1 /* 2 * Linux INET6 implementation 3 * FIB front-end. 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* Changes: 15 * 16 * YOSHIFUJI Hideaki @USAGI 17 * reworked default router selection. 18 * - respect outgoing interface 19 * - select from (probably) reachable routers (i.e. 20 * routers in REACHABLE, STALE, DELAY or PROBE states). 21 * - always select the same router if it is (probably) 22 * reachable. otherwise, round-robin the list. 23 * Ville Nuorvala 24 * Fixed routing subtrees. 25 */ 26 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/export.h> 30 #include <linux/types.h> 31 #include <linux/times.h> 32 #include <linux/socket.h> 33 #include <linux/sockios.h> 34 #include <linux/net.h> 35 #include <linux/route.h> 36 #include <linux/netdevice.h> 37 #include <linux/in6.h> 38 #include <linux/mroute6.h> 39 #include <linux/init.h> 40 #include <linux/if_arp.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/nsproxy.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/snmp.h> 47 #include <net/ipv6.h> 48 #include <net/ip6_fib.h> 49 #include <net/ip6_route.h> 50 #include <net/ndisc.h> 51 #include <net/addrconf.h> 52 #include <net/tcp.h> 53 #include <linux/rtnetlink.h> 54 #include <net/dst.h> 55 #include <net/xfrm.h> 56 #include <net/netevent.h> 57 #include <net/netlink.h> 58 59 #include <asm/uaccess.h> 60 61 #ifdef CONFIG_SYSCTL 62 #include <linux/sysctl.h> 63 #endif 64 65 static struct rt6_info *ip6_rt_copy(const struct rt6_info *ort, 66 const struct in6_addr *dest); 67 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 68 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 69 static unsigned int ip6_mtu(const struct dst_entry *dst); 70 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 71 static void ip6_dst_destroy(struct dst_entry *); 72 static void ip6_dst_ifdown(struct dst_entry *, 73 struct net_device *dev, int how); 74 static int ip6_dst_gc(struct dst_ops *ops); 75 76 static int ip6_pkt_discard(struct sk_buff *skb); 77 static int ip6_pkt_discard_out(struct sk_buff *skb); 78 static void ip6_link_failure(struct sk_buff *skb); 79 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu); 80 81 #ifdef CONFIG_IPV6_ROUTE_INFO 82 static struct rt6_info *rt6_add_route_info(struct net *net, 83 const struct in6_addr *prefix, int prefixlen, 84 const struct in6_addr *gwaddr, int ifindex, 85 unsigned pref); 86 static struct rt6_info *rt6_get_route_info(struct net *net, 87 const struct in6_addr *prefix, int prefixlen, 88 const struct in6_addr *gwaddr, int ifindex); 89 #endif 90 91 static u32 *ipv6_cow_metrics(struct dst_entry *dst, unsigned long old) 92 { 93 struct rt6_info *rt = (struct rt6_info *) dst; 94 struct inet_peer *peer; 95 u32 *p = NULL; 96 97 if (!(rt->dst.flags & DST_HOST)) 98 return NULL; 99 100 if (!rt->rt6i_peer) 101 rt6_bind_peer(rt, 1); 102 103 peer = rt->rt6i_peer; 104 if (peer) { 105 u32 *old_p = __DST_METRICS_PTR(old); 106 unsigned long prev, new; 107 108 p = peer->metrics; 109 if (inet_metrics_new(peer)) 110 memcpy(p, old_p, sizeof(u32) * RTAX_MAX); 111 112 new = (unsigned long) p; 113 prev = cmpxchg(&dst->_metrics, old, new); 114 115 if (prev != old) { 116 p = __DST_METRICS_PTR(prev); 117 if (prev & DST_METRICS_READ_ONLY) 118 p = NULL; 119 } 120 } 121 return p; 122 } 123 124 static inline const void *choose_neigh_daddr(struct rt6_info *rt, const void *daddr) 125 { 126 struct in6_addr *p = &rt->rt6i_gateway; 127 128 if (!ipv6_addr_any(p)) 129 return (const void *) p; 130 return daddr; 131 } 132 133 static struct neighbour *ip6_neigh_lookup(const struct dst_entry *dst, const void *daddr) 134 { 135 struct rt6_info *rt = (struct rt6_info *) dst; 136 struct neighbour *n; 137 138 daddr = choose_neigh_daddr(rt, daddr); 139 n = __ipv6_neigh_lookup(&nd_tbl, dst->dev, daddr); 140 if (n) 141 return n; 142 return neigh_create(&nd_tbl, daddr, dst->dev); 143 } 144 145 static int rt6_bind_neighbour(struct rt6_info *rt, struct net_device *dev) 146 { 147 struct neighbour *n = __ipv6_neigh_lookup(&nd_tbl, dev, &rt->rt6i_gateway); 148 if (!n) { 149 n = neigh_create(&nd_tbl, &rt->rt6i_gateway, dev); 150 if (IS_ERR(n)) 151 return PTR_ERR(n); 152 } 153 dst_set_neighbour(&rt->dst, n); 154 155 return 0; 156 } 157 158 static struct dst_ops ip6_dst_ops_template = { 159 .family = AF_INET6, 160 .protocol = cpu_to_be16(ETH_P_IPV6), 161 .gc = ip6_dst_gc, 162 .gc_thresh = 1024, 163 .check = ip6_dst_check, 164 .default_advmss = ip6_default_advmss, 165 .mtu = ip6_mtu, 166 .cow_metrics = ipv6_cow_metrics, 167 .destroy = ip6_dst_destroy, 168 .ifdown = ip6_dst_ifdown, 169 .negative_advice = ip6_negative_advice, 170 .link_failure = ip6_link_failure, 171 .update_pmtu = ip6_rt_update_pmtu, 172 .local_out = __ip6_local_out, 173 .neigh_lookup = ip6_neigh_lookup, 174 }; 175 176 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst) 177 { 178 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU); 179 180 return mtu ? : dst->dev->mtu; 181 } 182 183 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu) 184 { 185 } 186 187 static u32 *ip6_rt_blackhole_cow_metrics(struct dst_entry *dst, 188 unsigned long old) 189 { 190 return NULL; 191 } 192 193 static struct dst_ops ip6_dst_blackhole_ops = { 194 .family = AF_INET6, 195 .protocol = cpu_to_be16(ETH_P_IPV6), 196 .destroy = ip6_dst_destroy, 197 .check = ip6_dst_check, 198 .mtu = ip6_blackhole_mtu, 199 .default_advmss = ip6_default_advmss, 200 .update_pmtu = ip6_rt_blackhole_update_pmtu, 201 .cow_metrics = ip6_rt_blackhole_cow_metrics, 202 .neigh_lookup = ip6_neigh_lookup, 203 }; 204 205 static const u32 ip6_template_metrics[RTAX_MAX] = { 206 [RTAX_HOPLIMIT - 1] = 255, 207 }; 208 209 static struct rt6_info ip6_null_entry_template = { 210 .dst = { 211 .__refcnt = ATOMIC_INIT(1), 212 .__use = 1, 213 .obsolete = -1, 214 .error = -ENETUNREACH, 215 .input = ip6_pkt_discard, 216 .output = ip6_pkt_discard_out, 217 }, 218 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 219 .rt6i_protocol = RTPROT_KERNEL, 220 .rt6i_metric = ~(u32) 0, 221 .rt6i_ref = ATOMIC_INIT(1), 222 }; 223 224 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 225 226 static int ip6_pkt_prohibit(struct sk_buff *skb); 227 static int ip6_pkt_prohibit_out(struct sk_buff *skb); 228 229 static struct rt6_info ip6_prohibit_entry_template = { 230 .dst = { 231 .__refcnt = ATOMIC_INIT(1), 232 .__use = 1, 233 .obsolete = -1, 234 .error = -EACCES, 235 .input = ip6_pkt_prohibit, 236 .output = ip6_pkt_prohibit_out, 237 }, 238 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 239 .rt6i_protocol = RTPROT_KERNEL, 240 .rt6i_metric = ~(u32) 0, 241 .rt6i_ref = ATOMIC_INIT(1), 242 }; 243 244 static struct rt6_info ip6_blk_hole_entry_template = { 245 .dst = { 246 .__refcnt = ATOMIC_INIT(1), 247 .__use = 1, 248 .obsolete = -1, 249 .error = -EINVAL, 250 .input = dst_discard, 251 .output = dst_discard, 252 }, 253 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 254 .rt6i_protocol = RTPROT_KERNEL, 255 .rt6i_metric = ~(u32) 0, 256 .rt6i_ref = ATOMIC_INIT(1), 257 }; 258 259 #endif 260 261 /* allocate dst with ip6_dst_ops */ 262 static inline struct rt6_info *ip6_dst_alloc(struct dst_ops *ops, 263 struct net_device *dev, 264 int flags) 265 { 266 struct rt6_info *rt = dst_alloc(ops, dev, 0, 0, flags); 267 268 if (rt) 269 memset(&rt->rt6i_table, 0, 270 sizeof(*rt) - sizeof(struct dst_entry)); 271 272 return rt; 273 } 274 275 static void ip6_dst_destroy(struct dst_entry *dst) 276 { 277 struct rt6_info *rt = (struct rt6_info *)dst; 278 struct inet6_dev *idev = rt->rt6i_idev; 279 struct inet_peer *peer = rt->rt6i_peer; 280 281 if (!(rt->dst.flags & DST_HOST)) 282 dst_destroy_metrics_generic(dst); 283 284 if (idev) { 285 rt->rt6i_idev = NULL; 286 in6_dev_put(idev); 287 } 288 if (peer) { 289 rt->rt6i_peer = NULL; 290 inet_putpeer(peer); 291 } 292 } 293 294 static atomic_t __rt6_peer_genid = ATOMIC_INIT(0); 295 296 static u32 rt6_peer_genid(void) 297 { 298 return atomic_read(&__rt6_peer_genid); 299 } 300 301 void rt6_bind_peer(struct rt6_info *rt, int create) 302 { 303 struct inet_peer *peer; 304 305 peer = inet_getpeer_v6(&rt->rt6i_dst.addr, create); 306 if (peer && cmpxchg(&rt->rt6i_peer, NULL, peer) != NULL) 307 inet_putpeer(peer); 308 else 309 rt->rt6i_peer_genid = rt6_peer_genid(); 310 } 311 312 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 313 int how) 314 { 315 struct rt6_info *rt = (struct rt6_info *)dst; 316 struct inet6_dev *idev = rt->rt6i_idev; 317 struct net_device *loopback_dev = 318 dev_net(dev)->loopback_dev; 319 320 if (dev != loopback_dev && idev && idev->dev == dev) { 321 struct inet6_dev *loopback_idev = 322 in6_dev_get(loopback_dev); 323 if (loopback_idev) { 324 rt->rt6i_idev = loopback_idev; 325 in6_dev_put(idev); 326 } 327 } 328 } 329 330 static __inline__ int rt6_check_expired(const struct rt6_info *rt) 331 { 332 return (rt->rt6i_flags & RTF_EXPIRES) && 333 time_after(jiffies, rt->dst.expires); 334 } 335 336 static inline int rt6_need_strict(const struct in6_addr *daddr) 337 { 338 return ipv6_addr_type(daddr) & 339 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL | IPV6_ADDR_LOOPBACK); 340 } 341 342 /* 343 * Route lookup. Any table->tb6_lock is implied. 344 */ 345 346 static inline struct rt6_info *rt6_device_match(struct net *net, 347 struct rt6_info *rt, 348 const struct in6_addr *saddr, 349 int oif, 350 int flags) 351 { 352 struct rt6_info *local = NULL; 353 struct rt6_info *sprt; 354 355 if (!oif && ipv6_addr_any(saddr)) 356 goto out; 357 358 for (sprt = rt; sprt; sprt = sprt->dst.rt6_next) { 359 struct net_device *dev = sprt->dst.dev; 360 361 if (oif) { 362 if (dev->ifindex == oif) 363 return sprt; 364 if (dev->flags & IFF_LOOPBACK) { 365 if (!sprt->rt6i_idev || 366 sprt->rt6i_idev->dev->ifindex != oif) { 367 if (flags & RT6_LOOKUP_F_IFACE && oif) 368 continue; 369 if (local && (!oif || 370 local->rt6i_idev->dev->ifindex == oif)) 371 continue; 372 } 373 local = sprt; 374 } 375 } else { 376 if (ipv6_chk_addr(net, saddr, dev, 377 flags & RT6_LOOKUP_F_IFACE)) 378 return sprt; 379 } 380 } 381 382 if (oif) { 383 if (local) 384 return local; 385 386 if (flags & RT6_LOOKUP_F_IFACE) 387 return net->ipv6.ip6_null_entry; 388 } 389 out: 390 return rt; 391 } 392 393 #ifdef CONFIG_IPV6_ROUTER_PREF 394 static void rt6_probe(struct rt6_info *rt) 395 { 396 struct neighbour *neigh; 397 /* 398 * Okay, this does not seem to be appropriate 399 * for now, however, we need to check if it 400 * is really so; aka Router Reachability Probing. 401 * 402 * Router Reachability Probe MUST be rate-limited 403 * to no more than one per minute. 404 */ 405 rcu_read_lock(); 406 neigh = rt ? dst_get_neighbour_noref(&rt->dst) : NULL; 407 if (!neigh || (neigh->nud_state & NUD_VALID)) 408 goto out; 409 read_lock_bh(&neigh->lock); 410 if (!(neigh->nud_state & NUD_VALID) && 411 time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) { 412 struct in6_addr mcaddr; 413 struct in6_addr *target; 414 415 neigh->updated = jiffies; 416 read_unlock_bh(&neigh->lock); 417 418 target = (struct in6_addr *)&neigh->primary_key; 419 addrconf_addr_solict_mult(target, &mcaddr); 420 ndisc_send_ns(rt->dst.dev, NULL, target, &mcaddr, NULL); 421 } else { 422 read_unlock_bh(&neigh->lock); 423 } 424 out: 425 rcu_read_unlock(); 426 } 427 #else 428 static inline void rt6_probe(struct rt6_info *rt) 429 { 430 } 431 #endif 432 433 /* 434 * Default Router Selection (RFC 2461 6.3.6) 435 */ 436 static inline int rt6_check_dev(struct rt6_info *rt, int oif) 437 { 438 struct net_device *dev = rt->dst.dev; 439 if (!oif || dev->ifindex == oif) 440 return 2; 441 if ((dev->flags & IFF_LOOPBACK) && 442 rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif) 443 return 1; 444 return 0; 445 } 446 447 static inline int rt6_check_neigh(struct rt6_info *rt) 448 { 449 struct neighbour *neigh; 450 int m; 451 452 rcu_read_lock(); 453 neigh = dst_get_neighbour_noref(&rt->dst); 454 if (rt->rt6i_flags & RTF_NONEXTHOP || 455 !(rt->rt6i_flags & RTF_GATEWAY)) 456 m = 1; 457 else if (neigh) { 458 read_lock_bh(&neigh->lock); 459 if (neigh->nud_state & NUD_VALID) 460 m = 2; 461 #ifdef CONFIG_IPV6_ROUTER_PREF 462 else if (neigh->nud_state & NUD_FAILED) 463 m = 0; 464 #endif 465 else 466 m = 1; 467 read_unlock_bh(&neigh->lock); 468 } else 469 m = 0; 470 rcu_read_unlock(); 471 return m; 472 } 473 474 static int rt6_score_route(struct rt6_info *rt, int oif, 475 int strict) 476 { 477 int m, n; 478 479 m = rt6_check_dev(rt, oif); 480 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 481 return -1; 482 #ifdef CONFIG_IPV6_ROUTER_PREF 483 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2; 484 #endif 485 n = rt6_check_neigh(rt); 486 if (!n && (strict & RT6_LOOKUP_F_REACHABLE)) 487 return -1; 488 return m; 489 } 490 491 static struct rt6_info *find_match(struct rt6_info *rt, int oif, int strict, 492 int *mpri, struct rt6_info *match) 493 { 494 int m; 495 496 if (rt6_check_expired(rt)) 497 goto out; 498 499 m = rt6_score_route(rt, oif, strict); 500 if (m < 0) 501 goto out; 502 503 if (m > *mpri) { 504 if (strict & RT6_LOOKUP_F_REACHABLE) 505 rt6_probe(match); 506 *mpri = m; 507 match = rt; 508 } else if (strict & RT6_LOOKUP_F_REACHABLE) { 509 rt6_probe(rt); 510 } 511 512 out: 513 return match; 514 } 515 516 static struct rt6_info *find_rr_leaf(struct fib6_node *fn, 517 struct rt6_info *rr_head, 518 u32 metric, int oif, int strict) 519 { 520 struct rt6_info *rt, *match; 521 int mpri = -1; 522 523 match = NULL; 524 for (rt = rr_head; rt && rt->rt6i_metric == metric; 525 rt = rt->dst.rt6_next) 526 match = find_match(rt, oif, strict, &mpri, match); 527 for (rt = fn->leaf; rt && rt != rr_head && rt->rt6i_metric == metric; 528 rt = rt->dst.rt6_next) 529 match = find_match(rt, oif, strict, &mpri, match); 530 531 return match; 532 } 533 534 static struct rt6_info *rt6_select(struct fib6_node *fn, int oif, int strict) 535 { 536 struct rt6_info *match, *rt0; 537 struct net *net; 538 539 rt0 = fn->rr_ptr; 540 if (!rt0) 541 fn->rr_ptr = rt0 = fn->leaf; 542 543 match = find_rr_leaf(fn, rt0, rt0->rt6i_metric, oif, strict); 544 545 if (!match && 546 (strict & RT6_LOOKUP_F_REACHABLE)) { 547 struct rt6_info *next = rt0->dst.rt6_next; 548 549 /* no entries matched; do round-robin */ 550 if (!next || next->rt6i_metric != rt0->rt6i_metric) 551 next = fn->leaf; 552 553 if (next != rt0) 554 fn->rr_ptr = next; 555 } 556 557 net = dev_net(rt0->dst.dev); 558 return match ? match : net->ipv6.ip6_null_entry; 559 } 560 561 #ifdef CONFIG_IPV6_ROUTE_INFO 562 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 563 const struct in6_addr *gwaddr) 564 { 565 struct net *net = dev_net(dev); 566 struct route_info *rinfo = (struct route_info *) opt; 567 struct in6_addr prefix_buf, *prefix; 568 unsigned int pref; 569 unsigned long lifetime; 570 struct rt6_info *rt; 571 572 if (len < sizeof(struct route_info)) { 573 return -EINVAL; 574 } 575 576 /* Sanity check for prefix_len and length */ 577 if (rinfo->length > 3) { 578 return -EINVAL; 579 } else if (rinfo->prefix_len > 128) { 580 return -EINVAL; 581 } else if (rinfo->prefix_len > 64) { 582 if (rinfo->length < 2) { 583 return -EINVAL; 584 } 585 } else if (rinfo->prefix_len > 0) { 586 if (rinfo->length < 1) { 587 return -EINVAL; 588 } 589 } 590 591 pref = rinfo->route_pref; 592 if (pref == ICMPV6_ROUTER_PREF_INVALID) 593 return -EINVAL; 594 595 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 596 597 if (rinfo->length == 3) 598 prefix = (struct in6_addr *)rinfo->prefix; 599 else { 600 /* this function is safe */ 601 ipv6_addr_prefix(&prefix_buf, 602 (struct in6_addr *)rinfo->prefix, 603 rinfo->prefix_len); 604 prefix = &prefix_buf; 605 } 606 607 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, gwaddr, 608 dev->ifindex); 609 610 if (rt && !lifetime) { 611 ip6_del_rt(rt); 612 rt = NULL; 613 } 614 615 if (!rt && lifetime) 616 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, dev->ifindex, 617 pref); 618 else if (rt) 619 rt->rt6i_flags = RTF_ROUTEINFO | 620 (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 621 622 if (rt) { 623 if (!addrconf_finite_timeout(lifetime)) { 624 rt->rt6i_flags &= ~RTF_EXPIRES; 625 } else { 626 rt->dst.expires = jiffies + HZ * lifetime; 627 rt->rt6i_flags |= RTF_EXPIRES; 628 } 629 dst_release(&rt->dst); 630 } 631 return 0; 632 } 633 #endif 634 635 #define BACKTRACK(__net, saddr) \ 636 do { \ 637 if (rt == __net->ipv6.ip6_null_entry) { \ 638 struct fib6_node *pn; \ 639 while (1) { \ 640 if (fn->fn_flags & RTN_TL_ROOT) \ 641 goto out; \ 642 pn = fn->parent; \ 643 if (FIB6_SUBTREE(pn) && FIB6_SUBTREE(pn) != fn) \ 644 fn = fib6_lookup(FIB6_SUBTREE(pn), NULL, saddr); \ 645 else \ 646 fn = pn; \ 647 if (fn->fn_flags & RTN_RTINFO) \ 648 goto restart; \ 649 } \ 650 } \ 651 } while (0) 652 653 static struct rt6_info *ip6_pol_route_lookup(struct net *net, 654 struct fib6_table *table, 655 struct flowi6 *fl6, int flags) 656 { 657 struct fib6_node *fn; 658 struct rt6_info *rt; 659 660 read_lock_bh(&table->tb6_lock); 661 fn = fib6_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 662 restart: 663 rt = fn->leaf; 664 rt = rt6_device_match(net, rt, &fl6->saddr, fl6->flowi6_oif, flags); 665 BACKTRACK(net, &fl6->saddr); 666 out: 667 dst_use(&rt->dst, jiffies); 668 read_unlock_bh(&table->tb6_lock); 669 return rt; 670 671 } 672 673 struct dst_entry * ip6_route_lookup(struct net *net, struct flowi6 *fl6, 674 int flags) 675 { 676 return fib6_rule_lookup(net, fl6, flags, ip6_pol_route_lookup); 677 } 678 EXPORT_SYMBOL_GPL(ip6_route_lookup); 679 680 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 681 const struct in6_addr *saddr, int oif, int strict) 682 { 683 struct flowi6 fl6 = { 684 .flowi6_oif = oif, 685 .daddr = *daddr, 686 }; 687 struct dst_entry *dst; 688 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 689 690 if (saddr) { 691 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 692 flags |= RT6_LOOKUP_F_HAS_SADDR; 693 } 694 695 dst = fib6_rule_lookup(net, &fl6, flags, ip6_pol_route_lookup); 696 if (dst->error == 0) 697 return (struct rt6_info *) dst; 698 699 dst_release(dst); 700 701 return NULL; 702 } 703 704 EXPORT_SYMBOL(rt6_lookup); 705 706 /* ip6_ins_rt is called with FREE table->tb6_lock. 707 It takes new route entry, the addition fails by any reason the 708 route is freed. In any case, if caller does not hold it, it may 709 be destroyed. 710 */ 711 712 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info) 713 { 714 int err; 715 struct fib6_table *table; 716 717 table = rt->rt6i_table; 718 write_lock_bh(&table->tb6_lock); 719 err = fib6_add(&table->tb6_root, rt, info); 720 write_unlock_bh(&table->tb6_lock); 721 722 return err; 723 } 724 725 int ip6_ins_rt(struct rt6_info *rt) 726 { 727 struct nl_info info = { 728 .nl_net = dev_net(rt->dst.dev), 729 }; 730 return __ip6_ins_rt(rt, &info); 731 } 732 733 static struct rt6_info *rt6_alloc_cow(const struct rt6_info *ort, 734 const struct in6_addr *daddr, 735 const struct in6_addr *saddr) 736 { 737 struct rt6_info *rt; 738 739 /* 740 * Clone the route. 741 */ 742 743 rt = ip6_rt_copy(ort, daddr); 744 745 if (rt) { 746 int attempts = !in_softirq(); 747 748 if (!(rt->rt6i_flags & RTF_GATEWAY)) { 749 if (ort->rt6i_dst.plen != 128 && 750 ipv6_addr_equal(&ort->rt6i_dst.addr, daddr)) 751 rt->rt6i_flags |= RTF_ANYCAST; 752 rt->rt6i_gateway = *daddr; 753 } 754 755 rt->rt6i_flags |= RTF_CACHE; 756 757 #ifdef CONFIG_IPV6_SUBTREES 758 if (rt->rt6i_src.plen && saddr) { 759 rt->rt6i_src.addr = *saddr; 760 rt->rt6i_src.plen = 128; 761 } 762 #endif 763 764 retry: 765 if (rt6_bind_neighbour(rt, rt->dst.dev)) { 766 struct net *net = dev_net(rt->dst.dev); 767 int saved_rt_min_interval = 768 net->ipv6.sysctl.ip6_rt_gc_min_interval; 769 int saved_rt_elasticity = 770 net->ipv6.sysctl.ip6_rt_gc_elasticity; 771 772 if (attempts-- > 0) { 773 net->ipv6.sysctl.ip6_rt_gc_elasticity = 1; 774 net->ipv6.sysctl.ip6_rt_gc_min_interval = 0; 775 776 ip6_dst_gc(&net->ipv6.ip6_dst_ops); 777 778 net->ipv6.sysctl.ip6_rt_gc_elasticity = 779 saved_rt_elasticity; 780 net->ipv6.sysctl.ip6_rt_gc_min_interval = 781 saved_rt_min_interval; 782 goto retry; 783 } 784 785 if (net_ratelimit()) 786 printk(KERN_WARNING 787 "ipv6: Neighbour table overflow.\n"); 788 dst_free(&rt->dst); 789 return NULL; 790 } 791 } 792 793 return rt; 794 } 795 796 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, 797 const struct in6_addr *daddr) 798 { 799 struct rt6_info *rt = ip6_rt_copy(ort, daddr); 800 801 if (rt) { 802 rt->rt6i_flags |= RTF_CACHE; 803 dst_set_neighbour(&rt->dst, neigh_clone(dst_get_neighbour_noref_raw(&ort->dst))); 804 } 805 return rt; 806 } 807 808 static struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, int oif, 809 struct flowi6 *fl6, int flags) 810 { 811 struct fib6_node *fn; 812 struct rt6_info *rt, *nrt; 813 int strict = 0; 814 int attempts = 3; 815 int err; 816 int reachable = net->ipv6.devconf_all->forwarding ? 0 : RT6_LOOKUP_F_REACHABLE; 817 818 strict |= flags & RT6_LOOKUP_F_IFACE; 819 820 relookup: 821 read_lock_bh(&table->tb6_lock); 822 823 restart_2: 824 fn = fib6_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 825 826 restart: 827 rt = rt6_select(fn, oif, strict | reachable); 828 829 BACKTRACK(net, &fl6->saddr); 830 if (rt == net->ipv6.ip6_null_entry || 831 rt->rt6i_flags & RTF_CACHE) 832 goto out; 833 834 dst_hold(&rt->dst); 835 read_unlock_bh(&table->tb6_lock); 836 837 if (!dst_get_neighbour_noref_raw(&rt->dst) && !(rt->rt6i_flags & RTF_NONEXTHOP)) 838 nrt = rt6_alloc_cow(rt, &fl6->daddr, &fl6->saddr); 839 else if (!(rt->dst.flags & DST_HOST)) 840 nrt = rt6_alloc_clone(rt, &fl6->daddr); 841 else 842 goto out2; 843 844 dst_release(&rt->dst); 845 rt = nrt ? : net->ipv6.ip6_null_entry; 846 847 dst_hold(&rt->dst); 848 if (nrt) { 849 err = ip6_ins_rt(nrt); 850 if (!err) 851 goto out2; 852 } 853 854 if (--attempts <= 0) 855 goto out2; 856 857 /* 858 * Race condition! In the gap, when table->tb6_lock was 859 * released someone could insert this route. Relookup. 860 */ 861 dst_release(&rt->dst); 862 goto relookup; 863 864 out: 865 if (reachable) { 866 reachable = 0; 867 goto restart_2; 868 } 869 dst_hold(&rt->dst); 870 read_unlock_bh(&table->tb6_lock); 871 out2: 872 rt->dst.lastuse = jiffies; 873 rt->dst.__use++; 874 875 return rt; 876 } 877 878 static struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, 879 struct flowi6 *fl6, int flags) 880 { 881 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, flags); 882 } 883 884 static struct dst_entry *ip6_route_input_lookup(struct net *net, 885 struct net_device *dev, 886 struct flowi6 *fl6, int flags) 887 { 888 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 889 flags |= RT6_LOOKUP_F_IFACE; 890 891 return fib6_rule_lookup(net, fl6, flags, ip6_pol_route_input); 892 } 893 894 void ip6_route_input(struct sk_buff *skb) 895 { 896 const struct ipv6hdr *iph = ipv6_hdr(skb); 897 struct net *net = dev_net(skb->dev); 898 int flags = RT6_LOOKUP_F_HAS_SADDR; 899 struct flowi6 fl6 = { 900 .flowi6_iif = skb->dev->ifindex, 901 .daddr = iph->daddr, 902 .saddr = iph->saddr, 903 .flowlabel = (* (__be32 *) iph) & IPV6_FLOWINFO_MASK, 904 .flowi6_mark = skb->mark, 905 .flowi6_proto = iph->nexthdr, 906 }; 907 908 skb_dst_set(skb, ip6_route_input_lookup(net, skb->dev, &fl6, flags)); 909 } 910 911 static struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, 912 struct flowi6 *fl6, int flags) 913 { 914 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, flags); 915 } 916 917 struct dst_entry * ip6_route_output(struct net *net, const struct sock *sk, 918 struct flowi6 *fl6) 919 { 920 int flags = 0; 921 922 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr)) 923 flags |= RT6_LOOKUP_F_IFACE; 924 925 if (!ipv6_addr_any(&fl6->saddr)) 926 flags |= RT6_LOOKUP_F_HAS_SADDR; 927 else if (sk) 928 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 929 930 return fib6_rule_lookup(net, fl6, flags, ip6_pol_route_output); 931 } 932 933 EXPORT_SYMBOL(ip6_route_output); 934 935 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 936 { 937 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 938 struct dst_entry *new = NULL; 939 940 rt = dst_alloc(&ip6_dst_blackhole_ops, ort->dst.dev, 1, 0, 0); 941 if (rt) { 942 memset(&rt->rt6i_table, 0, sizeof(*rt) - sizeof(struct dst_entry)); 943 944 new = &rt->dst; 945 946 new->__use = 1; 947 new->input = dst_discard; 948 new->output = dst_discard; 949 950 if (dst_metrics_read_only(&ort->dst)) 951 new->_metrics = ort->dst._metrics; 952 else 953 dst_copy_metrics(new, &ort->dst); 954 rt->rt6i_idev = ort->rt6i_idev; 955 if (rt->rt6i_idev) 956 in6_dev_hold(rt->rt6i_idev); 957 rt->dst.expires = 0; 958 959 rt->rt6i_gateway = ort->rt6i_gateway; 960 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES; 961 rt->rt6i_metric = 0; 962 963 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 964 #ifdef CONFIG_IPV6_SUBTREES 965 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 966 #endif 967 968 dst_free(new); 969 } 970 971 dst_release(dst_orig); 972 return new ? new : ERR_PTR(-ENOMEM); 973 } 974 975 /* 976 * Destination cache support functions 977 */ 978 979 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie) 980 { 981 struct rt6_info *rt; 982 983 rt = (struct rt6_info *) dst; 984 985 if (rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie)) { 986 if (rt->rt6i_peer_genid != rt6_peer_genid()) { 987 if (!rt->rt6i_peer) 988 rt6_bind_peer(rt, 0); 989 rt->rt6i_peer_genid = rt6_peer_genid(); 990 } 991 return dst; 992 } 993 return NULL; 994 } 995 996 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 997 { 998 struct rt6_info *rt = (struct rt6_info *) dst; 999 1000 if (rt) { 1001 if (rt->rt6i_flags & RTF_CACHE) { 1002 if (rt6_check_expired(rt)) { 1003 ip6_del_rt(rt); 1004 dst = NULL; 1005 } 1006 } else { 1007 dst_release(dst); 1008 dst = NULL; 1009 } 1010 } 1011 return dst; 1012 } 1013 1014 static void ip6_link_failure(struct sk_buff *skb) 1015 { 1016 struct rt6_info *rt; 1017 1018 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 1019 1020 rt = (struct rt6_info *) skb_dst(skb); 1021 if (rt) { 1022 if (rt->rt6i_flags & RTF_CACHE) { 1023 dst_set_expires(&rt->dst, 0); 1024 rt->rt6i_flags |= RTF_EXPIRES; 1025 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT)) 1026 rt->rt6i_node->fn_sernum = -1; 1027 } 1028 } 1029 1030 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu) 1031 { 1032 struct rt6_info *rt6 = (struct rt6_info*)dst; 1033 1034 if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) { 1035 rt6->rt6i_flags |= RTF_MODIFIED; 1036 if (mtu < IPV6_MIN_MTU) { 1037 u32 features = dst_metric(dst, RTAX_FEATURES); 1038 mtu = IPV6_MIN_MTU; 1039 features |= RTAX_FEATURE_ALLFRAG; 1040 dst_metric_set(dst, RTAX_FEATURES, features); 1041 } 1042 dst_metric_set(dst, RTAX_MTU, mtu); 1043 } 1044 } 1045 1046 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 1047 { 1048 struct net_device *dev = dst->dev; 1049 unsigned int mtu = dst_mtu(dst); 1050 struct net *net = dev_net(dev); 1051 1052 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 1053 1054 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 1055 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 1056 1057 /* 1058 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 1059 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 1060 * IPV6_MAXPLEN is also valid and means: "any MSS, 1061 * rely only on pmtu discovery" 1062 */ 1063 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 1064 mtu = IPV6_MAXPLEN; 1065 return mtu; 1066 } 1067 1068 static unsigned int ip6_mtu(const struct dst_entry *dst) 1069 { 1070 struct inet6_dev *idev; 1071 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU); 1072 1073 if (mtu) 1074 return mtu; 1075 1076 mtu = IPV6_MIN_MTU; 1077 1078 rcu_read_lock(); 1079 idev = __in6_dev_get(dst->dev); 1080 if (idev) 1081 mtu = idev->cnf.mtu6; 1082 rcu_read_unlock(); 1083 1084 return mtu; 1085 } 1086 1087 static struct dst_entry *icmp6_dst_gc_list; 1088 static DEFINE_SPINLOCK(icmp6_dst_lock); 1089 1090 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 1091 struct neighbour *neigh, 1092 struct flowi6 *fl6) 1093 { 1094 struct dst_entry *dst; 1095 struct rt6_info *rt; 1096 struct inet6_dev *idev = in6_dev_get(dev); 1097 struct net *net = dev_net(dev); 1098 1099 if (unlikely(!idev)) 1100 return ERR_PTR(-ENODEV); 1101 1102 rt = ip6_dst_alloc(&net->ipv6.ip6_dst_ops, dev, 0); 1103 if (unlikely(!rt)) { 1104 in6_dev_put(idev); 1105 dst = ERR_PTR(-ENOMEM); 1106 goto out; 1107 } 1108 1109 if (neigh) 1110 neigh_hold(neigh); 1111 else { 1112 neigh = ip6_neigh_lookup(&rt->dst, &fl6->daddr); 1113 if (IS_ERR(neigh)) { 1114 in6_dev_put(idev); 1115 dst_free(&rt->dst); 1116 return ERR_CAST(neigh); 1117 } 1118 } 1119 1120 rt->dst.flags |= DST_HOST; 1121 rt->dst.output = ip6_output; 1122 dst_set_neighbour(&rt->dst, neigh); 1123 atomic_set(&rt->dst.__refcnt, 1); 1124 rt->rt6i_dst.addr = fl6->daddr; 1125 rt->rt6i_dst.plen = 128; 1126 rt->rt6i_idev = idev; 1127 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 255); 1128 1129 spin_lock_bh(&icmp6_dst_lock); 1130 rt->dst.next = icmp6_dst_gc_list; 1131 icmp6_dst_gc_list = &rt->dst; 1132 spin_unlock_bh(&icmp6_dst_lock); 1133 1134 fib6_force_start_gc(net); 1135 1136 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 1137 1138 out: 1139 return dst; 1140 } 1141 1142 int icmp6_dst_gc(void) 1143 { 1144 struct dst_entry *dst, **pprev; 1145 int more = 0; 1146 1147 spin_lock_bh(&icmp6_dst_lock); 1148 pprev = &icmp6_dst_gc_list; 1149 1150 while ((dst = *pprev) != NULL) { 1151 if (!atomic_read(&dst->__refcnt)) { 1152 *pprev = dst->next; 1153 dst_free(dst); 1154 } else { 1155 pprev = &dst->next; 1156 ++more; 1157 } 1158 } 1159 1160 spin_unlock_bh(&icmp6_dst_lock); 1161 1162 return more; 1163 } 1164 1165 static void icmp6_clean_all(int (*func)(struct rt6_info *rt, void *arg), 1166 void *arg) 1167 { 1168 struct dst_entry *dst, **pprev; 1169 1170 spin_lock_bh(&icmp6_dst_lock); 1171 pprev = &icmp6_dst_gc_list; 1172 while ((dst = *pprev) != NULL) { 1173 struct rt6_info *rt = (struct rt6_info *) dst; 1174 if (func(rt, arg)) { 1175 *pprev = dst->next; 1176 dst_free(dst); 1177 } else { 1178 pprev = &dst->next; 1179 } 1180 } 1181 spin_unlock_bh(&icmp6_dst_lock); 1182 } 1183 1184 static int ip6_dst_gc(struct dst_ops *ops) 1185 { 1186 unsigned long now = jiffies; 1187 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 1188 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 1189 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size; 1190 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 1191 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 1192 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 1193 int entries; 1194 1195 entries = dst_entries_get_fast(ops); 1196 if (time_after(rt_last_gc + rt_min_interval, now) && 1197 entries <= rt_max_size) 1198 goto out; 1199 1200 net->ipv6.ip6_rt_gc_expire++; 1201 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net); 1202 net->ipv6.ip6_rt_last_gc = now; 1203 entries = dst_entries_get_slow(ops); 1204 if (entries < ops->gc_thresh) 1205 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1; 1206 out: 1207 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity; 1208 return entries > rt_max_size; 1209 } 1210 1211 /* Clean host part of a prefix. Not necessary in radix tree, 1212 but results in cleaner routing tables. 1213 1214 Remove it only when all the things will work! 1215 */ 1216 1217 int ip6_dst_hoplimit(struct dst_entry *dst) 1218 { 1219 int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT); 1220 if (hoplimit == 0) { 1221 struct net_device *dev = dst->dev; 1222 struct inet6_dev *idev; 1223 1224 rcu_read_lock(); 1225 idev = __in6_dev_get(dev); 1226 if (idev) 1227 hoplimit = idev->cnf.hop_limit; 1228 else 1229 hoplimit = dev_net(dev)->ipv6.devconf_all->hop_limit; 1230 rcu_read_unlock(); 1231 } 1232 return hoplimit; 1233 } 1234 EXPORT_SYMBOL(ip6_dst_hoplimit); 1235 1236 /* 1237 * 1238 */ 1239 1240 int ip6_route_add(struct fib6_config *cfg) 1241 { 1242 int err; 1243 struct net *net = cfg->fc_nlinfo.nl_net; 1244 struct rt6_info *rt = NULL; 1245 struct net_device *dev = NULL; 1246 struct inet6_dev *idev = NULL; 1247 struct fib6_table *table; 1248 int addr_type; 1249 1250 if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128) 1251 return -EINVAL; 1252 #ifndef CONFIG_IPV6_SUBTREES 1253 if (cfg->fc_src_len) 1254 return -EINVAL; 1255 #endif 1256 if (cfg->fc_ifindex) { 1257 err = -ENODEV; 1258 dev = dev_get_by_index(net, cfg->fc_ifindex); 1259 if (!dev) 1260 goto out; 1261 idev = in6_dev_get(dev); 1262 if (!idev) 1263 goto out; 1264 } 1265 1266 if (cfg->fc_metric == 0) 1267 cfg->fc_metric = IP6_RT_PRIO_USER; 1268 1269 err = -ENOBUFS; 1270 if (cfg->fc_nlinfo.nlh && 1271 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 1272 table = fib6_get_table(net, cfg->fc_table); 1273 if (!table) { 1274 printk(KERN_WARNING "IPv6: NLM_F_CREATE should be specified when creating new route\n"); 1275 table = fib6_new_table(net, cfg->fc_table); 1276 } 1277 } else { 1278 table = fib6_new_table(net, cfg->fc_table); 1279 } 1280 1281 if (!table) 1282 goto out; 1283 1284 rt = ip6_dst_alloc(&net->ipv6.ip6_dst_ops, NULL, DST_NOCOUNT); 1285 1286 if (!rt) { 1287 err = -ENOMEM; 1288 goto out; 1289 } 1290 1291 rt->dst.obsolete = -1; 1292 rt->dst.expires = (cfg->fc_flags & RTF_EXPIRES) ? 1293 jiffies + clock_t_to_jiffies(cfg->fc_expires) : 1294 0; 1295 1296 if (cfg->fc_protocol == RTPROT_UNSPEC) 1297 cfg->fc_protocol = RTPROT_BOOT; 1298 rt->rt6i_protocol = cfg->fc_protocol; 1299 1300 addr_type = ipv6_addr_type(&cfg->fc_dst); 1301 1302 if (addr_type & IPV6_ADDR_MULTICAST) 1303 rt->dst.input = ip6_mc_input; 1304 else if (cfg->fc_flags & RTF_LOCAL) 1305 rt->dst.input = ip6_input; 1306 else 1307 rt->dst.input = ip6_forward; 1308 1309 rt->dst.output = ip6_output; 1310 1311 ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 1312 rt->rt6i_dst.plen = cfg->fc_dst_len; 1313 if (rt->rt6i_dst.plen == 128) 1314 rt->dst.flags |= DST_HOST; 1315 1316 if (!(rt->dst.flags & DST_HOST) && cfg->fc_mx) { 1317 u32 *metrics = kzalloc(sizeof(u32) * RTAX_MAX, GFP_KERNEL); 1318 if (!metrics) { 1319 err = -ENOMEM; 1320 goto out; 1321 } 1322 dst_init_metrics(&rt->dst, metrics, 0); 1323 } 1324 #ifdef CONFIG_IPV6_SUBTREES 1325 ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len); 1326 rt->rt6i_src.plen = cfg->fc_src_len; 1327 #endif 1328 1329 rt->rt6i_metric = cfg->fc_metric; 1330 1331 /* We cannot add true routes via loopback here, 1332 they would result in kernel looping; promote them to reject routes 1333 */ 1334 if ((cfg->fc_flags & RTF_REJECT) || 1335 (dev && (dev->flags & IFF_LOOPBACK) && 1336 !(addr_type & IPV6_ADDR_LOOPBACK) && 1337 !(cfg->fc_flags & RTF_LOCAL))) { 1338 /* hold loopback dev/idev if we haven't done so. */ 1339 if (dev != net->loopback_dev) { 1340 if (dev) { 1341 dev_put(dev); 1342 in6_dev_put(idev); 1343 } 1344 dev = net->loopback_dev; 1345 dev_hold(dev); 1346 idev = in6_dev_get(dev); 1347 if (!idev) { 1348 err = -ENODEV; 1349 goto out; 1350 } 1351 } 1352 rt->dst.output = ip6_pkt_discard_out; 1353 rt->dst.input = ip6_pkt_discard; 1354 rt->dst.error = -ENETUNREACH; 1355 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP; 1356 goto install_route; 1357 } 1358 1359 if (cfg->fc_flags & RTF_GATEWAY) { 1360 const struct in6_addr *gw_addr; 1361 int gwa_type; 1362 1363 gw_addr = &cfg->fc_gateway; 1364 rt->rt6i_gateway = *gw_addr; 1365 gwa_type = ipv6_addr_type(gw_addr); 1366 1367 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) { 1368 struct rt6_info *grt; 1369 1370 /* IPv6 strictly inhibits using not link-local 1371 addresses as nexthop address. 1372 Otherwise, router will not able to send redirects. 1373 It is very good, but in some (rare!) circumstances 1374 (SIT, PtP, NBMA NOARP links) it is handy to allow 1375 some exceptions. --ANK 1376 */ 1377 err = -EINVAL; 1378 if (!(gwa_type & IPV6_ADDR_UNICAST)) 1379 goto out; 1380 1381 grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, 1); 1382 1383 err = -EHOSTUNREACH; 1384 if (!grt) 1385 goto out; 1386 if (dev) { 1387 if (dev != grt->dst.dev) { 1388 dst_release(&grt->dst); 1389 goto out; 1390 } 1391 } else { 1392 dev = grt->dst.dev; 1393 idev = grt->rt6i_idev; 1394 dev_hold(dev); 1395 in6_dev_hold(grt->rt6i_idev); 1396 } 1397 if (!(grt->rt6i_flags & RTF_GATEWAY)) 1398 err = 0; 1399 dst_release(&grt->dst); 1400 1401 if (err) 1402 goto out; 1403 } 1404 err = -EINVAL; 1405 if (!dev || (dev->flags & IFF_LOOPBACK)) 1406 goto out; 1407 } 1408 1409 err = -ENODEV; 1410 if (!dev) 1411 goto out; 1412 1413 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 1414 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 1415 err = -EINVAL; 1416 goto out; 1417 } 1418 rt->rt6i_prefsrc.addr = cfg->fc_prefsrc; 1419 rt->rt6i_prefsrc.plen = 128; 1420 } else 1421 rt->rt6i_prefsrc.plen = 0; 1422 1423 if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) { 1424 err = rt6_bind_neighbour(rt, dev); 1425 if (err) 1426 goto out; 1427 } 1428 1429 rt->rt6i_flags = cfg->fc_flags; 1430 1431 install_route: 1432 if (cfg->fc_mx) { 1433 struct nlattr *nla; 1434 int remaining; 1435 1436 nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) { 1437 int type = nla_type(nla); 1438 1439 if (type) { 1440 if (type > RTAX_MAX) { 1441 err = -EINVAL; 1442 goto out; 1443 } 1444 1445 dst_metric_set(&rt->dst, type, nla_get_u32(nla)); 1446 } 1447 } 1448 } 1449 1450 rt->dst.dev = dev; 1451 rt->rt6i_idev = idev; 1452 rt->rt6i_table = table; 1453 1454 cfg->fc_nlinfo.nl_net = dev_net(dev); 1455 1456 return __ip6_ins_rt(rt, &cfg->fc_nlinfo); 1457 1458 out: 1459 if (dev) 1460 dev_put(dev); 1461 if (idev) 1462 in6_dev_put(idev); 1463 if (rt) 1464 dst_free(&rt->dst); 1465 return err; 1466 } 1467 1468 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info) 1469 { 1470 int err; 1471 struct fib6_table *table; 1472 struct net *net = dev_net(rt->dst.dev); 1473 1474 if (rt == net->ipv6.ip6_null_entry) 1475 return -ENOENT; 1476 1477 table = rt->rt6i_table; 1478 write_lock_bh(&table->tb6_lock); 1479 1480 err = fib6_del(rt, info); 1481 dst_release(&rt->dst); 1482 1483 write_unlock_bh(&table->tb6_lock); 1484 1485 return err; 1486 } 1487 1488 int ip6_del_rt(struct rt6_info *rt) 1489 { 1490 struct nl_info info = { 1491 .nl_net = dev_net(rt->dst.dev), 1492 }; 1493 return __ip6_del_rt(rt, &info); 1494 } 1495 1496 static int ip6_route_del(struct fib6_config *cfg) 1497 { 1498 struct fib6_table *table; 1499 struct fib6_node *fn; 1500 struct rt6_info *rt; 1501 int err = -ESRCH; 1502 1503 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 1504 if (!table) 1505 return err; 1506 1507 read_lock_bh(&table->tb6_lock); 1508 1509 fn = fib6_locate(&table->tb6_root, 1510 &cfg->fc_dst, cfg->fc_dst_len, 1511 &cfg->fc_src, cfg->fc_src_len); 1512 1513 if (fn) { 1514 for (rt = fn->leaf; rt; rt = rt->dst.rt6_next) { 1515 if (cfg->fc_ifindex && 1516 (!rt->dst.dev || 1517 rt->dst.dev->ifindex != cfg->fc_ifindex)) 1518 continue; 1519 if (cfg->fc_flags & RTF_GATEWAY && 1520 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 1521 continue; 1522 if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric) 1523 continue; 1524 dst_hold(&rt->dst); 1525 read_unlock_bh(&table->tb6_lock); 1526 1527 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 1528 } 1529 } 1530 read_unlock_bh(&table->tb6_lock); 1531 1532 return err; 1533 } 1534 1535 /* 1536 * Handle redirects 1537 */ 1538 struct ip6rd_flowi { 1539 struct flowi6 fl6; 1540 struct in6_addr gateway; 1541 }; 1542 1543 static struct rt6_info *__ip6_route_redirect(struct net *net, 1544 struct fib6_table *table, 1545 struct flowi6 *fl6, 1546 int flags) 1547 { 1548 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 1549 struct rt6_info *rt; 1550 struct fib6_node *fn; 1551 1552 /* 1553 * Get the "current" route for this destination and 1554 * check if the redirect has come from approriate router. 1555 * 1556 * RFC 2461 specifies that redirects should only be 1557 * accepted if they come from the nexthop to the target. 1558 * Due to the way the routes are chosen, this notion 1559 * is a bit fuzzy and one might need to check all possible 1560 * routes. 1561 */ 1562 1563 read_lock_bh(&table->tb6_lock); 1564 fn = fib6_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1565 restart: 1566 for (rt = fn->leaf; rt; rt = rt->dst.rt6_next) { 1567 /* 1568 * Current route is on-link; redirect is always invalid. 1569 * 1570 * Seems, previous statement is not true. It could 1571 * be node, which looks for us as on-link (f.e. proxy ndisc) 1572 * But then router serving it might decide, that we should 1573 * know truth 8)8) --ANK (980726). 1574 */ 1575 if (rt6_check_expired(rt)) 1576 continue; 1577 if (!(rt->rt6i_flags & RTF_GATEWAY)) 1578 continue; 1579 if (fl6->flowi6_oif != rt->dst.dev->ifindex) 1580 continue; 1581 if (!ipv6_addr_equal(&rdfl->gateway, &rt->rt6i_gateway)) 1582 continue; 1583 break; 1584 } 1585 1586 if (!rt) 1587 rt = net->ipv6.ip6_null_entry; 1588 BACKTRACK(net, &fl6->saddr); 1589 out: 1590 dst_hold(&rt->dst); 1591 1592 read_unlock_bh(&table->tb6_lock); 1593 1594 return rt; 1595 }; 1596 1597 static struct rt6_info *ip6_route_redirect(const struct in6_addr *dest, 1598 const struct in6_addr *src, 1599 const struct in6_addr *gateway, 1600 struct net_device *dev) 1601 { 1602 int flags = RT6_LOOKUP_F_HAS_SADDR; 1603 struct net *net = dev_net(dev); 1604 struct ip6rd_flowi rdfl = { 1605 .fl6 = { 1606 .flowi6_oif = dev->ifindex, 1607 .daddr = *dest, 1608 .saddr = *src, 1609 }, 1610 }; 1611 1612 rdfl.gateway = *gateway; 1613 1614 if (rt6_need_strict(dest)) 1615 flags |= RT6_LOOKUP_F_IFACE; 1616 1617 return (struct rt6_info *)fib6_rule_lookup(net, &rdfl.fl6, 1618 flags, __ip6_route_redirect); 1619 } 1620 1621 void rt6_redirect(const struct in6_addr *dest, const struct in6_addr *src, 1622 const struct in6_addr *saddr, 1623 struct neighbour *neigh, u8 *lladdr, int on_link) 1624 { 1625 struct rt6_info *rt, *nrt = NULL; 1626 struct netevent_redirect netevent; 1627 struct net *net = dev_net(neigh->dev); 1628 1629 rt = ip6_route_redirect(dest, src, saddr, neigh->dev); 1630 1631 if (rt == net->ipv6.ip6_null_entry) { 1632 if (net_ratelimit()) 1633 printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop " 1634 "for redirect target\n"); 1635 goto out; 1636 } 1637 1638 /* 1639 * We have finally decided to accept it. 1640 */ 1641 1642 neigh_update(neigh, lladdr, NUD_STALE, 1643 NEIGH_UPDATE_F_WEAK_OVERRIDE| 1644 NEIGH_UPDATE_F_OVERRIDE| 1645 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 1646 NEIGH_UPDATE_F_ISROUTER)) 1647 ); 1648 1649 /* 1650 * Redirect received -> path was valid. 1651 * Look, redirects are sent only in response to data packets, 1652 * so that this nexthop apparently is reachable. --ANK 1653 */ 1654 dst_confirm(&rt->dst); 1655 1656 /* Duplicate redirect: silently ignore. */ 1657 if (neigh == dst_get_neighbour_noref_raw(&rt->dst)) 1658 goto out; 1659 1660 nrt = ip6_rt_copy(rt, dest); 1661 if (!nrt) 1662 goto out; 1663 1664 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 1665 if (on_link) 1666 nrt->rt6i_flags &= ~RTF_GATEWAY; 1667 1668 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 1669 dst_set_neighbour(&nrt->dst, neigh_clone(neigh)); 1670 1671 if (ip6_ins_rt(nrt)) 1672 goto out; 1673 1674 netevent.old = &rt->dst; 1675 netevent.new = &nrt->dst; 1676 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 1677 1678 if (rt->rt6i_flags & RTF_CACHE) { 1679 ip6_del_rt(rt); 1680 return; 1681 } 1682 1683 out: 1684 dst_release(&rt->dst); 1685 } 1686 1687 /* 1688 * Handle ICMP "packet too big" messages 1689 * i.e. Path MTU discovery 1690 */ 1691 1692 static void rt6_do_pmtu_disc(const struct in6_addr *daddr, const struct in6_addr *saddr, 1693 struct net *net, u32 pmtu, int ifindex) 1694 { 1695 struct rt6_info *rt, *nrt; 1696 int allfrag = 0; 1697 again: 1698 rt = rt6_lookup(net, daddr, saddr, ifindex, 0); 1699 if (!rt) 1700 return; 1701 1702 if (rt6_check_expired(rt)) { 1703 ip6_del_rt(rt); 1704 goto again; 1705 } 1706 1707 if (pmtu >= dst_mtu(&rt->dst)) 1708 goto out; 1709 1710 if (pmtu < IPV6_MIN_MTU) { 1711 /* 1712 * According to RFC2460, PMTU is set to the IPv6 Minimum Link 1713 * MTU (1280) and a fragment header should always be included 1714 * after a node receiving Too Big message reporting PMTU is 1715 * less than the IPv6 Minimum Link MTU. 1716 */ 1717 pmtu = IPV6_MIN_MTU; 1718 allfrag = 1; 1719 } 1720 1721 /* New mtu received -> path was valid. 1722 They are sent only in response to data packets, 1723 so that this nexthop apparently is reachable. --ANK 1724 */ 1725 dst_confirm(&rt->dst); 1726 1727 /* Host route. If it is static, it would be better 1728 not to override it, but add new one, so that 1729 when cache entry will expire old pmtu 1730 would return automatically. 1731 */ 1732 if (rt->rt6i_flags & RTF_CACHE) { 1733 dst_metric_set(&rt->dst, RTAX_MTU, pmtu); 1734 if (allfrag) { 1735 u32 features = dst_metric(&rt->dst, RTAX_FEATURES); 1736 features |= RTAX_FEATURE_ALLFRAG; 1737 dst_metric_set(&rt->dst, RTAX_FEATURES, features); 1738 } 1739 dst_set_expires(&rt->dst, net->ipv6.sysctl.ip6_rt_mtu_expires); 1740 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES; 1741 goto out; 1742 } 1743 1744 /* Network route. 1745 Two cases are possible: 1746 1. It is connected route. Action: COW 1747 2. It is gatewayed route or NONEXTHOP route. Action: clone it. 1748 */ 1749 if (!dst_get_neighbour_noref_raw(&rt->dst) && !(rt->rt6i_flags & RTF_NONEXTHOP)) 1750 nrt = rt6_alloc_cow(rt, daddr, saddr); 1751 else 1752 nrt = rt6_alloc_clone(rt, daddr); 1753 1754 if (nrt) { 1755 dst_metric_set(&nrt->dst, RTAX_MTU, pmtu); 1756 if (allfrag) { 1757 u32 features = dst_metric(&nrt->dst, RTAX_FEATURES); 1758 features |= RTAX_FEATURE_ALLFRAG; 1759 dst_metric_set(&nrt->dst, RTAX_FEATURES, features); 1760 } 1761 1762 /* According to RFC 1981, detecting PMTU increase shouldn't be 1763 * happened within 5 mins, the recommended timer is 10 mins. 1764 * Here this route expiration time is set to ip6_rt_mtu_expires 1765 * which is 10 mins. After 10 mins the decreased pmtu is expired 1766 * and detecting PMTU increase will be automatically happened. 1767 */ 1768 dst_set_expires(&nrt->dst, net->ipv6.sysctl.ip6_rt_mtu_expires); 1769 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES; 1770 1771 ip6_ins_rt(nrt); 1772 } 1773 out: 1774 dst_release(&rt->dst); 1775 } 1776 1777 void rt6_pmtu_discovery(const struct in6_addr *daddr, const struct in6_addr *saddr, 1778 struct net_device *dev, u32 pmtu) 1779 { 1780 struct net *net = dev_net(dev); 1781 1782 /* 1783 * RFC 1981 states that a node "MUST reduce the size of the packets it 1784 * is sending along the path" that caused the Packet Too Big message. 1785 * Since it's not possible in the general case to determine which 1786 * interface was used to send the original packet, we update the MTU 1787 * on the interface that will be used to send future packets. We also 1788 * update the MTU on the interface that received the Packet Too Big in 1789 * case the original packet was forced out that interface with 1790 * SO_BINDTODEVICE or similar. This is the next best thing to the 1791 * correct behaviour, which would be to update the MTU on all 1792 * interfaces. 1793 */ 1794 rt6_do_pmtu_disc(daddr, saddr, net, pmtu, 0); 1795 rt6_do_pmtu_disc(daddr, saddr, net, pmtu, dev->ifindex); 1796 } 1797 1798 /* 1799 * Misc support functions 1800 */ 1801 1802 static struct rt6_info *ip6_rt_copy(const struct rt6_info *ort, 1803 const struct in6_addr *dest) 1804 { 1805 struct net *net = dev_net(ort->dst.dev); 1806 struct rt6_info *rt = ip6_dst_alloc(&net->ipv6.ip6_dst_ops, 1807 ort->dst.dev, 0); 1808 1809 if (rt) { 1810 rt->dst.input = ort->dst.input; 1811 rt->dst.output = ort->dst.output; 1812 rt->dst.flags |= DST_HOST; 1813 1814 rt->rt6i_dst.addr = *dest; 1815 rt->rt6i_dst.plen = 128; 1816 dst_copy_metrics(&rt->dst, &ort->dst); 1817 rt->dst.error = ort->dst.error; 1818 rt->rt6i_idev = ort->rt6i_idev; 1819 if (rt->rt6i_idev) 1820 in6_dev_hold(rt->rt6i_idev); 1821 rt->dst.lastuse = jiffies; 1822 rt->dst.expires = 0; 1823 1824 rt->rt6i_gateway = ort->rt6i_gateway; 1825 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES; 1826 rt->rt6i_metric = 0; 1827 1828 #ifdef CONFIG_IPV6_SUBTREES 1829 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 1830 #endif 1831 memcpy(&rt->rt6i_prefsrc, &ort->rt6i_prefsrc, sizeof(struct rt6key)); 1832 rt->rt6i_table = ort->rt6i_table; 1833 } 1834 return rt; 1835 } 1836 1837 #ifdef CONFIG_IPV6_ROUTE_INFO 1838 static struct rt6_info *rt6_get_route_info(struct net *net, 1839 const struct in6_addr *prefix, int prefixlen, 1840 const struct in6_addr *gwaddr, int ifindex) 1841 { 1842 struct fib6_node *fn; 1843 struct rt6_info *rt = NULL; 1844 struct fib6_table *table; 1845 1846 table = fib6_get_table(net, RT6_TABLE_INFO); 1847 if (!table) 1848 return NULL; 1849 1850 write_lock_bh(&table->tb6_lock); 1851 fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0); 1852 if (!fn) 1853 goto out; 1854 1855 for (rt = fn->leaf; rt; rt = rt->dst.rt6_next) { 1856 if (rt->dst.dev->ifindex != ifindex) 1857 continue; 1858 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY)) 1859 continue; 1860 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr)) 1861 continue; 1862 dst_hold(&rt->dst); 1863 break; 1864 } 1865 out: 1866 write_unlock_bh(&table->tb6_lock); 1867 return rt; 1868 } 1869 1870 static struct rt6_info *rt6_add_route_info(struct net *net, 1871 const struct in6_addr *prefix, int prefixlen, 1872 const struct in6_addr *gwaddr, int ifindex, 1873 unsigned pref) 1874 { 1875 struct fib6_config cfg = { 1876 .fc_table = RT6_TABLE_INFO, 1877 .fc_metric = IP6_RT_PRIO_USER, 1878 .fc_ifindex = ifindex, 1879 .fc_dst_len = prefixlen, 1880 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 1881 RTF_UP | RTF_PREF(pref), 1882 .fc_nlinfo.pid = 0, 1883 .fc_nlinfo.nlh = NULL, 1884 .fc_nlinfo.nl_net = net, 1885 }; 1886 1887 cfg.fc_dst = *prefix; 1888 cfg.fc_gateway = *gwaddr; 1889 1890 /* We should treat it as a default route if prefix length is 0. */ 1891 if (!prefixlen) 1892 cfg.fc_flags |= RTF_DEFAULT; 1893 1894 ip6_route_add(&cfg); 1895 1896 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, ifindex); 1897 } 1898 #endif 1899 1900 struct rt6_info *rt6_get_dflt_router(const struct in6_addr *addr, struct net_device *dev) 1901 { 1902 struct rt6_info *rt; 1903 struct fib6_table *table; 1904 1905 table = fib6_get_table(dev_net(dev), RT6_TABLE_DFLT); 1906 if (!table) 1907 return NULL; 1908 1909 write_lock_bh(&table->tb6_lock); 1910 for (rt = table->tb6_root.leaf; rt; rt=rt->dst.rt6_next) { 1911 if (dev == rt->dst.dev && 1912 ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 1913 ipv6_addr_equal(&rt->rt6i_gateway, addr)) 1914 break; 1915 } 1916 if (rt) 1917 dst_hold(&rt->dst); 1918 write_unlock_bh(&table->tb6_lock); 1919 return rt; 1920 } 1921 1922 struct rt6_info *rt6_add_dflt_router(const struct in6_addr *gwaddr, 1923 struct net_device *dev, 1924 unsigned int pref) 1925 { 1926 struct fib6_config cfg = { 1927 .fc_table = RT6_TABLE_DFLT, 1928 .fc_metric = IP6_RT_PRIO_USER, 1929 .fc_ifindex = dev->ifindex, 1930 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 1931 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 1932 .fc_nlinfo.pid = 0, 1933 .fc_nlinfo.nlh = NULL, 1934 .fc_nlinfo.nl_net = dev_net(dev), 1935 }; 1936 1937 cfg.fc_gateway = *gwaddr; 1938 1939 ip6_route_add(&cfg); 1940 1941 return rt6_get_dflt_router(gwaddr, dev); 1942 } 1943 1944 void rt6_purge_dflt_routers(struct net *net) 1945 { 1946 struct rt6_info *rt; 1947 struct fib6_table *table; 1948 1949 /* NOTE: Keep consistent with rt6_get_dflt_router */ 1950 table = fib6_get_table(net, RT6_TABLE_DFLT); 1951 if (!table) 1952 return; 1953 1954 restart: 1955 read_lock_bh(&table->tb6_lock); 1956 for (rt = table->tb6_root.leaf; rt; rt = rt->dst.rt6_next) { 1957 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) { 1958 dst_hold(&rt->dst); 1959 read_unlock_bh(&table->tb6_lock); 1960 ip6_del_rt(rt); 1961 goto restart; 1962 } 1963 } 1964 read_unlock_bh(&table->tb6_lock); 1965 } 1966 1967 static void rtmsg_to_fib6_config(struct net *net, 1968 struct in6_rtmsg *rtmsg, 1969 struct fib6_config *cfg) 1970 { 1971 memset(cfg, 0, sizeof(*cfg)); 1972 1973 cfg->fc_table = RT6_TABLE_MAIN; 1974 cfg->fc_ifindex = rtmsg->rtmsg_ifindex; 1975 cfg->fc_metric = rtmsg->rtmsg_metric; 1976 cfg->fc_expires = rtmsg->rtmsg_info; 1977 cfg->fc_dst_len = rtmsg->rtmsg_dst_len; 1978 cfg->fc_src_len = rtmsg->rtmsg_src_len; 1979 cfg->fc_flags = rtmsg->rtmsg_flags; 1980 1981 cfg->fc_nlinfo.nl_net = net; 1982 1983 cfg->fc_dst = rtmsg->rtmsg_dst; 1984 cfg->fc_src = rtmsg->rtmsg_src; 1985 cfg->fc_gateway = rtmsg->rtmsg_gateway; 1986 } 1987 1988 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg) 1989 { 1990 struct fib6_config cfg; 1991 struct in6_rtmsg rtmsg; 1992 int err; 1993 1994 switch(cmd) { 1995 case SIOCADDRT: /* Add a route */ 1996 case SIOCDELRT: /* Delete a route */ 1997 if (!capable(CAP_NET_ADMIN)) 1998 return -EPERM; 1999 err = copy_from_user(&rtmsg, arg, 2000 sizeof(struct in6_rtmsg)); 2001 if (err) 2002 return -EFAULT; 2003 2004 rtmsg_to_fib6_config(net, &rtmsg, &cfg); 2005 2006 rtnl_lock(); 2007 switch (cmd) { 2008 case SIOCADDRT: 2009 err = ip6_route_add(&cfg); 2010 break; 2011 case SIOCDELRT: 2012 err = ip6_route_del(&cfg); 2013 break; 2014 default: 2015 err = -EINVAL; 2016 } 2017 rtnl_unlock(); 2018 2019 return err; 2020 } 2021 2022 return -EINVAL; 2023 } 2024 2025 /* 2026 * Drop the packet on the floor 2027 */ 2028 2029 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 2030 { 2031 int type; 2032 struct dst_entry *dst = skb_dst(skb); 2033 switch (ipstats_mib_noroutes) { 2034 case IPSTATS_MIB_INNOROUTES: 2035 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 2036 if (type == IPV6_ADDR_ANY) { 2037 IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), 2038 IPSTATS_MIB_INADDRERRORS); 2039 break; 2040 } 2041 /* FALLTHROUGH */ 2042 case IPSTATS_MIB_OUTNOROUTES: 2043 IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), 2044 ipstats_mib_noroutes); 2045 break; 2046 } 2047 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 2048 kfree_skb(skb); 2049 return 0; 2050 } 2051 2052 static int ip6_pkt_discard(struct sk_buff *skb) 2053 { 2054 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 2055 } 2056 2057 static int ip6_pkt_discard_out(struct sk_buff *skb) 2058 { 2059 skb->dev = skb_dst(skb)->dev; 2060 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 2061 } 2062 2063 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2064 2065 static int ip6_pkt_prohibit(struct sk_buff *skb) 2066 { 2067 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 2068 } 2069 2070 static int ip6_pkt_prohibit_out(struct sk_buff *skb) 2071 { 2072 skb->dev = skb_dst(skb)->dev; 2073 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 2074 } 2075 2076 #endif 2077 2078 /* 2079 * Allocate a dst for local (unicast / anycast) address. 2080 */ 2081 2082 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev, 2083 const struct in6_addr *addr, 2084 bool anycast) 2085 { 2086 struct net *net = dev_net(idev->dev); 2087 struct rt6_info *rt = ip6_dst_alloc(&net->ipv6.ip6_dst_ops, 2088 net->loopback_dev, 0); 2089 int err; 2090 2091 if (!rt) { 2092 if (net_ratelimit()) 2093 pr_warning("IPv6: Maximum number of routes reached," 2094 " consider increasing route/max_size.\n"); 2095 return ERR_PTR(-ENOMEM); 2096 } 2097 2098 in6_dev_hold(idev); 2099 2100 rt->dst.flags |= DST_HOST; 2101 rt->dst.input = ip6_input; 2102 rt->dst.output = ip6_output; 2103 rt->rt6i_idev = idev; 2104 rt->dst.obsolete = -1; 2105 2106 rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP; 2107 if (anycast) 2108 rt->rt6i_flags |= RTF_ANYCAST; 2109 else 2110 rt->rt6i_flags |= RTF_LOCAL; 2111 err = rt6_bind_neighbour(rt, rt->dst.dev); 2112 if (err) { 2113 dst_free(&rt->dst); 2114 return ERR_PTR(err); 2115 } 2116 2117 rt->rt6i_dst.addr = *addr; 2118 rt->rt6i_dst.plen = 128; 2119 rt->rt6i_table = fib6_get_table(net, RT6_TABLE_LOCAL); 2120 2121 atomic_set(&rt->dst.__refcnt, 1); 2122 2123 return rt; 2124 } 2125 2126 int ip6_route_get_saddr(struct net *net, 2127 struct rt6_info *rt, 2128 const struct in6_addr *daddr, 2129 unsigned int prefs, 2130 struct in6_addr *saddr) 2131 { 2132 struct inet6_dev *idev = ip6_dst_idev((struct dst_entry*)rt); 2133 int err = 0; 2134 if (rt->rt6i_prefsrc.plen) 2135 *saddr = rt->rt6i_prefsrc.addr; 2136 else 2137 err = ipv6_dev_get_saddr(net, idev ? idev->dev : NULL, 2138 daddr, prefs, saddr); 2139 return err; 2140 } 2141 2142 /* remove deleted ip from prefsrc entries */ 2143 struct arg_dev_net_ip { 2144 struct net_device *dev; 2145 struct net *net; 2146 struct in6_addr *addr; 2147 }; 2148 2149 static int fib6_remove_prefsrc(struct rt6_info *rt, void *arg) 2150 { 2151 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 2152 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 2153 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 2154 2155 if (((void *)rt->dst.dev == dev || !dev) && 2156 rt != net->ipv6.ip6_null_entry && 2157 ipv6_addr_equal(addr, &rt->rt6i_prefsrc.addr)) { 2158 /* remove prefsrc entry */ 2159 rt->rt6i_prefsrc.plen = 0; 2160 } 2161 return 0; 2162 } 2163 2164 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 2165 { 2166 struct net *net = dev_net(ifp->idev->dev); 2167 struct arg_dev_net_ip adni = { 2168 .dev = ifp->idev->dev, 2169 .net = net, 2170 .addr = &ifp->addr, 2171 }; 2172 fib6_clean_all(net, fib6_remove_prefsrc, 0, &adni); 2173 } 2174 2175 struct arg_dev_net { 2176 struct net_device *dev; 2177 struct net *net; 2178 }; 2179 2180 static int fib6_ifdown(struct rt6_info *rt, void *arg) 2181 { 2182 const struct arg_dev_net *adn = arg; 2183 const struct net_device *dev = adn->dev; 2184 2185 if ((rt->dst.dev == dev || !dev) && 2186 rt != adn->net->ipv6.ip6_null_entry) 2187 return -1; 2188 2189 return 0; 2190 } 2191 2192 void rt6_ifdown(struct net *net, struct net_device *dev) 2193 { 2194 struct arg_dev_net adn = { 2195 .dev = dev, 2196 .net = net, 2197 }; 2198 2199 fib6_clean_all(net, fib6_ifdown, 0, &adn); 2200 icmp6_clean_all(fib6_ifdown, &adn); 2201 } 2202 2203 struct rt6_mtu_change_arg 2204 { 2205 struct net_device *dev; 2206 unsigned mtu; 2207 }; 2208 2209 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg) 2210 { 2211 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 2212 struct inet6_dev *idev; 2213 2214 /* In IPv6 pmtu discovery is not optional, 2215 so that RTAX_MTU lock cannot disable it. 2216 We still use this lock to block changes 2217 caused by addrconf/ndisc. 2218 */ 2219 2220 idev = __in6_dev_get(arg->dev); 2221 if (!idev) 2222 return 0; 2223 2224 /* For administrative MTU increase, there is no way to discover 2225 IPv6 PMTU increase, so PMTU increase should be updated here. 2226 Since RFC 1981 doesn't include administrative MTU increase 2227 update PMTU increase is a MUST. (i.e. jumbo frame) 2228 */ 2229 /* 2230 If new MTU is less than route PMTU, this new MTU will be the 2231 lowest MTU in the path, update the route PMTU to reflect PMTU 2232 decreases; if new MTU is greater than route PMTU, and the 2233 old MTU is the lowest MTU in the path, update the route PMTU 2234 to reflect the increase. In this case if the other nodes' MTU 2235 also have the lowest MTU, TOO BIG MESSAGE will be lead to 2236 PMTU discouvery. 2237 */ 2238 if (rt->dst.dev == arg->dev && 2239 !dst_metric_locked(&rt->dst, RTAX_MTU) && 2240 (dst_mtu(&rt->dst) >= arg->mtu || 2241 (dst_mtu(&rt->dst) < arg->mtu && 2242 dst_mtu(&rt->dst) == idev->cnf.mtu6))) { 2243 dst_metric_set(&rt->dst, RTAX_MTU, arg->mtu); 2244 } 2245 return 0; 2246 } 2247 2248 void rt6_mtu_change(struct net_device *dev, unsigned mtu) 2249 { 2250 struct rt6_mtu_change_arg arg = { 2251 .dev = dev, 2252 .mtu = mtu, 2253 }; 2254 2255 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, 0, &arg); 2256 } 2257 2258 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 2259 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 2260 [RTA_OIF] = { .type = NLA_U32 }, 2261 [RTA_IIF] = { .type = NLA_U32 }, 2262 [RTA_PRIORITY] = { .type = NLA_U32 }, 2263 [RTA_METRICS] = { .type = NLA_NESTED }, 2264 }; 2265 2266 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 2267 struct fib6_config *cfg) 2268 { 2269 struct rtmsg *rtm; 2270 struct nlattr *tb[RTA_MAX+1]; 2271 int err; 2272 2273 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy); 2274 if (err < 0) 2275 goto errout; 2276 2277 err = -EINVAL; 2278 rtm = nlmsg_data(nlh); 2279 memset(cfg, 0, sizeof(*cfg)); 2280 2281 cfg->fc_table = rtm->rtm_table; 2282 cfg->fc_dst_len = rtm->rtm_dst_len; 2283 cfg->fc_src_len = rtm->rtm_src_len; 2284 cfg->fc_flags = RTF_UP; 2285 cfg->fc_protocol = rtm->rtm_protocol; 2286 2287 if (rtm->rtm_type == RTN_UNREACHABLE) 2288 cfg->fc_flags |= RTF_REJECT; 2289 2290 if (rtm->rtm_type == RTN_LOCAL) 2291 cfg->fc_flags |= RTF_LOCAL; 2292 2293 cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid; 2294 cfg->fc_nlinfo.nlh = nlh; 2295 cfg->fc_nlinfo.nl_net = sock_net(skb->sk); 2296 2297 if (tb[RTA_GATEWAY]) { 2298 nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16); 2299 cfg->fc_flags |= RTF_GATEWAY; 2300 } 2301 2302 if (tb[RTA_DST]) { 2303 int plen = (rtm->rtm_dst_len + 7) >> 3; 2304 2305 if (nla_len(tb[RTA_DST]) < plen) 2306 goto errout; 2307 2308 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 2309 } 2310 2311 if (tb[RTA_SRC]) { 2312 int plen = (rtm->rtm_src_len + 7) >> 3; 2313 2314 if (nla_len(tb[RTA_SRC]) < plen) 2315 goto errout; 2316 2317 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 2318 } 2319 2320 if (tb[RTA_PREFSRC]) 2321 nla_memcpy(&cfg->fc_prefsrc, tb[RTA_PREFSRC], 16); 2322 2323 if (tb[RTA_OIF]) 2324 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 2325 2326 if (tb[RTA_PRIORITY]) 2327 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 2328 2329 if (tb[RTA_METRICS]) { 2330 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 2331 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 2332 } 2333 2334 if (tb[RTA_TABLE]) 2335 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 2336 2337 err = 0; 2338 errout: 2339 return err; 2340 } 2341 2342 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg) 2343 { 2344 struct fib6_config cfg; 2345 int err; 2346 2347 err = rtm_to_fib6_config(skb, nlh, &cfg); 2348 if (err < 0) 2349 return err; 2350 2351 return ip6_route_del(&cfg); 2352 } 2353 2354 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg) 2355 { 2356 struct fib6_config cfg; 2357 int err; 2358 2359 err = rtm_to_fib6_config(skb, nlh, &cfg); 2360 if (err < 0) 2361 return err; 2362 2363 return ip6_route_add(&cfg); 2364 } 2365 2366 static inline size_t rt6_nlmsg_size(void) 2367 { 2368 return NLMSG_ALIGN(sizeof(struct rtmsg)) 2369 + nla_total_size(16) /* RTA_SRC */ 2370 + nla_total_size(16) /* RTA_DST */ 2371 + nla_total_size(16) /* RTA_GATEWAY */ 2372 + nla_total_size(16) /* RTA_PREFSRC */ 2373 + nla_total_size(4) /* RTA_TABLE */ 2374 + nla_total_size(4) /* RTA_IIF */ 2375 + nla_total_size(4) /* RTA_OIF */ 2376 + nla_total_size(4) /* RTA_PRIORITY */ 2377 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 2378 + nla_total_size(sizeof(struct rta_cacheinfo)); 2379 } 2380 2381 static int rt6_fill_node(struct net *net, 2382 struct sk_buff *skb, struct rt6_info *rt, 2383 struct in6_addr *dst, struct in6_addr *src, 2384 int iif, int type, u32 pid, u32 seq, 2385 int prefix, int nowait, unsigned int flags) 2386 { 2387 const struct inet_peer *peer; 2388 struct rtmsg *rtm; 2389 struct nlmsghdr *nlh; 2390 long expires; 2391 u32 table; 2392 struct neighbour *n; 2393 u32 ts, tsage; 2394 2395 if (prefix) { /* user wants prefix routes only */ 2396 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) { 2397 /* success since this is not a prefix route */ 2398 return 1; 2399 } 2400 } 2401 2402 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags); 2403 if (!nlh) 2404 return -EMSGSIZE; 2405 2406 rtm = nlmsg_data(nlh); 2407 rtm->rtm_family = AF_INET6; 2408 rtm->rtm_dst_len = rt->rt6i_dst.plen; 2409 rtm->rtm_src_len = rt->rt6i_src.plen; 2410 rtm->rtm_tos = 0; 2411 if (rt->rt6i_table) 2412 table = rt->rt6i_table->tb6_id; 2413 else 2414 table = RT6_TABLE_UNSPEC; 2415 rtm->rtm_table = table; 2416 NLA_PUT_U32(skb, RTA_TABLE, table); 2417 if (rt->rt6i_flags & RTF_REJECT) 2418 rtm->rtm_type = RTN_UNREACHABLE; 2419 else if (rt->rt6i_flags & RTF_LOCAL) 2420 rtm->rtm_type = RTN_LOCAL; 2421 else if (rt->dst.dev && (rt->dst.dev->flags & IFF_LOOPBACK)) 2422 rtm->rtm_type = RTN_LOCAL; 2423 else 2424 rtm->rtm_type = RTN_UNICAST; 2425 rtm->rtm_flags = 0; 2426 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2427 rtm->rtm_protocol = rt->rt6i_protocol; 2428 if (rt->rt6i_flags & RTF_DYNAMIC) 2429 rtm->rtm_protocol = RTPROT_REDIRECT; 2430 else if (rt->rt6i_flags & RTF_ADDRCONF) 2431 rtm->rtm_protocol = RTPROT_KERNEL; 2432 else if (rt->rt6i_flags & RTF_DEFAULT) 2433 rtm->rtm_protocol = RTPROT_RA; 2434 2435 if (rt->rt6i_flags & RTF_CACHE) 2436 rtm->rtm_flags |= RTM_F_CLONED; 2437 2438 if (dst) { 2439 NLA_PUT(skb, RTA_DST, 16, dst); 2440 rtm->rtm_dst_len = 128; 2441 } else if (rtm->rtm_dst_len) 2442 NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr); 2443 #ifdef CONFIG_IPV6_SUBTREES 2444 if (src) { 2445 NLA_PUT(skb, RTA_SRC, 16, src); 2446 rtm->rtm_src_len = 128; 2447 } else if (rtm->rtm_src_len) 2448 NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr); 2449 #endif 2450 if (iif) { 2451 #ifdef CONFIG_IPV6_MROUTE 2452 if (ipv6_addr_is_multicast(&rt->rt6i_dst.addr)) { 2453 int err = ip6mr_get_route(net, skb, rtm, nowait); 2454 if (err <= 0) { 2455 if (!nowait) { 2456 if (err == 0) 2457 return 0; 2458 goto nla_put_failure; 2459 } else { 2460 if (err == -EMSGSIZE) 2461 goto nla_put_failure; 2462 } 2463 } 2464 } else 2465 #endif 2466 NLA_PUT_U32(skb, RTA_IIF, iif); 2467 } else if (dst) { 2468 struct in6_addr saddr_buf; 2469 if (ip6_route_get_saddr(net, rt, dst, 0, &saddr_buf) == 0) 2470 NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf); 2471 } 2472 2473 if (rt->rt6i_prefsrc.plen) { 2474 struct in6_addr saddr_buf; 2475 saddr_buf = rt->rt6i_prefsrc.addr; 2476 NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf); 2477 } 2478 2479 if (rtnetlink_put_metrics(skb, dst_metrics_ptr(&rt->dst)) < 0) 2480 goto nla_put_failure; 2481 2482 rcu_read_lock(); 2483 n = dst_get_neighbour_noref(&rt->dst); 2484 if (n) { 2485 if (nla_put(skb, RTA_GATEWAY, 16, &n->primary_key) < 0) { 2486 rcu_read_unlock(); 2487 goto nla_put_failure; 2488 } 2489 } 2490 rcu_read_unlock(); 2491 2492 if (rt->dst.dev) 2493 NLA_PUT_U32(skb, RTA_OIF, rt->dst.dev->ifindex); 2494 2495 NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric); 2496 2497 if (!(rt->rt6i_flags & RTF_EXPIRES)) 2498 expires = 0; 2499 else if (rt->dst.expires - jiffies < INT_MAX) 2500 expires = rt->dst.expires - jiffies; 2501 else 2502 expires = INT_MAX; 2503 2504 peer = rt->rt6i_peer; 2505 ts = tsage = 0; 2506 if (peer && peer->tcp_ts_stamp) { 2507 ts = peer->tcp_ts; 2508 tsage = get_seconds() - peer->tcp_ts_stamp; 2509 } 2510 2511 if (rtnl_put_cacheinfo(skb, &rt->dst, 0, ts, tsage, 2512 expires, rt->dst.error) < 0) 2513 goto nla_put_failure; 2514 2515 return nlmsg_end(skb, nlh); 2516 2517 nla_put_failure: 2518 nlmsg_cancel(skb, nlh); 2519 return -EMSGSIZE; 2520 } 2521 2522 int rt6_dump_route(struct rt6_info *rt, void *p_arg) 2523 { 2524 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 2525 int prefix; 2526 2527 if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) { 2528 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh); 2529 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0; 2530 } else 2531 prefix = 0; 2532 2533 return rt6_fill_node(arg->net, 2534 arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE, 2535 NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq, 2536 prefix, 0, NLM_F_MULTI); 2537 } 2538 2539 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg) 2540 { 2541 struct net *net = sock_net(in_skb->sk); 2542 struct nlattr *tb[RTA_MAX+1]; 2543 struct rt6_info *rt; 2544 struct sk_buff *skb; 2545 struct rtmsg *rtm; 2546 struct flowi6 fl6; 2547 int err, iif = 0, oif = 0; 2548 2549 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy); 2550 if (err < 0) 2551 goto errout; 2552 2553 err = -EINVAL; 2554 memset(&fl6, 0, sizeof(fl6)); 2555 2556 if (tb[RTA_SRC]) { 2557 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 2558 goto errout; 2559 2560 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 2561 } 2562 2563 if (tb[RTA_DST]) { 2564 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 2565 goto errout; 2566 2567 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 2568 } 2569 2570 if (tb[RTA_IIF]) 2571 iif = nla_get_u32(tb[RTA_IIF]); 2572 2573 if (tb[RTA_OIF]) 2574 oif = nla_get_u32(tb[RTA_OIF]); 2575 2576 if (iif) { 2577 struct net_device *dev; 2578 int flags = 0; 2579 2580 dev = __dev_get_by_index(net, iif); 2581 if (!dev) { 2582 err = -ENODEV; 2583 goto errout; 2584 } 2585 2586 fl6.flowi6_iif = iif; 2587 2588 if (!ipv6_addr_any(&fl6.saddr)) 2589 flags |= RT6_LOOKUP_F_HAS_SADDR; 2590 2591 rt = (struct rt6_info *)ip6_route_input_lookup(net, dev, &fl6, 2592 flags); 2593 } else { 2594 fl6.flowi6_oif = oif; 2595 2596 rt = (struct rt6_info *)ip6_route_output(net, NULL, &fl6); 2597 } 2598 2599 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 2600 if (!skb) { 2601 err = -ENOBUFS; 2602 goto errout; 2603 } 2604 2605 /* Reserve room for dummy headers, this skb can pass 2606 through good chunk of routing engine. 2607 */ 2608 skb_reset_mac_header(skb); 2609 skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr)); 2610 2611 skb_dst_set(skb, &rt->dst); 2612 2613 err = rt6_fill_node(net, skb, rt, &fl6.daddr, &fl6.saddr, iif, 2614 RTM_NEWROUTE, NETLINK_CB(in_skb).pid, 2615 nlh->nlmsg_seq, 0, 0, 0); 2616 if (err < 0) { 2617 kfree_skb(skb); 2618 goto errout; 2619 } 2620 2621 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid); 2622 errout: 2623 return err; 2624 } 2625 2626 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info) 2627 { 2628 struct sk_buff *skb; 2629 struct net *net = info->nl_net; 2630 u32 seq; 2631 int err; 2632 2633 err = -ENOBUFS; 2634 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 2635 2636 skb = nlmsg_new(rt6_nlmsg_size(), gfp_any()); 2637 if (!skb) 2638 goto errout; 2639 2640 err = rt6_fill_node(net, skb, rt, NULL, NULL, 0, 2641 event, info->pid, seq, 0, 0, 0); 2642 if (err < 0) { 2643 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 2644 WARN_ON(err == -EMSGSIZE); 2645 kfree_skb(skb); 2646 goto errout; 2647 } 2648 rtnl_notify(skb, net, info->pid, RTNLGRP_IPV6_ROUTE, 2649 info->nlh, gfp_any()); 2650 return; 2651 errout: 2652 if (err < 0) 2653 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 2654 } 2655 2656 static int ip6_route_dev_notify(struct notifier_block *this, 2657 unsigned long event, void *data) 2658 { 2659 struct net_device *dev = (struct net_device *)data; 2660 struct net *net = dev_net(dev); 2661 2662 if (event == NETDEV_REGISTER && (dev->flags & IFF_LOOPBACK)) { 2663 net->ipv6.ip6_null_entry->dst.dev = dev; 2664 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 2665 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2666 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 2667 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 2668 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 2669 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 2670 #endif 2671 } 2672 2673 return NOTIFY_OK; 2674 } 2675 2676 /* 2677 * /proc 2678 */ 2679 2680 #ifdef CONFIG_PROC_FS 2681 2682 struct rt6_proc_arg 2683 { 2684 char *buffer; 2685 int offset; 2686 int length; 2687 int skip; 2688 int len; 2689 }; 2690 2691 static int rt6_info_route(struct rt6_info *rt, void *p_arg) 2692 { 2693 struct seq_file *m = p_arg; 2694 struct neighbour *n; 2695 2696 seq_printf(m, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen); 2697 2698 #ifdef CONFIG_IPV6_SUBTREES 2699 seq_printf(m, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen); 2700 #else 2701 seq_puts(m, "00000000000000000000000000000000 00 "); 2702 #endif 2703 rcu_read_lock(); 2704 n = dst_get_neighbour_noref(&rt->dst); 2705 if (n) { 2706 seq_printf(m, "%pi6", n->primary_key); 2707 } else { 2708 seq_puts(m, "00000000000000000000000000000000"); 2709 } 2710 rcu_read_unlock(); 2711 seq_printf(m, " %08x %08x %08x %08x %8s\n", 2712 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt), 2713 rt->dst.__use, rt->rt6i_flags, 2714 rt->dst.dev ? rt->dst.dev->name : ""); 2715 return 0; 2716 } 2717 2718 static int ipv6_route_show(struct seq_file *m, void *v) 2719 { 2720 struct net *net = (struct net *)m->private; 2721 fib6_clean_all_ro(net, rt6_info_route, 0, m); 2722 return 0; 2723 } 2724 2725 static int ipv6_route_open(struct inode *inode, struct file *file) 2726 { 2727 return single_open_net(inode, file, ipv6_route_show); 2728 } 2729 2730 static const struct file_operations ipv6_route_proc_fops = { 2731 .owner = THIS_MODULE, 2732 .open = ipv6_route_open, 2733 .read = seq_read, 2734 .llseek = seq_lseek, 2735 .release = single_release_net, 2736 }; 2737 2738 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 2739 { 2740 struct net *net = (struct net *)seq->private; 2741 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 2742 net->ipv6.rt6_stats->fib_nodes, 2743 net->ipv6.rt6_stats->fib_route_nodes, 2744 net->ipv6.rt6_stats->fib_rt_alloc, 2745 net->ipv6.rt6_stats->fib_rt_entries, 2746 net->ipv6.rt6_stats->fib_rt_cache, 2747 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 2748 net->ipv6.rt6_stats->fib_discarded_routes); 2749 2750 return 0; 2751 } 2752 2753 static int rt6_stats_seq_open(struct inode *inode, struct file *file) 2754 { 2755 return single_open_net(inode, file, rt6_stats_seq_show); 2756 } 2757 2758 static const struct file_operations rt6_stats_seq_fops = { 2759 .owner = THIS_MODULE, 2760 .open = rt6_stats_seq_open, 2761 .read = seq_read, 2762 .llseek = seq_lseek, 2763 .release = single_release_net, 2764 }; 2765 #endif /* CONFIG_PROC_FS */ 2766 2767 #ifdef CONFIG_SYSCTL 2768 2769 static 2770 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, 2771 void __user *buffer, size_t *lenp, loff_t *ppos) 2772 { 2773 struct net *net; 2774 int delay; 2775 if (!write) 2776 return -EINVAL; 2777 2778 net = (struct net *)ctl->extra1; 2779 delay = net->ipv6.sysctl.flush_delay; 2780 proc_dointvec(ctl, write, buffer, lenp, ppos); 2781 fib6_run_gc(delay <= 0 ? ~0UL : (unsigned long)delay, net); 2782 return 0; 2783 } 2784 2785 ctl_table ipv6_route_table_template[] = { 2786 { 2787 .procname = "flush", 2788 .data = &init_net.ipv6.sysctl.flush_delay, 2789 .maxlen = sizeof(int), 2790 .mode = 0200, 2791 .proc_handler = ipv6_sysctl_rtcache_flush 2792 }, 2793 { 2794 .procname = "gc_thresh", 2795 .data = &ip6_dst_ops_template.gc_thresh, 2796 .maxlen = sizeof(int), 2797 .mode = 0644, 2798 .proc_handler = proc_dointvec, 2799 }, 2800 { 2801 .procname = "max_size", 2802 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 2803 .maxlen = sizeof(int), 2804 .mode = 0644, 2805 .proc_handler = proc_dointvec, 2806 }, 2807 { 2808 .procname = "gc_min_interval", 2809 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 2810 .maxlen = sizeof(int), 2811 .mode = 0644, 2812 .proc_handler = proc_dointvec_jiffies, 2813 }, 2814 { 2815 .procname = "gc_timeout", 2816 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 2817 .maxlen = sizeof(int), 2818 .mode = 0644, 2819 .proc_handler = proc_dointvec_jiffies, 2820 }, 2821 { 2822 .procname = "gc_interval", 2823 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 2824 .maxlen = sizeof(int), 2825 .mode = 0644, 2826 .proc_handler = proc_dointvec_jiffies, 2827 }, 2828 { 2829 .procname = "gc_elasticity", 2830 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 2831 .maxlen = sizeof(int), 2832 .mode = 0644, 2833 .proc_handler = proc_dointvec, 2834 }, 2835 { 2836 .procname = "mtu_expires", 2837 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 2838 .maxlen = sizeof(int), 2839 .mode = 0644, 2840 .proc_handler = proc_dointvec_jiffies, 2841 }, 2842 { 2843 .procname = "min_adv_mss", 2844 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 2845 .maxlen = sizeof(int), 2846 .mode = 0644, 2847 .proc_handler = proc_dointvec, 2848 }, 2849 { 2850 .procname = "gc_min_interval_ms", 2851 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 2852 .maxlen = sizeof(int), 2853 .mode = 0644, 2854 .proc_handler = proc_dointvec_ms_jiffies, 2855 }, 2856 { } 2857 }; 2858 2859 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 2860 { 2861 struct ctl_table *table; 2862 2863 table = kmemdup(ipv6_route_table_template, 2864 sizeof(ipv6_route_table_template), 2865 GFP_KERNEL); 2866 2867 if (table) { 2868 table[0].data = &net->ipv6.sysctl.flush_delay; 2869 table[0].extra1 = net; 2870 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 2871 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size; 2872 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 2873 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 2874 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 2875 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 2876 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 2877 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 2878 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 2879 } 2880 2881 return table; 2882 } 2883 #endif 2884 2885 static int __net_init ip6_route_net_init(struct net *net) 2886 { 2887 int ret = -ENOMEM; 2888 2889 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 2890 sizeof(net->ipv6.ip6_dst_ops)); 2891 2892 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 2893 goto out_ip6_dst_ops; 2894 2895 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 2896 sizeof(*net->ipv6.ip6_null_entry), 2897 GFP_KERNEL); 2898 if (!net->ipv6.ip6_null_entry) 2899 goto out_ip6_dst_entries; 2900 net->ipv6.ip6_null_entry->dst.path = 2901 (struct dst_entry *)net->ipv6.ip6_null_entry; 2902 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 2903 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 2904 ip6_template_metrics, true); 2905 2906 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2907 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 2908 sizeof(*net->ipv6.ip6_prohibit_entry), 2909 GFP_KERNEL); 2910 if (!net->ipv6.ip6_prohibit_entry) 2911 goto out_ip6_null_entry; 2912 net->ipv6.ip6_prohibit_entry->dst.path = 2913 (struct dst_entry *)net->ipv6.ip6_prohibit_entry; 2914 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 2915 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 2916 ip6_template_metrics, true); 2917 2918 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 2919 sizeof(*net->ipv6.ip6_blk_hole_entry), 2920 GFP_KERNEL); 2921 if (!net->ipv6.ip6_blk_hole_entry) 2922 goto out_ip6_prohibit_entry; 2923 net->ipv6.ip6_blk_hole_entry->dst.path = 2924 (struct dst_entry *)net->ipv6.ip6_blk_hole_entry; 2925 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 2926 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 2927 ip6_template_metrics, true); 2928 #endif 2929 2930 net->ipv6.sysctl.flush_delay = 0; 2931 net->ipv6.sysctl.ip6_rt_max_size = 4096; 2932 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 2933 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 2934 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 2935 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 2936 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 2937 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 2938 2939 #ifdef CONFIG_PROC_FS 2940 proc_net_fops_create(net, "ipv6_route", 0, &ipv6_route_proc_fops); 2941 proc_net_fops_create(net, "rt6_stats", S_IRUGO, &rt6_stats_seq_fops); 2942 #endif 2943 net->ipv6.ip6_rt_gc_expire = 30*HZ; 2944 2945 ret = 0; 2946 out: 2947 return ret; 2948 2949 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2950 out_ip6_prohibit_entry: 2951 kfree(net->ipv6.ip6_prohibit_entry); 2952 out_ip6_null_entry: 2953 kfree(net->ipv6.ip6_null_entry); 2954 #endif 2955 out_ip6_dst_entries: 2956 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 2957 out_ip6_dst_ops: 2958 goto out; 2959 } 2960 2961 static void __net_exit ip6_route_net_exit(struct net *net) 2962 { 2963 #ifdef CONFIG_PROC_FS 2964 proc_net_remove(net, "ipv6_route"); 2965 proc_net_remove(net, "rt6_stats"); 2966 #endif 2967 kfree(net->ipv6.ip6_null_entry); 2968 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2969 kfree(net->ipv6.ip6_prohibit_entry); 2970 kfree(net->ipv6.ip6_blk_hole_entry); 2971 #endif 2972 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 2973 } 2974 2975 static struct pernet_operations ip6_route_net_ops = { 2976 .init = ip6_route_net_init, 2977 .exit = ip6_route_net_exit, 2978 }; 2979 2980 static struct notifier_block ip6_route_dev_notifier = { 2981 .notifier_call = ip6_route_dev_notify, 2982 .priority = 0, 2983 }; 2984 2985 int __init ip6_route_init(void) 2986 { 2987 int ret; 2988 2989 ret = -ENOMEM; 2990 ip6_dst_ops_template.kmem_cachep = 2991 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 2992 SLAB_HWCACHE_ALIGN, NULL); 2993 if (!ip6_dst_ops_template.kmem_cachep) 2994 goto out; 2995 2996 ret = dst_entries_init(&ip6_dst_blackhole_ops); 2997 if (ret) 2998 goto out_kmem_cache; 2999 3000 ret = register_pernet_subsys(&ip6_route_net_ops); 3001 if (ret) 3002 goto out_dst_entries; 3003 3004 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 3005 3006 /* Registering of the loopback is done before this portion of code, 3007 * the loopback reference in rt6_info will not be taken, do it 3008 * manually for init_net */ 3009 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 3010 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 3011 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 3012 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 3013 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 3014 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 3015 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 3016 #endif 3017 ret = fib6_init(); 3018 if (ret) 3019 goto out_register_subsys; 3020 3021 ret = xfrm6_init(); 3022 if (ret) 3023 goto out_fib6_init; 3024 3025 ret = fib6_rules_init(); 3026 if (ret) 3027 goto xfrm6_init; 3028 3029 ret = -ENOBUFS; 3030 if (__rtnl_register(PF_INET6, RTM_NEWROUTE, inet6_rtm_newroute, NULL, NULL) || 3031 __rtnl_register(PF_INET6, RTM_DELROUTE, inet6_rtm_delroute, NULL, NULL) || 3032 __rtnl_register(PF_INET6, RTM_GETROUTE, inet6_rtm_getroute, NULL, NULL)) 3033 goto fib6_rules_init; 3034 3035 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 3036 if (ret) 3037 goto fib6_rules_init; 3038 3039 out: 3040 return ret; 3041 3042 fib6_rules_init: 3043 fib6_rules_cleanup(); 3044 xfrm6_init: 3045 xfrm6_fini(); 3046 out_fib6_init: 3047 fib6_gc_cleanup(); 3048 out_register_subsys: 3049 unregister_pernet_subsys(&ip6_route_net_ops); 3050 out_dst_entries: 3051 dst_entries_destroy(&ip6_dst_blackhole_ops); 3052 out_kmem_cache: 3053 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 3054 goto out; 3055 } 3056 3057 void ip6_route_cleanup(void) 3058 { 3059 unregister_netdevice_notifier(&ip6_route_dev_notifier); 3060 fib6_rules_cleanup(); 3061 xfrm6_fini(); 3062 fib6_gc_cleanup(); 3063 unregister_pernet_subsys(&ip6_route_net_ops); 3064 dst_entries_destroy(&ip6_dst_blackhole_ops); 3065 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 3066 } 3067