1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright 2015-2017 Intel Deutschland GmbH 9 * Copyright 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/if_ether.h> 13 #include <linux/etherdevice.h> 14 #include <linux/list.h> 15 #include <linux/rcupdate.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <net/mac80211.h> 20 #include <crypto/algapi.h> 21 #include <asm/unaligned.h> 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "debugfs_key.h" 25 #include "aes_ccm.h" 26 #include "aes_cmac.h" 27 #include "aes_gmac.h" 28 #include "aes_gcm.h" 29 30 31 /** 32 * DOC: Key handling basics 33 * 34 * Key handling in mac80211 is done based on per-interface (sub_if_data) 35 * keys and per-station keys. Since each station belongs to an interface, 36 * each station key also belongs to that interface. 37 * 38 * Hardware acceleration is done on a best-effort basis for algorithms 39 * that are implemented in software, for each key the hardware is asked 40 * to enable that key for offloading but if it cannot do that the key is 41 * simply kept for software encryption (unless it is for an algorithm 42 * that isn't implemented in software). 43 * There is currently no way of knowing whether a key is handled in SW 44 * or HW except by looking into debugfs. 45 * 46 * All key management is internally protected by a mutex. Within all 47 * other parts of mac80211, key references are, just as STA structure 48 * references, protected by RCU. Note, however, that some things are 49 * unprotected, namely the key->sta dereferences within the hardware 50 * acceleration functions. This means that sta_info_destroy() must 51 * remove the key which waits for an RCU grace period. 52 */ 53 54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 55 56 static void assert_key_lock(struct ieee80211_local *local) 57 { 58 lockdep_assert_held(&local->key_mtx); 59 } 60 61 static void 62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta) 63 { 64 struct ieee80211_sub_if_data *vlan; 65 66 if (sdata->vif.type != NL80211_IFTYPE_AP) 67 return; 68 69 /* crypto_tx_tailroom_needed_cnt is protected by this */ 70 assert_key_lock(sdata->local); 71 72 rcu_read_lock(); 73 74 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list) 75 vlan->crypto_tx_tailroom_needed_cnt += delta; 76 77 rcu_read_unlock(); 78 } 79 80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) 81 { 82 /* 83 * When this count is zero, SKB resizing for allocating tailroom 84 * for IV or MMIC is skipped. But, this check has created two race 85 * cases in xmit path while transiting from zero count to one: 86 * 87 * 1. SKB resize was skipped because no key was added but just before 88 * the xmit key is added and SW encryption kicks off. 89 * 90 * 2. SKB resize was skipped because all the keys were hw planted but 91 * just before xmit one of the key is deleted and SW encryption kicks 92 * off. 93 * 94 * In both the above case SW encryption will find not enough space for 95 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) 96 * 97 * Solution has been explained at 98 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net 99 */ 100 101 assert_key_lock(sdata->local); 102 103 update_vlan_tailroom_need_count(sdata, 1); 104 105 if (!sdata->crypto_tx_tailroom_needed_cnt++) { 106 /* 107 * Flush all XMIT packets currently using HW encryption or no 108 * encryption at all if the count transition is from 0 -> 1. 109 */ 110 synchronize_net(); 111 } 112 } 113 114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata, 115 int delta) 116 { 117 assert_key_lock(sdata->local); 118 119 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta); 120 121 update_vlan_tailroom_need_count(sdata, -delta); 122 sdata->crypto_tx_tailroom_needed_cnt -= delta; 123 } 124 125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) 126 { 127 struct ieee80211_sub_if_data *sdata = key->sdata; 128 struct sta_info *sta; 129 int ret = -EOPNOTSUPP; 130 131 might_sleep(); 132 133 if (key->flags & KEY_FLAG_TAINTED) { 134 /* If we get here, it's during resume and the key is 135 * tainted so shouldn't be used/programmed any more. 136 * However, its flags may still indicate that it was 137 * programmed into the device (since we're in resume) 138 * so clear that flag now to avoid trying to remove 139 * it again later. 140 */ 141 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && 142 !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 143 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 144 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 145 increment_tailroom_need_count(sdata); 146 147 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 148 return -EINVAL; 149 } 150 151 if (!key->local->ops->set_key) 152 goto out_unsupported; 153 154 assert_key_lock(key->local); 155 156 sta = key->sta; 157 158 /* 159 * If this is a per-STA GTK, check if it 160 * is supported; if not, return. 161 */ 162 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && 163 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK)) 164 goto out_unsupported; 165 166 if (sta && !sta->uploaded) 167 goto out_unsupported; 168 169 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 170 /* 171 * The driver doesn't know anything about VLAN interfaces. 172 * Hence, don't send GTKs for VLAN interfaces to the driver. 173 */ 174 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { 175 ret = 1; 176 goto out_unsupported; 177 } 178 } 179 180 /* TKIP countermeasures don't work in encap offload mode */ 181 if (key->conf.cipher == WLAN_CIPHER_SUITE_TKIP && 182 sdata->hw_80211_encap) { 183 sdata_dbg(sdata, "TKIP is not allowed in hw 80211 encap mode\n"); 184 return -EINVAL; 185 } 186 187 ret = drv_set_key(key->local, SET_KEY, sdata, 188 sta ? &sta->sta : NULL, &key->conf); 189 190 if (!ret) { 191 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; 192 193 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 194 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 195 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 196 decrease_tailroom_need_count(sdata, 1); 197 198 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 199 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); 200 201 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) && 202 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)); 203 204 return 0; 205 } 206 207 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1) 208 sdata_err(sdata, 209 "failed to set key (%d, %pM) to hardware (%d)\n", 210 key->conf.keyidx, 211 sta ? sta->sta.addr : bcast_addr, ret); 212 213 out_unsupported: 214 switch (key->conf.cipher) { 215 case WLAN_CIPHER_SUITE_WEP40: 216 case WLAN_CIPHER_SUITE_WEP104: 217 case WLAN_CIPHER_SUITE_TKIP: 218 case WLAN_CIPHER_SUITE_CCMP: 219 case WLAN_CIPHER_SUITE_CCMP_256: 220 case WLAN_CIPHER_SUITE_GCMP: 221 case WLAN_CIPHER_SUITE_GCMP_256: 222 /* We cannot do software crypto of data frames with 223 * encapsulation offload enabled. However for 802.11w to 224 * function properly we need cmac/gmac keys. 225 */ 226 if (sdata->hw_80211_encap) 227 return -EINVAL; 228 /* Fall through */ 229 230 case WLAN_CIPHER_SUITE_AES_CMAC: 231 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 232 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 233 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 234 /* all of these we can do in software - if driver can */ 235 if (ret == 1) 236 return 0; 237 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL)) 238 return -EINVAL; 239 return 0; 240 default: 241 return -EINVAL; 242 } 243 } 244 245 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) 246 { 247 struct ieee80211_sub_if_data *sdata; 248 struct sta_info *sta; 249 int ret; 250 251 might_sleep(); 252 253 if (!key || !key->local->ops->set_key) 254 return; 255 256 assert_key_lock(key->local); 257 258 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 259 return; 260 261 sta = key->sta; 262 sdata = key->sdata; 263 264 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 265 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 266 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 267 increment_tailroom_need_count(sdata); 268 269 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 270 ret = drv_set_key(key->local, DISABLE_KEY, sdata, 271 sta ? &sta->sta : NULL, &key->conf); 272 273 if (ret) 274 sdata_err(sdata, 275 "failed to remove key (%d, %pM) from hardware (%d)\n", 276 key->conf.keyidx, 277 sta ? sta->sta.addr : bcast_addr, ret); 278 } 279 280 static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force) 281 { 282 struct sta_info *sta = key->sta; 283 struct ieee80211_local *local = key->local; 284 285 assert_key_lock(local); 286 287 set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION); 288 289 sta->ptk_idx = key->conf.keyidx; 290 291 if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) 292 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 293 ieee80211_check_fast_xmit(sta); 294 295 return 0; 296 } 297 298 int ieee80211_set_tx_key(struct ieee80211_key *key) 299 { 300 return _ieee80211_set_tx_key(key, false); 301 } 302 303 static void ieee80211_pairwise_rekey(struct ieee80211_key *old, 304 struct ieee80211_key *new) 305 { 306 struct ieee80211_local *local = new->local; 307 struct sta_info *sta = new->sta; 308 int i; 309 310 assert_key_lock(local); 311 312 if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) { 313 /* Extended Key ID key install, initial one or rekey */ 314 315 if (sta->ptk_idx != INVALID_PTK_KEYIDX && 316 !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) { 317 /* Aggregation Sessions with Extended Key ID must not 318 * mix MPDUs with different keyIDs within one A-MPDU. 319 * Tear down running Tx aggregation sessions and block 320 * new Rx/Tx aggregation requests during rekey to 321 * ensure there are no A-MPDUs when the driver is not 322 * supporting A-MPDU key borders. (Blocking Tx only 323 * would be sufficient but WLAN_STA_BLOCK_BA gets the 324 * job done for the few ms we need it.) 325 */ 326 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 327 mutex_lock(&sta->ampdu_mlme.mtx); 328 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 329 ___ieee80211_stop_tx_ba_session(sta, i, 330 AGG_STOP_LOCAL_REQUEST); 331 mutex_unlock(&sta->ampdu_mlme.mtx); 332 } 333 } else if (old) { 334 /* Rekey without Extended Key ID. 335 * Aggregation sessions are OK when running on SW crypto. 336 * A broken remote STA may cause issues not observed with HW 337 * crypto, though. 338 */ 339 if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 340 return; 341 342 /* Stop Tx till we are on the new key */ 343 old->flags |= KEY_FLAG_TAINTED; 344 ieee80211_clear_fast_xmit(sta); 345 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { 346 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 347 ieee80211_sta_tear_down_BA_sessions(sta, 348 AGG_STOP_LOCAL_REQUEST); 349 } 350 if (!wiphy_ext_feature_isset(local->hw.wiphy, 351 NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) { 352 pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.", 353 sta->sta.addr); 354 /* Flushing the driver queues *may* help prevent 355 * the clear text leaks and freezes. 356 */ 357 ieee80211_flush_queues(local, old->sdata, false); 358 } 359 } 360 } 361 362 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, 363 int idx, bool uni, bool multi) 364 { 365 struct ieee80211_key *key = NULL; 366 367 assert_key_lock(sdata->local); 368 369 if (idx >= 0 && idx < NUM_DEFAULT_KEYS) 370 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 371 372 if (uni) { 373 rcu_assign_pointer(sdata->default_unicast_key, key); 374 ieee80211_check_fast_xmit_iface(sdata); 375 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 376 drv_set_default_unicast_key(sdata->local, sdata, idx); 377 } 378 379 if (multi) 380 rcu_assign_pointer(sdata->default_multicast_key, key); 381 382 ieee80211_debugfs_key_update_default(sdata); 383 } 384 385 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, 386 bool uni, bool multi) 387 { 388 mutex_lock(&sdata->local->key_mtx); 389 __ieee80211_set_default_key(sdata, idx, uni, multi); 390 mutex_unlock(&sdata->local->key_mtx); 391 } 392 393 static void 394 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) 395 { 396 struct ieee80211_key *key = NULL; 397 398 assert_key_lock(sdata->local); 399 400 if (idx >= NUM_DEFAULT_KEYS && 401 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 402 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 403 404 rcu_assign_pointer(sdata->default_mgmt_key, key); 405 406 ieee80211_debugfs_key_update_default(sdata); 407 } 408 409 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, 410 int idx) 411 { 412 mutex_lock(&sdata->local->key_mtx); 413 __ieee80211_set_default_mgmt_key(sdata, idx); 414 mutex_unlock(&sdata->local->key_mtx); 415 } 416 417 static void 418 __ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, int idx) 419 { 420 struct ieee80211_key *key = NULL; 421 422 assert_key_lock(sdata->local); 423 424 if (idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS && 425 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 426 NUM_DEFAULT_BEACON_KEYS) 427 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 428 429 rcu_assign_pointer(sdata->default_beacon_key, key); 430 431 ieee80211_debugfs_key_update_default(sdata); 432 } 433 434 void ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, 435 int idx) 436 { 437 mutex_lock(&sdata->local->key_mtx); 438 __ieee80211_set_default_beacon_key(sdata, idx); 439 mutex_unlock(&sdata->local->key_mtx); 440 } 441 442 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, 443 struct sta_info *sta, 444 bool pairwise, 445 struct ieee80211_key *old, 446 struct ieee80211_key *new) 447 { 448 int idx; 449 int ret = 0; 450 bool defunikey, defmultikey, defmgmtkey, defbeaconkey; 451 452 /* caller must provide at least one old/new */ 453 if (WARN_ON(!new && !old)) 454 return 0; 455 456 if (new) 457 list_add_tail_rcu(&new->list, &sdata->key_list); 458 459 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); 460 461 if (new && sta && pairwise) { 462 /* Unicast rekey needs special handling. With Extended Key ID 463 * old is still NULL for the first rekey. 464 */ 465 ieee80211_pairwise_rekey(old, new); 466 } 467 468 if (old) { 469 idx = old->conf.keyidx; 470 471 if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { 472 ieee80211_key_disable_hw_accel(old); 473 474 if (new) 475 ret = ieee80211_key_enable_hw_accel(new); 476 } 477 } else { 478 /* new must be provided in case old is not */ 479 idx = new->conf.keyidx; 480 if (!new->local->wowlan) 481 ret = ieee80211_key_enable_hw_accel(new); 482 } 483 484 if (ret) 485 return ret; 486 487 if (sta) { 488 if (pairwise) { 489 rcu_assign_pointer(sta->ptk[idx], new); 490 if (new && 491 !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX)) 492 _ieee80211_set_tx_key(new, true); 493 } else { 494 rcu_assign_pointer(sta->gtk[idx], new); 495 } 496 /* Only needed for transition from no key -> key. 497 * Still triggers unnecessary when using Extended Key ID 498 * and installing the second key ID the first time. 499 */ 500 if (new && !old) 501 ieee80211_check_fast_rx(sta); 502 } else { 503 defunikey = old && 504 old == key_mtx_dereference(sdata->local, 505 sdata->default_unicast_key); 506 defmultikey = old && 507 old == key_mtx_dereference(sdata->local, 508 sdata->default_multicast_key); 509 defmgmtkey = old && 510 old == key_mtx_dereference(sdata->local, 511 sdata->default_mgmt_key); 512 defbeaconkey = old && 513 old == key_mtx_dereference(sdata->local, 514 sdata->default_beacon_key); 515 516 if (defunikey && !new) 517 __ieee80211_set_default_key(sdata, -1, true, false); 518 if (defmultikey && !new) 519 __ieee80211_set_default_key(sdata, -1, false, true); 520 if (defmgmtkey && !new) 521 __ieee80211_set_default_mgmt_key(sdata, -1); 522 if (defbeaconkey && !new) 523 __ieee80211_set_default_beacon_key(sdata, -1); 524 525 rcu_assign_pointer(sdata->keys[idx], new); 526 if (defunikey && new) 527 __ieee80211_set_default_key(sdata, new->conf.keyidx, 528 true, false); 529 if (defmultikey && new) 530 __ieee80211_set_default_key(sdata, new->conf.keyidx, 531 false, true); 532 if (defmgmtkey && new) 533 __ieee80211_set_default_mgmt_key(sdata, 534 new->conf.keyidx); 535 if (defbeaconkey && new) 536 __ieee80211_set_default_beacon_key(sdata, 537 new->conf.keyidx); 538 } 539 540 if (old) 541 list_del_rcu(&old->list); 542 543 return 0; 544 } 545 546 struct ieee80211_key * 547 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, 548 const u8 *key_data, 549 size_t seq_len, const u8 *seq, 550 const struct ieee80211_cipher_scheme *cs) 551 { 552 struct ieee80211_key *key; 553 int i, j, err; 554 555 if (WARN_ON(idx < 0 || 556 idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 557 NUM_DEFAULT_BEACON_KEYS)) 558 return ERR_PTR(-EINVAL); 559 560 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); 561 if (!key) 562 return ERR_PTR(-ENOMEM); 563 564 /* 565 * Default to software encryption; we'll later upload the 566 * key to the hardware if possible. 567 */ 568 key->conf.flags = 0; 569 key->flags = 0; 570 571 key->conf.cipher = cipher; 572 key->conf.keyidx = idx; 573 key->conf.keylen = key_len; 574 switch (cipher) { 575 case WLAN_CIPHER_SUITE_WEP40: 576 case WLAN_CIPHER_SUITE_WEP104: 577 key->conf.iv_len = IEEE80211_WEP_IV_LEN; 578 key->conf.icv_len = IEEE80211_WEP_ICV_LEN; 579 break; 580 case WLAN_CIPHER_SUITE_TKIP: 581 key->conf.iv_len = IEEE80211_TKIP_IV_LEN; 582 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; 583 if (seq) { 584 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 585 key->u.tkip.rx[i].iv32 = 586 get_unaligned_le32(&seq[2]); 587 key->u.tkip.rx[i].iv16 = 588 get_unaligned_le16(seq); 589 } 590 } 591 spin_lock_init(&key->u.tkip.txlock); 592 break; 593 case WLAN_CIPHER_SUITE_CCMP: 594 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; 595 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; 596 if (seq) { 597 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 598 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) 599 key->u.ccmp.rx_pn[i][j] = 600 seq[IEEE80211_CCMP_PN_LEN - j - 1]; 601 } 602 /* 603 * Initialize AES key state here as an optimization so that 604 * it does not need to be initialized for every packet. 605 */ 606 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( 607 key_data, key_len, IEEE80211_CCMP_MIC_LEN); 608 if (IS_ERR(key->u.ccmp.tfm)) { 609 err = PTR_ERR(key->u.ccmp.tfm); 610 kfree(key); 611 return ERR_PTR(err); 612 } 613 break; 614 case WLAN_CIPHER_SUITE_CCMP_256: 615 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN; 616 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN; 617 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) 618 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++) 619 key->u.ccmp.rx_pn[i][j] = 620 seq[IEEE80211_CCMP_256_PN_LEN - j - 1]; 621 /* Initialize AES key state here as an optimization so that 622 * it does not need to be initialized for every packet. 623 */ 624 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( 625 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN); 626 if (IS_ERR(key->u.ccmp.tfm)) { 627 err = PTR_ERR(key->u.ccmp.tfm); 628 kfree(key); 629 return ERR_PTR(err); 630 } 631 break; 632 case WLAN_CIPHER_SUITE_AES_CMAC: 633 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 634 key->conf.iv_len = 0; 635 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC) 636 key->conf.icv_len = sizeof(struct ieee80211_mmie); 637 else 638 key->conf.icv_len = sizeof(struct ieee80211_mmie_16); 639 if (seq) 640 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) 641 key->u.aes_cmac.rx_pn[j] = 642 seq[IEEE80211_CMAC_PN_LEN - j - 1]; 643 /* 644 * Initialize AES key state here as an optimization so that 645 * it does not need to be initialized for every packet. 646 */ 647 key->u.aes_cmac.tfm = 648 ieee80211_aes_cmac_key_setup(key_data, key_len); 649 if (IS_ERR(key->u.aes_cmac.tfm)) { 650 err = PTR_ERR(key->u.aes_cmac.tfm); 651 kfree(key); 652 return ERR_PTR(err); 653 } 654 break; 655 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 656 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 657 key->conf.iv_len = 0; 658 key->conf.icv_len = sizeof(struct ieee80211_mmie_16); 659 if (seq) 660 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++) 661 key->u.aes_gmac.rx_pn[j] = 662 seq[IEEE80211_GMAC_PN_LEN - j - 1]; 663 /* Initialize AES key state here as an optimization so that 664 * it does not need to be initialized for every packet. 665 */ 666 key->u.aes_gmac.tfm = 667 ieee80211_aes_gmac_key_setup(key_data, key_len); 668 if (IS_ERR(key->u.aes_gmac.tfm)) { 669 err = PTR_ERR(key->u.aes_gmac.tfm); 670 kfree(key); 671 return ERR_PTR(err); 672 } 673 break; 674 case WLAN_CIPHER_SUITE_GCMP: 675 case WLAN_CIPHER_SUITE_GCMP_256: 676 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN; 677 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN; 678 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) 679 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++) 680 key->u.gcmp.rx_pn[i][j] = 681 seq[IEEE80211_GCMP_PN_LEN - j - 1]; 682 /* Initialize AES key state here as an optimization so that 683 * it does not need to be initialized for every packet. 684 */ 685 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data, 686 key_len); 687 if (IS_ERR(key->u.gcmp.tfm)) { 688 err = PTR_ERR(key->u.gcmp.tfm); 689 kfree(key); 690 return ERR_PTR(err); 691 } 692 break; 693 default: 694 if (cs) { 695 if (seq_len && seq_len != cs->pn_len) { 696 kfree(key); 697 return ERR_PTR(-EINVAL); 698 } 699 700 key->conf.iv_len = cs->hdr_len; 701 key->conf.icv_len = cs->mic_len; 702 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 703 for (j = 0; j < seq_len; j++) 704 key->u.gen.rx_pn[i][j] = 705 seq[seq_len - j - 1]; 706 key->flags |= KEY_FLAG_CIPHER_SCHEME; 707 } 708 } 709 memcpy(key->conf.key, key_data, key_len); 710 INIT_LIST_HEAD(&key->list); 711 712 return key; 713 } 714 715 static void ieee80211_key_free_common(struct ieee80211_key *key) 716 { 717 switch (key->conf.cipher) { 718 case WLAN_CIPHER_SUITE_CCMP: 719 case WLAN_CIPHER_SUITE_CCMP_256: 720 ieee80211_aes_key_free(key->u.ccmp.tfm); 721 break; 722 case WLAN_CIPHER_SUITE_AES_CMAC: 723 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 724 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); 725 break; 726 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 727 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 728 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm); 729 break; 730 case WLAN_CIPHER_SUITE_GCMP: 731 case WLAN_CIPHER_SUITE_GCMP_256: 732 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm); 733 break; 734 } 735 kzfree(key); 736 } 737 738 static void __ieee80211_key_destroy(struct ieee80211_key *key, 739 bool delay_tailroom) 740 { 741 if (key->local) { 742 struct ieee80211_sub_if_data *sdata = key->sdata; 743 744 ieee80211_debugfs_key_remove(key); 745 746 if (delay_tailroom) { 747 /* see ieee80211_delayed_tailroom_dec */ 748 sdata->crypto_tx_tailroom_pending_dec++; 749 schedule_delayed_work(&sdata->dec_tailroom_needed_wk, 750 HZ/2); 751 } else { 752 decrease_tailroom_need_count(sdata, 1); 753 } 754 } 755 756 ieee80211_key_free_common(key); 757 } 758 759 static void ieee80211_key_destroy(struct ieee80211_key *key, 760 bool delay_tailroom) 761 { 762 if (!key) 763 return; 764 765 /* 766 * Synchronize so the TX path and rcu key iterators 767 * can no longer be using this key before we free/remove it. 768 */ 769 synchronize_net(); 770 771 __ieee80211_key_destroy(key, delay_tailroom); 772 } 773 774 void ieee80211_key_free_unused(struct ieee80211_key *key) 775 { 776 WARN_ON(key->sdata || key->local); 777 ieee80211_key_free_common(key); 778 } 779 780 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata, 781 struct ieee80211_key *old, 782 struct ieee80211_key *new) 783 { 784 u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP]; 785 u8 *tk_old, *tk_new; 786 787 if (!old || new->conf.keylen != old->conf.keylen) 788 return false; 789 790 tk_old = old->conf.key; 791 tk_new = new->conf.key; 792 793 /* 794 * In station mode, don't compare the TX MIC key, as it's never used 795 * and offloaded rekeying may not care to send it to the host. This 796 * is the case in iwlwifi, for example. 797 */ 798 if (sdata->vif.type == NL80211_IFTYPE_STATION && 799 new->conf.cipher == WLAN_CIPHER_SUITE_TKIP && 800 new->conf.keylen == WLAN_KEY_LEN_TKIP && 801 !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { 802 memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP); 803 memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP); 804 memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); 805 memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); 806 tk_old = tkip_old; 807 tk_new = tkip_new; 808 } 809 810 return !crypto_memneq(tk_old, tk_new, new->conf.keylen); 811 } 812 813 int ieee80211_key_link(struct ieee80211_key *key, 814 struct ieee80211_sub_if_data *sdata, 815 struct sta_info *sta) 816 { 817 struct ieee80211_key *old_key; 818 int idx = key->conf.keyidx; 819 bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; 820 /* 821 * We want to delay tailroom updates only for station - in that 822 * case it helps roaming speed, but in other cases it hurts and 823 * can cause warnings to appear. 824 */ 825 bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION; 826 int ret = -EOPNOTSUPP; 827 828 mutex_lock(&sdata->local->key_mtx); 829 830 if (sta && pairwise) { 831 struct ieee80211_key *alt_key; 832 833 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); 834 alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]); 835 836 /* The rekey code assumes that the old and new key are using 837 * the same cipher. Enforce the assumption for pairwise keys. 838 */ 839 if ((alt_key && alt_key->conf.cipher != key->conf.cipher) || 840 (old_key && old_key->conf.cipher != key->conf.cipher)) 841 goto out; 842 } else if (sta) { 843 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]); 844 } else { 845 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 846 } 847 848 /* Non-pairwise keys must also not switch the cipher on rekey */ 849 if (!pairwise) { 850 if (old_key && old_key->conf.cipher != key->conf.cipher) 851 goto out; 852 } 853 854 /* 855 * Silently accept key re-installation without really installing the 856 * new version of the key to avoid nonce reuse or replay issues. 857 */ 858 if (ieee80211_key_identical(sdata, old_key, key)) { 859 ieee80211_key_free_unused(key); 860 ret = 0; 861 goto out; 862 } 863 864 key->local = sdata->local; 865 key->sdata = sdata; 866 key->sta = sta; 867 868 increment_tailroom_need_count(sdata); 869 870 ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key); 871 872 if (!ret) { 873 ieee80211_debugfs_key_add(key); 874 ieee80211_key_destroy(old_key, delay_tailroom); 875 } else { 876 ieee80211_key_free(key, delay_tailroom); 877 } 878 879 out: 880 mutex_unlock(&sdata->local->key_mtx); 881 882 return ret; 883 } 884 885 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) 886 { 887 if (!key) 888 return; 889 890 /* 891 * Replace key with nothingness if it was ever used. 892 */ 893 if (key->sdata) 894 ieee80211_key_replace(key->sdata, key->sta, 895 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 896 key, NULL); 897 ieee80211_key_destroy(key, delay_tailroom); 898 } 899 900 void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata) 901 { 902 struct ieee80211_key *key; 903 struct ieee80211_sub_if_data *vlan; 904 905 ASSERT_RTNL(); 906 907 mutex_lock(&sdata->local->key_mtx); 908 909 sdata->crypto_tx_tailroom_needed_cnt = 0; 910 sdata->crypto_tx_tailroom_pending_dec = 0; 911 912 if (sdata->vif.type == NL80211_IFTYPE_AP) { 913 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { 914 vlan->crypto_tx_tailroom_needed_cnt = 0; 915 vlan->crypto_tx_tailroom_pending_dec = 0; 916 } 917 } 918 919 if (ieee80211_sdata_running(sdata)) { 920 list_for_each_entry(key, &sdata->key_list, list) { 921 increment_tailroom_need_count(sdata); 922 ieee80211_key_enable_hw_accel(key); 923 } 924 } 925 926 mutex_unlock(&sdata->local->key_mtx); 927 } 928 929 void ieee80211_iter_keys(struct ieee80211_hw *hw, 930 struct ieee80211_vif *vif, 931 void (*iter)(struct ieee80211_hw *hw, 932 struct ieee80211_vif *vif, 933 struct ieee80211_sta *sta, 934 struct ieee80211_key_conf *key, 935 void *data), 936 void *iter_data) 937 { 938 struct ieee80211_local *local = hw_to_local(hw); 939 struct ieee80211_key *key, *tmp; 940 struct ieee80211_sub_if_data *sdata; 941 942 ASSERT_RTNL(); 943 944 mutex_lock(&local->key_mtx); 945 if (vif) { 946 sdata = vif_to_sdata(vif); 947 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) 948 iter(hw, &sdata->vif, 949 key->sta ? &key->sta->sta : NULL, 950 &key->conf, iter_data); 951 } else { 952 list_for_each_entry(sdata, &local->interfaces, list) 953 list_for_each_entry_safe(key, tmp, 954 &sdata->key_list, list) 955 iter(hw, &sdata->vif, 956 key->sta ? &key->sta->sta : NULL, 957 &key->conf, iter_data); 958 } 959 mutex_unlock(&local->key_mtx); 960 } 961 EXPORT_SYMBOL(ieee80211_iter_keys); 962 963 static void 964 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, 965 struct ieee80211_sub_if_data *sdata, 966 void (*iter)(struct ieee80211_hw *hw, 967 struct ieee80211_vif *vif, 968 struct ieee80211_sta *sta, 969 struct ieee80211_key_conf *key, 970 void *data), 971 void *iter_data) 972 { 973 struct ieee80211_key *key; 974 975 list_for_each_entry_rcu(key, &sdata->key_list, list) { 976 /* skip keys of station in removal process */ 977 if (key->sta && key->sta->removed) 978 continue; 979 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 980 continue; 981 982 iter(hw, &sdata->vif, 983 key->sta ? &key->sta->sta : NULL, 984 &key->conf, iter_data); 985 } 986 } 987 988 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, 989 struct ieee80211_vif *vif, 990 void (*iter)(struct ieee80211_hw *hw, 991 struct ieee80211_vif *vif, 992 struct ieee80211_sta *sta, 993 struct ieee80211_key_conf *key, 994 void *data), 995 void *iter_data) 996 { 997 struct ieee80211_local *local = hw_to_local(hw); 998 struct ieee80211_sub_if_data *sdata; 999 1000 if (vif) { 1001 sdata = vif_to_sdata(vif); 1002 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); 1003 } else { 1004 list_for_each_entry_rcu(sdata, &local->interfaces, list) 1005 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); 1006 } 1007 } 1008 EXPORT_SYMBOL(ieee80211_iter_keys_rcu); 1009 1010 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, 1011 struct list_head *keys) 1012 { 1013 struct ieee80211_key *key, *tmp; 1014 1015 decrease_tailroom_need_count(sdata, 1016 sdata->crypto_tx_tailroom_pending_dec); 1017 sdata->crypto_tx_tailroom_pending_dec = 0; 1018 1019 ieee80211_debugfs_key_remove_mgmt_default(sdata); 1020 ieee80211_debugfs_key_remove_beacon_default(sdata); 1021 1022 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { 1023 ieee80211_key_replace(key->sdata, key->sta, 1024 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 1025 key, NULL); 1026 list_add_tail(&key->list, keys); 1027 } 1028 1029 ieee80211_debugfs_key_update_default(sdata); 1030 } 1031 1032 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, 1033 bool force_synchronize) 1034 { 1035 struct ieee80211_local *local = sdata->local; 1036 struct ieee80211_sub_if_data *vlan; 1037 struct ieee80211_sub_if_data *master; 1038 struct ieee80211_key *key, *tmp; 1039 LIST_HEAD(keys); 1040 1041 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); 1042 1043 mutex_lock(&local->key_mtx); 1044 1045 ieee80211_free_keys_iface(sdata, &keys); 1046 1047 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1048 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 1049 ieee80211_free_keys_iface(vlan, &keys); 1050 } 1051 1052 if (!list_empty(&keys) || force_synchronize) 1053 synchronize_net(); 1054 list_for_each_entry_safe(key, tmp, &keys, list) 1055 __ieee80211_key_destroy(key, false); 1056 1057 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1058 if (sdata->bss) { 1059 master = container_of(sdata->bss, 1060 struct ieee80211_sub_if_data, 1061 u.ap); 1062 1063 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt != 1064 master->crypto_tx_tailroom_needed_cnt); 1065 } 1066 } else { 1067 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || 1068 sdata->crypto_tx_tailroom_pending_dec); 1069 } 1070 1071 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1072 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 1073 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || 1074 vlan->crypto_tx_tailroom_pending_dec); 1075 } 1076 1077 mutex_unlock(&local->key_mtx); 1078 } 1079 1080 void ieee80211_free_sta_keys(struct ieee80211_local *local, 1081 struct sta_info *sta) 1082 { 1083 struct ieee80211_key *key; 1084 int i; 1085 1086 mutex_lock(&local->key_mtx); 1087 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) { 1088 key = key_mtx_dereference(local, sta->gtk[i]); 1089 if (!key) 1090 continue; 1091 ieee80211_key_replace(key->sdata, key->sta, 1092 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 1093 key, NULL); 1094 __ieee80211_key_destroy(key, key->sdata->vif.type == 1095 NL80211_IFTYPE_STATION); 1096 } 1097 1098 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1099 key = key_mtx_dereference(local, sta->ptk[i]); 1100 if (!key) 1101 continue; 1102 ieee80211_key_replace(key->sdata, key->sta, 1103 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 1104 key, NULL); 1105 __ieee80211_key_destroy(key, key->sdata->vif.type == 1106 NL80211_IFTYPE_STATION); 1107 } 1108 1109 mutex_unlock(&local->key_mtx); 1110 } 1111 1112 void ieee80211_delayed_tailroom_dec(struct work_struct *wk) 1113 { 1114 struct ieee80211_sub_if_data *sdata; 1115 1116 sdata = container_of(wk, struct ieee80211_sub_if_data, 1117 dec_tailroom_needed_wk.work); 1118 1119 /* 1120 * The reason for the delayed tailroom needed decrementing is to 1121 * make roaming faster: during roaming, all keys are first deleted 1122 * and then new keys are installed. The first new key causes the 1123 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes 1124 * the cost of synchronize_net() (which can be slow). Avoid this 1125 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on 1126 * key removal for a while, so if we roam the value is larger than 1127 * zero and no 0->1 transition happens. 1128 * 1129 * The cost is that if the AP switching was from an AP with keys 1130 * to one without, we still allocate tailroom while it would no 1131 * longer be needed. However, in the typical (fast) roaming case 1132 * within an ESS this usually won't happen. 1133 */ 1134 1135 mutex_lock(&sdata->local->key_mtx); 1136 decrease_tailroom_need_count(sdata, 1137 sdata->crypto_tx_tailroom_pending_dec); 1138 sdata->crypto_tx_tailroom_pending_dec = 0; 1139 mutex_unlock(&sdata->local->key_mtx); 1140 } 1141 1142 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 1143 const u8 *replay_ctr, gfp_t gfp) 1144 { 1145 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 1146 1147 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); 1148 1149 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); 1150 } 1151 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); 1152 1153 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 1154 int tid, struct ieee80211_key_seq *seq) 1155 { 1156 struct ieee80211_key *key; 1157 const u8 *pn; 1158 1159 key = container_of(keyconf, struct ieee80211_key, conf); 1160 1161 switch (key->conf.cipher) { 1162 case WLAN_CIPHER_SUITE_TKIP: 1163 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 1164 return; 1165 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; 1166 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; 1167 break; 1168 case WLAN_CIPHER_SUITE_CCMP: 1169 case WLAN_CIPHER_SUITE_CCMP_256: 1170 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1171 return; 1172 if (tid < 0) 1173 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 1174 else 1175 pn = key->u.ccmp.rx_pn[tid]; 1176 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); 1177 break; 1178 case WLAN_CIPHER_SUITE_AES_CMAC: 1179 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1180 if (WARN_ON(tid != 0)) 1181 return; 1182 pn = key->u.aes_cmac.rx_pn; 1183 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); 1184 break; 1185 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1186 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1187 if (WARN_ON(tid != 0)) 1188 return; 1189 pn = key->u.aes_gmac.rx_pn; 1190 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN); 1191 break; 1192 case WLAN_CIPHER_SUITE_GCMP: 1193 case WLAN_CIPHER_SUITE_GCMP_256: 1194 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1195 return; 1196 if (tid < 0) 1197 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; 1198 else 1199 pn = key->u.gcmp.rx_pn[tid]; 1200 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN); 1201 break; 1202 } 1203 } 1204 EXPORT_SYMBOL(ieee80211_get_key_rx_seq); 1205 1206 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, 1207 int tid, struct ieee80211_key_seq *seq) 1208 { 1209 struct ieee80211_key *key; 1210 u8 *pn; 1211 1212 key = container_of(keyconf, struct ieee80211_key, conf); 1213 1214 switch (key->conf.cipher) { 1215 case WLAN_CIPHER_SUITE_TKIP: 1216 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 1217 return; 1218 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; 1219 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; 1220 break; 1221 case WLAN_CIPHER_SUITE_CCMP: 1222 case WLAN_CIPHER_SUITE_CCMP_256: 1223 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1224 return; 1225 if (tid < 0) 1226 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 1227 else 1228 pn = key->u.ccmp.rx_pn[tid]; 1229 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); 1230 break; 1231 case WLAN_CIPHER_SUITE_AES_CMAC: 1232 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1233 if (WARN_ON(tid != 0)) 1234 return; 1235 pn = key->u.aes_cmac.rx_pn; 1236 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); 1237 break; 1238 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1239 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1240 if (WARN_ON(tid != 0)) 1241 return; 1242 pn = key->u.aes_gmac.rx_pn; 1243 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN); 1244 break; 1245 case WLAN_CIPHER_SUITE_GCMP: 1246 case WLAN_CIPHER_SUITE_GCMP_256: 1247 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1248 return; 1249 if (tid < 0) 1250 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; 1251 else 1252 pn = key->u.gcmp.rx_pn[tid]; 1253 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN); 1254 break; 1255 default: 1256 WARN_ON(1); 1257 break; 1258 } 1259 } 1260 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); 1261 1262 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) 1263 { 1264 struct ieee80211_key *key; 1265 1266 key = container_of(keyconf, struct ieee80211_key, conf); 1267 1268 assert_key_lock(key->local); 1269 1270 /* 1271 * if key was uploaded, we assume the driver will/has remove(d) 1272 * it, so adjust bookkeeping accordingly 1273 */ 1274 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { 1275 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 1276 1277 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 1278 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 1279 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 1280 increment_tailroom_need_count(key->sdata); 1281 } 1282 1283 ieee80211_key_free(key, false); 1284 } 1285 EXPORT_SYMBOL_GPL(ieee80211_remove_key); 1286 1287 struct ieee80211_key_conf * 1288 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, 1289 struct ieee80211_key_conf *keyconf) 1290 { 1291 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 1292 struct ieee80211_local *local = sdata->local; 1293 struct ieee80211_key *key; 1294 int err; 1295 1296 if (WARN_ON(!local->wowlan)) 1297 return ERR_PTR(-EINVAL); 1298 1299 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 1300 return ERR_PTR(-EINVAL); 1301 1302 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, 1303 keyconf->keylen, keyconf->key, 1304 0, NULL, NULL); 1305 if (IS_ERR(key)) 1306 return ERR_CAST(key); 1307 1308 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) 1309 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; 1310 1311 err = ieee80211_key_link(key, sdata, NULL); 1312 if (err) 1313 return ERR_PTR(err); 1314 1315 return &key->conf; 1316 } 1317 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add); 1318