xref: /linux/net/mac80211/fils_aead.c (revision 9fb29c734f9e98adc1f2f3c4629fe487cb93f2dd)
1 /*
2  * FILS AEAD for (Re)Association Request/Response frames
3  * Copyright 2016, Qualcomm Atheros, Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <crypto/aes.h>
11 #include <crypto/algapi.h>
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 
15 #include "ieee80211_i.h"
16 #include "aes_cmac.h"
17 #include "fils_aead.h"
18 
19 static void gf_mulx(u8 *pad)
20 {
21 	u64 a = get_unaligned_be64(pad);
22 	u64 b = get_unaligned_be64(pad + 8);
23 
24 	put_unaligned_be64((a << 1) | (b >> 63), pad);
25 	put_unaligned_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0), pad + 8);
26 }
27 
28 static int aes_s2v(struct crypto_shash *tfm,
29 		   size_t num_elem, const u8 *addr[], size_t len[], u8 *v)
30 {
31 	u8 d[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE] = {};
32 	SHASH_DESC_ON_STACK(desc, tfm);
33 	size_t i;
34 
35 	desc->tfm = tfm;
36 
37 	/* D = AES-CMAC(K, <zero>) */
38 	crypto_shash_digest(desc, tmp, AES_BLOCK_SIZE, d);
39 
40 	for (i = 0; i < num_elem - 1; i++) {
41 		/* D = dbl(D) xor AES_CMAC(K, Si) */
42 		gf_mulx(d); /* dbl */
43 		crypto_shash_digest(desc, addr[i], len[i], tmp);
44 		crypto_xor(d, tmp, AES_BLOCK_SIZE);
45 	}
46 
47 	crypto_shash_init(desc);
48 
49 	if (len[i] >= AES_BLOCK_SIZE) {
50 		/* len(Sn) >= 128 */
51 		/* T = Sn xorend D */
52 		crypto_shash_update(desc, addr[i], len[i] - AES_BLOCK_SIZE);
53 		crypto_xor(d, addr[i] + len[i] - AES_BLOCK_SIZE,
54 			   AES_BLOCK_SIZE);
55 	} else {
56 		/* len(Sn) < 128 */
57 		/* T = dbl(D) xor pad(Sn) */
58 		gf_mulx(d); /* dbl */
59 		crypto_xor(d, addr[i], len[i]);
60 		d[len[i]] ^= 0x80;
61 	}
62 	/* V = AES-CMAC(K, T) */
63 	crypto_shash_finup(desc, d, AES_BLOCK_SIZE, v);
64 
65 	return 0;
66 }
67 
68 /* Note: addr[] and len[] needs to have one extra slot at the end. */
69 static int aes_siv_encrypt(const u8 *key, size_t key_len,
70 			   const u8 *plain, size_t plain_len,
71 			   size_t num_elem, const u8 *addr[],
72 			   size_t len[], u8 *out)
73 {
74 	u8 v[AES_BLOCK_SIZE];
75 	struct crypto_shash *tfm;
76 	struct crypto_skcipher *tfm2;
77 	struct skcipher_request *req;
78 	int res;
79 	struct scatterlist src[1], dst[1];
80 	u8 *tmp;
81 
82 	key_len /= 2; /* S2V key || CTR key */
83 
84 	addr[num_elem] = plain;
85 	len[num_elem] = plain_len;
86 	num_elem++;
87 
88 	/* S2V */
89 
90 	tfm = crypto_alloc_shash("cmac(aes)", 0, 0);
91 	if (IS_ERR(tfm))
92 		return PTR_ERR(tfm);
93 	/* K1 for S2V */
94 	res = crypto_shash_setkey(tfm, key, key_len);
95 	if (!res)
96 		res = aes_s2v(tfm, num_elem, addr, len, v);
97 	crypto_free_shash(tfm);
98 	if (res)
99 		return res;
100 
101 	/* Use a temporary buffer of the plaintext to handle need for
102 	 * overwriting this during AES-CTR.
103 	 */
104 	tmp = kmemdup(plain, plain_len, GFP_KERNEL);
105 	if (!tmp)
106 		return -ENOMEM;
107 
108 	/* IV for CTR before encrypted data */
109 	memcpy(out, v, AES_BLOCK_SIZE);
110 
111 	/* Synthetic IV to be used as the initial counter in CTR:
112 	 * Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31)
113 	 */
114 	v[8] &= 0x7f;
115 	v[12] &= 0x7f;
116 
117 	/* CTR */
118 
119 	tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
120 	if (IS_ERR(tfm2)) {
121 		kfree(tmp);
122 		return PTR_ERR(tfm2);
123 	}
124 	/* K2 for CTR */
125 	res = crypto_skcipher_setkey(tfm2, key + key_len, key_len);
126 	if (res)
127 		goto fail;
128 
129 	req = skcipher_request_alloc(tfm2, GFP_KERNEL);
130 	if (!req) {
131 		res = -ENOMEM;
132 		goto fail;
133 	}
134 
135 	sg_init_one(src, tmp, plain_len);
136 	sg_init_one(dst, out + AES_BLOCK_SIZE, plain_len);
137 	skcipher_request_set_crypt(req, src, dst, plain_len, v);
138 	res = crypto_skcipher_encrypt(req);
139 	skcipher_request_free(req);
140 fail:
141 	kfree(tmp);
142 	crypto_free_skcipher(tfm2);
143 	return res;
144 }
145 
146 /* Note: addr[] and len[] needs to have one extra slot at the end. */
147 static int aes_siv_decrypt(const u8 *key, size_t key_len,
148 			   const u8 *iv_crypt, size_t iv_c_len,
149 			   size_t num_elem, const u8 *addr[], size_t len[],
150 			   u8 *out)
151 {
152 	struct crypto_shash *tfm;
153 	struct crypto_skcipher *tfm2;
154 	struct skcipher_request *req;
155 	struct scatterlist src[1], dst[1];
156 	size_t crypt_len;
157 	int res;
158 	u8 frame_iv[AES_BLOCK_SIZE], iv[AES_BLOCK_SIZE];
159 	u8 check[AES_BLOCK_SIZE];
160 
161 	crypt_len = iv_c_len - AES_BLOCK_SIZE;
162 	key_len /= 2; /* S2V key || CTR key */
163 	addr[num_elem] = out;
164 	len[num_elem] = crypt_len;
165 	num_elem++;
166 
167 	memcpy(iv, iv_crypt, AES_BLOCK_SIZE);
168 	memcpy(frame_iv, iv_crypt, AES_BLOCK_SIZE);
169 
170 	/* Synthetic IV to be used as the initial counter in CTR:
171 	 * Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31)
172 	 */
173 	iv[8] &= 0x7f;
174 	iv[12] &= 0x7f;
175 
176 	/* CTR */
177 
178 	tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
179 	if (IS_ERR(tfm2))
180 		return PTR_ERR(tfm2);
181 	/* K2 for CTR */
182 	res = crypto_skcipher_setkey(tfm2, key + key_len, key_len);
183 	if (res) {
184 		crypto_free_skcipher(tfm2);
185 		return res;
186 	}
187 
188 	req = skcipher_request_alloc(tfm2, GFP_KERNEL);
189 	if (!req) {
190 		crypto_free_skcipher(tfm2);
191 		return -ENOMEM;
192 	}
193 
194 	sg_init_one(src, iv_crypt + AES_BLOCK_SIZE, crypt_len);
195 	sg_init_one(dst, out, crypt_len);
196 	skcipher_request_set_crypt(req, src, dst, crypt_len, iv);
197 	res = crypto_skcipher_decrypt(req);
198 	skcipher_request_free(req);
199 	crypto_free_skcipher(tfm2);
200 	if (res)
201 		return res;
202 
203 	/* S2V */
204 
205 	tfm = crypto_alloc_shash("cmac(aes)", 0, 0);
206 	if (IS_ERR(tfm))
207 		return PTR_ERR(tfm);
208 	/* K1 for S2V */
209 	res = crypto_shash_setkey(tfm, key, key_len);
210 	if (!res)
211 		res = aes_s2v(tfm, num_elem, addr, len, check);
212 	crypto_free_shash(tfm);
213 	if (res)
214 		return res;
215 	if (memcmp(check, frame_iv, AES_BLOCK_SIZE) != 0)
216 		return -EINVAL;
217 	return 0;
218 }
219 
220 int fils_encrypt_assoc_req(struct sk_buff *skb,
221 			   struct ieee80211_mgd_assoc_data *assoc_data)
222 {
223 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
224 	u8 *capab, *ies, *encr;
225 	const u8 *addr[5 + 1], *session;
226 	size_t len[5 + 1];
227 	size_t crypt_len;
228 
229 	if (ieee80211_is_reassoc_req(mgmt->frame_control)) {
230 		capab = (u8 *)&mgmt->u.reassoc_req.capab_info;
231 		ies = mgmt->u.reassoc_req.variable;
232 	} else {
233 		capab = (u8 *)&mgmt->u.assoc_req.capab_info;
234 		ies = mgmt->u.assoc_req.variable;
235 	}
236 
237 	session = cfg80211_find_ext_ie(WLAN_EID_EXT_FILS_SESSION,
238 				       ies, skb->data + skb->len - ies);
239 	if (!session || session[1] != 1 + 8)
240 		return -EINVAL;
241 	/* encrypt after FILS Session element */
242 	encr = (u8 *)session + 2 + 1 + 8;
243 
244 	/* AES-SIV AAD vectors */
245 
246 	/* The STA's MAC address */
247 	addr[0] = mgmt->sa;
248 	len[0] = ETH_ALEN;
249 	/* The AP's BSSID */
250 	addr[1] = mgmt->da;
251 	len[1] = ETH_ALEN;
252 	/* The STA's nonce */
253 	addr[2] = assoc_data->fils_nonces;
254 	len[2] = FILS_NONCE_LEN;
255 	/* The AP's nonce */
256 	addr[3] = &assoc_data->fils_nonces[FILS_NONCE_LEN];
257 	len[3] = FILS_NONCE_LEN;
258 	/* The (Re)Association Request frame from the Capability Information
259 	 * field to the FILS Session element (both inclusive).
260 	 */
261 	addr[4] = capab;
262 	len[4] = encr - capab;
263 
264 	crypt_len = skb->data + skb->len - encr;
265 	skb_put(skb, AES_BLOCK_SIZE);
266 	return aes_siv_encrypt(assoc_data->fils_kek, assoc_data->fils_kek_len,
267 			       encr, crypt_len, 5, addr, len, encr);
268 }
269 
270 int fils_decrypt_assoc_resp(struct ieee80211_sub_if_data *sdata,
271 			    u8 *frame, size_t *frame_len,
272 			    struct ieee80211_mgd_assoc_data *assoc_data)
273 {
274 	struct ieee80211_mgmt *mgmt = (void *)frame;
275 	u8 *capab, *ies, *encr;
276 	const u8 *addr[5 + 1], *session;
277 	size_t len[5 + 1];
278 	int res;
279 	size_t crypt_len;
280 
281 	if (*frame_len < 24 + 6)
282 		return -EINVAL;
283 
284 	capab = (u8 *)&mgmt->u.assoc_resp.capab_info;
285 	ies = mgmt->u.assoc_resp.variable;
286 	session = cfg80211_find_ext_ie(WLAN_EID_EXT_FILS_SESSION,
287 				       ies, frame + *frame_len - ies);
288 	if (!session || session[1] != 1 + 8) {
289 		mlme_dbg(sdata,
290 			 "No (valid) FILS Session element in (Re)Association Response frame from %pM",
291 			 mgmt->sa);
292 		return -EINVAL;
293 	}
294 	/* decrypt after FILS Session element */
295 	encr = (u8 *)session + 2 + 1 + 8;
296 
297 	/* AES-SIV AAD vectors */
298 
299 	/* The AP's BSSID */
300 	addr[0] = mgmt->sa;
301 	len[0] = ETH_ALEN;
302 	/* The STA's MAC address */
303 	addr[1] = mgmt->da;
304 	len[1] = ETH_ALEN;
305 	/* The AP's nonce */
306 	addr[2] = &assoc_data->fils_nonces[FILS_NONCE_LEN];
307 	len[2] = FILS_NONCE_LEN;
308 	/* The STA's nonce */
309 	addr[3] = assoc_data->fils_nonces;
310 	len[3] = FILS_NONCE_LEN;
311 	/* The (Re)Association Response frame from the Capability Information
312 	 * field to the FILS Session element (both inclusive).
313 	 */
314 	addr[4] = capab;
315 	len[4] = encr - capab;
316 
317 	crypt_len = frame + *frame_len - encr;
318 	if (crypt_len < AES_BLOCK_SIZE) {
319 		mlme_dbg(sdata,
320 			 "Not enough room for AES-SIV data after FILS Session element in (Re)Association Response frame from %pM",
321 			 mgmt->sa);
322 		return -EINVAL;
323 	}
324 	res = aes_siv_decrypt(assoc_data->fils_kek, assoc_data->fils_kek_len,
325 			      encr, crypt_len, 5, addr, len, encr);
326 	if (res != 0) {
327 		mlme_dbg(sdata,
328 			 "AES-SIV decryption of (Re)Association Response frame from %pM failed",
329 			 mgmt->sa);
330 		return res;
331 	}
332 	*frame_len -= AES_BLOCK_SIZE;
333 	return 0;
334 }
335