xref: /linux/net/kcm/kcmsock.c (revision 3f3a1675b731e532d479e65570f2904878fbd9f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel Connection Multiplexor
4  *
5  * Copyright (c) 2016 Tom Herbert <tom@herbertland.com>
6  */
7 
8 #include <linux/bpf.h>
9 #include <linux/errno.h>
10 #include <linux/errqueue.h>
11 #include <linux/file.h>
12 #include <linux/filter.h>
13 #include <linux/in.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/net.h>
17 #include <linux/netdevice.h>
18 #include <linux/poll.h>
19 #include <linux/rculist.h>
20 #include <linux/skbuff.h>
21 #include <linux/socket.h>
22 #include <linux/uaccess.h>
23 #include <linux/workqueue.h>
24 #include <linux/syscalls.h>
25 #include <linux/sched/signal.h>
26 
27 #include <net/kcm.h>
28 #include <net/netns/generic.h>
29 #include <net/sock.h>
30 #include <uapi/linux/kcm.h>
31 #include <trace/events/sock.h>
32 
33 unsigned int kcm_net_id;
34 
35 static struct kmem_cache *kcm_psockp __read_mostly;
36 static struct kmem_cache *kcm_muxp __read_mostly;
37 static struct workqueue_struct *kcm_wq;
38 
39 static inline struct kcm_sock *kcm_sk(const struct sock *sk)
40 {
41 	return (struct kcm_sock *)sk;
42 }
43 
44 static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb)
45 {
46 	return (struct kcm_tx_msg *)skb->cb;
47 }
48 
49 static void report_csk_error(struct sock *csk, int err)
50 {
51 	csk->sk_err = EPIPE;
52 	sk_error_report(csk);
53 }
54 
55 static void kcm_abort_tx_psock(struct kcm_psock *psock, int err,
56 			       bool wakeup_kcm)
57 {
58 	struct sock *csk = psock->sk;
59 	struct kcm_mux *mux = psock->mux;
60 
61 	/* Unrecoverable error in transmit */
62 
63 	spin_lock_bh(&mux->lock);
64 
65 	if (psock->tx_stopped) {
66 		spin_unlock_bh(&mux->lock);
67 		return;
68 	}
69 
70 	psock->tx_stopped = 1;
71 	KCM_STATS_INCR(psock->stats.tx_aborts);
72 
73 	if (!psock->tx_kcm) {
74 		/* Take off psocks_avail list */
75 		list_del(&psock->psock_avail_list);
76 	} else if (wakeup_kcm) {
77 		/* In this case psock is being aborted while outside of
78 		 * write_msgs and psock is reserved. Schedule tx_work
79 		 * to handle the failure there. Need to commit tx_stopped
80 		 * before queuing work.
81 		 */
82 		smp_mb();
83 
84 		queue_work(kcm_wq, &psock->tx_kcm->tx_work);
85 	}
86 
87 	spin_unlock_bh(&mux->lock);
88 
89 	/* Report error on lower socket */
90 	report_csk_error(csk, err);
91 }
92 
93 /* RX mux lock held. */
94 static void kcm_update_rx_mux_stats(struct kcm_mux *mux,
95 				    struct kcm_psock *psock)
96 {
97 	STRP_STATS_ADD(mux->stats.rx_bytes,
98 		       psock->strp.stats.bytes -
99 		       psock->saved_rx_bytes);
100 	mux->stats.rx_msgs +=
101 		psock->strp.stats.msgs - psock->saved_rx_msgs;
102 	psock->saved_rx_msgs = psock->strp.stats.msgs;
103 	psock->saved_rx_bytes = psock->strp.stats.bytes;
104 }
105 
106 static void kcm_update_tx_mux_stats(struct kcm_mux *mux,
107 				    struct kcm_psock *psock)
108 {
109 	KCM_STATS_ADD(mux->stats.tx_bytes,
110 		      psock->stats.tx_bytes - psock->saved_tx_bytes);
111 	mux->stats.tx_msgs +=
112 		psock->stats.tx_msgs - psock->saved_tx_msgs;
113 	psock->saved_tx_msgs = psock->stats.tx_msgs;
114 	psock->saved_tx_bytes = psock->stats.tx_bytes;
115 }
116 
117 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
118 
119 /* KCM is ready to receive messages on its queue-- either the KCM is new or
120  * has become unblocked after being blocked on full socket buffer. Queue any
121  * pending ready messages on a psock. RX mux lock held.
122  */
123 static void kcm_rcv_ready(struct kcm_sock *kcm)
124 {
125 	struct kcm_mux *mux = kcm->mux;
126 	struct kcm_psock *psock;
127 	struct sk_buff *skb;
128 
129 	if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled))
130 		return;
131 
132 	while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) {
133 		if (kcm_queue_rcv_skb(&kcm->sk, skb)) {
134 			/* Assuming buffer limit has been reached */
135 			skb_queue_head(&mux->rx_hold_queue, skb);
136 			WARN_ON(!sk_rmem_alloc_get(&kcm->sk));
137 			return;
138 		}
139 	}
140 
141 	while (!list_empty(&mux->psocks_ready)) {
142 		psock = list_first_entry(&mux->psocks_ready, struct kcm_psock,
143 					 psock_ready_list);
144 
145 		if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) {
146 			/* Assuming buffer limit has been reached */
147 			WARN_ON(!sk_rmem_alloc_get(&kcm->sk));
148 			return;
149 		}
150 
151 		/* Consumed the ready message on the psock. Schedule rx_work to
152 		 * get more messages.
153 		 */
154 		list_del(&psock->psock_ready_list);
155 		psock->ready_rx_msg = NULL;
156 		/* Commit clearing of ready_rx_msg for queuing work */
157 		smp_mb();
158 
159 		strp_unpause(&psock->strp);
160 		strp_check_rcv(&psock->strp);
161 	}
162 
163 	/* Buffer limit is okay now, add to ready list */
164 	list_add_tail(&kcm->wait_rx_list,
165 		      &kcm->mux->kcm_rx_waiters);
166 	/* paired with lockless reads in kcm_rfree() */
167 	WRITE_ONCE(kcm->rx_wait, true);
168 }
169 
170 static void kcm_rfree(struct sk_buff *skb)
171 {
172 	struct sock *sk = skb->sk;
173 	struct kcm_sock *kcm = kcm_sk(sk);
174 	struct kcm_mux *mux = kcm->mux;
175 	unsigned int len = skb->truesize;
176 
177 	sk_mem_uncharge(sk, len);
178 	atomic_sub(len, &sk->sk_rmem_alloc);
179 
180 	/* For reading rx_wait and rx_psock without holding lock */
181 	smp_mb__after_atomic();
182 
183 	if (!READ_ONCE(kcm->rx_wait) && !READ_ONCE(kcm->rx_psock) &&
184 	    sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) {
185 		spin_lock_bh(&mux->rx_lock);
186 		kcm_rcv_ready(kcm);
187 		spin_unlock_bh(&mux->rx_lock);
188 	}
189 }
190 
191 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
192 {
193 	struct sk_buff_head *list = &sk->sk_receive_queue;
194 
195 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
196 		return -ENOMEM;
197 
198 	if (!sk_rmem_schedule(sk, skb, skb->truesize))
199 		return -ENOBUFS;
200 
201 	skb->dev = NULL;
202 
203 	skb_orphan(skb);
204 	skb->sk = sk;
205 	skb->destructor = kcm_rfree;
206 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
207 	sk_mem_charge(sk, skb->truesize);
208 
209 	skb_queue_tail(list, skb);
210 
211 	if (!sock_flag(sk, SOCK_DEAD))
212 		sk->sk_data_ready(sk);
213 
214 	return 0;
215 }
216 
217 /* Requeue received messages for a kcm socket to other kcm sockets. This is
218  * called with a kcm socket is receive disabled.
219  * RX mux lock held.
220  */
221 static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head)
222 {
223 	struct sk_buff *skb;
224 	struct kcm_sock *kcm;
225 
226 	while ((skb = skb_dequeue(head))) {
227 		/* Reset destructor to avoid calling kcm_rcv_ready */
228 		skb->destructor = sock_rfree;
229 		skb_orphan(skb);
230 try_again:
231 		if (list_empty(&mux->kcm_rx_waiters)) {
232 			skb_queue_tail(&mux->rx_hold_queue, skb);
233 			continue;
234 		}
235 
236 		kcm = list_first_entry(&mux->kcm_rx_waiters,
237 				       struct kcm_sock, wait_rx_list);
238 
239 		if (kcm_queue_rcv_skb(&kcm->sk, skb)) {
240 			/* Should mean socket buffer full */
241 			list_del(&kcm->wait_rx_list);
242 			/* paired with lockless reads in kcm_rfree() */
243 			WRITE_ONCE(kcm->rx_wait, false);
244 
245 			/* Commit rx_wait to read in kcm_free */
246 			smp_wmb();
247 
248 			goto try_again;
249 		}
250 	}
251 }
252 
253 /* Lower sock lock held */
254 static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock,
255 				       struct sk_buff *head)
256 {
257 	struct kcm_mux *mux = psock->mux;
258 	struct kcm_sock *kcm;
259 
260 	WARN_ON(psock->ready_rx_msg);
261 
262 	if (psock->rx_kcm)
263 		return psock->rx_kcm;
264 
265 	spin_lock_bh(&mux->rx_lock);
266 
267 	if (psock->rx_kcm) {
268 		spin_unlock_bh(&mux->rx_lock);
269 		return psock->rx_kcm;
270 	}
271 
272 	kcm_update_rx_mux_stats(mux, psock);
273 
274 	if (list_empty(&mux->kcm_rx_waiters)) {
275 		psock->ready_rx_msg = head;
276 		strp_pause(&psock->strp);
277 		list_add_tail(&psock->psock_ready_list,
278 			      &mux->psocks_ready);
279 		spin_unlock_bh(&mux->rx_lock);
280 		return NULL;
281 	}
282 
283 	kcm = list_first_entry(&mux->kcm_rx_waiters,
284 			       struct kcm_sock, wait_rx_list);
285 	list_del(&kcm->wait_rx_list);
286 	/* paired with lockless reads in kcm_rfree() */
287 	WRITE_ONCE(kcm->rx_wait, false);
288 
289 	psock->rx_kcm = kcm;
290 	/* paired with lockless reads in kcm_rfree() */
291 	WRITE_ONCE(kcm->rx_psock, psock);
292 
293 	spin_unlock_bh(&mux->rx_lock);
294 
295 	return kcm;
296 }
297 
298 static void kcm_done(struct kcm_sock *kcm);
299 
300 static void kcm_done_work(struct work_struct *w)
301 {
302 	kcm_done(container_of(w, struct kcm_sock, done_work));
303 }
304 
305 /* Lower sock held */
306 static void unreserve_rx_kcm(struct kcm_psock *psock,
307 			     bool rcv_ready)
308 {
309 	struct kcm_sock *kcm = psock->rx_kcm;
310 	struct kcm_mux *mux = psock->mux;
311 
312 	if (!kcm)
313 		return;
314 
315 	spin_lock_bh(&mux->rx_lock);
316 
317 	psock->rx_kcm = NULL;
318 	/* paired with lockless reads in kcm_rfree() */
319 	WRITE_ONCE(kcm->rx_psock, NULL);
320 
321 	/* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with
322 	 * kcm_rfree
323 	 */
324 	smp_mb();
325 
326 	if (unlikely(kcm->done)) {
327 		spin_unlock_bh(&mux->rx_lock);
328 
329 		/* Need to run kcm_done in a task since we need to qcquire
330 		 * callback locks which may already be held here.
331 		 */
332 		INIT_WORK(&kcm->done_work, kcm_done_work);
333 		schedule_work(&kcm->done_work);
334 		return;
335 	}
336 
337 	if (unlikely(kcm->rx_disabled)) {
338 		requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue);
339 	} else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) {
340 		/* Check for degenerative race with rx_wait that all
341 		 * data was dequeued (accounted for in kcm_rfree).
342 		 */
343 		kcm_rcv_ready(kcm);
344 	}
345 	spin_unlock_bh(&mux->rx_lock);
346 }
347 
348 /* Lower sock lock held */
349 static void psock_data_ready(struct sock *sk)
350 {
351 	struct kcm_psock *psock;
352 
353 	trace_sk_data_ready(sk);
354 
355 	read_lock_bh(&sk->sk_callback_lock);
356 
357 	psock = (struct kcm_psock *)sk->sk_user_data;
358 	if (likely(psock))
359 		strp_data_ready(&psock->strp);
360 
361 	read_unlock_bh(&sk->sk_callback_lock);
362 }
363 
364 /* Called with lower sock held */
365 static void kcm_rcv_strparser(struct strparser *strp, struct sk_buff *skb)
366 {
367 	struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp);
368 	struct kcm_sock *kcm;
369 
370 try_queue:
371 	kcm = reserve_rx_kcm(psock, skb);
372 	if (!kcm) {
373 		 /* Unable to reserve a KCM, message is held in psock and strp
374 		  * is paused.
375 		  */
376 		return;
377 	}
378 
379 	if (kcm_queue_rcv_skb(&kcm->sk, skb)) {
380 		/* Should mean socket buffer full */
381 		unreserve_rx_kcm(psock, false);
382 		goto try_queue;
383 	}
384 }
385 
386 static int kcm_parse_func_strparser(struct strparser *strp, struct sk_buff *skb)
387 {
388 	struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp);
389 	struct bpf_prog *prog = psock->bpf_prog;
390 	int res;
391 
392 	res = bpf_prog_run_pin_on_cpu(prog, skb);
393 	return res;
394 }
395 
396 static int kcm_read_sock_done(struct strparser *strp, int err)
397 {
398 	struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp);
399 
400 	unreserve_rx_kcm(psock, true);
401 
402 	return err;
403 }
404 
405 static void psock_state_change(struct sock *sk)
406 {
407 	/* TCP only does a EPOLLIN for a half close. Do a EPOLLHUP here
408 	 * since application will normally not poll with EPOLLIN
409 	 * on the TCP sockets.
410 	 */
411 
412 	report_csk_error(sk, EPIPE);
413 }
414 
415 static void psock_write_space(struct sock *sk)
416 {
417 	struct kcm_psock *psock;
418 	struct kcm_mux *mux;
419 	struct kcm_sock *kcm;
420 
421 	read_lock_bh(&sk->sk_callback_lock);
422 
423 	psock = (struct kcm_psock *)sk->sk_user_data;
424 	if (unlikely(!psock))
425 		goto out;
426 	mux = psock->mux;
427 
428 	spin_lock_bh(&mux->lock);
429 
430 	/* Check if the socket is reserved so someone is waiting for sending. */
431 	kcm = psock->tx_kcm;
432 	if (kcm && !unlikely(kcm->tx_stopped))
433 		queue_work(kcm_wq, &kcm->tx_work);
434 
435 	spin_unlock_bh(&mux->lock);
436 out:
437 	read_unlock_bh(&sk->sk_callback_lock);
438 }
439 
440 static void unreserve_psock(struct kcm_sock *kcm);
441 
442 /* kcm sock is locked. */
443 static struct kcm_psock *reserve_psock(struct kcm_sock *kcm)
444 {
445 	struct kcm_mux *mux = kcm->mux;
446 	struct kcm_psock *psock;
447 
448 	psock = kcm->tx_psock;
449 
450 	smp_rmb(); /* Must read tx_psock before tx_wait */
451 
452 	if (psock) {
453 		WARN_ON(kcm->tx_wait);
454 		if (unlikely(psock->tx_stopped))
455 			unreserve_psock(kcm);
456 		else
457 			return kcm->tx_psock;
458 	}
459 
460 	spin_lock_bh(&mux->lock);
461 
462 	/* Check again under lock to see if psock was reserved for this
463 	 * psock via psock_unreserve.
464 	 */
465 	psock = kcm->tx_psock;
466 	if (unlikely(psock)) {
467 		WARN_ON(kcm->tx_wait);
468 		spin_unlock_bh(&mux->lock);
469 		return kcm->tx_psock;
470 	}
471 
472 	if (!list_empty(&mux->psocks_avail)) {
473 		psock = list_first_entry(&mux->psocks_avail,
474 					 struct kcm_psock,
475 					 psock_avail_list);
476 		list_del(&psock->psock_avail_list);
477 		if (kcm->tx_wait) {
478 			list_del(&kcm->wait_psock_list);
479 			kcm->tx_wait = false;
480 		}
481 		kcm->tx_psock = psock;
482 		psock->tx_kcm = kcm;
483 		KCM_STATS_INCR(psock->stats.reserved);
484 	} else if (!kcm->tx_wait) {
485 		list_add_tail(&kcm->wait_psock_list,
486 			      &mux->kcm_tx_waiters);
487 		kcm->tx_wait = true;
488 	}
489 
490 	spin_unlock_bh(&mux->lock);
491 
492 	return psock;
493 }
494 
495 /* mux lock held */
496 static void psock_now_avail(struct kcm_psock *psock)
497 {
498 	struct kcm_mux *mux = psock->mux;
499 	struct kcm_sock *kcm;
500 
501 	if (list_empty(&mux->kcm_tx_waiters)) {
502 		list_add_tail(&psock->psock_avail_list,
503 			      &mux->psocks_avail);
504 	} else {
505 		kcm = list_first_entry(&mux->kcm_tx_waiters,
506 				       struct kcm_sock,
507 				       wait_psock_list);
508 		list_del(&kcm->wait_psock_list);
509 		kcm->tx_wait = false;
510 		psock->tx_kcm = kcm;
511 
512 		/* Commit before changing tx_psock since that is read in
513 		 * reserve_psock before queuing work.
514 		 */
515 		smp_mb();
516 
517 		kcm->tx_psock = psock;
518 		KCM_STATS_INCR(psock->stats.reserved);
519 		queue_work(kcm_wq, &kcm->tx_work);
520 	}
521 }
522 
523 /* kcm sock is locked. */
524 static void unreserve_psock(struct kcm_sock *kcm)
525 {
526 	struct kcm_psock *psock;
527 	struct kcm_mux *mux = kcm->mux;
528 
529 	spin_lock_bh(&mux->lock);
530 
531 	psock = kcm->tx_psock;
532 
533 	if (WARN_ON(!psock)) {
534 		spin_unlock_bh(&mux->lock);
535 		return;
536 	}
537 
538 	smp_rmb(); /* Read tx_psock before tx_wait */
539 
540 	kcm_update_tx_mux_stats(mux, psock);
541 
542 	WARN_ON(kcm->tx_wait);
543 
544 	kcm->tx_psock = NULL;
545 	psock->tx_kcm = NULL;
546 	KCM_STATS_INCR(psock->stats.unreserved);
547 
548 	if (unlikely(psock->tx_stopped)) {
549 		if (psock->done) {
550 			/* Deferred free */
551 			list_del(&psock->psock_list);
552 			mux->psocks_cnt--;
553 			sock_put(psock->sk);
554 			fput(psock->sk->sk_socket->file);
555 			kmem_cache_free(kcm_psockp, psock);
556 		}
557 
558 		/* Don't put back on available list */
559 
560 		spin_unlock_bh(&mux->lock);
561 
562 		return;
563 	}
564 
565 	psock_now_avail(psock);
566 
567 	spin_unlock_bh(&mux->lock);
568 }
569 
570 static void kcm_report_tx_retry(struct kcm_sock *kcm)
571 {
572 	struct kcm_mux *mux = kcm->mux;
573 
574 	spin_lock_bh(&mux->lock);
575 	KCM_STATS_INCR(mux->stats.tx_retries);
576 	spin_unlock_bh(&mux->lock);
577 }
578 
579 /* Write any messages ready on the kcm socket.  Called with kcm sock lock
580  * held.  Return bytes actually sent or error.
581  */
582 static int kcm_write_msgs(struct kcm_sock *kcm)
583 {
584 	struct sock *sk = &kcm->sk;
585 	struct kcm_psock *psock;
586 	struct sk_buff *skb, *head;
587 	struct kcm_tx_msg *txm;
588 	unsigned short fragidx, frag_offset;
589 	unsigned int sent, total_sent = 0;
590 	int ret = 0;
591 
592 	kcm->tx_wait_more = false;
593 	psock = kcm->tx_psock;
594 	if (unlikely(psock && psock->tx_stopped)) {
595 		/* A reserved psock was aborted asynchronously. Unreserve
596 		 * it and we'll retry the message.
597 		 */
598 		unreserve_psock(kcm);
599 		kcm_report_tx_retry(kcm);
600 		if (skb_queue_empty(&sk->sk_write_queue))
601 			return 0;
602 
603 		kcm_tx_msg(skb_peek(&sk->sk_write_queue))->sent = 0;
604 
605 	} else if (skb_queue_empty(&sk->sk_write_queue)) {
606 		return 0;
607 	}
608 
609 	head = skb_peek(&sk->sk_write_queue);
610 	txm = kcm_tx_msg(head);
611 
612 	if (txm->sent) {
613 		/* Send of first skbuff in queue already in progress */
614 		if (WARN_ON(!psock)) {
615 			ret = -EINVAL;
616 			goto out;
617 		}
618 		sent = txm->sent;
619 		frag_offset = txm->frag_offset;
620 		fragidx = txm->fragidx;
621 		skb = txm->frag_skb;
622 
623 		goto do_frag;
624 	}
625 
626 try_again:
627 	psock = reserve_psock(kcm);
628 	if (!psock)
629 		goto out;
630 
631 	do {
632 		skb = head;
633 		txm = kcm_tx_msg(head);
634 		sent = 0;
635 
636 do_frag_list:
637 		if (WARN_ON(!skb_shinfo(skb)->nr_frags)) {
638 			ret = -EINVAL;
639 			goto out;
640 		}
641 
642 		for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags;
643 		     fragidx++) {
644 			skb_frag_t *frag;
645 
646 			frag_offset = 0;
647 do_frag:
648 			frag = &skb_shinfo(skb)->frags[fragidx];
649 			if (WARN_ON(!skb_frag_size(frag))) {
650 				ret = -EINVAL;
651 				goto out;
652 			}
653 
654 			ret = kernel_sendpage(psock->sk->sk_socket,
655 					      skb_frag_page(frag),
656 					      skb_frag_off(frag) + frag_offset,
657 					      skb_frag_size(frag) - frag_offset,
658 					      MSG_DONTWAIT);
659 			if (ret <= 0) {
660 				if (ret == -EAGAIN) {
661 					/* Save state to try again when there's
662 					 * write space on the socket
663 					 */
664 					txm->sent = sent;
665 					txm->frag_offset = frag_offset;
666 					txm->fragidx = fragidx;
667 					txm->frag_skb = skb;
668 
669 					ret = 0;
670 					goto out;
671 				}
672 
673 				/* Hard failure in sending message, abort this
674 				 * psock since it has lost framing
675 				 * synchronization and retry sending the
676 				 * message from the beginning.
677 				 */
678 				kcm_abort_tx_psock(psock, ret ? -ret : EPIPE,
679 						   true);
680 				unreserve_psock(kcm);
681 
682 				txm->sent = 0;
683 				kcm_report_tx_retry(kcm);
684 				ret = 0;
685 
686 				goto try_again;
687 			}
688 
689 			sent += ret;
690 			frag_offset += ret;
691 			KCM_STATS_ADD(psock->stats.tx_bytes, ret);
692 			if (frag_offset < skb_frag_size(frag)) {
693 				/* Not finished with this frag */
694 				goto do_frag;
695 			}
696 		}
697 
698 		if (skb == head) {
699 			if (skb_has_frag_list(skb)) {
700 				skb = skb_shinfo(skb)->frag_list;
701 				goto do_frag_list;
702 			}
703 		} else if (skb->next) {
704 			skb = skb->next;
705 			goto do_frag_list;
706 		}
707 
708 		/* Successfully sent the whole packet, account for it. */
709 		skb_dequeue(&sk->sk_write_queue);
710 		kfree_skb(head);
711 		sk->sk_wmem_queued -= sent;
712 		total_sent += sent;
713 		KCM_STATS_INCR(psock->stats.tx_msgs);
714 	} while ((head = skb_peek(&sk->sk_write_queue)));
715 out:
716 	if (!head) {
717 		/* Done with all queued messages. */
718 		WARN_ON(!skb_queue_empty(&sk->sk_write_queue));
719 		unreserve_psock(kcm);
720 	}
721 
722 	/* Check if write space is available */
723 	sk->sk_write_space(sk);
724 
725 	return total_sent ? : ret;
726 }
727 
728 static void kcm_tx_work(struct work_struct *w)
729 {
730 	struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work);
731 	struct sock *sk = &kcm->sk;
732 	int err;
733 
734 	lock_sock(sk);
735 
736 	/* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx
737 	 * aborts
738 	 */
739 	err = kcm_write_msgs(kcm);
740 	if (err < 0) {
741 		/* Hard failure in write, report error on KCM socket */
742 		pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err);
743 		report_csk_error(&kcm->sk, -err);
744 		goto out;
745 	}
746 
747 	/* Primarily for SOCK_SEQPACKET sockets */
748 	if (likely(sk->sk_socket) &&
749 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
750 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
751 		sk->sk_write_space(sk);
752 	}
753 
754 out:
755 	release_sock(sk);
756 }
757 
758 static void kcm_push(struct kcm_sock *kcm)
759 {
760 	if (kcm->tx_wait_more)
761 		kcm_write_msgs(kcm);
762 }
763 
764 static ssize_t kcm_sendpage(struct socket *sock, struct page *page,
765 			    int offset, size_t size, int flags)
766 
767 {
768 	struct sock *sk = sock->sk;
769 	struct kcm_sock *kcm = kcm_sk(sk);
770 	struct sk_buff *skb = NULL, *head = NULL;
771 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
772 	bool eor;
773 	int err = 0;
774 	int i;
775 
776 	if (flags & MSG_SENDPAGE_NOTLAST)
777 		flags |= MSG_MORE;
778 
779 	/* No MSG_EOR from splice, only look at MSG_MORE */
780 	eor = !(flags & MSG_MORE);
781 
782 	lock_sock(sk);
783 
784 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
785 
786 	err = -EPIPE;
787 	if (sk->sk_err)
788 		goto out_error;
789 
790 	if (kcm->seq_skb) {
791 		/* Previously opened message */
792 		head = kcm->seq_skb;
793 		skb = kcm_tx_msg(head)->last_skb;
794 		i = skb_shinfo(skb)->nr_frags;
795 
796 		if (skb_can_coalesce(skb, i, page, offset)) {
797 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
798 			skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
799 			goto coalesced;
800 		}
801 
802 		if (i >= MAX_SKB_FRAGS) {
803 			struct sk_buff *tskb;
804 
805 			tskb = alloc_skb(0, sk->sk_allocation);
806 			while (!tskb) {
807 				kcm_push(kcm);
808 				err = sk_stream_wait_memory(sk, &timeo);
809 				if (err)
810 					goto out_error;
811 			}
812 
813 			if (head == skb)
814 				skb_shinfo(head)->frag_list = tskb;
815 			else
816 				skb->next = tskb;
817 
818 			skb = tskb;
819 			skb->ip_summed = CHECKSUM_UNNECESSARY;
820 			i = 0;
821 		}
822 	} else {
823 		/* Call the sk_stream functions to manage the sndbuf mem. */
824 		if (!sk_stream_memory_free(sk)) {
825 			kcm_push(kcm);
826 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
827 			err = sk_stream_wait_memory(sk, &timeo);
828 			if (err)
829 				goto out_error;
830 		}
831 
832 		head = alloc_skb(0, sk->sk_allocation);
833 		while (!head) {
834 			kcm_push(kcm);
835 			err = sk_stream_wait_memory(sk, &timeo);
836 			if (err)
837 				goto out_error;
838 		}
839 
840 		skb = head;
841 		i = 0;
842 	}
843 
844 	get_page(page);
845 	skb_fill_page_desc_noacc(skb, i, page, offset, size);
846 	skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
847 
848 coalesced:
849 	skb->len += size;
850 	skb->data_len += size;
851 	skb->truesize += size;
852 	sk->sk_wmem_queued += size;
853 	sk_mem_charge(sk, size);
854 
855 	if (head != skb) {
856 		head->len += size;
857 		head->data_len += size;
858 		head->truesize += size;
859 	}
860 
861 	if (eor) {
862 		bool not_busy = skb_queue_empty(&sk->sk_write_queue);
863 
864 		/* Message complete, queue it on send buffer */
865 		__skb_queue_tail(&sk->sk_write_queue, head);
866 		kcm->seq_skb = NULL;
867 		KCM_STATS_INCR(kcm->stats.tx_msgs);
868 
869 		if (flags & MSG_BATCH) {
870 			kcm->tx_wait_more = true;
871 		} else if (kcm->tx_wait_more || not_busy) {
872 			err = kcm_write_msgs(kcm);
873 			if (err < 0) {
874 				/* We got a hard error in write_msgs but have
875 				 * already queued this message. Report an error
876 				 * in the socket, but don't affect return value
877 				 * from sendmsg
878 				 */
879 				pr_warn("KCM: Hard failure on kcm_write_msgs\n");
880 				report_csk_error(&kcm->sk, -err);
881 			}
882 		}
883 	} else {
884 		/* Message not complete, save state */
885 		kcm->seq_skb = head;
886 		kcm_tx_msg(head)->last_skb = skb;
887 	}
888 
889 	KCM_STATS_ADD(kcm->stats.tx_bytes, size);
890 
891 	release_sock(sk);
892 	return size;
893 
894 out_error:
895 	kcm_push(kcm);
896 
897 	err = sk_stream_error(sk, flags, err);
898 
899 	/* make sure we wake any epoll edge trigger waiter */
900 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
901 		sk->sk_write_space(sk);
902 
903 	release_sock(sk);
904 	return err;
905 }
906 
907 static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
908 {
909 	struct sock *sk = sock->sk;
910 	struct kcm_sock *kcm = kcm_sk(sk);
911 	struct sk_buff *skb = NULL, *head = NULL;
912 	size_t copy, copied = 0;
913 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
914 	int eor = (sock->type == SOCK_DGRAM) ?
915 		  !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR);
916 	int err = -EPIPE;
917 
918 	lock_sock(sk);
919 
920 	/* Per tcp_sendmsg this should be in poll */
921 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
922 
923 	if (sk->sk_err)
924 		goto out_error;
925 
926 	if (kcm->seq_skb) {
927 		/* Previously opened message */
928 		head = kcm->seq_skb;
929 		skb = kcm_tx_msg(head)->last_skb;
930 		goto start;
931 	}
932 
933 	/* Call the sk_stream functions to manage the sndbuf mem. */
934 	if (!sk_stream_memory_free(sk)) {
935 		kcm_push(kcm);
936 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
937 		err = sk_stream_wait_memory(sk, &timeo);
938 		if (err)
939 			goto out_error;
940 	}
941 
942 	if (msg_data_left(msg)) {
943 		/* New message, alloc head skb */
944 		head = alloc_skb(0, sk->sk_allocation);
945 		while (!head) {
946 			kcm_push(kcm);
947 			err = sk_stream_wait_memory(sk, &timeo);
948 			if (err)
949 				goto out_error;
950 
951 			head = alloc_skb(0, sk->sk_allocation);
952 		}
953 
954 		skb = head;
955 
956 		/* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling
957 		 * csum_and_copy_from_iter from skb_do_copy_data_nocache.
958 		 */
959 		skb->ip_summed = CHECKSUM_UNNECESSARY;
960 	}
961 
962 start:
963 	while (msg_data_left(msg)) {
964 		bool merge = true;
965 		int i = skb_shinfo(skb)->nr_frags;
966 		struct page_frag *pfrag = sk_page_frag(sk);
967 
968 		if (!sk_page_frag_refill(sk, pfrag))
969 			goto wait_for_memory;
970 
971 		if (!skb_can_coalesce(skb, i, pfrag->page,
972 				      pfrag->offset)) {
973 			if (i == MAX_SKB_FRAGS) {
974 				struct sk_buff *tskb;
975 
976 				tskb = alloc_skb(0, sk->sk_allocation);
977 				if (!tskb)
978 					goto wait_for_memory;
979 
980 				if (head == skb)
981 					skb_shinfo(head)->frag_list = tskb;
982 				else
983 					skb->next = tskb;
984 
985 				skb = tskb;
986 				skb->ip_summed = CHECKSUM_UNNECESSARY;
987 				continue;
988 			}
989 			merge = false;
990 		}
991 
992 		copy = min_t(int, msg_data_left(msg),
993 			     pfrag->size - pfrag->offset);
994 
995 		if (!sk_wmem_schedule(sk, copy))
996 			goto wait_for_memory;
997 
998 		err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
999 					       pfrag->page,
1000 					       pfrag->offset,
1001 					       copy);
1002 		if (err)
1003 			goto out_error;
1004 
1005 		/* Update the skb. */
1006 		if (merge) {
1007 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1008 		} else {
1009 			skb_fill_page_desc(skb, i, pfrag->page,
1010 					   pfrag->offset, copy);
1011 			get_page(pfrag->page);
1012 		}
1013 
1014 		pfrag->offset += copy;
1015 		copied += copy;
1016 		if (head != skb) {
1017 			head->len += copy;
1018 			head->data_len += copy;
1019 		}
1020 
1021 		continue;
1022 
1023 wait_for_memory:
1024 		kcm_push(kcm);
1025 		err = sk_stream_wait_memory(sk, &timeo);
1026 		if (err)
1027 			goto out_error;
1028 	}
1029 
1030 	if (eor) {
1031 		bool not_busy = skb_queue_empty(&sk->sk_write_queue);
1032 
1033 		if (head) {
1034 			/* Message complete, queue it on send buffer */
1035 			__skb_queue_tail(&sk->sk_write_queue, head);
1036 			kcm->seq_skb = NULL;
1037 			KCM_STATS_INCR(kcm->stats.tx_msgs);
1038 		}
1039 
1040 		if (msg->msg_flags & MSG_BATCH) {
1041 			kcm->tx_wait_more = true;
1042 		} else if (kcm->tx_wait_more || not_busy) {
1043 			err = kcm_write_msgs(kcm);
1044 			if (err < 0) {
1045 				/* We got a hard error in write_msgs but have
1046 				 * already queued this message. Report an error
1047 				 * in the socket, but don't affect return value
1048 				 * from sendmsg
1049 				 */
1050 				pr_warn("KCM: Hard failure on kcm_write_msgs\n");
1051 				report_csk_error(&kcm->sk, -err);
1052 			}
1053 		}
1054 	} else {
1055 		/* Message not complete, save state */
1056 partial_message:
1057 		if (head) {
1058 			kcm->seq_skb = head;
1059 			kcm_tx_msg(head)->last_skb = skb;
1060 		}
1061 	}
1062 
1063 	KCM_STATS_ADD(kcm->stats.tx_bytes, copied);
1064 
1065 	release_sock(sk);
1066 	return copied;
1067 
1068 out_error:
1069 	kcm_push(kcm);
1070 
1071 	if (copied && sock->type == SOCK_SEQPACKET) {
1072 		/* Wrote some bytes before encountering an
1073 		 * error, return partial success.
1074 		 */
1075 		goto partial_message;
1076 	}
1077 
1078 	if (head != kcm->seq_skb)
1079 		kfree_skb(head);
1080 
1081 	err = sk_stream_error(sk, msg->msg_flags, err);
1082 
1083 	/* make sure we wake any epoll edge trigger waiter */
1084 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1085 		sk->sk_write_space(sk);
1086 
1087 	release_sock(sk);
1088 	return err;
1089 }
1090 
1091 static int kcm_recvmsg(struct socket *sock, struct msghdr *msg,
1092 		       size_t len, int flags)
1093 {
1094 	struct sock *sk = sock->sk;
1095 	struct kcm_sock *kcm = kcm_sk(sk);
1096 	int err = 0;
1097 	struct strp_msg *stm;
1098 	int copied = 0;
1099 	struct sk_buff *skb;
1100 
1101 	skb = skb_recv_datagram(sk, flags, &err);
1102 	if (!skb)
1103 		goto out;
1104 
1105 	/* Okay, have a message on the receive queue */
1106 
1107 	stm = strp_msg(skb);
1108 
1109 	if (len > stm->full_len)
1110 		len = stm->full_len;
1111 
1112 	err = skb_copy_datagram_msg(skb, stm->offset, msg, len);
1113 	if (err < 0)
1114 		goto out;
1115 
1116 	copied = len;
1117 	if (likely(!(flags & MSG_PEEK))) {
1118 		KCM_STATS_ADD(kcm->stats.rx_bytes, copied);
1119 		if (copied < stm->full_len) {
1120 			if (sock->type == SOCK_DGRAM) {
1121 				/* Truncated message */
1122 				msg->msg_flags |= MSG_TRUNC;
1123 				goto msg_finished;
1124 			}
1125 			stm->offset += copied;
1126 			stm->full_len -= copied;
1127 		} else {
1128 msg_finished:
1129 			/* Finished with message */
1130 			msg->msg_flags |= MSG_EOR;
1131 			KCM_STATS_INCR(kcm->stats.rx_msgs);
1132 		}
1133 	}
1134 
1135 out:
1136 	skb_free_datagram(sk, skb);
1137 	return copied ? : err;
1138 }
1139 
1140 static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos,
1141 			       struct pipe_inode_info *pipe, size_t len,
1142 			       unsigned int flags)
1143 {
1144 	struct sock *sk = sock->sk;
1145 	struct kcm_sock *kcm = kcm_sk(sk);
1146 	struct strp_msg *stm;
1147 	int err = 0;
1148 	ssize_t copied;
1149 	struct sk_buff *skb;
1150 
1151 	/* Only support splice for SOCKSEQPACKET */
1152 
1153 	skb = skb_recv_datagram(sk, flags, &err);
1154 	if (!skb)
1155 		goto err_out;
1156 
1157 	/* Okay, have a message on the receive queue */
1158 
1159 	stm = strp_msg(skb);
1160 
1161 	if (len > stm->full_len)
1162 		len = stm->full_len;
1163 
1164 	copied = skb_splice_bits(skb, sk, stm->offset, pipe, len, flags);
1165 	if (copied < 0) {
1166 		err = copied;
1167 		goto err_out;
1168 	}
1169 
1170 	KCM_STATS_ADD(kcm->stats.rx_bytes, copied);
1171 
1172 	stm->offset += copied;
1173 	stm->full_len -= copied;
1174 
1175 	/* We have no way to return MSG_EOR. If all the bytes have been
1176 	 * read we still leave the message in the receive socket buffer.
1177 	 * A subsequent recvmsg needs to be done to return MSG_EOR and
1178 	 * finish reading the message.
1179 	 */
1180 
1181 	skb_free_datagram(sk, skb);
1182 	return copied;
1183 
1184 err_out:
1185 	skb_free_datagram(sk, skb);
1186 	return err;
1187 }
1188 
1189 /* kcm sock lock held */
1190 static void kcm_recv_disable(struct kcm_sock *kcm)
1191 {
1192 	struct kcm_mux *mux = kcm->mux;
1193 
1194 	if (kcm->rx_disabled)
1195 		return;
1196 
1197 	spin_lock_bh(&mux->rx_lock);
1198 
1199 	kcm->rx_disabled = 1;
1200 
1201 	/* If a psock is reserved we'll do cleanup in unreserve */
1202 	if (!kcm->rx_psock) {
1203 		if (kcm->rx_wait) {
1204 			list_del(&kcm->wait_rx_list);
1205 			/* paired with lockless reads in kcm_rfree() */
1206 			WRITE_ONCE(kcm->rx_wait, false);
1207 		}
1208 
1209 		requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue);
1210 	}
1211 
1212 	spin_unlock_bh(&mux->rx_lock);
1213 }
1214 
1215 /* kcm sock lock held */
1216 static void kcm_recv_enable(struct kcm_sock *kcm)
1217 {
1218 	struct kcm_mux *mux = kcm->mux;
1219 
1220 	if (!kcm->rx_disabled)
1221 		return;
1222 
1223 	spin_lock_bh(&mux->rx_lock);
1224 
1225 	kcm->rx_disabled = 0;
1226 	kcm_rcv_ready(kcm);
1227 
1228 	spin_unlock_bh(&mux->rx_lock);
1229 }
1230 
1231 static int kcm_setsockopt(struct socket *sock, int level, int optname,
1232 			  sockptr_t optval, unsigned int optlen)
1233 {
1234 	struct kcm_sock *kcm = kcm_sk(sock->sk);
1235 	int val, valbool;
1236 	int err = 0;
1237 
1238 	if (level != SOL_KCM)
1239 		return -ENOPROTOOPT;
1240 
1241 	if (optlen < sizeof(int))
1242 		return -EINVAL;
1243 
1244 	if (copy_from_sockptr(&val, optval, sizeof(int)))
1245 		return -EFAULT;
1246 
1247 	valbool = val ? 1 : 0;
1248 
1249 	switch (optname) {
1250 	case KCM_RECV_DISABLE:
1251 		lock_sock(&kcm->sk);
1252 		if (valbool)
1253 			kcm_recv_disable(kcm);
1254 		else
1255 			kcm_recv_enable(kcm);
1256 		release_sock(&kcm->sk);
1257 		break;
1258 	default:
1259 		err = -ENOPROTOOPT;
1260 	}
1261 
1262 	return err;
1263 }
1264 
1265 static int kcm_getsockopt(struct socket *sock, int level, int optname,
1266 			  char __user *optval, int __user *optlen)
1267 {
1268 	struct kcm_sock *kcm = kcm_sk(sock->sk);
1269 	int val, len;
1270 
1271 	if (level != SOL_KCM)
1272 		return -ENOPROTOOPT;
1273 
1274 	if (get_user(len, optlen))
1275 		return -EFAULT;
1276 
1277 	len = min_t(unsigned int, len, sizeof(int));
1278 	if (len < 0)
1279 		return -EINVAL;
1280 
1281 	switch (optname) {
1282 	case KCM_RECV_DISABLE:
1283 		val = kcm->rx_disabled;
1284 		break;
1285 	default:
1286 		return -ENOPROTOOPT;
1287 	}
1288 
1289 	if (put_user(len, optlen))
1290 		return -EFAULT;
1291 	if (copy_to_user(optval, &val, len))
1292 		return -EFAULT;
1293 	return 0;
1294 }
1295 
1296 static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux)
1297 {
1298 	struct kcm_sock *tkcm;
1299 	struct list_head *head;
1300 	int index = 0;
1301 
1302 	/* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so
1303 	 * we set sk_state, otherwise epoll_wait always returns right away with
1304 	 * EPOLLHUP
1305 	 */
1306 	kcm->sk.sk_state = TCP_ESTABLISHED;
1307 
1308 	/* Add to mux's kcm sockets list */
1309 	kcm->mux = mux;
1310 	spin_lock_bh(&mux->lock);
1311 
1312 	head = &mux->kcm_socks;
1313 	list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) {
1314 		if (tkcm->index != index)
1315 			break;
1316 		head = &tkcm->kcm_sock_list;
1317 		index++;
1318 	}
1319 
1320 	list_add(&kcm->kcm_sock_list, head);
1321 	kcm->index = index;
1322 
1323 	mux->kcm_socks_cnt++;
1324 	spin_unlock_bh(&mux->lock);
1325 
1326 	INIT_WORK(&kcm->tx_work, kcm_tx_work);
1327 
1328 	spin_lock_bh(&mux->rx_lock);
1329 	kcm_rcv_ready(kcm);
1330 	spin_unlock_bh(&mux->rx_lock);
1331 }
1332 
1333 static int kcm_attach(struct socket *sock, struct socket *csock,
1334 		      struct bpf_prog *prog)
1335 {
1336 	struct kcm_sock *kcm = kcm_sk(sock->sk);
1337 	struct kcm_mux *mux = kcm->mux;
1338 	struct sock *csk;
1339 	struct kcm_psock *psock = NULL, *tpsock;
1340 	struct list_head *head;
1341 	int index = 0;
1342 	static const struct strp_callbacks cb = {
1343 		.rcv_msg = kcm_rcv_strparser,
1344 		.parse_msg = kcm_parse_func_strparser,
1345 		.read_sock_done = kcm_read_sock_done,
1346 	};
1347 	int err = 0;
1348 
1349 	csk = csock->sk;
1350 	if (!csk)
1351 		return -EINVAL;
1352 
1353 	lock_sock(csk);
1354 
1355 	/* Only allow TCP sockets to be attached for now */
1356 	if ((csk->sk_family != AF_INET && csk->sk_family != AF_INET6) ||
1357 	    csk->sk_protocol != IPPROTO_TCP) {
1358 		err = -EOPNOTSUPP;
1359 		goto out;
1360 	}
1361 
1362 	/* Don't allow listeners or closed sockets */
1363 	if (csk->sk_state == TCP_LISTEN || csk->sk_state == TCP_CLOSE) {
1364 		err = -EOPNOTSUPP;
1365 		goto out;
1366 	}
1367 
1368 	psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL);
1369 	if (!psock) {
1370 		err = -ENOMEM;
1371 		goto out;
1372 	}
1373 
1374 	psock->mux = mux;
1375 	psock->sk = csk;
1376 	psock->bpf_prog = prog;
1377 
1378 	write_lock_bh(&csk->sk_callback_lock);
1379 
1380 	/* Check if sk_user_data is already by KCM or someone else.
1381 	 * Must be done under lock to prevent race conditions.
1382 	 */
1383 	if (csk->sk_user_data) {
1384 		write_unlock_bh(&csk->sk_callback_lock);
1385 		kmem_cache_free(kcm_psockp, psock);
1386 		err = -EALREADY;
1387 		goto out;
1388 	}
1389 
1390 	err = strp_init(&psock->strp, csk, &cb);
1391 	if (err) {
1392 		write_unlock_bh(&csk->sk_callback_lock);
1393 		kmem_cache_free(kcm_psockp, psock);
1394 		goto out;
1395 	}
1396 
1397 	psock->save_data_ready = csk->sk_data_ready;
1398 	psock->save_write_space = csk->sk_write_space;
1399 	psock->save_state_change = csk->sk_state_change;
1400 	csk->sk_user_data = psock;
1401 	csk->sk_data_ready = psock_data_ready;
1402 	csk->sk_write_space = psock_write_space;
1403 	csk->sk_state_change = psock_state_change;
1404 
1405 	write_unlock_bh(&csk->sk_callback_lock);
1406 
1407 	sock_hold(csk);
1408 
1409 	/* Finished initialization, now add the psock to the MUX. */
1410 	spin_lock_bh(&mux->lock);
1411 	head = &mux->psocks;
1412 	list_for_each_entry(tpsock, &mux->psocks, psock_list) {
1413 		if (tpsock->index != index)
1414 			break;
1415 		head = &tpsock->psock_list;
1416 		index++;
1417 	}
1418 
1419 	list_add(&psock->psock_list, head);
1420 	psock->index = index;
1421 
1422 	KCM_STATS_INCR(mux->stats.psock_attach);
1423 	mux->psocks_cnt++;
1424 	psock_now_avail(psock);
1425 	spin_unlock_bh(&mux->lock);
1426 
1427 	/* Schedule RX work in case there are already bytes queued */
1428 	strp_check_rcv(&psock->strp);
1429 
1430 out:
1431 	release_sock(csk);
1432 
1433 	return err;
1434 }
1435 
1436 static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info)
1437 {
1438 	struct socket *csock;
1439 	struct bpf_prog *prog;
1440 	int err;
1441 
1442 	csock = sockfd_lookup(info->fd, &err);
1443 	if (!csock)
1444 		return -ENOENT;
1445 
1446 	prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER);
1447 	if (IS_ERR(prog)) {
1448 		err = PTR_ERR(prog);
1449 		goto out;
1450 	}
1451 
1452 	err = kcm_attach(sock, csock, prog);
1453 	if (err) {
1454 		bpf_prog_put(prog);
1455 		goto out;
1456 	}
1457 
1458 	/* Keep reference on file also */
1459 
1460 	return 0;
1461 out:
1462 	sockfd_put(csock);
1463 	return err;
1464 }
1465 
1466 static void kcm_unattach(struct kcm_psock *psock)
1467 {
1468 	struct sock *csk = psock->sk;
1469 	struct kcm_mux *mux = psock->mux;
1470 
1471 	lock_sock(csk);
1472 
1473 	/* Stop getting callbacks from TCP socket. After this there should
1474 	 * be no way to reserve a kcm for this psock.
1475 	 */
1476 	write_lock_bh(&csk->sk_callback_lock);
1477 	csk->sk_user_data = NULL;
1478 	csk->sk_data_ready = psock->save_data_ready;
1479 	csk->sk_write_space = psock->save_write_space;
1480 	csk->sk_state_change = psock->save_state_change;
1481 	strp_stop(&psock->strp);
1482 
1483 	if (WARN_ON(psock->rx_kcm)) {
1484 		write_unlock_bh(&csk->sk_callback_lock);
1485 		release_sock(csk);
1486 		return;
1487 	}
1488 
1489 	spin_lock_bh(&mux->rx_lock);
1490 
1491 	/* Stop receiver activities. After this point psock should not be
1492 	 * able to get onto ready list either through callbacks or work.
1493 	 */
1494 	if (psock->ready_rx_msg) {
1495 		list_del(&psock->psock_ready_list);
1496 		kfree_skb(psock->ready_rx_msg);
1497 		psock->ready_rx_msg = NULL;
1498 		KCM_STATS_INCR(mux->stats.rx_ready_drops);
1499 	}
1500 
1501 	spin_unlock_bh(&mux->rx_lock);
1502 
1503 	write_unlock_bh(&csk->sk_callback_lock);
1504 
1505 	/* Call strp_done without sock lock */
1506 	release_sock(csk);
1507 	strp_done(&psock->strp);
1508 	lock_sock(csk);
1509 
1510 	bpf_prog_put(psock->bpf_prog);
1511 
1512 	spin_lock_bh(&mux->lock);
1513 
1514 	aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats);
1515 	save_strp_stats(&psock->strp, &mux->aggregate_strp_stats);
1516 
1517 	KCM_STATS_INCR(mux->stats.psock_unattach);
1518 
1519 	if (psock->tx_kcm) {
1520 		/* psock was reserved.  Just mark it finished and we will clean
1521 		 * up in the kcm paths, we need kcm lock which can not be
1522 		 * acquired here.
1523 		 */
1524 		KCM_STATS_INCR(mux->stats.psock_unattach_rsvd);
1525 		spin_unlock_bh(&mux->lock);
1526 
1527 		/* We are unattaching a socket that is reserved. Abort the
1528 		 * socket since we may be out of sync in sending on it. We need
1529 		 * to do this without the mux lock.
1530 		 */
1531 		kcm_abort_tx_psock(psock, EPIPE, false);
1532 
1533 		spin_lock_bh(&mux->lock);
1534 		if (!psock->tx_kcm) {
1535 			/* psock now unreserved in window mux was unlocked */
1536 			goto no_reserved;
1537 		}
1538 		psock->done = 1;
1539 
1540 		/* Commit done before queuing work to process it */
1541 		smp_mb();
1542 
1543 		/* Queue tx work to make sure psock->done is handled */
1544 		queue_work(kcm_wq, &psock->tx_kcm->tx_work);
1545 		spin_unlock_bh(&mux->lock);
1546 	} else {
1547 no_reserved:
1548 		if (!psock->tx_stopped)
1549 			list_del(&psock->psock_avail_list);
1550 		list_del(&psock->psock_list);
1551 		mux->psocks_cnt--;
1552 		spin_unlock_bh(&mux->lock);
1553 
1554 		sock_put(csk);
1555 		fput(csk->sk_socket->file);
1556 		kmem_cache_free(kcm_psockp, psock);
1557 	}
1558 
1559 	release_sock(csk);
1560 }
1561 
1562 static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info)
1563 {
1564 	struct kcm_sock *kcm = kcm_sk(sock->sk);
1565 	struct kcm_mux *mux = kcm->mux;
1566 	struct kcm_psock *psock;
1567 	struct socket *csock;
1568 	struct sock *csk;
1569 	int err;
1570 
1571 	csock = sockfd_lookup(info->fd, &err);
1572 	if (!csock)
1573 		return -ENOENT;
1574 
1575 	csk = csock->sk;
1576 	if (!csk) {
1577 		err = -EINVAL;
1578 		goto out;
1579 	}
1580 
1581 	err = -ENOENT;
1582 
1583 	spin_lock_bh(&mux->lock);
1584 
1585 	list_for_each_entry(psock, &mux->psocks, psock_list) {
1586 		if (psock->sk != csk)
1587 			continue;
1588 
1589 		/* Found the matching psock */
1590 
1591 		if (psock->unattaching || WARN_ON(psock->done)) {
1592 			err = -EALREADY;
1593 			break;
1594 		}
1595 
1596 		psock->unattaching = 1;
1597 
1598 		spin_unlock_bh(&mux->lock);
1599 
1600 		/* Lower socket lock should already be held */
1601 		kcm_unattach(psock);
1602 
1603 		err = 0;
1604 		goto out;
1605 	}
1606 
1607 	spin_unlock_bh(&mux->lock);
1608 
1609 out:
1610 	sockfd_put(csock);
1611 	return err;
1612 }
1613 
1614 static struct proto kcm_proto = {
1615 	.name	= "KCM",
1616 	.owner	= THIS_MODULE,
1617 	.obj_size = sizeof(struct kcm_sock),
1618 };
1619 
1620 /* Clone a kcm socket. */
1621 static struct file *kcm_clone(struct socket *osock)
1622 {
1623 	struct socket *newsock;
1624 	struct sock *newsk;
1625 
1626 	newsock = sock_alloc();
1627 	if (!newsock)
1628 		return ERR_PTR(-ENFILE);
1629 
1630 	newsock->type = osock->type;
1631 	newsock->ops = osock->ops;
1632 
1633 	__module_get(newsock->ops->owner);
1634 
1635 	newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL,
1636 			 &kcm_proto, false);
1637 	if (!newsk) {
1638 		sock_release(newsock);
1639 		return ERR_PTR(-ENOMEM);
1640 	}
1641 	sock_init_data(newsock, newsk);
1642 	init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux);
1643 
1644 	return sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name);
1645 }
1646 
1647 static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1648 {
1649 	int err;
1650 
1651 	switch (cmd) {
1652 	case SIOCKCMATTACH: {
1653 		struct kcm_attach info;
1654 
1655 		if (copy_from_user(&info, (void __user *)arg, sizeof(info)))
1656 			return -EFAULT;
1657 
1658 		err = kcm_attach_ioctl(sock, &info);
1659 
1660 		break;
1661 	}
1662 	case SIOCKCMUNATTACH: {
1663 		struct kcm_unattach info;
1664 
1665 		if (copy_from_user(&info, (void __user *)arg, sizeof(info)))
1666 			return -EFAULT;
1667 
1668 		err = kcm_unattach_ioctl(sock, &info);
1669 
1670 		break;
1671 	}
1672 	case SIOCKCMCLONE: {
1673 		struct kcm_clone info;
1674 		struct file *file;
1675 
1676 		info.fd = get_unused_fd_flags(0);
1677 		if (unlikely(info.fd < 0))
1678 			return info.fd;
1679 
1680 		file = kcm_clone(sock);
1681 		if (IS_ERR(file)) {
1682 			put_unused_fd(info.fd);
1683 			return PTR_ERR(file);
1684 		}
1685 		if (copy_to_user((void __user *)arg, &info,
1686 				 sizeof(info))) {
1687 			put_unused_fd(info.fd);
1688 			fput(file);
1689 			return -EFAULT;
1690 		}
1691 		fd_install(info.fd, file);
1692 		err = 0;
1693 		break;
1694 	}
1695 	default:
1696 		err = -ENOIOCTLCMD;
1697 		break;
1698 	}
1699 
1700 	return err;
1701 }
1702 
1703 static void free_mux(struct rcu_head *rcu)
1704 {
1705 	struct kcm_mux *mux = container_of(rcu,
1706 	    struct kcm_mux, rcu);
1707 
1708 	kmem_cache_free(kcm_muxp, mux);
1709 }
1710 
1711 static void release_mux(struct kcm_mux *mux)
1712 {
1713 	struct kcm_net *knet = mux->knet;
1714 	struct kcm_psock *psock, *tmp_psock;
1715 
1716 	/* Release psocks */
1717 	list_for_each_entry_safe(psock, tmp_psock,
1718 				 &mux->psocks, psock_list) {
1719 		if (!WARN_ON(psock->unattaching))
1720 			kcm_unattach(psock);
1721 	}
1722 
1723 	if (WARN_ON(mux->psocks_cnt))
1724 		return;
1725 
1726 	__skb_queue_purge(&mux->rx_hold_queue);
1727 
1728 	mutex_lock(&knet->mutex);
1729 	aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats);
1730 	aggregate_psock_stats(&mux->aggregate_psock_stats,
1731 			      &knet->aggregate_psock_stats);
1732 	aggregate_strp_stats(&mux->aggregate_strp_stats,
1733 			     &knet->aggregate_strp_stats);
1734 	list_del_rcu(&mux->kcm_mux_list);
1735 	knet->count--;
1736 	mutex_unlock(&knet->mutex);
1737 
1738 	call_rcu(&mux->rcu, free_mux);
1739 }
1740 
1741 static void kcm_done(struct kcm_sock *kcm)
1742 {
1743 	struct kcm_mux *mux = kcm->mux;
1744 	struct sock *sk = &kcm->sk;
1745 	int socks_cnt;
1746 
1747 	spin_lock_bh(&mux->rx_lock);
1748 	if (kcm->rx_psock) {
1749 		/* Cleanup in unreserve_rx_kcm */
1750 		WARN_ON(kcm->done);
1751 		kcm->rx_disabled = 1;
1752 		kcm->done = 1;
1753 		spin_unlock_bh(&mux->rx_lock);
1754 		return;
1755 	}
1756 
1757 	if (kcm->rx_wait) {
1758 		list_del(&kcm->wait_rx_list);
1759 		/* paired with lockless reads in kcm_rfree() */
1760 		WRITE_ONCE(kcm->rx_wait, false);
1761 	}
1762 	/* Move any pending receive messages to other kcm sockets */
1763 	requeue_rx_msgs(mux, &sk->sk_receive_queue);
1764 
1765 	spin_unlock_bh(&mux->rx_lock);
1766 
1767 	if (WARN_ON(sk_rmem_alloc_get(sk)))
1768 		return;
1769 
1770 	/* Detach from MUX */
1771 	spin_lock_bh(&mux->lock);
1772 
1773 	list_del(&kcm->kcm_sock_list);
1774 	mux->kcm_socks_cnt--;
1775 	socks_cnt = mux->kcm_socks_cnt;
1776 
1777 	spin_unlock_bh(&mux->lock);
1778 
1779 	if (!socks_cnt) {
1780 		/* We are done with the mux now. */
1781 		release_mux(mux);
1782 	}
1783 
1784 	WARN_ON(kcm->rx_wait);
1785 
1786 	sock_put(&kcm->sk);
1787 }
1788 
1789 /* Called by kcm_release to close a KCM socket.
1790  * If this is the last KCM socket on the MUX, destroy the MUX.
1791  */
1792 static int kcm_release(struct socket *sock)
1793 {
1794 	struct sock *sk = sock->sk;
1795 	struct kcm_sock *kcm;
1796 	struct kcm_mux *mux;
1797 	struct kcm_psock *psock;
1798 
1799 	if (!sk)
1800 		return 0;
1801 
1802 	kcm = kcm_sk(sk);
1803 	mux = kcm->mux;
1804 
1805 	lock_sock(sk);
1806 	sock_orphan(sk);
1807 	kfree_skb(kcm->seq_skb);
1808 
1809 	/* Purge queue under lock to avoid race condition with tx_work trying
1810 	 * to act when queue is nonempty. If tx_work runs after this point
1811 	 * it will just return.
1812 	 */
1813 	__skb_queue_purge(&sk->sk_write_queue);
1814 
1815 	/* Set tx_stopped. This is checked when psock is bound to a kcm and we
1816 	 * get a writespace callback. This prevents further work being queued
1817 	 * from the callback (unbinding the psock occurs after canceling work.
1818 	 */
1819 	kcm->tx_stopped = 1;
1820 
1821 	release_sock(sk);
1822 
1823 	spin_lock_bh(&mux->lock);
1824 	if (kcm->tx_wait) {
1825 		/* Take of tx_wait list, after this point there should be no way
1826 		 * that a psock will be assigned to this kcm.
1827 		 */
1828 		list_del(&kcm->wait_psock_list);
1829 		kcm->tx_wait = false;
1830 	}
1831 	spin_unlock_bh(&mux->lock);
1832 
1833 	/* Cancel work. After this point there should be no outside references
1834 	 * to the kcm socket.
1835 	 */
1836 	cancel_work_sync(&kcm->tx_work);
1837 
1838 	lock_sock(sk);
1839 	psock = kcm->tx_psock;
1840 	if (psock) {
1841 		/* A psock was reserved, so we need to kill it since it
1842 		 * may already have some bytes queued from a message. We
1843 		 * need to do this after removing kcm from tx_wait list.
1844 		 */
1845 		kcm_abort_tx_psock(psock, EPIPE, false);
1846 		unreserve_psock(kcm);
1847 	}
1848 	release_sock(sk);
1849 
1850 	WARN_ON(kcm->tx_wait);
1851 	WARN_ON(kcm->tx_psock);
1852 
1853 	sock->sk = NULL;
1854 
1855 	kcm_done(kcm);
1856 
1857 	return 0;
1858 }
1859 
1860 static const struct proto_ops kcm_dgram_ops = {
1861 	.family =	PF_KCM,
1862 	.owner =	THIS_MODULE,
1863 	.release =	kcm_release,
1864 	.bind =		sock_no_bind,
1865 	.connect =	sock_no_connect,
1866 	.socketpair =	sock_no_socketpair,
1867 	.accept =	sock_no_accept,
1868 	.getname =	sock_no_getname,
1869 	.poll =		datagram_poll,
1870 	.ioctl =	kcm_ioctl,
1871 	.listen =	sock_no_listen,
1872 	.shutdown =	sock_no_shutdown,
1873 	.setsockopt =	kcm_setsockopt,
1874 	.getsockopt =	kcm_getsockopt,
1875 	.sendmsg =	kcm_sendmsg,
1876 	.recvmsg =	kcm_recvmsg,
1877 	.mmap =		sock_no_mmap,
1878 	.sendpage =	kcm_sendpage,
1879 };
1880 
1881 static const struct proto_ops kcm_seqpacket_ops = {
1882 	.family =	PF_KCM,
1883 	.owner =	THIS_MODULE,
1884 	.release =	kcm_release,
1885 	.bind =		sock_no_bind,
1886 	.connect =	sock_no_connect,
1887 	.socketpair =	sock_no_socketpair,
1888 	.accept =	sock_no_accept,
1889 	.getname =	sock_no_getname,
1890 	.poll =		datagram_poll,
1891 	.ioctl =	kcm_ioctl,
1892 	.listen =	sock_no_listen,
1893 	.shutdown =	sock_no_shutdown,
1894 	.setsockopt =	kcm_setsockopt,
1895 	.getsockopt =	kcm_getsockopt,
1896 	.sendmsg =	kcm_sendmsg,
1897 	.recvmsg =	kcm_recvmsg,
1898 	.mmap =		sock_no_mmap,
1899 	.sendpage =	kcm_sendpage,
1900 	.splice_read =	kcm_splice_read,
1901 };
1902 
1903 /* Create proto operation for kcm sockets */
1904 static int kcm_create(struct net *net, struct socket *sock,
1905 		      int protocol, int kern)
1906 {
1907 	struct kcm_net *knet = net_generic(net, kcm_net_id);
1908 	struct sock *sk;
1909 	struct kcm_mux *mux;
1910 
1911 	switch (sock->type) {
1912 	case SOCK_DGRAM:
1913 		sock->ops = &kcm_dgram_ops;
1914 		break;
1915 	case SOCK_SEQPACKET:
1916 		sock->ops = &kcm_seqpacket_ops;
1917 		break;
1918 	default:
1919 		return -ESOCKTNOSUPPORT;
1920 	}
1921 
1922 	if (protocol != KCMPROTO_CONNECTED)
1923 		return -EPROTONOSUPPORT;
1924 
1925 	sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern);
1926 	if (!sk)
1927 		return -ENOMEM;
1928 
1929 	/* Allocate a kcm mux, shared between KCM sockets */
1930 	mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL);
1931 	if (!mux) {
1932 		sk_free(sk);
1933 		return -ENOMEM;
1934 	}
1935 
1936 	spin_lock_init(&mux->lock);
1937 	spin_lock_init(&mux->rx_lock);
1938 	INIT_LIST_HEAD(&mux->kcm_socks);
1939 	INIT_LIST_HEAD(&mux->kcm_rx_waiters);
1940 	INIT_LIST_HEAD(&mux->kcm_tx_waiters);
1941 
1942 	INIT_LIST_HEAD(&mux->psocks);
1943 	INIT_LIST_HEAD(&mux->psocks_ready);
1944 	INIT_LIST_HEAD(&mux->psocks_avail);
1945 
1946 	mux->knet = knet;
1947 
1948 	/* Add new MUX to list */
1949 	mutex_lock(&knet->mutex);
1950 	list_add_rcu(&mux->kcm_mux_list, &knet->mux_list);
1951 	knet->count++;
1952 	mutex_unlock(&knet->mutex);
1953 
1954 	skb_queue_head_init(&mux->rx_hold_queue);
1955 
1956 	/* Init KCM socket */
1957 	sock_init_data(sock, sk);
1958 	init_kcm_sock(kcm_sk(sk), mux);
1959 
1960 	return 0;
1961 }
1962 
1963 static const struct net_proto_family kcm_family_ops = {
1964 	.family = PF_KCM,
1965 	.create = kcm_create,
1966 	.owner  = THIS_MODULE,
1967 };
1968 
1969 static __net_init int kcm_init_net(struct net *net)
1970 {
1971 	struct kcm_net *knet = net_generic(net, kcm_net_id);
1972 
1973 	INIT_LIST_HEAD_RCU(&knet->mux_list);
1974 	mutex_init(&knet->mutex);
1975 
1976 	return 0;
1977 }
1978 
1979 static __net_exit void kcm_exit_net(struct net *net)
1980 {
1981 	struct kcm_net *knet = net_generic(net, kcm_net_id);
1982 
1983 	/* All KCM sockets should be closed at this point, which should mean
1984 	 * that all multiplexors and psocks have been destroyed.
1985 	 */
1986 	WARN_ON(!list_empty(&knet->mux_list));
1987 }
1988 
1989 static struct pernet_operations kcm_net_ops = {
1990 	.init = kcm_init_net,
1991 	.exit = kcm_exit_net,
1992 	.id   = &kcm_net_id,
1993 	.size = sizeof(struct kcm_net),
1994 };
1995 
1996 static int __init kcm_init(void)
1997 {
1998 	int err = -ENOMEM;
1999 
2000 	kcm_muxp = kmem_cache_create("kcm_mux_cache",
2001 				     sizeof(struct kcm_mux), 0,
2002 				     SLAB_HWCACHE_ALIGN, NULL);
2003 	if (!kcm_muxp)
2004 		goto fail;
2005 
2006 	kcm_psockp = kmem_cache_create("kcm_psock_cache",
2007 				       sizeof(struct kcm_psock), 0,
2008 					SLAB_HWCACHE_ALIGN, NULL);
2009 	if (!kcm_psockp)
2010 		goto fail;
2011 
2012 	kcm_wq = create_singlethread_workqueue("kkcmd");
2013 	if (!kcm_wq)
2014 		goto fail;
2015 
2016 	err = proto_register(&kcm_proto, 1);
2017 	if (err)
2018 		goto fail;
2019 
2020 	err = register_pernet_device(&kcm_net_ops);
2021 	if (err)
2022 		goto net_ops_fail;
2023 
2024 	err = sock_register(&kcm_family_ops);
2025 	if (err)
2026 		goto sock_register_fail;
2027 
2028 	err = kcm_proc_init();
2029 	if (err)
2030 		goto proc_init_fail;
2031 
2032 	return 0;
2033 
2034 proc_init_fail:
2035 	sock_unregister(PF_KCM);
2036 
2037 sock_register_fail:
2038 	unregister_pernet_device(&kcm_net_ops);
2039 
2040 net_ops_fail:
2041 	proto_unregister(&kcm_proto);
2042 
2043 fail:
2044 	kmem_cache_destroy(kcm_muxp);
2045 	kmem_cache_destroy(kcm_psockp);
2046 
2047 	if (kcm_wq)
2048 		destroy_workqueue(kcm_wq);
2049 
2050 	return err;
2051 }
2052 
2053 static void __exit kcm_exit(void)
2054 {
2055 	kcm_proc_exit();
2056 	sock_unregister(PF_KCM);
2057 	unregister_pernet_device(&kcm_net_ops);
2058 	proto_unregister(&kcm_proto);
2059 	destroy_workqueue(kcm_wq);
2060 
2061 	kmem_cache_destroy(kcm_muxp);
2062 	kmem_cache_destroy(kcm_psockp);
2063 }
2064 
2065 module_init(kcm_init);
2066 module_exit(kcm_exit);
2067 
2068 MODULE_LICENSE("GPL");
2069 MODULE_ALIAS_NETPROTO(PF_KCM);
2070