1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/if_ether.h> 13 #include <linux/etherdevice.h> 14 #include <linux/list.h> 15 #include <linux/rcupdate.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <net/mac80211.h> 20 #include <asm/unaligned.h> 21 #include "ieee80211_i.h" 22 #include "driver-ops.h" 23 #include "debugfs_key.h" 24 #include "aes_ccm.h" 25 #include "aes_cmac.h" 26 27 28 /** 29 * DOC: Key handling basics 30 * 31 * Key handling in mac80211 is done based on per-interface (sub_if_data) 32 * keys and per-station keys. Since each station belongs to an interface, 33 * each station key also belongs to that interface. 34 * 35 * Hardware acceleration is done on a best-effort basis for algorithms 36 * that are implemented in software, for each key the hardware is asked 37 * to enable that key for offloading but if it cannot do that the key is 38 * simply kept for software encryption (unless it is for an algorithm 39 * that isn't implemented in software). 40 * There is currently no way of knowing whether a key is handled in SW 41 * or HW except by looking into debugfs. 42 * 43 * All key management is internally protected by a mutex. Within all 44 * other parts of mac80211, key references are, just as STA structure 45 * references, protected by RCU. Note, however, that some things are 46 * unprotected, namely the key->sta dereferences within the hardware 47 * acceleration functions. This means that sta_info_destroy() must 48 * remove the key which waits for an RCU grace period. 49 */ 50 51 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 52 53 static void assert_key_lock(struct ieee80211_local *local) 54 { 55 lockdep_assert_held(&local->key_mtx); 56 } 57 58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) 59 { 60 /* 61 * When this count is zero, SKB resizing for allocating tailroom 62 * for IV or MMIC is skipped. But, this check has created two race 63 * cases in xmit path while transiting from zero count to one: 64 * 65 * 1. SKB resize was skipped because no key was added but just before 66 * the xmit key is added and SW encryption kicks off. 67 * 68 * 2. SKB resize was skipped because all the keys were hw planted but 69 * just before xmit one of the key is deleted and SW encryption kicks 70 * off. 71 * 72 * In both the above case SW encryption will find not enough space for 73 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) 74 * 75 * Solution has been explained at 76 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net 77 */ 78 79 if (!sdata->crypto_tx_tailroom_needed_cnt++) { 80 /* 81 * Flush all XMIT packets currently using HW encryption or no 82 * encryption at all if the count transition is from 0 -> 1. 83 */ 84 synchronize_net(); 85 } 86 } 87 88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) 89 { 90 struct ieee80211_sub_if_data *sdata; 91 struct sta_info *sta; 92 int ret; 93 94 might_sleep(); 95 96 if (!key->local->ops->set_key) 97 goto out_unsupported; 98 99 assert_key_lock(key->local); 100 101 sta = key->sta; 102 103 /* 104 * If this is a per-STA GTK, check if it 105 * is supported; if not, return. 106 */ 107 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && 108 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK)) 109 goto out_unsupported; 110 111 if (sta && !sta->uploaded) 112 goto out_unsupported; 113 114 sdata = key->sdata; 115 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 116 /* 117 * The driver doesn't know anything about VLAN interfaces. 118 * Hence, don't send GTKs for VLAN interfaces to the driver. 119 */ 120 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) 121 goto out_unsupported; 122 } 123 124 ret = drv_set_key(key->local, SET_KEY, sdata, 125 sta ? &sta->sta : NULL, &key->conf); 126 127 if (!ret) { 128 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; 129 130 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || 131 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) || 132 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))) 133 sdata->crypto_tx_tailroom_needed_cnt--; 134 135 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 136 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); 137 138 return 0; 139 } 140 141 if (ret != -ENOSPC && ret != -EOPNOTSUPP) 142 sdata_err(sdata, 143 "failed to set key (%d, %pM) to hardware (%d)\n", 144 key->conf.keyidx, 145 sta ? sta->sta.addr : bcast_addr, ret); 146 147 out_unsupported: 148 switch (key->conf.cipher) { 149 case WLAN_CIPHER_SUITE_WEP40: 150 case WLAN_CIPHER_SUITE_WEP104: 151 case WLAN_CIPHER_SUITE_TKIP: 152 case WLAN_CIPHER_SUITE_CCMP: 153 case WLAN_CIPHER_SUITE_AES_CMAC: 154 /* all of these we can do in software */ 155 return 0; 156 default: 157 return -EINVAL; 158 } 159 } 160 161 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) 162 { 163 struct ieee80211_sub_if_data *sdata; 164 struct sta_info *sta; 165 int ret; 166 167 might_sleep(); 168 169 if (!key || !key->local->ops->set_key) 170 return; 171 172 assert_key_lock(key->local); 173 174 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 175 return; 176 177 sta = key->sta; 178 sdata = key->sdata; 179 180 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || 181 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) || 182 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))) 183 increment_tailroom_need_count(sdata); 184 185 ret = drv_set_key(key->local, DISABLE_KEY, sdata, 186 sta ? &sta->sta : NULL, &key->conf); 187 188 if (ret) 189 sdata_err(sdata, 190 "failed to remove key (%d, %pM) from hardware (%d)\n", 191 key->conf.keyidx, 192 sta ? sta->sta.addr : bcast_addr, ret); 193 194 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 195 } 196 197 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, 198 int idx, bool uni, bool multi) 199 { 200 struct ieee80211_key *key = NULL; 201 202 assert_key_lock(sdata->local); 203 204 if (idx >= 0 && idx < NUM_DEFAULT_KEYS) 205 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 206 207 if (uni) 208 rcu_assign_pointer(sdata->default_unicast_key, key); 209 if (multi) 210 rcu_assign_pointer(sdata->default_multicast_key, key); 211 212 ieee80211_debugfs_key_update_default(sdata); 213 } 214 215 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, 216 bool uni, bool multi) 217 { 218 mutex_lock(&sdata->local->key_mtx); 219 __ieee80211_set_default_key(sdata, idx, uni, multi); 220 mutex_unlock(&sdata->local->key_mtx); 221 } 222 223 static void 224 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) 225 { 226 struct ieee80211_key *key = NULL; 227 228 assert_key_lock(sdata->local); 229 230 if (idx >= NUM_DEFAULT_KEYS && 231 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 232 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 233 234 rcu_assign_pointer(sdata->default_mgmt_key, key); 235 236 ieee80211_debugfs_key_update_default(sdata); 237 } 238 239 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, 240 int idx) 241 { 242 mutex_lock(&sdata->local->key_mtx); 243 __ieee80211_set_default_mgmt_key(sdata, idx); 244 mutex_unlock(&sdata->local->key_mtx); 245 } 246 247 248 static void __ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, 249 struct sta_info *sta, 250 bool pairwise, 251 struct ieee80211_key *old, 252 struct ieee80211_key *new) 253 { 254 int idx; 255 bool defunikey, defmultikey, defmgmtkey; 256 257 if (new) 258 list_add_tail(&new->list, &sdata->key_list); 259 260 if (sta && pairwise) { 261 rcu_assign_pointer(sta->ptk, new); 262 } else if (sta) { 263 if (old) 264 idx = old->conf.keyidx; 265 else 266 idx = new->conf.keyidx; 267 rcu_assign_pointer(sta->gtk[idx], new); 268 } else { 269 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); 270 271 if (old) 272 idx = old->conf.keyidx; 273 else 274 idx = new->conf.keyidx; 275 276 defunikey = old && 277 old == key_mtx_dereference(sdata->local, 278 sdata->default_unicast_key); 279 defmultikey = old && 280 old == key_mtx_dereference(sdata->local, 281 sdata->default_multicast_key); 282 defmgmtkey = old && 283 old == key_mtx_dereference(sdata->local, 284 sdata->default_mgmt_key); 285 286 if (defunikey && !new) 287 __ieee80211_set_default_key(sdata, -1, true, false); 288 if (defmultikey && !new) 289 __ieee80211_set_default_key(sdata, -1, false, true); 290 if (defmgmtkey && !new) 291 __ieee80211_set_default_mgmt_key(sdata, -1); 292 293 rcu_assign_pointer(sdata->keys[idx], new); 294 if (defunikey && new) 295 __ieee80211_set_default_key(sdata, new->conf.keyidx, 296 true, false); 297 if (defmultikey && new) 298 __ieee80211_set_default_key(sdata, new->conf.keyidx, 299 false, true); 300 if (defmgmtkey && new) 301 __ieee80211_set_default_mgmt_key(sdata, 302 new->conf.keyidx); 303 } 304 305 if (old) 306 list_del(&old->list); 307 } 308 309 struct ieee80211_key *ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, 310 const u8 *key_data, 311 size_t seq_len, const u8 *seq) 312 { 313 struct ieee80211_key *key; 314 int i, j, err; 315 316 BUG_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS); 317 318 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); 319 if (!key) 320 return ERR_PTR(-ENOMEM); 321 322 /* 323 * Default to software encryption; we'll later upload the 324 * key to the hardware if possible. 325 */ 326 key->conf.flags = 0; 327 key->flags = 0; 328 329 key->conf.cipher = cipher; 330 key->conf.keyidx = idx; 331 key->conf.keylen = key_len; 332 switch (cipher) { 333 case WLAN_CIPHER_SUITE_WEP40: 334 case WLAN_CIPHER_SUITE_WEP104: 335 key->conf.iv_len = WEP_IV_LEN; 336 key->conf.icv_len = WEP_ICV_LEN; 337 break; 338 case WLAN_CIPHER_SUITE_TKIP: 339 key->conf.iv_len = TKIP_IV_LEN; 340 key->conf.icv_len = TKIP_ICV_LEN; 341 if (seq) { 342 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 343 key->u.tkip.rx[i].iv32 = 344 get_unaligned_le32(&seq[2]); 345 key->u.tkip.rx[i].iv16 = 346 get_unaligned_le16(seq); 347 } 348 } 349 spin_lock_init(&key->u.tkip.txlock); 350 break; 351 case WLAN_CIPHER_SUITE_CCMP: 352 key->conf.iv_len = CCMP_HDR_LEN; 353 key->conf.icv_len = CCMP_MIC_LEN; 354 if (seq) { 355 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 356 for (j = 0; j < CCMP_PN_LEN; j++) 357 key->u.ccmp.rx_pn[i][j] = 358 seq[CCMP_PN_LEN - j - 1]; 359 } 360 /* 361 * Initialize AES key state here as an optimization so that 362 * it does not need to be initialized for every packet. 363 */ 364 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data); 365 if (IS_ERR(key->u.ccmp.tfm)) { 366 err = PTR_ERR(key->u.ccmp.tfm); 367 kfree(key); 368 return ERR_PTR(err); 369 } 370 break; 371 case WLAN_CIPHER_SUITE_AES_CMAC: 372 key->conf.iv_len = 0; 373 key->conf.icv_len = sizeof(struct ieee80211_mmie); 374 if (seq) 375 for (j = 0; j < CMAC_PN_LEN; j++) 376 key->u.aes_cmac.rx_pn[j] = 377 seq[CMAC_PN_LEN - j - 1]; 378 /* 379 * Initialize AES key state here as an optimization so that 380 * it does not need to be initialized for every packet. 381 */ 382 key->u.aes_cmac.tfm = 383 ieee80211_aes_cmac_key_setup(key_data); 384 if (IS_ERR(key->u.aes_cmac.tfm)) { 385 err = PTR_ERR(key->u.aes_cmac.tfm); 386 kfree(key); 387 return ERR_PTR(err); 388 } 389 break; 390 } 391 memcpy(key->conf.key, key_data, key_len); 392 INIT_LIST_HEAD(&key->list); 393 394 return key; 395 } 396 397 static void __ieee80211_key_destroy(struct ieee80211_key *key) 398 { 399 if (!key) 400 return; 401 402 /* 403 * Synchronize so the TX path can no longer be using 404 * this key before we free/remove it. 405 */ 406 synchronize_net(); 407 408 if (key->local) 409 ieee80211_key_disable_hw_accel(key); 410 411 if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP) 412 ieee80211_aes_key_free(key->u.ccmp.tfm); 413 if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC) 414 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); 415 if (key->local) { 416 ieee80211_debugfs_key_remove(key); 417 key->sdata->crypto_tx_tailroom_needed_cnt--; 418 } 419 420 kfree(key); 421 } 422 423 int ieee80211_key_link(struct ieee80211_key *key, 424 struct ieee80211_sub_if_data *sdata, 425 struct sta_info *sta) 426 { 427 struct ieee80211_key *old_key; 428 int idx, ret; 429 bool pairwise; 430 431 BUG_ON(!sdata); 432 BUG_ON(!key); 433 434 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; 435 idx = key->conf.keyidx; 436 key->local = sdata->local; 437 key->sdata = sdata; 438 key->sta = sta; 439 440 if (sta) { 441 /* 442 * some hardware cannot handle TKIP with QoS, so 443 * we indicate whether QoS could be in use. 444 */ 445 if (test_sta_flag(sta, WLAN_STA_WME)) 446 key->conf.flags |= IEEE80211_KEY_FLAG_WMM_STA; 447 } else { 448 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 449 struct sta_info *ap; 450 451 /* 452 * We're getting a sta pointer in, so must be under 453 * appropriate locking for sta_info_get(). 454 */ 455 456 /* same here, the AP could be using QoS */ 457 ap = sta_info_get(key->sdata, key->sdata->u.mgd.bssid); 458 if (ap) { 459 if (test_sta_flag(ap, WLAN_STA_WME)) 460 key->conf.flags |= 461 IEEE80211_KEY_FLAG_WMM_STA; 462 } 463 } 464 } 465 466 mutex_lock(&sdata->local->key_mtx); 467 468 if (sta && pairwise) 469 old_key = key_mtx_dereference(sdata->local, sta->ptk); 470 else if (sta) 471 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]); 472 else 473 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 474 475 increment_tailroom_need_count(sdata); 476 477 __ieee80211_key_replace(sdata, sta, pairwise, old_key, key); 478 __ieee80211_key_destroy(old_key); 479 480 ieee80211_debugfs_key_add(key); 481 482 ret = ieee80211_key_enable_hw_accel(key); 483 484 mutex_unlock(&sdata->local->key_mtx); 485 486 return ret; 487 } 488 489 void __ieee80211_key_free(struct ieee80211_key *key) 490 { 491 if (!key) 492 return; 493 494 /* 495 * Replace key with nothingness if it was ever used. 496 */ 497 if (key->sdata) 498 __ieee80211_key_replace(key->sdata, key->sta, 499 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 500 key, NULL); 501 __ieee80211_key_destroy(key); 502 } 503 504 void ieee80211_key_free(struct ieee80211_local *local, 505 struct ieee80211_key *key) 506 { 507 mutex_lock(&local->key_mtx); 508 __ieee80211_key_free(key); 509 mutex_unlock(&local->key_mtx); 510 } 511 512 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata) 513 { 514 struct ieee80211_key *key; 515 516 ASSERT_RTNL(); 517 518 if (WARN_ON(!ieee80211_sdata_running(sdata))) 519 return; 520 521 mutex_lock(&sdata->local->key_mtx); 522 523 sdata->crypto_tx_tailroom_needed_cnt = 0; 524 525 list_for_each_entry(key, &sdata->key_list, list) { 526 increment_tailroom_need_count(sdata); 527 ieee80211_key_enable_hw_accel(key); 528 } 529 530 mutex_unlock(&sdata->local->key_mtx); 531 } 532 533 void ieee80211_iter_keys(struct ieee80211_hw *hw, 534 struct ieee80211_vif *vif, 535 void (*iter)(struct ieee80211_hw *hw, 536 struct ieee80211_vif *vif, 537 struct ieee80211_sta *sta, 538 struct ieee80211_key_conf *key, 539 void *data), 540 void *iter_data) 541 { 542 struct ieee80211_local *local = hw_to_local(hw); 543 struct ieee80211_key *key; 544 struct ieee80211_sub_if_data *sdata; 545 546 ASSERT_RTNL(); 547 548 mutex_lock(&local->key_mtx); 549 if (vif) { 550 sdata = vif_to_sdata(vif); 551 list_for_each_entry(key, &sdata->key_list, list) 552 iter(hw, &sdata->vif, 553 key->sta ? &key->sta->sta : NULL, 554 &key->conf, iter_data); 555 } else { 556 list_for_each_entry(sdata, &local->interfaces, list) 557 list_for_each_entry(key, &sdata->key_list, list) 558 iter(hw, &sdata->vif, 559 key->sta ? &key->sta->sta : NULL, 560 &key->conf, iter_data); 561 } 562 mutex_unlock(&local->key_mtx); 563 } 564 EXPORT_SYMBOL(ieee80211_iter_keys); 565 566 void ieee80211_disable_keys(struct ieee80211_sub_if_data *sdata) 567 { 568 struct ieee80211_key *key; 569 570 ASSERT_RTNL(); 571 572 mutex_lock(&sdata->local->key_mtx); 573 574 list_for_each_entry(key, &sdata->key_list, list) 575 ieee80211_key_disable_hw_accel(key); 576 577 mutex_unlock(&sdata->local->key_mtx); 578 } 579 580 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata) 581 { 582 struct ieee80211_key *key, *tmp; 583 584 mutex_lock(&sdata->local->key_mtx); 585 586 ieee80211_debugfs_key_remove_mgmt_default(sdata); 587 588 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) 589 __ieee80211_key_free(key); 590 591 ieee80211_debugfs_key_update_default(sdata); 592 593 mutex_unlock(&sdata->local->key_mtx); 594 } 595 596 597 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 598 const u8 *replay_ctr, gfp_t gfp) 599 { 600 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 601 602 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); 603 604 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); 605 } 606 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); 607 608 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, 609 struct ieee80211_key_seq *seq) 610 { 611 struct ieee80211_key *key; 612 u64 pn64; 613 614 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV))) 615 return; 616 617 key = container_of(keyconf, struct ieee80211_key, conf); 618 619 switch (key->conf.cipher) { 620 case WLAN_CIPHER_SUITE_TKIP: 621 seq->tkip.iv32 = key->u.tkip.tx.iv32; 622 seq->tkip.iv16 = key->u.tkip.tx.iv16; 623 break; 624 case WLAN_CIPHER_SUITE_CCMP: 625 pn64 = atomic64_read(&key->u.ccmp.tx_pn); 626 seq->ccmp.pn[5] = pn64; 627 seq->ccmp.pn[4] = pn64 >> 8; 628 seq->ccmp.pn[3] = pn64 >> 16; 629 seq->ccmp.pn[2] = pn64 >> 24; 630 seq->ccmp.pn[1] = pn64 >> 32; 631 seq->ccmp.pn[0] = pn64 >> 40; 632 break; 633 case WLAN_CIPHER_SUITE_AES_CMAC: 634 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn); 635 seq->ccmp.pn[5] = pn64; 636 seq->ccmp.pn[4] = pn64 >> 8; 637 seq->ccmp.pn[3] = pn64 >> 16; 638 seq->ccmp.pn[2] = pn64 >> 24; 639 seq->ccmp.pn[1] = pn64 >> 32; 640 seq->ccmp.pn[0] = pn64 >> 40; 641 break; 642 default: 643 WARN_ON(1); 644 } 645 } 646 EXPORT_SYMBOL(ieee80211_get_key_tx_seq); 647 648 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 649 int tid, struct ieee80211_key_seq *seq) 650 { 651 struct ieee80211_key *key; 652 const u8 *pn; 653 654 key = container_of(keyconf, struct ieee80211_key, conf); 655 656 switch (key->conf.cipher) { 657 case WLAN_CIPHER_SUITE_TKIP: 658 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 659 return; 660 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; 661 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; 662 break; 663 case WLAN_CIPHER_SUITE_CCMP: 664 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 665 return; 666 if (tid < 0) 667 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 668 else 669 pn = key->u.ccmp.rx_pn[tid]; 670 memcpy(seq->ccmp.pn, pn, CCMP_PN_LEN); 671 break; 672 case WLAN_CIPHER_SUITE_AES_CMAC: 673 if (WARN_ON(tid != 0)) 674 return; 675 pn = key->u.aes_cmac.rx_pn; 676 memcpy(seq->aes_cmac.pn, pn, CMAC_PN_LEN); 677 break; 678 } 679 } 680 EXPORT_SYMBOL(ieee80211_get_key_rx_seq); 681