1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/if_ether.h> 14 #include <linux/etherdevice.h> 15 #include <linux/list.h> 16 #include <linux/rcupdate.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <asm/unaligned.h> 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "debugfs_key.h" 25 #include "aes_ccm.h" 26 #include "aes_cmac.h" 27 28 29 /** 30 * DOC: Key handling basics 31 * 32 * Key handling in mac80211 is done based on per-interface (sub_if_data) 33 * keys and per-station keys. Since each station belongs to an interface, 34 * each station key also belongs to that interface. 35 * 36 * Hardware acceleration is done on a best-effort basis for algorithms 37 * that are implemented in software, for each key the hardware is asked 38 * to enable that key for offloading but if it cannot do that the key is 39 * simply kept for software encryption (unless it is for an algorithm 40 * that isn't implemented in software). 41 * There is currently no way of knowing whether a key is handled in SW 42 * or HW except by looking into debugfs. 43 * 44 * All key management is internally protected by a mutex. Within all 45 * other parts of mac80211, key references are, just as STA structure 46 * references, protected by RCU. Note, however, that some things are 47 * unprotected, namely the key->sta dereferences within the hardware 48 * acceleration functions. This means that sta_info_destroy() must 49 * remove the key which waits for an RCU grace period. 50 */ 51 52 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 53 54 static void assert_key_lock(struct ieee80211_local *local) 55 { 56 lockdep_assert_held(&local->key_mtx); 57 } 58 59 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) 60 { 61 /* 62 * When this count is zero, SKB resizing for allocating tailroom 63 * for IV or MMIC is skipped. But, this check has created two race 64 * cases in xmit path while transiting from zero count to one: 65 * 66 * 1. SKB resize was skipped because no key was added but just before 67 * the xmit key is added and SW encryption kicks off. 68 * 69 * 2. SKB resize was skipped because all the keys were hw planted but 70 * just before xmit one of the key is deleted and SW encryption kicks 71 * off. 72 * 73 * In both the above case SW encryption will find not enough space for 74 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) 75 * 76 * Solution has been explained at 77 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net 78 */ 79 80 if (!sdata->crypto_tx_tailroom_needed_cnt++) { 81 /* 82 * Flush all XMIT packets currently using HW encryption or no 83 * encryption at all if the count transition is from 0 -> 1. 84 */ 85 synchronize_net(); 86 } 87 } 88 89 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) 90 { 91 struct ieee80211_sub_if_data *sdata; 92 struct sta_info *sta; 93 int ret; 94 95 might_sleep(); 96 97 if (key->flags & KEY_FLAG_TAINTED) { 98 /* If we get here, it's during resume and the key is 99 * tainted so shouldn't be used/programmed any more. 100 * However, its flags may still indicate that it was 101 * programmed into the device (since we're in resume) 102 * so clear that flag now to avoid trying to remove 103 * it again later. 104 */ 105 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 106 return -EINVAL; 107 } 108 109 if (!key->local->ops->set_key) 110 goto out_unsupported; 111 112 assert_key_lock(key->local); 113 114 sta = key->sta; 115 116 /* 117 * If this is a per-STA GTK, check if it 118 * is supported; if not, return. 119 */ 120 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && 121 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK)) 122 goto out_unsupported; 123 124 if (sta && !sta->uploaded) 125 goto out_unsupported; 126 127 sdata = key->sdata; 128 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 129 /* 130 * The driver doesn't know anything about VLAN interfaces. 131 * Hence, don't send GTKs for VLAN interfaces to the driver. 132 */ 133 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) 134 goto out_unsupported; 135 } 136 137 ret = drv_set_key(key->local, SET_KEY, sdata, 138 sta ? &sta->sta : NULL, &key->conf); 139 140 if (!ret) { 141 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; 142 143 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || 144 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) || 145 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))) 146 sdata->crypto_tx_tailroom_needed_cnt--; 147 148 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 149 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); 150 151 return 0; 152 } 153 154 if (ret != -ENOSPC && ret != -EOPNOTSUPP) 155 sdata_err(sdata, 156 "failed to set key (%d, %pM) to hardware (%d)\n", 157 key->conf.keyidx, 158 sta ? sta->sta.addr : bcast_addr, ret); 159 160 out_unsupported: 161 switch (key->conf.cipher) { 162 case WLAN_CIPHER_SUITE_WEP40: 163 case WLAN_CIPHER_SUITE_WEP104: 164 case WLAN_CIPHER_SUITE_TKIP: 165 case WLAN_CIPHER_SUITE_CCMP: 166 case WLAN_CIPHER_SUITE_AES_CMAC: 167 /* all of these we can do in software */ 168 return 0; 169 default: 170 return -EINVAL; 171 } 172 } 173 174 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) 175 { 176 struct ieee80211_sub_if_data *sdata; 177 struct sta_info *sta; 178 int ret; 179 180 might_sleep(); 181 182 if (!key || !key->local->ops->set_key) 183 return; 184 185 assert_key_lock(key->local); 186 187 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 188 return; 189 190 sta = key->sta; 191 sdata = key->sdata; 192 193 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || 194 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) || 195 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))) 196 increment_tailroom_need_count(sdata); 197 198 ret = drv_set_key(key->local, DISABLE_KEY, sdata, 199 sta ? &sta->sta : NULL, &key->conf); 200 201 if (ret) 202 sdata_err(sdata, 203 "failed to remove key (%d, %pM) from hardware (%d)\n", 204 key->conf.keyidx, 205 sta ? sta->sta.addr : bcast_addr, ret); 206 207 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 208 } 209 210 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, 211 int idx, bool uni, bool multi) 212 { 213 struct ieee80211_key *key = NULL; 214 215 assert_key_lock(sdata->local); 216 217 if (idx >= 0 && idx < NUM_DEFAULT_KEYS) 218 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 219 220 if (uni) { 221 rcu_assign_pointer(sdata->default_unicast_key, key); 222 drv_set_default_unicast_key(sdata->local, sdata, idx); 223 } 224 225 if (multi) 226 rcu_assign_pointer(sdata->default_multicast_key, key); 227 228 ieee80211_debugfs_key_update_default(sdata); 229 } 230 231 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, 232 bool uni, bool multi) 233 { 234 mutex_lock(&sdata->local->key_mtx); 235 __ieee80211_set_default_key(sdata, idx, uni, multi); 236 mutex_unlock(&sdata->local->key_mtx); 237 } 238 239 static void 240 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) 241 { 242 struct ieee80211_key *key = NULL; 243 244 assert_key_lock(sdata->local); 245 246 if (idx >= NUM_DEFAULT_KEYS && 247 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 248 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 249 250 rcu_assign_pointer(sdata->default_mgmt_key, key); 251 252 ieee80211_debugfs_key_update_default(sdata); 253 } 254 255 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, 256 int idx) 257 { 258 mutex_lock(&sdata->local->key_mtx); 259 __ieee80211_set_default_mgmt_key(sdata, idx); 260 mutex_unlock(&sdata->local->key_mtx); 261 } 262 263 264 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, 265 struct sta_info *sta, 266 bool pairwise, 267 struct ieee80211_key *old, 268 struct ieee80211_key *new) 269 { 270 int idx; 271 bool defunikey, defmultikey, defmgmtkey; 272 273 /* caller must provide at least one old/new */ 274 if (WARN_ON(!new && !old)) 275 return; 276 277 if (new) 278 list_add_tail(&new->list, &sdata->key_list); 279 280 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); 281 282 if (old) 283 idx = old->conf.keyidx; 284 else 285 idx = new->conf.keyidx; 286 287 if (sta) { 288 if (pairwise) { 289 rcu_assign_pointer(sta->ptk[idx], new); 290 sta->ptk_idx = idx; 291 } else { 292 rcu_assign_pointer(sta->gtk[idx], new); 293 sta->gtk_idx = idx; 294 } 295 } else { 296 defunikey = old && 297 old == key_mtx_dereference(sdata->local, 298 sdata->default_unicast_key); 299 defmultikey = old && 300 old == key_mtx_dereference(sdata->local, 301 sdata->default_multicast_key); 302 defmgmtkey = old && 303 old == key_mtx_dereference(sdata->local, 304 sdata->default_mgmt_key); 305 306 if (defunikey && !new) 307 __ieee80211_set_default_key(sdata, -1, true, false); 308 if (defmultikey && !new) 309 __ieee80211_set_default_key(sdata, -1, false, true); 310 if (defmgmtkey && !new) 311 __ieee80211_set_default_mgmt_key(sdata, -1); 312 313 rcu_assign_pointer(sdata->keys[idx], new); 314 if (defunikey && new) 315 __ieee80211_set_default_key(sdata, new->conf.keyidx, 316 true, false); 317 if (defmultikey && new) 318 __ieee80211_set_default_key(sdata, new->conf.keyidx, 319 false, true); 320 if (defmgmtkey && new) 321 __ieee80211_set_default_mgmt_key(sdata, 322 new->conf.keyidx); 323 } 324 325 if (old) 326 list_del(&old->list); 327 } 328 329 struct ieee80211_key * 330 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, 331 const u8 *key_data, 332 size_t seq_len, const u8 *seq, 333 const struct ieee80211_cipher_scheme *cs) 334 { 335 struct ieee80211_key *key; 336 int i, j, err; 337 338 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)) 339 return ERR_PTR(-EINVAL); 340 341 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); 342 if (!key) 343 return ERR_PTR(-ENOMEM); 344 345 /* 346 * Default to software encryption; we'll later upload the 347 * key to the hardware if possible. 348 */ 349 key->conf.flags = 0; 350 key->flags = 0; 351 352 key->conf.cipher = cipher; 353 key->conf.keyidx = idx; 354 key->conf.keylen = key_len; 355 switch (cipher) { 356 case WLAN_CIPHER_SUITE_WEP40: 357 case WLAN_CIPHER_SUITE_WEP104: 358 key->conf.iv_len = IEEE80211_WEP_IV_LEN; 359 key->conf.icv_len = IEEE80211_WEP_ICV_LEN; 360 break; 361 case WLAN_CIPHER_SUITE_TKIP: 362 key->conf.iv_len = IEEE80211_TKIP_IV_LEN; 363 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; 364 if (seq) { 365 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 366 key->u.tkip.rx[i].iv32 = 367 get_unaligned_le32(&seq[2]); 368 key->u.tkip.rx[i].iv16 = 369 get_unaligned_le16(seq); 370 } 371 } 372 spin_lock_init(&key->u.tkip.txlock); 373 break; 374 case WLAN_CIPHER_SUITE_CCMP: 375 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; 376 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; 377 if (seq) { 378 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 379 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) 380 key->u.ccmp.rx_pn[i][j] = 381 seq[IEEE80211_CCMP_PN_LEN - j - 1]; 382 } 383 /* 384 * Initialize AES key state here as an optimization so that 385 * it does not need to be initialized for every packet. 386 */ 387 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data); 388 if (IS_ERR(key->u.ccmp.tfm)) { 389 err = PTR_ERR(key->u.ccmp.tfm); 390 kfree(key); 391 return ERR_PTR(err); 392 } 393 break; 394 case WLAN_CIPHER_SUITE_AES_CMAC: 395 key->conf.iv_len = 0; 396 key->conf.icv_len = sizeof(struct ieee80211_mmie); 397 if (seq) 398 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) 399 key->u.aes_cmac.rx_pn[j] = 400 seq[IEEE80211_CMAC_PN_LEN - j - 1]; 401 /* 402 * Initialize AES key state here as an optimization so that 403 * it does not need to be initialized for every packet. 404 */ 405 key->u.aes_cmac.tfm = 406 ieee80211_aes_cmac_key_setup(key_data); 407 if (IS_ERR(key->u.aes_cmac.tfm)) { 408 err = PTR_ERR(key->u.aes_cmac.tfm); 409 kfree(key); 410 return ERR_PTR(err); 411 } 412 break; 413 default: 414 if (cs) { 415 size_t len = (seq_len > MAX_PN_LEN) ? 416 MAX_PN_LEN : seq_len; 417 418 key->conf.iv_len = cs->hdr_len; 419 key->conf.icv_len = cs->mic_len; 420 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 421 for (j = 0; j < len; j++) 422 key->u.gen.rx_pn[i][j] = 423 seq[len - j - 1]; 424 } 425 } 426 memcpy(key->conf.key, key_data, key_len); 427 INIT_LIST_HEAD(&key->list); 428 429 return key; 430 } 431 432 static void ieee80211_key_free_common(struct ieee80211_key *key) 433 { 434 if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP) 435 ieee80211_aes_key_free(key->u.ccmp.tfm); 436 if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC) 437 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); 438 kzfree(key); 439 } 440 441 static void __ieee80211_key_destroy(struct ieee80211_key *key, 442 bool delay_tailroom) 443 { 444 if (key->local) 445 ieee80211_key_disable_hw_accel(key); 446 447 if (key->local) { 448 struct ieee80211_sub_if_data *sdata = key->sdata; 449 450 ieee80211_debugfs_key_remove(key); 451 452 if (delay_tailroom) { 453 /* see ieee80211_delayed_tailroom_dec */ 454 sdata->crypto_tx_tailroom_pending_dec++; 455 schedule_delayed_work(&sdata->dec_tailroom_needed_wk, 456 HZ/2); 457 } else { 458 sdata->crypto_tx_tailroom_needed_cnt--; 459 } 460 } 461 462 ieee80211_key_free_common(key); 463 } 464 465 static void ieee80211_key_destroy(struct ieee80211_key *key, 466 bool delay_tailroom) 467 { 468 if (!key) 469 return; 470 471 /* 472 * Synchronize so the TX path can no longer be using 473 * this key before we free/remove it. 474 */ 475 synchronize_net(); 476 477 __ieee80211_key_destroy(key, delay_tailroom); 478 } 479 480 void ieee80211_key_free_unused(struct ieee80211_key *key) 481 { 482 WARN_ON(key->sdata || key->local); 483 ieee80211_key_free_common(key); 484 } 485 486 int ieee80211_key_link(struct ieee80211_key *key, 487 struct ieee80211_sub_if_data *sdata, 488 struct sta_info *sta) 489 { 490 struct ieee80211_local *local = sdata->local; 491 struct ieee80211_key *old_key; 492 int idx, ret; 493 bool pairwise; 494 495 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; 496 idx = key->conf.keyidx; 497 key->local = sdata->local; 498 key->sdata = sdata; 499 key->sta = sta; 500 501 mutex_lock(&sdata->local->key_mtx); 502 503 if (sta && pairwise) 504 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); 505 else if (sta) 506 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]); 507 else 508 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 509 510 increment_tailroom_need_count(sdata); 511 512 ieee80211_key_replace(sdata, sta, pairwise, old_key, key); 513 ieee80211_key_destroy(old_key, true); 514 515 ieee80211_debugfs_key_add(key); 516 517 if (!local->wowlan) { 518 ret = ieee80211_key_enable_hw_accel(key); 519 if (ret) 520 ieee80211_key_free(key, true); 521 } else { 522 ret = 0; 523 } 524 525 mutex_unlock(&sdata->local->key_mtx); 526 527 return ret; 528 } 529 530 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) 531 { 532 if (!key) 533 return; 534 535 /* 536 * Replace key with nothingness if it was ever used. 537 */ 538 if (key->sdata) 539 ieee80211_key_replace(key->sdata, key->sta, 540 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 541 key, NULL); 542 ieee80211_key_destroy(key, delay_tailroom); 543 } 544 545 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata) 546 { 547 struct ieee80211_key *key; 548 549 ASSERT_RTNL(); 550 551 if (WARN_ON(!ieee80211_sdata_running(sdata))) 552 return; 553 554 mutex_lock(&sdata->local->key_mtx); 555 556 sdata->crypto_tx_tailroom_needed_cnt = 0; 557 558 list_for_each_entry(key, &sdata->key_list, list) { 559 increment_tailroom_need_count(sdata); 560 ieee80211_key_enable_hw_accel(key); 561 } 562 563 mutex_unlock(&sdata->local->key_mtx); 564 } 565 566 void ieee80211_iter_keys(struct ieee80211_hw *hw, 567 struct ieee80211_vif *vif, 568 void (*iter)(struct ieee80211_hw *hw, 569 struct ieee80211_vif *vif, 570 struct ieee80211_sta *sta, 571 struct ieee80211_key_conf *key, 572 void *data), 573 void *iter_data) 574 { 575 struct ieee80211_local *local = hw_to_local(hw); 576 struct ieee80211_key *key, *tmp; 577 struct ieee80211_sub_if_data *sdata; 578 579 ASSERT_RTNL(); 580 581 mutex_lock(&local->key_mtx); 582 if (vif) { 583 sdata = vif_to_sdata(vif); 584 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) 585 iter(hw, &sdata->vif, 586 key->sta ? &key->sta->sta : NULL, 587 &key->conf, iter_data); 588 } else { 589 list_for_each_entry(sdata, &local->interfaces, list) 590 list_for_each_entry_safe(key, tmp, 591 &sdata->key_list, list) 592 iter(hw, &sdata->vif, 593 key->sta ? &key->sta->sta : NULL, 594 &key->conf, iter_data); 595 } 596 mutex_unlock(&local->key_mtx); 597 } 598 EXPORT_SYMBOL(ieee80211_iter_keys); 599 600 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, 601 struct list_head *keys) 602 { 603 struct ieee80211_key *key, *tmp; 604 605 sdata->crypto_tx_tailroom_needed_cnt -= 606 sdata->crypto_tx_tailroom_pending_dec; 607 sdata->crypto_tx_tailroom_pending_dec = 0; 608 609 ieee80211_debugfs_key_remove_mgmt_default(sdata); 610 611 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { 612 ieee80211_key_replace(key->sdata, key->sta, 613 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 614 key, NULL); 615 list_add_tail(&key->list, keys); 616 } 617 618 ieee80211_debugfs_key_update_default(sdata); 619 } 620 621 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, 622 bool force_synchronize) 623 { 624 struct ieee80211_local *local = sdata->local; 625 struct ieee80211_sub_if_data *vlan; 626 struct ieee80211_key *key, *tmp; 627 LIST_HEAD(keys); 628 629 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); 630 631 mutex_lock(&local->key_mtx); 632 633 ieee80211_free_keys_iface(sdata, &keys); 634 635 if (sdata->vif.type == NL80211_IFTYPE_AP) { 636 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 637 ieee80211_free_keys_iface(vlan, &keys); 638 } 639 640 if (!list_empty(&keys) || force_synchronize) 641 synchronize_net(); 642 list_for_each_entry_safe(key, tmp, &keys, list) 643 __ieee80211_key_destroy(key, false); 644 645 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || 646 sdata->crypto_tx_tailroom_pending_dec); 647 if (sdata->vif.type == NL80211_IFTYPE_AP) { 648 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 649 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || 650 vlan->crypto_tx_tailroom_pending_dec); 651 } 652 653 mutex_unlock(&local->key_mtx); 654 } 655 656 void ieee80211_free_sta_keys(struct ieee80211_local *local, 657 struct sta_info *sta) 658 { 659 struct ieee80211_key *key; 660 int i; 661 662 mutex_lock(&local->key_mtx); 663 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) { 664 key = key_mtx_dereference(local, sta->gtk[i]); 665 if (!key) 666 continue; 667 ieee80211_key_replace(key->sdata, key->sta, 668 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 669 key, NULL); 670 __ieee80211_key_destroy(key, true); 671 } 672 673 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 674 key = key_mtx_dereference(local, sta->ptk[i]); 675 if (!key) 676 continue; 677 ieee80211_key_replace(key->sdata, key->sta, 678 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 679 key, NULL); 680 __ieee80211_key_destroy(key, true); 681 } 682 683 mutex_unlock(&local->key_mtx); 684 } 685 686 void ieee80211_delayed_tailroom_dec(struct work_struct *wk) 687 { 688 struct ieee80211_sub_if_data *sdata; 689 690 sdata = container_of(wk, struct ieee80211_sub_if_data, 691 dec_tailroom_needed_wk.work); 692 693 /* 694 * The reason for the delayed tailroom needed decrementing is to 695 * make roaming faster: during roaming, all keys are first deleted 696 * and then new keys are installed. The first new key causes the 697 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes 698 * the cost of synchronize_net() (which can be slow). Avoid this 699 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on 700 * key removal for a while, so if we roam the value is larger than 701 * zero and no 0->1 transition happens. 702 * 703 * The cost is that if the AP switching was from an AP with keys 704 * to one without, we still allocate tailroom while it would no 705 * longer be needed. However, in the typical (fast) roaming case 706 * within an ESS this usually won't happen. 707 */ 708 709 mutex_lock(&sdata->local->key_mtx); 710 sdata->crypto_tx_tailroom_needed_cnt -= 711 sdata->crypto_tx_tailroom_pending_dec; 712 sdata->crypto_tx_tailroom_pending_dec = 0; 713 mutex_unlock(&sdata->local->key_mtx); 714 } 715 716 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 717 const u8 *replay_ctr, gfp_t gfp) 718 { 719 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 720 721 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); 722 723 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); 724 } 725 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); 726 727 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, 728 struct ieee80211_key_seq *seq) 729 { 730 struct ieee80211_key *key; 731 u64 pn64; 732 733 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV))) 734 return; 735 736 key = container_of(keyconf, struct ieee80211_key, conf); 737 738 switch (key->conf.cipher) { 739 case WLAN_CIPHER_SUITE_TKIP: 740 seq->tkip.iv32 = key->u.tkip.tx.iv32; 741 seq->tkip.iv16 = key->u.tkip.tx.iv16; 742 break; 743 case WLAN_CIPHER_SUITE_CCMP: 744 pn64 = atomic64_read(&key->u.ccmp.tx_pn); 745 seq->ccmp.pn[5] = pn64; 746 seq->ccmp.pn[4] = pn64 >> 8; 747 seq->ccmp.pn[3] = pn64 >> 16; 748 seq->ccmp.pn[2] = pn64 >> 24; 749 seq->ccmp.pn[1] = pn64 >> 32; 750 seq->ccmp.pn[0] = pn64 >> 40; 751 break; 752 case WLAN_CIPHER_SUITE_AES_CMAC: 753 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn); 754 seq->ccmp.pn[5] = pn64; 755 seq->ccmp.pn[4] = pn64 >> 8; 756 seq->ccmp.pn[3] = pn64 >> 16; 757 seq->ccmp.pn[2] = pn64 >> 24; 758 seq->ccmp.pn[1] = pn64 >> 32; 759 seq->ccmp.pn[0] = pn64 >> 40; 760 break; 761 default: 762 WARN_ON(1); 763 } 764 } 765 EXPORT_SYMBOL(ieee80211_get_key_tx_seq); 766 767 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 768 int tid, struct ieee80211_key_seq *seq) 769 { 770 struct ieee80211_key *key; 771 const u8 *pn; 772 773 key = container_of(keyconf, struct ieee80211_key, conf); 774 775 switch (key->conf.cipher) { 776 case WLAN_CIPHER_SUITE_TKIP: 777 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 778 return; 779 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; 780 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; 781 break; 782 case WLAN_CIPHER_SUITE_CCMP: 783 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 784 return; 785 if (tid < 0) 786 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 787 else 788 pn = key->u.ccmp.rx_pn[tid]; 789 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); 790 break; 791 case WLAN_CIPHER_SUITE_AES_CMAC: 792 if (WARN_ON(tid != 0)) 793 return; 794 pn = key->u.aes_cmac.rx_pn; 795 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); 796 break; 797 } 798 } 799 EXPORT_SYMBOL(ieee80211_get_key_rx_seq); 800 801 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf, 802 struct ieee80211_key_seq *seq) 803 { 804 struct ieee80211_key *key; 805 u64 pn64; 806 807 key = container_of(keyconf, struct ieee80211_key, conf); 808 809 switch (key->conf.cipher) { 810 case WLAN_CIPHER_SUITE_TKIP: 811 key->u.tkip.tx.iv32 = seq->tkip.iv32; 812 key->u.tkip.tx.iv16 = seq->tkip.iv16; 813 break; 814 case WLAN_CIPHER_SUITE_CCMP: 815 pn64 = (u64)seq->ccmp.pn[5] | 816 ((u64)seq->ccmp.pn[4] << 8) | 817 ((u64)seq->ccmp.pn[3] << 16) | 818 ((u64)seq->ccmp.pn[2] << 24) | 819 ((u64)seq->ccmp.pn[1] << 32) | 820 ((u64)seq->ccmp.pn[0] << 40); 821 atomic64_set(&key->u.ccmp.tx_pn, pn64); 822 break; 823 case WLAN_CIPHER_SUITE_AES_CMAC: 824 pn64 = (u64)seq->aes_cmac.pn[5] | 825 ((u64)seq->aes_cmac.pn[4] << 8) | 826 ((u64)seq->aes_cmac.pn[3] << 16) | 827 ((u64)seq->aes_cmac.pn[2] << 24) | 828 ((u64)seq->aes_cmac.pn[1] << 32) | 829 ((u64)seq->aes_cmac.pn[0] << 40); 830 atomic64_set(&key->u.aes_cmac.tx_pn, pn64); 831 break; 832 default: 833 WARN_ON(1); 834 break; 835 } 836 } 837 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq); 838 839 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, 840 int tid, struct ieee80211_key_seq *seq) 841 { 842 struct ieee80211_key *key; 843 u8 *pn; 844 845 key = container_of(keyconf, struct ieee80211_key, conf); 846 847 switch (key->conf.cipher) { 848 case WLAN_CIPHER_SUITE_TKIP: 849 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 850 return; 851 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; 852 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; 853 break; 854 case WLAN_CIPHER_SUITE_CCMP: 855 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 856 return; 857 if (tid < 0) 858 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 859 else 860 pn = key->u.ccmp.rx_pn[tid]; 861 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); 862 break; 863 case WLAN_CIPHER_SUITE_AES_CMAC: 864 if (WARN_ON(tid != 0)) 865 return; 866 pn = key->u.aes_cmac.rx_pn; 867 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); 868 break; 869 default: 870 WARN_ON(1); 871 break; 872 } 873 } 874 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); 875 876 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) 877 { 878 struct ieee80211_key *key; 879 880 key = container_of(keyconf, struct ieee80211_key, conf); 881 882 assert_key_lock(key->local); 883 884 /* 885 * if key was uploaded, we assume the driver will/has remove(d) 886 * it, so adjust bookkeeping accordingly 887 */ 888 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { 889 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 890 891 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || 892 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) || 893 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))) 894 increment_tailroom_need_count(key->sdata); 895 } 896 897 ieee80211_key_free(key, false); 898 } 899 EXPORT_SYMBOL_GPL(ieee80211_remove_key); 900 901 struct ieee80211_key_conf * 902 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, 903 struct ieee80211_key_conf *keyconf) 904 { 905 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 906 struct ieee80211_local *local = sdata->local; 907 struct ieee80211_key *key; 908 int err; 909 910 if (WARN_ON(!local->wowlan)) 911 return ERR_PTR(-EINVAL); 912 913 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 914 return ERR_PTR(-EINVAL); 915 916 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, 917 keyconf->keylen, keyconf->key, 918 0, NULL, NULL); 919 if (IS_ERR(key)) 920 return ERR_CAST(key); 921 922 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) 923 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; 924 925 err = ieee80211_key_link(key, sdata, NULL); 926 if (err) 927 return ERR_PTR(err); 928 929 return &key->conf; 930 } 931 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add); 932