xref: /linux/net/mac80211/key.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29 
30 
31 /**
32  * DOC: Key handling basics
33  *
34  * Key handling in mac80211 is done based on per-interface (sub_if_data)
35  * keys and per-station keys. Since each station belongs to an interface,
36  * each station key also belongs to that interface.
37  *
38  * Hardware acceleration is done on a best-effort basis for algorithms
39  * that are implemented in software,  for each key the hardware is asked
40  * to enable that key for offloading but if it cannot do that the key is
41  * simply kept for software encryption (unless it is for an algorithm
42  * that isn't implemented in software).
43  * There is currently no way of knowing whether a key is handled in SW
44  * or HW except by looking into debugfs.
45  *
46  * All key management is internally protected by a mutex. Within all
47  * other parts of mac80211, key references are, just as STA structure
48  * references, protected by RCU. Note, however, that some things are
49  * unprotected, namely the key->sta dereferences within the hardware
50  * acceleration functions. This means that sta_info_destroy() must
51  * remove the key which waits for an RCU grace period.
52  */
53 
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55 
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58 	lockdep_assert_held(&local->key_mtx);
59 }
60 
61 static void
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63 {
64 	struct ieee80211_sub_if_data *vlan;
65 
66 	if (sdata->vif.type != NL80211_IFTYPE_AP)
67 		return;
68 
69 	/* crypto_tx_tailroom_needed_cnt is protected by this */
70 	assert_key_lock(sdata->local);
71 
72 	rcu_read_lock();
73 
74 	list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 		vlan->crypto_tx_tailroom_needed_cnt += delta;
76 
77 	rcu_read_unlock();
78 }
79 
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
81 {
82 	/*
83 	 * When this count is zero, SKB resizing for allocating tailroom
84 	 * for IV or MMIC is skipped. But, this check has created two race
85 	 * cases in xmit path while transiting from zero count to one:
86 	 *
87 	 * 1. SKB resize was skipped because no key was added but just before
88 	 * the xmit key is added and SW encryption kicks off.
89 	 *
90 	 * 2. SKB resize was skipped because all the keys were hw planted but
91 	 * just before xmit one of the key is deleted and SW encryption kicks
92 	 * off.
93 	 *
94 	 * In both the above case SW encryption will find not enough space for
95 	 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 	 *
97 	 * Solution has been explained at
98 	 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
99 	 */
100 
101 	assert_key_lock(sdata->local);
102 
103 	update_vlan_tailroom_need_count(sdata, 1);
104 
105 	if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 		/*
107 		 * Flush all XMIT packets currently using HW encryption or no
108 		 * encryption at all if the count transition is from 0 -> 1.
109 		 */
110 		synchronize_net();
111 	}
112 }
113 
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 					 int delta)
116 {
117 	assert_key_lock(sdata->local);
118 
119 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120 
121 	update_vlan_tailroom_need_count(sdata, -delta);
122 	sdata->crypto_tx_tailroom_needed_cnt -= delta;
123 }
124 
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126 {
127 	struct ieee80211_sub_if_data *sdata;
128 	struct sta_info *sta;
129 	int ret = -EOPNOTSUPP;
130 
131 	might_sleep();
132 
133 	if (key->flags & KEY_FLAG_TAINTED) {
134 		/* If we get here, it's during resume and the key is
135 		 * tainted so shouldn't be used/programmed any more.
136 		 * However, its flags may still indicate that it was
137 		 * programmed into the device (since we're in resume)
138 		 * so clear that flag now to avoid trying to remove
139 		 * it again later.
140 		 */
141 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
142 		return -EINVAL;
143 	}
144 
145 	if (!key->local->ops->set_key)
146 		goto out_unsupported;
147 
148 	assert_key_lock(key->local);
149 
150 	sta = key->sta;
151 
152 	/*
153 	 * If this is a per-STA GTK, check if it
154 	 * is supported; if not, return.
155 	 */
156 	if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
157 	    !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
158 		goto out_unsupported;
159 
160 	if (sta && !sta->uploaded)
161 		goto out_unsupported;
162 
163 	sdata = key->sdata;
164 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
165 		/*
166 		 * The driver doesn't know anything about VLAN interfaces.
167 		 * Hence, don't send GTKs for VLAN interfaces to the driver.
168 		 */
169 		if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
170 			goto out_unsupported;
171 	}
172 
173 	ret = drv_set_key(key->local, SET_KEY, sdata,
174 			  sta ? &sta->sta : NULL, &key->conf);
175 
176 	if (!ret) {
177 		key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
178 
179 		if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
180 		      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
181 			decrease_tailroom_need_count(sdata, 1);
182 
183 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
184 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
185 
186 		return 0;
187 	}
188 
189 	if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
190 		sdata_err(sdata,
191 			  "failed to set key (%d, %pM) to hardware (%d)\n",
192 			  key->conf.keyidx,
193 			  sta ? sta->sta.addr : bcast_addr, ret);
194 
195  out_unsupported:
196 	switch (key->conf.cipher) {
197 	case WLAN_CIPHER_SUITE_WEP40:
198 	case WLAN_CIPHER_SUITE_WEP104:
199 	case WLAN_CIPHER_SUITE_TKIP:
200 	case WLAN_CIPHER_SUITE_CCMP:
201 	case WLAN_CIPHER_SUITE_CCMP_256:
202 	case WLAN_CIPHER_SUITE_AES_CMAC:
203 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
204 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
205 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
206 	case WLAN_CIPHER_SUITE_GCMP:
207 	case WLAN_CIPHER_SUITE_GCMP_256:
208 		/* all of these we can do in software - if driver can */
209 		if (ret == 1)
210 			return 0;
211 		if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
212 			return -EINVAL;
213 		return 0;
214 	default:
215 		return -EINVAL;
216 	}
217 }
218 
219 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
220 {
221 	struct ieee80211_sub_if_data *sdata;
222 	struct sta_info *sta;
223 	int ret;
224 
225 	might_sleep();
226 
227 	if (!key || !key->local->ops->set_key)
228 		return;
229 
230 	assert_key_lock(key->local);
231 
232 	if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
233 		return;
234 
235 	sta = key->sta;
236 	sdata = key->sdata;
237 
238 	if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
239 	      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
240 		increment_tailroom_need_count(sdata);
241 
242 	ret = drv_set_key(key->local, DISABLE_KEY, sdata,
243 			  sta ? &sta->sta : NULL, &key->conf);
244 
245 	if (ret)
246 		sdata_err(sdata,
247 			  "failed to remove key (%d, %pM) from hardware (%d)\n",
248 			  key->conf.keyidx,
249 			  sta ? sta->sta.addr : bcast_addr, ret);
250 
251 	key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
252 }
253 
254 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
255 					int idx, bool uni, bool multi)
256 {
257 	struct ieee80211_key *key = NULL;
258 
259 	assert_key_lock(sdata->local);
260 
261 	if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
262 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
263 
264 	if (uni) {
265 		rcu_assign_pointer(sdata->default_unicast_key, key);
266 		ieee80211_check_fast_xmit_iface(sdata);
267 		drv_set_default_unicast_key(sdata->local, sdata, idx);
268 	}
269 
270 	if (multi)
271 		rcu_assign_pointer(sdata->default_multicast_key, key);
272 
273 	ieee80211_debugfs_key_update_default(sdata);
274 }
275 
276 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
277 			       bool uni, bool multi)
278 {
279 	mutex_lock(&sdata->local->key_mtx);
280 	__ieee80211_set_default_key(sdata, idx, uni, multi);
281 	mutex_unlock(&sdata->local->key_mtx);
282 }
283 
284 static void
285 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
286 {
287 	struct ieee80211_key *key = NULL;
288 
289 	assert_key_lock(sdata->local);
290 
291 	if (idx >= NUM_DEFAULT_KEYS &&
292 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
293 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
294 
295 	rcu_assign_pointer(sdata->default_mgmt_key, key);
296 
297 	ieee80211_debugfs_key_update_default(sdata);
298 }
299 
300 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
301 				    int idx)
302 {
303 	mutex_lock(&sdata->local->key_mtx);
304 	__ieee80211_set_default_mgmt_key(sdata, idx);
305 	mutex_unlock(&sdata->local->key_mtx);
306 }
307 
308 
309 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
310 				  struct sta_info *sta,
311 				  bool pairwise,
312 				  struct ieee80211_key *old,
313 				  struct ieee80211_key *new)
314 {
315 	int idx;
316 	bool defunikey, defmultikey, defmgmtkey;
317 
318 	/* caller must provide at least one old/new */
319 	if (WARN_ON(!new && !old))
320 		return;
321 
322 	if (new)
323 		list_add_tail(&new->list, &sdata->key_list);
324 
325 	WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
326 
327 	if (old)
328 		idx = old->conf.keyidx;
329 	else
330 		idx = new->conf.keyidx;
331 
332 	if (sta) {
333 		if (pairwise) {
334 			rcu_assign_pointer(sta->ptk[idx], new);
335 			sta->ptk_idx = idx;
336 			ieee80211_check_fast_xmit(sta);
337 		} else {
338 			rcu_assign_pointer(sta->gtk[idx], new);
339 		}
340 	} else {
341 		defunikey = old &&
342 			old == key_mtx_dereference(sdata->local,
343 						sdata->default_unicast_key);
344 		defmultikey = old &&
345 			old == key_mtx_dereference(sdata->local,
346 						sdata->default_multicast_key);
347 		defmgmtkey = old &&
348 			old == key_mtx_dereference(sdata->local,
349 						sdata->default_mgmt_key);
350 
351 		if (defunikey && !new)
352 			__ieee80211_set_default_key(sdata, -1, true, false);
353 		if (defmultikey && !new)
354 			__ieee80211_set_default_key(sdata, -1, false, true);
355 		if (defmgmtkey && !new)
356 			__ieee80211_set_default_mgmt_key(sdata, -1);
357 
358 		rcu_assign_pointer(sdata->keys[idx], new);
359 		if (defunikey && new)
360 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
361 						    true, false);
362 		if (defmultikey && new)
363 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
364 						    false, true);
365 		if (defmgmtkey && new)
366 			__ieee80211_set_default_mgmt_key(sdata,
367 							 new->conf.keyidx);
368 	}
369 
370 	if (old)
371 		list_del(&old->list);
372 }
373 
374 struct ieee80211_key *
375 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
376 		    const u8 *key_data,
377 		    size_t seq_len, const u8 *seq,
378 		    const struct ieee80211_cipher_scheme *cs)
379 {
380 	struct ieee80211_key *key;
381 	int i, j, err;
382 
383 	if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
384 		return ERR_PTR(-EINVAL);
385 
386 	key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
387 	if (!key)
388 		return ERR_PTR(-ENOMEM);
389 
390 	/*
391 	 * Default to software encryption; we'll later upload the
392 	 * key to the hardware if possible.
393 	 */
394 	key->conf.flags = 0;
395 	key->flags = 0;
396 
397 	key->conf.cipher = cipher;
398 	key->conf.keyidx = idx;
399 	key->conf.keylen = key_len;
400 	switch (cipher) {
401 	case WLAN_CIPHER_SUITE_WEP40:
402 	case WLAN_CIPHER_SUITE_WEP104:
403 		key->conf.iv_len = IEEE80211_WEP_IV_LEN;
404 		key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
405 		break;
406 	case WLAN_CIPHER_SUITE_TKIP:
407 		key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
408 		key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
409 		if (seq) {
410 			for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
411 				key->u.tkip.rx[i].iv32 =
412 					get_unaligned_le32(&seq[2]);
413 				key->u.tkip.rx[i].iv16 =
414 					get_unaligned_le16(seq);
415 			}
416 		}
417 		spin_lock_init(&key->u.tkip.txlock);
418 		break;
419 	case WLAN_CIPHER_SUITE_CCMP:
420 		key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
421 		key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
422 		if (seq) {
423 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
424 				for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
425 					key->u.ccmp.rx_pn[i][j] =
426 						seq[IEEE80211_CCMP_PN_LEN - j - 1];
427 		}
428 		/*
429 		 * Initialize AES key state here as an optimization so that
430 		 * it does not need to be initialized for every packet.
431 		 */
432 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
433 			key_data, key_len, IEEE80211_CCMP_MIC_LEN);
434 		if (IS_ERR(key->u.ccmp.tfm)) {
435 			err = PTR_ERR(key->u.ccmp.tfm);
436 			kfree(key);
437 			return ERR_PTR(err);
438 		}
439 		break;
440 	case WLAN_CIPHER_SUITE_CCMP_256:
441 		key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
442 		key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
443 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
444 			for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
445 				key->u.ccmp.rx_pn[i][j] =
446 					seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
447 		/* Initialize AES key state here as an optimization so that
448 		 * it does not need to be initialized for every packet.
449 		 */
450 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
451 			key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
452 		if (IS_ERR(key->u.ccmp.tfm)) {
453 			err = PTR_ERR(key->u.ccmp.tfm);
454 			kfree(key);
455 			return ERR_PTR(err);
456 		}
457 		break;
458 	case WLAN_CIPHER_SUITE_AES_CMAC:
459 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
460 		key->conf.iv_len = 0;
461 		if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
462 			key->conf.icv_len = sizeof(struct ieee80211_mmie);
463 		else
464 			key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
465 		if (seq)
466 			for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
467 				key->u.aes_cmac.rx_pn[j] =
468 					seq[IEEE80211_CMAC_PN_LEN - j - 1];
469 		/*
470 		 * Initialize AES key state here as an optimization so that
471 		 * it does not need to be initialized for every packet.
472 		 */
473 		key->u.aes_cmac.tfm =
474 			ieee80211_aes_cmac_key_setup(key_data, key_len);
475 		if (IS_ERR(key->u.aes_cmac.tfm)) {
476 			err = PTR_ERR(key->u.aes_cmac.tfm);
477 			kfree(key);
478 			return ERR_PTR(err);
479 		}
480 		break;
481 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
482 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
483 		key->conf.iv_len = 0;
484 		key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
485 		if (seq)
486 			for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
487 				key->u.aes_gmac.rx_pn[j] =
488 					seq[IEEE80211_GMAC_PN_LEN - j - 1];
489 		/* Initialize AES key state here as an optimization so that
490 		 * it does not need to be initialized for every packet.
491 		 */
492 		key->u.aes_gmac.tfm =
493 			ieee80211_aes_gmac_key_setup(key_data, key_len);
494 		if (IS_ERR(key->u.aes_gmac.tfm)) {
495 			err = PTR_ERR(key->u.aes_gmac.tfm);
496 			kfree(key);
497 			return ERR_PTR(err);
498 		}
499 		break;
500 	case WLAN_CIPHER_SUITE_GCMP:
501 	case WLAN_CIPHER_SUITE_GCMP_256:
502 		key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
503 		key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
504 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
505 			for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
506 				key->u.gcmp.rx_pn[i][j] =
507 					seq[IEEE80211_GCMP_PN_LEN - j - 1];
508 		/* Initialize AES key state here as an optimization so that
509 		 * it does not need to be initialized for every packet.
510 		 */
511 		key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
512 								      key_len);
513 		if (IS_ERR(key->u.gcmp.tfm)) {
514 			err = PTR_ERR(key->u.gcmp.tfm);
515 			kfree(key);
516 			return ERR_PTR(err);
517 		}
518 		break;
519 	default:
520 		if (cs) {
521 			if (seq_len && seq_len != cs->pn_len) {
522 				kfree(key);
523 				return ERR_PTR(-EINVAL);
524 			}
525 
526 			key->conf.iv_len = cs->hdr_len;
527 			key->conf.icv_len = cs->mic_len;
528 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
529 				for (j = 0; j < seq_len; j++)
530 					key->u.gen.rx_pn[i][j] =
531 							seq[seq_len - j - 1];
532 			key->flags |= KEY_FLAG_CIPHER_SCHEME;
533 		}
534 	}
535 	memcpy(key->conf.key, key_data, key_len);
536 	INIT_LIST_HEAD(&key->list);
537 
538 	return key;
539 }
540 
541 static void ieee80211_key_free_common(struct ieee80211_key *key)
542 {
543 	switch (key->conf.cipher) {
544 	case WLAN_CIPHER_SUITE_CCMP:
545 	case WLAN_CIPHER_SUITE_CCMP_256:
546 		ieee80211_aes_key_free(key->u.ccmp.tfm);
547 		break;
548 	case WLAN_CIPHER_SUITE_AES_CMAC:
549 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
550 		ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
551 		break;
552 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
553 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
554 		ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
555 		break;
556 	case WLAN_CIPHER_SUITE_GCMP:
557 	case WLAN_CIPHER_SUITE_GCMP_256:
558 		ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
559 		break;
560 	}
561 	kzfree(key);
562 }
563 
564 static void __ieee80211_key_destroy(struct ieee80211_key *key,
565 				    bool delay_tailroom)
566 {
567 	if (key->local)
568 		ieee80211_key_disable_hw_accel(key);
569 
570 	if (key->local) {
571 		struct ieee80211_sub_if_data *sdata = key->sdata;
572 
573 		ieee80211_debugfs_key_remove(key);
574 
575 		if (delay_tailroom) {
576 			/* see ieee80211_delayed_tailroom_dec */
577 			sdata->crypto_tx_tailroom_pending_dec++;
578 			schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
579 					      HZ/2);
580 		} else {
581 			decrease_tailroom_need_count(sdata, 1);
582 		}
583 	}
584 
585 	ieee80211_key_free_common(key);
586 }
587 
588 static void ieee80211_key_destroy(struct ieee80211_key *key,
589 				  bool delay_tailroom)
590 {
591 	if (!key)
592 		return;
593 
594 	/*
595 	 * Synchronize so the TX path can no longer be using
596 	 * this key before we free/remove it.
597 	 */
598 	synchronize_net();
599 
600 	__ieee80211_key_destroy(key, delay_tailroom);
601 }
602 
603 void ieee80211_key_free_unused(struct ieee80211_key *key)
604 {
605 	WARN_ON(key->sdata || key->local);
606 	ieee80211_key_free_common(key);
607 }
608 
609 int ieee80211_key_link(struct ieee80211_key *key,
610 		       struct ieee80211_sub_if_data *sdata,
611 		       struct sta_info *sta)
612 {
613 	struct ieee80211_local *local = sdata->local;
614 	struct ieee80211_key *old_key;
615 	int idx, ret;
616 	bool pairwise;
617 
618 	pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
619 	idx = key->conf.keyidx;
620 	key->local = sdata->local;
621 	key->sdata = sdata;
622 	key->sta = sta;
623 
624 	mutex_lock(&sdata->local->key_mtx);
625 
626 	if (sta && pairwise)
627 		old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
628 	else if (sta)
629 		old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
630 	else
631 		old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
632 
633 	increment_tailroom_need_count(sdata);
634 
635 	ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
636 	ieee80211_key_destroy(old_key, true);
637 
638 	ieee80211_debugfs_key_add(key);
639 
640 	if (!local->wowlan) {
641 		ret = ieee80211_key_enable_hw_accel(key);
642 		if (ret)
643 			ieee80211_key_free(key, true);
644 	} else {
645 		ret = 0;
646 	}
647 
648 	mutex_unlock(&sdata->local->key_mtx);
649 
650 	return ret;
651 }
652 
653 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
654 {
655 	if (!key)
656 		return;
657 
658 	/*
659 	 * Replace key with nothingness if it was ever used.
660 	 */
661 	if (key->sdata)
662 		ieee80211_key_replace(key->sdata, key->sta,
663 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
664 				key, NULL);
665 	ieee80211_key_destroy(key, delay_tailroom);
666 }
667 
668 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
669 {
670 	struct ieee80211_key *key;
671 	struct ieee80211_sub_if_data *vlan;
672 
673 	ASSERT_RTNL();
674 
675 	if (WARN_ON(!ieee80211_sdata_running(sdata)))
676 		return;
677 
678 	mutex_lock(&sdata->local->key_mtx);
679 
680 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
681 		     sdata->crypto_tx_tailroom_pending_dec);
682 
683 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
684 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
685 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
686 				     vlan->crypto_tx_tailroom_pending_dec);
687 	}
688 
689 	list_for_each_entry(key, &sdata->key_list, list) {
690 		increment_tailroom_need_count(sdata);
691 		ieee80211_key_enable_hw_accel(key);
692 	}
693 
694 	mutex_unlock(&sdata->local->key_mtx);
695 }
696 
697 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
698 {
699 	struct ieee80211_sub_if_data *vlan;
700 
701 	mutex_lock(&sdata->local->key_mtx);
702 
703 	sdata->crypto_tx_tailroom_needed_cnt = 0;
704 
705 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
706 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
707 			vlan->crypto_tx_tailroom_needed_cnt = 0;
708 	}
709 
710 	mutex_unlock(&sdata->local->key_mtx);
711 }
712 
713 void ieee80211_iter_keys(struct ieee80211_hw *hw,
714 			 struct ieee80211_vif *vif,
715 			 void (*iter)(struct ieee80211_hw *hw,
716 				      struct ieee80211_vif *vif,
717 				      struct ieee80211_sta *sta,
718 				      struct ieee80211_key_conf *key,
719 				      void *data),
720 			 void *iter_data)
721 {
722 	struct ieee80211_local *local = hw_to_local(hw);
723 	struct ieee80211_key *key, *tmp;
724 	struct ieee80211_sub_if_data *sdata;
725 
726 	ASSERT_RTNL();
727 
728 	mutex_lock(&local->key_mtx);
729 	if (vif) {
730 		sdata = vif_to_sdata(vif);
731 		list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
732 			iter(hw, &sdata->vif,
733 			     key->sta ? &key->sta->sta : NULL,
734 			     &key->conf, iter_data);
735 	} else {
736 		list_for_each_entry(sdata, &local->interfaces, list)
737 			list_for_each_entry_safe(key, tmp,
738 						 &sdata->key_list, list)
739 				iter(hw, &sdata->vif,
740 				     key->sta ? &key->sta->sta : NULL,
741 				     &key->conf, iter_data);
742 	}
743 	mutex_unlock(&local->key_mtx);
744 }
745 EXPORT_SYMBOL(ieee80211_iter_keys);
746 
747 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
748 				      struct list_head *keys)
749 {
750 	struct ieee80211_key *key, *tmp;
751 
752 	decrease_tailroom_need_count(sdata,
753 				     sdata->crypto_tx_tailroom_pending_dec);
754 	sdata->crypto_tx_tailroom_pending_dec = 0;
755 
756 	ieee80211_debugfs_key_remove_mgmt_default(sdata);
757 
758 	list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
759 		ieee80211_key_replace(key->sdata, key->sta,
760 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
761 				key, NULL);
762 		list_add_tail(&key->list, keys);
763 	}
764 
765 	ieee80211_debugfs_key_update_default(sdata);
766 }
767 
768 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
769 			 bool force_synchronize)
770 {
771 	struct ieee80211_local *local = sdata->local;
772 	struct ieee80211_sub_if_data *vlan;
773 	struct ieee80211_sub_if_data *master;
774 	struct ieee80211_key *key, *tmp;
775 	LIST_HEAD(keys);
776 
777 	cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
778 
779 	mutex_lock(&local->key_mtx);
780 
781 	ieee80211_free_keys_iface(sdata, &keys);
782 
783 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
784 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
785 			ieee80211_free_keys_iface(vlan, &keys);
786 	}
787 
788 	if (!list_empty(&keys) || force_synchronize)
789 		synchronize_net();
790 	list_for_each_entry_safe(key, tmp, &keys, list)
791 		__ieee80211_key_destroy(key, false);
792 
793 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
794 		if (sdata->bss) {
795 			master = container_of(sdata->bss,
796 					      struct ieee80211_sub_if_data,
797 					      u.ap);
798 
799 			WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
800 				     master->crypto_tx_tailroom_needed_cnt);
801 		}
802 	} else {
803 		WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
804 			     sdata->crypto_tx_tailroom_pending_dec);
805 	}
806 
807 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
808 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
809 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
810 				     vlan->crypto_tx_tailroom_pending_dec);
811 	}
812 
813 	mutex_unlock(&local->key_mtx);
814 }
815 
816 void ieee80211_free_sta_keys(struct ieee80211_local *local,
817 			     struct sta_info *sta)
818 {
819 	struct ieee80211_key *key;
820 	int i;
821 
822 	mutex_lock(&local->key_mtx);
823 	for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
824 		key = key_mtx_dereference(local, sta->gtk[i]);
825 		if (!key)
826 			continue;
827 		ieee80211_key_replace(key->sdata, key->sta,
828 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
829 				key, NULL);
830 		__ieee80211_key_destroy(key, true);
831 	}
832 
833 	for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
834 		key = key_mtx_dereference(local, sta->ptk[i]);
835 		if (!key)
836 			continue;
837 		ieee80211_key_replace(key->sdata, key->sta,
838 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
839 				key, NULL);
840 		__ieee80211_key_destroy(key, true);
841 	}
842 
843 	mutex_unlock(&local->key_mtx);
844 }
845 
846 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
847 {
848 	struct ieee80211_sub_if_data *sdata;
849 
850 	sdata = container_of(wk, struct ieee80211_sub_if_data,
851 			     dec_tailroom_needed_wk.work);
852 
853 	/*
854 	 * The reason for the delayed tailroom needed decrementing is to
855 	 * make roaming faster: during roaming, all keys are first deleted
856 	 * and then new keys are installed. The first new key causes the
857 	 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
858 	 * the cost of synchronize_net() (which can be slow). Avoid this
859 	 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
860 	 * key removal for a while, so if we roam the value is larger than
861 	 * zero and no 0->1 transition happens.
862 	 *
863 	 * The cost is that if the AP switching was from an AP with keys
864 	 * to one without, we still allocate tailroom while it would no
865 	 * longer be needed. However, in the typical (fast) roaming case
866 	 * within an ESS this usually won't happen.
867 	 */
868 
869 	mutex_lock(&sdata->local->key_mtx);
870 	decrease_tailroom_need_count(sdata,
871 				     sdata->crypto_tx_tailroom_pending_dec);
872 	sdata->crypto_tx_tailroom_pending_dec = 0;
873 	mutex_unlock(&sdata->local->key_mtx);
874 }
875 
876 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
877 				const u8 *replay_ctr, gfp_t gfp)
878 {
879 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
880 
881 	trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
882 
883 	cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
884 }
885 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
886 
887 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
888 			      struct ieee80211_key_seq *seq)
889 {
890 	struct ieee80211_key *key;
891 	u64 pn64;
892 
893 	if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
894 		return;
895 
896 	key = container_of(keyconf, struct ieee80211_key, conf);
897 
898 	switch (key->conf.cipher) {
899 	case WLAN_CIPHER_SUITE_TKIP:
900 		seq->tkip.iv32 = key->u.tkip.tx.iv32;
901 		seq->tkip.iv16 = key->u.tkip.tx.iv16;
902 		break;
903 	case WLAN_CIPHER_SUITE_CCMP:
904 	case WLAN_CIPHER_SUITE_CCMP_256:
905 	case WLAN_CIPHER_SUITE_AES_CMAC:
906 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
907 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
908 			     offsetof(typeof(*seq), aes_cmac));
909 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
910 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
911 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
912 			     offsetof(typeof(*seq), aes_gmac));
913 	case WLAN_CIPHER_SUITE_GCMP:
914 	case WLAN_CIPHER_SUITE_GCMP_256:
915 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
916 			     offsetof(typeof(*seq), gcmp));
917 		pn64 = atomic64_read(&key->conf.tx_pn);
918 		seq->ccmp.pn[5] = pn64;
919 		seq->ccmp.pn[4] = pn64 >> 8;
920 		seq->ccmp.pn[3] = pn64 >> 16;
921 		seq->ccmp.pn[2] = pn64 >> 24;
922 		seq->ccmp.pn[1] = pn64 >> 32;
923 		seq->ccmp.pn[0] = pn64 >> 40;
924 		break;
925 	default:
926 		WARN_ON(1);
927 	}
928 }
929 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
930 
931 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
932 			      int tid, struct ieee80211_key_seq *seq)
933 {
934 	struct ieee80211_key *key;
935 	const u8 *pn;
936 
937 	key = container_of(keyconf, struct ieee80211_key, conf);
938 
939 	switch (key->conf.cipher) {
940 	case WLAN_CIPHER_SUITE_TKIP:
941 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
942 			return;
943 		seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
944 		seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
945 		break;
946 	case WLAN_CIPHER_SUITE_CCMP:
947 	case WLAN_CIPHER_SUITE_CCMP_256:
948 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
949 			return;
950 		if (tid < 0)
951 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
952 		else
953 			pn = key->u.ccmp.rx_pn[tid];
954 		memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
955 		break;
956 	case WLAN_CIPHER_SUITE_AES_CMAC:
957 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
958 		if (WARN_ON(tid != 0))
959 			return;
960 		pn = key->u.aes_cmac.rx_pn;
961 		memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
962 		break;
963 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
964 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
965 		if (WARN_ON(tid != 0))
966 			return;
967 		pn = key->u.aes_gmac.rx_pn;
968 		memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
969 		break;
970 	case WLAN_CIPHER_SUITE_GCMP:
971 	case WLAN_CIPHER_SUITE_GCMP_256:
972 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
973 			return;
974 		if (tid < 0)
975 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
976 		else
977 			pn = key->u.gcmp.rx_pn[tid];
978 		memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
979 		break;
980 	}
981 }
982 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
983 
984 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
985 			      struct ieee80211_key_seq *seq)
986 {
987 	struct ieee80211_key *key;
988 	u64 pn64;
989 
990 	key = container_of(keyconf, struct ieee80211_key, conf);
991 
992 	switch (key->conf.cipher) {
993 	case WLAN_CIPHER_SUITE_TKIP:
994 		key->u.tkip.tx.iv32 = seq->tkip.iv32;
995 		key->u.tkip.tx.iv16 = seq->tkip.iv16;
996 		break;
997 	case WLAN_CIPHER_SUITE_CCMP:
998 	case WLAN_CIPHER_SUITE_CCMP_256:
999 	case WLAN_CIPHER_SUITE_AES_CMAC:
1000 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1001 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1002 			     offsetof(typeof(*seq), aes_cmac));
1003 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1004 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1005 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1006 			     offsetof(typeof(*seq), aes_gmac));
1007 	case WLAN_CIPHER_SUITE_GCMP:
1008 	case WLAN_CIPHER_SUITE_GCMP_256:
1009 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1010 			     offsetof(typeof(*seq), gcmp));
1011 		pn64 = (u64)seq->ccmp.pn[5] |
1012 		       ((u64)seq->ccmp.pn[4] << 8) |
1013 		       ((u64)seq->ccmp.pn[3] << 16) |
1014 		       ((u64)seq->ccmp.pn[2] << 24) |
1015 		       ((u64)seq->ccmp.pn[1] << 32) |
1016 		       ((u64)seq->ccmp.pn[0] << 40);
1017 		atomic64_set(&key->conf.tx_pn, pn64);
1018 		break;
1019 	default:
1020 		WARN_ON(1);
1021 		break;
1022 	}
1023 }
1024 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
1025 
1026 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1027 			      int tid, struct ieee80211_key_seq *seq)
1028 {
1029 	struct ieee80211_key *key;
1030 	u8 *pn;
1031 
1032 	key = container_of(keyconf, struct ieee80211_key, conf);
1033 
1034 	switch (key->conf.cipher) {
1035 	case WLAN_CIPHER_SUITE_TKIP:
1036 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1037 			return;
1038 		key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1039 		key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1040 		break;
1041 	case WLAN_CIPHER_SUITE_CCMP:
1042 	case WLAN_CIPHER_SUITE_CCMP_256:
1043 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1044 			return;
1045 		if (tid < 0)
1046 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1047 		else
1048 			pn = key->u.ccmp.rx_pn[tid];
1049 		memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1050 		break;
1051 	case WLAN_CIPHER_SUITE_AES_CMAC:
1052 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1053 		if (WARN_ON(tid != 0))
1054 			return;
1055 		pn = key->u.aes_cmac.rx_pn;
1056 		memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1057 		break;
1058 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1059 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1060 		if (WARN_ON(tid != 0))
1061 			return;
1062 		pn = key->u.aes_gmac.rx_pn;
1063 		memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1064 		break;
1065 	case WLAN_CIPHER_SUITE_GCMP:
1066 	case WLAN_CIPHER_SUITE_GCMP_256:
1067 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1068 			return;
1069 		if (tid < 0)
1070 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1071 		else
1072 			pn = key->u.gcmp.rx_pn[tid];
1073 		memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1074 		break;
1075 	default:
1076 		WARN_ON(1);
1077 		break;
1078 	}
1079 }
1080 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1081 
1082 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1083 {
1084 	struct ieee80211_key *key;
1085 
1086 	key = container_of(keyconf, struct ieee80211_key, conf);
1087 
1088 	assert_key_lock(key->local);
1089 
1090 	/*
1091 	 * if key was uploaded, we assume the driver will/has remove(d)
1092 	 * it, so adjust bookkeeping accordingly
1093 	 */
1094 	if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1095 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1096 
1097 		if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1098 		      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1099 			increment_tailroom_need_count(key->sdata);
1100 	}
1101 
1102 	ieee80211_key_free(key, false);
1103 }
1104 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1105 
1106 struct ieee80211_key_conf *
1107 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1108 			struct ieee80211_key_conf *keyconf)
1109 {
1110 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1111 	struct ieee80211_local *local = sdata->local;
1112 	struct ieee80211_key *key;
1113 	int err;
1114 
1115 	if (WARN_ON(!local->wowlan))
1116 		return ERR_PTR(-EINVAL);
1117 
1118 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1119 		return ERR_PTR(-EINVAL);
1120 
1121 	key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1122 				  keyconf->keylen, keyconf->key,
1123 				  0, NULL, NULL);
1124 	if (IS_ERR(key))
1125 		return ERR_CAST(key);
1126 
1127 	if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1128 		key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1129 
1130 	err = ieee80211_key_link(key, sdata, NULL);
1131 	if (err)
1132 		return ERR_PTR(err);
1133 
1134 	return &key->conf;
1135 }
1136 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
1137