1 /* 2 * Copyright (c) 2008 open80211s Ltd. 3 * Authors: Luis Carlos Cobo <luisca@cozybit.com> 4 * Javier Cardona <javier@cozybit.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <asm/unaligned.h> 12 #include "ieee80211_i.h" 13 #include "mesh.h" 14 15 #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ) 16 #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ) 17 18 #define PP_OFFSET 1 /* Path Selection Protocol */ 19 #define PM_OFFSET 5 /* Path Selection Metric */ 20 #define CC_OFFSET 9 /* Congestion Control Mode */ 21 #define CAPAB_OFFSET 17 22 #define ACCEPT_PLINKS 0x80 23 24 #define TMR_RUNNING_HK 0 25 #define TMR_RUNNING_MP 1 26 27 int mesh_allocated; 28 static struct kmem_cache *rm_cache; 29 30 void ieee80211s_init(void) 31 { 32 mesh_pathtbl_init(); 33 mesh_allocated = 1; 34 rm_cache = kmem_cache_create("mesh_rmc", sizeof(struct rmc_entry), 35 0, 0, NULL); 36 } 37 38 void ieee80211s_stop(void) 39 { 40 mesh_pathtbl_unregister(); 41 kmem_cache_destroy(rm_cache); 42 } 43 44 static void ieee80211_mesh_housekeeping_timer(unsigned long data) 45 { 46 struct ieee80211_sub_if_data *sdata = (void *) data; 47 struct ieee80211_local *local = sdata->local; 48 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 49 50 ifmsh->housekeeping = true; 51 52 if (local->quiescing) { 53 set_bit(TMR_RUNNING_HK, &ifmsh->timers_running); 54 return; 55 } 56 57 queue_work(local->hw.workqueue, &ifmsh->work); 58 } 59 60 /** 61 * mesh_matches_local - check if the config of a mesh point matches ours 62 * 63 * @ie: information elements of a management frame from the mesh peer 64 * @sdata: local mesh subif 65 * 66 * This function checks if the mesh configuration of a mesh point matches the 67 * local mesh configuration, i.e. if both nodes belong to the same mesh network. 68 */ 69 bool mesh_matches_local(struct ieee802_11_elems *ie, struct ieee80211_sub_if_data *sdata) 70 { 71 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 72 73 /* 74 * As support for each feature is added, check for matching 75 * - On mesh config capabilities 76 * - Power Save Support En 77 * - Sync support enabled 78 * - Sync support active 79 * - Sync support required from peer 80 * - MDA enabled 81 * - Power management control on fc 82 */ 83 if (ifmsh->mesh_id_len == ie->mesh_id_len && 84 memcmp(ifmsh->mesh_id, ie->mesh_id, ie->mesh_id_len) == 0 && 85 memcmp(ifmsh->mesh_pp_id, ie->mesh_config + PP_OFFSET, 4) == 0 && 86 memcmp(ifmsh->mesh_pm_id, ie->mesh_config + PM_OFFSET, 4) == 0 && 87 memcmp(ifmsh->mesh_cc_id, ie->mesh_config + CC_OFFSET, 4) == 0) 88 return true; 89 90 return false; 91 } 92 93 /** 94 * mesh_peer_accepts_plinks - check if an mp is willing to establish peer links 95 * 96 * @ie: information elements of a management frame from the mesh peer 97 */ 98 bool mesh_peer_accepts_plinks(struct ieee802_11_elems *ie) 99 { 100 return (*(ie->mesh_config + CAPAB_OFFSET) & ACCEPT_PLINKS) != 0; 101 } 102 103 /** 104 * mesh_accept_plinks_update: update accepting_plink in local mesh beacons 105 * 106 * @sdata: mesh interface in which mesh beacons are going to be updated 107 */ 108 void mesh_accept_plinks_update(struct ieee80211_sub_if_data *sdata) 109 { 110 bool free_plinks; 111 112 /* In case mesh_plink_free_count > 0 and mesh_plinktbl_capacity == 0, 113 * the mesh interface might be able to establish plinks with peers that 114 * are already on the table but are not on PLINK_ESTAB state. However, 115 * in general the mesh interface is not accepting peer link requests 116 * from new peers, and that must be reflected in the beacon 117 */ 118 free_plinks = mesh_plink_availables(sdata); 119 120 if (free_plinks != sdata->u.mesh.accepting_plinks) 121 ieee80211_mesh_housekeeping_timer((unsigned long) sdata); 122 } 123 124 void mesh_ids_set_default(struct ieee80211_if_mesh *sta) 125 { 126 u8 def_id[4] = {0x00, 0x0F, 0xAC, 0xff}; 127 128 memcpy(sta->mesh_pp_id, def_id, 4); 129 memcpy(sta->mesh_pm_id, def_id, 4); 130 memcpy(sta->mesh_cc_id, def_id, 4); 131 } 132 133 int mesh_rmc_init(struct ieee80211_sub_if_data *sdata) 134 { 135 int i; 136 137 sdata->u.mesh.rmc = kmalloc(sizeof(struct mesh_rmc), GFP_KERNEL); 138 if (!sdata->u.mesh.rmc) 139 return -ENOMEM; 140 sdata->u.mesh.rmc->idx_mask = RMC_BUCKETS - 1; 141 for (i = 0; i < RMC_BUCKETS; i++) 142 INIT_LIST_HEAD(&sdata->u.mesh.rmc->bucket[i].list); 143 return 0; 144 } 145 146 void mesh_rmc_free(struct ieee80211_sub_if_data *sdata) 147 { 148 struct mesh_rmc *rmc = sdata->u.mesh.rmc; 149 struct rmc_entry *p, *n; 150 int i; 151 152 if (!sdata->u.mesh.rmc) 153 return; 154 155 for (i = 0; i < RMC_BUCKETS; i++) 156 list_for_each_entry_safe(p, n, &rmc->bucket[i].list, list) { 157 list_del(&p->list); 158 kmem_cache_free(rm_cache, p); 159 } 160 161 kfree(rmc); 162 sdata->u.mesh.rmc = NULL; 163 } 164 165 /** 166 * mesh_rmc_check - Check frame in recent multicast cache and add if absent. 167 * 168 * @sa: source address 169 * @mesh_hdr: mesh_header 170 * 171 * Returns: 0 if the frame is not in the cache, nonzero otherwise. 172 * 173 * Checks using the source address and the mesh sequence number if we have 174 * received this frame lately. If the frame is not in the cache, it is added to 175 * it. 176 */ 177 int mesh_rmc_check(u8 *sa, struct ieee80211s_hdr *mesh_hdr, 178 struct ieee80211_sub_if_data *sdata) 179 { 180 struct mesh_rmc *rmc = sdata->u.mesh.rmc; 181 u32 seqnum = 0; 182 int entries = 0; 183 u8 idx; 184 struct rmc_entry *p, *n; 185 186 /* Don't care about endianness since only match matters */ 187 memcpy(&seqnum, &mesh_hdr->seqnum, sizeof(mesh_hdr->seqnum)); 188 idx = le32_to_cpu(mesh_hdr->seqnum) & rmc->idx_mask; 189 list_for_each_entry_safe(p, n, &rmc->bucket[idx].list, list) { 190 ++entries; 191 if (time_after(jiffies, p->exp_time) || 192 (entries == RMC_QUEUE_MAX_LEN)) { 193 list_del(&p->list); 194 kmem_cache_free(rm_cache, p); 195 --entries; 196 } else if ((seqnum == p->seqnum) 197 && (memcmp(sa, p->sa, ETH_ALEN) == 0)) 198 return -1; 199 } 200 201 p = kmem_cache_alloc(rm_cache, GFP_ATOMIC); 202 if (!p) { 203 printk(KERN_DEBUG "o11s: could not allocate RMC entry\n"); 204 return 0; 205 } 206 p->seqnum = seqnum; 207 p->exp_time = jiffies + RMC_TIMEOUT; 208 memcpy(p->sa, sa, ETH_ALEN); 209 list_add(&p->list, &rmc->bucket[idx].list); 210 return 0; 211 } 212 213 void mesh_mgmt_ies_add(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata) 214 { 215 struct ieee80211_local *local = sdata->local; 216 struct ieee80211_supported_band *sband; 217 u8 *pos; 218 int len, i, rate; 219 220 sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; 221 len = sband->n_bitrates; 222 if (len > 8) 223 len = 8; 224 pos = skb_put(skb, len + 2); 225 *pos++ = WLAN_EID_SUPP_RATES; 226 *pos++ = len; 227 for (i = 0; i < len; i++) { 228 rate = sband->bitrates[i].bitrate; 229 *pos++ = (u8) (rate / 5); 230 } 231 232 if (sband->n_bitrates > len) { 233 pos = skb_put(skb, sband->n_bitrates - len + 2); 234 *pos++ = WLAN_EID_EXT_SUPP_RATES; 235 *pos++ = sband->n_bitrates - len; 236 for (i = len; i < sband->n_bitrates; i++) { 237 rate = sband->bitrates[i].bitrate; 238 *pos++ = (u8) (rate / 5); 239 } 240 } 241 242 pos = skb_put(skb, 2 + sdata->u.mesh.mesh_id_len); 243 *pos++ = WLAN_EID_MESH_ID; 244 *pos++ = sdata->u.mesh.mesh_id_len; 245 if (sdata->u.mesh.mesh_id_len) 246 memcpy(pos, sdata->u.mesh.mesh_id, sdata->u.mesh.mesh_id_len); 247 248 pos = skb_put(skb, 21); 249 *pos++ = WLAN_EID_MESH_CONFIG; 250 *pos++ = IEEE80211_MESH_CONFIG_LEN; 251 /* Version */ 252 *pos++ = 1; 253 254 /* Active path selection protocol ID */ 255 memcpy(pos, sdata->u.mesh.mesh_pp_id, 4); 256 pos += 4; 257 258 /* Active path selection metric ID */ 259 memcpy(pos, sdata->u.mesh.mesh_pm_id, 4); 260 pos += 4; 261 262 /* Congestion control mode identifier */ 263 memcpy(pos, sdata->u.mesh.mesh_cc_id, 4); 264 pos += 4; 265 266 /* Channel precedence: 267 * Not running simple channel unification protocol 268 */ 269 memset(pos, 0x00, 4); 270 pos += 4; 271 272 /* Mesh capability */ 273 sdata->u.mesh.accepting_plinks = mesh_plink_availables(sdata); 274 *pos++ = sdata->u.mesh.accepting_plinks ? ACCEPT_PLINKS : 0x00; 275 *pos++ = 0x00; 276 277 return; 278 } 279 280 u32 mesh_table_hash(u8 *addr, struct ieee80211_sub_if_data *sdata, struct mesh_table *tbl) 281 { 282 /* Use last four bytes of hw addr and interface index as hash index */ 283 return jhash_2words(*(u32 *)(addr+2), sdata->dev->ifindex, tbl->hash_rnd) 284 & tbl->hash_mask; 285 } 286 287 struct mesh_table *mesh_table_alloc(int size_order) 288 { 289 int i; 290 struct mesh_table *newtbl; 291 292 newtbl = kmalloc(sizeof(struct mesh_table), GFP_KERNEL); 293 if (!newtbl) 294 return NULL; 295 296 newtbl->hash_buckets = kzalloc(sizeof(struct hlist_head) * 297 (1 << size_order), GFP_KERNEL); 298 299 if (!newtbl->hash_buckets) { 300 kfree(newtbl); 301 return NULL; 302 } 303 304 newtbl->hashwlock = kmalloc(sizeof(spinlock_t) * 305 (1 << size_order), GFP_KERNEL); 306 if (!newtbl->hashwlock) { 307 kfree(newtbl->hash_buckets); 308 kfree(newtbl); 309 return NULL; 310 } 311 312 newtbl->size_order = size_order; 313 newtbl->hash_mask = (1 << size_order) - 1; 314 atomic_set(&newtbl->entries, 0); 315 get_random_bytes(&newtbl->hash_rnd, 316 sizeof(newtbl->hash_rnd)); 317 for (i = 0; i <= newtbl->hash_mask; i++) 318 spin_lock_init(&newtbl->hashwlock[i]); 319 320 return newtbl; 321 } 322 323 static void __mesh_table_free(struct mesh_table *tbl) 324 { 325 kfree(tbl->hash_buckets); 326 kfree(tbl->hashwlock); 327 kfree(tbl); 328 } 329 330 void mesh_table_free(struct mesh_table *tbl, bool free_leafs) 331 { 332 struct hlist_head *mesh_hash; 333 struct hlist_node *p, *q; 334 int i; 335 336 mesh_hash = tbl->hash_buckets; 337 for (i = 0; i <= tbl->hash_mask; i++) { 338 spin_lock(&tbl->hashwlock[i]); 339 hlist_for_each_safe(p, q, &mesh_hash[i]) { 340 tbl->free_node(p, free_leafs); 341 atomic_dec(&tbl->entries); 342 } 343 spin_unlock(&tbl->hashwlock[i]); 344 } 345 __mesh_table_free(tbl); 346 } 347 348 static void ieee80211_mesh_path_timer(unsigned long data) 349 { 350 struct ieee80211_sub_if_data *sdata = 351 (struct ieee80211_sub_if_data *) data; 352 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 353 struct ieee80211_local *local = sdata->local; 354 355 if (local->quiescing) { 356 set_bit(TMR_RUNNING_MP, &ifmsh->timers_running); 357 return; 358 } 359 360 queue_work(local->hw.workqueue, &ifmsh->work); 361 } 362 363 struct mesh_table *mesh_table_grow(struct mesh_table *tbl) 364 { 365 struct mesh_table *newtbl; 366 struct hlist_head *oldhash; 367 struct hlist_node *p, *q; 368 int i; 369 370 if (atomic_read(&tbl->entries) 371 < tbl->mean_chain_len * (tbl->hash_mask + 1)) 372 goto endgrow; 373 374 newtbl = mesh_table_alloc(tbl->size_order + 1); 375 if (!newtbl) 376 goto endgrow; 377 378 newtbl->free_node = tbl->free_node; 379 newtbl->mean_chain_len = tbl->mean_chain_len; 380 newtbl->copy_node = tbl->copy_node; 381 atomic_set(&newtbl->entries, atomic_read(&tbl->entries)); 382 383 oldhash = tbl->hash_buckets; 384 for (i = 0; i <= tbl->hash_mask; i++) 385 hlist_for_each(p, &oldhash[i]) 386 if (tbl->copy_node(p, newtbl) < 0) 387 goto errcopy; 388 389 return newtbl; 390 391 errcopy: 392 for (i = 0; i <= newtbl->hash_mask; i++) { 393 hlist_for_each_safe(p, q, &newtbl->hash_buckets[i]) 394 tbl->free_node(p, 0); 395 } 396 __mesh_table_free(newtbl); 397 endgrow: 398 return NULL; 399 } 400 401 /** 402 * ieee80211_new_mesh_header - create a new mesh header 403 * @meshhdr: uninitialized mesh header 404 * @sdata: mesh interface to be used 405 * 406 * Return the header length. 407 */ 408 int ieee80211_new_mesh_header(struct ieee80211s_hdr *meshhdr, 409 struct ieee80211_sub_if_data *sdata) 410 { 411 meshhdr->flags = 0; 412 meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; 413 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum); 414 sdata->u.mesh.mesh_seqnum++; 415 416 return 6; 417 } 418 419 static void ieee80211_mesh_housekeeping(struct ieee80211_sub_if_data *sdata, 420 struct ieee80211_if_mesh *ifmsh) 421 { 422 bool free_plinks; 423 424 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 425 printk(KERN_DEBUG "%s: running mesh housekeeping\n", 426 sdata->dev->name); 427 #endif 428 429 ieee80211_sta_expire(sdata, IEEE80211_MESH_PEER_INACTIVITY_LIMIT); 430 mesh_path_expire(sdata); 431 432 free_plinks = mesh_plink_availables(sdata); 433 if (free_plinks != sdata->u.mesh.accepting_plinks) 434 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON); 435 436 ifmsh->housekeeping = false; 437 mod_timer(&ifmsh->housekeeping_timer, 438 round_jiffies(jiffies + IEEE80211_MESH_HOUSEKEEPING_INTERVAL)); 439 } 440 441 #ifdef CONFIG_PM 442 void ieee80211_mesh_quiesce(struct ieee80211_sub_if_data *sdata) 443 { 444 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 445 446 /* might restart the timer but that doesn't matter */ 447 cancel_work_sync(&ifmsh->work); 448 449 /* use atomic bitops in case both timers fire at the same time */ 450 451 if (del_timer_sync(&ifmsh->housekeeping_timer)) 452 set_bit(TMR_RUNNING_HK, &ifmsh->timers_running); 453 if (del_timer_sync(&ifmsh->mesh_path_timer)) 454 set_bit(TMR_RUNNING_MP, &ifmsh->timers_running); 455 } 456 457 void ieee80211_mesh_restart(struct ieee80211_sub_if_data *sdata) 458 { 459 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 460 461 if (test_and_clear_bit(TMR_RUNNING_HK, &ifmsh->timers_running)) 462 add_timer(&ifmsh->housekeeping_timer); 463 if (test_and_clear_bit(TMR_RUNNING_MP, &ifmsh->timers_running)) 464 add_timer(&ifmsh->mesh_path_timer); 465 } 466 #endif 467 468 void ieee80211_start_mesh(struct ieee80211_sub_if_data *sdata) 469 { 470 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 471 struct ieee80211_local *local = sdata->local; 472 473 ifmsh->housekeeping = true; 474 queue_work(local->hw.workqueue, &ifmsh->work); 475 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON | 476 BSS_CHANGED_BEACON_ENABLED); 477 } 478 479 void ieee80211_stop_mesh(struct ieee80211_sub_if_data *sdata) 480 { 481 del_timer_sync(&sdata->u.mesh.housekeeping_timer); 482 /* 483 * If the timer fired while we waited for it, it will have 484 * requeued the work. Now the work will be running again 485 * but will not rearm the timer again because it checks 486 * whether the interface is running, which, at this point, 487 * it no longer is. 488 */ 489 cancel_work_sync(&sdata->u.mesh.work); 490 491 /* 492 * When we get here, the interface is marked down. 493 * Call synchronize_rcu() to wait for the RX path 494 * should it be using the interface and enqueuing 495 * frames at this very time on another CPU. 496 */ 497 rcu_barrier(); /* Wait for RX path and call_rcu()'s */ 498 skb_queue_purge(&sdata->u.mesh.skb_queue); 499 } 500 501 static void ieee80211_mesh_rx_bcn_presp(struct ieee80211_sub_if_data *sdata, 502 u16 stype, 503 struct ieee80211_mgmt *mgmt, 504 size_t len, 505 struct ieee80211_rx_status *rx_status) 506 { 507 struct ieee80211_local *local = sdata->local; 508 struct ieee802_11_elems elems; 509 struct ieee80211_channel *channel; 510 u32 supp_rates = 0; 511 size_t baselen; 512 int freq; 513 enum ieee80211_band band = rx_status->band; 514 515 /* ignore ProbeResp to foreign address */ 516 if (stype == IEEE80211_STYPE_PROBE_RESP && 517 compare_ether_addr(mgmt->da, sdata->dev->dev_addr)) 518 return; 519 520 baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; 521 if (baselen > len) 522 return; 523 524 ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen, 525 &elems); 526 527 if (elems.ds_params && elems.ds_params_len == 1) 528 freq = ieee80211_channel_to_frequency(elems.ds_params[0]); 529 else 530 freq = rx_status->freq; 531 532 channel = ieee80211_get_channel(local->hw.wiphy, freq); 533 534 if (!channel || channel->flags & IEEE80211_CHAN_DISABLED) 535 return; 536 537 if (elems.mesh_id && elems.mesh_config && 538 mesh_matches_local(&elems, sdata)) { 539 supp_rates = ieee80211_sta_get_rates(local, &elems, band); 540 541 mesh_neighbour_update(mgmt->sa, supp_rates, sdata, 542 mesh_peer_accepts_plinks(&elems)); 543 } 544 } 545 546 static void ieee80211_mesh_rx_mgmt_action(struct ieee80211_sub_if_data *sdata, 547 struct ieee80211_mgmt *mgmt, 548 size_t len, 549 struct ieee80211_rx_status *rx_status) 550 { 551 switch (mgmt->u.action.category) { 552 case PLINK_CATEGORY: 553 mesh_rx_plink_frame(sdata, mgmt, len, rx_status); 554 break; 555 case MESH_PATH_SEL_CATEGORY: 556 mesh_rx_path_sel_frame(sdata, mgmt, len); 557 break; 558 } 559 } 560 561 static void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, 562 struct sk_buff *skb) 563 { 564 struct ieee80211_rx_status *rx_status; 565 struct ieee80211_if_mesh *ifmsh; 566 struct ieee80211_mgmt *mgmt; 567 u16 stype; 568 569 ifmsh = &sdata->u.mesh; 570 571 rx_status = (struct ieee80211_rx_status *) skb->cb; 572 mgmt = (struct ieee80211_mgmt *) skb->data; 573 stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE; 574 575 switch (stype) { 576 case IEEE80211_STYPE_PROBE_RESP: 577 case IEEE80211_STYPE_BEACON: 578 ieee80211_mesh_rx_bcn_presp(sdata, stype, mgmt, skb->len, 579 rx_status); 580 break; 581 case IEEE80211_STYPE_ACTION: 582 ieee80211_mesh_rx_mgmt_action(sdata, mgmt, skb->len, rx_status); 583 break; 584 } 585 586 kfree_skb(skb); 587 } 588 589 static void ieee80211_mesh_work(struct work_struct *work) 590 { 591 struct ieee80211_sub_if_data *sdata = 592 container_of(work, struct ieee80211_sub_if_data, u.mesh.work); 593 struct ieee80211_local *local = sdata->local; 594 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 595 struct sk_buff *skb; 596 597 if (!netif_running(sdata->dev)) 598 return; 599 600 if (local->sw_scanning || local->hw_scanning) 601 return; 602 603 while ((skb = skb_dequeue(&ifmsh->skb_queue))) 604 ieee80211_mesh_rx_queued_mgmt(sdata, skb); 605 606 if (ifmsh->preq_queue_len && 607 time_after(jiffies, 608 ifmsh->last_preq + msecs_to_jiffies(ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval))) 609 mesh_path_start_discovery(sdata); 610 611 if (ifmsh->housekeeping) 612 ieee80211_mesh_housekeeping(sdata, ifmsh); 613 } 614 615 void ieee80211_mesh_notify_scan_completed(struct ieee80211_local *local) 616 { 617 struct ieee80211_sub_if_data *sdata; 618 619 rcu_read_lock(); 620 list_for_each_entry_rcu(sdata, &local->interfaces, list) 621 if (ieee80211_vif_is_mesh(&sdata->vif)) 622 queue_work(local->hw.workqueue, &sdata->u.mesh.work); 623 rcu_read_unlock(); 624 } 625 626 void ieee80211_mesh_init_sdata(struct ieee80211_sub_if_data *sdata) 627 { 628 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 629 630 INIT_WORK(&ifmsh->work, ieee80211_mesh_work); 631 setup_timer(&ifmsh->housekeeping_timer, 632 ieee80211_mesh_housekeeping_timer, 633 (unsigned long) sdata); 634 skb_queue_head_init(&sdata->u.mesh.skb_queue); 635 636 ifmsh->mshcfg.dot11MeshRetryTimeout = MESH_RET_T; 637 ifmsh->mshcfg.dot11MeshConfirmTimeout = MESH_CONF_T; 638 ifmsh->mshcfg.dot11MeshHoldingTimeout = MESH_HOLD_T; 639 ifmsh->mshcfg.dot11MeshMaxRetries = MESH_MAX_RETR; 640 ifmsh->mshcfg.dot11MeshTTL = MESH_TTL; 641 ifmsh->mshcfg.auto_open_plinks = true; 642 ifmsh->mshcfg.dot11MeshMaxPeerLinks = 643 MESH_MAX_ESTAB_PLINKS; 644 ifmsh->mshcfg.dot11MeshHWMPactivePathTimeout = 645 MESH_PATH_TIMEOUT; 646 ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval = 647 MESH_PREQ_MIN_INT; 648 ifmsh->mshcfg.dot11MeshHWMPnetDiameterTraversalTime = 649 MESH_DIAM_TRAVERSAL_TIME; 650 ifmsh->mshcfg.dot11MeshHWMPmaxPREQretries = 651 MESH_MAX_PREQ_RETRIES; 652 ifmsh->mshcfg.path_refresh_time = 653 MESH_PATH_REFRESH_TIME; 654 ifmsh->mshcfg.min_discovery_timeout = 655 MESH_MIN_DISCOVERY_TIMEOUT; 656 ifmsh->accepting_plinks = true; 657 ifmsh->preq_id = 0; 658 ifmsh->dsn = 0; 659 atomic_set(&ifmsh->mpaths, 0); 660 mesh_rmc_init(sdata); 661 ifmsh->last_preq = jiffies; 662 /* Allocate all mesh structures when creating the first mesh interface. */ 663 if (!mesh_allocated) 664 ieee80211s_init(); 665 mesh_ids_set_default(ifmsh); 666 setup_timer(&ifmsh->mesh_path_timer, 667 ieee80211_mesh_path_timer, 668 (unsigned long) sdata); 669 INIT_LIST_HEAD(&ifmsh->preq_queue.list); 670 spin_lock_init(&ifmsh->mesh_preq_queue_lock); 671 } 672 673 ieee80211_rx_result 674 ieee80211_mesh_rx_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, 675 struct ieee80211_rx_status *rx_status) 676 { 677 struct ieee80211_local *local = sdata->local; 678 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 679 struct ieee80211_mgmt *mgmt; 680 u16 fc; 681 682 if (skb->len < 24) 683 return RX_DROP_MONITOR; 684 685 mgmt = (struct ieee80211_mgmt *) skb->data; 686 fc = le16_to_cpu(mgmt->frame_control); 687 688 switch (fc & IEEE80211_FCTL_STYPE) { 689 case IEEE80211_STYPE_PROBE_RESP: 690 case IEEE80211_STYPE_BEACON: 691 case IEEE80211_STYPE_ACTION: 692 memcpy(skb->cb, rx_status, sizeof(*rx_status)); 693 skb_queue_tail(&ifmsh->skb_queue, skb); 694 queue_work(local->hw.workqueue, &ifmsh->work); 695 return RX_QUEUED; 696 } 697 698 return RX_CONTINUE; 699 } 700