1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HT handling 4 * 5 * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi> 6 * Copyright 2002-2005, Instant802 Networks, Inc. 7 * Copyright 2005-2006, Devicescape Software, Inc. 8 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 9 * Copyright 2007, Michael Wu <flamingice@sourmilk.net> 10 * Copyright 2007-2010, Intel Corporation 11 * Copyright 2017 Intel Deutschland GmbH 12 * Copyright(c) 2020-2022 Intel Corporation 13 */ 14 15 #include <linux/ieee80211.h> 16 #include <linux/export.h> 17 #include <net/mac80211.h> 18 #include "ieee80211_i.h" 19 #include "rate.h" 20 21 static void __check_htcap_disable(struct ieee80211_ht_cap *ht_capa, 22 struct ieee80211_ht_cap *ht_capa_mask, 23 struct ieee80211_sta_ht_cap *ht_cap, 24 u16 flag) 25 { 26 __le16 le_flag = cpu_to_le16(flag); 27 if (ht_capa_mask->cap_info & le_flag) { 28 if (!(ht_capa->cap_info & le_flag)) 29 ht_cap->cap &= ~flag; 30 } 31 } 32 33 static void __check_htcap_enable(struct ieee80211_ht_cap *ht_capa, 34 struct ieee80211_ht_cap *ht_capa_mask, 35 struct ieee80211_sta_ht_cap *ht_cap, 36 u16 flag) 37 { 38 __le16 le_flag = cpu_to_le16(flag); 39 40 if ((ht_capa_mask->cap_info & le_flag) && 41 (ht_capa->cap_info & le_flag)) 42 ht_cap->cap |= flag; 43 } 44 45 void ieee80211_apply_htcap_overrides(struct ieee80211_sub_if_data *sdata, 46 struct ieee80211_sta_ht_cap *ht_cap) 47 { 48 struct ieee80211_ht_cap *ht_capa, *ht_capa_mask; 49 u8 *scaps, *smask; 50 int i; 51 52 if (!ht_cap->ht_supported) 53 return; 54 55 switch (sdata->vif.type) { 56 case NL80211_IFTYPE_STATION: 57 ht_capa = &sdata->u.mgd.ht_capa; 58 ht_capa_mask = &sdata->u.mgd.ht_capa_mask; 59 break; 60 case NL80211_IFTYPE_ADHOC: 61 ht_capa = &sdata->u.ibss.ht_capa; 62 ht_capa_mask = &sdata->u.ibss.ht_capa_mask; 63 break; 64 default: 65 WARN_ON_ONCE(1); 66 return; 67 } 68 69 scaps = (u8 *)(&ht_capa->mcs.rx_mask); 70 smask = (u8 *)(&ht_capa_mask->mcs.rx_mask); 71 72 /* NOTE: If you add more over-rides here, update register_hw 73 * ht_capa_mod_mask logic in main.c as well. 74 * And, if this method can ever change ht_cap.ht_supported, fix 75 * the check in ieee80211_add_ht_ie. 76 */ 77 78 /* check for HT over-rides, MCS rates first. */ 79 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { 80 u8 m = smask[i]; 81 ht_cap->mcs.rx_mask[i] &= ~m; /* turn off all masked bits */ 82 /* Add back rates that are supported */ 83 ht_cap->mcs.rx_mask[i] |= (m & scaps[i]); 84 } 85 86 /* Force removal of HT-40 capabilities? */ 87 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 88 IEEE80211_HT_CAP_SUP_WIDTH_20_40); 89 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 90 IEEE80211_HT_CAP_SGI_40); 91 92 /* Allow user to disable SGI-20 (SGI-40 is handled above) */ 93 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 94 IEEE80211_HT_CAP_SGI_20); 95 96 /* Allow user to disable the max-AMSDU bit. */ 97 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 98 IEEE80211_HT_CAP_MAX_AMSDU); 99 100 /* Allow user to disable LDPC */ 101 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 102 IEEE80211_HT_CAP_LDPC_CODING); 103 104 /* Allow user to enable 40 MHz intolerant bit. */ 105 __check_htcap_enable(ht_capa, ht_capa_mask, ht_cap, 106 IEEE80211_HT_CAP_40MHZ_INTOLERANT); 107 108 /* Allow user to enable TX STBC bit */ 109 __check_htcap_enable(ht_capa, ht_capa_mask, ht_cap, 110 IEEE80211_HT_CAP_TX_STBC); 111 112 /* Allow user to configure RX STBC bits */ 113 if (ht_capa_mask->cap_info & cpu_to_le16(IEEE80211_HT_CAP_RX_STBC)) 114 ht_cap->cap |= le16_to_cpu(ht_capa->cap_info) & 115 IEEE80211_HT_CAP_RX_STBC; 116 117 /* Allow user to decrease AMPDU factor */ 118 if (ht_capa_mask->ampdu_params_info & 119 IEEE80211_HT_AMPDU_PARM_FACTOR) { 120 u8 n = ht_capa->ampdu_params_info & 121 IEEE80211_HT_AMPDU_PARM_FACTOR; 122 if (n < ht_cap->ampdu_factor) 123 ht_cap->ampdu_factor = n; 124 } 125 126 /* Allow the user to increase AMPDU density. */ 127 if (ht_capa_mask->ampdu_params_info & 128 IEEE80211_HT_AMPDU_PARM_DENSITY) { 129 u8 n = (ht_capa->ampdu_params_info & 130 IEEE80211_HT_AMPDU_PARM_DENSITY) 131 >> IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT; 132 if (n > ht_cap->ampdu_density) 133 ht_cap->ampdu_density = n; 134 } 135 } 136 137 138 bool ieee80211_ht_cap_ie_to_sta_ht_cap(struct ieee80211_sub_if_data *sdata, 139 struct ieee80211_supported_band *sband, 140 const struct ieee80211_ht_cap *ht_cap_ie, 141 struct link_sta_info *link_sta) 142 { 143 struct sta_info *sta = link_sta->sta; 144 struct ieee80211_sta_ht_cap ht_cap, own_cap; 145 u8 ampdu_info, tx_mcs_set_cap; 146 int i, max_tx_streams; 147 bool changed; 148 enum ieee80211_sta_rx_bandwidth bw; 149 150 memset(&ht_cap, 0, sizeof(ht_cap)); 151 152 if (!ht_cap_ie || !sband->ht_cap.ht_supported) 153 goto apply; 154 155 ht_cap.ht_supported = true; 156 157 own_cap = sband->ht_cap; 158 159 /* 160 * If user has specified capability over-rides, take care 161 * of that if the station we're setting up is the AP or TDLS peer that 162 * we advertised a restricted capability set to. Override 163 * our own capabilities and then use those below. 164 */ 165 if (sdata->vif.type == NL80211_IFTYPE_STATION || 166 sdata->vif.type == NL80211_IFTYPE_ADHOC) 167 ieee80211_apply_htcap_overrides(sdata, &own_cap); 168 169 /* 170 * The bits listed in this expression should be 171 * the same for the peer and us, if the station 172 * advertises more then we can't use those thus 173 * we mask them out. 174 */ 175 ht_cap.cap = le16_to_cpu(ht_cap_ie->cap_info) & 176 (own_cap.cap | ~(IEEE80211_HT_CAP_LDPC_CODING | 177 IEEE80211_HT_CAP_SUP_WIDTH_20_40 | 178 IEEE80211_HT_CAP_GRN_FLD | 179 IEEE80211_HT_CAP_SGI_20 | 180 IEEE80211_HT_CAP_SGI_40 | 181 IEEE80211_HT_CAP_DSSSCCK40)); 182 183 /* 184 * The STBC bits are asymmetric -- if we don't have 185 * TX then mask out the peer's RX and vice versa. 186 */ 187 if (!(own_cap.cap & IEEE80211_HT_CAP_TX_STBC)) 188 ht_cap.cap &= ~IEEE80211_HT_CAP_RX_STBC; 189 if (!(own_cap.cap & IEEE80211_HT_CAP_RX_STBC)) 190 ht_cap.cap &= ~IEEE80211_HT_CAP_TX_STBC; 191 192 ampdu_info = ht_cap_ie->ampdu_params_info; 193 ht_cap.ampdu_factor = 194 ampdu_info & IEEE80211_HT_AMPDU_PARM_FACTOR; 195 ht_cap.ampdu_density = 196 (ampdu_info & IEEE80211_HT_AMPDU_PARM_DENSITY) >> 2; 197 198 /* own MCS TX capabilities */ 199 tx_mcs_set_cap = own_cap.mcs.tx_params; 200 201 /* Copy peer MCS TX capabilities, the driver might need them. */ 202 ht_cap.mcs.tx_params = ht_cap_ie->mcs.tx_params; 203 204 /* can we TX with MCS rates? */ 205 if (!(tx_mcs_set_cap & IEEE80211_HT_MCS_TX_DEFINED)) 206 goto apply; 207 208 /* Counting from 0, therefore +1 */ 209 if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_RX_DIFF) 210 max_tx_streams = 211 ((tx_mcs_set_cap & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 212 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 213 else 214 max_tx_streams = IEEE80211_HT_MCS_TX_MAX_STREAMS; 215 216 /* 217 * 802.11n-2009 20.3.5 / 20.6 says: 218 * - indices 0 to 7 and 32 are single spatial stream 219 * - 8 to 31 are multiple spatial streams using equal modulation 220 * [8..15 for two streams, 16..23 for three and 24..31 for four] 221 * - remainder are multiple spatial streams using unequal modulation 222 */ 223 for (i = 0; i < max_tx_streams; i++) 224 ht_cap.mcs.rx_mask[i] = 225 own_cap.mcs.rx_mask[i] & ht_cap_ie->mcs.rx_mask[i]; 226 227 if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION) 228 for (i = IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE; 229 i < IEEE80211_HT_MCS_MASK_LEN; i++) 230 ht_cap.mcs.rx_mask[i] = 231 own_cap.mcs.rx_mask[i] & 232 ht_cap_ie->mcs.rx_mask[i]; 233 234 /* handle MCS rate 32 too */ 235 if (own_cap.mcs.rx_mask[32/8] & ht_cap_ie->mcs.rx_mask[32/8] & 1) 236 ht_cap.mcs.rx_mask[32/8] |= 1; 237 238 /* set Rx highest rate */ 239 ht_cap.mcs.rx_highest = ht_cap_ie->mcs.rx_highest; 240 241 if (ht_cap.cap & IEEE80211_HT_CAP_MAX_AMSDU) 242 sta->sta.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_7935; 243 else 244 sta->sta.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_3839; 245 246 apply: 247 changed = memcmp(&link_sta->pub->ht_cap, &ht_cap, sizeof(ht_cap)); 248 249 memcpy(&link_sta->pub->ht_cap, &ht_cap, sizeof(ht_cap)); 250 251 switch (sdata->vif.link_conf[link_sta->link_id]->chandef.width) { 252 default: 253 WARN_ON_ONCE(1); 254 fallthrough; 255 case NL80211_CHAN_WIDTH_20_NOHT: 256 case NL80211_CHAN_WIDTH_20: 257 bw = IEEE80211_STA_RX_BW_20; 258 break; 259 case NL80211_CHAN_WIDTH_40: 260 case NL80211_CHAN_WIDTH_80: 261 case NL80211_CHAN_WIDTH_80P80: 262 case NL80211_CHAN_WIDTH_160: 263 bw = ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? 264 IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; 265 break; 266 } 267 268 link_sta->pub->bandwidth = bw; 269 270 link_sta->cur_max_bandwidth = 271 ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? 272 IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; 273 274 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 275 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 276 enum ieee80211_smps_mode smps_mode; 277 278 switch ((ht_cap.cap & IEEE80211_HT_CAP_SM_PS) 279 >> IEEE80211_HT_CAP_SM_PS_SHIFT) { 280 case WLAN_HT_CAP_SM_PS_INVALID: 281 case WLAN_HT_CAP_SM_PS_STATIC: 282 smps_mode = IEEE80211_SMPS_STATIC; 283 break; 284 case WLAN_HT_CAP_SM_PS_DYNAMIC: 285 smps_mode = IEEE80211_SMPS_DYNAMIC; 286 break; 287 case WLAN_HT_CAP_SM_PS_DISABLED: 288 smps_mode = IEEE80211_SMPS_OFF; 289 break; 290 } 291 292 if (smps_mode != sta->sta.smps_mode) 293 changed = true; 294 sta->sta.smps_mode = smps_mode; 295 } else { 296 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 297 } 298 return changed; 299 } 300 301 void ieee80211_sta_tear_down_BA_sessions(struct sta_info *sta, 302 enum ieee80211_agg_stop_reason reason) 303 { 304 int i; 305 306 mutex_lock(&sta->ampdu_mlme.mtx); 307 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 308 ___ieee80211_stop_rx_ba_session(sta, i, WLAN_BACK_RECIPIENT, 309 WLAN_REASON_QSTA_LEAVE_QBSS, 310 reason != AGG_STOP_DESTROY_STA && 311 reason != AGG_STOP_PEER_REQUEST); 312 313 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 314 ___ieee80211_stop_tx_ba_session(sta, i, reason); 315 mutex_unlock(&sta->ampdu_mlme.mtx); 316 317 /* 318 * In case the tear down is part of a reconfigure due to HW restart 319 * request, it is possible that the low level driver requested to stop 320 * the BA session, so handle it to properly clean tid_tx data. 321 */ 322 if(reason == AGG_STOP_DESTROY_STA) { 323 cancel_work_sync(&sta->ampdu_mlme.work); 324 325 mutex_lock(&sta->ampdu_mlme.mtx); 326 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 327 struct tid_ampdu_tx *tid_tx = 328 rcu_dereference_protected_tid_tx(sta, i); 329 330 if (!tid_tx) 331 continue; 332 333 if (test_and_clear_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state)) 334 ieee80211_stop_tx_ba_cb(sta, i, tid_tx); 335 } 336 mutex_unlock(&sta->ampdu_mlme.mtx); 337 } 338 } 339 340 void ieee80211_ba_session_work(struct work_struct *work) 341 { 342 struct sta_info *sta = 343 container_of(work, struct sta_info, ampdu_mlme.work); 344 struct tid_ampdu_tx *tid_tx; 345 bool blocked; 346 int tid; 347 348 /* When this flag is set, new sessions should be blocked. */ 349 blocked = test_sta_flag(sta, WLAN_STA_BLOCK_BA); 350 351 mutex_lock(&sta->ampdu_mlme.mtx); 352 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 353 if (test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_timer_expired)) 354 ___ieee80211_stop_rx_ba_session( 355 sta, tid, WLAN_BACK_RECIPIENT, 356 WLAN_REASON_QSTA_TIMEOUT, true); 357 358 if (test_and_clear_bit(tid, 359 sta->ampdu_mlme.tid_rx_stop_requested)) 360 ___ieee80211_stop_rx_ba_session( 361 sta, tid, WLAN_BACK_RECIPIENT, 362 WLAN_REASON_UNSPECIFIED, true); 363 364 if (!blocked && 365 test_and_clear_bit(tid, 366 sta->ampdu_mlme.tid_rx_manage_offl)) 367 ___ieee80211_start_rx_ba_session(sta, 0, 0, 0, 1, tid, 368 IEEE80211_MAX_AMPDU_BUF_HT, 369 false, true, NULL); 370 371 if (test_and_clear_bit(tid + IEEE80211_NUM_TIDS, 372 sta->ampdu_mlme.tid_rx_manage_offl)) 373 ___ieee80211_stop_rx_ba_session( 374 sta, tid, WLAN_BACK_RECIPIENT, 375 0, false); 376 377 spin_lock_bh(&sta->lock); 378 379 tid_tx = sta->ampdu_mlme.tid_start_tx[tid]; 380 if (!blocked && tid_tx) { 381 /* 382 * Assign it over to the normal tid_tx array 383 * where it "goes live". 384 */ 385 386 sta->ampdu_mlme.tid_start_tx[tid] = NULL; 387 /* could there be a race? */ 388 if (sta->ampdu_mlme.tid_tx[tid]) 389 kfree(tid_tx); 390 else 391 ieee80211_assign_tid_tx(sta, tid, tid_tx); 392 spin_unlock_bh(&sta->lock); 393 394 ieee80211_tx_ba_session_handle_start(sta, tid); 395 continue; 396 } 397 spin_unlock_bh(&sta->lock); 398 399 tid_tx = rcu_dereference_protected_tid_tx(sta, tid); 400 if (!tid_tx) 401 continue; 402 403 if (!blocked && 404 test_and_clear_bit(HT_AGG_STATE_START_CB, &tid_tx->state)) 405 ieee80211_start_tx_ba_cb(sta, tid, tid_tx); 406 if (test_and_clear_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state)) 407 ___ieee80211_stop_tx_ba_session(sta, tid, 408 AGG_STOP_LOCAL_REQUEST); 409 if (test_and_clear_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state)) 410 ieee80211_stop_tx_ba_cb(sta, tid, tid_tx); 411 } 412 mutex_unlock(&sta->ampdu_mlme.mtx); 413 } 414 415 void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, 416 const u8 *da, u16 tid, 417 u16 initiator, u16 reason_code) 418 { 419 struct ieee80211_local *local = sdata->local; 420 struct sk_buff *skb; 421 struct ieee80211_mgmt *mgmt; 422 u16 params; 423 424 skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); 425 if (!skb) 426 return; 427 428 skb_reserve(skb, local->hw.extra_tx_headroom); 429 mgmt = skb_put_zero(skb, 24); 430 memcpy(mgmt->da, da, ETH_ALEN); 431 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 432 if (sdata->vif.type == NL80211_IFTYPE_AP || 433 sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 434 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 435 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 436 else if (sdata->vif.type == NL80211_IFTYPE_STATION) 437 memcpy(mgmt->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 438 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 439 memcpy(mgmt->bssid, sdata->u.ibss.bssid, ETH_ALEN); 440 441 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 442 IEEE80211_STYPE_ACTION); 443 444 skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba)); 445 446 mgmt->u.action.category = WLAN_CATEGORY_BACK; 447 mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA; 448 params = (u16)(initiator << 11); /* bit 11 initiator */ 449 params |= (u16)(tid << 12); /* bit 15:12 TID number */ 450 451 mgmt->u.action.u.delba.params = cpu_to_le16(params); 452 mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code); 453 454 ieee80211_tx_skb(sdata, skb); 455 } 456 457 void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata, 458 struct sta_info *sta, 459 struct ieee80211_mgmt *mgmt, size_t len) 460 { 461 u16 tid, params; 462 u16 initiator; 463 464 params = le16_to_cpu(mgmt->u.action.u.delba.params); 465 tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12; 466 initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11; 467 468 ht_dbg_ratelimited(sdata, "delba from %pM (%s) tid %d reason code %d\n", 469 mgmt->sa, initiator ? "initiator" : "recipient", 470 tid, 471 le16_to_cpu(mgmt->u.action.u.delba.reason_code)); 472 473 if (initiator == WLAN_BACK_INITIATOR) 474 __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_INITIATOR, 0, 475 true); 476 else 477 __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_PEER_REQUEST); 478 } 479 480 enum nl80211_smps_mode 481 ieee80211_smps_mode_to_smps_mode(enum ieee80211_smps_mode smps) 482 { 483 switch (smps) { 484 case IEEE80211_SMPS_OFF: 485 return NL80211_SMPS_OFF; 486 case IEEE80211_SMPS_STATIC: 487 return NL80211_SMPS_STATIC; 488 case IEEE80211_SMPS_DYNAMIC: 489 return NL80211_SMPS_DYNAMIC; 490 default: 491 return NL80211_SMPS_OFF; 492 } 493 } 494 495 int ieee80211_send_smps_action(struct ieee80211_sub_if_data *sdata, 496 enum ieee80211_smps_mode smps, const u8 *da, 497 const u8 *bssid) 498 { 499 struct ieee80211_local *local = sdata->local; 500 struct sk_buff *skb; 501 struct ieee80211_mgmt *action_frame; 502 503 /* 27 = header + category + action + smps mode */ 504 skb = dev_alloc_skb(27 + local->hw.extra_tx_headroom); 505 if (!skb) 506 return -ENOMEM; 507 508 skb_reserve(skb, local->hw.extra_tx_headroom); 509 action_frame = skb_put(skb, 27); 510 memcpy(action_frame->da, da, ETH_ALEN); 511 memcpy(action_frame->sa, sdata->dev->dev_addr, ETH_ALEN); 512 memcpy(action_frame->bssid, bssid, ETH_ALEN); 513 action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 514 IEEE80211_STYPE_ACTION); 515 action_frame->u.action.category = WLAN_CATEGORY_HT; 516 action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS; 517 switch (smps) { 518 case IEEE80211_SMPS_AUTOMATIC: 519 case IEEE80211_SMPS_NUM_MODES: 520 WARN_ON(1); 521 fallthrough; 522 case IEEE80211_SMPS_OFF: 523 action_frame->u.action.u.ht_smps.smps_control = 524 WLAN_HT_SMPS_CONTROL_DISABLED; 525 break; 526 case IEEE80211_SMPS_STATIC: 527 action_frame->u.action.u.ht_smps.smps_control = 528 WLAN_HT_SMPS_CONTROL_STATIC; 529 break; 530 case IEEE80211_SMPS_DYNAMIC: 531 action_frame->u.action.u.ht_smps.smps_control = 532 WLAN_HT_SMPS_CONTROL_DYNAMIC; 533 break; 534 } 535 536 /* we'll do more on status of this frame */ 537 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 538 ieee80211_tx_skb(sdata, skb); 539 540 return 0; 541 } 542 543 void ieee80211_request_smps_mgd_work(struct work_struct *work) 544 { 545 struct ieee80211_link_data *link = 546 container_of(work, struct ieee80211_link_data, 547 u.mgd.request_smps_work); 548 549 sdata_lock(link->sdata); 550 __ieee80211_request_smps_mgd(link->sdata, link->link_id, 551 link->u.mgd.driver_smps_mode); 552 sdata_unlock(link->sdata); 553 } 554 555 void ieee80211_request_smps(struct ieee80211_vif *vif, unsigned int link_id, 556 enum ieee80211_smps_mode smps_mode) 557 { 558 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 559 struct ieee80211_link_data *link = sdata->link[link_id]; 560 561 if (WARN_ON_ONCE(vif->type != NL80211_IFTYPE_STATION)) 562 return; 563 564 if (WARN_ON(!link)) 565 return; 566 567 if (link->u.mgd.driver_smps_mode == smps_mode) 568 return; 569 570 link->u.mgd.driver_smps_mode = smps_mode; 571 ieee80211_queue_work(&sdata->local->hw, &link->u.mgd.request_smps_work); 572 } 573 /* this might change ... don't want non-open drivers using it */ 574 EXPORT_SYMBOL_GPL(ieee80211_request_smps); 575