 4728 4729 if (rx->link_id >= 0) { 4730 link_sta = rcu_dereference(sta->link[rx->link_id]); 4731 if (WARN_ON_ONCE(!link_sta)) { 4732 dev_kfree_skb(rx->skb); 4733 return; 4734 } 4735 } else { 4736 link_sta = &sta->deflink; 4737 } 4738 4739 stats = &link_sta->rx_stats; 4740 if (fast_rx->uses_rss) 4741 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4742 4743 /* statistics part of ieee80211_rx_h_sta_process() */ 4744 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4745 stats->last_signal = status->signal; 4746 if (!fast_rx->uses_rss) 4747 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4748 -status->signal); 4749 } 4750 4751 if (status->chains) { 4752 int i; 4753 4754 stats->chains = status->chains; 4755 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4756 int signal = status->chain_signal[i]; 4757 4758 if (!(status->chains & BIT(i))) 4759 continue; 4760 4761 stats->chain_signal_last[i] = signal; 4762 if (!fast_rx->uses_rss) 4763 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4764 -signal); 4765 } 4766 } 4767 /* end of statistics */ 4768 4769 stats->last_rx = jiffies; 4770 stats->last_rate = sta_stats_encode_rate(status); 4771 4772 stats->fragments++; 4773 stats->packets++; 4774 4775 skb->dev = fast_rx->dev; 4776 4777 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4778 4779 /* The seqno index has the same property as needed 4780 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4781 * for non-QoS-data frames. Here we know it's a data 4782 * frame, so count MSDUs. 4783 */ 4784 u64_stats_update_begin(&stats->syncp); 4785 stats->msdu[rx->seqno_idx]++; 4786 stats->bytes += orig_len; 4787 u64_stats_update_end(&stats->syncp); 4788 4789 if (fast_rx->internal_forward) { 4790 struct sk_buff *xmit_skb = NULL; 4791 if (is_multicast_ether_addr(da)) { 4792 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4793 } else if (!ether_addr_equal(da, sa) && 4794 sta_info_get(rx->sdata, da)) { 4795 xmit_skb = skb; 4796 skb = NULL; 4797 } 4798 4799 if (xmit_skb) { 4800 /* 4801 * Send to wireless media and increase priority by 256 4802 * to keep the received priority instead of 4803 * reclassifying the frame (see cfg80211_classify8021d). 4804 */ 4805 xmit_skb->priority += 256; 4806 xmit_skb->protocol = htons(ETH_P_802_3); 4807 skb_reset_network_header(xmit_skb); 4808 skb_reset_mac_header(xmit_skb); 4809 dev_queue_xmit(xmit_skb); 4810 } 4811 4812 if (!skb) 4813 return; 4814 } 4815 4816 /* deliver to local stack */ 4817 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4818 ieee80211_deliver_skb_to_local_stack(skb, rx); 4819 } 4820 4821 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4822 struct ieee80211_fast_rx *fast_rx) 4823 { 4824 struct sk_buff *skb = rx->skb; 4825 struct ieee80211_hdr *hdr = (void *)skb->data; 4826 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4827 static ieee80211_rx_result res; 4828 int orig_len = skb->len; 4829 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4830 int snap_offs = hdrlen; 4831 struct { 4832 u8 snap[sizeof(rfc1042_header)]; 4833 __be16 proto; 4834 } *payload __aligned(2); 4835 struct { 4836 u8 da[ETH_ALEN]; 4837 u8 sa[ETH_ALEN]; 4838 } addrs __aligned(2); 4839 struct ieee80211_sta_rx_stats *stats; 4840 4841 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4842 * to a common data structure; drivers can implement that per queue 4843 * but we don't have that information in mac80211 4844 */ 4845 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4846 return false; 4847 4848 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4849 4850 /* If using encryption, we also need to have: 4851 * - PN_VALIDATED: similar, but the implementation is tricky 4852 * - DECRYPTED: necessary for PN_VALIDATED 4853 */ 4854 if (fast_rx->key && 4855 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4856 return false; 4857 4858 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4859 return false; 4860 4861 if (unlikely(ieee80211_is_frag(hdr))) 4862 return false; 4863 4864 /* Since our interface address cannot be multicast, this 4865 * implicitly also rejects multicast frames without the 4866 * explicit check. 4867 * 4868 * We shouldn't get any *data* frames not addressed to us 4869 * (AP mode will accept multicast *management* frames), but 4870 * punting here will make it go through the full checks in 4871 * ieee80211_accept_frame(). 4872 */ 4873 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4874 return false; 4875 4876 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4877 IEEE80211_FCTL_TODS)) != 4878 fast_rx->expected_ds_bits) 4879 return false; 4880 4881 /* assign the key to drop unencrypted frames (later) 4882 * and strip the IV/MIC if necessary 4883 */ 4884 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4885 /* GCMP header length is the same */ 4886 snap_offs += IEEE80211_CCMP_HDR_LEN; 4887 } 4888 4889 if (!ieee80211_vif_is_mesh(&rx->sdata->vif) && 4890 !(status->rx_flags & IEEE80211_RX_AMSDU)) { 4891 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4892 return false; 4893 4894 payload = (void *)(skb->data + snap_offs); 4895 4896 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4897 return false; 4898 4899 /* Don't handle these here since they require special code. 4900 * Accept AARP and IPX even though they should come with a 4901 * bridge-tunnel header - but if we get them this way then 4902 * there's little point in discarding them. 4903 */ 4904 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4905 payload->proto == fast_rx->control_port_protocol)) 4906 return false; 4907 } 4908 4909 /* after this point, don't punt to the slowpath! */ 4910 4911 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4912 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4913 goto drop; 4914 4915 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4916 goto drop; 4917 4918 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4919 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4920 RX_QUEUED) 4921 goto drop; 4922 4923 return true; 4924 } 4925 4926 /* do the header conversion - first grab the addresses */ 4927 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4928 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4929 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) { 4930 skb_pull(skb, snap_offs - 2); 4931 put_unaligned_be16(skb->len - 2, skb->data); 4932 } else { 4933 skb_postpull_rcsum(skb, skb->data + snap_offs, 4934 sizeof(rfc1042_header) + 2); 4935 4936 /* remove the SNAP but leave the ethertype */ 4937 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4938 } 4939 /* push the addresses in front */ 4940 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4941 4942 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 4943 switch (res) { 4944 case RX_QUEUED: 4945 return true; 4946 case RX_CONTINUE: 4947 break; 4948 default: 4949 goto drop; 4950 } 4951 4952 ieee80211_rx_8023(rx, fast_rx, orig_len); 4953 4954 return true; 4955 drop: 4956 dev_kfree_skb(skb); 4957 4958 if (fast_rx->uses_rss) 4959 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 4960 else 4961 stats = &rx->link_sta->rx_stats; 4962 4963 stats->dropped++; 4964 return true; 4965 } 4966 4967 /* 4968 * This function returns whether or not the SKB 4969 * was destined for RX processing or not, which, 4970 * if consume is true, is equivalent to whether 4971 * or not the skb was consumed. 4972 */ 4973 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4974 struct sk_buff *skb, bool consume) 4975 { 4976 struct ieee80211_local *local = rx->local; 4977 struct ieee80211_sub_if_data *sdata = rx->sdata; 4978 struct ieee80211_hdr *hdr = (void *)skb->data; 4979 struct link_sta_info *link_sta = rx->link_sta; 4980 struct ieee80211_link_data *link = rx->link; 4981 4982 rx->skb = skb; 4983 4984 /* See if we can do fast-rx; if we have to copy we already lost, 4985 * so punt in that case. We should never have to deliver a data 4986 * frame to multiple interfaces anyway. 4987 * 4988 * We skip the ieee80211_accept_frame() call and do the necessary 4989 * checking inside ieee80211_invoke_fast_rx(). 4990 */ 4991 if (consume && rx->sta) { 4992 struct ieee80211_fast_rx *fast_rx; 4993 4994 fast_rx = rcu_dereference(rx->sta->fast_rx); 4995 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4996 return true; 4997 } 4998 4999 if (!ieee80211_accept_frame(rx)) 5000 return false; 5001 5002 if (!consume) { 5003 struct skb_shared_hwtstamps *shwt; 5004 5005 rx->skb = skb_copy(skb, GFP_ATOMIC); 5006 if (!rx->skb) { 5007 if (net_ratelimit()) 5008 wiphy_debug(local->hw.wiphy, 5009 "failed to copy skb for %s\n", 5010 sdata->name); 5011 return true; 5012 } 5013 5014 /* skb_copy() does not copy the hw timestamps, so copy it 5015 * explicitly 5016 */ 5017 shwt = skb_hwtstamps(rx->skb); 5018 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 5019 5020 /* Update the hdr pointer to the new skb for translation below */ 5021 hdr = (struct ieee80211_hdr *)rx->skb->data; 5022 } 5023 5024 if (unlikely(rx->sta && rx->sta->sta.mlo) && 5025 is_unicast_ether_addr(hdr->addr1) && 5026 !ieee80211_is_probe_resp(hdr->frame_control) && 5027 !ieee80211_is_beacon(hdr->frame_control)) { 5028 /* translate to MLD addresses */ 5029 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 5030 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 5031 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 5032 ether_addr_copy(hdr->addr2, rx->sta->addr); 5033 /* translate A3 only if it's the BSSID */ 5034 if (!ieee80211_has_tods(hdr->frame_control) && 5035 !ieee80211_has_fromds(hdr->frame_control)) { 5036 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 5037 ether_addr_copy(hdr->addr3, rx->sta->addr); 5038 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 5039 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 5040 } 5041 /* not needed for A4 since it can only carry the SA */ 5042 } 5043 5044 ieee80211_invoke_rx_handlers(rx); 5045 return true; 5046 } 5047 5048 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 5049 struct ieee80211_sta *pubsta, 5050 struct sk_buff *skb, 5051 struct list_head *list) 5052 { 5053 struct ieee80211_local *local = hw_to_local(hw); 5054 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5055 struct ieee80211_fast_rx *fast_rx; 5056 struct ieee80211_rx_data rx; 5057 struct sta_info *sta; 5058 int link_id = -1; 5059 5060 memset(&rx, 0, sizeof(rx)); 5061 rx.skb = skb; 5062 rx.local = local; 5063 rx.list = list; 5064 rx.link_id = -1; 5065 5066 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5067 5068 /* drop frame if too short for header */ 5069 if (skb->len < sizeof(struct ethhdr)) 5070 goto drop; 5071 5072 if (!pubsta) 5073 goto drop; 5074 5075 if (status->link_valid) 5076 link_id = status->link_id; 5077 5078 /* 5079 * TODO: Should the frame be dropped if the right link_id is not 5080 * available? Or may be it is fine in the current form to proceed with 5081 * the frame processing because with frame being in 802.3 format, 5082 * link_id is used only for stats purpose and updating the stats on 5083 * the deflink is fine? 5084 */ 5085 sta = container_of(pubsta, struct sta_info, sta); 5086 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5087 goto drop; 5088 5089 fast_rx = rcu_dereference(rx.sta->fast_rx); 5090 if (!fast_rx) 5091 goto drop; 5092 5093 ieee80211_rx_8023(&rx, fast_rx, skb->len); 5094 return; 5095 5096 drop: 5097 dev_kfree_skb(skb); 5098 } 5099 5100 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 5101 struct sk_buff *skb, bool consume) 5102 { 5103 struct link_sta_info *link_sta; 5104 struct ieee80211_hdr *hdr = (void *)skb->data; 5105 struct sta_info *sta; 5106 int link_id = -1; 5107 5108 /* 5109 * Look up link station first, in case there's a 5110 * chance that they might have a link address that 5111 * is identical to the MLD address, that way we'll 5112 * have the link information if needed. 5113 */ 5114 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 5115 if (link_sta) { 5116 sta = link_sta->sta; 5117 link_id = link_sta->link_id; 5118 } else { 5119 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5120 5121 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 5122 if (status->link_valid) 5123 link_id = status->link_id; 5124 } 5125 5126 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 5127 return false; 5128 5129 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 5130 } 5131 5132 /* 5133 * This is the actual Rx frames handler. as it belongs to Rx path it must 5134 * be called with rcu_read_lock protection. 5135 */ 5136 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 5137 struct ieee80211_sta *pubsta, 5138 struct sk_buff *skb, 5139 struct list_head *list) 5140 { 5141 struct ieee80211_local *local = hw_to_local(hw); 5142 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5143 struct ieee80211_sub_if_data *sdata; 5144 struct ieee80211_hdr *hdr; 5145 __le16 fc; 5146 struct ieee80211_rx_data rx; 5147 struct ieee80211_sub_if_data *prev; 5148 struct rhlist_head *tmp; 5149 int err = 0; 5150 5151 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5152 memset(&rx, 0, sizeof(rx)); 5153 rx.skb = skb; 5154 rx.local = local; 5155 rx.list = list; 5156 rx.link_id = -1; 5157 5158 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5159 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5160 5161 if (ieee80211_is_mgmt(fc)) { 5162 /* drop frame if too short for header */ 5163 if (skb->len < ieee80211_hdrlen(fc)) 5164 err = -ENOBUFS; 5165 else 5166 err = skb_linearize(skb); 5167 } else { 5168 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5169 } 5170 5171 if (err) { 5172 dev_kfree_skb(skb); 5173 return; 5174 } 5175 5176 hdr = (struct ieee80211_hdr *)skb->data; 5177 ieee80211_parse_qos(&rx); 5178 ieee80211_verify_alignment(&rx); 5179 5180 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5181 ieee80211_is_beacon(hdr->frame_control) || 5182 ieee80211_is_s1g_beacon(hdr->frame_control))) 5183 ieee80211_scan_rx(local, skb); 5184 5185 if (ieee80211_is_data(fc)) { 5186 struct sta_info *sta, *prev_sta; 5187 int link_id = -1; 5188 5189 if (status->link_valid) 5190 link_id = status->link_id; 5191 5192 if (pubsta) { 5193 sta = container_of(pubsta, struct sta_info, sta); 5194 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5195 goto out; 5196 5197 /* 5198 * In MLO connection, fetch the link_id using addr2 5199 * when the driver does not pass link_id in status. 5200 * When the address translation is already performed by 5201 * driver/hw, the valid link_id must be passed in 5202 * status. 5203 */ 5204 5205 if (!status->link_valid && pubsta->mlo) { 5206 struct link_sta_info *link_sta; 5207 5208 link_sta = link_sta_info_get_bss(rx.sdata, 5209 hdr->addr2); 5210 if (!link_sta) 5211 goto out; 5212 5213 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5214 } 5215 5216 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5217 return; 5218 goto out; 5219 } 5220 5221 prev_sta = NULL; 5222 5223 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5224 if (!prev_sta) { 5225 prev_sta = sta; 5226 continue; 5227 } 5228 5229 rx.sdata = prev_sta->sdata; 5230 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5231 goto out; 5232 5233 if (!status->link_valid && prev_sta->sta.mlo) 5234 continue; 5235 5236 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5237 5238 prev_sta = sta; 5239 } 5240 5241 if (prev_sta) { 5242 rx.sdata = prev_sta->sdata; 5243 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5244 goto out; 5245 5246 if (!status->link_valid && prev_sta->sta.mlo) 5247 goto out; 5248 5249 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5250 return; 5251 goto out; 5252 } 5253 } 5254 5255 prev = NULL; 5256 5257 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5258 if (!ieee80211_sdata_running(sdata)) 5259 continue; 5260 5261 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5262 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5263 continue; 5264 5265 /* 5266 * frame is destined for this interface, but if it's 5267 * not also for the previous one we handle that after 5268 * the loop to avoid copying the SKB once too much 5269 */ 5270 5271 if (!prev) { 5272 prev = sdata; 5273 continue; 5274 } 5275 5276 rx.sdata = prev; 5277 ieee80211_rx_for_interface(&rx, skb, false); 5278 5279 prev = sdata; 5280 } 5281 5282 if (prev) { 5283 rx.sdata = prev; 5284 5285 if (ieee80211_rx_for_interface(&rx, skb, true)) 5286 return; 5287 } 5288 5289 out: 5290 dev_kfree_skb(skb); 5291 } 5292 5293 /* 5294 * This is the receive path handler. It is called by a low level driver when an 5295 * 802.11 MPDU is received from the hardware. 5296 */ 5297 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5298 struct sk_buff *skb, struct list_head *list) 5299 { 5300 struct ieee80211_local *local = hw_to_local(hw); 5301 struct ieee80211_rate *rate = NULL; 5302 struct ieee80211_supported_band *sband; 5303 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5304 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5305 5306 WARN_ON_ONCE(softirq_count() == 0); 5307 5308 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5309 goto drop; 5310 5311 sband = local->hw.wiphy->bands[status->band]; 5312 if (WARN_ON(!sband)) 5313 goto drop; 5314 5315 /* 5316 * If we're suspending, it is possible although not too likely 5317 * that we'd be receiving frames after having already partially 5318 * quiesced the stack. We can't process such frames then since 5319 * that might, for example, cause stations to be added or other 5320 * driver callbacks be invoked. 5321 */ 5322 if (unlikely(local->quiescing || local->suspended)) 5323 goto drop; 5324 5325 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5326 if (unlikely(local->in_reconfig)) 5327 goto drop; 5328 5329 /* 5330 * The same happens when we're not even started, 5331 * but that's worth a warning. 5332 */ 5333 if (WARN_ON(!local->started)) 5334 goto drop; 5335 5336 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5337 /* 5338 * Validate the rate, unless a PLCP error means that 5339 * we probably can't have a valid rate here anyway. 5340 */ 5341 5342 switch (status->encoding) { 5343 case RX_ENC_HT: 5344 /* 5345 * rate_idx is MCS index, which can be [0-76] 5346 * as documented on: 5347 * 5348 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5349 * 5350 * Anything else would be some sort of driver or 5351 * hardware error. The driver should catch hardware 5352 * errors. 5353 */ 5354 if (WARN(status->rate_idx > 76, 5355 "Rate marked as an HT rate but passed " 5356 "status->rate_idx is not " 5357 "an MCS index [0-76]: %d (0x%02x)\n", 5358 status->rate_idx, 5359 status->rate_idx)) 5360 goto drop; 5361 break; 5362 case RX_ENC_VHT: 5363 if (WARN_ONCE(status->rate_idx > 11 || 5364 !status->nss || 5365 status->nss > 8, 5366 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5367 status->rate_idx, status->nss)) 5368 goto drop; 5369 break; 5370 case RX_ENC_HE: 5371 if (WARN_ONCE(status->rate_idx > 11 || 5372 !status->nss || 5373 status->nss > 8, 5374 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5375 status->rate_idx, status->nss)) 5376 goto drop; 5377 break; 5378 case RX_ENC_EHT: 5379 if (WARN_ONCE(status->rate_idx > 15 || 5380 !status->nss || 5381 status->nss > 8 || 5382 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5383 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5384 status->rate_idx, status->nss, status->eht.gi)) 5385 goto drop; 5386 break; 5387 default: 5388 WARN_ON_ONCE(1); 5389 fallthrough; 5390 case RX_ENC_LEGACY: 5391 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5392 goto drop; 5393 rate = &sband->bitrates[status->rate_idx]; 5394 } 5395 } 5396 5397 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5398 goto drop; 5399 5400 status->rx_flags = 0; 5401 5402 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5403 5404 /* 5405 * Frames with failed FCS/PLCP checksum are not returned, 5406 * all other frames are returned without radiotap header 5407 * if it was previously present. 5408 * Also, frames with less than 16 bytes are dropped. 5409 */ 5410 if (!(status->flag & RX_FLAG_8023)) 5411 skb = ieee80211_rx_monitor(local, skb, rate); 5412 if (skb) { 5413 if ((status->flag & RX_FLAG_8023) || 5414 ieee80211_is_data_present(hdr->frame_control)) 5415 ieee80211_tpt_led_trig_rx(local, skb->len); 5416 5417 if (status->flag & RX_FLAG_8023) 5418 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5419 else 5420 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5421 } 5422 5423 kcov_remote_stop(); 5424 return; 5425 drop: 5426 kfree_skb(skb); 5427 } 5428 EXPORT_SYMBOL(ieee80211_rx_list); 5429 5430 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5431 struct sk_buff *skb, struct napi_struct *napi) 5432 { 5433 struct sk_buff *tmp; 5434 LIST_HEAD(list); 5435 5436 5437 /* 5438 * key references and virtual interfaces are protected using RCU 5439 * and this requires that we are in a read-side RCU section during 5440 * receive processing 5441 */ 5442 rcu_read_lock(); 5443 ieee80211_rx_list(hw, pubsta, skb, &list); 5444 rcu_read_unlock(); 5445 5446 if (!napi) { 5447 netif_receive_skb_list(&list); 5448 return; 5449 } 5450 5451 list_for_each_entry_safe(skb, tmp, &list, list) { 5452 skb_list_del_init(skb); 5453 napi_gro_receive(napi, skb); 5454 } 5455 } 5456 EXPORT_SYMBOL(ieee80211_rx_napi); 5457 5458 /* This is a version of the rx handler that can be called from hard irq 5459 * context. Post the skb on the queue and schedule the tasklet */ 5460 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5461 { 5462 struct ieee80211_local *local = hw_to_local(hw); 5463 5464 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5465 5466 skb->pkt_type = IEEE80211_RX_MSG; 5467 skb_queue_tail(&local->skb_queue, skb); 5468 tasklet_schedule(&local->tasklet); 5469 } 5470 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5471