xref: /linux/net/mac80211/key.c (revision 63769819079d87dc322fefaf981589e227de2978)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright 2015-2017	Intel Deutschland GmbH
9  * Copyright 2018-2020, 2022  Intel Corporation
10  */
11 
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <crypto/algapi.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29 
30 
31 /**
32  * DOC: Key handling basics
33  *
34  * Key handling in mac80211 is done based on per-interface (sub_if_data)
35  * keys and per-station keys. Since each station belongs to an interface,
36  * each station key also belongs to that interface.
37  *
38  * Hardware acceleration is done on a best-effort basis for algorithms
39  * that are implemented in software,  for each key the hardware is asked
40  * to enable that key for offloading but if it cannot do that the key is
41  * simply kept for software encryption (unless it is for an algorithm
42  * that isn't implemented in software).
43  * There is currently no way of knowing whether a key is handled in SW
44  * or HW except by looking into debugfs.
45  *
46  * All key management is internally protected by a mutex. Within all
47  * other parts of mac80211, key references are, just as STA structure
48  * references, protected by RCU. Note, however, that some things are
49  * unprotected, namely the key->sta dereferences within the hardware
50  * acceleration functions. This means that sta_info_destroy() must
51  * remove the key which waits for an RCU grace period.
52  */
53 
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55 
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58 	lockdep_assert_held(&local->key_mtx);
59 }
60 
61 static void
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63 {
64 	struct ieee80211_sub_if_data *vlan;
65 
66 	if (sdata->vif.type != NL80211_IFTYPE_AP)
67 		return;
68 
69 	/* crypto_tx_tailroom_needed_cnt is protected by this */
70 	assert_key_lock(sdata->local);
71 
72 	rcu_read_lock();
73 
74 	list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 		vlan->crypto_tx_tailroom_needed_cnt += delta;
76 
77 	rcu_read_unlock();
78 }
79 
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
81 {
82 	/*
83 	 * When this count is zero, SKB resizing for allocating tailroom
84 	 * for IV or MMIC is skipped. But, this check has created two race
85 	 * cases in xmit path while transiting from zero count to one:
86 	 *
87 	 * 1. SKB resize was skipped because no key was added but just before
88 	 * the xmit key is added and SW encryption kicks off.
89 	 *
90 	 * 2. SKB resize was skipped because all the keys were hw planted but
91 	 * just before xmit one of the key is deleted and SW encryption kicks
92 	 * off.
93 	 *
94 	 * In both the above case SW encryption will find not enough space for
95 	 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 	 *
97 	 * Solution has been explained at
98 	 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
99 	 */
100 
101 	assert_key_lock(sdata->local);
102 
103 	update_vlan_tailroom_need_count(sdata, 1);
104 
105 	if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 		/*
107 		 * Flush all XMIT packets currently using HW encryption or no
108 		 * encryption at all if the count transition is from 0 -> 1.
109 		 */
110 		synchronize_net();
111 	}
112 }
113 
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 					 int delta)
116 {
117 	assert_key_lock(sdata->local);
118 
119 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120 
121 	update_vlan_tailroom_need_count(sdata, -delta);
122 	sdata->crypto_tx_tailroom_needed_cnt -= delta;
123 }
124 
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126 {
127 	struct ieee80211_sub_if_data *sdata = key->sdata;
128 	struct sta_info *sta;
129 	int ret = -EOPNOTSUPP;
130 
131 	might_sleep();
132 
133 	if (key->flags & KEY_FLAG_TAINTED) {
134 		/* If we get here, it's during resume and the key is
135 		 * tainted so shouldn't be used/programmed any more.
136 		 * However, its flags may still indicate that it was
137 		 * programmed into the device (since we're in resume)
138 		 * so clear that flag now to avoid trying to remove
139 		 * it again later.
140 		 */
141 		if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
142 		    !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
143 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
144 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
145 			increment_tailroom_need_count(sdata);
146 
147 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
148 		return -EINVAL;
149 	}
150 
151 	if (!key->local->ops->set_key)
152 		goto out_unsupported;
153 
154 	assert_key_lock(key->local);
155 
156 	sta = key->sta;
157 
158 	/*
159 	 * If this is a per-STA GTK, check if it
160 	 * is supported; if not, return.
161 	 */
162 	if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
163 	    !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
164 		goto out_unsupported;
165 
166 	if (sta && !sta->uploaded)
167 		goto out_unsupported;
168 
169 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
170 		/*
171 		 * The driver doesn't know anything about VLAN interfaces.
172 		 * Hence, don't send GTKs for VLAN interfaces to the driver.
173 		 */
174 		if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
175 			ret = 1;
176 			goto out_unsupported;
177 		}
178 	}
179 
180 	ret = drv_set_key(key->local, SET_KEY, sdata,
181 			  sta ? &sta->sta : NULL, &key->conf);
182 
183 	if (!ret) {
184 		key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
185 
186 		if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
187 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
188 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
189 			decrease_tailroom_need_count(sdata, 1);
190 
191 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
192 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
193 
194 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
195 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
196 
197 		return 0;
198 	}
199 
200 	if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
201 		sdata_err(sdata,
202 			  "failed to set key (%d, %pM) to hardware (%d)\n",
203 			  key->conf.keyidx,
204 			  sta ? sta->sta.addr : bcast_addr, ret);
205 
206  out_unsupported:
207 	switch (key->conf.cipher) {
208 	case WLAN_CIPHER_SUITE_WEP40:
209 	case WLAN_CIPHER_SUITE_WEP104:
210 	case WLAN_CIPHER_SUITE_TKIP:
211 	case WLAN_CIPHER_SUITE_CCMP:
212 	case WLAN_CIPHER_SUITE_CCMP_256:
213 	case WLAN_CIPHER_SUITE_GCMP:
214 	case WLAN_CIPHER_SUITE_GCMP_256:
215 	case WLAN_CIPHER_SUITE_AES_CMAC:
216 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
217 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
218 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
219 		/* all of these we can do in software - if driver can */
220 		if (ret == 1)
221 			return 0;
222 		if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
223 			return -EINVAL;
224 		return 0;
225 	default:
226 		return -EINVAL;
227 	}
228 }
229 
230 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
231 {
232 	struct ieee80211_sub_if_data *sdata;
233 	struct sta_info *sta;
234 	int ret;
235 
236 	might_sleep();
237 
238 	if (!key || !key->local->ops->set_key)
239 		return;
240 
241 	assert_key_lock(key->local);
242 
243 	if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
244 		return;
245 
246 	sta = key->sta;
247 	sdata = key->sdata;
248 
249 	if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
250 				 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
251 				 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
252 		increment_tailroom_need_count(sdata);
253 
254 	key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
255 	ret = drv_set_key(key->local, DISABLE_KEY, sdata,
256 			  sta ? &sta->sta : NULL, &key->conf);
257 
258 	if (ret)
259 		sdata_err(sdata,
260 			  "failed to remove key (%d, %pM) from hardware (%d)\n",
261 			  key->conf.keyidx,
262 			  sta ? sta->sta.addr : bcast_addr, ret);
263 }
264 
265 static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force)
266 {
267 	struct sta_info *sta = key->sta;
268 	struct ieee80211_local *local = key->local;
269 
270 	assert_key_lock(local);
271 
272 	set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION);
273 
274 	sta->ptk_idx = key->conf.keyidx;
275 
276 	if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT))
277 		clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
278 	ieee80211_check_fast_xmit(sta);
279 
280 	return 0;
281 }
282 
283 int ieee80211_set_tx_key(struct ieee80211_key *key)
284 {
285 	return _ieee80211_set_tx_key(key, false);
286 }
287 
288 static void ieee80211_pairwise_rekey(struct ieee80211_key *old,
289 				     struct ieee80211_key *new)
290 {
291 	struct ieee80211_local *local = new->local;
292 	struct sta_info *sta = new->sta;
293 	int i;
294 
295 	assert_key_lock(local);
296 
297 	if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) {
298 		/* Extended Key ID key install, initial one or rekey */
299 
300 		if (sta->ptk_idx != INVALID_PTK_KEYIDX &&
301 		    !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) {
302 			/* Aggregation Sessions with Extended Key ID must not
303 			 * mix MPDUs with different keyIDs within one A-MPDU.
304 			 * Tear down running Tx aggregation sessions and block
305 			 * new Rx/Tx aggregation requests during rekey to
306 			 * ensure there are no A-MPDUs when the driver is not
307 			 * supporting A-MPDU key borders. (Blocking Tx only
308 			 * would be sufficient but WLAN_STA_BLOCK_BA gets the
309 			 * job done for the few ms we need it.)
310 			 */
311 			set_sta_flag(sta, WLAN_STA_BLOCK_BA);
312 			mutex_lock(&sta->ampdu_mlme.mtx);
313 			for (i = 0; i <  IEEE80211_NUM_TIDS; i++)
314 				___ieee80211_stop_tx_ba_session(sta, i,
315 								AGG_STOP_LOCAL_REQUEST);
316 			mutex_unlock(&sta->ampdu_mlme.mtx);
317 		}
318 	} else if (old) {
319 		/* Rekey without Extended Key ID.
320 		 * Aggregation sessions are OK when running on SW crypto.
321 		 * A broken remote STA may cause issues not observed with HW
322 		 * crypto, though.
323 		 */
324 		if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
325 			return;
326 
327 		/* Stop Tx till we are on the new key */
328 		old->flags |= KEY_FLAG_TAINTED;
329 		ieee80211_clear_fast_xmit(sta);
330 		if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
331 			set_sta_flag(sta, WLAN_STA_BLOCK_BA);
332 			ieee80211_sta_tear_down_BA_sessions(sta,
333 							    AGG_STOP_LOCAL_REQUEST);
334 		}
335 		if (!wiphy_ext_feature_isset(local->hw.wiphy,
336 					     NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
337 			pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
338 					    sta->sta.addr);
339 			/* Flushing the driver queues *may* help prevent
340 			 * the clear text leaks and freezes.
341 			 */
342 			ieee80211_flush_queues(local, old->sdata, false);
343 		}
344 	}
345 }
346 
347 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
348 					int idx, bool uni, bool multi)
349 {
350 	struct ieee80211_key *key = NULL;
351 
352 	assert_key_lock(sdata->local);
353 
354 	if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
355 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
356 
357 	if (uni) {
358 		rcu_assign_pointer(sdata->default_unicast_key, key);
359 		ieee80211_check_fast_xmit_iface(sdata);
360 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
361 			drv_set_default_unicast_key(sdata->local, sdata, idx);
362 	}
363 
364 	if (multi)
365 		rcu_assign_pointer(sdata->default_multicast_key, key);
366 
367 	ieee80211_debugfs_key_update_default(sdata);
368 }
369 
370 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
371 			       bool uni, bool multi)
372 {
373 	mutex_lock(&sdata->local->key_mtx);
374 	__ieee80211_set_default_key(sdata, idx, uni, multi);
375 	mutex_unlock(&sdata->local->key_mtx);
376 }
377 
378 static void
379 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
380 {
381 	struct ieee80211_key *key = NULL;
382 
383 	assert_key_lock(sdata->local);
384 
385 	if (idx >= NUM_DEFAULT_KEYS &&
386 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
387 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
388 
389 	rcu_assign_pointer(sdata->default_mgmt_key, key);
390 
391 	ieee80211_debugfs_key_update_default(sdata);
392 }
393 
394 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
395 				    int idx)
396 {
397 	mutex_lock(&sdata->local->key_mtx);
398 	__ieee80211_set_default_mgmt_key(sdata, idx);
399 	mutex_unlock(&sdata->local->key_mtx);
400 }
401 
402 static void
403 __ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, int idx)
404 {
405 	struct ieee80211_key *key = NULL;
406 
407 	assert_key_lock(sdata->local);
408 
409 	if (idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS &&
410 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
411 	    NUM_DEFAULT_BEACON_KEYS)
412 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
413 
414 	rcu_assign_pointer(sdata->default_beacon_key, key);
415 
416 	ieee80211_debugfs_key_update_default(sdata);
417 }
418 
419 void ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata,
420 				      int idx)
421 {
422 	mutex_lock(&sdata->local->key_mtx);
423 	__ieee80211_set_default_beacon_key(sdata, idx);
424 	mutex_unlock(&sdata->local->key_mtx);
425 }
426 
427 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
428 				  struct sta_info *sta,
429 				  bool pairwise,
430 				  struct ieee80211_key *old,
431 				  struct ieee80211_key *new)
432 {
433 	int idx;
434 	int ret = 0;
435 	bool defunikey, defmultikey, defmgmtkey, defbeaconkey;
436 
437 	/* caller must provide at least one old/new */
438 	if (WARN_ON(!new && !old))
439 		return 0;
440 
441 	if (new)
442 		list_add_tail_rcu(&new->list, &sdata->key_list);
443 
444 	WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
445 
446 	if (new && sta && pairwise) {
447 		/* Unicast rekey needs special handling. With Extended Key ID
448 		 * old is still NULL for the first rekey.
449 		 */
450 		ieee80211_pairwise_rekey(old, new);
451 	}
452 
453 	if (old) {
454 		idx = old->conf.keyidx;
455 
456 		if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
457 			ieee80211_key_disable_hw_accel(old);
458 
459 			if (new)
460 				ret = ieee80211_key_enable_hw_accel(new);
461 		}
462 	} else {
463 		/* new must be provided in case old is not */
464 		idx = new->conf.keyidx;
465 		if (!new->local->wowlan)
466 			ret = ieee80211_key_enable_hw_accel(new);
467 	}
468 
469 	if (ret)
470 		return ret;
471 
472 	if (sta) {
473 		if (pairwise) {
474 			rcu_assign_pointer(sta->ptk[idx], new);
475 			if (new &&
476 			    !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX))
477 				_ieee80211_set_tx_key(new, true);
478 		} else {
479 			rcu_assign_pointer(sta->deflink.gtk[idx], new);
480 		}
481 		/* Only needed for transition from no key -> key.
482 		 * Still triggers unnecessary when using Extended Key ID
483 		 * and installing the second key ID the first time.
484 		 */
485 		if (new && !old)
486 			ieee80211_check_fast_rx(sta);
487 	} else {
488 		defunikey = old &&
489 			old == key_mtx_dereference(sdata->local,
490 						sdata->default_unicast_key);
491 		defmultikey = old &&
492 			old == key_mtx_dereference(sdata->local,
493 						sdata->default_multicast_key);
494 		defmgmtkey = old &&
495 			old == key_mtx_dereference(sdata->local,
496 						sdata->default_mgmt_key);
497 		defbeaconkey = old &&
498 			old == key_mtx_dereference(sdata->local,
499 						   sdata->default_beacon_key);
500 
501 		if (defunikey && !new)
502 			__ieee80211_set_default_key(sdata, -1, true, false);
503 		if (defmultikey && !new)
504 			__ieee80211_set_default_key(sdata, -1, false, true);
505 		if (defmgmtkey && !new)
506 			__ieee80211_set_default_mgmt_key(sdata, -1);
507 		if (defbeaconkey && !new)
508 			__ieee80211_set_default_beacon_key(sdata, -1);
509 
510 		rcu_assign_pointer(sdata->keys[idx], new);
511 		if (defunikey && new)
512 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
513 						    true, false);
514 		if (defmultikey && new)
515 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
516 						    false, true);
517 		if (defmgmtkey && new)
518 			__ieee80211_set_default_mgmt_key(sdata,
519 							 new->conf.keyidx);
520 		if (defbeaconkey && new)
521 			__ieee80211_set_default_beacon_key(sdata,
522 							   new->conf.keyidx);
523 	}
524 
525 	if (old)
526 		list_del_rcu(&old->list);
527 
528 	return 0;
529 }
530 
531 struct ieee80211_key *
532 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
533 		    const u8 *key_data,
534 		    size_t seq_len, const u8 *seq)
535 {
536 	struct ieee80211_key *key;
537 	int i, j, err;
538 
539 	if (WARN_ON(idx < 0 ||
540 		    idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
541 		    NUM_DEFAULT_BEACON_KEYS))
542 		return ERR_PTR(-EINVAL);
543 
544 	key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
545 	if (!key)
546 		return ERR_PTR(-ENOMEM);
547 
548 	/*
549 	 * Default to software encryption; we'll later upload the
550 	 * key to the hardware if possible.
551 	 */
552 	key->conf.flags = 0;
553 	key->flags = 0;
554 
555 	key->conf.cipher = cipher;
556 	key->conf.keyidx = idx;
557 	key->conf.keylen = key_len;
558 	switch (cipher) {
559 	case WLAN_CIPHER_SUITE_WEP40:
560 	case WLAN_CIPHER_SUITE_WEP104:
561 		key->conf.iv_len = IEEE80211_WEP_IV_LEN;
562 		key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
563 		break;
564 	case WLAN_CIPHER_SUITE_TKIP:
565 		key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
566 		key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
567 		if (seq) {
568 			for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
569 				key->u.tkip.rx[i].iv32 =
570 					get_unaligned_le32(&seq[2]);
571 				key->u.tkip.rx[i].iv16 =
572 					get_unaligned_le16(seq);
573 			}
574 		}
575 		spin_lock_init(&key->u.tkip.txlock);
576 		break;
577 	case WLAN_CIPHER_SUITE_CCMP:
578 		key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
579 		key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
580 		if (seq) {
581 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
582 				for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
583 					key->u.ccmp.rx_pn[i][j] =
584 						seq[IEEE80211_CCMP_PN_LEN - j - 1];
585 		}
586 		/*
587 		 * Initialize AES key state here as an optimization so that
588 		 * it does not need to be initialized for every packet.
589 		 */
590 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
591 			key_data, key_len, IEEE80211_CCMP_MIC_LEN);
592 		if (IS_ERR(key->u.ccmp.tfm)) {
593 			err = PTR_ERR(key->u.ccmp.tfm);
594 			kfree(key);
595 			return ERR_PTR(err);
596 		}
597 		break;
598 	case WLAN_CIPHER_SUITE_CCMP_256:
599 		key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
600 		key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
601 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
602 			for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
603 				key->u.ccmp.rx_pn[i][j] =
604 					seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
605 		/* Initialize AES key state here as an optimization so that
606 		 * it does not need to be initialized for every packet.
607 		 */
608 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
609 			key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
610 		if (IS_ERR(key->u.ccmp.tfm)) {
611 			err = PTR_ERR(key->u.ccmp.tfm);
612 			kfree(key);
613 			return ERR_PTR(err);
614 		}
615 		break;
616 	case WLAN_CIPHER_SUITE_AES_CMAC:
617 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
618 		key->conf.iv_len = 0;
619 		if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
620 			key->conf.icv_len = sizeof(struct ieee80211_mmie);
621 		else
622 			key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
623 		if (seq)
624 			for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
625 				key->u.aes_cmac.rx_pn[j] =
626 					seq[IEEE80211_CMAC_PN_LEN - j - 1];
627 		/*
628 		 * Initialize AES key state here as an optimization so that
629 		 * it does not need to be initialized for every packet.
630 		 */
631 		key->u.aes_cmac.tfm =
632 			ieee80211_aes_cmac_key_setup(key_data, key_len);
633 		if (IS_ERR(key->u.aes_cmac.tfm)) {
634 			err = PTR_ERR(key->u.aes_cmac.tfm);
635 			kfree(key);
636 			return ERR_PTR(err);
637 		}
638 		break;
639 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
640 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
641 		key->conf.iv_len = 0;
642 		key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
643 		if (seq)
644 			for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
645 				key->u.aes_gmac.rx_pn[j] =
646 					seq[IEEE80211_GMAC_PN_LEN - j - 1];
647 		/* Initialize AES key state here as an optimization so that
648 		 * it does not need to be initialized for every packet.
649 		 */
650 		key->u.aes_gmac.tfm =
651 			ieee80211_aes_gmac_key_setup(key_data, key_len);
652 		if (IS_ERR(key->u.aes_gmac.tfm)) {
653 			err = PTR_ERR(key->u.aes_gmac.tfm);
654 			kfree(key);
655 			return ERR_PTR(err);
656 		}
657 		break;
658 	case WLAN_CIPHER_SUITE_GCMP:
659 	case WLAN_CIPHER_SUITE_GCMP_256:
660 		key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
661 		key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
662 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
663 			for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
664 				key->u.gcmp.rx_pn[i][j] =
665 					seq[IEEE80211_GCMP_PN_LEN - j - 1];
666 		/* Initialize AES key state here as an optimization so that
667 		 * it does not need to be initialized for every packet.
668 		 */
669 		key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
670 								      key_len);
671 		if (IS_ERR(key->u.gcmp.tfm)) {
672 			err = PTR_ERR(key->u.gcmp.tfm);
673 			kfree(key);
674 			return ERR_PTR(err);
675 		}
676 		break;
677 	}
678 	memcpy(key->conf.key, key_data, key_len);
679 	INIT_LIST_HEAD(&key->list);
680 
681 	return key;
682 }
683 
684 static void ieee80211_key_free_common(struct ieee80211_key *key)
685 {
686 	switch (key->conf.cipher) {
687 	case WLAN_CIPHER_SUITE_CCMP:
688 	case WLAN_CIPHER_SUITE_CCMP_256:
689 		ieee80211_aes_key_free(key->u.ccmp.tfm);
690 		break;
691 	case WLAN_CIPHER_SUITE_AES_CMAC:
692 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
693 		ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
694 		break;
695 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
696 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
697 		ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
698 		break;
699 	case WLAN_CIPHER_SUITE_GCMP:
700 	case WLAN_CIPHER_SUITE_GCMP_256:
701 		ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
702 		break;
703 	}
704 	kfree_sensitive(key);
705 }
706 
707 static void __ieee80211_key_destroy(struct ieee80211_key *key,
708 				    bool delay_tailroom)
709 {
710 	if (key->local) {
711 		struct ieee80211_sub_if_data *sdata = key->sdata;
712 
713 		ieee80211_debugfs_key_remove(key);
714 
715 		if (delay_tailroom) {
716 			/* see ieee80211_delayed_tailroom_dec */
717 			sdata->crypto_tx_tailroom_pending_dec++;
718 			schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
719 					      HZ/2);
720 		} else {
721 			decrease_tailroom_need_count(sdata, 1);
722 		}
723 	}
724 
725 	ieee80211_key_free_common(key);
726 }
727 
728 static void ieee80211_key_destroy(struct ieee80211_key *key,
729 				  bool delay_tailroom)
730 {
731 	if (!key)
732 		return;
733 
734 	/*
735 	 * Synchronize so the TX path and rcu key iterators
736 	 * can no longer be using this key before we free/remove it.
737 	 */
738 	synchronize_net();
739 
740 	__ieee80211_key_destroy(key, delay_tailroom);
741 }
742 
743 void ieee80211_key_free_unused(struct ieee80211_key *key)
744 {
745 	WARN_ON(key->sdata || key->local);
746 	ieee80211_key_free_common(key);
747 }
748 
749 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
750 				    struct ieee80211_key *old,
751 				    struct ieee80211_key *new)
752 {
753 	u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
754 	u8 *tk_old, *tk_new;
755 
756 	if (!old || new->conf.keylen != old->conf.keylen)
757 		return false;
758 
759 	tk_old = old->conf.key;
760 	tk_new = new->conf.key;
761 
762 	/*
763 	 * In station mode, don't compare the TX MIC key, as it's never used
764 	 * and offloaded rekeying may not care to send it to the host. This
765 	 * is the case in iwlwifi, for example.
766 	 */
767 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
768 	    new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
769 	    new->conf.keylen == WLAN_KEY_LEN_TKIP &&
770 	    !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
771 		memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
772 		memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
773 		memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
774 		memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
775 		tk_old = tkip_old;
776 		tk_new = tkip_new;
777 	}
778 
779 	return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
780 }
781 
782 int ieee80211_key_link(struct ieee80211_key *key,
783 		       struct ieee80211_sub_if_data *sdata,
784 		       struct sta_info *sta)
785 {
786 	static atomic_t key_color = ATOMIC_INIT(0);
787 	struct ieee80211_key *old_key;
788 	int idx = key->conf.keyidx;
789 	bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
790 	/*
791 	 * We want to delay tailroom updates only for station - in that
792 	 * case it helps roaming speed, but in other cases it hurts and
793 	 * can cause warnings to appear.
794 	 */
795 	bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
796 	int ret = -EOPNOTSUPP;
797 
798 	mutex_lock(&sdata->local->key_mtx);
799 
800 	if (sta && pairwise) {
801 		struct ieee80211_key *alt_key;
802 
803 		old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
804 		alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]);
805 
806 		/* The rekey code assumes that the old and new key are using
807 		 * the same cipher. Enforce the assumption for pairwise keys.
808 		 */
809 		if ((alt_key && alt_key->conf.cipher != key->conf.cipher) ||
810 		    (old_key && old_key->conf.cipher != key->conf.cipher))
811 			goto out;
812 	} else if (sta) {
813 		old_key = key_mtx_dereference(sdata->local,
814 					      sta->deflink.gtk[idx]);
815 	} else {
816 		old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
817 	}
818 
819 	/* Non-pairwise keys must also not switch the cipher on rekey */
820 	if (!pairwise) {
821 		if (old_key && old_key->conf.cipher != key->conf.cipher)
822 			goto out;
823 	}
824 
825 	/*
826 	 * Silently accept key re-installation without really installing the
827 	 * new version of the key to avoid nonce reuse or replay issues.
828 	 */
829 	if (ieee80211_key_identical(sdata, old_key, key)) {
830 		ieee80211_key_free_unused(key);
831 		ret = 0;
832 		goto out;
833 	}
834 
835 	key->local = sdata->local;
836 	key->sdata = sdata;
837 	key->sta = sta;
838 
839 	/*
840 	 * Assign a unique ID to every key so we can easily prevent mixed
841 	 * key and fragment cache attacks.
842 	 */
843 	key->color = atomic_inc_return(&key_color);
844 
845 	increment_tailroom_need_count(sdata);
846 
847 	ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
848 
849 	if (!ret) {
850 		ieee80211_debugfs_key_add(key);
851 		ieee80211_key_destroy(old_key, delay_tailroom);
852 	} else {
853 		ieee80211_key_free(key, delay_tailroom);
854 	}
855 
856  out:
857 	mutex_unlock(&sdata->local->key_mtx);
858 
859 	return ret;
860 }
861 
862 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
863 {
864 	if (!key)
865 		return;
866 
867 	/*
868 	 * Replace key with nothingness if it was ever used.
869 	 */
870 	if (key->sdata)
871 		ieee80211_key_replace(key->sdata, key->sta,
872 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
873 				key, NULL);
874 	ieee80211_key_destroy(key, delay_tailroom);
875 }
876 
877 void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata)
878 {
879 	struct ieee80211_key *key;
880 	struct ieee80211_sub_if_data *vlan;
881 
882 	lockdep_assert_wiphy(sdata->local->hw.wiphy);
883 
884 	mutex_lock(&sdata->local->key_mtx);
885 
886 	sdata->crypto_tx_tailroom_needed_cnt = 0;
887 	sdata->crypto_tx_tailroom_pending_dec = 0;
888 
889 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
890 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
891 			vlan->crypto_tx_tailroom_needed_cnt = 0;
892 			vlan->crypto_tx_tailroom_pending_dec = 0;
893 		}
894 	}
895 
896 	if (ieee80211_sdata_running(sdata)) {
897 		list_for_each_entry(key, &sdata->key_list, list) {
898 			increment_tailroom_need_count(sdata);
899 			ieee80211_key_enable_hw_accel(key);
900 		}
901 	}
902 
903 	mutex_unlock(&sdata->local->key_mtx);
904 }
905 
906 void ieee80211_iter_keys(struct ieee80211_hw *hw,
907 			 struct ieee80211_vif *vif,
908 			 void (*iter)(struct ieee80211_hw *hw,
909 				      struct ieee80211_vif *vif,
910 				      struct ieee80211_sta *sta,
911 				      struct ieee80211_key_conf *key,
912 				      void *data),
913 			 void *iter_data)
914 {
915 	struct ieee80211_local *local = hw_to_local(hw);
916 	struct ieee80211_key *key, *tmp;
917 	struct ieee80211_sub_if_data *sdata;
918 
919 	lockdep_assert_wiphy(hw->wiphy);
920 
921 	mutex_lock(&local->key_mtx);
922 	if (vif) {
923 		sdata = vif_to_sdata(vif);
924 		list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
925 			iter(hw, &sdata->vif,
926 			     key->sta ? &key->sta->sta : NULL,
927 			     &key->conf, iter_data);
928 	} else {
929 		list_for_each_entry(sdata, &local->interfaces, list)
930 			list_for_each_entry_safe(key, tmp,
931 						 &sdata->key_list, list)
932 				iter(hw, &sdata->vif,
933 				     key->sta ? &key->sta->sta : NULL,
934 				     &key->conf, iter_data);
935 	}
936 	mutex_unlock(&local->key_mtx);
937 }
938 EXPORT_SYMBOL(ieee80211_iter_keys);
939 
940 static void
941 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
942 			 struct ieee80211_sub_if_data *sdata,
943 			 void (*iter)(struct ieee80211_hw *hw,
944 				      struct ieee80211_vif *vif,
945 				      struct ieee80211_sta *sta,
946 				      struct ieee80211_key_conf *key,
947 				      void *data),
948 			 void *iter_data)
949 {
950 	struct ieee80211_key *key;
951 
952 	list_for_each_entry_rcu(key, &sdata->key_list, list) {
953 		/* skip keys of station in removal process */
954 		if (key->sta && key->sta->removed)
955 			continue;
956 		if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
957 			continue;
958 
959 		iter(hw, &sdata->vif,
960 		     key->sta ? &key->sta->sta : NULL,
961 		     &key->conf, iter_data);
962 	}
963 }
964 
965 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
966 			     struct ieee80211_vif *vif,
967 			     void (*iter)(struct ieee80211_hw *hw,
968 					  struct ieee80211_vif *vif,
969 					  struct ieee80211_sta *sta,
970 					  struct ieee80211_key_conf *key,
971 					  void *data),
972 			     void *iter_data)
973 {
974 	struct ieee80211_local *local = hw_to_local(hw);
975 	struct ieee80211_sub_if_data *sdata;
976 
977 	if (vif) {
978 		sdata = vif_to_sdata(vif);
979 		_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
980 	} else {
981 		list_for_each_entry_rcu(sdata, &local->interfaces, list)
982 			_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
983 	}
984 }
985 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
986 
987 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
988 				      struct list_head *keys)
989 {
990 	struct ieee80211_key *key, *tmp;
991 
992 	decrease_tailroom_need_count(sdata,
993 				     sdata->crypto_tx_tailroom_pending_dec);
994 	sdata->crypto_tx_tailroom_pending_dec = 0;
995 
996 	ieee80211_debugfs_key_remove_mgmt_default(sdata);
997 	ieee80211_debugfs_key_remove_beacon_default(sdata);
998 
999 	list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
1000 		ieee80211_key_replace(key->sdata, key->sta,
1001 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1002 				key, NULL);
1003 		list_add_tail(&key->list, keys);
1004 	}
1005 
1006 	ieee80211_debugfs_key_update_default(sdata);
1007 }
1008 
1009 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
1010 			 bool force_synchronize)
1011 {
1012 	struct ieee80211_local *local = sdata->local;
1013 	struct ieee80211_sub_if_data *vlan;
1014 	struct ieee80211_sub_if_data *master;
1015 	struct ieee80211_key *key, *tmp;
1016 	LIST_HEAD(keys);
1017 
1018 	cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
1019 
1020 	mutex_lock(&local->key_mtx);
1021 
1022 	ieee80211_free_keys_iface(sdata, &keys);
1023 
1024 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
1025 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1026 			ieee80211_free_keys_iface(vlan, &keys);
1027 	}
1028 
1029 	if (!list_empty(&keys) || force_synchronize)
1030 		synchronize_net();
1031 	list_for_each_entry_safe(key, tmp, &keys, list)
1032 		__ieee80211_key_destroy(key, false);
1033 
1034 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1035 		if (sdata->bss) {
1036 			master = container_of(sdata->bss,
1037 					      struct ieee80211_sub_if_data,
1038 					      u.ap);
1039 
1040 			WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
1041 				     master->crypto_tx_tailroom_needed_cnt);
1042 		}
1043 	} else {
1044 		WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
1045 			     sdata->crypto_tx_tailroom_pending_dec);
1046 	}
1047 
1048 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
1049 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1050 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
1051 				     vlan->crypto_tx_tailroom_pending_dec);
1052 	}
1053 
1054 	mutex_unlock(&local->key_mtx);
1055 }
1056 
1057 void ieee80211_free_sta_keys(struct ieee80211_local *local,
1058 			     struct sta_info *sta)
1059 {
1060 	struct ieee80211_key *key;
1061 	int i;
1062 
1063 	mutex_lock(&local->key_mtx);
1064 	for (i = 0; i < ARRAY_SIZE(sta->deflink.gtk); i++) {
1065 		key = key_mtx_dereference(local, sta->deflink.gtk[i]);
1066 		if (!key)
1067 			continue;
1068 		ieee80211_key_replace(key->sdata, key->sta,
1069 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1070 				key, NULL);
1071 		__ieee80211_key_destroy(key, key->sdata->vif.type ==
1072 					NL80211_IFTYPE_STATION);
1073 	}
1074 
1075 	for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1076 		key = key_mtx_dereference(local, sta->ptk[i]);
1077 		if (!key)
1078 			continue;
1079 		ieee80211_key_replace(key->sdata, key->sta,
1080 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1081 				key, NULL);
1082 		__ieee80211_key_destroy(key, key->sdata->vif.type ==
1083 					NL80211_IFTYPE_STATION);
1084 	}
1085 
1086 	mutex_unlock(&local->key_mtx);
1087 }
1088 
1089 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
1090 {
1091 	struct ieee80211_sub_if_data *sdata;
1092 
1093 	sdata = container_of(wk, struct ieee80211_sub_if_data,
1094 			     dec_tailroom_needed_wk.work);
1095 
1096 	/*
1097 	 * The reason for the delayed tailroom needed decrementing is to
1098 	 * make roaming faster: during roaming, all keys are first deleted
1099 	 * and then new keys are installed. The first new key causes the
1100 	 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
1101 	 * the cost of synchronize_net() (which can be slow). Avoid this
1102 	 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
1103 	 * key removal for a while, so if we roam the value is larger than
1104 	 * zero and no 0->1 transition happens.
1105 	 *
1106 	 * The cost is that if the AP switching was from an AP with keys
1107 	 * to one without, we still allocate tailroom while it would no
1108 	 * longer be needed. However, in the typical (fast) roaming case
1109 	 * within an ESS this usually won't happen.
1110 	 */
1111 
1112 	mutex_lock(&sdata->local->key_mtx);
1113 	decrease_tailroom_need_count(sdata,
1114 				     sdata->crypto_tx_tailroom_pending_dec);
1115 	sdata->crypto_tx_tailroom_pending_dec = 0;
1116 	mutex_unlock(&sdata->local->key_mtx);
1117 }
1118 
1119 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
1120 				const u8 *replay_ctr, gfp_t gfp)
1121 {
1122 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1123 
1124 	trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
1125 
1126 	cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
1127 }
1128 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
1129 
1130 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
1131 			      int tid, struct ieee80211_key_seq *seq)
1132 {
1133 	struct ieee80211_key *key;
1134 	const u8 *pn;
1135 
1136 	key = container_of(keyconf, struct ieee80211_key, conf);
1137 
1138 	switch (key->conf.cipher) {
1139 	case WLAN_CIPHER_SUITE_TKIP:
1140 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1141 			return;
1142 		seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
1143 		seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
1144 		break;
1145 	case WLAN_CIPHER_SUITE_CCMP:
1146 	case WLAN_CIPHER_SUITE_CCMP_256:
1147 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1148 			return;
1149 		if (tid < 0)
1150 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1151 		else
1152 			pn = key->u.ccmp.rx_pn[tid];
1153 		memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
1154 		break;
1155 	case WLAN_CIPHER_SUITE_AES_CMAC:
1156 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1157 		if (WARN_ON(tid != 0))
1158 			return;
1159 		pn = key->u.aes_cmac.rx_pn;
1160 		memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
1161 		break;
1162 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1163 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1164 		if (WARN_ON(tid != 0))
1165 			return;
1166 		pn = key->u.aes_gmac.rx_pn;
1167 		memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
1168 		break;
1169 	case WLAN_CIPHER_SUITE_GCMP:
1170 	case WLAN_CIPHER_SUITE_GCMP_256:
1171 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1172 			return;
1173 		if (tid < 0)
1174 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1175 		else
1176 			pn = key->u.gcmp.rx_pn[tid];
1177 		memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
1178 		break;
1179 	}
1180 }
1181 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
1182 
1183 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1184 			      int tid, struct ieee80211_key_seq *seq)
1185 {
1186 	struct ieee80211_key *key;
1187 	u8 *pn;
1188 
1189 	key = container_of(keyconf, struct ieee80211_key, conf);
1190 
1191 	switch (key->conf.cipher) {
1192 	case WLAN_CIPHER_SUITE_TKIP:
1193 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1194 			return;
1195 		key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1196 		key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1197 		break;
1198 	case WLAN_CIPHER_SUITE_CCMP:
1199 	case WLAN_CIPHER_SUITE_CCMP_256:
1200 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1201 			return;
1202 		if (tid < 0)
1203 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1204 		else
1205 			pn = key->u.ccmp.rx_pn[tid];
1206 		memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1207 		break;
1208 	case WLAN_CIPHER_SUITE_AES_CMAC:
1209 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1210 		if (WARN_ON(tid != 0))
1211 			return;
1212 		pn = key->u.aes_cmac.rx_pn;
1213 		memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1214 		break;
1215 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1216 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1217 		if (WARN_ON(tid != 0))
1218 			return;
1219 		pn = key->u.aes_gmac.rx_pn;
1220 		memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1221 		break;
1222 	case WLAN_CIPHER_SUITE_GCMP:
1223 	case WLAN_CIPHER_SUITE_GCMP_256:
1224 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1225 			return;
1226 		if (tid < 0)
1227 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1228 		else
1229 			pn = key->u.gcmp.rx_pn[tid];
1230 		memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1231 		break;
1232 	default:
1233 		WARN_ON(1);
1234 		break;
1235 	}
1236 }
1237 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1238 
1239 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1240 {
1241 	struct ieee80211_key *key;
1242 
1243 	key = container_of(keyconf, struct ieee80211_key, conf);
1244 
1245 	assert_key_lock(key->local);
1246 
1247 	/*
1248 	 * if key was uploaded, we assume the driver will/has remove(d)
1249 	 * it, so adjust bookkeeping accordingly
1250 	 */
1251 	if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1252 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1253 
1254 		if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
1255 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
1256 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1257 			increment_tailroom_need_count(key->sdata);
1258 	}
1259 
1260 	ieee80211_key_free(key, false);
1261 }
1262 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1263 
1264 struct ieee80211_key_conf *
1265 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1266 			struct ieee80211_key_conf *keyconf)
1267 {
1268 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1269 	struct ieee80211_local *local = sdata->local;
1270 	struct ieee80211_key *key;
1271 	int err;
1272 
1273 	if (WARN_ON(!local->wowlan))
1274 		return ERR_PTR(-EINVAL);
1275 
1276 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1277 		return ERR_PTR(-EINVAL);
1278 
1279 	key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1280 				  keyconf->keylen, keyconf->key,
1281 				  0, NULL);
1282 	if (IS_ERR(key))
1283 		return ERR_CAST(key);
1284 
1285 	if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1286 		key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1287 
1288 	err = ieee80211_key_link(key, sdata, NULL);
1289 	if (err)
1290 		return ERR_PTR(err);
1291 
1292 	return &key->conf;
1293 }
1294 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
1295 
1296 void ieee80211_key_mic_failure(struct ieee80211_key_conf *keyconf)
1297 {
1298 	struct ieee80211_key *key;
1299 
1300 	key = container_of(keyconf, struct ieee80211_key, conf);
1301 
1302 	switch (key->conf.cipher) {
1303 	case WLAN_CIPHER_SUITE_AES_CMAC:
1304 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1305 		key->u.aes_cmac.icverrors++;
1306 		break;
1307 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1308 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1309 		key->u.aes_gmac.icverrors++;
1310 		break;
1311 	default:
1312 		/* ignore the others for now, we don't keep counters now */
1313 		break;
1314 	}
1315 }
1316 EXPORT_SYMBOL_GPL(ieee80211_key_mic_failure);
1317 
1318 void ieee80211_key_replay(struct ieee80211_key_conf *keyconf)
1319 {
1320 	struct ieee80211_key *key;
1321 
1322 	key = container_of(keyconf, struct ieee80211_key, conf);
1323 
1324 	switch (key->conf.cipher) {
1325 	case WLAN_CIPHER_SUITE_CCMP:
1326 	case WLAN_CIPHER_SUITE_CCMP_256:
1327 		key->u.ccmp.replays++;
1328 		break;
1329 	case WLAN_CIPHER_SUITE_AES_CMAC:
1330 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1331 		key->u.aes_cmac.replays++;
1332 		break;
1333 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1334 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1335 		key->u.aes_gmac.replays++;
1336 		break;
1337 	case WLAN_CIPHER_SUITE_GCMP:
1338 	case WLAN_CIPHER_SUITE_GCMP_256:
1339 		key->u.gcmp.replays++;
1340 		break;
1341 	}
1342 }
1343 EXPORT_SYMBOL_GPL(ieee80211_key_replay);
1344