1 /* 2 * Copyright (c) 2008 open80211s Ltd. 3 * Authors: Luis Carlos Cobo <luisca@cozybit.com> 4 * Javier Cardona <javier@cozybit.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <asm/unaligned.h> 12 #include "ieee80211_i.h" 13 #include "mesh.h" 14 15 #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ) 16 #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ) 17 18 #define PP_OFFSET 1 /* Path Selection Protocol */ 19 #define PM_OFFSET 5 /* Path Selection Metric */ 20 #define CC_OFFSET 9 /* Congestion Control Mode */ 21 #define CAPAB_OFFSET 17 22 #define ACCEPT_PLINKS 0x80 23 24 int mesh_allocated; 25 static struct kmem_cache *rm_cache; 26 27 void ieee80211s_init(void) 28 { 29 mesh_pathtbl_init(); 30 mesh_allocated = 1; 31 rm_cache = kmem_cache_create("mesh_rmc", sizeof(struct rmc_entry), 32 0, 0, NULL); 33 } 34 35 void ieee80211s_stop(void) 36 { 37 mesh_pathtbl_unregister(); 38 kmem_cache_destroy(rm_cache); 39 } 40 41 static void ieee80211_mesh_housekeeping_timer(unsigned long data) 42 { 43 struct ieee80211_sub_if_data *sdata = (void *) data; 44 struct ieee80211_local *local = sdata->local; 45 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 46 47 ifmsh->housekeeping = true; 48 queue_work(local->hw.workqueue, &ifmsh->work); 49 } 50 51 /** 52 * mesh_matches_local - check if the config of a mesh point matches ours 53 * 54 * @ie: information elements of a management frame from the mesh peer 55 * @sdata: local mesh subif 56 * 57 * This function checks if the mesh configuration of a mesh point matches the 58 * local mesh configuration, i.e. if both nodes belong to the same mesh network. 59 */ 60 bool mesh_matches_local(struct ieee802_11_elems *ie, struct ieee80211_sub_if_data *sdata) 61 { 62 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 63 64 /* 65 * As support for each feature is added, check for matching 66 * - On mesh config capabilities 67 * - Power Save Support En 68 * - Sync support enabled 69 * - Sync support active 70 * - Sync support required from peer 71 * - MDA enabled 72 * - Power management control on fc 73 */ 74 if (ifmsh->mesh_id_len == ie->mesh_id_len && 75 memcmp(ifmsh->mesh_id, ie->mesh_id, ie->mesh_id_len) == 0 && 76 memcmp(ifmsh->mesh_pp_id, ie->mesh_config + PP_OFFSET, 4) == 0 && 77 memcmp(ifmsh->mesh_pm_id, ie->mesh_config + PM_OFFSET, 4) == 0 && 78 memcmp(ifmsh->mesh_cc_id, ie->mesh_config + CC_OFFSET, 4) == 0) 79 return true; 80 81 return false; 82 } 83 84 /** 85 * mesh_peer_accepts_plinks - check if an mp is willing to establish peer links 86 * 87 * @ie: information elements of a management frame from the mesh peer 88 */ 89 bool mesh_peer_accepts_plinks(struct ieee802_11_elems *ie) 90 { 91 return (*(ie->mesh_config + CAPAB_OFFSET) & ACCEPT_PLINKS) != 0; 92 } 93 94 /** 95 * mesh_accept_plinks_update: update accepting_plink in local mesh beacons 96 * 97 * @sdata: mesh interface in which mesh beacons are going to be updated 98 */ 99 void mesh_accept_plinks_update(struct ieee80211_sub_if_data *sdata) 100 { 101 bool free_plinks; 102 103 /* In case mesh_plink_free_count > 0 and mesh_plinktbl_capacity == 0, 104 * the mesh interface might be able to establish plinks with peers that 105 * are already on the table but are not on PLINK_ESTAB state. However, 106 * in general the mesh interface is not accepting peer link requests 107 * from new peers, and that must be reflected in the beacon 108 */ 109 free_plinks = mesh_plink_availables(sdata); 110 111 if (free_plinks != sdata->u.mesh.accepting_plinks) 112 ieee80211_mesh_housekeeping_timer((unsigned long) sdata); 113 } 114 115 void mesh_ids_set_default(struct ieee80211_if_mesh *sta) 116 { 117 u8 def_id[4] = {0x00, 0x0F, 0xAC, 0xff}; 118 119 memcpy(sta->mesh_pp_id, def_id, 4); 120 memcpy(sta->mesh_pm_id, def_id, 4); 121 memcpy(sta->mesh_cc_id, def_id, 4); 122 } 123 124 int mesh_rmc_init(struct ieee80211_sub_if_data *sdata) 125 { 126 int i; 127 128 sdata->u.mesh.rmc = kmalloc(sizeof(struct mesh_rmc), GFP_KERNEL); 129 if (!sdata->u.mesh.rmc) 130 return -ENOMEM; 131 sdata->u.mesh.rmc->idx_mask = RMC_BUCKETS - 1; 132 for (i = 0; i < RMC_BUCKETS; i++) 133 INIT_LIST_HEAD(&sdata->u.mesh.rmc->bucket[i].list); 134 return 0; 135 } 136 137 void mesh_rmc_free(struct ieee80211_sub_if_data *sdata) 138 { 139 struct mesh_rmc *rmc = sdata->u.mesh.rmc; 140 struct rmc_entry *p, *n; 141 int i; 142 143 if (!sdata->u.mesh.rmc) 144 return; 145 146 for (i = 0; i < RMC_BUCKETS; i++) 147 list_for_each_entry_safe(p, n, &rmc->bucket[i].list, list) { 148 list_del(&p->list); 149 kmem_cache_free(rm_cache, p); 150 } 151 152 kfree(rmc); 153 sdata->u.mesh.rmc = NULL; 154 } 155 156 /** 157 * mesh_rmc_check - Check frame in recent multicast cache and add if absent. 158 * 159 * @sa: source address 160 * @mesh_hdr: mesh_header 161 * 162 * Returns: 0 if the frame is not in the cache, nonzero otherwise. 163 * 164 * Checks using the source address and the mesh sequence number if we have 165 * received this frame lately. If the frame is not in the cache, it is added to 166 * it. 167 */ 168 int mesh_rmc_check(u8 *sa, struct ieee80211s_hdr *mesh_hdr, 169 struct ieee80211_sub_if_data *sdata) 170 { 171 struct mesh_rmc *rmc = sdata->u.mesh.rmc; 172 u32 seqnum = 0; 173 int entries = 0; 174 u8 idx; 175 struct rmc_entry *p, *n; 176 177 /* Don't care about endianness since only match matters */ 178 memcpy(&seqnum, &mesh_hdr->seqnum, sizeof(mesh_hdr->seqnum)); 179 idx = le32_to_cpu(mesh_hdr->seqnum) & rmc->idx_mask; 180 list_for_each_entry_safe(p, n, &rmc->bucket[idx].list, list) { 181 ++entries; 182 if (time_after(jiffies, p->exp_time) || 183 (entries == RMC_QUEUE_MAX_LEN)) { 184 list_del(&p->list); 185 kmem_cache_free(rm_cache, p); 186 --entries; 187 } else if ((seqnum == p->seqnum) 188 && (memcmp(sa, p->sa, ETH_ALEN) == 0)) 189 return -1; 190 } 191 192 p = kmem_cache_alloc(rm_cache, GFP_ATOMIC); 193 if (!p) { 194 printk(KERN_DEBUG "o11s: could not allocate RMC entry\n"); 195 return 0; 196 } 197 p->seqnum = seqnum; 198 p->exp_time = jiffies + RMC_TIMEOUT; 199 memcpy(p->sa, sa, ETH_ALEN); 200 list_add(&p->list, &rmc->bucket[idx].list); 201 return 0; 202 } 203 204 void mesh_mgmt_ies_add(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata) 205 { 206 struct ieee80211_local *local = sdata->local; 207 struct ieee80211_supported_band *sband; 208 u8 *pos; 209 int len, i, rate; 210 211 sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; 212 len = sband->n_bitrates; 213 if (len > 8) 214 len = 8; 215 pos = skb_put(skb, len + 2); 216 *pos++ = WLAN_EID_SUPP_RATES; 217 *pos++ = len; 218 for (i = 0; i < len; i++) { 219 rate = sband->bitrates[i].bitrate; 220 *pos++ = (u8) (rate / 5); 221 } 222 223 if (sband->n_bitrates > len) { 224 pos = skb_put(skb, sband->n_bitrates - len + 2); 225 *pos++ = WLAN_EID_EXT_SUPP_RATES; 226 *pos++ = sband->n_bitrates - len; 227 for (i = len; i < sband->n_bitrates; i++) { 228 rate = sband->bitrates[i].bitrate; 229 *pos++ = (u8) (rate / 5); 230 } 231 } 232 233 pos = skb_put(skb, 2 + sdata->u.mesh.mesh_id_len); 234 *pos++ = WLAN_EID_MESH_ID; 235 *pos++ = sdata->u.mesh.mesh_id_len; 236 if (sdata->u.mesh.mesh_id_len) 237 memcpy(pos, sdata->u.mesh.mesh_id, sdata->u.mesh.mesh_id_len); 238 239 pos = skb_put(skb, 21); 240 *pos++ = WLAN_EID_MESH_CONFIG; 241 *pos++ = MESH_CFG_LEN; 242 /* Version */ 243 *pos++ = 1; 244 245 /* Active path selection protocol ID */ 246 memcpy(pos, sdata->u.mesh.mesh_pp_id, 4); 247 pos += 4; 248 249 /* Active path selection metric ID */ 250 memcpy(pos, sdata->u.mesh.mesh_pm_id, 4); 251 pos += 4; 252 253 /* Congestion control mode identifier */ 254 memcpy(pos, sdata->u.mesh.mesh_cc_id, 4); 255 pos += 4; 256 257 /* Channel precedence: 258 * Not running simple channel unification protocol 259 */ 260 memset(pos, 0x00, 4); 261 pos += 4; 262 263 /* Mesh capability */ 264 sdata->u.mesh.accepting_plinks = mesh_plink_availables(sdata); 265 *pos++ = sdata->u.mesh.accepting_plinks ? ACCEPT_PLINKS : 0x00; 266 *pos++ = 0x00; 267 268 return; 269 } 270 271 u32 mesh_table_hash(u8 *addr, struct ieee80211_sub_if_data *sdata, struct mesh_table *tbl) 272 { 273 /* Use last four bytes of hw addr and interface index as hash index */ 274 return jhash_2words(*(u32 *)(addr+2), sdata->dev->ifindex, tbl->hash_rnd) 275 & tbl->hash_mask; 276 } 277 278 u8 mesh_id_hash(u8 *mesh_id, int mesh_id_len) 279 { 280 if (!mesh_id_len) 281 return 1; 282 else if (mesh_id_len == 1) 283 return (u8) mesh_id[0]; 284 else 285 return (u8) (mesh_id[0] + 2 * mesh_id[1]); 286 } 287 288 struct mesh_table *mesh_table_alloc(int size_order) 289 { 290 int i; 291 struct mesh_table *newtbl; 292 293 newtbl = kmalloc(sizeof(struct mesh_table), GFP_KERNEL); 294 if (!newtbl) 295 return NULL; 296 297 newtbl->hash_buckets = kzalloc(sizeof(struct hlist_head) * 298 (1 << size_order), GFP_KERNEL); 299 300 if (!newtbl->hash_buckets) { 301 kfree(newtbl); 302 return NULL; 303 } 304 305 newtbl->hashwlock = kmalloc(sizeof(spinlock_t) * 306 (1 << size_order), GFP_KERNEL); 307 if (!newtbl->hashwlock) { 308 kfree(newtbl->hash_buckets); 309 kfree(newtbl); 310 return NULL; 311 } 312 313 newtbl->size_order = size_order; 314 newtbl->hash_mask = (1 << size_order) - 1; 315 atomic_set(&newtbl->entries, 0); 316 get_random_bytes(&newtbl->hash_rnd, 317 sizeof(newtbl->hash_rnd)); 318 for (i = 0; i <= newtbl->hash_mask; i++) 319 spin_lock_init(&newtbl->hashwlock[i]); 320 321 return newtbl; 322 } 323 324 static void __mesh_table_free(struct mesh_table *tbl) 325 { 326 kfree(tbl->hash_buckets); 327 kfree(tbl->hashwlock); 328 kfree(tbl); 329 } 330 331 void mesh_table_free(struct mesh_table *tbl, bool free_leafs) 332 { 333 struct hlist_head *mesh_hash; 334 struct hlist_node *p, *q; 335 int i; 336 337 mesh_hash = tbl->hash_buckets; 338 for (i = 0; i <= tbl->hash_mask; i++) { 339 spin_lock(&tbl->hashwlock[i]); 340 hlist_for_each_safe(p, q, &mesh_hash[i]) { 341 tbl->free_node(p, free_leafs); 342 atomic_dec(&tbl->entries); 343 } 344 spin_unlock(&tbl->hashwlock[i]); 345 } 346 __mesh_table_free(tbl); 347 } 348 349 static void ieee80211_mesh_path_timer(unsigned long data) 350 { 351 struct ieee80211_sub_if_data *sdata = 352 (struct ieee80211_sub_if_data *) data; 353 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 354 struct ieee80211_local *local = sdata->local; 355 356 queue_work(local->hw.workqueue, &ifmsh->work); 357 } 358 359 struct mesh_table *mesh_table_grow(struct mesh_table *tbl) 360 { 361 struct mesh_table *newtbl; 362 struct hlist_head *oldhash; 363 struct hlist_node *p, *q; 364 int i; 365 366 if (atomic_read(&tbl->entries) 367 < tbl->mean_chain_len * (tbl->hash_mask + 1)) 368 goto endgrow; 369 370 newtbl = mesh_table_alloc(tbl->size_order + 1); 371 if (!newtbl) 372 goto endgrow; 373 374 newtbl->free_node = tbl->free_node; 375 newtbl->mean_chain_len = tbl->mean_chain_len; 376 newtbl->copy_node = tbl->copy_node; 377 atomic_set(&newtbl->entries, atomic_read(&tbl->entries)); 378 379 oldhash = tbl->hash_buckets; 380 for (i = 0; i <= tbl->hash_mask; i++) 381 hlist_for_each(p, &oldhash[i]) 382 if (tbl->copy_node(p, newtbl) < 0) 383 goto errcopy; 384 385 return newtbl; 386 387 errcopy: 388 for (i = 0; i <= newtbl->hash_mask; i++) { 389 hlist_for_each_safe(p, q, &newtbl->hash_buckets[i]) 390 tbl->free_node(p, 0); 391 } 392 __mesh_table_free(newtbl); 393 endgrow: 394 return NULL; 395 } 396 397 /** 398 * ieee80211_new_mesh_header - create a new mesh header 399 * @meshhdr: uninitialized mesh header 400 * @sdata: mesh interface to be used 401 * 402 * Return the header length. 403 */ 404 int ieee80211_new_mesh_header(struct ieee80211s_hdr *meshhdr, 405 struct ieee80211_sub_if_data *sdata) 406 { 407 meshhdr->flags = 0; 408 meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; 409 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum); 410 sdata->u.mesh.mesh_seqnum++; 411 412 return 6; 413 } 414 415 static void ieee80211_mesh_housekeeping(struct ieee80211_sub_if_data *sdata, 416 struct ieee80211_if_mesh *ifmsh) 417 { 418 bool free_plinks; 419 420 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 421 printk(KERN_DEBUG "%s: running mesh housekeeping\n", 422 sdata->dev->name); 423 #endif 424 425 ieee80211_sta_expire(sdata, IEEE80211_MESH_PEER_INACTIVITY_LIMIT); 426 mesh_path_expire(sdata); 427 428 free_plinks = mesh_plink_availables(sdata); 429 if (free_plinks != sdata->u.mesh.accepting_plinks) 430 ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON); 431 432 ifmsh->housekeeping = false; 433 mod_timer(&ifmsh->housekeeping_timer, 434 round_jiffies(jiffies + IEEE80211_MESH_HOUSEKEEPING_INTERVAL)); 435 } 436 437 438 void ieee80211_start_mesh(struct ieee80211_sub_if_data *sdata) 439 { 440 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 441 struct ieee80211_local *local = sdata->local; 442 443 ifmsh->housekeeping = true; 444 queue_work(local->hw.workqueue, &ifmsh->work); 445 ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON); 446 } 447 448 void ieee80211_stop_mesh(struct ieee80211_sub_if_data *sdata) 449 { 450 del_timer_sync(&sdata->u.mesh.housekeeping_timer); 451 /* 452 * If the timer fired while we waited for it, it will have 453 * requeued the work. Now the work will be running again 454 * but will not rearm the timer again because it checks 455 * whether the interface is running, which, at this point, 456 * it no longer is. 457 */ 458 cancel_work_sync(&sdata->u.mesh.work); 459 460 /* 461 * When we get here, the interface is marked down. 462 * Call synchronize_rcu() to wait for the RX path 463 * should it be using the interface and enqueuing 464 * frames at this very time on another CPU. 465 */ 466 synchronize_rcu(); 467 skb_queue_purge(&sdata->u.mesh.skb_queue); 468 } 469 470 static void ieee80211_mesh_rx_bcn_presp(struct ieee80211_sub_if_data *sdata, 471 u16 stype, 472 struct ieee80211_mgmt *mgmt, 473 size_t len, 474 struct ieee80211_rx_status *rx_status) 475 { 476 struct ieee80211_local *local= sdata->local; 477 struct ieee802_11_elems elems; 478 struct ieee80211_channel *channel; 479 u64 supp_rates = 0; 480 size_t baselen; 481 int freq; 482 enum ieee80211_band band = rx_status->band; 483 484 /* ignore ProbeResp to foreign address */ 485 if (stype == IEEE80211_STYPE_PROBE_RESP && 486 compare_ether_addr(mgmt->da, sdata->dev->dev_addr)) 487 return; 488 489 baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; 490 if (baselen > len) 491 return; 492 493 ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen, 494 &elems); 495 496 if (elems.ds_params && elems.ds_params_len == 1) 497 freq = ieee80211_channel_to_frequency(elems.ds_params[0]); 498 else 499 freq = rx_status->freq; 500 501 channel = ieee80211_get_channel(local->hw.wiphy, freq); 502 503 if (!channel || channel->flags & IEEE80211_CHAN_DISABLED) 504 return; 505 506 if (elems.mesh_id && elems.mesh_config && 507 mesh_matches_local(&elems, sdata)) { 508 supp_rates = ieee80211_sta_get_rates(local, &elems, band); 509 510 mesh_neighbour_update(mgmt->sa, supp_rates, sdata, 511 mesh_peer_accepts_plinks(&elems)); 512 } 513 } 514 515 static void ieee80211_mesh_rx_mgmt_action(struct ieee80211_sub_if_data *sdata, 516 struct ieee80211_mgmt *mgmt, 517 size_t len, 518 struct ieee80211_rx_status *rx_status) 519 { 520 switch (mgmt->u.action.category) { 521 case PLINK_CATEGORY: 522 mesh_rx_plink_frame(sdata, mgmt, len, rx_status); 523 break; 524 case MESH_PATH_SEL_CATEGORY: 525 mesh_rx_path_sel_frame(sdata, mgmt, len); 526 break; 527 } 528 } 529 530 static void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, 531 struct sk_buff *skb) 532 { 533 struct ieee80211_rx_status *rx_status; 534 struct ieee80211_if_mesh *ifmsh; 535 struct ieee80211_mgmt *mgmt; 536 u16 stype; 537 538 ifmsh = &sdata->u.mesh; 539 540 rx_status = (struct ieee80211_rx_status *) skb->cb; 541 mgmt = (struct ieee80211_mgmt *) skb->data; 542 stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE; 543 544 switch (stype) { 545 case IEEE80211_STYPE_PROBE_RESP: 546 case IEEE80211_STYPE_BEACON: 547 ieee80211_mesh_rx_bcn_presp(sdata, stype, mgmt, skb->len, 548 rx_status); 549 break; 550 case IEEE80211_STYPE_ACTION: 551 ieee80211_mesh_rx_mgmt_action(sdata, mgmt, skb->len, rx_status); 552 break; 553 } 554 555 kfree_skb(skb); 556 } 557 558 static void ieee80211_mesh_work(struct work_struct *work) 559 { 560 struct ieee80211_sub_if_data *sdata = 561 container_of(work, struct ieee80211_sub_if_data, u.mesh.work); 562 struct ieee80211_local *local = sdata->local; 563 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 564 struct sk_buff *skb; 565 566 if (!netif_running(sdata->dev)) 567 return; 568 569 if (local->sw_scanning || local->hw_scanning) 570 return; 571 572 while ((skb = skb_dequeue(&ifmsh->skb_queue))) 573 ieee80211_mesh_rx_queued_mgmt(sdata, skb); 574 575 if (ifmsh->preq_queue_len && 576 time_after(jiffies, 577 ifmsh->last_preq + msecs_to_jiffies(ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval))) 578 mesh_path_start_discovery(sdata); 579 580 if (ifmsh->housekeeping) 581 ieee80211_mesh_housekeeping(sdata, ifmsh); 582 } 583 584 void ieee80211_mesh_notify_scan_completed(struct ieee80211_local *local) 585 { 586 struct ieee80211_sub_if_data *sdata; 587 588 rcu_read_lock(); 589 list_for_each_entry_rcu(sdata, &local->interfaces, list) 590 if (ieee80211_vif_is_mesh(&sdata->vif)) 591 queue_work(local->hw.workqueue, &sdata->u.mesh.work); 592 rcu_read_unlock(); 593 } 594 595 void ieee80211_mesh_init_sdata(struct ieee80211_sub_if_data *sdata) 596 { 597 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 598 599 INIT_WORK(&ifmsh->work, ieee80211_mesh_work); 600 setup_timer(&ifmsh->housekeeping_timer, 601 ieee80211_mesh_housekeeping_timer, 602 (unsigned long) sdata); 603 skb_queue_head_init(&sdata->u.mesh.skb_queue); 604 605 ifmsh->mshcfg.dot11MeshRetryTimeout = MESH_RET_T; 606 ifmsh->mshcfg.dot11MeshConfirmTimeout = MESH_CONF_T; 607 ifmsh->mshcfg.dot11MeshHoldingTimeout = MESH_HOLD_T; 608 ifmsh->mshcfg.dot11MeshMaxRetries = MESH_MAX_RETR; 609 ifmsh->mshcfg.dot11MeshTTL = MESH_TTL; 610 ifmsh->mshcfg.auto_open_plinks = true; 611 ifmsh->mshcfg.dot11MeshMaxPeerLinks = 612 MESH_MAX_ESTAB_PLINKS; 613 ifmsh->mshcfg.dot11MeshHWMPactivePathTimeout = 614 MESH_PATH_TIMEOUT; 615 ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval = 616 MESH_PREQ_MIN_INT; 617 ifmsh->mshcfg.dot11MeshHWMPnetDiameterTraversalTime = 618 MESH_DIAM_TRAVERSAL_TIME; 619 ifmsh->mshcfg.dot11MeshHWMPmaxPREQretries = 620 MESH_MAX_PREQ_RETRIES; 621 ifmsh->mshcfg.path_refresh_time = 622 MESH_PATH_REFRESH_TIME; 623 ifmsh->mshcfg.min_discovery_timeout = 624 MESH_MIN_DISCOVERY_TIMEOUT; 625 ifmsh->accepting_plinks = true; 626 ifmsh->preq_id = 0; 627 ifmsh->dsn = 0; 628 atomic_set(&ifmsh->mpaths, 0); 629 mesh_rmc_init(sdata); 630 ifmsh->last_preq = jiffies; 631 /* Allocate all mesh structures when creating the first mesh interface. */ 632 if (!mesh_allocated) 633 ieee80211s_init(); 634 mesh_ids_set_default(ifmsh); 635 setup_timer(&ifmsh->mesh_path_timer, 636 ieee80211_mesh_path_timer, 637 (unsigned long) sdata); 638 INIT_LIST_HEAD(&ifmsh->preq_queue.list); 639 spin_lock_init(&ifmsh->mesh_preq_queue_lock); 640 } 641 642 ieee80211_rx_result 643 ieee80211_mesh_rx_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, 644 struct ieee80211_rx_status *rx_status) 645 { 646 struct ieee80211_local *local = sdata->local; 647 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 648 struct ieee80211_mgmt *mgmt; 649 u16 fc; 650 651 if (skb->len < 24) 652 return RX_DROP_MONITOR; 653 654 mgmt = (struct ieee80211_mgmt *) skb->data; 655 fc = le16_to_cpu(mgmt->frame_control); 656 657 switch (fc & IEEE80211_FCTL_STYPE) { 658 case IEEE80211_STYPE_PROBE_RESP: 659 case IEEE80211_STYPE_BEACON: 660 case IEEE80211_STYPE_ACTION: 661 memcpy(skb->cb, rx_status, sizeof(*rx_status)); 662 skb_queue_tail(&ifmsh->skb_queue, skb); 663 queue_work(local->hw.workqueue, &ifmsh->work); 664 return RX_QUEUED; 665 } 666 667 return RX_CONTINUE; 668 } 669