1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright 2015-2017 Intel Deutschland GmbH 9 * Copyright 2018-2020, 2022 Intel Corporation 10 */ 11 12 #include <linux/if_ether.h> 13 #include <linux/etherdevice.h> 14 #include <linux/list.h> 15 #include <linux/rcupdate.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <net/mac80211.h> 20 #include <crypto/algapi.h> 21 #include <asm/unaligned.h> 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "debugfs_key.h" 25 #include "aes_ccm.h" 26 #include "aes_cmac.h" 27 #include "aes_gmac.h" 28 #include "aes_gcm.h" 29 30 31 /** 32 * DOC: Key handling basics 33 * 34 * Key handling in mac80211 is done based on per-interface (sub_if_data) 35 * keys and per-station keys. Since each station belongs to an interface, 36 * each station key also belongs to that interface. 37 * 38 * Hardware acceleration is done on a best-effort basis for algorithms 39 * that are implemented in software, for each key the hardware is asked 40 * to enable that key for offloading but if it cannot do that the key is 41 * simply kept for software encryption (unless it is for an algorithm 42 * that isn't implemented in software). 43 * There is currently no way of knowing whether a key is handled in SW 44 * or HW except by looking into debugfs. 45 * 46 * All key management is internally protected by a mutex. Within all 47 * other parts of mac80211, key references are, just as STA structure 48 * references, protected by RCU. Note, however, that some things are 49 * unprotected, namely the key->sta dereferences within the hardware 50 * acceleration functions. This means that sta_info_destroy() must 51 * remove the key which waits for an RCU grace period. 52 */ 53 54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 55 56 static void assert_key_lock(struct ieee80211_local *local) 57 { 58 lockdep_assert_held(&local->key_mtx); 59 } 60 61 static void 62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta) 63 { 64 struct ieee80211_sub_if_data *vlan; 65 66 if (sdata->vif.type != NL80211_IFTYPE_AP) 67 return; 68 69 /* crypto_tx_tailroom_needed_cnt is protected by this */ 70 assert_key_lock(sdata->local); 71 72 rcu_read_lock(); 73 74 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list) 75 vlan->crypto_tx_tailroom_needed_cnt += delta; 76 77 rcu_read_unlock(); 78 } 79 80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) 81 { 82 /* 83 * When this count is zero, SKB resizing for allocating tailroom 84 * for IV or MMIC is skipped. But, this check has created two race 85 * cases in xmit path while transiting from zero count to one: 86 * 87 * 1. SKB resize was skipped because no key was added but just before 88 * the xmit key is added and SW encryption kicks off. 89 * 90 * 2. SKB resize was skipped because all the keys were hw planted but 91 * just before xmit one of the key is deleted and SW encryption kicks 92 * off. 93 * 94 * In both the above case SW encryption will find not enough space for 95 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) 96 * 97 * Solution has been explained at 98 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net 99 */ 100 101 assert_key_lock(sdata->local); 102 103 update_vlan_tailroom_need_count(sdata, 1); 104 105 if (!sdata->crypto_tx_tailroom_needed_cnt++) { 106 /* 107 * Flush all XMIT packets currently using HW encryption or no 108 * encryption at all if the count transition is from 0 -> 1. 109 */ 110 synchronize_net(); 111 } 112 } 113 114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata, 115 int delta) 116 { 117 assert_key_lock(sdata->local); 118 119 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta); 120 121 update_vlan_tailroom_need_count(sdata, -delta); 122 sdata->crypto_tx_tailroom_needed_cnt -= delta; 123 } 124 125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) 126 { 127 struct ieee80211_sub_if_data *sdata = key->sdata; 128 struct sta_info *sta; 129 int ret = -EOPNOTSUPP; 130 131 might_sleep(); 132 133 if (key->flags & KEY_FLAG_TAINTED) { 134 /* If we get here, it's during resume and the key is 135 * tainted so shouldn't be used/programmed any more. 136 * However, its flags may still indicate that it was 137 * programmed into the device (since we're in resume) 138 * so clear that flag now to avoid trying to remove 139 * it again later. 140 */ 141 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && 142 !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 143 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 144 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 145 increment_tailroom_need_count(sdata); 146 147 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 148 return -EINVAL; 149 } 150 151 if (!key->local->ops->set_key) 152 goto out_unsupported; 153 154 assert_key_lock(key->local); 155 156 sta = key->sta; 157 158 /* 159 * If this is a per-STA GTK, check if it 160 * is supported; if not, return. 161 */ 162 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && 163 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK)) 164 goto out_unsupported; 165 166 if (sta && !sta->uploaded) 167 goto out_unsupported; 168 169 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 170 /* 171 * The driver doesn't know anything about VLAN interfaces. 172 * Hence, don't send GTKs for VLAN interfaces to the driver. 173 */ 174 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { 175 ret = 1; 176 goto out_unsupported; 177 } 178 } 179 180 ret = drv_set_key(key->local, SET_KEY, sdata, 181 sta ? &sta->sta : NULL, &key->conf); 182 183 if (!ret) { 184 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; 185 186 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 187 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 188 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 189 decrease_tailroom_need_count(sdata, 1); 190 191 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 192 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); 193 194 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) && 195 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)); 196 197 return 0; 198 } 199 200 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1) 201 sdata_err(sdata, 202 "failed to set key (%d, %pM) to hardware (%d)\n", 203 key->conf.keyidx, 204 sta ? sta->sta.addr : bcast_addr, ret); 205 206 out_unsupported: 207 switch (key->conf.cipher) { 208 case WLAN_CIPHER_SUITE_WEP40: 209 case WLAN_CIPHER_SUITE_WEP104: 210 case WLAN_CIPHER_SUITE_TKIP: 211 case WLAN_CIPHER_SUITE_CCMP: 212 case WLAN_CIPHER_SUITE_CCMP_256: 213 case WLAN_CIPHER_SUITE_GCMP: 214 case WLAN_CIPHER_SUITE_GCMP_256: 215 case WLAN_CIPHER_SUITE_AES_CMAC: 216 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 217 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 218 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 219 /* all of these we can do in software - if driver can */ 220 if (ret == 1) 221 return 0; 222 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL)) 223 return -EINVAL; 224 return 0; 225 default: 226 return -EINVAL; 227 } 228 } 229 230 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) 231 { 232 struct ieee80211_sub_if_data *sdata; 233 struct sta_info *sta; 234 int ret; 235 236 might_sleep(); 237 238 if (!key || !key->local->ops->set_key) 239 return; 240 241 assert_key_lock(key->local); 242 243 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 244 return; 245 246 sta = key->sta; 247 sdata = key->sdata; 248 249 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 250 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 251 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 252 increment_tailroom_need_count(sdata); 253 254 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 255 ret = drv_set_key(key->local, DISABLE_KEY, sdata, 256 sta ? &sta->sta : NULL, &key->conf); 257 258 if (ret) 259 sdata_err(sdata, 260 "failed to remove key (%d, %pM) from hardware (%d)\n", 261 key->conf.keyidx, 262 sta ? sta->sta.addr : bcast_addr, ret); 263 } 264 265 static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force) 266 { 267 struct sta_info *sta = key->sta; 268 struct ieee80211_local *local = key->local; 269 270 assert_key_lock(local); 271 272 set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION); 273 274 sta->ptk_idx = key->conf.keyidx; 275 276 if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) 277 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 278 ieee80211_check_fast_xmit(sta); 279 280 return 0; 281 } 282 283 int ieee80211_set_tx_key(struct ieee80211_key *key) 284 { 285 return _ieee80211_set_tx_key(key, false); 286 } 287 288 static void ieee80211_pairwise_rekey(struct ieee80211_key *old, 289 struct ieee80211_key *new) 290 { 291 struct ieee80211_local *local = new->local; 292 struct sta_info *sta = new->sta; 293 int i; 294 295 assert_key_lock(local); 296 297 if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) { 298 /* Extended Key ID key install, initial one or rekey */ 299 300 if (sta->ptk_idx != INVALID_PTK_KEYIDX && 301 !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) { 302 /* Aggregation Sessions with Extended Key ID must not 303 * mix MPDUs with different keyIDs within one A-MPDU. 304 * Tear down running Tx aggregation sessions and block 305 * new Rx/Tx aggregation requests during rekey to 306 * ensure there are no A-MPDUs when the driver is not 307 * supporting A-MPDU key borders. (Blocking Tx only 308 * would be sufficient but WLAN_STA_BLOCK_BA gets the 309 * job done for the few ms we need it.) 310 */ 311 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 312 mutex_lock(&sta->ampdu_mlme.mtx); 313 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 314 ___ieee80211_stop_tx_ba_session(sta, i, 315 AGG_STOP_LOCAL_REQUEST); 316 mutex_unlock(&sta->ampdu_mlme.mtx); 317 } 318 } else if (old) { 319 /* Rekey without Extended Key ID. 320 * Aggregation sessions are OK when running on SW crypto. 321 * A broken remote STA may cause issues not observed with HW 322 * crypto, though. 323 */ 324 if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 325 return; 326 327 /* Stop Tx till we are on the new key */ 328 old->flags |= KEY_FLAG_TAINTED; 329 ieee80211_clear_fast_xmit(sta); 330 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { 331 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 332 ieee80211_sta_tear_down_BA_sessions(sta, 333 AGG_STOP_LOCAL_REQUEST); 334 } 335 if (!wiphy_ext_feature_isset(local->hw.wiphy, 336 NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) { 337 pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.", 338 sta->sta.addr); 339 /* Flushing the driver queues *may* help prevent 340 * the clear text leaks and freezes. 341 */ 342 ieee80211_flush_queues(local, old->sdata, false); 343 } 344 } 345 } 346 347 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, 348 int idx, bool uni, bool multi) 349 { 350 struct ieee80211_key *key = NULL; 351 352 assert_key_lock(sdata->local); 353 354 if (idx >= 0 && idx < NUM_DEFAULT_KEYS) 355 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 356 357 if (uni) { 358 rcu_assign_pointer(sdata->default_unicast_key, key); 359 ieee80211_check_fast_xmit_iface(sdata); 360 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 361 drv_set_default_unicast_key(sdata->local, sdata, idx); 362 } 363 364 if (multi) 365 rcu_assign_pointer(sdata->default_multicast_key, key); 366 367 ieee80211_debugfs_key_update_default(sdata); 368 } 369 370 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, 371 bool uni, bool multi) 372 { 373 mutex_lock(&sdata->local->key_mtx); 374 __ieee80211_set_default_key(sdata, idx, uni, multi); 375 mutex_unlock(&sdata->local->key_mtx); 376 } 377 378 static void 379 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) 380 { 381 struct ieee80211_key *key = NULL; 382 383 assert_key_lock(sdata->local); 384 385 if (idx >= NUM_DEFAULT_KEYS && 386 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 387 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 388 389 rcu_assign_pointer(sdata->default_mgmt_key, key); 390 391 ieee80211_debugfs_key_update_default(sdata); 392 } 393 394 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, 395 int idx) 396 { 397 mutex_lock(&sdata->local->key_mtx); 398 __ieee80211_set_default_mgmt_key(sdata, idx); 399 mutex_unlock(&sdata->local->key_mtx); 400 } 401 402 static void 403 __ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, int idx) 404 { 405 struct ieee80211_key *key = NULL; 406 407 assert_key_lock(sdata->local); 408 409 if (idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS && 410 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 411 NUM_DEFAULT_BEACON_KEYS) 412 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 413 414 rcu_assign_pointer(sdata->default_beacon_key, key); 415 416 ieee80211_debugfs_key_update_default(sdata); 417 } 418 419 void ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, 420 int idx) 421 { 422 mutex_lock(&sdata->local->key_mtx); 423 __ieee80211_set_default_beacon_key(sdata, idx); 424 mutex_unlock(&sdata->local->key_mtx); 425 } 426 427 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, 428 struct sta_info *sta, 429 bool pairwise, 430 struct ieee80211_key *old, 431 struct ieee80211_key *new) 432 { 433 int idx; 434 int ret = 0; 435 bool defunikey, defmultikey, defmgmtkey, defbeaconkey; 436 437 /* caller must provide at least one old/new */ 438 if (WARN_ON(!new && !old)) 439 return 0; 440 441 if (new) 442 list_add_tail_rcu(&new->list, &sdata->key_list); 443 444 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); 445 446 if (new && sta && pairwise) { 447 /* Unicast rekey needs special handling. With Extended Key ID 448 * old is still NULL for the first rekey. 449 */ 450 ieee80211_pairwise_rekey(old, new); 451 } 452 453 if (old) { 454 idx = old->conf.keyidx; 455 456 if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { 457 ieee80211_key_disable_hw_accel(old); 458 459 if (new) 460 ret = ieee80211_key_enable_hw_accel(new); 461 } 462 } else { 463 /* new must be provided in case old is not */ 464 idx = new->conf.keyidx; 465 if (!new->local->wowlan) 466 ret = ieee80211_key_enable_hw_accel(new); 467 } 468 469 if (ret) 470 return ret; 471 472 if (sta) { 473 if (pairwise) { 474 rcu_assign_pointer(sta->ptk[idx], new); 475 if (new && 476 !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX)) 477 _ieee80211_set_tx_key(new, true); 478 } else { 479 rcu_assign_pointer(sta->deflink.gtk[idx], new); 480 } 481 /* Only needed for transition from no key -> key. 482 * Still triggers unnecessary when using Extended Key ID 483 * and installing the second key ID the first time. 484 */ 485 if (new && !old) 486 ieee80211_check_fast_rx(sta); 487 } else { 488 defunikey = old && 489 old == key_mtx_dereference(sdata->local, 490 sdata->default_unicast_key); 491 defmultikey = old && 492 old == key_mtx_dereference(sdata->local, 493 sdata->default_multicast_key); 494 defmgmtkey = old && 495 old == key_mtx_dereference(sdata->local, 496 sdata->default_mgmt_key); 497 defbeaconkey = old && 498 old == key_mtx_dereference(sdata->local, 499 sdata->default_beacon_key); 500 501 if (defunikey && !new) 502 __ieee80211_set_default_key(sdata, -1, true, false); 503 if (defmultikey && !new) 504 __ieee80211_set_default_key(sdata, -1, false, true); 505 if (defmgmtkey && !new) 506 __ieee80211_set_default_mgmt_key(sdata, -1); 507 if (defbeaconkey && !new) 508 __ieee80211_set_default_beacon_key(sdata, -1); 509 510 rcu_assign_pointer(sdata->keys[idx], new); 511 if (defunikey && new) 512 __ieee80211_set_default_key(sdata, new->conf.keyidx, 513 true, false); 514 if (defmultikey && new) 515 __ieee80211_set_default_key(sdata, new->conf.keyidx, 516 false, true); 517 if (defmgmtkey && new) 518 __ieee80211_set_default_mgmt_key(sdata, 519 new->conf.keyidx); 520 if (defbeaconkey && new) 521 __ieee80211_set_default_beacon_key(sdata, 522 new->conf.keyidx); 523 } 524 525 if (old) 526 list_del_rcu(&old->list); 527 528 return 0; 529 } 530 531 struct ieee80211_key * 532 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, 533 const u8 *key_data, 534 size_t seq_len, const u8 *seq) 535 { 536 struct ieee80211_key *key; 537 int i, j, err; 538 539 if (WARN_ON(idx < 0 || 540 idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 541 NUM_DEFAULT_BEACON_KEYS)) 542 return ERR_PTR(-EINVAL); 543 544 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); 545 if (!key) 546 return ERR_PTR(-ENOMEM); 547 548 /* 549 * Default to software encryption; we'll later upload the 550 * key to the hardware if possible. 551 */ 552 key->conf.flags = 0; 553 key->flags = 0; 554 555 key->conf.cipher = cipher; 556 key->conf.keyidx = idx; 557 key->conf.keylen = key_len; 558 switch (cipher) { 559 case WLAN_CIPHER_SUITE_WEP40: 560 case WLAN_CIPHER_SUITE_WEP104: 561 key->conf.iv_len = IEEE80211_WEP_IV_LEN; 562 key->conf.icv_len = IEEE80211_WEP_ICV_LEN; 563 break; 564 case WLAN_CIPHER_SUITE_TKIP: 565 key->conf.iv_len = IEEE80211_TKIP_IV_LEN; 566 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; 567 if (seq) { 568 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 569 key->u.tkip.rx[i].iv32 = 570 get_unaligned_le32(&seq[2]); 571 key->u.tkip.rx[i].iv16 = 572 get_unaligned_le16(seq); 573 } 574 } 575 spin_lock_init(&key->u.tkip.txlock); 576 break; 577 case WLAN_CIPHER_SUITE_CCMP: 578 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; 579 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; 580 if (seq) { 581 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 582 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) 583 key->u.ccmp.rx_pn[i][j] = 584 seq[IEEE80211_CCMP_PN_LEN - j - 1]; 585 } 586 /* 587 * Initialize AES key state here as an optimization so that 588 * it does not need to be initialized for every packet. 589 */ 590 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( 591 key_data, key_len, IEEE80211_CCMP_MIC_LEN); 592 if (IS_ERR(key->u.ccmp.tfm)) { 593 err = PTR_ERR(key->u.ccmp.tfm); 594 kfree(key); 595 return ERR_PTR(err); 596 } 597 break; 598 case WLAN_CIPHER_SUITE_CCMP_256: 599 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN; 600 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN; 601 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) 602 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++) 603 key->u.ccmp.rx_pn[i][j] = 604 seq[IEEE80211_CCMP_256_PN_LEN - j - 1]; 605 /* Initialize AES key state here as an optimization so that 606 * it does not need to be initialized for every packet. 607 */ 608 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( 609 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN); 610 if (IS_ERR(key->u.ccmp.tfm)) { 611 err = PTR_ERR(key->u.ccmp.tfm); 612 kfree(key); 613 return ERR_PTR(err); 614 } 615 break; 616 case WLAN_CIPHER_SUITE_AES_CMAC: 617 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 618 key->conf.iv_len = 0; 619 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC) 620 key->conf.icv_len = sizeof(struct ieee80211_mmie); 621 else 622 key->conf.icv_len = sizeof(struct ieee80211_mmie_16); 623 if (seq) 624 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) 625 key->u.aes_cmac.rx_pn[j] = 626 seq[IEEE80211_CMAC_PN_LEN - j - 1]; 627 /* 628 * Initialize AES key state here as an optimization so that 629 * it does not need to be initialized for every packet. 630 */ 631 key->u.aes_cmac.tfm = 632 ieee80211_aes_cmac_key_setup(key_data, key_len); 633 if (IS_ERR(key->u.aes_cmac.tfm)) { 634 err = PTR_ERR(key->u.aes_cmac.tfm); 635 kfree(key); 636 return ERR_PTR(err); 637 } 638 break; 639 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 640 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 641 key->conf.iv_len = 0; 642 key->conf.icv_len = sizeof(struct ieee80211_mmie_16); 643 if (seq) 644 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++) 645 key->u.aes_gmac.rx_pn[j] = 646 seq[IEEE80211_GMAC_PN_LEN - j - 1]; 647 /* Initialize AES key state here as an optimization so that 648 * it does not need to be initialized for every packet. 649 */ 650 key->u.aes_gmac.tfm = 651 ieee80211_aes_gmac_key_setup(key_data, key_len); 652 if (IS_ERR(key->u.aes_gmac.tfm)) { 653 err = PTR_ERR(key->u.aes_gmac.tfm); 654 kfree(key); 655 return ERR_PTR(err); 656 } 657 break; 658 case WLAN_CIPHER_SUITE_GCMP: 659 case WLAN_CIPHER_SUITE_GCMP_256: 660 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN; 661 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN; 662 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) 663 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++) 664 key->u.gcmp.rx_pn[i][j] = 665 seq[IEEE80211_GCMP_PN_LEN - j - 1]; 666 /* Initialize AES key state here as an optimization so that 667 * it does not need to be initialized for every packet. 668 */ 669 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data, 670 key_len); 671 if (IS_ERR(key->u.gcmp.tfm)) { 672 err = PTR_ERR(key->u.gcmp.tfm); 673 kfree(key); 674 return ERR_PTR(err); 675 } 676 break; 677 } 678 memcpy(key->conf.key, key_data, key_len); 679 INIT_LIST_HEAD(&key->list); 680 681 return key; 682 } 683 684 static void ieee80211_key_free_common(struct ieee80211_key *key) 685 { 686 switch (key->conf.cipher) { 687 case WLAN_CIPHER_SUITE_CCMP: 688 case WLAN_CIPHER_SUITE_CCMP_256: 689 ieee80211_aes_key_free(key->u.ccmp.tfm); 690 break; 691 case WLAN_CIPHER_SUITE_AES_CMAC: 692 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 693 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); 694 break; 695 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 696 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 697 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm); 698 break; 699 case WLAN_CIPHER_SUITE_GCMP: 700 case WLAN_CIPHER_SUITE_GCMP_256: 701 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm); 702 break; 703 } 704 kfree_sensitive(key); 705 } 706 707 static void __ieee80211_key_destroy(struct ieee80211_key *key, 708 bool delay_tailroom) 709 { 710 if (key->local) { 711 struct ieee80211_sub_if_data *sdata = key->sdata; 712 713 ieee80211_debugfs_key_remove(key); 714 715 if (delay_tailroom) { 716 /* see ieee80211_delayed_tailroom_dec */ 717 sdata->crypto_tx_tailroom_pending_dec++; 718 schedule_delayed_work(&sdata->dec_tailroom_needed_wk, 719 HZ/2); 720 } else { 721 decrease_tailroom_need_count(sdata, 1); 722 } 723 } 724 725 ieee80211_key_free_common(key); 726 } 727 728 static void ieee80211_key_destroy(struct ieee80211_key *key, 729 bool delay_tailroom) 730 { 731 if (!key) 732 return; 733 734 /* 735 * Synchronize so the TX path and rcu key iterators 736 * can no longer be using this key before we free/remove it. 737 */ 738 synchronize_net(); 739 740 __ieee80211_key_destroy(key, delay_tailroom); 741 } 742 743 void ieee80211_key_free_unused(struct ieee80211_key *key) 744 { 745 WARN_ON(key->sdata || key->local); 746 ieee80211_key_free_common(key); 747 } 748 749 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata, 750 struct ieee80211_key *old, 751 struct ieee80211_key *new) 752 { 753 u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP]; 754 u8 *tk_old, *tk_new; 755 756 if (!old || new->conf.keylen != old->conf.keylen) 757 return false; 758 759 tk_old = old->conf.key; 760 tk_new = new->conf.key; 761 762 /* 763 * In station mode, don't compare the TX MIC key, as it's never used 764 * and offloaded rekeying may not care to send it to the host. This 765 * is the case in iwlwifi, for example. 766 */ 767 if (sdata->vif.type == NL80211_IFTYPE_STATION && 768 new->conf.cipher == WLAN_CIPHER_SUITE_TKIP && 769 new->conf.keylen == WLAN_KEY_LEN_TKIP && 770 !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { 771 memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP); 772 memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP); 773 memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); 774 memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); 775 tk_old = tkip_old; 776 tk_new = tkip_new; 777 } 778 779 return !crypto_memneq(tk_old, tk_new, new->conf.keylen); 780 } 781 782 int ieee80211_key_link(struct ieee80211_key *key, 783 struct ieee80211_sub_if_data *sdata, 784 struct sta_info *sta) 785 { 786 static atomic_t key_color = ATOMIC_INIT(0); 787 struct ieee80211_key *old_key; 788 int idx = key->conf.keyidx; 789 bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; 790 /* 791 * We want to delay tailroom updates only for station - in that 792 * case it helps roaming speed, but in other cases it hurts and 793 * can cause warnings to appear. 794 */ 795 bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION; 796 int ret = -EOPNOTSUPP; 797 798 mutex_lock(&sdata->local->key_mtx); 799 800 if (sta && pairwise) { 801 struct ieee80211_key *alt_key; 802 803 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); 804 alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]); 805 806 /* The rekey code assumes that the old and new key are using 807 * the same cipher. Enforce the assumption for pairwise keys. 808 */ 809 if ((alt_key && alt_key->conf.cipher != key->conf.cipher) || 810 (old_key && old_key->conf.cipher != key->conf.cipher)) 811 goto out; 812 } else if (sta) { 813 old_key = key_mtx_dereference(sdata->local, 814 sta->deflink.gtk[idx]); 815 } else { 816 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 817 } 818 819 /* Non-pairwise keys must also not switch the cipher on rekey */ 820 if (!pairwise) { 821 if (old_key && old_key->conf.cipher != key->conf.cipher) 822 goto out; 823 } 824 825 /* 826 * Silently accept key re-installation without really installing the 827 * new version of the key to avoid nonce reuse or replay issues. 828 */ 829 if (ieee80211_key_identical(sdata, old_key, key)) { 830 ieee80211_key_free_unused(key); 831 ret = 0; 832 goto out; 833 } 834 835 key->local = sdata->local; 836 key->sdata = sdata; 837 key->sta = sta; 838 839 /* 840 * Assign a unique ID to every key so we can easily prevent mixed 841 * key and fragment cache attacks. 842 */ 843 key->color = atomic_inc_return(&key_color); 844 845 increment_tailroom_need_count(sdata); 846 847 ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key); 848 849 if (!ret) { 850 ieee80211_debugfs_key_add(key); 851 ieee80211_key_destroy(old_key, delay_tailroom); 852 } else { 853 ieee80211_key_free(key, delay_tailroom); 854 } 855 856 out: 857 mutex_unlock(&sdata->local->key_mtx); 858 859 return ret; 860 } 861 862 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) 863 { 864 if (!key) 865 return; 866 867 /* 868 * Replace key with nothingness if it was ever used. 869 */ 870 if (key->sdata) 871 ieee80211_key_replace(key->sdata, key->sta, 872 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 873 key, NULL); 874 ieee80211_key_destroy(key, delay_tailroom); 875 } 876 877 void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata) 878 { 879 struct ieee80211_key *key; 880 struct ieee80211_sub_if_data *vlan; 881 882 lockdep_assert_wiphy(sdata->local->hw.wiphy); 883 884 mutex_lock(&sdata->local->key_mtx); 885 886 sdata->crypto_tx_tailroom_needed_cnt = 0; 887 sdata->crypto_tx_tailroom_pending_dec = 0; 888 889 if (sdata->vif.type == NL80211_IFTYPE_AP) { 890 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { 891 vlan->crypto_tx_tailroom_needed_cnt = 0; 892 vlan->crypto_tx_tailroom_pending_dec = 0; 893 } 894 } 895 896 if (ieee80211_sdata_running(sdata)) { 897 list_for_each_entry(key, &sdata->key_list, list) { 898 increment_tailroom_need_count(sdata); 899 ieee80211_key_enable_hw_accel(key); 900 } 901 } 902 903 mutex_unlock(&sdata->local->key_mtx); 904 } 905 906 void ieee80211_iter_keys(struct ieee80211_hw *hw, 907 struct ieee80211_vif *vif, 908 void (*iter)(struct ieee80211_hw *hw, 909 struct ieee80211_vif *vif, 910 struct ieee80211_sta *sta, 911 struct ieee80211_key_conf *key, 912 void *data), 913 void *iter_data) 914 { 915 struct ieee80211_local *local = hw_to_local(hw); 916 struct ieee80211_key *key, *tmp; 917 struct ieee80211_sub_if_data *sdata; 918 919 lockdep_assert_wiphy(hw->wiphy); 920 921 mutex_lock(&local->key_mtx); 922 if (vif) { 923 sdata = vif_to_sdata(vif); 924 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) 925 iter(hw, &sdata->vif, 926 key->sta ? &key->sta->sta : NULL, 927 &key->conf, iter_data); 928 } else { 929 list_for_each_entry(sdata, &local->interfaces, list) 930 list_for_each_entry_safe(key, tmp, 931 &sdata->key_list, list) 932 iter(hw, &sdata->vif, 933 key->sta ? &key->sta->sta : NULL, 934 &key->conf, iter_data); 935 } 936 mutex_unlock(&local->key_mtx); 937 } 938 EXPORT_SYMBOL(ieee80211_iter_keys); 939 940 static void 941 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, 942 struct ieee80211_sub_if_data *sdata, 943 void (*iter)(struct ieee80211_hw *hw, 944 struct ieee80211_vif *vif, 945 struct ieee80211_sta *sta, 946 struct ieee80211_key_conf *key, 947 void *data), 948 void *iter_data) 949 { 950 struct ieee80211_key *key; 951 952 list_for_each_entry_rcu(key, &sdata->key_list, list) { 953 /* skip keys of station in removal process */ 954 if (key->sta && key->sta->removed) 955 continue; 956 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 957 continue; 958 959 iter(hw, &sdata->vif, 960 key->sta ? &key->sta->sta : NULL, 961 &key->conf, iter_data); 962 } 963 } 964 965 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, 966 struct ieee80211_vif *vif, 967 void (*iter)(struct ieee80211_hw *hw, 968 struct ieee80211_vif *vif, 969 struct ieee80211_sta *sta, 970 struct ieee80211_key_conf *key, 971 void *data), 972 void *iter_data) 973 { 974 struct ieee80211_local *local = hw_to_local(hw); 975 struct ieee80211_sub_if_data *sdata; 976 977 if (vif) { 978 sdata = vif_to_sdata(vif); 979 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); 980 } else { 981 list_for_each_entry_rcu(sdata, &local->interfaces, list) 982 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); 983 } 984 } 985 EXPORT_SYMBOL(ieee80211_iter_keys_rcu); 986 987 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, 988 struct list_head *keys) 989 { 990 struct ieee80211_key *key, *tmp; 991 992 decrease_tailroom_need_count(sdata, 993 sdata->crypto_tx_tailroom_pending_dec); 994 sdata->crypto_tx_tailroom_pending_dec = 0; 995 996 ieee80211_debugfs_key_remove_mgmt_default(sdata); 997 ieee80211_debugfs_key_remove_beacon_default(sdata); 998 999 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { 1000 ieee80211_key_replace(key->sdata, key->sta, 1001 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 1002 key, NULL); 1003 list_add_tail(&key->list, keys); 1004 } 1005 1006 ieee80211_debugfs_key_update_default(sdata); 1007 } 1008 1009 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, 1010 bool force_synchronize) 1011 { 1012 struct ieee80211_local *local = sdata->local; 1013 struct ieee80211_sub_if_data *vlan; 1014 struct ieee80211_sub_if_data *master; 1015 struct ieee80211_key *key, *tmp; 1016 LIST_HEAD(keys); 1017 1018 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); 1019 1020 mutex_lock(&local->key_mtx); 1021 1022 ieee80211_free_keys_iface(sdata, &keys); 1023 1024 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1025 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 1026 ieee80211_free_keys_iface(vlan, &keys); 1027 } 1028 1029 if (!list_empty(&keys) || force_synchronize) 1030 synchronize_net(); 1031 list_for_each_entry_safe(key, tmp, &keys, list) 1032 __ieee80211_key_destroy(key, false); 1033 1034 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1035 if (sdata->bss) { 1036 master = container_of(sdata->bss, 1037 struct ieee80211_sub_if_data, 1038 u.ap); 1039 1040 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt != 1041 master->crypto_tx_tailroom_needed_cnt); 1042 } 1043 } else { 1044 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || 1045 sdata->crypto_tx_tailroom_pending_dec); 1046 } 1047 1048 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1049 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 1050 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || 1051 vlan->crypto_tx_tailroom_pending_dec); 1052 } 1053 1054 mutex_unlock(&local->key_mtx); 1055 } 1056 1057 void ieee80211_free_sta_keys(struct ieee80211_local *local, 1058 struct sta_info *sta) 1059 { 1060 struct ieee80211_key *key; 1061 int i; 1062 1063 mutex_lock(&local->key_mtx); 1064 for (i = 0; i < ARRAY_SIZE(sta->deflink.gtk); i++) { 1065 key = key_mtx_dereference(local, sta->deflink.gtk[i]); 1066 if (!key) 1067 continue; 1068 ieee80211_key_replace(key->sdata, key->sta, 1069 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 1070 key, NULL); 1071 __ieee80211_key_destroy(key, key->sdata->vif.type == 1072 NL80211_IFTYPE_STATION); 1073 } 1074 1075 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1076 key = key_mtx_dereference(local, sta->ptk[i]); 1077 if (!key) 1078 continue; 1079 ieee80211_key_replace(key->sdata, key->sta, 1080 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 1081 key, NULL); 1082 __ieee80211_key_destroy(key, key->sdata->vif.type == 1083 NL80211_IFTYPE_STATION); 1084 } 1085 1086 mutex_unlock(&local->key_mtx); 1087 } 1088 1089 void ieee80211_delayed_tailroom_dec(struct work_struct *wk) 1090 { 1091 struct ieee80211_sub_if_data *sdata; 1092 1093 sdata = container_of(wk, struct ieee80211_sub_if_data, 1094 dec_tailroom_needed_wk.work); 1095 1096 /* 1097 * The reason for the delayed tailroom needed decrementing is to 1098 * make roaming faster: during roaming, all keys are first deleted 1099 * and then new keys are installed. The first new key causes the 1100 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes 1101 * the cost of synchronize_net() (which can be slow). Avoid this 1102 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on 1103 * key removal for a while, so if we roam the value is larger than 1104 * zero and no 0->1 transition happens. 1105 * 1106 * The cost is that if the AP switching was from an AP with keys 1107 * to one without, we still allocate tailroom while it would no 1108 * longer be needed. However, in the typical (fast) roaming case 1109 * within an ESS this usually won't happen. 1110 */ 1111 1112 mutex_lock(&sdata->local->key_mtx); 1113 decrease_tailroom_need_count(sdata, 1114 sdata->crypto_tx_tailroom_pending_dec); 1115 sdata->crypto_tx_tailroom_pending_dec = 0; 1116 mutex_unlock(&sdata->local->key_mtx); 1117 } 1118 1119 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 1120 const u8 *replay_ctr, gfp_t gfp) 1121 { 1122 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 1123 1124 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); 1125 1126 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); 1127 } 1128 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); 1129 1130 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 1131 int tid, struct ieee80211_key_seq *seq) 1132 { 1133 struct ieee80211_key *key; 1134 const u8 *pn; 1135 1136 key = container_of(keyconf, struct ieee80211_key, conf); 1137 1138 switch (key->conf.cipher) { 1139 case WLAN_CIPHER_SUITE_TKIP: 1140 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 1141 return; 1142 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; 1143 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; 1144 break; 1145 case WLAN_CIPHER_SUITE_CCMP: 1146 case WLAN_CIPHER_SUITE_CCMP_256: 1147 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1148 return; 1149 if (tid < 0) 1150 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 1151 else 1152 pn = key->u.ccmp.rx_pn[tid]; 1153 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); 1154 break; 1155 case WLAN_CIPHER_SUITE_AES_CMAC: 1156 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1157 if (WARN_ON(tid != 0)) 1158 return; 1159 pn = key->u.aes_cmac.rx_pn; 1160 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); 1161 break; 1162 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1163 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1164 if (WARN_ON(tid != 0)) 1165 return; 1166 pn = key->u.aes_gmac.rx_pn; 1167 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN); 1168 break; 1169 case WLAN_CIPHER_SUITE_GCMP: 1170 case WLAN_CIPHER_SUITE_GCMP_256: 1171 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1172 return; 1173 if (tid < 0) 1174 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; 1175 else 1176 pn = key->u.gcmp.rx_pn[tid]; 1177 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN); 1178 break; 1179 } 1180 } 1181 EXPORT_SYMBOL(ieee80211_get_key_rx_seq); 1182 1183 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, 1184 int tid, struct ieee80211_key_seq *seq) 1185 { 1186 struct ieee80211_key *key; 1187 u8 *pn; 1188 1189 key = container_of(keyconf, struct ieee80211_key, conf); 1190 1191 switch (key->conf.cipher) { 1192 case WLAN_CIPHER_SUITE_TKIP: 1193 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 1194 return; 1195 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; 1196 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; 1197 break; 1198 case WLAN_CIPHER_SUITE_CCMP: 1199 case WLAN_CIPHER_SUITE_CCMP_256: 1200 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1201 return; 1202 if (tid < 0) 1203 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 1204 else 1205 pn = key->u.ccmp.rx_pn[tid]; 1206 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); 1207 break; 1208 case WLAN_CIPHER_SUITE_AES_CMAC: 1209 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1210 if (WARN_ON(tid != 0)) 1211 return; 1212 pn = key->u.aes_cmac.rx_pn; 1213 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); 1214 break; 1215 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1216 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1217 if (WARN_ON(tid != 0)) 1218 return; 1219 pn = key->u.aes_gmac.rx_pn; 1220 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN); 1221 break; 1222 case WLAN_CIPHER_SUITE_GCMP: 1223 case WLAN_CIPHER_SUITE_GCMP_256: 1224 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1225 return; 1226 if (tid < 0) 1227 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; 1228 else 1229 pn = key->u.gcmp.rx_pn[tid]; 1230 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN); 1231 break; 1232 default: 1233 WARN_ON(1); 1234 break; 1235 } 1236 } 1237 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); 1238 1239 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) 1240 { 1241 struct ieee80211_key *key; 1242 1243 key = container_of(keyconf, struct ieee80211_key, conf); 1244 1245 assert_key_lock(key->local); 1246 1247 /* 1248 * if key was uploaded, we assume the driver will/has remove(d) 1249 * it, so adjust bookkeeping accordingly 1250 */ 1251 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { 1252 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 1253 1254 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 1255 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 1256 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 1257 increment_tailroom_need_count(key->sdata); 1258 } 1259 1260 ieee80211_key_free(key, false); 1261 } 1262 EXPORT_SYMBOL_GPL(ieee80211_remove_key); 1263 1264 struct ieee80211_key_conf * 1265 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, 1266 struct ieee80211_key_conf *keyconf) 1267 { 1268 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 1269 struct ieee80211_local *local = sdata->local; 1270 struct ieee80211_key *key; 1271 int err; 1272 1273 if (WARN_ON(!local->wowlan)) 1274 return ERR_PTR(-EINVAL); 1275 1276 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 1277 return ERR_PTR(-EINVAL); 1278 1279 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, 1280 keyconf->keylen, keyconf->key, 1281 0, NULL); 1282 if (IS_ERR(key)) 1283 return ERR_CAST(key); 1284 1285 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) 1286 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; 1287 1288 err = ieee80211_key_link(key, sdata, NULL); 1289 if (err) 1290 return ERR_PTR(err); 1291 1292 return &key->conf; 1293 } 1294 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add); 1295 1296 void ieee80211_key_mic_failure(struct ieee80211_key_conf *keyconf) 1297 { 1298 struct ieee80211_key *key; 1299 1300 key = container_of(keyconf, struct ieee80211_key, conf); 1301 1302 switch (key->conf.cipher) { 1303 case WLAN_CIPHER_SUITE_AES_CMAC: 1304 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1305 key->u.aes_cmac.icverrors++; 1306 break; 1307 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1308 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1309 key->u.aes_gmac.icverrors++; 1310 break; 1311 default: 1312 /* ignore the others for now, we don't keep counters now */ 1313 break; 1314 } 1315 } 1316 EXPORT_SYMBOL_GPL(ieee80211_key_mic_failure); 1317 1318 void ieee80211_key_replay(struct ieee80211_key_conf *keyconf) 1319 { 1320 struct ieee80211_key *key; 1321 1322 key = container_of(keyconf, struct ieee80211_key, conf); 1323 1324 switch (key->conf.cipher) { 1325 case WLAN_CIPHER_SUITE_CCMP: 1326 case WLAN_CIPHER_SUITE_CCMP_256: 1327 key->u.ccmp.replays++; 1328 break; 1329 case WLAN_CIPHER_SUITE_AES_CMAC: 1330 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1331 key->u.aes_cmac.replays++; 1332 break; 1333 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1334 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1335 key->u.aes_gmac.replays++; 1336 break; 1337 case WLAN_CIPHER_SUITE_GCMP: 1338 case WLAN_CIPHER_SUITE_GCMP_256: 1339 key->u.gcmp.replays++; 1340 break; 1341 } 1342 } 1343 EXPORT_SYMBOL_GPL(ieee80211_key_replay); 1344