xref: /linux/net/ipv6/xfrm6_input.c (revision dbcedec3a31119d7594baacc743300d127c99c56)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xfrm6_input.c: based on net/ipv4/xfrm4_input.c
4  *
5  * Authors:
6  *	Mitsuru KANDA @USAGI
7  *	Kazunori MIYAZAWA @USAGI
8  *	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
9  *	YOSHIFUJI Hideaki @USAGI
10  *		IPv6 support
11  */
12 
13 #include <linux/module.h>
14 #include <linux/string.h>
15 #include <linux/netfilter.h>
16 #include <linux/netfilter_ipv6.h>
17 #include <net/ipv6.h>
18 #include <net/xfrm.h>
19 #include <net/protocol.h>
20 #include <net/gro.h>
21 
22 int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi,
23 		  struct ip6_tnl *t)
24 {
25 	XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = t;
26 	XFRM_SPI_SKB_CB(skb)->family = AF_INET6;
27 	XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct ipv6hdr, daddr);
28 	return xfrm_input(skb, nexthdr, spi, 0);
29 }
30 EXPORT_SYMBOL(xfrm6_rcv_spi);
31 
32 static int xfrm6_transport_finish2(struct net *net, struct sock *sk,
33 				   struct sk_buff *skb)
34 {
35 	if (xfrm_trans_queue(skb, ip6_rcv_finish)) {
36 		kfree_skb(skb);
37 		return NET_RX_DROP;
38 	}
39 
40 	return 0;
41 }
42 
43 int xfrm6_transport_finish(struct sk_buff *skb, int async)
44 {
45 	struct xfrm_offload *xo = xfrm_offload(skb);
46 	int nhlen = -skb_network_offset(skb);
47 
48 	skb_network_header(skb)[IP6CB(skb)->nhoff] =
49 		XFRM_MODE_SKB_CB(skb)->protocol;
50 
51 #ifndef CONFIG_NETFILTER
52 	if (!async)
53 		return 1;
54 #endif
55 
56 	__skb_push(skb, nhlen);
57 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
58 	skb_postpush_rcsum(skb, skb_network_header(skb), nhlen);
59 
60 	if (xo && (xo->flags & XFRM_GRO)) {
61 		skb_mac_header_rebuild(skb);
62 		skb_reset_transport_header(skb);
63 		return 0;
64 	}
65 
66 	NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING,
67 		dev_net(skb->dev), NULL, skb, skb->dev, NULL,
68 		xfrm6_transport_finish2);
69 	return 0;
70 }
71 
72 static int __xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb, bool pull)
73 {
74 	struct udp_sock *up = udp_sk(sk);
75 	struct udphdr *uh;
76 	struct ipv6hdr *ip6h;
77 	int len;
78 	int ip6hlen = sizeof(struct ipv6hdr);
79 	__u8 *udpdata;
80 	__be32 *udpdata32;
81 	u16 encap_type;
82 
83 	encap_type = READ_ONCE(up->encap_type);
84 	/* if this is not encapsulated socket, then just return now */
85 	if (!encap_type)
86 		return 1;
87 
88 	/* If this is a paged skb, make sure we pull up
89 	 * whatever data we need to look at. */
90 	len = skb->len - sizeof(struct udphdr);
91 	if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
92 		return 1;
93 
94 	/* Now we can get the pointers */
95 	uh = udp_hdr(skb);
96 	udpdata = (__u8 *)uh + sizeof(struct udphdr);
97 	udpdata32 = (__be32 *)udpdata;
98 
99 	switch (encap_type) {
100 	default:
101 	case UDP_ENCAP_ESPINUDP:
102 		/* Check if this is a keepalive packet.  If so, eat it. */
103 		if (len == 1 && udpdata[0] == 0xff) {
104 			return -EINVAL;
105 		} else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
106 			/* ESP Packet without Non-ESP header */
107 			len = sizeof(struct udphdr);
108 		} else
109 			/* Must be an IKE packet.. pass it through */
110 			return 1;
111 		break;
112 	case UDP_ENCAP_ESPINUDP_NON_IKE:
113 		/* Check if this is a keepalive packet.  If so, eat it. */
114 		if (len == 1 && udpdata[0] == 0xff) {
115 			return -EINVAL;
116 		} else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
117 			   udpdata32[0] == 0 && udpdata32[1] == 0) {
118 
119 			/* ESP Packet with Non-IKE marker */
120 			len = sizeof(struct udphdr) + 2 * sizeof(u32);
121 		} else
122 			/* Must be an IKE packet.. pass it through */
123 			return 1;
124 		break;
125 	}
126 
127 	/* At this point we are sure that this is an ESPinUDP packet,
128 	 * so we need to remove 'len' bytes from the packet (the UDP
129 	 * header and optional ESP marker bytes) and then modify the
130 	 * protocol to ESP, and then call into the transform receiver.
131 	 */
132 	if (skb_unclone(skb, GFP_ATOMIC))
133 		return -EINVAL;
134 
135 	/* Now we can update and verify the packet length... */
136 	ip6h = ipv6_hdr(skb);
137 	ip6h->payload_len = htons(ntohs(ip6h->payload_len) - len);
138 	if (skb->len < ip6hlen + len) {
139 		/* packet is too small!?! */
140 		return -EINVAL;
141 	}
142 
143 	/* pull the data buffer up to the ESP header and set the
144 	 * transport header to point to ESP.  Keep UDP on the stack
145 	 * for later.
146 	 */
147 	if (pull) {
148 		__skb_pull(skb, len);
149 		skb_reset_transport_header(skb);
150 	} else {
151 		skb_set_transport_header(skb, len);
152 	}
153 
154 	/* process ESP */
155 	return 0;
156 }
157 
158 /* If it's a keepalive packet, then just eat it.
159  * If it's an encapsulated packet, then pass it to the
160  * IPsec xfrm input.
161  * Returns 0 if skb passed to xfrm or was dropped.
162  * Returns >0 if skb should be passed to UDP.
163  * Returns <0 if skb should be resubmitted (-ret is protocol)
164  */
165 int xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb)
166 {
167 	int ret;
168 
169 	if (skb->protocol == htons(ETH_P_IP))
170 		return xfrm4_udp_encap_rcv(sk, skb);
171 
172 	ret = __xfrm6_udp_encap_rcv(sk, skb, true);
173 	if (!ret)
174 		return xfrm6_rcv_encap(skb, IPPROTO_ESP, 0,
175 				       udp_sk(sk)->encap_type);
176 
177 	if (ret < 0) {
178 		kfree_skb(skb);
179 		return 0;
180 	}
181 
182 	return ret;
183 }
184 
185 struct sk_buff *xfrm6_gro_udp_encap_rcv(struct sock *sk, struct list_head *head,
186 					struct sk_buff *skb)
187 {
188 	int offset = skb_gro_offset(skb);
189 	const struct net_offload *ops;
190 	struct sk_buff *pp = NULL;
191 	int ret;
192 
193 	if (skb->protocol == htons(ETH_P_IP))
194 		return xfrm4_gro_udp_encap_rcv(sk, head, skb);
195 
196 	offset = offset - sizeof(struct udphdr);
197 
198 	if (!pskb_pull(skb, offset))
199 		return NULL;
200 
201 	rcu_read_lock();
202 	ops = rcu_dereference(inet6_offloads[IPPROTO_ESP]);
203 	if (!ops || !ops->callbacks.gro_receive)
204 		goto out;
205 
206 	ret = __xfrm6_udp_encap_rcv(sk, skb, false);
207 	if (ret)
208 		goto out;
209 
210 	skb_push(skb, offset);
211 	NAPI_GRO_CB(skb)->proto = IPPROTO_UDP;
212 
213 	pp = call_gro_receive(ops->callbacks.gro_receive, head, skb);
214 	rcu_read_unlock();
215 
216 	return pp;
217 
218 out:
219 	rcu_read_unlock();
220 	skb_push(skb, offset);
221 	NAPI_GRO_CB(skb)->same_flow = 0;
222 	NAPI_GRO_CB(skb)->flush = 1;
223 
224 	return NULL;
225 }
226 
227 int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t)
228 {
229 	return xfrm6_rcv_spi(skb, skb_network_header(skb)[IP6CB(skb)->nhoff],
230 			     0, t);
231 }
232 EXPORT_SYMBOL(xfrm6_rcv_tnl);
233 
234 int xfrm6_rcv(struct sk_buff *skb)
235 {
236 	return xfrm6_rcv_tnl(skb, NULL);
237 }
238 EXPORT_SYMBOL(xfrm6_rcv);
239 int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr,
240 		     xfrm_address_t *saddr, u8 proto)
241 {
242 	struct net *net = dev_net(skb->dev);
243 	struct xfrm_state *x = NULL;
244 	struct sec_path *sp;
245 	int i = 0;
246 
247 	sp = secpath_set(skb);
248 	if (!sp) {
249 		XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR);
250 		goto drop;
251 	}
252 
253 	if (1 + sp->len == XFRM_MAX_DEPTH) {
254 		XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
255 		goto drop;
256 	}
257 
258 	for (i = 0; i < 3; i++) {
259 		xfrm_address_t *dst, *src;
260 
261 		switch (i) {
262 		case 0:
263 			dst = daddr;
264 			src = saddr;
265 			break;
266 		case 1:
267 			/* lookup state with wild-card source address */
268 			dst = daddr;
269 			src = (xfrm_address_t *)&in6addr_any;
270 			break;
271 		default:
272 			/* lookup state with wild-card addresses */
273 			dst = (xfrm_address_t *)&in6addr_any;
274 			src = (xfrm_address_t *)&in6addr_any;
275 			break;
276 		}
277 
278 		x = xfrm_state_lookup_byaddr(net, skb->mark, dst, src, proto, AF_INET6);
279 		if (!x)
280 			continue;
281 
282 		spin_lock(&x->lock);
283 
284 		if ((!i || (x->props.flags & XFRM_STATE_WILDRECV)) &&
285 		    likely(x->km.state == XFRM_STATE_VALID) &&
286 		    !xfrm_state_check_expire(x)) {
287 			spin_unlock(&x->lock);
288 			if (x->type->input(x, skb) > 0) {
289 				/* found a valid state */
290 				break;
291 			}
292 		} else
293 			spin_unlock(&x->lock);
294 
295 		xfrm_state_put(x);
296 		x = NULL;
297 	}
298 
299 	if (!x) {
300 		XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES);
301 		xfrm_audit_state_notfound_simple(skb, AF_INET6);
302 		goto drop;
303 	}
304 
305 	sp->xvec[sp->len++] = x;
306 
307 	spin_lock(&x->lock);
308 
309 	x->curlft.bytes += skb->len;
310 	x->curlft.packets++;
311 
312 	spin_unlock(&x->lock);
313 
314 	return 1;
315 
316 drop:
317 	return -1;
318 }
319 EXPORT_SYMBOL(xfrm6_input_addr);
320