xref: /linux/net/ipv6/route.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  *	Linux INET6 implementation
3  *	FIB front-end.
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*	Changes:
15  *
16  *	YOSHIFUJI Hideaki @USAGI
17  *		reworked default router selection.
18  *		- respect outgoing interface
19  *		- select from (probably) reachable routers (i.e.
20  *		routers in REACHABLE, STALE, DELAY or PROBE states).
21  *		- always select the same router if it is (probably)
22  *		reachable.  otherwise, round-robin the list.
23  *	Ville Nuorvala
24  *		Fixed routing subtrees.
25  */
26 
27 #define pr_fmt(fmt) "IPv6: " fmt
28 
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/types.h>
33 #include <linux/times.h>
34 #include <linux/socket.h>
35 #include <linux/sockios.h>
36 #include <linux/net.h>
37 #include <linux/route.h>
38 #include <linux/netdevice.h>
39 #include <linux/in6.h>
40 #include <linux/mroute6.h>
41 #include <linux/init.h>
42 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/nsproxy.h>
46 #include <linux/slab.h>
47 #include <linux/jhash.h>
48 #include <net/net_namespace.h>
49 #include <net/snmp.h>
50 #include <net/ipv6.h>
51 #include <net/ip6_fib.h>
52 #include <net/ip6_route.h>
53 #include <net/ndisc.h>
54 #include <net/addrconf.h>
55 #include <net/tcp.h>
56 #include <linux/rtnetlink.h>
57 #include <net/dst.h>
58 #include <net/dst_metadata.h>
59 #include <net/xfrm.h>
60 #include <net/netevent.h>
61 #include <net/netlink.h>
62 #include <net/nexthop.h>
63 #include <net/lwtunnel.h>
64 #include <net/ip_tunnels.h>
65 #include <net/l3mdev.h>
66 #include <net/ip.h>
67 #include <linux/uaccess.h>
68 
69 #ifdef CONFIG_SYSCTL
70 #include <linux/sysctl.h>
71 #endif
72 
73 static int ip6_rt_type_to_error(u8 fib6_type);
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/fib6.h>
77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
78 #undef CREATE_TRACE_POINTS
79 
80 enum rt6_nud_state {
81 	RT6_NUD_FAIL_HARD = -3,
82 	RT6_NUD_FAIL_PROBE = -2,
83 	RT6_NUD_FAIL_DO_RR = -1,
84 	RT6_NUD_SUCCEED = 1
85 };
86 
87 static struct dst_entry	*ip6_dst_check(struct dst_entry *dst, u32 cookie);
88 static unsigned int	 ip6_default_advmss(const struct dst_entry *dst);
89 static unsigned int	 ip6_mtu(const struct dst_entry *dst);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void		ip6_dst_destroy(struct dst_entry *);
92 static void		ip6_dst_ifdown(struct dst_entry *,
93 				       struct net_device *dev, int how);
94 static int		 ip6_dst_gc(struct dst_ops *ops);
95 
96 static int		ip6_pkt_discard(struct sk_buff *skb);
97 static int		ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
98 static int		ip6_pkt_prohibit(struct sk_buff *skb);
99 static int		ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
100 static void		ip6_link_failure(struct sk_buff *skb);
101 static void		ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
102 					   struct sk_buff *skb, u32 mtu);
103 static void		rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
104 					struct sk_buff *skb);
105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict);
106 static size_t rt6_nlmsg_size(struct fib6_info *rt);
107 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
108 			 struct fib6_info *rt, struct dst_entry *dst,
109 			 struct in6_addr *dest, struct in6_addr *src,
110 			 int iif, int type, u32 portid, u32 seq,
111 			 unsigned int flags);
112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
113 					   struct in6_addr *daddr,
114 					   struct in6_addr *saddr);
115 
116 #ifdef CONFIG_IPV6_ROUTE_INFO
117 static struct fib6_info *rt6_add_route_info(struct net *net,
118 					   const struct in6_addr *prefix, int prefixlen,
119 					   const struct in6_addr *gwaddr,
120 					   struct net_device *dev,
121 					   unsigned int pref);
122 static struct fib6_info *rt6_get_route_info(struct net *net,
123 					   const struct in6_addr *prefix, int prefixlen,
124 					   const struct in6_addr *gwaddr,
125 					   struct net_device *dev);
126 #endif
127 
128 struct uncached_list {
129 	spinlock_t		lock;
130 	struct list_head	head;
131 };
132 
133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
134 
135 void rt6_uncached_list_add(struct rt6_info *rt)
136 {
137 	struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
138 
139 	rt->rt6i_uncached_list = ul;
140 
141 	spin_lock_bh(&ul->lock);
142 	list_add_tail(&rt->rt6i_uncached, &ul->head);
143 	spin_unlock_bh(&ul->lock);
144 }
145 
146 void rt6_uncached_list_del(struct rt6_info *rt)
147 {
148 	if (!list_empty(&rt->rt6i_uncached)) {
149 		struct uncached_list *ul = rt->rt6i_uncached_list;
150 		struct net *net = dev_net(rt->dst.dev);
151 
152 		spin_lock_bh(&ul->lock);
153 		list_del(&rt->rt6i_uncached);
154 		atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache);
155 		spin_unlock_bh(&ul->lock);
156 	}
157 }
158 
159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev)
160 {
161 	struct net_device *loopback_dev = net->loopback_dev;
162 	int cpu;
163 
164 	if (dev == loopback_dev)
165 		return;
166 
167 	for_each_possible_cpu(cpu) {
168 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
169 		struct rt6_info *rt;
170 
171 		spin_lock_bh(&ul->lock);
172 		list_for_each_entry(rt, &ul->head, rt6i_uncached) {
173 			struct inet6_dev *rt_idev = rt->rt6i_idev;
174 			struct net_device *rt_dev = rt->dst.dev;
175 
176 			if (rt_idev->dev == dev) {
177 				rt->rt6i_idev = in6_dev_get(loopback_dev);
178 				in6_dev_put(rt_idev);
179 			}
180 
181 			if (rt_dev == dev) {
182 				rt->dst.dev = loopback_dev;
183 				dev_hold(rt->dst.dev);
184 				dev_put(rt_dev);
185 			}
186 		}
187 		spin_unlock_bh(&ul->lock);
188 	}
189 }
190 
191 static inline const void *choose_neigh_daddr(const struct in6_addr *p,
192 					     struct sk_buff *skb,
193 					     const void *daddr)
194 {
195 	if (!ipv6_addr_any(p))
196 		return (const void *) p;
197 	else if (skb)
198 		return &ipv6_hdr(skb)->daddr;
199 	return daddr;
200 }
201 
202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
203 				   struct net_device *dev,
204 				   struct sk_buff *skb,
205 				   const void *daddr)
206 {
207 	struct neighbour *n;
208 
209 	daddr = choose_neigh_daddr(gw, skb, daddr);
210 	n = __ipv6_neigh_lookup(dev, daddr);
211 	if (n)
212 		return n;
213 	return neigh_create(&nd_tbl, daddr, dev);
214 }
215 
216 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
217 					      struct sk_buff *skb,
218 					      const void *daddr)
219 {
220 	const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
221 
222 	return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr);
223 }
224 
225 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
226 {
227 	struct net_device *dev = dst->dev;
228 	struct rt6_info *rt = (struct rt6_info *)dst;
229 
230 	daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr);
231 	if (!daddr)
232 		return;
233 	if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
234 		return;
235 	if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
236 		return;
237 	__ipv6_confirm_neigh(dev, daddr);
238 }
239 
240 static struct dst_ops ip6_dst_ops_template = {
241 	.family			=	AF_INET6,
242 	.gc			=	ip6_dst_gc,
243 	.gc_thresh		=	1024,
244 	.check			=	ip6_dst_check,
245 	.default_advmss		=	ip6_default_advmss,
246 	.mtu			=	ip6_mtu,
247 	.cow_metrics		=	dst_cow_metrics_generic,
248 	.destroy		=	ip6_dst_destroy,
249 	.ifdown			=	ip6_dst_ifdown,
250 	.negative_advice	=	ip6_negative_advice,
251 	.link_failure		=	ip6_link_failure,
252 	.update_pmtu		=	ip6_rt_update_pmtu,
253 	.redirect		=	rt6_do_redirect,
254 	.local_out		=	__ip6_local_out,
255 	.neigh_lookup		=	ip6_dst_neigh_lookup,
256 	.confirm_neigh		=	ip6_confirm_neigh,
257 };
258 
259 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst)
260 {
261 	unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
262 
263 	return mtu ? : dst->dev->mtu;
264 }
265 
266 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk,
267 					 struct sk_buff *skb, u32 mtu)
268 {
269 }
270 
271 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk,
272 				      struct sk_buff *skb)
273 {
274 }
275 
276 static struct dst_ops ip6_dst_blackhole_ops = {
277 	.family			=	AF_INET6,
278 	.destroy		=	ip6_dst_destroy,
279 	.check			=	ip6_dst_check,
280 	.mtu			=	ip6_blackhole_mtu,
281 	.default_advmss		=	ip6_default_advmss,
282 	.update_pmtu		=	ip6_rt_blackhole_update_pmtu,
283 	.redirect		=	ip6_rt_blackhole_redirect,
284 	.cow_metrics		=	dst_cow_metrics_generic,
285 	.neigh_lookup		=	ip6_dst_neigh_lookup,
286 };
287 
288 static const u32 ip6_template_metrics[RTAX_MAX] = {
289 	[RTAX_HOPLIMIT - 1] = 0,
290 };
291 
292 static const struct fib6_info fib6_null_entry_template = {
293 	.fib6_flags	= (RTF_REJECT | RTF_NONEXTHOP),
294 	.fib6_protocol  = RTPROT_KERNEL,
295 	.fib6_metric	= ~(u32)0,
296 	.fib6_ref	= ATOMIC_INIT(1),
297 	.fib6_type	= RTN_UNREACHABLE,
298 	.fib6_metrics	= (struct dst_metrics *)&dst_default_metrics,
299 };
300 
301 static const struct rt6_info ip6_null_entry_template = {
302 	.dst = {
303 		.__refcnt	= ATOMIC_INIT(1),
304 		.__use		= 1,
305 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
306 		.error		= -ENETUNREACH,
307 		.input		= ip6_pkt_discard,
308 		.output		= ip6_pkt_discard_out,
309 	},
310 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
311 };
312 
313 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
314 
315 static const struct rt6_info ip6_prohibit_entry_template = {
316 	.dst = {
317 		.__refcnt	= ATOMIC_INIT(1),
318 		.__use		= 1,
319 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
320 		.error		= -EACCES,
321 		.input		= ip6_pkt_prohibit,
322 		.output		= ip6_pkt_prohibit_out,
323 	},
324 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
325 };
326 
327 static const struct rt6_info ip6_blk_hole_entry_template = {
328 	.dst = {
329 		.__refcnt	= ATOMIC_INIT(1),
330 		.__use		= 1,
331 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
332 		.error		= -EINVAL,
333 		.input		= dst_discard,
334 		.output		= dst_discard_out,
335 	},
336 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
337 };
338 
339 #endif
340 
341 static void rt6_info_init(struct rt6_info *rt)
342 {
343 	struct dst_entry *dst = &rt->dst;
344 
345 	memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst));
346 	INIT_LIST_HEAD(&rt->rt6i_uncached);
347 }
348 
349 /* allocate dst with ip6_dst_ops */
350 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
351 			       int flags)
352 {
353 	struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
354 					1, DST_OBSOLETE_FORCE_CHK, flags);
355 
356 	if (rt) {
357 		rt6_info_init(rt);
358 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
359 	}
360 
361 	return rt;
362 }
363 EXPORT_SYMBOL(ip6_dst_alloc);
364 
365 static void ip6_dst_destroy(struct dst_entry *dst)
366 {
367 	struct rt6_info *rt = (struct rt6_info *)dst;
368 	struct fib6_info *from;
369 	struct inet6_dev *idev;
370 
371 	dst_destroy_metrics_generic(dst);
372 	rt6_uncached_list_del(rt);
373 
374 	idev = rt->rt6i_idev;
375 	if (idev) {
376 		rt->rt6i_idev = NULL;
377 		in6_dev_put(idev);
378 	}
379 
380 	rcu_read_lock();
381 	from = rcu_dereference(rt->from);
382 	rcu_assign_pointer(rt->from, NULL);
383 	fib6_info_release(from);
384 	rcu_read_unlock();
385 }
386 
387 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
388 			   int how)
389 {
390 	struct rt6_info *rt = (struct rt6_info *)dst;
391 	struct inet6_dev *idev = rt->rt6i_idev;
392 	struct net_device *loopback_dev =
393 		dev_net(dev)->loopback_dev;
394 
395 	if (idev && idev->dev != loopback_dev) {
396 		struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev);
397 		if (loopback_idev) {
398 			rt->rt6i_idev = loopback_idev;
399 			in6_dev_put(idev);
400 		}
401 	}
402 }
403 
404 static bool __rt6_check_expired(const struct rt6_info *rt)
405 {
406 	if (rt->rt6i_flags & RTF_EXPIRES)
407 		return time_after(jiffies, rt->dst.expires);
408 	else
409 		return false;
410 }
411 
412 static bool rt6_check_expired(const struct rt6_info *rt)
413 {
414 	struct fib6_info *from;
415 
416 	from = rcu_dereference(rt->from);
417 
418 	if (rt->rt6i_flags & RTF_EXPIRES) {
419 		if (time_after(jiffies, rt->dst.expires))
420 			return true;
421 	} else if (from) {
422 		return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
423 			fib6_check_expired(from);
424 	}
425 	return false;
426 }
427 
428 struct fib6_info *fib6_multipath_select(const struct net *net,
429 					struct fib6_info *match,
430 					struct flowi6 *fl6, int oif,
431 					const struct sk_buff *skb,
432 					int strict)
433 {
434 	struct fib6_info *sibling, *next_sibling;
435 
436 	/* We might have already computed the hash for ICMPv6 errors. In such
437 	 * case it will always be non-zero. Otherwise now is the time to do it.
438 	 */
439 	if (!fl6->mp_hash)
440 		fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
441 
442 	if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound))
443 		return match;
444 
445 	list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
446 				 fib6_siblings) {
447 		int nh_upper_bound;
448 
449 		nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound);
450 		if (fl6->mp_hash > nh_upper_bound)
451 			continue;
452 		if (rt6_score_route(sibling, oif, strict) < 0)
453 			break;
454 		match = sibling;
455 		break;
456 	}
457 
458 	return match;
459 }
460 
461 /*
462  *	Route lookup. rcu_read_lock() should be held.
463  */
464 
465 static inline struct fib6_info *rt6_device_match(struct net *net,
466 						 struct fib6_info *rt,
467 						    const struct in6_addr *saddr,
468 						    int oif,
469 						    int flags)
470 {
471 	struct fib6_info *sprt;
472 
473 	if (!oif && ipv6_addr_any(saddr) &&
474 	    !(rt->fib6_nh.nh_flags & RTNH_F_DEAD))
475 		return rt;
476 
477 	for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) {
478 		const struct net_device *dev = sprt->fib6_nh.nh_dev;
479 
480 		if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD)
481 			continue;
482 
483 		if (oif) {
484 			if (dev->ifindex == oif)
485 				return sprt;
486 		} else {
487 			if (ipv6_chk_addr(net, saddr, dev,
488 					  flags & RT6_LOOKUP_F_IFACE))
489 				return sprt;
490 		}
491 	}
492 
493 	if (oif && flags & RT6_LOOKUP_F_IFACE)
494 		return net->ipv6.fib6_null_entry;
495 
496 	return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt;
497 }
498 
499 #ifdef CONFIG_IPV6_ROUTER_PREF
500 struct __rt6_probe_work {
501 	struct work_struct work;
502 	struct in6_addr target;
503 	struct net_device *dev;
504 };
505 
506 static void rt6_probe_deferred(struct work_struct *w)
507 {
508 	struct in6_addr mcaddr;
509 	struct __rt6_probe_work *work =
510 		container_of(w, struct __rt6_probe_work, work);
511 
512 	addrconf_addr_solict_mult(&work->target, &mcaddr);
513 	ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
514 	dev_put(work->dev);
515 	kfree(work);
516 }
517 
518 static void rt6_probe(struct fib6_info *rt)
519 {
520 	struct __rt6_probe_work *work;
521 	const struct in6_addr *nh_gw;
522 	struct neighbour *neigh;
523 	struct net_device *dev;
524 
525 	/*
526 	 * Okay, this does not seem to be appropriate
527 	 * for now, however, we need to check if it
528 	 * is really so; aka Router Reachability Probing.
529 	 *
530 	 * Router Reachability Probe MUST be rate-limited
531 	 * to no more than one per minute.
532 	 */
533 	if (!rt || !(rt->fib6_flags & RTF_GATEWAY))
534 		return;
535 
536 	nh_gw = &rt->fib6_nh.nh_gw;
537 	dev = rt->fib6_nh.nh_dev;
538 	rcu_read_lock_bh();
539 	neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
540 	if (neigh) {
541 		struct inet6_dev *idev;
542 
543 		if (neigh->nud_state & NUD_VALID)
544 			goto out;
545 
546 		idev = __in6_dev_get(dev);
547 		work = NULL;
548 		write_lock(&neigh->lock);
549 		if (!(neigh->nud_state & NUD_VALID) &&
550 		    time_after(jiffies,
551 			       neigh->updated + idev->cnf.rtr_probe_interval)) {
552 			work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 			if (work)
554 				__neigh_set_probe_once(neigh);
555 		}
556 		write_unlock(&neigh->lock);
557 	} else {
558 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
559 	}
560 
561 	if (work) {
562 		INIT_WORK(&work->work, rt6_probe_deferred);
563 		work->target = *nh_gw;
564 		dev_hold(dev);
565 		work->dev = dev;
566 		schedule_work(&work->work);
567 	}
568 
569 out:
570 	rcu_read_unlock_bh();
571 }
572 #else
573 static inline void rt6_probe(struct fib6_info *rt)
574 {
575 }
576 #endif
577 
578 /*
579  * Default Router Selection (RFC 2461 6.3.6)
580  */
581 static inline int rt6_check_dev(struct fib6_info *rt, int oif)
582 {
583 	const struct net_device *dev = rt->fib6_nh.nh_dev;
584 
585 	if (!oif || dev->ifindex == oif)
586 		return 2;
587 	return 0;
588 }
589 
590 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt)
591 {
592 	enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
593 	struct neighbour *neigh;
594 
595 	if (rt->fib6_flags & RTF_NONEXTHOP ||
596 	    !(rt->fib6_flags & RTF_GATEWAY))
597 		return RT6_NUD_SUCCEED;
598 
599 	rcu_read_lock_bh();
600 	neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev,
601 					  &rt->fib6_nh.nh_gw);
602 	if (neigh) {
603 		read_lock(&neigh->lock);
604 		if (neigh->nud_state & NUD_VALID)
605 			ret = RT6_NUD_SUCCEED;
606 #ifdef CONFIG_IPV6_ROUTER_PREF
607 		else if (!(neigh->nud_state & NUD_FAILED))
608 			ret = RT6_NUD_SUCCEED;
609 		else
610 			ret = RT6_NUD_FAIL_PROBE;
611 #endif
612 		read_unlock(&neigh->lock);
613 	} else {
614 		ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
615 		      RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
616 	}
617 	rcu_read_unlock_bh();
618 
619 	return ret;
620 }
621 
622 static int rt6_score_route(struct fib6_info *rt, int oif, int strict)
623 {
624 	int m;
625 
626 	m = rt6_check_dev(rt, oif);
627 	if (!m && (strict & RT6_LOOKUP_F_IFACE))
628 		return RT6_NUD_FAIL_HARD;
629 #ifdef CONFIG_IPV6_ROUTER_PREF
630 	m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2;
631 #endif
632 	if (strict & RT6_LOOKUP_F_REACHABLE) {
633 		int n = rt6_check_neigh(rt);
634 		if (n < 0)
635 			return n;
636 	}
637 	return m;
638 }
639 
640 /* called with rc_read_lock held */
641 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i)
642 {
643 	const struct net_device *dev = fib6_info_nh_dev(f6i);
644 	bool rc = false;
645 
646 	if (dev) {
647 		const struct inet6_dev *idev = __in6_dev_get(dev);
648 
649 		rc = !!idev->cnf.ignore_routes_with_linkdown;
650 	}
651 
652 	return rc;
653 }
654 
655 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict,
656 				   int *mpri, struct fib6_info *match,
657 				   bool *do_rr)
658 {
659 	int m;
660 	bool match_do_rr = false;
661 
662 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
663 		goto out;
664 
665 	if (fib6_ignore_linkdown(rt) &&
666 	    rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
667 	    !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
668 		goto out;
669 
670 	if (fib6_check_expired(rt))
671 		goto out;
672 
673 	m = rt6_score_route(rt, oif, strict);
674 	if (m == RT6_NUD_FAIL_DO_RR) {
675 		match_do_rr = true;
676 		m = 0; /* lowest valid score */
677 	} else if (m == RT6_NUD_FAIL_HARD) {
678 		goto out;
679 	}
680 
681 	if (strict & RT6_LOOKUP_F_REACHABLE)
682 		rt6_probe(rt);
683 
684 	/* note that m can be RT6_NUD_FAIL_PROBE at this point */
685 	if (m > *mpri) {
686 		*do_rr = match_do_rr;
687 		*mpri = m;
688 		match = rt;
689 	}
690 out:
691 	return match;
692 }
693 
694 static struct fib6_info *find_rr_leaf(struct fib6_node *fn,
695 				     struct fib6_info *leaf,
696 				     struct fib6_info *rr_head,
697 				     u32 metric, int oif, int strict,
698 				     bool *do_rr)
699 {
700 	struct fib6_info *rt, *match, *cont;
701 	int mpri = -1;
702 
703 	match = NULL;
704 	cont = NULL;
705 	for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) {
706 		if (rt->fib6_metric != metric) {
707 			cont = rt;
708 			break;
709 		}
710 
711 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
712 	}
713 
714 	for (rt = leaf; rt && rt != rr_head;
715 	     rt = rcu_dereference(rt->fib6_next)) {
716 		if (rt->fib6_metric != metric) {
717 			cont = rt;
718 			break;
719 		}
720 
721 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
722 	}
723 
724 	if (match || !cont)
725 		return match;
726 
727 	for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next))
728 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
729 
730 	return match;
731 }
732 
733 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn,
734 				   int oif, int strict)
735 {
736 	struct fib6_info *leaf = rcu_dereference(fn->leaf);
737 	struct fib6_info *match, *rt0;
738 	bool do_rr = false;
739 	int key_plen;
740 
741 	if (!leaf || leaf == net->ipv6.fib6_null_entry)
742 		return net->ipv6.fib6_null_entry;
743 
744 	rt0 = rcu_dereference(fn->rr_ptr);
745 	if (!rt0)
746 		rt0 = leaf;
747 
748 	/* Double check to make sure fn is not an intermediate node
749 	 * and fn->leaf does not points to its child's leaf
750 	 * (This might happen if all routes under fn are deleted from
751 	 * the tree and fib6_repair_tree() is called on the node.)
752 	 */
753 	key_plen = rt0->fib6_dst.plen;
754 #ifdef CONFIG_IPV6_SUBTREES
755 	if (rt0->fib6_src.plen)
756 		key_plen = rt0->fib6_src.plen;
757 #endif
758 	if (fn->fn_bit != key_plen)
759 		return net->ipv6.fib6_null_entry;
760 
761 	match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict,
762 			     &do_rr);
763 
764 	if (do_rr) {
765 		struct fib6_info *next = rcu_dereference(rt0->fib6_next);
766 
767 		/* no entries matched; do round-robin */
768 		if (!next || next->fib6_metric != rt0->fib6_metric)
769 			next = leaf;
770 
771 		if (next != rt0) {
772 			spin_lock_bh(&leaf->fib6_table->tb6_lock);
773 			/* make sure next is not being deleted from the tree */
774 			if (next->fib6_node)
775 				rcu_assign_pointer(fn->rr_ptr, next);
776 			spin_unlock_bh(&leaf->fib6_table->tb6_lock);
777 		}
778 	}
779 
780 	return match ? match : net->ipv6.fib6_null_entry;
781 }
782 
783 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt)
784 {
785 	return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY));
786 }
787 
788 #ifdef CONFIG_IPV6_ROUTE_INFO
789 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
790 		  const struct in6_addr *gwaddr)
791 {
792 	struct net *net = dev_net(dev);
793 	struct route_info *rinfo = (struct route_info *) opt;
794 	struct in6_addr prefix_buf, *prefix;
795 	unsigned int pref;
796 	unsigned long lifetime;
797 	struct fib6_info *rt;
798 
799 	if (len < sizeof(struct route_info)) {
800 		return -EINVAL;
801 	}
802 
803 	/* Sanity check for prefix_len and length */
804 	if (rinfo->length > 3) {
805 		return -EINVAL;
806 	} else if (rinfo->prefix_len > 128) {
807 		return -EINVAL;
808 	} else if (rinfo->prefix_len > 64) {
809 		if (rinfo->length < 2) {
810 			return -EINVAL;
811 		}
812 	} else if (rinfo->prefix_len > 0) {
813 		if (rinfo->length < 1) {
814 			return -EINVAL;
815 		}
816 	}
817 
818 	pref = rinfo->route_pref;
819 	if (pref == ICMPV6_ROUTER_PREF_INVALID)
820 		return -EINVAL;
821 
822 	lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
823 
824 	if (rinfo->length == 3)
825 		prefix = (struct in6_addr *)rinfo->prefix;
826 	else {
827 		/* this function is safe */
828 		ipv6_addr_prefix(&prefix_buf,
829 				 (struct in6_addr *)rinfo->prefix,
830 				 rinfo->prefix_len);
831 		prefix = &prefix_buf;
832 	}
833 
834 	if (rinfo->prefix_len == 0)
835 		rt = rt6_get_dflt_router(net, gwaddr, dev);
836 	else
837 		rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
838 					gwaddr, dev);
839 
840 	if (rt && !lifetime) {
841 		ip6_del_rt(net, rt);
842 		rt = NULL;
843 	}
844 
845 	if (!rt && lifetime)
846 		rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
847 					dev, pref);
848 	else if (rt)
849 		rt->fib6_flags = RTF_ROUTEINFO |
850 				 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
851 
852 	if (rt) {
853 		if (!addrconf_finite_timeout(lifetime))
854 			fib6_clean_expires(rt);
855 		else
856 			fib6_set_expires(rt, jiffies + HZ * lifetime);
857 
858 		fib6_info_release(rt);
859 	}
860 	return 0;
861 }
862 #endif
863 
864 /*
865  *	Misc support functions
866  */
867 
868 /* called with rcu_lock held */
869 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt)
870 {
871 	struct net_device *dev = rt->fib6_nh.nh_dev;
872 
873 	if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
874 		/* for copies of local routes, dst->dev needs to be the
875 		 * device if it is a master device, the master device if
876 		 * device is enslaved, and the loopback as the default
877 		 */
878 		if (netif_is_l3_slave(dev) &&
879 		    !rt6_need_strict(&rt->fib6_dst.addr))
880 			dev = l3mdev_master_dev_rcu(dev);
881 		else if (!netif_is_l3_master(dev))
882 			dev = dev_net(dev)->loopback_dev;
883 		/* last case is netif_is_l3_master(dev) is true in which
884 		 * case we want dev returned to be dev
885 		 */
886 	}
887 
888 	return dev;
889 }
890 
891 static const int fib6_prop[RTN_MAX + 1] = {
892 	[RTN_UNSPEC]	= 0,
893 	[RTN_UNICAST]	= 0,
894 	[RTN_LOCAL]	= 0,
895 	[RTN_BROADCAST]	= 0,
896 	[RTN_ANYCAST]	= 0,
897 	[RTN_MULTICAST]	= 0,
898 	[RTN_BLACKHOLE]	= -EINVAL,
899 	[RTN_UNREACHABLE] = -EHOSTUNREACH,
900 	[RTN_PROHIBIT]	= -EACCES,
901 	[RTN_THROW]	= -EAGAIN,
902 	[RTN_NAT]	= -EINVAL,
903 	[RTN_XRESOLVE]	= -EINVAL,
904 };
905 
906 static int ip6_rt_type_to_error(u8 fib6_type)
907 {
908 	return fib6_prop[fib6_type];
909 }
910 
911 static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
912 {
913 	unsigned short flags = 0;
914 
915 	if (rt->dst_nocount)
916 		flags |= DST_NOCOUNT;
917 	if (rt->dst_nopolicy)
918 		flags |= DST_NOPOLICY;
919 	if (rt->dst_host)
920 		flags |= DST_HOST;
921 
922 	return flags;
923 }
924 
925 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort)
926 {
927 	rt->dst.error = ip6_rt_type_to_error(ort->fib6_type);
928 
929 	switch (ort->fib6_type) {
930 	case RTN_BLACKHOLE:
931 		rt->dst.output = dst_discard_out;
932 		rt->dst.input = dst_discard;
933 		break;
934 	case RTN_PROHIBIT:
935 		rt->dst.output = ip6_pkt_prohibit_out;
936 		rt->dst.input = ip6_pkt_prohibit;
937 		break;
938 	case RTN_THROW:
939 	case RTN_UNREACHABLE:
940 	default:
941 		rt->dst.output = ip6_pkt_discard_out;
942 		rt->dst.input = ip6_pkt_discard;
943 		break;
944 	}
945 }
946 
947 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort)
948 {
949 	rt->dst.flags |= fib6_info_dst_flags(ort);
950 
951 	if (ort->fib6_flags & RTF_REJECT) {
952 		ip6_rt_init_dst_reject(rt, ort);
953 		return;
954 	}
955 
956 	rt->dst.error = 0;
957 	rt->dst.output = ip6_output;
958 
959 	if (ort->fib6_type == RTN_LOCAL) {
960 		rt->dst.input = ip6_input;
961 	} else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
962 		rt->dst.input = ip6_mc_input;
963 	} else {
964 		rt->dst.input = ip6_forward;
965 	}
966 
967 	if (ort->fib6_nh.nh_lwtstate) {
968 		rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
969 		lwtunnel_set_redirect(&rt->dst);
970 	}
971 
972 	rt->dst.lastuse = jiffies;
973 }
974 
975 /* Caller must already hold reference to @from */
976 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
977 {
978 	rt->rt6i_flags &= ~RTF_EXPIRES;
979 	rcu_assign_pointer(rt->from, from);
980 	dst_init_metrics(&rt->dst, from->fib6_metrics->metrics, true);
981 }
982 
983 /* Caller must already hold reference to @ort */
984 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort)
985 {
986 	struct net_device *dev = fib6_info_nh_dev(ort);
987 
988 	ip6_rt_init_dst(rt, ort);
989 
990 	rt->rt6i_dst = ort->fib6_dst;
991 	rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
992 	rt->rt6i_gateway = ort->fib6_nh.nh_gw;
993 	rt->rt6i_flags = ort->fib6_flags;
994 	rt6_set_from(rt, ort);
995 #ifdef CONFIG_IPV6_SUBTREES
996 	rt->rt6i_src = ort->fib6_src;
997 #endif
998 	rt->rt6i_prefsrc = ort->fib6_prefsrc;
999 	rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
1000 }
1001 
1002 static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
1003 					struct in6_addr *saddr)
1004 {
1005 	struct fib6_node *pn, *sn;
1006 	while (1) {
1007 		if (fn->fn_flags & RTN_TL_ROOT)
1008 			return NULL;
1009 		pn = rcu_dereference(fn->parent);
1010 		sn = FIB6_SUBTREE(pn);
1011 		if (sn && sn != fn)
1012 			fn = fib6_node_lookup(sn, NULL, saddr);
1013 		else
1014 			fn = pn;
1015 		if (fn->fn_flags & RTN_RTINFO)
1016 			return fn;
1017 	}
1018 }
1019 
1020 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt,
1021 			  bool null_fallback)
1022 {
1023 	struct rt6_info *rt = *prt;
1024 
1025 	if (dst_hold_safe(&rt->dst))
1026 		return true;
1027 	if (null_fallback) {
1028 		rt = net->ipv6.ip6_null_entry;
1029 		dst_hold(&rt->dst);
1030 	} else {
1031 		rt = NULL;
1032 	}
1033 	*prt = rt;
1034 	return false;
1035 }
1036 
1037 /* called with rcu_lock held */
1038 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt)
1039 {
1040 	unsigned short flags = fib6_info_dst_flags(rt);
1041 	struct net_device *dev = rt->fib6_nh.nh_dev;
1042 	struct rt6_info *nrt;
1043 
1044 	if (!fib6_info_hold_safe(rt))
1045 		return NULL;
1046 
1047 	nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
1048 	if (nrt)
1049 		ip6_rt_copy_init(nrt, rt);
1050 	else
1051 		fib6_info_release(rt);
1052 
1053 	return nrt;
1054 }
1055 
1056 static struct rt6_info *ip6_pol_route_lookup(struct net *net,
1057 					     struct fib6_table *table,
1058 					     struct flowi6 *fl6,
1059 					     const struct sk_buff *skb,
1060 					     int flags)
1061 {
1062 	struct fib6_info *f6i;
1063 	struct fib6_node *fn;
1064 	struct rt6_info *rt;
1065 
1066 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1067 		flags &= ~RT6_LOOKUP_F_IFACE;
1068 
1069 	rcu_read_lock();
1070 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1071 restart:
1072 	f6i = rcu_dereference(fn->leaf);
1073 	if (!f6i) {
1074 		f6i = net->ipv6.fib6_null_entry;
1075 	} else {
1076 		f6i = rt6_device_match(net, f6i, &fl6->saddr,
1077 				      fl6->flowi6_oif, flags);
1078 		if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0)
1079 			f6i = fib6_multipath_select(net, f6i, fl6,
1080 						    fl6->flowi6_oif, skb,
1081 						    flags);
1082 	}
1083 	if (f6i == net->ipv6.fib6_null_entry) {
1084 		fn = fib6_backtrack(fn, &fl6->saddr);
1085 		if (fn)
1086 			goto restart;
1087 	}
1088 
1089 	trace_fib6_table_lookup(net, f6i, table, fl6);
1090 
1091 	/* Search through exception table */
1092 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1093 	if (rt) {
1094 		if (ip6_hold_safe(net, &rt, true))
1095 			dst_use_noref(&rt->dst, jiffies);
1096 	} else if (f6i == net->ipv6.fib6_null_entry) {
1097 		rt = net->ipv6.ip6_null_entry;
1098 		dst_hold(&rt->dst);
1099 	} else {
1100 		rt = ip6_create_rt_rcu(f6i);
1101 		if (!rt) {
1102 			rt = net->ipv6.ip6_null_entry;
1103 			dst_hold(&rt->dst);
1104 		}
1105 	}
1106 
1107 	rcu_read_unlock();
1108 
1109 	return rt;
1110 }
1111 
1112 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
1113 				   const struct sk_buff *skb, int flags)
1114 {
1115 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
1116 }
1117 EXPORT_SYMBOL_GPL(ip6_route_lookup);
1118 
1119 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
1120 			    const struct in6_addr *saddr, int oif,
1121 			    const struct sk_buff *skb, int strict)
1122 {
1123 	struct flowi6 fl6 = {
1124 		.flowi6_oif = oif,
1125 		.daddr = *daddr,
1126 	};
1127 	struct dst_entry *dst;
1128 	int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
1129 
1130 	if (saddr) {
1131 		memcpy(&fl6.saddr, saddr, sizeof(*saddr));
1132 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1133 	}
1134 
1135 	dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
1136 	if (dst->error == 0)
1137 		return (struct rt6_info *) dst;
1138 
1139 	dst_release(dst);
1140 
1141 	return NULL;
1142 }
1143 EXPORT_SYMBOL(rt6_lookup);
1144 
1145 /* ip6_ins_rt is called with FREE table->tb6_lock.
1146  * It takes new route entry, the addition fails by any reason the
1147  * route is released.
1148  * Caller must hold dst before calling it.
1149  */
1150 
1151 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
1152 			struct netlink_ext_ack *extack)
1153 {
1154 	int err;
1155 	struct fib6_table *table;
1156 
1157 	table = rt->fib6_table;
1158 	spin_lock_bh(&table->tb6_lock);
1159 	err = fib6_add(&table->tb6_root, rt, info, extack);
1160 	spin_unlock_bh(&table->tb6_lock);
1161 
1162 	return err;
1163 }
1164 
1165 int ip6_ins_rt(struct net *net, struct fib6_info *rt)
1166 {
1167 	struct nl_info info = {	.nl_net = net, };
1168 
1169 	return __ip6_ins_rt(rt, &info, NULL);
1170 }
1171 
1172 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort,
1173 					   const struct in6_addr *daddr,
1174 					   const struct in6_addr *saddr)
1175 {
1176 	struct net_device *dev;
1177 	struct rt6_info *rt;
1178 
1179 	/*
1180 	 *	Clone the route.
1181 	 */
1182 
1183 	if (!fib6_info_hold_safe(ort))
1184 		return NULL;
1185 
1186 	dev = ip6_rt_get_dev_rcu(ort);
1187 	rt = ip6_dst_alloc(dev_net(dev), dev, 0);
1188 	if (!rt) {
1189 		fib6_info_release(ort);
1190 		return NULL;
1191 	}
1192 
1193 	ip6_rt_copy_init(rt, ort);
1194 	rt->rt6i_flags |= RTF_CACHE;
1195 	rt->dst.flags |= DST_HOST;
1196 	rt->rt6i_dst.addr = *daddr;
1197 	rt->rt6i_dst.plen = 128;
1198 
1199 	if (!rt6_is_gw_or_nonexthop(ort)) {
1200 		if (ort->fib6_dst.plen != 128 &&
1201 		    ipv6_addr_equal(&ort->fib6_dst.addr, daddr))
1202 			rt->rt6i_flags |= RTF_ANYCAST;
1203 #ifdef CONFIG_IPV6_SUBTREES
1204 		if (rt->rt6i_src.plen && saddr) {
1205 			rt->rt6i_src.addr = *saddr;
1206 			rt->rt6i_src.plen = 128;
1207 		}
1208 #endif
1209 	}
1210 
1211 	return rt;
1212 }
1213 
1214 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt)
1215 {
1216 	unsigned short flags = fib6_info_dst_flags(rt);
1217 	struct net_device *dev;
1218 	struct rt6_info *pcpu_rt;
1219 
1220 	if (!fib6_info_hold_safe(rt))
1221 		return NULL;
1222 
1223 	rcu_read_lock();
1224 	dev = ip6_rt_get_dev_rcu(rt);
1225 	pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags);
1226 	rcu_read_unlock();
1227 	if (!pcpu_rt) {
1228 		fib6_info_release(rt);
1229 		return NULL;
1230 	}
1231 	ip6_rt_copy_init(pcpu_rt, rt);
1232 	pcpu_rt->rt6i_flags |= RTF_PCPU;
1233 	return pcpu_rt;
1234 }
1235 
1236 /* It should be called with rcu_read_lock() acquired */
1237 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt)
1238 {
1239 	struct rt6_info *pcpu_rt, **p;
1240 
1241 	p = this_cpu_ptr(rt->rt6i_pcpu);
1242 	pcpu_rt = *p;
1243 
1244 	if (pcpu_rt)
1245 		ip6_hold_safe(NULL, &pcpu_rt, false);
1246 
1247 	return pcpu_rt;
1248 }
1249 
1250 static struct rt6_info *rt6_make_pcpu_route(struct net *net,
1251 					    struct fib6_info *rt)
1252 {
1253 	struct rt6_info *pcpu_rt, *prev, **p;
1254 
1255 	pcpu_rt = ip6_rt_pcpu_alloc(rt);
1256 	if (!pcpu_rt) {
1257 		dst_hold(&net->ipv6.ip6_null_entry->dst);
1258 		return net->ipv6.ip6_null_entry;
1259 	}
1260 
1261 	dst_hold(&pcpu_rt->dst);
1262 	p = this_cpu_ptr(rt->rt6i_pcpu);
1263 	prev = cmpxchg(p, NULL, pcpu_rt);
1264 	BUG_ON(prev);
1265 
1266 	return pcpu_rt;
1267 }
1268 
1269 /* exception hash table implementation
1270  */
1271 static DEFINE_SPINLOCK(rt6_exception_lock);
1272 
1273 /* Remove rt6_ex from hash table and free the memory
1274  * Caller must hold rt6_exception_lock
1275  */
1276 static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
1277 				 struct rt6_exception *rt6_ex)
1278 {
1279 	struct net *net;
1280 
1281 	if (!bucket || !rt6_ex)
1282 		return;
1283 
1284 	net = dev_net(rt6_ex->rt6i->dst.dev);
1285 	hlist_del_rcu(&rt6_ex->hlist);
1286 	dst_release(&rt6_ex->rt6i->dst);
1287 	kfree_rcu(rt6_ex, rcu);
1288 	WARN_ON_ONCE(!bucket->depth);
1289 	bucket->depth--;
1290 	net->ipv6.rt6_stats->fib_rt_cache--;
1291 }
1292 
1293 /* Remove oldest rt6_ex in bucket and free the memory
1294  * Caller must hold rt6_exception_lock
1295  */
1296 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
1297 {
1298 	struct rt6_exception *rt6_ex, *oldest = NULL;
1299 
1300 	if (!bucket)
1301 		return;
1302 
1303 	hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1304 		if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
1305 			oldest = rt6_ex;
1306 	}
1307 	rt6_remove_exception(bucket, oldest);
1308 }
1309 
1310 static u32 rt6_exception_hash(const struct in6_addr *dst,
1311 			      const struct in6_addr *src)
1312 {
1313 	static u32 seed __read_mostly;
1314 	u32 val;
1315 
1316 	net_get_random_once(&seed, sizeof(seed));
1317 	val = jhash(dst, sizeof(*dst), seed);
1318 
1319 #ifdef CONFIG_IPV6_SUBTREES
1320 	if (src)
1321 		val = jhash(src, sizeof(*src), val);
1322 #endif
1323 	return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
1324 }
1325 
1326 /* Helper function to find the cached rt in the hash table
1327  * and update bucket pointer to point to the bucket for this
1328  * (daddr, saddr) pair
1329  * Caller must hold rt6_exception_lock
1330  */
1331 static struct rt6_exception *
1332 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
1333 			      const struct in6_addr *daddr,
1334 			      const struct in6_addr *saddr)
1335 {
1336 	struct rt6_exception *rt6_ex;
1337 	u32 hval;
1338 
1339 	if (!(*bucket) || !daddr)
1340 		return NULL;
1341 
1342 	hval = rt6_exception_hash(daddr, saddr);
1343 	*bucket += hval;
1344 
1345 	hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
1346 		struct rt6_info *rt6 = rt6_ex->rt6i;
1347 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1348 
1349 #ifdef CONFIG_IPV6_SUBTREES
1350 		if (matched && saddr)
1351 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1352 #endif
1353 		if (matched)
1354 			return rt6_ex;
1355 	}
1356 	return NULL;
1357 }
1358 
1359 /* Helper function to find the cached rt in the hash table
1360  * and update bucket pointer to point to the bucket for this
1361  * (daddr, saddr) pair
1362  * Caller must hold rcu_read_lock()
1363  */
1364 static struct rt6_exception *
1365 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
1366 			 const struct in6_addr *daddr,
1367 			 const struct in6_addr *saddr)
1368 {
1369 	struct rt6_exception *rt6_ex;
1370 	u32 hval;
1371 
1372 	WARN_ON_ONCE(!rcu_read_lock_held());
1373 
1374 	if (!(*bucket) || !daddr)
1375 		return NULL;
1376 
1377 	hval = rt6_exception_hash(daddr, saddr);
1378 	*bucket += hval;
1379 
1380 	hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
1381 		struct rt6_info *rt6 = rt6_ex->rt6i;
1382 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1383 
1384 #ifdef CONFIG_IPV6_SUBTREES
1385 		if (matched && saddr)
1386 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1387 #endif
1388 		if (matched)
1389 			return rt6_ex;
1390 	}
1391 	return NULL;
1392 }
1393 
1394 static unsigned int fib6_mtu(const struct fib6_info *rt)
1395 {
1396 	unsigned int mtu;
1397 
1398 	if (rt->fib6_pmtu) {
1399 		mtu = rt->fib6_pmtu;
1400 	} else {
1401 		struct net_device *dev = fib6_info_nh_dev(rt);
1402 		struct inet6_dev *idev;
1403 
1404 		rcu_read_lock();
1405 		idev = __in6_dev_get(dev);
1406 		mtu = idev->cnf.mtu6;
1407 		rcu_read_unlock();
1408 	}
1409 
1410 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
1411 
1412 	return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu);
1413 }
1414 
1415 static int rt6_insert_exception(struct rt6_info *nrt,
1416 				struct fib6_info *ort)
1417 {
1418 	struct net *net = dev_net(nrt->dst.dev);
1419 	struct rt6_exception_bucket *bucket;
1420 	struct in6_addr *src_key = NULL;
1421 	struct rt6_exception *rt6_ex;
1422 	int err = 0;
1423 
1424 	spin_lock_bh(&rt6_exception_lock);
1425 
1426 	if (ort->exception_bucket_flushed) {
1427 		err = -EINVAL;
1428 		goto out;
1429 	}
1430 
1431 	bucket = rcu_dereference_protected(ort->rt6i_exception_bucket,
1432 					lockdep_is_held(&rt6_exception_lock));
1433 	if (!bucket) {
1434 		bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
1435 				 GFP_ATOMIC);
1436 		if (!bucket) {
1437 			err = -ENOMEM;
1438 			goto out;
1439 		}
1440 		rcu_assign_pointer(ort->rt6i_exception_bucket, bucket);
1441 	}
1442 
1443 #ifdef CONFIG_IPV6_SUBTREES
1444 	/* rt6i_src.plen != 0 indicates ort is in subtree
1445 	 * and exception table is indexed by a hash of
1446 	 * both rt6i_dst and rt6i_src.
1447 	 * Otherwise, the exception table is indexed by
1448 	 * a hash of only rt6i_dst.
1449 	 */
1450 	if (ort->fib6_src.plen)
1451 		src_key = &nrt->rt6i_src.addr;
1452 #endif
1453 
1454 	/* Update rt6i_prefsrc as it could be changed
1455 	 * in rt6_remove_prefsrc()
1456 	 */
1457 	nrt->rt6i_prefsrc = ort->fib6_prefsrc;
1458 	/* rt6_mtu_change() might lower mtu on ort.
1459 	 * Only insert this exception route if its mtu
1460 	 * is less than ort's mtu value.
1461 	 */
1462 	if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) {
1463 		err = -EINVAL;
1464 		goto out;
1465 	}
1466 
1467 	rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
1468 					       src_key);
1469 	if (rt6_ex)
1470 		rt6_remove_exception(bucket, rt6_ex);
1471 
1472 	rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
1473 	if (!rt6_ex) {
1474 		err = -ENOMEM;
1475 		goto out;
1476 	}
1477 	rt6_ex->rt6i = nrt;
1478 	rt6_ex->stamp = jiffies;
1479 	hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
1480 	bucket->depth++;
1481 	net->ipv6.rt6_stats->fib_rt_cache++;
1482 
1483 	if (bucket->depth > FIB6_MAX_DEPTH)
1484 		rt6_exception_remove_oldest(bucket);
1485 
1486 out:
1487 	spin_unlock_bh(&rt6_exception_lock);
1488 
1489 	/* Update fn->fn_sernum to invalidate all cached dst */
1490 	if (!err) {
1491 		spin_lock_bh(&ort->fib6_table->tb6_lock);
1492 		fib6_update_sernum(net, ort);
1493 		spin_unlock_bh(&ort->fib6_table->tb6_lock);
1494 		fib6_force_start_gc(net);
1495 	}
1496 
1497 	return err;
1498 }
1499 
1500 void rt6_flush_exceptions(struct fib6_info *rt)
1501 {
1502 	struct rt6_exception_bucket *bucket;
1503 	struct rt6_exception *rt6_ex;
1504 	struct hlist_node *tmp;
1505 	int i;
1506 
1507 	spin_lock_bh(&rt6_exception_lock);
1508 	/* Prevent rt6_insert_exception() to recreate the bucket list */
1509 	rt->exception_bucket_flushed = 1;
1510 
1511 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1512 				    lockdep_is_held(&rt6_exception_lock));
1513 	if (!bucket)
1514 		goto out;
1515 
1516 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1517 		hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist)
1518 			rt6_remove_exception(bucket, rt6_ex);
1519 		WARN_ON_ONCE(bucket->depth);
1520 		bucket++;
1521 	}
1522 
1523 out:
1524 	spin_unlock_bh(&rt6_exception_lock);
1525 }
1526 
1527 /* Find cached rt in the hash table inside passed in rt
1528  * Caller has to hold rcu_read_lock()
1529  */
1530 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
1531 					   struct in6_addr *daddr,
1532 					   struct in6_addr *saddr)
1533 {
1534 	struct rt6_exception_bucket *bucket;
1535 	struct in6_addr *src_key = NULL;
1536 	struct rt6_exception *rt6_ex;
1537 	struct rt6_info *res = NULL;
1538 
1539 	bucket = rcu_dereference(rt->rt6i_exception_bucket);
1540 
1541 #ifdef CONFIG_IPV6_SUBTREES
1542 	/* rt6i_src.plen != 0 indicates rt is in subtree
1543 	 * and exception table is indexed by a hash of
1544 	 * both rt6i_dst and rt6i_src.
1545 	 * Otherwise, the exception table is indexed by
1546 	 * a hash of only rt6i_dst.
1547 	 */
1548 	if (rt->fib6_src.plen)
1549 		src_key = saddr;
1550 #endif
1551 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
1552 
1553 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
1554 		res = rt6_ex->rt6i;
1555 
1556 	return res;
1557 }
1558 
1559 /* Remove the passed in cached rt from the hash table that contains it */
1560 static int rt6_remove_exception_rt(struct rt6_info *rt)
1561 {
1562 	struct rt6_exception_bucket *bucket;
1563 	struct in6_addr *src_key = NULL;
1564 	struct rt6_exception *rt6_ex;
1565 	struct fib6_info *from;
1566 	int err;
1567 
1568 	from = rcu_dereference(rt->from);
1569 	if (!from ||
1570 	    !(rt->rt6i_flags & RTF_CACHE))
1571 		return -EINVAL;
1572 
1573 	if (!rcu_access_pointer(from->rt6i_exception_bucket))
1574 		return -ENOENT;
1575 
1576 	spin_lock_bh(&rt6_exception_lock);
1577 	bucket = rcu_dereference_protected(from->rt6i_exception_bucket,
1578 				    lockdep_is_held(&rt6_exception_lock));
1579 #ifdef CONFIG_IPV6_SUBTREES
1580 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1581 	 * and exception table is indexed by a hash of
1582 	 * both rt6i_dst and rt6i_src.
1583 	 * Otherwise, the exception table is indexed by
1584 	 * a hash of only rt6i_dst.
1585 	 */
1586 	if (from->fib6_src.plen)
1587 		src_key = &rt->rt6i_src.addr;
1588 #endif
1589 	rt6_ex = __rt6_find_exception_spinlock(&bucket,
1590 					       &rt->rt6i_dst.addr,
1591 					       src_key);
1592 	if (rt6_ex) {
1593 		rt6_remove_exception(bucket, rt6_ex);
1594 		err = 0;
1595 	} else {
1596 		err = -ENOENT;
1597 	}
1598 
1599 	spin_unlock_bh(&rt6_exception_lock);
1600 	return err;
1601 }
1602 
1603 /* Find rt6_ex which contains the passed in rt cache and
1604  * refresh its stamp
1605  */
1606 static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
1607 {
1608 	struct rt6_exception_bucket *bucket;
1609 	struct fib6_info *from = rt->from;
1610 	struct in6_addr *src_key = NULL;
1611 	struct rt6_exception *rt6_ex;
1612 
1613 	if (!from ||
1614 	    !(rt->rt6i_flags & RTF_CACHE))
1615 		return;
1616 
1617 	rcu_read_lock();
1618 	bucket = rcu_dereference(from->rt6i_exception_bucket);
1619 
1620 #ifdef CONFIG_IPV6_SUBTREES
1621 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1622 	 * and exception table is indexed by a hash of
1623 	 * both rt6i_dst and rt6i_src.
1624 	 * Otherwise, the exception table is indexed by
1625 	 * a hash of only rt6i_dst.
1626 	 */
1627 	if (from->fib6_src.plen)
1628 		src_key = &rt->rt6i_src.addr;
1629 #endif
1630 	rt6_ex = __rt6_find_exception_rcu(&bucket,
1631 					  &rt->rt6i_dst.addr,
1632 					  src_key);
1633 	if (rt6_ex)
1634 		rt6_ex->stamp = jiffies;
1635 
1636 	rcu_read_unlock();
1637 }
1638 
1639 static void rt6_exceptions_remove_prefsrc(struct fib6_info *rt)
1640 {
1641 	struct rt6_exception_bucket *bucket;
1642 	struct rt6_exception *rt6_ex;
1643 	int i;
1644 
1645 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1646 					lockdep_is_held(&rt6_exception_lock));
1647 
1648 	if (bucket) {
1649 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1650 			hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1651 				rt6_ex->rt6i->rt6i_prefsrc.plen = 0;
1652 			}
1653 			bucket++;
1654 		}
1655 	}
1656 }
1657 
1658 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
1659 					 struct rt6_info *rt, int mtu)
1660 {
1661 	/* If the new MTU is lower than the route PMTU, this new MTU will be the
1662 	 * lowest MTU in the path: always allow updating the route PMTU to
1663 	 * reflect PMTU decreases.
1664 	 *
1665 	 * If the new MTU is higher, and the route PMTU is equal to the local
1666 	 * MTU, this means the old MTU is the lowest in the path, so allow
1667 	 * updating it: if other nodes now have lower MTUs, PMTU discovery will
1668 	 * handle this.
1669 	 */
1670 
1671 	if (dst_mtu(&rt->dst) >= mtu)
1672 		return true;
1673 
1674 	if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
1675 		return true;
1676 
1677 	return false;
1678 }
1679 
1680 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
1681 				       struct fib6_info *rt, int mtu)
1682 {
1683 	struct rt6_exception_bucket *bucket;
1684 	struct rt6_exception *rt6_ex;
1685 	int i;
1686 
1687 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1688 					lockdep_is_held(&rt6_exception_lock));
1689 
1690 	if (!bucket)
1691 		return;
1692 
1693 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1694 		hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1695 			struct rt6_info *entry = rt6_ex->rt6i;
1696 
1697 			/* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
1698 			 * route), the metrics of its rt->from have already
1699 			 * been updated.
1700 			 */
1701 			if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
1702 			    rt6_mtu_change_route_allowed(idev, entry, mtu))
1703 				dst_metric_set(&entry->dst, RTAX_MTU, mtu);
1704 		}
1705 		bucket++;
1706 	}
1707 }
1708 
1709 #define RTF_CACHE_GATEWAY	(RTF_GATEWAY | RTF_CACHE)
1710 
1711 static void rt6_exceptions_clean_tohost(struct fib6_info *rt,
1712 					struct in6_addr *gateway)
1713 {
1714 	struct rt6_exception_bucket *bucket;
1715 	struct rt6_exception *rt6_ex;
1716 	struct hlist_node *tmp;
1717 	int i;
1718 
1719 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1720 		return;
1721 
1722 	spin_lock_bh(&rt6_exception_lock);
1723 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1724 				     lockdep_is_held(&rt6_exception_lock));
1725 
1726 	if (bucket) {
1727 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1728 			hlist_for_each_entry_safe(rt6_ex, tmp,
1729 						  &bucket->chain, hlist) {
1730 				struct rt6_info *entry = rt6_ex->rt6i;
1731 
1732 				if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
1733 				    RTF_CACHE_GATEWAY &&
1734 				    ipv6_addr_equal(gateway,
1735 						    &entry->rt6i_gateway)) {
1736 					rt6_remove_exception(bucket, rt6_ex);
1737 				}
1738 			}
1739 			bucket++;
1740 		}
1741 	}
1742 
1743 	spin_unlock_bh(&rt6_exception_lock);
1744 }
1745 
1746 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
1747 				      struct rt6_exception *rt6_ex,
1748 				      struct fib6_gc_args *gc_args,
1749 				      unsigned long now)
1750 {
1751 	struct rt6_info *rt = rt6_ex->rt6i;
1752 
1753 	/* we are pruning and obsoleting aged-out and non gateway exceptions
1754 	 * even if others have still references to them, so that on next
1755 	 * dst_check() such references can be dropped.
1756 	 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
1757 	 * expired, independently from their aging, as per RFC 8201 section 4
1758 	 */
1759 	if (!(rt->rt6i_flags & RTF_EXPIRES)) {
1760 		if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1761 			RT6_TRACE("aging clone %p\n", rt);
1762 			rt6_remove_exception(bucket, rt6_ex);
1763 			return;
1764 		}
1765 	} else if (time_after(jiffies, rt->dst.expires)) {
1766 		RT6_TRACE("purging expired route %p\n", rt);
1767 		rt6_remove_exception(bucket, rt6_ex);
1768 		return;
1769 	}
1770 
1771 	if (rt->rt6i_flags & RTF_GATEWAY) {
1772 		struct neighbour *neigh;
1773 		__u8 neigh_flags = 0;
1774 
1775 		neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
1776 		if (neigh)
1777 			neigh_flags = neigh->flags;
1778 
1779 		if (!(neigh_flags & NTF_ROUTER)) {
1780 			RT6_TRACE("purging route %p via non-router but gateway\n",
1781 				  rt);
1782 			rt6_remove_exception(bucket, rt6_ex);
1783 			return;
1784 		}
1785 	}
1786 
1787 	gc_args->more++;
1788 }
1789 
1790 void rt6_age_exceptions(struct fib6_info *rt,
1791 			struct fib6_gc_args *gc_args,
1792 			unsigned long now)
1793 {
1794 	struct rt6_exception_bucket *bucket;
1795 	struct rt6_exception *rt6_ex;
1796 	struct hlist_node *tmp;
1797 	int i;
1798 
1799 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1800 		return;
1801 
1802 	rcu_read_lock_bh();
1803 	spin_lock(&rt6_exception_lock);
1804 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1805 				    lockdep_is_held(&rt6_exception_lock));
1806 
1807 	if (bucket) {
1808 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1809 			hlist_for_each_entry_safe(rt6_ex, tmp,
1810 						  &bucket->chain, hlist) {
1811 				rt6_age_examine_exception(bucket, rt6_ex,
1812 							  gc_args, now);
1813 			}
1814 			bucket++;
1815 		}
1816 	}
1817 	spin_unlock(&rt6_exception_lock);
1818 	rcu_read_unlock_bh();
1819 }
1820 
1821 /* must be called with rcu lock held */
1822 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table,
1823 				    int oif, struct flowi6 *fl6, int strict)
1824 {
1825 	struct fib6_node *fn, *saved_fn;
1826 	struct fib6_info *f6i;
1827 
1828 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1829 	saved_fn = fn;
1830 
1831 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1832 		oif = 0;
1833 
1834 redo_rt6_select:
1835 	f6i = rt6_select(net, fn, oif, strict);
1836 	if (f6i == net->ipv6.fib6_null_entry) {
1837 		fn = fib6_backtrack(fn, &fl6->saddr);
1838 		if (fn)
1839 			goto redo_rt6_select;
1840 		else if (strict & RT6_LOOKUP_F_REACHABLE) {
1841 			/* also consider unreachable route */
1842 			strict &= ~RT6_LOOKUP_F_REACHABLE;
1843 			fn = saved_fn;
1844 			goto redo_rt6_select;
1845 		}
1846 	}
1847 
1848 	trace_fib6_table_lookup(net, f6i, table, fl6);
1849 
1850 	return f6i;
1851 }
1852 
1853 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
1854 			       int oif, struct flowi6 *fl6,
1855 			       const struct sk_buff *skb, int flags)
1856 {
1857 	struct fib6_info *f6i;
1858 	struct rt6_info *rt;
1859 	int strict = 0;
1860 
1861 	strict |= flags & RT6_LOOKUP_F_IFACE;
1862 	strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
1863 	if (net->ipv6.devconf_all->forwarding == 0)
1864 		strict |= RT6_LOOKUP_F_REACHABLE;
1865 
1866 	rcu_read_lock();
1867 
1868 	f6i = fib6_table_lookup(net, table, oif, fl6, strict);
1869 	if (f6i->fib6_nsiblings)
1870 		f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict);
1871 
1872 	if (f6i == net->ipv6.fib6_null_entry) {
1873 		rt = net->ipv6.ip6_null_entry;
1874 		rcu_read_unlock();
1875 		dst_hold(&rt->dst);
1876 		return rt;
1877 	}
1878 
1879 	/*Search through exception table */
1880 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1881 	if (rt) {
1882 		if (ip6_hold_safe(net, &rt, true))
1883 			dst_use_noref(&rt->dst, jiffies);
1884 
1885 		rcu_read_unlock();
1886 		return rt;
1887 	} else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
1888 			    !(f6i->fib6_flags & RTF_GATEWAY))) {
1889 		/* Create a RTF_CACHE clone which will not be
1890 		 * owned by the fib6 tree.  It is for the special case where
1891 		 * the daddr in the skb during the neighbor look-up is different
1892 		 * from the fl6->daddr used to look-up route here.
1893 		 */
1894 		struct rt6_info *uncached_rt;
1895 
1896 		uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL);
1897 
1898 		rcu_read_unlock();
1899 
1900 		if (uncached_rt) {
1901 			/* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc()
1902 			 * No need for another dst_hold()
1903 			 */
1904 			rt6_uncached_list_add(uncached_rt);
1905 			atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
1906 		} else {
1907 			uncached_rt = net->ipv6.ip6_null_entry;
1908 			dst_hold(&uncached_rt->dst);
1909 		}
1910 
1911 		return uncached_rt;
1912 	} else {
1913 		/* Get a percpu copy */
1914 
1915 		struct rt6_info *pcpu_rt;
1916 
1917 		local_bh_disable();
1918 		pcpu_rt = rt6_get_pcpu_route(f6i);
1919 
1920 		if (!pcpu_rt)
1921 			pcpu_rt = rt6_make_pcpu_route(net, f6i);
1922 
1923 		local_bh_enable();
1924 		rcu_read_unlock();
1925 
1926 		return pcpu_rt;
1927 	}
1928 }
1929 EXPORT_SYMBOL_GPL(ip6_pol_route);
1930 
1931 static struct rt6_info *ip6_pol_route_input(struct net *net,
1932 					    struct fib6_table *table,
1933 					    struct flowi6 *fl6,
1934 					    const struct sk_buff *skb,
1935 					    int flags)
1936 {
1937 	return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
1938 }
1939 
1940 struct dst_entry *ip6_route_input_lookup(struct net *net,
1941 					 struct net_device *dev,
1942 					 struct flowi6 *fl6,
1943 					 const struct sk_buff *skb,
1944 					 int flags)
1945 {
1946 	if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
1947 		flags |= RT6_LOOKUP_F_IFACE;
1948 
1949 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
1950 }
1951 EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
1952 
1953 static void ip6_multipath_l3_keys(const struct sk_buff *skb,
1954 				  struct flow_keys *keys,
1955 				  struct flow_keys *flkeys)
1956 {
1957 	const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
1958 	const struct ipv6hdr *key_iph = outer_iph;
1959 	struct flow_keys *_flkeys = flkeys;
1960 	const struct ipv6hdr *inner_iph;
1961 	const struct icmp6hdr *icmph;
1962 	struct ipv6hdr _inner_iph;
1963 	struct icmp6hdr _icmph;
1964 
1965 	if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
1966 		goto out;
1967 
1968 	icmph = skb_header_pointer(skb, skb_transport_offset(skb),
1969 				   sizeof(_icmph), &_icmph);
1970 	if (!icmph)
1971 		goto out;
1972 
1973 	if (icmph->icmp6_type != ICMPV6_DEST_UNREACH &&
1974 	    icmph->icmp6_type != ICMPV6_PKT_TOOBIG &&
1975 	    icmph->icmp6_type != ICMPV6_TIME_EXCEED &&
1976 	    icmph->icmp6_type != ICMPV6_PARAMPROB)
1977 		goto out;
1978 
1979 	inner_iph = skb_header_pointer(skb,
1980 				       skb_transport_offset(skb) + sizeof(*icmph),
1981 				       sizeof(_inner_iph), &_inner_iph);
1982 	if (!inner_iph)
1983 		goto out;
1984 
1985 	key_iph = inner_iph;
1986 	_flkeys = NULL;
1987 out:
1988 	if (_flkeys) {
1989 		keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
1990 		keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
1991 		keys->tags.flow_label = _flkeys->tags.flow_label;
1992 		keys->basic.ip_proto = _flkeys->basic.ip_proto;
1993 	} else {
1994 		keys->addrs.v6addrs.src = key_iph->saddr;
1995 		keys->addrs.v6addrs.dst = key_iph->daddr;
1996 		keys->tags.flow_label = ip6_flowlabel(key_iph);
1997 		keys->basic.ip_proto = key_iph->nexthdr;
1998 	}
1999 }
2000 
2001 /* if skb is set it will be used and fl6 can be NULL */
2002 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
2003 		       const struct sk_buff *skb, struct flow_keys *flkeys)
2004 {
2005 	struct flow_keys hash_keys;
2006 	u32 mhash;
2007 
2008 	switch (ip6_multipath_hash_policy(net)) {
2009 	case 0:
2010 		memset(&hash_keys, 0, sizeof(hash_keys));
2011 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2012 		if (skb) {
2013 			ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
2014 		} else {
2015 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2016 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2017 			hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
2018 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2019 		}
2020 		break;
2021 	case 1:
2022 		if (skb) {
2023 			unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
2024 			struct flow_keys keys;
2025 
2026 			/* short-circuit if we already have L4 hash present */
2027 			if (skb->l4_hash)
2028 				return skb_get_hash_raw(skb) >> 1;
2029 
2030 			memset(&hash_keys, 0, sizeof(hash_keys));
2031 
2032                         if (!flkeys) {
2033 				skb_flow_dissect_flow_keys(skb, &keys, flag);
2034 				flkeys = &keys;
2035 			}
2036 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2037 			hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2038 			hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2039 			hash_keys.ports.src = flkeys->ports.src;
2040 			hash_keys.ports.dst = flkeys->ports.dst;
2041 			hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2042 		} else {
2043 			memset(&hash_keys, 0, sizeof(hash_keys));
2044 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2045 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2046 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2047 			hash_keys.ports.src = fl6->fl6_sport;
2048 			hash_keys.ports.dst = fl6->fl6_dport;
2049 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2050 		}
2051 		break;
2052 	}
2053 	mhash = flow_hash_from_keys(&hash_keys);
2054 
2055 	return mhash >> 1;
2056 }
2057 
2058 void ip6_route_input(struct sk_buff *skb)
2059 {
2060 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2061 	struct net *net = dev_net(skb->dev);
2062 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2063 	struct ip_tunnel_info *tun_info;
2064 	struct flowi6 fl6 = {
2065 		.flowi6_iif = skb->dev->ifindex,
2066 		.daddr = iph->daddr,
2067 		.saddr = iph->saddr,
2068 		.flowlabel = ip6_flowinfo(iph),
2069 		.flowi6_mark = skb->mark,
2070 		.flowi6_proto = iph->nexthdr,
2071 	};
2072 	struct flow_keys *flkeys = NULL, _flkeys;
2073 
2074 	tun_info = skb_tunnel_info(skb);
2075 	if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
2076 		fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
2077 
2078 	if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
2079 		flkeys = &_flkeys;
2080 
2081 	if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
2082 		fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
2083 	skb_dst_drop(skb);
2084 	skb_dst_set(skb,
2085 		    ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags));
2086 }
2087 
2088 static struct rt6_info *ip6_pol_route_output(struct net *net,
2089 					     struct fib6_table *table,
2090 					     struct flowi6 *fl6,
2091 					     const struct sk_buff *skb,
2092 					     int flags)
2093 {
2094 	return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
2095 }
2096 
2097 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk,
2098 					 struct flowi6 *fl6, int flags)
2099 {
2100 	bool any_src;
2101 
2102 	if (rt6_need_strict(&fl6->daddr)) {
2103 		struct dst_entry *dst;
2104 
2105 		dst = l3mdev_link_scope_lookup(net, fl6);
2106 		if (dst)
2107 			return dst;
2108 	}
2109 
2110 	fl6->flowi6_iif = LOOPBACK_IFINDEX;
2111 
2112 	any_src = ipv6_addr_any(&fl6->saddr);
2113 	if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
2114 	    (fl6->flowi6_oif && any_src))
2115 		flags |= RT6_LOOKUP_F_IFACE;
2116 
2117 	if (!any_src)
2118 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2119 	else if (sk)
2120 		flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
2121 
2122 	return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
2123 }
2124 EXPORT_SYMBOL_GPL(ip6_route_output_flags);
2125 
2126 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2127 {
2128 	struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
2129 	struct net_device *loopback_dev = net->loopback_dev;
2130 	struct dst_entry *new = NULL;
2131 
2132 	rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
2133 		       DST_OBSOLETE_DEAD, 0);
2134 	if (rt) {
2135 		rt6_info_init(rt);
2136 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
2137 
2138 		new = &rt->dst;
2139 		new->__use = 1;
2140 		new->input = dst_discard;
2141 		new->output = dst_discard_out;
2142 
2143 		dst_copy_metrics(new, &ort->dst);
2144 
2145 		rt->rt6i_idev = in6_dev_get(loopback_dev);
2146 		rt->rt6i_gateway = ort->rt6i_gateway;
2147 		rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
2148 
2149 		memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
2150 #ifdef CONFIG_IPV6_SUBTREES
2151 		memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
2152 #endif
2153 	}
2154 
2155 	dst_release(dst_orig);
2156 	return new ? new : ERR_PTR(-ENOMEM);
2157 }
2158 
2159 /*
2160  *	Destination cache support functions
2161  */
2162 
2163 static bool fib6_check(struct fib6_info *f6i, u32 cookie)
2164 {
2165 	u32 rt_cookie = 0;
2166 
2167 	if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
2168 		return false;
2169 
2170 	if (fib6_check_expired(f6i))
2171 		return false;
2172 
2173 	return true;
2174 }
2175 
2176 static struct dst_entry *rt6_check(struct rt6_info *rt,
2177 				   struct fib6_info *from,
2178 				   u32 cookie)
2179 {
2180 	u32 rt_cookie = 0;
2181 
2182 	if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) ||
2183 	    rt_cookie != cookie)
2184 		return NULL;
2185 
2186 	if (rt6_check_expired(rt))
2187 		return NULL;
2188 
2189 	return &rt->dst;
2190 }
2191 
2192 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
2193 					    struct fib6_info *from,
2194 					    u32 cookie)
2195 {
2196 	if (!__rt6_check_expired(rt) &&
2197 	    rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
2198 	    fib6_check(from, cookie))
2199 		return &rt->dst;
2200 	else
2201 		return NULL;
2202 }
2203 
2204 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
2205 {
2206 	struct dst_entry *dst_ret;
2207 	struct fib6_info *from;
2208 	struct rt6_info *rt;
2209 
2210 	rt = container_of(dst, struct rt6_info, dst);
2211 
2212 	rcu_read_lock();
2213 
2214 	/* All IPV6 dsts are created with ->obsolete set to the value
2215 	 * DST_OBSOLETE_FORCE_CHK which forces validation calls down
2216 	 * into this function always.
2217 	 */
2218 
2219 	from = rcu_dereference(rt->from);
2220 
2221 	if (from && (rt->rt6i_flags & RTF_PCPU ||
2222 	    unlikely(!list_empty(&rt->rt6i_uncached))))
2223 		dst_ret = rt6_dst_from_check(rt, from, cookie);
2224 	else
2225 		dst_ret = rt6_check(rt, from, cookie);
2226 
2227 	rcu_read_unlock();
2228 
2229 	return dst_ret;
2230 }
2231 
2232 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
2233 {
2234 	struct rt6_info *rt = (struct rt6_info *) dst;
2235 
2236 	if (rt) {
2237 		if (rt->rt6i_flags & RTF_CACHE) {
2238 			rcu_read_lock();
2239 			if (rt6_check_expired(rt)) {
2240 				rt6_remove_exception_rt(rt);
2241 				dst = NULL;
2242 			}
2243 			rcu_read_unlock();
2244 		} else {
2245 			dst_release(dst);
2246 			dst = NULL;
2247 		}
2248 	}
2249 	return dst;
2250 }
2251 
2252 static void ip6_link_failure(struct sk_buff *skb)
2253 {
2254 	struct rt6_info *rt;
2255 
2256 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
2257 
2258 	rt = (struct rt6_info *) skb_dst(skb);
2259 	if (rt) {
2260 		rcu_read_lock();
2261 		if (rt->rt6i_flags & RTF_CACHE) {
2262 			if (dst_hold_safe(&rt->dst))
2263 				rt6_remove_exception_rt(rt);
2264 		} else {
2265 			struct fib6_info *from;
2266 			struct fib6_node *fn;
2267 
2268 			from = rcu_dereference(rt->from);
2269 			if (from) {
2270 				fn = rcu_dereference(from->fib6_node);
2271 				if (fn && (rt->rt6i_flags & RTF_DEFAULT))
2272 					fn->fn_sernum = -1;
2273 			}
2274 		}
2275 		rcu_read_unlock();
2276 	}
2277 }
2278 
2279 static void rt6_update_expires(struct rt6_info *rt0, int timeout)
2280 {
2281 	if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
2282 		struct fib6_info *from;
2283 
2284 		rcu_read_lock();
2285 		from = rcu_dereference(rt0->from);
2286 		if (from)
2287 			rt0->dst.expires = from->expires;
2288 		rcu_read_unlock();
2289 	}
2290 
2291 	dst_set_expires(&rt0->dst, timeout);
2292 	rt0->rt6i_flags |= RTF_EXPIRES;
2293 }
2294 
2295 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
2296 {
2297 	struct net *net = dev_net(rt->dst.dev);
2298 
2299 	dst_metric_set(&rt->dst, RTAX_MTU, mtu);
2300 	rt->rt6i_flags |= RTF_MODIFIED;
2301 	rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
2302 }
2303 
2304 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
2305 {
2306 	bool from_set;
2307 
2308 	rcu_read_lock();
2309 	from_set = !!rcu_dereference(rt->from);
2310 	rcu_read_unlock();
2311 
2312 	return !(rt->rt6i_flags & RTF_CACHE) &&
2313 		(rt->rt6i_flags & RTF_PCPU || from_set);
2314 }
2315 
2316 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
2317 				 const struct ipv6hdr *iph, u32 mtu)
2318 {
2319 	const struct in6_addr *daddr, *saddr;
2320 	struct rt6_info *rt6 = (struct rt6_info *)dst;
2321 
2322 	if (dst_metric_locked(dst, RTAX_MTU))
2323 		return;
2324 
2325 	if (iph) {
2326 		daddr = &iph->daddr;
2327 		saddr = &iph->saddr;
2328 	} else if (sk) {
2329 		daddr = &sk->sk_v6_daddr;
2330 		saddr = &inet6_sk(sk)->saddr;
2331 	} else {
2332 		daddr = NULL;
2333 		saddr = NULL;
2334 	}
2335 	dst_confirm_neigh(dst, daddr);
2336 	mtu = max_t(u32, mtu, IPV6_MIN_MTU);
2337 	if (mtu >= dst_mtu(dst))
2338 		return;
2339 
2340 	if (!rt6_cache_allowed_for_pmtu(rt6)) {
2341 		rt6_do_update_pmtu(rt6, mtu);
2342 		/* update rt6_ex->stamp for cache */
2343 		if (rt6->rt6i_flags & RTF_CACHE)
2344 			rt6_update_exception_stamp_rt(rt6);
2345 	} else if (daddr) {
2346 		struct fib6_info *from;
2347 		struct rt6_info *nrt6;
2348 
2349 		rcu_read_lock();
2350 		from = rcu_dereference(rt6->from);
2351 		nrt6 = ip6_rt_cache_alloc(from, daddr, saddr);
2352 		if (nrt6) {
2353 			rt6_do_update_pmtu(nrt6, mtu);
2354 			if (rt6_insert_exception(nrt6, from))
2355 				dst_release_immediate(&nrt6->dst);
2356 		}
2357 		rcu_read_unlock();
2358 	}
2359 }
2360 
2361 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
2362 			       struct sk_buff *skb, u32 mtu)
2363 {
2364 	__ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu);
2365 }
2366 
2367 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
2368 		     int oif, u32 mark, kuid_t uid)
2369 {
2370 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2371 	struct dst_entry *dst;
2372 	struct flowi6 fl6;
2373 
2374 	memset(&fl6, 0, sizeof(fl6));
2375 	fl6.flowi6_oif = oif;
2376 	fl6.flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark);
2377 	fl6.daddr = iph->daddr;
2378 	fl6.saddr = iph->saddr;
2379 	fl6.flowlabel = ip6_flowinfo(iph);
2380 	fl6.flowi6_uid = uid;
2381 
2382 	dst = ip6_route_output(net, NULL, &fl6);
2383 	if (!dst->error)
2384 		__ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu));
2385 	dst_release(dst);
2386 }
2387 EXPORT_SYMBOL_GPL(ip6_update_pmtu);
2388 
2389 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
2390 {
2391 	struct dst_entry *dst;
2392 
2393 	ip6_update_pmtu(skb, sock_net(sk), mtu,
2394 			sk->sk_bound_dev_if, sk->sk_mark, sk->sk_uid);
2395 
2396 	dst = __sk_dst_get(sk);
2397 	if (!dst || !dst->obsolete ||
2398 	    dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
2399 		return;
2400 
2401 	bh_lock_sock(sk);
2402 	if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
2403 		ip6_datagram_dst_update(sk, false);
2404 	bh_unlock_sock(sk);
2405 }
2406 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
2407 
2408 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
2409 			   const struct flowi6 *fl6)
2410 {
2411 #ifdef CONFIG_IPV6_SUBTREES
2412 	struct ipv6_pinfo *np = inet6_sk(sk);
2413 #endif
2414 
2415 	ip6_dst_store(sk, dst,
2416 		      ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
2417 		      &sk->sk_v6_daddr : NULL,
2418 #ifdef CONFIG_IPV6_SUBTREES
2419 		      ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
2420 		      &np->saddr :
2421 #endif
2422 		      NULL);
2423 }
2424 
2425 /* Handle redirects */
2426 struct ip6rd_flowi {
2427 	struct flowi6 fl6;
2428 	struct in6_addr gateway;
2429 };
2430 
2431 static struct rt6_info *__ip6_route_redirect(struct net *net,
2432 					     struct fib6_table *table,
2433 					     struct flowi6 *fl6,
2434 					     const struct sk_buff *skb,
2435 					     int flags)
2436 {
2437 	struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
2438 	struct rt6_info *ret = NULL, *rt_cache;
2439 	struct fib6_info *rt;
2440 	struct fib6_node *fn;
2441 
2442 	/* Get the "current" route for this destination and
2443 	 * check if the redirect has come from appropriate router.
2444 	 *
2445 	 * RFC 4861 specifies that redirects should only be
2446 	 * accepted if they come from the nexthop to the target.
2447 	 * Due to the way the routes are chosen, this notion
2448 	 * is a bit fuzzy and one might need to check all possible
2449 	 * routes.
2450 	 */
2451 
2452 	rcu_read_lock();
2453 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
2454 restart:
2455 	for_each_fib6_node_rt_rcu(fn) {
2456 		if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
2457 			continue;
2458 		if (fib6_check_expired(rt))
2459 			continue;
2460 		if (rt->fib6_flags & RTF_REJECT)
2461 			break;
2462 		if (!(rt->fib6_flags & RTF_GATEWAY))
2463 			continue;
2464 		if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex)
2465 			continue;
2466 		/* rt_cache's gateway might be different from its 'parent'
2467 		 * in the case of an ip redirect.
2468 		 * So we keep searching in the exception table if the gateway
2469 		 * is different.
2470 		 */
2471 		if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) {
2472 			rt_cache = rt6_find_cached_rt(rt,
2473 						      &fl6->daddr,
2474 						      &fl6->saddr);
2475 			if (rt_cache &&
2476 			    ipv6_addr_equal(&rdfl->gateway,
2477 					    &rt_cache->rt6i_gateway)) {
2478 				ret = rt_cache;
2479 				break;
2480 			}
2481 			continue;
2482 		}
2483 		break;
2484 	}
2485 
2486 	if (!rt)
2487 		rt = net->ipv6.fib6_null_entry;
2488 	else if (rt->fib6_flags & RTF_REJECT) {
2489 		ret = net->ipv6.ip6_null_entry;
2490 		goto out;
2491 	}
2492 
2493 	if (rt == net->ipv6.fib6_null_entry) {
2494 		fn = fib6_backtrack(fn, &fl6->saddr);
2495 		if (fn)
2496 			goto restart;
2497 	}
2498 
2499 out:
2500 	if (ret)
2501 		ip6_hold_safe(net, &ret, true);
2502 	else
2503 		ret = ip6_create_rt_rcu(rt);
2504 
2505 	rcu_read_unlock();
2506 
2507 	trace_fib6_table_lookup(net, rt, table, fl6);
2508 	return ret;
2509 };
2510 
2511 static struct dst_entry *ip6_route_redirect(struct net *net,
2512 					    const struct flowi6 *fl6,
2513 					    const struct sk_buff *skb,
2514 					    const struct in6_addr *gateway)
2515 {
2516 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2517 	struct ip6rd_flowi rdfl;
2518 
2519 	rdfl.fl6 = *fl6;
2520 	rdfl.gateway = *gateway;
2521 
2522 	return fib6_rule_lookup(net, &rdfl.fl6, skb,
2523 				flags, __ip6_route_redirect);
2524 }
2525 
2526 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
2527 		  kuid_t uid)
2528 {
2529 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2530 	struct dst_entry *dst;
2531 	struct flowi6 fl6;
2532 
2533 	memset(&fl6, 0, sizeof(fl6));
2534 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
2535 	fl6.flowi6_oif = oif;
2536 	fl6.flowi6_mark = mark;
2537 	fl6.daddr = iph->daddr;
2538 	fl6.saddr = iph->saddr;
2539 	fl6.flowlabel = ip6_flowinfo(iph);
2540 	fl6.flowi6_uid = uid;
2541 
2542 	dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
2543 	rt6_do_redirect(dst, NULL, skb);
2544 	dst_release(dst);
2545 }
2546 EXPORT_SYMBOL_GPL(ip6_redirect);
2547 
2548 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif,
2549 			    u32 mark)
2550 {
2551 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2552 	const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
2553 	struct dst_entry *dst;
2554 	struct flowi6 fl6;
2555 
2556 	memset(&fl6, 0, sizeof(fl6));
2557 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
2558 	fl6.flowi6_oif = oif;
2559 	fl6.flowi6_mark = mark;
2560 	fl6.daddr = msg->dest;
2561 	fl6.saddr = iph->daddr;
2562 	fl6.flowi6_uid = sock_net_uid(net, NULL);
2563 
2564 	dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
2565 	rt6_do_redirect(dst, NULL, skb);
2566 	dst_release(dst);
2567 }
2568 
2569 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
2570 {
2571 	ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
2572 		     sk->sk_uid);
2573 }
2574 EXPORT_SYMBOL_GPL(ip6_sk_redirect);
2575 
2576 static unsigned int ip6_default_advmss(const struct dst_entry *dst)
2577 {
2578 	struct net_device *dev = dst->dev;
2579 	unsigned int mtu = dst_mtu(dst);
2580 	struct net *net = dev_net(dev);
2581 
2582 	mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
2583 
2584 	if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
2585 		mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
2586 
2587 	/*
2588 	 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
2589 	 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
2590 	 * IPV6_MAXPLEN is also valid and means: "any MSS,
2591 	 * rely only on pmtu discovery"
2592 	 */
2593 	if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
2594 		mtu = IPV6_MAXPLEN;
2595 	return mtu;
2596 }
2597 
2598 static unsigned int ip6_mtu(const struct dst_entry *dst)
2599 {
2600 	struct inet6_dev *idev;
2601 	unsigned int mtu;
2602 
2603 	mtu = dst_metric_raw(dst, RTAX_MTU);
2604 	if (mtu)
2605 		goto out;
2606 
2607 	mtu = IPV6_MIN_MTU;
2608 
2609 	rcu_read_lock();
2610 	idev = __in6_dev_get(dst->dev);
2611 	if (idev)
2612 		mtu = idev->cnf.mtu6;
2613 	rcu_read_unlock();
2614 
2615 out:
2616 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2617 
2618 	return mtu - lwtunnel_headroom(dst->lwtstate, mtu);
2619 }
2620 
2621 /* MTU selection:
2622  * 1. mtu on route is locked - use it
2623  * 2. mtu from nexthop exception
2624  * 3. mtu from egress device
2625  *
2626  * based on ip6_dst_mtu_forward and exception logic of
2627  * rt6_find_cached_rt; called with rcu_read_lock
2628  */
2629 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr,
2630 		      struct in6_addr *saddr)
2631 {
2632 	struct rt6_exception_bucket *bucket;
2633 	struct rt6_exception *rt6_ex;
2634 	struct in6_addr *src_key;
2635 	struct inet6_dev *idev;
2636 	u32 mtu = 0;
2637 
2638 	if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
2639 		mtu = f6i->fib6_pmtu;
2640 		if (mtu)
2641 			goto out;
2642 	}
2643 
2644 	src_key = NULL;
2645 #ifdef CONFIG_IPV6_SUBTREES
2646 	if (f6i->fib6_src.plen)
2647 		src_key = saddr;
2648 #endif
2649 
2650 	bucket = rcu_dereference(f6i->rt6i_exception_bucket);
2651 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
2652 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
2653 		mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU);
2654 
2655 	if (likely(!mtu)) {
2656 		struct net_device *dev = fib6_info_nh_dev(f6i);
2657 
2658 		mtu = IPV6_MIN_MTU;
2659 		idev = __in6_dev_get(dev);
2660 		if (idev && idev->cnf.mtu6 > mtu)
2661 			mtu = idev->cnf.mtu6;
2662 	}
2663 
2664 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2665 out:
2666 	return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu);
2667 }
2668 
2669 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
2670 				  struct flowi6 *fl6)
2671 {
2672 	struct dst_entry *dst;
2673 	struct rt6_info *rt;
2674 	struct inet6_dev *idev = in6_dev_get(dev);
2675 	struct net *net = dev_net(dev);
2676 
2677 	if (unlikely(!idev))
2678 		return ERR_PTR(-ENODEV);
2679 
2680 	rt = ip6_dst_alloc(net, dev, 0);
2681 	if (unlikely(!rt)) {
2682 		in6_dev_put(idev);
2683 		dst = ERR_PTR(-ENOMEM);
2684 		goto out;
2685 	}
2686 
2687 	rt->dst.flags |= DST_HOST;
2688 	rt->dst.input = ip6_input;
2689 	rt->dst.output  = ip6_output;
2690 	rt->rt6i_gateway  = fl6->daddr;
2691 	rt->rt6i_dst.addr = fl6->daddr;
2692 	rt->rt6i_dst.plen = 128;
2693 	rt->rt6i_idev     = idev;
2694 	dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
2695 
2696 	/* Add this dst into uncached_list so that rt6_disable_ip() can
2697 	 * do proper release of the net_device
2698 	 */
2699 	rt6_uncached_list_add(rt);
2700 	atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
2701 
2702 	dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
2703 
2704 out:
2705 	return dst;
2706 }
2707 
2708 static int ip6_dst_gc(struct dst_ops *ops)
2709 {
2710 	struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
2711 	int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
2712 	int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
2713 	int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
2714 	int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
2715 	unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
2716 	int entries;
2717 
2718 	entries = dst_entries_get_fast(ops);
2719 	if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
2720 	    entries <= rt_max_size)
2721 		goto out;
2722 
2723 	net->ipv6.ip6_rt_gc_expire++;
2724 	fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true);
2725 	entries = dst_entries_get_slow(ops);
2726 	if (entries < ops->gc_thresh)
2727 		net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
2728 out:
2729 	net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
2730 	return entries > rt_max_size;
2731 }
2732 
2733 static int ip6_convert_metrics(struct net *net, struct fib6_info *rt,
2734 			       struct fib6_config *cfg)
2735 {
2736 	struct dst_metrics *p;
2737 
2738 	if (!cfg->fc_mx)
2739 		return 0;
2740 
2741 	p = kzalloc(sizeof(*rt->fib6_metrics), GFP_KERNEL);
2742 	if (unlikely(!p))
2743 		return -ENOMEM;
2744 
2745 	refcount_set(&p->refcnt, 1);
2746 	rt->fib6_metrics = p;
2747 
2748 	return ip_metrics_convert(net, cfg->fc_mx, cfg->fc_mx_len, p->metrics);
2749 }
2750 
2751 static struct rt6_info *ip6_nh_lookup_table(struct net *net,
2752 					    struct fib6_config *cfg,
2753 					    const struct in6_addr *gw_addr,
2754 					    u32 tbid, int flags)
2755 {
2756 	struct flowi6 fl6 = {
2757 		.flowi6_oif = cfg->fc_ifindex,
2758 		.daddr = *gw_addr,
2759 		.saddr = cfg->fc_prefsrc,
2760 	};
2761 	struct fib6_table *table;
2762 	struct rt6_info *rt;
2763 
2764 	table = fib6_get_table(net, tbid);
2765 	if (!table)
2766 		return NULL;
2767 
2768 	if (!ipv6_addr_any(&cfg->fc_prefsrc))
2769 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2770 
2771 	flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
2772 	rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags);
2773 
2774 	/* if table lookup failed, fall back to full lookup */
2775 	if (rt == net->ipv6.ip6_null_entry) {
2776 		ip6_rt_put(rt);
2777 		rt = NULL;
2778 	}
2779 
2780 	return rt;
2781 }
2782 
2783 static int ip6_route_check_nh_onlink(struct net *net,
2784 				     struct fib6_config *cfg,
2785 				     const struct net_device *dev,
2786 				     struct netlink_ext_ack *extack)
2787 {
2788 	u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN;
2789 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2790 	u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT;
2791 	struct rt6_info *grt;
2792 	int err;
2793 
2794 	err = 0;
2795 	grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0);
2796 	if (grt) {
2797 		if (!grt->dst.error &&
2798 		    (grt->rt6i_flags & flags || dev != grt->dst.dev)) {
2799 			NL_SET_ERR_MSG(extack,
2800 				       "Nexthop has invalid gateway or device mismatch");
2801 			err = -EINVAL;
2802 		}
2803 
2804 		ip6_rt_put(grt);
2805 	}
2806 
2807 	return err;
2808 }
2809 
2810 static int ip6_route_check_nh(struct net *net,
2811 			      struct fib6_config *cfg,
2812 			      struct net_device **_dev,
2813 			      struct inet6_dev **idev)
2814 {
2815 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2816 	struct net_device *dev = _dev ? *_dev : NULL;
2817 	struct rt6_info *grt = NULL;
2818 	int err = -EHOSTUNREACH;
2819 
2820 	if (cfg->fc_table) {
2821 		int flags = RT6_LOOKUP_F_IFACE;
2822 
2823 		grt = ip6_nh_lookup_table(net, cfg, gw_addr,
2824 					  cfg->fc_table, flags);
2825 		if (grt) {
2826 			if (grt->rt6i_flags & RTF_GATEWAY ||
2827 			    (dev && dev != grt->dst.dev)) {
2828 				ip6_rt_put(grt);
2829 				grt = NULL;
2830 			}
2831 		}
2832 	}
2833 
2834 	if (!grt)
2835 		grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1);
2836 
2837 	if (!grt)
2838 		goto out;
2839 
2840 	if (dev) {
2841 		if (dev != grt->dst.dev) {
2842 			ip6_rt_put(grt);
2843 			goto out;
2844 		}
2845 	} else {
2846 		*_dev = dev = grt->dst.dev;
2847 		*idev = grt->rt6i_idev;
2848 		dev_hold(dev);
2849 		in6_dev_hold(grt->rt6i_idev);
2850 	}
2851 
2852 	if (!(grt->rt6i_flags & RTF_GATEWAY))
2853 		err = 0;
2854 
2855 	ip6_rt_put(grt);
2856 
2857 out:
2858 	return err;
2859 }
2860 
2861 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
2862 			   struct net_device **_dev, struct inet6_dev **idev,
2863 			   struct netlink_ext_ack *extack)
2864 {
2865 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2866 	int gwa_type = ipv6_addr_type(gw_addr);
2867 	bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
2868 	const struct net_device *dev = *_dev;
2869 	bool need_addr_check = !dev;
2870 	int err = -EINVAL;
2871 
2872 	/* if gw_addr is local we will fail to detect this in case
2873 	 * address is still TENTATIVE (DAD in progress). rt6_lookup()
2874 	 * will return already-added prefix route via interface that
2875 	 * prefix route was assigned to, which might be non-loopback.
2876 	 */
2877 	if (dev &&
2878 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2879 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2880 		goto out;
2881 	}
2882 
2883 	if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
2884 		/* IPv6 strictly inhibits using not link-local
2885 		 * addresses as nexthop address.
2886 		 * Otherwise, router will not able to send redirects.
2887 		 * It is very good, but in some (rare!) circumstances
2888 		 * (SIT, PtP, NBMA NOARP links) it is handy to allow
2889 		 * some exceptions. --ANK
2890 		 * We allow IPv4-mapped nexthops to support RFC4798-type
2891 		 * addressing
2892 		 */
2893 		if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
2894 			NL_SET_ERR_MSG(extack, "Invalid gateway address");
2895 			goto out;
2896 		}
2897 
2898 		if (cfg->fc_flags & RTNH_F_ONLINK)
2899 			err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
2900 		else
2901 			err = ip6_route_check_nh(net, cfg, _dev, idev);
2902 
2903 		if (err)
2904 			goto out;
2905 	}
2906 
2907 	/* reload in case device was changed */
2908 	dev = *_dev;
2909 
2910 	err = -EINVAL;
2911 	if (!dev) {
2912 		NL_SET_ERR_MSG(extack, "Egress device not specified");
2913 		goto out;
2914 	} else if (dev->flags & IFF_LOOPBACK) {
2915 		NL_SET_ERR_MSG(extack,
2916 			       "Egress device can not be loopback device for this route");
2917 		goto out;
2918 	}
2919 
2920 	/* if we did not check gw_addr above, do so now that the
2921 	 * egress device has been resolved.
2922 	 */
2923 	if (need_addr_check &&
2924 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2925 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2926 		goto out;
2927 	}
2928 
2929 	err = 0;
2930 out:
2931 	return err;
2932 }
2933 
2934 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
2935 					      gfp_t gfp_flags,
2936 					      struct netlink_ext_ack *extack)
2937 {
2938 	struct net *net = cfg->fc_nlinfo.nl_net;
2939 	struct fib6_info *rt = NULL;
2940 	struct net_device *dev = NULL;
2941 	struct inet6_dev *idev = NULL;
2942 	struct fib6_table *table;
2943 	int addr_type;
2944 	int err = -EINVAL;
2945 
2946 	/* RTF_PCPU is an internal flag; can not be set by userspace */
2947 	if (cfg->fc_flags & RTF_PCPU) {
2948 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
2949 		goto out;
2950 	}
2951 
2952 	/* RTF_CACHE is an internal flag; can not be set by userspace */
2953 	if (cfg->fc_flags & RTF_CACHE) {
2954 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
2955 		goto out;
2956 	}
2957 
2958 	if (cfg->fc_type > RTN_MAX) {
2959 		NL_SET_ERR_MSG(extack, "Invalid route type");
2960 		goto out;
2961 	}
2962 
2963 	if (cfg->fc_dst_len > 128) {
2964 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
2965 		goto out;
2966 	}
2967 	if (cfg->fc_src_len > 128) {
2968 		NL_SET_ERR_MSG(extack, "Invalid source address length");
2969 		goto out;
2970 	}
2971 #ifndef CONFIG_IPV6_SUBTREES
2972 	if (cfg->fc_src_len) {
2973 		NL_SET_ERR_MSG(extack,
2974 			       "Specifying source address requires IPV6_SUBTREES to be enabled");
2975 		goto out;
2976 	}
2977 #endif
2978 	if (cfg->fc_ifindex) {
2979 		err = -ENODEV;
2980 		dev = dev_get_by_index(net, cfg->fc_ifindex);
2981 		if (!dev)
2982 			goto out;
2983 		idev = in6_dev_get(dev);
2984 		if (!idev)
2985 			goto out;
2986 	}
2987 
2988 	if (cfg->fc_metric == 0)
2989 		cfg->fc_metric = IP6_RT_PRIO_USER;
2990 
2991 	if (cfg->fc_flags & RTNH_F_ONLINK) {
2992 		if (!dev) {
2993 			NL_SET_ERR_MSG(extack,
2994 				       "Nexthop device required for onlink");
2995 			err = -ENODEV;
2996 			goto out;
2997 		}
2998 
2999 		if (!(dev->flags & IFF_UP)) {
3000 			NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3001 			err = -ENETDOWN;
3002 			goto out;
3003 		}
3004 	}
3005 
3006 	err = -ENOBUFS;
3007 	if (cfg->fc_nlinfo.nlh &&
3008 	    !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
3009 		table = fib6_get_table(net, cfg->fc_table);
3010 		if (!table) {
3011 			pr_warn("NLM_F_CREATE should be specified when creating new route\n");
3012 			table = fib6_new_table(net, cfg->fc_table);
3013 		}
3014 	} else {
3015 		table = fib6_new_table(net, cfg->fc_table);
3016 	}
3017 
3018 	if (!table)
3019 		goto out;
3020 
3021 	err = -ENOMEM;
3022 	rt = fib6_info_alloc(gfp_flags);
3023 	if (!rt)
3024 		goto out;
3025 
3026 	if (cfg->fc_flags & RTF_ADDRCONF)
3027 		rt->dst_nocount = true;
3028 
3029 	err = ip6_convert_metrics(net, rt, cfg);
3030 	if (err < 0)
3031 		goto out;
3032 
3033 	if (cfg->fc_flags & RTF_EXPIRES)
3034 		fib6_set_expires(rt, jiffies +
3035 				clock_t_to_jiffies(cfg->fc_expires));
3036 	else
3037 		fib6_clean_expires(rt);
3038 
3039 	if (cfg->fc_protocol == RTPROT_UNSPEC)
3040 		cfg->fc_protocol = RTPROT_BOOT;
3041 	rt->fib6_protocol = cfg->fc_protocol;
3042 
3043 	addr_type = ipv6_addr_type(&cfg->fc_dst);
3044 
3045 	if (cfg->fc_encap) {
3046 		struct lwtunnel_state *lwtstate;
3047 
3048 		err = lwtunnel_build_state(cfg->fc_encap_type,
3049 					   cfg->fc_encap, AF_INET6, cfg,
3050 					   &lwtstate, extack);
3051 		if (err)
3052 			goto out;
3053 		rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate);
3054 	}
3055 
3056 	ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
3057 	rt->fib6_dst.plen = cfg->fc_dst_len;
3058 	if (rt->fib6_dst.plen == 128)
3059 		rt->dst_host = true;
3060 
3061 #ifdef CONFIG_IPV6_SUBTREES
3062 	ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
3063 	rt->fib6_src.plen = cfg->fc_src_len;
3064 #endif
3065 
3066 	rt->fib6_metric = cfg->fc_metric;
3067 	rt->fib6_nh.nh_weight = 1;
3068 
3069 	rt->fib6_type = cfg->fc_type;
3070 
3071 	/* We cannot add true routes via loopback here,
3072 	   they would result in kernel looping; promote them to reject routes
3073 	 */
3074 	if ((cfg->fc_flags & RTF_REJECT) ||
3075 	    (dev && (dev->flags & IFF_LOOPBACK) &&
3076 	     !(addr_type & IPV6_ADDR_LOOPBACK) &&
3077 	     !(cfg->fc_flags & RTF_LOCAL))) {
3078 		/* hold loopback dev/idev if we haven't done so. */
3079 		if (dev != net->loopback_dev) {
3080 			if (dev) {
3081 				dev_put(dev);
3082 				in6_dev_put(idev);
3083 			}
3084 			dev = net->loopback_dev;
3085 			dev_hold(dev);
3086 			idev = in6_dev_get(dev);
3087 			if (!idev) {
3088 				err = -ENODEV;
3089 				goto out;
3090 			}
3091 		}
3092 		rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP;
3093 		goto install_route;
3094 	}
3095 
3096 	if (cfg->fc_flags & RTF_GATEWAY) {
3097 		err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
3098 		if (err)
3099 			goto out;
3100 
3101 		rt->fib6_nh.nh_gw = cfg->fc_gateway;
3102 	}
3103 
3104 	err = -ENODEV;
3105 	if (!dev)
3106 		goto out;
3107 
3108 	if (idev->cnf.disable_ipv6) {
3109 		NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
3110 		err = -EACCES;
3111 		goto out;
3112 	}
3113 
3114 	if (!(dev->flags & IFF_UP)) {
3115 		NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3116 		err = -ENETDOWN;
3117 		goto out;
3118 	}
3119 
3120 	if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
3121 		if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
3122 			NL_SET_ERR_MSG(extack, "Invalid source address");
3123 			err = -EINVAL;
3124 			goto out;
3125 		}
3126 		rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
3127 		rt->fib6_prefsrc.plen = 128;
3128 	} else
3129 		rt->fib6_prefsrc.plen = 0;
3130 
3131 	rt->fib6_flags = cfg->fc_flags;
3132 
3133 install_route:
3134 	if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
3135 	    !netif_carrier_ok(dev))
3136 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
3137 	rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK);
3138 	rt->fib6_nh.nh_dev = dev;
3139 	rt->fib6_table = table;
3140 
3141 	cfg->fc_nlinfo.nl_net = dev_net(dev);
3142 
3143 	if (idev)
3144 		in6_dev_put(idev);
3145 
3146 	return rt;
3147 out:
3148 	if (dev)
3149 		dev_put(dev);
3150 	if (idev)
3151 		in6_dev_put(idev);
3152 
3153 	fib6_info_release(rt);
3154 	return ERR_PTR(err);
3155 }
3156 
3157 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
3158 		  struct netlink_ext_ack *extack)
3159 {
3160 	struct fib6_info *rt;
3161 	int err;
3162 
3163 	rt = ip6_route_info_create(cfg, gfp_flags, extack);
3164 	if (IS_ERR(rt))
3165 		return PTR_ERR(rt);
3166 
3167 	err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
3168 	fib6_info_release(rt);
3169 
3170 	return err;
3171 }
3172 
3173 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
3174 {
3175 	struct net *net = info->nl_net;
3176 	struct fib6_table *table;
3177 	int err;
3178 
3179 	if (rt == net->ipv6.fib6_null_entry) {
3180 		err = -ENOENT;
3181 		goto out;
3182 	}
3183 
3184 	table = rt->fib6_table;
3185 	spin_lock_bh(&table->tb6_lock);
3186 	err = fib6_del(rt, info);
3187 	spin_unlock_bh(&table->tb6_lock);
3188 
3189 out:
3190 	fib6_info_release(rt);
3191 	return err;
3192 }
3193 
3194 int ip6_del_rt(struct net *net, struct fib6_info *rt)
3195 {
3196 	struct nl_info info = { .nl_net = net };
3197 
3198 	return __ip6_del_rt(rt, &info);
3199 }
3200 
3201 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
3202 {
3203 	struct nl_info *info = &cfg->fc_nlinfo;
3204 	struct net *net = info->nl_net;
3205 	struct sk_buff *skb = NULL;
3206 	struct fib6_table *table;
3207 	int err = -ENOENT;
3208 
3209 	if (rt == net->ipv6.fib6_null_entry)
3210 		goto out_put;
3211 	table = rt->fib6_table;
3212 	spin_lock_bh(&table->tb6_lock);
3213 
3214 	if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
3215 		struct fib6_info *sibling, *next_sibling;
3216 
3217 		/* prefer to send a single notification with all hops */
3218 		skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
3219 		if (skb) {
3220 			u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
3221 
3222 			if (rt6_fill_node(net, skb, rt, NULL,
3223 					  NULL, NULL, 0, RTM_DELROUTE,
3224 					  info->portid, seq, 0) < 0) {
3225 				kfree_skb(skb);
3226 				skb = NULL;
3227 			} else
3228 				info->skip_notify = 1;
3229 		}
3230 
3231 		list_for_each_entry_safe(sibling, next_sibling,
3232 					 &rt->fib6_siblings,
3233 					 fib6_siblings) {
3234 			err = fib6_del(sibling, info);
3235 			if (err)
3236 				goto out_unlock;
3237 		}
3238 	}
3239 
3240 	err = fib6_del(rt, info);
3241 out_unlock:
3242 	spin_unlock_bh(&table->tb6_lock);
3243 out_put:
3244 	fib6_info_release(rt);
3245 
3246 	if (skb) {
3247 		rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
3248 			    info->nlh, gfp_any());
3249 	}
3250 	return err;
3251 }
3252 
3253 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
3254 {
3255 	int rc = -ESRCH;
3256 
3257 	if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
3258 		goto out;
3259 
3260 	if (cfg->fc_flags & RTF_GATEWAY &&
3261 	    !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
3262 		goto out;
3263 	if (dst_hold_safe(&rt->dst))
3264 		rc = rt6_remove_exception_rt(rt);
3265 out:
3266 	return rc;
3267 }
3268 
3269 static int ip6_route_del(struct fib6_config *cfg,
3270 			 struct netlink_ext_ack *extack)
3271 {
3272 	struct rt6_info *rt_cache;
3273 	struct fib6_table *table;
3274 	struct fib6_info *rt;
3275 	struct fib6_node *fn;
3276 	int err = -ESRCH;
3277 
3278 	table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
3279 	if (!table) {
3280 		NL_SET_ERR_MSG(extack, "FIB table does not exist");
3281 		return err;
3282 	}
3283 
3284 	rcu_read_lock();
3285 
3286 	fn = fib6_locate(&table->tb6_root,
3287 			 &cfg->fc_dst, cfg->fc_dst_len,
3288 			 &cfg->fc_src, cfg->fc_src_len,
3289 			 !(cfg->fc_flags & RTF_CACHE));
3290 
3291 	if (fn) {
3292 		for_each_fib6_node_rt_rcu(fn) {
3293 			if (cfg->fc_flags & RTF_CACHE) {
3294 				int rc;
3295 
3296 				rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst,
3297 							      &cfg->fc_src);
3298 				if (rt_cache) {
3299 					rc = ip6_del_cached_rt(rt_cache, cfg);
3300 					if (rc != -ESRCH) {
3301 						rcu_read_unlock();
3302 						return rc;
3303 					}
3304 				}
3305 				continue;
3306 			}
3307 			if (cfg->fc_ifindex &&
3308 			    (!rt->fib6_nh.nh_dev ||
3309 			     rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex))
3310 				continue;
3311 			if (cfg->fc_flags & RTF_GATEWAY &&
3312 			    !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw))
3313 				continue;
3314 			if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
3315 				continue;
3316 			if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol)
3317 				continue;
3318 			if (!fib6_info_hold_safe(rt))
3319 				continue;
3320 			rcu_read_unlock();
3321 
3322 			/* if gateway was specified only delete the one hop */
3323 			if (cfg->fc_flags & RTF_GATEWAY)
3324 				return __ip6_del_rt(rt, &cfg->fc_nlinfo);
3325 
3326 			return __ip6_del_rt_siblings(rt, cfg);
3327 		}
3328 	}
3329 	rcu_read_unlock();
3330 
3331 	return err;
3332 }
3333 
3334 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
3335 {
3336 	struct netevent_redirect netevent;
3337 	struct rt6_info *rt, *nrt = NULL;
3338 	struct ndisc_options ndopts;
3339 	struct inet6_dev *in6_dev;
3340 	struct neighbour *neigh;
3341 	struct fib6_info *from;
3342 	struct rd_msg *msg;
3343 	int optlen, on_link;
3344 	u8 *lladdr;
3345 
3346 	optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
3347 	optlen -= sizeof(*msg);
3348 
3349 	if (optlen < 0) {
3350 		net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
3351 		return;
3352 	}
3353 
3354 	msg = (struct rd_msg *)icmp6_hdr(skb);
3355 
3356 	if (ipv6_addr_is_multicast(&msg->dest)) {
3357 		net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
3358 		return;
3359 	}
3360 
3361 	on_link = 0;
3362 	if (ipv6_addr_equal(&msg->dest, &msg->target)) {
3363 		on_link = 1;
3364 	} else if (ipv6_addr_type(&msg->target) !=
3365 		   (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
3366 		net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
3367 		return;
3368 	}
3369 
3370 	in6_dev = __in6_dev_get(skb->dev);
3371 	if (!in6_dev)
3372 		return;
3373 	if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
3374 		return;
3375 
3376 	/* RFC2461 8.1:
3377 	 *	The IP source address of the Redirect MUST be the same as the current
3378 	 *	first-hop router for the specified ICMP Destination Address.
3379 	 */
3380 
3381 	if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
3382 		net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
3383 		return;
3384 	}
3385 
3386 	lladdr = NULL;
3387 	if (ndopts.nd_opts_tgt_lladdr) {
3388 		lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
3389 					     skb->dev);
3390 		if (!lladdr) {
3391 			net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
3392 			return;
3393 		}
3394 	}
3395 
3396 	rt = (struct rt6_info *) dst;
3397 	if (rt->rt6i_flags & RTF_REJECT) {
3398 		net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
3399 		return;
3400 	}
3401 
3402 	/* Redirect received -> path was valid.
3403 	 * Look, redirects are sent only in response to data packets,
3404 	 * so that this nexthop apparently is reachable. --ANK
3405 	 */
3406 	dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
3407 
3408 	neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
3409 	if (!neigh)
3410 		return;
3411 
3412 	/*
3413 	 *	We have finally decided to accept it.
3414 	 */
3415 
3416 	ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
3417 		     NEIGH_UPDATE_F_WEAK_OVERRIDE|
3418 		     NEIGH_UPDATE_F_OVERRIDE|
3419 		     (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
3420 				     NEIGH_UPDATE_F_ISROUTER)),
3421 		     NDISC_REDIRECT, &ndopts);
3422 
3423 	rcu_read_lock();
3424 	from = rcu_dereference(rt->from);
3425 	/* This fib6_info_hold() is safe here because we hold reference to rt
3426 	 * and rt already holds reference to fib6_info.
3427 	 */
3428 	fib6_info_hold(from);
3429 	rcu_read_unlock();
3430 
3431 	nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL);
3432 	if (!nrt)
3433 		goto out;
3434 
3435 	nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
3436 	if (on_link)
3437 		nrt->rt6i_flags &= ~RTF_GATEWAY;
3438 
3439 	nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
3440 
3441 	/* No need to remove rt from the exception table if rt is
3442 	 * a cached route because rt6_insert_exception() will
3443 	 * takes care of it
3444 	 */
3445 	if (rt6_insert_exception(nrt, from)) {
3446 		dst_release_immediate(&nrt->dst);
3447 		goto out;
3448 	}
3449 
3450 	netevent.old = &rt->dst;
3451 	netevent.new = &nrt->dst;
3452 	netevent.daddr = &msg->dest;
3453 	netevent.neigh = neigh;
3454 	call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
3455 
3456 out:
3457 	fib6_info_release(from);
3458 	neigh_release(neigh);
3459 }
3460 
3461 #ifdef CONFIG_IPV6_ROUTE_INFO
3462 static struct fib6_info *rt6_get_route_info(struct net *net,
3463 					   const struct in6_addr *prefix, int prefixlen,
3464 					   const struct in6_addr *gwaddr,
3465 					   struct net_device *dev)
3466 {
3467 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
3468 	int ifindex = dev->ifindex;
3469 	struct fib6_node *fn;
3470 	struct fib6_info *rt = NULL;
3471 	struct fib6_table *table;
3472 
3473 	table = fib6_get_table(net, tb_id);
3474 	if (!table)
3475 		return NULL;
3476 
3477 	rcu_read_lock();
3478 	fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
3479 	if (!fn)
3480 		goto out;
3481 
3482 	for_each_fib6_node_rt_rcu(fn) {
3483 		if (rt->fib6_nh.nh_dev->ifindex != ifindex)
3484 			continue;
3485 		if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
3486 			continue;
3487 		if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr))
3488 			continue;
3489 		if (!fib6_info_hold_safe(rt))
3490 			continue;
3491 		break;
3492 	}
3493 out:
3494 	rcu_read_unlock();
3495 	return rt;
3496 }
3497 
3498 static struct fib6_info *rt6_add_route_info(struct net *net,
3499 					   const struct in6_addr *prefix, int prefixlen,
3500 					   const struct in6_addr *gwaddr,
3501 					   struct net_device *dev,
3502 					   unsigned int pref)
3503 {
3504 	struct fib6_config cfg = {
3505 		.fc_metric	= IP6_RT_PRIO_USER,
3506 		.fc_ifindex	= dev->ifindex,
3507 		.fc_dst_len	= prefixlen,
3508 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
3509 				  RTF_UP | RTF_PREF(pref),
3510 		.fc_protocol = RTPROT_RA,
3511 		.fc_type = RTN_UNICAST,
3512 		.fc_nlinfo.portid = 0,
3513 		.fc_nlinfo.nlh = NULL,
3514 		.fc_nlinfo.nl_net = net,
3515 	};
3516 
3517 	cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO,
3518 	cfg.fc_dst = *prefix;
3519 	cfg.fc_gateway = *gwaddr;
3520 
3521 	/* We should treat it as a default route if prefix length is 0. */
3522 	if (!prefixlen)
3523 		cfg.fc_flags |= RTF_DEFAULT;
3524 
3525 	ip6_route_add(&cfg, GFP_ATOMIC, NULL);
3526 
3527 	return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
3528 }
3529 #endif
3530 
3531 struct fib6_info *rt6_get_dflt_router(struct net *net,
3532 				     const struct in6_addr *addr,
3533 				     struct net_device *dev)
3534 {
3535 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
3536 	struct fib6_info *rt;
3537 	struct fib6_table *table;
3538 
3539 	table = fib6_get_table(net, tb_id);
3540 	if (!table)
3541 		return NULL;
3542 
3543 	rcu_read_lock();
3544 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3545 		if (dev == rt->fib6_nh.nh_dev &&
3546 		    ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
3547 		    ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr))
3548 			break;
3549 	}
3550 	if (rt && !fib6_info_hold_safe(rt))
3551 		rt = NULL;
3552 	rcu_read_unlock();
3553 	return rt;
3554 }
3555 
3556 struct fib6_info *rt6_add_dflt_router(struct net *net,
3557 				     const struct in6_addr *gwaddr,
3558 				     struct net_device *dev,
3559 				     unsigned int pref)
3560 {
3561 	struct fib6_config cfg = {
3562 		.fc_table	= l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
3563 		.fc_metric	= IP6_RT_PRIO_USER,
3564 		.fc_ifindex	= dev->ifindex,
3565 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
3566 				  RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
3567 		.fc_protocol = RTPROT_RA,
3568 		.fc_type = RTN_UNICAST,
3569 		.fc_nlinfo.portid = 0,
3570 		.fc_nlinfo.nlh = NULL,
3571 		.fc_nlinfo.nl_net = net,
3572 	};
3573 
3574 	cfg.fc_gateway = *gwaddr;
3575 
3576 	if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
3577 		struct fib6_table *table;
3578 
3579 		table = fib6_get_table(dev_net(dev), cfg.fc_table);
3580 		if (table)
3581 			table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
3582 	}
3583 
3584 	return rt6_get_dflt_router(net, gwaddr, dev);
3585 }
3586 
3587 static void __rt6_purge_dflt_routers(struct net *net,
3588 				     struct fib6_table *table)
3589 {
3590 	struct fib6_info *rt;
3591 
3592 restart:
3593 	rcu_read_lock();
3594 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3595 		struct net_device *dev = fib6_info_nh_dev(rt);
3596 		struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
3597 
3598 		if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
3599 		    (!idev || idev->cnf.accept_ra != 2) &&
3600 		    fib6_info_hold_safe(rt)) {
3601 			rcu_read_unlock();
3602 			ip6_del_rt(net, rt);
3603 			goto restart;
3604 		}
3605 	}
3606 	rcu_read_unlock();
3607 
3608 	table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
3609 }
3610 
3611 void rt6_purge_dflt_routers(struct net *net)
3612 {
3613 	struct fib6_table *table;
3614 	struct hlist_head *head;
3615 	unsigned int h;
3616 
3617 	rcu_read_lock();
3618 
3619 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
3620 		head = &net->ipv6.fib_table_hash[h];
3621 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
3622 			if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
3623 				__rt6_purge_dflt_routers(net, table);
3624 		}
3625 	}
3626 
3627 	rcu_read_unlock();
3628 }
3629 
3630 static void rtmsg_to_fib6_config(struct net *net,
3631 				 struct in6_rtmsg *rtmsg,
3632 				 struct fib6_config *cfg)
3633 {
3634 	memset(cfg, 0, sizeof(*cfg));
3635 
3636 	cfg->fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
3637 			 : RT6_TABLE_MAIN;
3638 	cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
3639 	cfg->fc_metric = rtmsg->rtmsg_metric;
3640 	cfg->fc_expires = rtmsg->rtmsg_info;
3641 	cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
3642 	cfg->fc_src_len = rtmsg->rtmsg_src_len;
3643 	cfg->fc_flags = rtmsg->rtmsg_flags;
3644 	cfg->fc_type = rtmsg->rtmsg_type;
3645 
3646 	cfg->fc_nlinfo.nl_net = net;
3647 
3648 	cfg->fc_dst = rtmsg->rtmsg_dst;
3649 	cfg->fc_src = rtmsg->rtmsg_src;
3650 	cfg->fc_gateway = rtmsg->rtmsg_gateway;
3651 }
3652 
3653 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3654 {
3655 	struct fib6_config cfg;
3656 	struct in6_rtmsg rtmsg;
3657 	int err;
3658 
3659 	switch (cmd) {
3660 	case SIOCADDRT:		/* Add a route */
3661 	case SIOCDELRT:		/* Delete a route */
3662 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3663 			return -EPERM;
3664 		err = copy_from_user(&rtmsg, arg,
3665 				     sizeof(struct in6_rtmsg));
3666 		if (err)
3667 			return -EFAULT;
3668 
3669 		rtmsg_to_fib6_config(net, &rtmsg, &cfg);
3670 
3671 		rtnl_lock();
3672 		switch (cmd) {
3673 		case SIOCADDRT:
3674 			err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
3675 			break;
3676 		case SIOCDELRT:
3677 			err = ip6_route_del(&cfg, NULL);
3678 			break;
3679 		default:
3680 			err = -EINVAL;
3681 		}
3682 		rtnl_unlock();
3683 
3684 		return err;
3685 	}
3686 
3687 	return -EINVAL;
3688 }
3689 
3690 /*
3691  *	Drop the packet on the floor
3692  */
3693 
3694 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
3695 {
3696 	int type;
3697 	struct dst_entry *dst = skb_dst(skb);
3698 	switch (ipstats_mib_noroutes) {
3699 	case IPSTATS_MIB_INNOROUTES:
3700 		type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
3701 		if (type == IPV6_ADDR_ANY) {
3702 			IP6_INC_STATS(dev_net(dst->dev),
3703 				      __in6_dev_get_safely(skb->dev),
3704 				      IPSTATS_MIB_INADDRERRORS);
3705 			break;
3706 		}
3707 		/* FALLTHROUGH */
3708 	case IPSTATS_MIB_OUTNOROUTES:
3709 		IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
3710 			      ipstats_mib_noroutes);
3711 		break;
3712 	}
3713 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
3714 	kfree_skb(skb);
3715 	return 0;
3716 }
3717 
3718 static int ip6_pkt_discard(struct sk_buff *skb)
3719 {
3720 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
3721 }
3722 
3723 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3724 {
3725 	skb->dev = skb_dst(skb)->dev;
3726 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
3727 }
3728 
3729 static int ip6_pkt_prohibit(struct sk_buff *skb)
3730 {
3731 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
3732 }
3733 
3734 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3735 {
3736 	skb->dev = skb_dst(skb)->dev;
3737 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
3738 }
3739 
3740 /*
3741  *	Allocate a dst for local (unicast / anycast) address.
3742  */
3743 
3744 struct fib6_info *addrconf_f6i_alloc(struct net *net,
3745 				     struct inet6_dev *idev,
3746 				     const struct in6_addr *addr,
3747 				     bool anycast, gfp_t gfp_flags)
3748 {
3749 	u32 tb_id;
3750 	struct net_device *dev = idev->dev;
3751 	struct fib6_info *f6i;
3752 
3753 	f6i = fib6_info_alloc(gfp_flags);
3754 	if (!f6i)
3755 		return ERR_PTR(-ENOMEM);
3756 
3757 	f6i->dst_nocount = true;
3758 	f6i->dst_host = true;
3759 	f6i->fib6_protocol = RTPROT_KERNEL;
3760 	f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP;
3761 	if (anycast) {
3762 		f6i->fib6_type = RTN_ANYCAST;
3763 		f6i->fib6_flags |= RTF_ANYCAST;
3764 	} else {
3765 		f6i->fib6_type = RTN_LOCAL;
3766 		f6i->fib6_flags |= RTF_LOCAL;
3767 	}
3768 
3769 	f6i->fib6_nh.nh_gw = *addr;
3770 	dev_hold(dev);
3771 	f6i->fib6_nh.nh_dev = dev;
3772 	f6i->fib6_dst.addr = *addr;
3773 	f6i->fib6_dst.plen = 128;
3774 	tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL;
3775 	f6i->fib6_table = fib6_get_table(net, tb_id);
3776 
3777 	return f6i;
3778 }
3779 
3780 /* remove deleted ip from prefsrc entries */
3781 struct arg_dev_net_ip {
3782 	struct net_device *dev;
3783 	struct net *net;
3784 	struct in6_addr *addr;
3785 };
3786 
3787 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
3788 {
3789 	struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
3790 	struct net *net = ((struct arg_dev_net_ip *)arg)->net;
3791 	struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
3792 
3793 	if (((void *)rt->fib6_nh.nh_dev == dev || !dev) &&
3794 	    rt != net->ipv6.fib6_null_entry &&
3795 	    ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
3796 		spin_lock_bh(&rt6_exception_lock);
3797 		/* remove prefsrc entry */
3798 		rt->fib6_prefsrc.plen = 0;
3799 		/* need to update cache as well */
3800 		rt6_exceptions_remove_prefsrc(rt);
3801 		spin_unlock_bh(&rt6_exception_lock);
3802 	}
3803 	return 0;
3804 }
3805 
3806 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
3807 {
3808 	struct net *net = dev_net(ifp->idev->dev);
3809 	struct arg_dev_net_ip adni = {
3810 		.dev = ifp->idev->dev,
3811 		.net = net,
3812 		.addr = &ifp->addr,
3813 	};
3814 	fib6_clean_all(net, fib6_remove_prefsrc, &adni);
3815 }
3816 
3817 #define RTF_RA_ROUTER		(RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY)
3818 
3819 /* Remove routers and update dst entries when gateway turn into host. */
3820 static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
3821 {
3822 	struct in6_addr *gateway = (struct in6_addr *)arg;
3823 
3824 	if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
3825 	    ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) {
3826 		return -1;
3827 	}
3828 
3829 	/* Further clean up cached routes in exception table.
3830 	 * This is needed because cached route may have a different
3831 	 * gateway than its 'parent' in the case of an ip redirect.
3832 	 */
3833 	rt6_exceptions_clean_tohost(rt, gateway);
3834 
3835 	return 0;
3836 }
3837 
3838 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
3839 {
3840 	fib6_clean_all(net, fib6_clean_tohost, gateway);
3841 }
3842 
3843 struct arg_netdev_event {
3844 	const struct net_device *dev;
3845 	union {
3846 		unsigned int nh_flags;
3847 		unsigned long event;
3848 	};
3849 };
3850 
3851 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
3852 {
3853 	struct fib6_info *iter;
3854 	struct fib6_node *fn;
3855 
3856 	fn = rcu_dereference_protected(rt->fib6_node,
3857 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3858 	iter = rcu_dereference_protected(fn->leaf,
3859 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3860 	while (iter) {
3861 		if (iter->fib6_metric == rt->fib6_metric &&
3862 		    rt6_qualify_for_ecmp(iter))
3863 			return iter;
3864 		iter = rcu_dereference_protected(iter->fib6_next,
3865 				lockdep_is_held(&rt->fib6_table->tb6_lock));
3866 	}
3867 
3868 	return NULL;
3869 }
3870 
3871 static bool rt6_is_dead(const struct fib6_info *rt)
3872 {
3873 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD ||
3874 	    (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
3875 	     fib6_ignore_linkdown(rt)))
3876 		return true;
3877 
3878 	return false;
3879 }
3880 
3881 static int rt6_multipath_total_weight(const struct fib6_info *rt)
3882 {
3883 	struct fib6_info *iter;
3884 	int total = 0;
3885 
3886 	if (!rt6_is_dead(rt))
3887 		total += rt->fib6_nh.nh_weight;
3888 
3889 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
3890 		if (!rt6_is_dead(iter))
3891 			total += iter->fib6_nh.nh_weight;
3892 	}
3893 
3894 	return total;
3895 }
3896 
3897 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
3898 {
3899 	int upper_bound = -1;
3900 
3901 	if (!rt6_is_dead(rt)) {
3902 		*weight += rt->fib6_nh.nh_weight;
3903 		upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
3904 						    total) - 1;
3905 	}
3906 	atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound);
3907 }
3908 
3909 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
3910 {
3911 	struct fib6_info *iter;
3912 	int weight = 0;
3913 
3914 	rt6_upper_bound_set(rt, &weight, total);
3915 
3916 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3917 		rt6_upper_bound_set(iter, &weight, total);
3918 }
3919 
3920 void rt6_multipath_rebalance(struct fib6_info *rt)
3921 {
3922 	struct fib6_info *first;
3923 	int total;
3924 
3925 	/* In case the entire multipath route was marked for flushing,
3926 	 * then there is no need to rebalance upon the removal of every
3927 	 * sibling route.
3928 	 */
3929 	if (!rt->fib6_nsiblings || rt->should_flush)
3930 		return;
3931 
3932 	/* During lookup routes are evaluated in order, so we need to
3933 	 * make sure upper bounds are assigned from the first sibling
3934 	 * onwards.
3935 	 */
3936 	first = rt6_multipath_first_sibling(rt);
3937 	if (WARN_ON_ONCE(!first))
3938 		return;
3939 
3940 	total = rt6_multipath_total_weight(first);
3941 	rt6_multipath_upper_bound_set(first, total);
3942 }
3943 
3944 static int fib6_ifup(struct fib6_info *rt, void *p_arg)
3945 {
3946 	const struct arg_netdev_event *arg = p_arg;
3947 	struct net *net = dev_net(arg->dev);
3948 
3949 	if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) {
3950 		rt->fib6_nh.nh_flags &= ~arg->nh_flags;
3951 		fib6_update_sernum_upto_root(net, rt);
3952 		rt6_multipath_rebalance(rt);
3953 	}
3954 
3955 	return 0;
3956 }
3957 
3958 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags)
3959 {
3960 	struct arg_netdev_event arg = {
3961 		.dev = dev,
3962 		{
3963 			.nh_flags = nh_flags,
3964 		},
3965 	};
3966 
3967 	if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
3968 		arg.nh_flags |= RTNH_F_LINKDOWN;
3969 
3970 	fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
3971 }
3972 
3973 static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
3974 				   const struct net_device *dev)
3975 {
3976 	struct fib6_info *iter;
3977 
3978 	if (rt->fib6_nh.nh_dev == dev)
3979 		return true;
3980 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3981 		if (iter->fib6_nh.nh_dev == dev)
3982 			return true;
3983 
3984 	return false;
3985 }
3986 
3987 static void rt6_multipath_flush(struct fib6_info *rt)
3988 {
3989 	struct fib6_info *iter;
3990 
3991 	rt->should_flush = 1;
3992 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3993 		iter->should_flush = 1;
3994 }
3995 
3996 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
3997 					     const struct net_device *down_dev)
3998 {
3999 	struct fib6_info *iter;
4000 	unsigned int dead = 0;
4001 
4002 	if (rt->fib6_nh.nh_dev == down_dev ||
4003 	    rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4004 		dead++;
4005 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4006 		if (iter->fib6_nh.nh_dev == down_dev ||
4007 		    iter->fib6_nh.nh_flags & RTNH_F_DEAD)
4008 			dead++;
4009 
4010 	return dead;
4011 }
4012 
4013 static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
4014 				       const struct net_device *dev,
4015 				       unsigned int nh_flags)
4016 {
4017 	struct fib6_info *iter;
4018 
4019 	if (rt->fib6_nh.nh_dev == dev)
4020 		rt->fib6_nh.nh_flags |= nh_flags;
4021 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4022 		if (iter->fib6_nh.nh_dev == dev)
4023 			iter->fib6_nh.nh_flags |= nh_flags;
4024 }
4025 
4026 /* called with write lock held for table with rt */
4027 static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
4028 {
4029 	const struct arg_netdev_event *arg = p_arg;
4030 	const struct net_device *dev = arg->dev;
4031 	struct net *net = dev_net(dev);
4032 
4033 	if (rt == net->ipv6.fib6_null_entry)
4034 		return 0;
4035 
4036 	switch (arg->event) {
4037 	case NETDEV_UNREGISTER:
4038 		return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4039 	case NETDEV_DOWN:
4040 		if (rt->should_flush)
4041 			return -1;
4042 		if (!rt->fib6_nsiblings)
4043 			return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4044 		if (rt6_multipath_uses_dev(rt, dev)) {
4045 			unsigned int count;
4046 
4047 			count = rt6_multipath_dead_count(rt, dev);
4048 			if (rt->fib6_nsiblings + 1 == count) {
4049 				rt6_multipath_flush(rt);
4050 				return -1;
4051 			}
4052 			rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
4053 						   RTNH_F_LINKDOWN);
4054 			fib6_update_sernum(net, rt);
4055 			rt6_multipath_rebalance(rt);
4056 		}
4057 		return -2;
4058 	case NETDEV_CHANGE:
4059 		if (rt->fib6_nh.nh_dev != dev ||
4060 		    rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
4061 			break;
4062 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
4063 		rt6_multipath_rebalance(rt);
4064 		break;
4065 	}
4066 
4067 	return 0;
4068 }
4069 
4070 void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
4071 {
4072 	struct arg_netdev_event arg = {
4073 		.dev = dev,
4074 		{
4075 			.event = event,
4076 		},
4077 	};
4078 
4079 	fib6_clean_all(dev_net(dev), fib6_ifdown, &arg);
4080 }
4081 
4082 void rt6_disable_ip(struct net_device *dev, unsigned long event)
4083 {
4084 	rt6_sync_down_dev(dev, event);
4085 	rt6_uncached_list_flush_dev(dev_net(dev), dev);
4086 	neigh_ifdown(&nd_tbl, dev);
4087 }
4088 
4089 struct rt6_mtu_change_arg {
4090 	struct net_device *dev;
4091 	unsigned int mtu;
4092 };
4093 
4094 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg)
4095 {
4096 	struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
4097 	struct inet6_dev *idev;
4098 
4099 	/* In IPv6 pmtu discovery is not optional,
4100 	   so that RTAX_MTU lock cannot disable it.
4101 	   We still use this lock to block changes
4102 	   caused by addrconf/ndisc.
4103 	*/
4104 
4105 	idev = __in6_dev_get(arg->dev);
4106 	if (!idev)
4107 		return 0;
4108 
4109 	/* For administrative MTU increase, there is no way to discover
4110 	   IPv6 PMTU increase, so PMTU increase should be updated here.
4111 	   Since RFC 1981 doesn't include administrative MTU increase
4112 	   update PMTU increase is a MUST. (i.e. jumbo frame)
4113 	 */
4114 	if (rt->fib6_nh.nh_dev == arg->dev &&
4115 	    !fib6_metric_locked(rt, RTAX_MTU)) {
4116 		u32 mtu = rt->fib6_pmtu;
4117 
4118 		if (mtu >= arg->mtu ||
4119 		    (mtu < arg->mtu && mtu == idev->cnf.mtu6))
4120 			fib6_metric_set(rt, RTAX_MTU, arg->mtu);
4121 
4122 		spin_lock_bh(&rt6_exception_lock);
4123 		rt6_exceptions_update_pmtu(idev, rt, arg->mtu);
4124 		spin_unlock_bh(&rt6_exception_lock);
4125 	}
4126 	return 0;
4127 }
4128 
4129 void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
4130 {
4131 	struct rt6_mtu_change_arg arg = {
4132 		.dev = dev,
4133 		.mtu = mtu,
4134 	};
4135 
4136 	fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
4137 }
4138 
4139 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
4140 	[RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
4141 	[RTA_PREFSRC]		= { .len = sizeof(struct in6_addr) },
4142 	[RTA_OIF]               = { .type = NLA_U32 },
4143 	[RTA_IIF]		= { .type = NLA_U32 },
4144 	[RTA_PRIORITY]          = { .type = NLA_U32 },
4145 	[RTA_METRICS]           = { .type = NLA_NESTED },
4146 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
4147 	[RTA_PREF]              = { .type = NLA_U8 },
4148 	[RTA_ENCAP_TYPE]	= { .type = NLA_U16 },
4149 	[RTA_ENCAP]		= { .type = NLA_NESTED },
4150 	[RTA_EXPIRES]		= { .type = NLA_U32 },
4151 	[RTA_UID]		= { .type = NLA_U32 },
4152 	[RTA_MARK]		= { .type = NLA_U32 },
4153 	[RTA_TABLE]		= { .type = NLA_U32 },
4154 	[RTA_IP_PROTO]		= { .type = NLA_U8 },
4155 	[RTA_SPORT]		= { .type = NLA_U16 },
4156 	[RTA_DPORT]		= { .type = NLA_U16 },
4157 };
4158 
4159 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
4160 			      struct fib6_config *cfg,
4161 			      struct netlink_ext_ack *extack)
4162 {
4163 	struct rtmsg *rtm;
4164 	struct nlattr *tb[RTA_MAX+1];
4165 	unsigned int pref;
4166 	int err;
4167 
4168 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4169 			  NULL);
4170 	if (err < 0)
4171 		goto errout;
4172 
4173 	err = -EINVAL;
4174 	rtm = nlmsg_data(nlh);
4175 	memset(cfg, 0, sizeof(*cfg));
4176 
4177 	cfg->fc_table = rtm->rtm_table;
4178 	cfg->fc_dst_len = rtm->rtm_dst_len;
4179 	cfg->fc_src_len = rtm->rtm_src_len;
4180 	cfg->fc_flags = RTF_UP;
4181 	cfg->fc_protocol = rtm->rtm_protocol;
4182 	cfg->fc_type = rtm->rtm_type;
4183 
4184 	if (rtm->rtm_type == RTN_UNREACHABLE ||
4185 	    rtm->rtm_type == RTN_BLACKHOLE ||
4186 	    rtm->rtm_type == RTN_PROHIBIT ||
4187 	    rtm->rtm_type == RTN_THROW)
4188 		cfg->fc_flags |= RTF_REJECT;
4189 
4190 	if (rtm->rtm_type == RTN_LOCAL)
4191 		cfg->fc_flags |= RTF_LOCAL;
4192 
4193 	if (rtm->rtm_flags & RTM_F_CLONED)
4194 		cfg->fc_flags |= RTF_CACHE;
4195 
4196 	cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
4197 
4198 	cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
4199 	cfg->fc_nlinfo.nlh = nlh;
4200 	cfg->fc_nlinfo.nl_net = sock_net(skb->sk);
4201 
4202 	if (tb[RTA_GATEWAY]) {
4203 		cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
4204 		cfg->fc_flags |= RTF_GATEWAY;
4205 	}
4206 
4207 	if (tb[RTA_DST]) {
4208 		int plen = (rtm->rtm_dst_len + 7) >> 3;
4209 
4210 		if (nla_len(tb[RTA_DST]) < plen)
4211 			goto errout;
4212 
4213 		nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
4214 	}
4215 
4216 	if (tb[RTA_SRC]) {
4217 		int plen = (rtm->rtm_src_len + 7) >> 3;
4218 
4219 		if (nla_len(tb[RTA_SRC]) < plen)
4220 			goto errout;
4221 
4222 		nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
4223 	}
4224 
4225 	if (tb[RTA_PREFSRC])
4226 		cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
4227 
4228 	if (tb[RTA_OIF])
4229 		cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
4230 
4231 	if (tb[RTA_PRIORITY])
4232 		cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
4233 
4234 	if (tb[RTA_METRICS]) {
4235 		cfg->fc_mx = nla_data(tb[RTA_METRICS]);
4236 		cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
4237 	}
4238 
4239 	if (tb[RTA_TABLE])
4240 		cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
4241 
4242 	if (tb[RTA_MULTIPATH]) {
4243 		cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
4244 		cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
4245 
4246 		err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
4247 						     cfg->fc_mp_len, extack);
4248 		if (err < 0)
4249 			goto errout;
4250 	}
4251 
4252 	if (tb[RTA_PREF]) {
4253 		pref = nla_get_u8(tb[RTA_PREF]);
4254 		if (pref != ICMPV6_ROUTER_PREF_LOW &&
4255 		    pref != ICMPV6_ROUTER_PREF_HIGH)
4256 			pref = ICMPV6_ROUTER_PREF_MEDIUM;
4257 		cfg->fc_flags |= RTF_PREF(pref);
4258 	}
4259 
4260 	if (tb[RTA_ENCAP])
4261 		cfg->fc_encap = tb[RTA_ENCAP];
4262 
4263 	if (tb[RTA_ENCAP_TYPE]) {
4264 		cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
4265 
4266 		err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
4267 		if (err < 0)
4268 			goto errout;
4269 	}
4270 
4271 	if (tb[RTA_EXPIRES]) {
4272 		unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
4273 
4274 		if (addrconf_finite_timeout(timeout)) {
4275 			cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
4276 			cfg->fc_flags |= RTF_EXPIRES;
4277 		}
4278 	}
4279 
4280 	err = 0;
4281 errout:
4282 	return err;
4283 }
4284 
4285 struct rt6_nh {
4286 	struct fib6_info *fib6_info;
4287 	struct fib6_config r_cfg;
4288 	struct list_head next;
4289 };
4290 
4291 static void ip6_print_replace_route_err(struct list_head *rt6_nh_list)
4292 {
4293 	struct rt6_nh *nh;
4294 
4295 	list_for_each_entry(nh, rt6_nh_list, next) {
4296 		pr_warn("IPV6: multipath route replace failed (check consistency of installed routes): %pI6c nexthop %pI6c ifi %d\n",
4297 		        &nh->r_cfg.fc_dst, &nh->r_cfg.fc_gateway,
4298 		        nh->r_cfg.fc_ifindex);
4299 	}
4300 }
4301 
4302 static int ip6_route_info_append(struct net *net,
4303 				 struct list_head *rt6_nh_list,
4304 				 struct fib6_info *rt,
4305 				 struct fib6_config *r_cfg)
4306 {
4307 	struct rt6_nh *nh;
4308 	int err = -EEXIST;
4309 
4310 	list_for_each_entry(nh, rt6_nh_list, next) {
4311 		/* check if fib6_info already exists */
4312 		if (rt6_duplicate_nexthop(nh->fib6_info, rt))
4313 			return err;
4314 	}
4315 
4316 	nh = kzalloc(sizeof(*nh), GFP_KERNEL);
4317 	if (!nh)
4318 		return -ENOMEM;
4319 	nh->fib6_info = rt;
4320 	err = ip6_convert_metrics(net, rt, r_cfg);
4321 	if (err) {
4322 		kfree(nh);
4323 		return err;
4324 	}
4325 	memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
4326 	list_add_tail(&nh->next, rt6_nh_list);
4327 
4328 	return 0;
4329 }
4330 
4331 static void ip6_route_mpath_notify(struct fib6_info *rt,
4332 				   struct fib6_info *rt_last,
4333 				   struct nl_info *info,
4334 				   __u16 nlflags)
4335 {
4336 	/* if this is an APPEND route, then rt points to the first route
4337 	 * inserted and rt_last points to last route inserted. Userspace
4338 	 * wants a consistent dump of the route which starts at the first
4339 	 * nexthop. Since sibling routes are always added at the end of
4340 	 * the list, find the first sibling of the last route appended
4341 	 */
4342 	if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
4343 		rt = list_first_entry(&rt_last->fib6_siblings,
4344 				      struct fib6_info,
4345 				      fib6_siblings);
4346 	}
4347 
4348 	if (rt)
4349 		inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
4350 }
4351 
4352 static int ip6_route_multipath_add(struct fib6_config *cfg,
4353 				   struct netlink_ext_ack *extack)
4354 {
4355 	struct fib6_info *rt_notif = NULL, *rt_last = NULL;
4356 	struct nl_info *info = &cfg->fc_nlinfo;
4357 	struct fib6_config r_cfg;
4358 	struct rtnexthop *rtnh;
4359 	struct fib6_info *rt;
4360 	struct rt6_nh *err_nh;
4361 	struct rt6_nh *nh, *nh_safe;
4362 	__u16 nlflags;
4363 	int remaining;
4364 	int attrlen;
4365 	int err = 1;
4366 	int nhn = 0;
4367 	int replace = (cfg->fc_nlinfo.nlh &&
4368 		       (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
4369 	LIST_HEAD(rt6_nh_list);
4370 
4371 	nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
4372 	if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
4373 		nlflags |= NLM_F_APPEND;
4374 
4375 	remaining = cfg->fc_mp_len;
4376 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4377 
4378 	/* Parse a Multipath Entry and build a list (rt6_nh_list) of
4379 	 * fib6_info structs per nexthop
4380 	 */
4381 	while (rtnh_ok(rtnh, remaining)) {
4382 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4383 		if (rtnh->rtnh_ifindex)
4384 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4385 
4386 		attrlen = rtnh_attrlen(rtnh);
4387 		if (attrlen > 0) {
4388 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4389 
4390 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4391 			if (nla) {
4392 				r_cfg.fc_gateway = nla_get_in6_addr(nla);
4393 				r_cfg.fc_flags |= RTF_GATEWAY;
4394 			}
4395 			r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
4396 			nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
4397 			if (nla)
4398 				r_cfg.fc_encap_type = nla_get_u16(nla);
4399 		}
4400 
4401 		r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
4402 		rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
4403 		if (IS_ERR(rt)) {
4404 			err = PTR_ERR(rt);
4405 			rt = NULL;
4406 			goto cleanup;
4407 		}
4408 		if (!rt6_qualify_for_ecmp(rt)) {
4409 			err = -EINVAL;
4410 			NL_SET_ERR_MSG(extack,
4411 				       "Device only routes can not be added for IPv6 using the multipath API.");
4412 			fib6_info_release(rt);
4413 			goto cleanup;
4414 		}
4415 
4416 		rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1;
4417 
4418 		err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
4419 					    rt, &r_cfg);
4420 		if (err) {
4421 			fib6_info_release(rt);
4422 			goto cleanup;
4423 		}
4424 
4425 		rtnh = rtnh_next(rtnh, &remaining);
4426 	}
4427 
4428 	/* for add and replace send one notification with all nexthops.
4429 	 * Skip the notification in fib6_add_rt2node and send one with
4430 	 * the full route when done
4431 	 */
4432 	info->skip_notify = 1;
4433 
4434 	err_nh = NULL;
4435 	list_for_each_entry(nh, &rt6_nh_list, next) {
4436 		err = __ip6_ins_rt(nh->fib6_info, info, extack);
4437 		fib6_info_release(nh->fib6_info);
4438 
4439 		if (!err) {
4440 			/* save reference to last route successfully inserted */
4441 			rt_last = nh->fib6_info;
4442 
4443 			/* save reference to first route for notification */
4444 			if (!rt_notif)
4445 				rt_notif = nh->fib6_info;
4446 		}
4447 
4448 		/* nh->fib6_info is used or freed at this point, reset to NULL*/
4449 		nh->fib6_info = NULL;
4450 		if (err) {
4451 			if (replace && nhn)
4452 				ip6_print_replace_route_err(&rt6_nh_list);
4453 			err_nh = nh;
4454 			goto add_errout;
4455 		}
4456 
4457 		/* Because each route is added like a single route we remove
4458 		 * these flags after the first nexthop: if there is a collision,
4459 		 * we have already failed to add the first nexthop:
4460 		 * fib6_add_rt2node() has rejected it; when replacing, old
4461 		 * nexthops have been replaced by first new, the rest should
4462 		 * be added to it.
4463 		 */
4464 		cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
4465 						     NLM_F_REPLACE);
4466 		nhn++;
4467 	}
4468 
4469 	/* success ... tell user about new route */
4470 	ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4471 	goto cleanup;
4472 
4473 add_errout:
4474 	/* send notification for routes that were added so that
4475 	 * the delete notifications sent by ip6_route_del are
4476 	 * coherent
4477 	 */
4478 	if (rt_notif)
4479 		ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4480 
4481 	/* Delete routes that were already added */
4482 	list_for_each_entry(nh, &rt6_nh_list, next) {
4483 		if (err_nh == nh)
4484 			break;
4485 		ip6_route_del(&nh->r_cfg, extack);
4486 	}
4487 
4488 cleanup:
4489 	list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
4490 		if (nh->fib6_info)
4491 			fib6_info_release(nh->fib6_info);
4492 		list_del(&nh->next);
4493 		kfree(nh);
4494 	}
4495 
4496 	return err;
4497 }
4498 
4499 static int ip6_route_multipath_del(struct fib6_config *cfg,
4500 				   struct netlink_ext_ack *extack)
4501 {
4502 	struct fib6_config r_cfg;
4503 	struct rtnexthop *rtnh;
4504 	int remaining;
4505 	int attrlen;
4506 	int err = 1, last_err = 0;
4507 
4508 	remaining = cfg->fc_mp_len;
4509 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4510 
4511 	/* Parse a Multipath Entry */
4512 	while (rtnh_ok(rtnh, remaining)) {
4513 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4514 		if (rtnh->rtnh_ifindex)
4515 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4516 
4517 		attrlen = rtnh_attrlen(rtnh);
4518 		if (attrlen > 0) {
4519 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4520 
4521 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4522 			if (nla) {
4523 				nla_memcpy(&r_cfg.fc_gateway, nla, 16);
4524 				r_cfg.fc_flags |= RTF_GATEWAY;
4525 			}
4526 		}
4527 		err = ip6_route_del(&r_cfg, extack);
4528 		if (err)
4529 			last_err = err;
4530 
4531 		rtnh = rtnh_next(rtnh, &remaining);
4532 	}
4533 
4534 	return last_err;
4535 }
4536 
4537 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4538 			      struct netlink_ext_ack *extack)
4539 {
4540 	struct fib6_config cfg;
4541 	int err;
4542 
4543 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4544 	if (err < 0)
4545 		return err;
4546 
4547 	if (cfg.fc_mp)
4548 		return ip6_route_multipath_del(&cfg, extack);
4549 	else {
4550 		cfg.fc_delete_all_nh = 1;
4551 		return ip6_route_del(&cfg, extack);
4552 	}
4553 }
4554 
4555 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4556 			      struct netlink_ext_ack *extack)
4557 {
4558 	struct fib6_config cfg;
4559 	int err;
4560 
4561 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4562 	if (err < 0)
4563 		return err;
4564 
4565 	if (cfg.fc_mp)
4566 		return ip6_route_multipath_add(&cfg, extack);
4567 	else
4568 		return ip6_route_add(&cfg, GFP_KERNEL, extack);
4569 }
4570 
4571 static size_t rt6_nlmsg_size(struct fib6_info *rt)
4572 {
4573 	int nexthop_len = 0;
4574 
4575 	if (rt->fib6_nsiblings) {
4576 		nexthop_len = nla_total_size(0)	 /* RTA_MULTIPATH */
4577 			    + NLA_ALIGN(sizeof(struct rtnexthop))
4578 			    + nla_total_size(16) /* RTA_GATEWAY */
4579 			    + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate);
4580 
4581 		nexthop_len *= rt->fib6_nsiblings;
4582 	}
4583 
4584 	return NLMSG_ALIGN(sizeof(struct rtmsg))
4585 	       + nla_total_size(16) /* RTA_SRC */
4586 	       + nla_total_size(16) /* RTA_DST */
4587 	       + nla_total_size(16) /* RTA_GATEWAY */
4588 	       + nla_total_size(16) /* RTA_PREFSRC */
4589 	       + nla_total_size(4) /* RTA_TABLE */
4590 	       + nla_total_size(4) /* RTA_IIF */
4591 	       + nla_total_size(4) /* RTA_OIF */
4592 	       + nla_total_size(4) /* RTA_PRIORITY */
4593 	       + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
4594 	       + nla_total_size(sizeof(struct rta_cacheinfo))
4595 	       + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
4596 	       + nla_total_size(1) /* RTA_PREF */
4597 	       + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate)
4598 	       + nexthop_len;
4599 }
4600 
4601 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt,
4602 			    unsigned int *flags, bool skip_oif)
4603 {
4604 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4605 		*flags |= RTNH_F_DEAD;
4606 
4607 	if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) {
4608 		*flags |= RTNH_F_LINKDOWN;
4609 
4610 		rcu_read_lock();
4611 		if (fib6_ignore_linkdown(rt))
4612 			*flags |= RTNH_F_DEAD;
4613 		rcu_read_unlock();
4614 	}
4615 
4616 	if (rt->fib6_flags & RTF_GATEWAY) {
4617 		if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0)
4618 			goto nla_put_failure;
4619 	}
4620 
4621 	*flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK);
4622 	if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD)
4623 		*flags |= RTNH_F_OFFLOAD;
4624 
4625 	/* not needed for multipath encoding b/c it has a rtnexthop struct */
4626 	if (!skip_oif && rt->fib6_nh.nh_dev &&
4627 	    nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex))
4628 		goto nla_put_failure;
4629 
4630 	if (rt->fib6_nh.nh_lwtstate &&
4631 	    lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0)
4632 		goto nla_put_failure;
4633 
4634 	return 0;
4635 
4636 nla_put_failure:
4637 	return -EMSGSIZE;
4638 }
4639 
4640 /* add multipath next hop */
4641 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt)
4642 {
4643 	const struct net_device *dev = rt->fib6_nh.nh_dev;
4644 	struct rtnexthop *rtnh;
4645 	unsigned int flags = 0;
4646 
4647 	rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh));
4648 	if (!rtnh)
4649 		goto nla_put_failure;
4650 
4651 	rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1;
4652 	rtnh->rtnh_ifindex = dev ? dev->ifindex : 0;
4653 
4654 	if (rt6_nexthop_info(skb, rt, &flags, true) < 0)
4655 		goto nla_put_failure;
4656 
4657 	rtnh->rtnh_flags = flags;
4658 
4659 	/* length of rtnetlink header + attributes */
4660 	rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh;
4661 
4662 	return 0;
4663 
4664 nla_put_failure:
4665 	return -EMSGSIZE;
4666 }
4667 
4668 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
4669 			 struct fib6_info *rt, struct dst_entry *dst,
4670 			 struct in6_addr *dest, struct in6_addr *src,
4671 			 int iif, int type, u32 portid, u32 seq,
4672 			 unsigned int flags)
4673 {
4674 	struct rtmsg *rtm;
4675 	struct nlmsghdr *nlh;
4676 	long expires = 0;
4677 	u32 *pmetrics;
4678 	u32 table;
4679 
4680 	nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
4681 	if (!nlh)
4682 		return -EMSGSIZE;
4683 
4684 	rtm = nlmsg_data(nlh);
4685 	rtm->rtm_family = AF_INET6;
4686 	rtm->rtm_dst_len = rt->fib6_dst.plen;
4687 	rtm->rtm_src_len = rt->fib6_src.plen;
4688 	rtm->rtm_tos = 0;
4689 	if (rt->fib6_table)
4690 		table = rt->fib6_table->tb6_id;
4691 	else
4692 		table = RT6_TABLE_UNSPEC;
4693 	rtm->rtm_table = table;
4694 	if (nla_put_u32(skb, RTA_TABLE, table))
4695 		goto nla_put_failure;
4696 
4697 	rtm->rtm_type = rt->fib6_type;
4698 	rtm->rtm_flags = 0;
4699 	rtm->rtm_scope = RT_SCOPE_UNIVERSE;
4700 	rtm->rtm_protocol = rt->fib6_protocol;
4701 
4702 	if (rt->fib6_flags & RTF_CACHE)
4703 		rtm->rtm_flags |= RTM_F_CLONED;
4704 
4705 	if (dest) {
4706 		if (nla_put_in6_addr(skb, RTA_DST, dest))
4707 			goto nla_put_failure;
4708 		rtm->rtm_dst_len = 128;
4709 	} else if (rtm->rtm_dst_len)
4710 		if (nla_put_in6_addr(skb, RTA_DST, &rt->fib6_dst.addr))
4711 			goto nla_put_failure;
4712 #ifdef CONFIG_IPV6_SUBTREES
4713 	if (src) {
4714 		if (nla_put_in6_addr(skb, RTA_SRC, src))
4715 			goto nla_put_failure;
4716 		rtm->rtm_src_len = 128;
4717 	} else if (rtm->rtm_src_len &&
4718 		   nla_put_in6_addr(skb, RTA_SRC, &rt->fib6_src.addr))
4719 		goto nla_put_failure;
4720 #endif
4721 	if (iif) {
4722 #ifdef CONFIG_IPV6_MROUTE
4723 		if (ipv6_addr_is_multicast(&rt->fib6_dst.addr)) {
4724 			int err = ip6mr_get_route(net, skb, rtm, portid);
4725 
4726 			if (err == 0)
4727 				return 0;
4728 			if (err < 0)
4729 				goto nla_put_failure;
4730 		} else
4731 #endif
4732 			if (nla_put_u32(skb, RTA_IIF, iif))
4733 				goto nla_put_failure;
4734 	} else if (dest) {
4735 		struct in6_addr saddr_buf;
4736 		if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
4737 		    nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4738 			goto nla_put_failure;
4739 	}
4740 
4741 	if (rt->fib6_prefsrc.plen) {
4742 		struct in6_addr saddr_buf;
4743 		saddr_buf = rt->fib6_prefsrc.addr;
4744 		if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4745 			goto nla_put_failure;
4746 	}
4747 
4748 	pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
4749 	if (rtnetlink_put_metrics(skb, pmetrics) < 0)
4750 		goto nla_put_failure;
4751 
4752 	if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
4753 		goto nla_put_failure;
4754 
4755 	/* For multipath routes, walk the siblings list and add
4756 	 * each as a nexthop within RTA_MULTIPATH.
4757 	 */
4758 	if (rt->fib6_nsiblings) {
4759 		struct fib6_info *sibling, *next_sibling;
4760 		struct nlattr *mp;
4761 
4762 		mp = nla_nest_start(skb, RTA_MULTIPATH);
4763 		if (!mp)
4764 			goto nla_put_failure;
4765 
4766 		if (rt6_add_nexthop(skb, rt) < 0)
4767 			goto nla_put_failure;
4768 
4769 		list_for_each_entry_safe(sibling, next_sibling,
4770 					 &rt->fib6_siblings, fib6_siblings) {
4771 			if (rt6_add_nexthop(skb, sibling) < 0)
4772 				goto nla_put_failure;
4773 		}
4774 
4775 		nla_nest_end(skb, mp);
4776 	} else {
4777 		if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0)
4778 			goto nla_put_failure;
4779 	}
4780 
4781 	if (rt->fib6_flags & RTF_EXPIRES) {
4782 		expires = dst ? dst->expires : rt->expires;
4783 		expires -= jiffies;
4784 	}
4785 
4786 	if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
4787 		goto nla_put_failure;
4788 
4789 	if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt->fib6_flags)))
4790 		goto nla_put_failure;
4791 
4792 
4793 	nlmsg_end(skb, nlh);
4794 	return 0;
4795 
4796 nla_put_failure:
4797 	nlmsg_cancel(skb, nlh);
4798 	return -EMSGSIZE;
4799 }
4800 
4801 int rt6_dump_route(struct fib6_info *rt, void *p_arg)
4802 {
4803 	struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
4804 	struct net *net = arg->net;
4805 
4806 	if (rt == net->ipv6.fib6_null_entry)
4807 		return 0;
4808 
4809 	if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
4810 		struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
4811 
4812 		/* user wants prefix routes only */
4813 		if (rtm->rtm_flags & RTM_F_PREFIX &&
4814 		    !(rt->fib6_flags & RTF_PREFIX_RT)) {
4815 			/* success since this is not a prefix route */
4816 			return 1;
4817 		}
4818 	}
4819 
4820 	return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0,
4821 			     RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid,
4822 			     arg->cb->nlh->nlmsg_seq, NLM_F_MULTI);
4823 }
4824 
4825 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
4826 			      struct netlink_ext_ack *extack)
4827 {
4828 	struct net *net = sock_net(in_skb->sk);
4829 	struct nlattr *tb[RTA_MAX+1];
4830 	int err, iif = 0, oif = 0;
4831 	struct fib6_info *from;
4832 	struct dst_entry *dst;
4833 	struct rt6_info *rt;
4834 	struct sk_buff *skb;
4835 	struct rtmsg *rtm;
4836 	struct flowi6 fl6;
4837 	bool fibmatch;
4838 
4839 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4840 			  extack);
4841 	if (err < 0)
4842 		goto errout;
4843 
4844 	err = -EINVAL;
4845 	memset(&fl6, 0, sizeof(fl6));
4846 	rtm = nlmsg_data(nlh);
4847 	fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
4848 	fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
4849 
4850 	if (tb[RTA_SRC]) {
4851 		if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
4852 			goto errout;
4853 
4854 		fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
4855 	}
4856 
4857 	if (tb[RTA_DST]) {
4858 		if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
4859 			goto errout;
4860 
4861 		fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
4862 	}
4863 
4864 	if (tb[RTA_IIF])
4865 		iif = nla_get_u32(tb[RTA_IIF]);
4866 
4867 	if (tb[RTA_OIF])
4868 		oif = nla_get_u32(tb[RTA_OIF]);
4869 
4870 	if (tb[RTA_MARK])
4871 		fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
4872 
4873 	if (tb[RTA_UID])
4874 		fl6.flowi6_uid = make_kuid(current_user_ns(),
4875 					   nla_get_u32(tb[RTA_UID]));
4876 	else
4877 		fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
4878 
4879 	if (tb[RTA_SPORT])
4880 		fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
4881 
4882 	if (tb[RTA_DPORT])
4883 		fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
4884 
4885 	if (tb[RTA_IP_PROTO]) {
4886 		err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
4887 						  &fl6.flowi6_proto, extack);
4888 		if (err)
4889 			goto errout;
4890 	}
4891 
4892 	if (iif) {
4893 		struct net_device *dev;
4894 		int flags = 0;
4895 
4896 		rcu_read_lock();
4897 
4898 		dev = dev_get_by_index_rcu(net, iif);
4899 		if (!dev) {
4900 			rcu_read_unlock();
4901 			err = -ENODEV;
4902 			goto errout;
4903 		}
4904 
4905 		fl6.flowi6_iif = iif;
4906 
4907 		if (!ipv6_addr_any(&fl6.saddr))
4908 			flags |= RT6_LOOKUP_F_HAS_SADDR;
4909 
4910 		dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
4911 
4912 		rcu_read_unlock();
4913 	} else {
4914 		fl6.flowi6_oif = oif;
4915 
4916 		dst = ip6_route_output(net, NULL, &fl6);
4917 	}
4918 
4919 
4920 	rt = container_of(dst, struct rt6_info, dst);
4921 	if (rt->dst.error) {
4922 		err = rt->dst.error;
4923 		ip6_rt_put(rt);
4924 		goto errout;
4925 	}
4926 
4927 	if (rt == net->ipv6.ip6_null_entry) {
4928 		err = rt->dst.error;
4929 		ip6_rt_put(rt);
4930 		goto errout;
4931 	}
4932 
4933 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
4934 	if (!skb) {
4935 		ip6_rt_put(rt);
4936 		err = -ENOBUFS;
4937 		goto errout;
4938 	}
4939 
4940 	skb_dst_set(skb, &rt->dst);
4941 
4942 	rcu_read_lock();
4943 	from = rcu_dereference(rt->from);
4944 
4945 	if (fibmatch)
4946 		err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif,
4947 				    RTM_NEWROUTE, NETLINK_CB(in_skb).portid,
4948 				    nlh->nlmsg_seq, 0);
4949 	else
4950 		err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
4951 				    &fl6.saddr, iif, RTM_NEWROUTE,
4952 				    NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
4953 				    0);
4954 	rcu_read_unlock();
4955 
4956 	if (err < 0) {
4957 		kfree_skb(skb);
4958 		goto errout;
4959 	}
4960 
4961 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
4962 errout:
4963 	return err;
4964 }
4965 
4966 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
4967 		     unsigned int nlm_flags)
4968 {
4969 	struct sk_buff *skb;
4970 	struct net *net = info->nl_net;
4971 	u32 seq;
4972 	int err;
4973 
4974 	err = -ENOBUFS;
4975 	seq = info->nlh ? info->nlh->nlmsg_seq : 0;
4976 
4977 	skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
4978 	if (!skb)
4979 		goto errout;
4980 
4981 	err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
4982 			    event, info->portid, seq, nlm_flags);
4983 	if (err < 0) {
4984 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
4985 		WARN_ON(err == -EMSGSIZE);
4986 		kfree_skb(skb);
4987 		goto errout;
4988 	}
4989 	rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
4990 		    info->nlh, gfp_any());
4991 	return;
4992 errout:
4993 	if (err < 0)
4994 		rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
4995 }
4996 
4997 static int ip6_route_dev_notify(struct notifier_block *this,
4998 				unsigned long event, void *ptr)
4999 {
5000 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
5001 	struct net *net = dev_net(dev);
5002 
5003 	if (!(dev->flags & IFF_LOOPBACK))
5004 		return NOTIFY_OK;
5005 
5006 	if (event == NETDEV_REGISTER) {
5007 		net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev;
5008 		net->ipv6.ip6_null_entry->dst.dev = dev;
5009 		net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
5010 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5011 		net->ipv6.ip6_prohibit_entry->dst.dev = dev;
5012 		net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
5013 		net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
5014 		net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
5015 #endif
5016 	 } else if (event == NETDEV_UNREGISTER &&
5017 		    dev->reg_state != NETREG_UNREGISTERED) {
5018 		/* NETDEV_UNREGISTER could be fired for multiple times by
5019 		 * netdev_wait_allrefs(). Make sure we only call this once.
5020 		 */
5021 		in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
5022 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5023 		in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
5024 		in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
5025 #endif
5026 	}
5027 
5028 	return NOTIFY_OK;
5029 }
5030 
5031 /*
5032  *	/proc
5033  */
5034 
5035 #ifdef CONFIG_PROC_FS
5036 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
5037 {
5038 	struct net *net = (struct net *)seq->private;
5039 	seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
5040 		   net->ipv6.rt6_stats->fib_nodes,
5041 		   net->ipv6.rt6_stats->fib_route_nodes,
5042 		   atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
5043 		   net->ipv6.rt6_stats->fib_rt_entries,
5044 		   net->ipv6.rt6_stats->fib_rt_cache,
5045 		   dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
5046 		   net->ipv6.rt6_stats->fib_discarded_routes);
5047 
5048 	return 0;
5049 }
5050 #endif	/* CONFIG_PROC_FS */
5051 
5052 #ifdef CONFIG_SYSCTL
5053 
5054 static
5055 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
5056 			      void __user *buffer, size_t *lenp, loff_t *ppos)
5057 {
5058 	struct net *net;
5059 	int delay;
5060 	if (!write)
5061 		return -EINVAL;
5062 
5063 	net = (struct net *)ctl->extra1;
5064 	delay = net->ipv6.sysctl.flush_delay;
5065 	proc_dointvec(ctl, write, buffer, lenp, ppos);
5066 	fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
5067 	return 0;
5068 }
5069 
5070 struct ctl_table ipv6_route_table_template[] = {
5071 	{
5072 		.procname	=	"flush",
5073 		.data		=	&init_net.ipv6.sysctl.flush_delay,
5074 		.maxlen		=	sizeof(int),
5075 		.mode		=	0200,
5076 		.proc_handler	=	ipv6_sysctl_rtcache_flush
5077 	},
5078 	{
5079 		.procname	=	"gc_thresh",
5080 		.data		=	&ip6_dst_ops_template.gc_thresh,
5081 		.maxlen		=	sizeof(int),
5082 		.mode		=	0644,
5083 		.proc_handler	=	proc_dointvec,
5084 	},
5085 	{
5086 		.procname	=	"max_size",
5087 		.data		=	&init_net.ipv6.sysctl.ip6_rt_max_size,
5088 		.maxlen		=	sizeof(int),
5089 		.mode		=	0644,
5090 		.proc_handler	=	proc_dointvec,
5091 	},
5092 	{
5093 		.procname	=	"gc_min_interval",
5094 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5095 		.maxlen		=	sizeof(int),
5096 		.mode		=	0644,
5097 		.proc_handler	=	proc_dointvec_jiffies,
5098 	},
5099 	{
5100 		.procname	=	"gc_timeout",
5101 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_timeout,
5102 		.maxlen		=	sizeof(int),
5103 		.mode		=	0644,
5104 		.proc_handler	=	proc_dointvec_jiffies,
5105 	},
5106 	{
5107 		.procname	=	"gc_interval",
5108 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_interval,
5109 		.maxlen		=	sizeof(int),
5110 		.mode		=	0644,
5111 		.proc_handler	=	proc_dointvec_jiffies,
5112 	},
5113 	{
5114 		.procname	=	"gc_elasticity",
5115 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
5116 		.maxlen		=	sizeof(int),
5117 		.mode		=	0644,
5118 		.proc_handler	=	proc_dointvec,
5119 	},
5120 	{
5121 		.procname	=	"mtu_expires",
5122 		.data		=	&init_net.ipv6.sysctl.ip6_rt_mtu_expires,
5123 		.maxlen		=	sizeof(int),
5124 		.mode		=	0644,
5125 		.proc_handler	=	proc_dointvec_jiffies,
5126 	},
5127 	{
5128 		.procname	=	"min_adv_mss",
5129 		.data		=	&init_net.ipv6.sysctl.ip6_rt_min_advmss,
5130 		.maxlen		=	sizeof(int),
5131 		.mode		=	0644,
5132 		.proc_handler	=	proc_dointvec,
5133 	},
5134 	{
5135 		.procname	=	"gc_min_interval_ms",
5136 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5137 		.maxlen		=	sizeof(int),
5138 		.mode		=	0644,
5139 		.proc_handler	=	proc_dointvec_ms_jiffies,
5140 	},
5141 	{ }
5142 };
5143 
5144 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
5145 {
5146 	struct ctl_table *table;
5147 
5148 	table = kmemdup(ipv6_route_table_template,
5149 			sizeof(ipv6_route_table_template),
5150 			GFP_KERNEL);
5151 
5152 	if (table) {
5153 		table[0].data = &net->ipv6.sysctl.flush_delay;
5154 		table[0].extra1 = net;
5155 		table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
5156 		table[2].data = &net->ipv6.sysctl.ip6_rt_max_size;
5157 		table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5158 		table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
5159 		table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
5160 		table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
5161 		table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
5162 		table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
5163 		table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5164 
5165 		/* Don't export sysctls to unprivileged users */
5166 		if (net->user_ns != &init_user_ns)
5167 			table[0].procname = NULL;
5168 	}
5169 
5170 	return table;
5171 }
5172 #endif
5173 
5174 static int __net_init ip6_route_net_init(struct net *net)
5175 {
5176 	int ret = -ENOMEM;
5177 
5178 	memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
5179 	       sizeof(net->ipv6.ip6_dst_ops));
5180 
5181 	if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
5182 		goto out_ip6_dst_ops;
5183 
5184 	net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template,
5185 					    sizeof(*net->ipv6.fib6_null_entry),
5186 					    GFP_KERNEL);
5187 	if (!net->ipv6.fib6_null_entry)
5188 		goto out_ip6_dst_entries;
5189 
5190 	net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
5191 					   sizeof(*net->ipv6.ip6_null_entry),
5192 					   GFP_KERNEL);
5193 	if (!net->ipv6.ip6_null_entry)
5194 		goto out_fib6_null_entry;
5195 	net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5196 	dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
5197 			 ip6_template_metrics, true);
5198 
5199 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5200 	net->ipv6.fib6_has_custom_rules = false;
5201 	net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
5202 					       sizeof(*net->ipv6.ip6_prohibit_entry),
5203 					       GFP_KERNEL);
5204 	if (!net->ipv6.ip6_prohibit_entry)
5205 		goto out_ip6_null_entry;
5206 	net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5207 	dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
5208 			 ip6_template_metrics, true);
5209 
5210 	net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
5211 					       sizeof(*net->ipv6.ip6_blk_hole_entry),
5212 					       GFP_KERNEL);
5213 	if (!net->ipv6.ip6_blk_hole_entry)
5214 		goto out_ip6_prohibit_entry;
5215 	net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5216 	dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
5217 			 ip6_template_metrics, true);
5218 #endif
5219 
5220 	net->ipv6.sysctl.flush_delay = 0;
5221 	net->ipv6.sysctl.ip6_rt_max_size = 4096;
5222 	net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
5223 	net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
5224 	net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
5225 	net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
5226 	net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
5227 	net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
5228 
5229 	net->ipv6.ip6_rt_gc_expire = 30*HZ;
5230 
5231 	ret = 0;
5232 out:
5233 	return ret;
5234 
5235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5236 out_ip6_prohibit_entry:
5237 	kfree(net->ipv6.ip6_prohibit_entry);
5238 out_ip6_null_entry:
5239 	kfree(net->ipv6.ip6_null_entry);
5240 #endif
5241 out_fib6_null_entry:
5242 	kfree(net->ipv6.fib6_null_entry);
5243 out_ip6_dst_entries:
5244 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5245 out_ip6_dst_ops:
5246 	goto out;
5247 }
5248 
5249 static void __net_exit ip6_route_net_exit(struct net *net)
5250 {
5251 	kfree(net->ipv6.fib6_null_entry);
5252 	kfree(net->ipv6.ip6_null_entry);
5253 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5254 	kfree(net->ipv6.ip6_prohibit_entry);
5255 	kfree(net->ipv6.ip6_blk_hole_entry);
5256 #endif
5257 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5258 }
5259 
5260 static int __net_init ip6_route_net_init_late(struct net *net)
5261 {
5262 #ifdef CONFIG_PROC_FS
5263 	proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops,
5264 			sizeof(struct ipv6_route_iter));
5265 	proc_create_net_single("rt6_stats", 0444, net->proc_net,
5266 			rt6_stats_seq_show, NULL);
5267 #endif
5268 	return 0;
5269 }
5270 
5271 static void __net_exit ip6_route_net_exit_late(struct net *net)
5272 {
5273 #ifdef CONFIG_PROC_FS
5274 	remove_proc_entry("ipv6_route", net->proc_net);
5275 	remove_proc_entry("rt6_stats", net->proc_net);
5276 #endif
5277 }
5278 
5279 static struct pernet_operations ip6_route_net_ops = {
5280 	.init = ip6_route_net_init,
5281 	.exit = ip6_route_net_exit,
5282 };
5283 
5284 static int __net_init ipv6_inetpeer_init(struct net *net)
5285 {
5286 	struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
5287 
5288 	if (!bp)
5289 		return -ENOMEM;
5290 	inet_peer_base_init(bp);
5291 	net->ipv6.peers = bp;
5292 	return 0;
5293 }
5294 
5295 static void __net_exit ipv6_inetpeer_exit(struct net *net)
5296 {
5297 	struct inet_peer_base *bp = net->ipv6.peers;
5298 
5299 	net->ipv6.peers = NULL;
5300 	inetpeer_invalidate_tree(bp);
5301 	kfree(bp);
5302 }
5303 
5304 static struct pernet_operations ipv6_inetpeer_ops = {
5305 	.init	=	ipv6_inetpeer_init,
5306 	.exit	=	ipv6_inetpeer_exit,
5307 };
5308 
5309 static struct pernet_operations ip6_route_net_late_ops = {
5310 	.init = ip6_route_net_init_late,
5311 	.exit = ip6_route_net_exit_late,
5312 };
5313 
5314 static struct notifier_block ip6_route_dev_notifier = {
5315 	.notifier_call = ip6_route_dev_notify,
5316 	.priority = ADDRCONF_NOTIFY_PRIORITY - 10,
5317 };
5318 
5319 void __init ip6_route_init_special_entries(void)
5320 {
5321 	/* Registering of the loopback is done before this portion of code,
5322 	 * the loopback reference in rt6_info will not be taken, do it
5323 	 * manually for init_net */
5324 	init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev;
5325 	init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
5326 	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5327   #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5328 	init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
5329 	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5330 	init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
5331 	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5332   #endif
5333 }
5334 
5335 int __init ip6_route_init(void)
5336 {
5337 	int ret;
5338 	int cpu;
5339 
5340 	ret = -ENOMEM;
5341 	ip6_dst_ops_template.kmem_cachep =
5342 		kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
5343 				  SLAB_HWCACHE_ALIGN, NULL);
5344 	if (!ip6_dst_ops_template.kmem_cachep)
5345 		goto out;
5346 
5347 	ret = dst_entries_init(&ip6_dst_blackhole_ops);
5348 	if (ret)
5349 		goto out_kmem_cache;
5350 
5351 	ret = register_pernet_subsys(&ipv6_inetpeer_ops);
5352 	if (ret)
5353 		goto out_dst_entries;
5354 
5355 	ret = register_pernet_subsys(&ip6_route_net_ops);
5356 	if (ret)
5357 		goto out_register_inetpeer;
5358 
5359 	ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
5360 
5361 	ret = fib6_init();
5362 	if (ret)
5363 		goto out_register_subsys;
5364 
5365 	ret = xfrm6_init();
5366 	if (ret)
5367 		goto out_fib6_init;
5368 
5369 	ret = fib6_rules_init();
5370 	if (ret)
5371 		goto xfrm6_init;
5372 
5373 	ret = register_pernet_subsys(&ip6_route_net_late_ops);
5374 	if (ret)
5375 		goto fib6_rules_init;
5376 
5377 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
5378 				   inet6_rtm_newroute, NULL, 0);
5379 	if (ret < 0)
5380 		goto out_register_late_subsys;
5381 
5382 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
5383 				   inet6_rtm_delroute, NULL, 0);
5384 	if (ret < 0)
5385 		goto out_register_late_subsys;
5386 
5387 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
5388 				   inet6_rtm_getroute, NULL,
5389 				   RTNL_FLAG_DOIT_UNLOCKED);
5390 	if (ret < 0)
5391 		goto out_register_late_subsys;
5392 
5393 	ret = register_netdevice_notifier(&ip6_route_dev_notifier);
5394 	if (ret)
5395 		goto out_register_late_subsys;
5396 
5397 	for_each_possible_cpu(cpu) {
5398 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
5399 
5400 		INIT_LIST_HEAD(&ul->head);
5401 		spin_lock_init(&ul->lock);
5402 	}
5403 
5404 out:
5405 	return ret;
5406 
5407 out_register_late_subsys:
5408 	rtnl_unregister_all(PF_INET6);
5409 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5410 fib6_rules_init:
5411 	fib6_rules_cleanup();
5412 xfrm6_init:
5413 	xfrm6_fini();
5414 out_fib6_init:
5415 	fib6_gc_cleanup();
5416 out_register_subsys:
5417 	unregister_pernet_subsys(&ip6_route_net_ops);
5418 out_register_inetpeer:
5419 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5420 out_dst_entries:
5421 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5422 out_kmem_cache:
5423 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5424 	goto out;
5425 }
5426 
5427 void ip6_route_cleanup(void)
5428 {
5429 	unregister_netdevice_notifier(&ip6_route_dev_notifier);
5430 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5431 	fib6_rules_cleanup();
5432 	xfrm6_fini();
5433 	fib6_gc_cleanup();
5434 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5435 	unregister_pernet_subsys(&ip6_route_net_ops);
5436 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5437 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5438 }
5439