1 /* 2 * Linux INET6 implementation 3 * FIB front-end. 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* Changes: 15 * 16 * YOSHIFUJI Hideaki @USAGI 17 * reworked default router selection. 18 * - respect outgoing interface 19 * - select from (probably) reachable routers (i.e. 20 * routers in REACHABLE, STALE, DELAY or PROBE states). 21 * - always select the same router if it is (probably) 22 * reachable. otherwise, round-robin the list. 23 * Ville Nuorvala 24 * Fixed routing subtrees. 25 */ 26 27 #define pr_fmt(fmt) "IPv6: " fmt 28 29 #include <linux/capability.h> 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/types.h> 33 #include <linux/times.h> 34 #include <linux/socket.h> 35 #include <linux/sockios.h> 36 #include <linux/net.h> 37 #include <linux/route.h> 38 #include <linux/netdevice.h> 39 #include <linux/in6.h> 40 #include <linux/mroute6.h> 41 #include <linux/init.h> 42 #include <linux/if_arp.h> 43 #include <linux/proc_fs.h> 44 #include <linux/seq_file.h> 45 #include <linux/nsproxy.h> 46 #include <linux/slab.h> 47 #include <linux/jhash.h> 48 #include <net/net_namespace.h> 49 #include <net/snmp.h> 50 #include <net/ipv6.h> 51 #include <net/ip6_fib.h> 52 #include <net/ip6_route.h> 53 #include <net/ndisc.h> 54 #include <net/addrconf.h> 55 #include <net/tcp.h> 56 #include <linux/rtnetlink.h> 57 #include <net/dst.h> 58 #include <net/dst_metadata.h> 59 #include <net/xfrm.h> 60 #include <net/netevent.h> 61 #include <net/netlink.h> 62 #include <net/nexthop.h> 63 #include <net/lwtunnel.h> 64 #include <net/ip_tunnels.h> 65 #include <net/l3mdev.h> 66 #include <net/ip.h> 67 #include <linux/uaccess.h> 68 69 #ifdef CONFIG_SYSCTL 70 #include <linux/sysctl.h> 71 #endif 72 73 static int ip6_rt_type_to_error(u8 fib6_type); 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/fib6.h> 77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 78 #undef CREATE_TRACE_POINTS 79 80 enum rt6_nud_state { 81 RT6_NUD_FAIL_HARD = -3, 82 RT6_NUD_FAIL_PROBE = -2, 83 RT6_NUD_FAIL_DO_RR = -1, 84 RT6_NUD_SUCCEED = 1 85 }; 86 87 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 88 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 89 static unsigned int ip6_mtu(const struct dst_entry *dst); 90 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 91 static void ip6_dst_destroy(struct dst_entry *); 92 static void ip6_dst_ifdown(struct dst_entry *, 93 struct net_device *dev, int how); 94 static int ip6_dst_gc(struct dst_ops *ops); 95 96 static int ip6_pkt_discard(struct sk_buff *skb); 97 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 98 static int ip6_pkt_prohibit(struct sk_buff *skb); 99 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 100 static void ip6_link_failure(struct sk_buff *skb); 101 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 102 struct sk_buff *skb, u32 mtu); 103 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 104 struct sk_buff *skb); 105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict); 106 static size_t rt6_nlmsg_size(struct fib6_info *rt); 107 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 108 struct fib6_info *rt, struct dst_entry *dst, 109 struct in6_addr *dest, struct in6_addr *src, 110 int iif, int type, u32 portid, u32 seq, 111 unsigned int flags); 112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt, 113 struct in6_addr *daddr, 114 struct in6_addr *saddr); 115 116 #ifdef CONFIG_IPV6_ROUTE_INFO 117 static struct fib6_info *rt6_add_route_info(struct net *net, 118 const struct in6_addr *prefix, int prefixlen, 119 const struct in6_addr *gwaddr, 120 struct net_device *dev, 121 unsigned int pref); 122 static struct fib6_info *rt6_get_route_info(struct net *net, 123 const struct in6_addr *prefix, int prefixlen, 124 const struct in6_addr *gwaddr, 125 struct net_device *dev); 126 #endif 127 128 struct uncached_list { 129 spinlock_t lock; 130 struct list_head head; 131 }; 132 133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 134 135 void rt6_uncached_list_add(struct rt6_info *rt) 136 { 137 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 138 139 rt->rt6i_uncached_list = ul; 140 141 spin_lock_bh(&ul->lock); 142 list_add_tail(&rt->rt6i_uncached, &ul->head); 143 spin_unlock_bh(&ul->lock); 144 } 145 146 void rt6_uncached_list_del(struct rt6_info *rt) 147 { 148 if (!list_empty(&rt->rt6i_uncached)) { 149 struct uncached_list *ul = rt->rt6i_uncached_list; 150 struct net *net = dev_net(rt->dst.dev); 151 152 spin_lock_bh(&ul->lock); 153 list_del(&rt->rt6i_uncached); 154 atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache); 155 spin_unlock_bh(&ul->lock); 156 } 157 } 158 159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev) 160 { 161 struct net_device *loopback_dev = net->loopback_dev; 162 int cpu; 163 164 if (dev == loopback_dev) 165 return; 166 167 for_each_possible_cpu(cpu) { 168 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 169 struct rt6_info *rt; 170 171 spin_lock_bh(&ul->lock); 172 list_for_each_entry(rt, &ul->head, rt6i_uncached) { 173 struct inet6_dev *rt_idev = rt->rt6i_idev; 174 struct net_device *rt_dev = rt->dst.dev; 175 176 if (rt_idev->dev == dev) { 177 rt->rt6i_idev = in6_dev_get(loopback_dev); 178 in6_dev_put(rt_idev); 179 } 180 181 if (rt_dev == dev) { 182 rt->dst.dev = loopback_dev; 183 dev_hold(rt->dst.dev); 184 dev_put(rt_dev); 185 } 186 } 187 spin_unlock_bh(&ul->lock); 188 } 189 } 190 191 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 192 struct sk_buff *skb, 193 const void *daddr) 194 { 195 if (!ipv6_addr_any(p)) 196 return (const void *) p; 197 else if (skb) 198 return &ipv6_hdr(skb)->daddr; 199 return daddr; 200 } 201 202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 203 struct net_device *dev, 204 struct sk_buff *skb, 205 const void *daddr) 206 { 207 struct neighbour *n; 208 209 daddr = choose_neigh_daddr(gw, skb, daddr); 210 n = __ipv6_neigh_lookup(dev, daddr); 211 if (n) 212 return n; 213 214 n = neigh_create(&nd_tbl, daddr, dev); 215 return IS_ERR(n) ? NULL : n; 216 } 217 218 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 219 struct sk_buff *skb, 220 const void *daddr) 221 { 222 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); 223 224 return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr); 225 } 226 227 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 228 { 229 struct net_device *dev = dst->dev; 230 struct rt6_info *rt = (struct rt6_info *)dst; 231 232 daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr); 233 if (!daddr) 234 return; 235 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 236 return; 237 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 238 return; 239 __ipv6_confirm_neigh(dev, daddr); 240 } 241 242 static struct dst_ops ip6_dst_ops_template = { 243 .family = AF_INET6, 244 .gc = ip6_dst_gc, 245 .gc_thresh = 1024, 246 .check = ip6_dst_check, 247 .default_advmss = ip6_default_advmss, 248 .mtu = ip6_mtu, 249 .cow_metrics = dst_cow_metrics_generic, 250 .destroy = ip6_dst_destroy, 251 .ifdown = ip6_dst_ifdown, 252 .negative_advice = ip6_negative_advice, 253 .link_failure = ip6_link_failure, 254 .update_pmtu = ip6_rt_update_pmtu, 255 .redirect = rt6_do_redirect, 256 .local_out = __ip6_local_out, 257 .neigh_lookup = ip6_dst_neigh_lookup, 258 .confirm_neigh = ip6_confirm_neigh, 259 }; 260 261 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst) 262 { 263 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU); 264 265 return mtu ? : dst->dev->mtu; 266 } 267 268 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk, 269 struct sk_buff *skb, u32 mtu) 270 { 271 } 272 273 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk, 274 struct sk_buff *skb) 275 { 276 } 277 278 static struct dst_ops ip6_dst_blackhole_ops = { 279 .family = AF_INET6, 280 .destroy = ip6_dst_destroy, 281 .check = ip6_dst_check, 282 .mtu = ip6_blackhole_mtu, 283 .default_advmss = ip6_default_advmss, 284 .update_pmtu = ip6_rt_blackhole_update_pmtu, 285 .redirect = ip6_rt_blackhole_redirect, 286 .cow_metrics = dst_cow_metrics_generic, 287 .neigh_lookup = ip6_dst_neigh_lookup, 288 }; 289 290 static const u32 ip6_template_metrics[RTAX_MAX] = { 291 [RTAX_HOPLIMIT - 1] = 0, 292 }; 293 294 static const struct fib6_info fib6_null_entry_template = { 295 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 296 .fib6_protocol = RTPROT_KERNEL, 297 .fib6_metric = ~(u32)0, 298 .fib6_ref = ATOMIC_INIT(1), 299 .fib6_type = RTN_UNREACHABLE, 300 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 301 }; 302 303 static const struct rt6_info ip6_null_entry_template = { 304 .dst = { 305 .__refcnt = ATOMIC_INIT(1), 306 .__use = 1, 307 .obsolete = DST_OBSOLETE_FORCE_CHK, 308 .error = -ENETUNREACH, 309 .input = ip6_pkt_discard, 310 .output = ip6_pkt_discard_out, 311 }, 312 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 313 }; 314 315 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 316 317 static const struct rt6_info ip6_prohibit_entry_template = { 318 .dst = { 319 .__refcnt = ATOMIC_INIT(1), 320 .__use = 1, 321 .obsolete = DST_OBSOLETE_FORCE_CHK, 322 .error = -EACCES, 323 .input = ip6_pkt_prohibit, 324 .output = ip6_pkt_prohibit_out, 325 }, 326 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 327 }; 328 329 static const struct rt6_info ip6_blk_hole_entry_template = { 330 .dst = { 331 .__refcnt = ATOMIC_INIT(1), 332 .__use = 1, 333 .obsolete = DST_OBSOLETE_FORCE_CHK, 334 .error = -EINVAL, 335 .input = dst_discard, 336 .output = dst_discard_out, 337 }, 338 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 339 }; 340 341 #endif 342 343 static void rt6_info_init(struct rt6_info *rt) 344 { 345 struct dst_entry *dst = &rt->dst; 346 347 memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst)); 348 INIT_LIST_HEAD(&rt->rt6i_uncached); 349 } 350 351 /* allocate dst with ip6_dst_ops */ 352 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 353 int flags) 354 { 355 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 356 1, DST_OBSOLETE_FORCE_CHK, flags); 357 358 if (rt) { 359 rt6_info_init(rt); 360 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 361 } 362 363 return rt; 364 } 365 EXPORT_SYMBOL(ip6_dst_alloc); 366 367 static void ip6_dst_destroy(struct dst_entry *dst) 368 { 369 struct rt6_info *rt = (struct rt6_info *)dst; 370 struct fib6_info *from; 371 struct inet6_dev *idev; 372 373 ip_dst_metrics_put(dst); 374 rt6_uncached_list_del(rt); 375 376 idev = rt->rt6i_idev; 377 if (idev) { 378 rt->rt6i_idev = NULL; 379 in6_dev_put(idev); 380 } 381 382 rcu_read_lock(); 383 from = rcu_dereference(rt->from); 384 rcu_assign_pointer(rt->from, NULL); 385 fib6_info_release(from); 386 rcu_read_unlock(); 387 } 388 389 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 390 int how) 391 { 392 struct rt6_info *rt = (struct rt6_info *)dst; 393 struct inet6_dev *idev = rt->rt6i_idev; 394 struct net_device *loopback_dev = 395 dev_net(dev)->loopback_dev; 396 397 if (idev && idev->dev != loopback_dev) { 398 struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev); 399 if (loopback_idev) { 400 rt->rt6i_idev = loopback_idev; 401 in6_dev_put(idev); 402 } 403 } 404 } 405 406 static bool __rt6_check_expired(const struct rt6_info *rt) 407 { 408 if (rt->rt6i_flags & RTF_EXPIRES) 409 return time_after(jiffies, rt->dst.expires); 410 else 411 return false; 412 } 413 414 static bool rt6_check_expired(const struct rt6_info *rt) 415 { 416 struct fib6_info *from; 417 418 from = rcu_dereference(rt->from); 419 420 if (rt->rt6i_flags & RTF_EXPIRES) { 421 if (time_after(jiffies, rt->dst.expires)) 422 return true; 423 } else if (from) { 424 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || 425 fib6_check_expired(from); 426 } 427 return false; 428 } 429 430 struct fib6_info *fib6_multipath_select(const struct net *net, 431 struct fib6_info *match, 432 struct flowi6 *fl6, int oif, 433 const struct sk_buff *skb, 434 int strict) 435 { 436 struct fib6_info *sibling, *next_sibling; 437 438 /* We might have already computed the hash for ICMPv6 errors. In such 439 * case it will always be non-zero. Otherwise now is the time to do it. 440 */ 441 if (!fl6->mp_hash) 442 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 443 444 if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound)) 445 return match; 446 447 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, 448 fib6_siblings) { 449 int nh_upper_bound; 450 451 nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound); 452 if (fl6->mp_hash > nh_upper_bound) 453 continue; 454 if (rt6_score_route(sibling, oif, strict) < 0) 455 break; 456 match = sibling; 457 break; 458 } 459 460 return match; 461 } 462 463 /* 464 * Route lookup. rcu_read_lock() should be held. 465 */ 466 467 static inline struct fib6_info *rt6_device_match(struct net *net, 468 struct fib6_info *rt, 469 const struct in6_addr *saddr, 470 int oif, 471 int flags) 472 { 473 struct fib6_info *sprt; 474 475 if (!oif && ipv6_addr_any(saddr) && 476 !(rt->fib6_nh.nh_flags & RTNH_F_DEAD)) 477 return rt; 478 479 for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) { 480 const struct net_device *dev = sprt->fib6_nh.nh_dev; 481 482 if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD) 483 continue; 484 485 if (oif) { 486 if (dev->ifindex == oif) 487 return sprt; 488 } else { 489 if (ipv6_chk_addr(net, saddr, dev, 490 flags & RT6_LOOKUP_F_IFACE)) 491 return sprt; 492 } 493 } 494 495 if (oif && flags & RT6_LOOKUP_F_IFACE) 496 return net->ipv6.fib6_null_entry; 497 498 return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt; 499 } 500 501 #ifdef CONFIG_IPV6_ROUTER_PREF 502 struct __rt6_probe_work { 503 struct work_struct work; 504 struct in6_addr target; 505 struct net_device *dev; 506 }; 507 508 static void rt6_probe_deferred(struct work_struct *w) 509 { 510 struct in6_addr mcaddr; 511 struct __rt6_probe_work *work = 512 container_of(w, struct __rt6_probe_work, work); 513 514 addrconf_addr_solict_mult(&work->target, &mcaddr); 515 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 516 dev_put(work->dev); 517 kfree(work); 518 } 519 520 static void rt6_probe(struct fib6_info *rt) 521 { 522 struct __rt6_probe_work *work = NULL; 523 const struct in6_addr *nh_gw; 524 struct neighbour *neigh; 525 struct net_device *dev; 526 struct inet6_dev *idev; 527 528 /* 529 * Okay, this does not seem to be appropriate 530 * for now, however, we need to check if it 531 * is really so; aka Router Reachability Probing. 532 * 533 * Router Reachability Probe MUST be rate-limited 534 * to no more than one per minute. 535 */ 536 if (!rt || !(rt->fib6_flags & RTF_GATEWAY)) 537 return; 538 539 nh_gw = &rt->fib6_nh.nh_gw; 540 dev = rt->fib6_nh.nh_dev; 541 rcu_read_lock_bh(); 542 idev = __in6_dev_get(dev); 543 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 544 if (neigh) { 545 if (neigh->nud_state & NUD_VALID) 546 goto out; 547 548 write_lock(&neigh->lock); 549 if (!(neigh->nud_state & NUD_VALID) && 550 time_after(jiffies, 551 neigh->updated + idev->cnf.rtr_probe_interval)) { 552 work = kmalloc(sizeof(*work), GFP_ATOMIC); 553 if (work) 554 __neigh_set_probe_once(neigh); 555 } 556 write_unlock(&neigh->lock); 557 } else if (time_after(jiffies, rt->last_probe + 558 idev->cnf.rtr_probe_interval)) { 559 work = kmalloc(sizeof(*work), GFP_ATOMIC); 560 } 561 562 if (work) { 563 rt->last_probe = jiffies; 564 INIT_WORK(&work->work, rt6_probe_deferred); 565 work->target = *nh_gw; 566 dev_hold(dev); 567 work->dev = dev; 568 schedule_work(&work->work); 569 } 570 571 out: 572 rcu_read_unlock_bh(); 573 } 574 #else 575 static inline void rt6_probe(struct fib6_info *rt) 576 { 577 } 578 #endif 579 580 /* 581 * Default Router Selection (RFC 2461 6.3.6) 582 */ 583 static inline int rt6_check_dev(struct fib6_info *rt, int oif) 584 { 585 const struct net_device *dev = rt->fib6_nh.nh_dev; 586 587 if (!oif || dev->ifindex == oif) 588 return 2; 589 return 0; 590 } 591 592 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt) 593 { 594 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 595 struct neighbour *neigh; 596 597 if (rt->fib6_flags & RTF_NONEXTHOP || 598 !(rt->fib6_flags & RTF_GATEWAY)) 599 return RT6_NUD_SUCCEED; 600 601 rcu_read_lock_bh(); 602 neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev, 603 &rt->fib6_nh.nh_gw); 604 if (neigh) { 605 read_lock(&neigh->lock); 606 if (neigh->nud_state & NUD_VALID) 607 ret = RT6_NUD_SUCCEED; 608 #ifdef CONFIG_IPV6_ROUTER_PREF 609 else if (!(neigh->nud_state & NUD_FAILED)) 610 ret = RT6_NUD_SUCCEED; 611 else 612 ret = RT6_NUD_FAIL_PROBE; 613 #endif 614 read_unlock(&neigh->lock); 615 } else { 616 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 617 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 618 } 619 rcu_read_unlock_bh(); 620 621 return ret; 622 } 623 624 static int rt6_score_route(struct fib6_info *rt, int oif, int strict) 625 { 626 int m; 627 628 m = rt6_check_dev(rt, oif); 629 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 630 return RT6_NUD_FAIL_HARD; 631 #ifdef CONFIG_IPV6_ROUTER_PREF 632 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2; 633 #endif 634 if (strict & RT6_LOOKUP_F_REACHABLE) { 635 int n = rt6_check_neigh(rt); 636 if (n < 0) 637 return n; 638 } 639 return m; 640 } 641 642 /* called with rc_read_lock held */ 643 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i) 644 { 645 const struct net_device *dev = fib6_info_nh_dev(f6i); 646 bool rc = false; 647 648 if (dev) { 649 const struct inet6_dev *idev = __in6_dev_get(dev); 650 651 rc = !!idev->cnf.ignore_routes_with_linkdown; 652 } 653 654 return rc; 655 } 656 657 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict, 658 int *mpri, struct fib6_info *match, 659 bool *do_rr) 660 { 661 int m; 662 bool match_do_rr = false; 663 664 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 665 goto out; 666 667 if (fib6_ignore_linkdown(rt) && 668 rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN && 669 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 670 goto out; 671 672 if (fib6_check_expired(rt)) 673 goto out; 674 675 m = rt6_score_route(rt, oif, strict); 676 if (m == RT6_NUD_FAIL_DO_RR) { 677 match_do_rr = true; 678 m = 0; /* lowest valid score */ 679 } else if (m == RT6_NUD_FAIL_HARD) { 680 goto out; 681 } 682 683 if (strict & RT6_LOOKUP_F_REACHABLE) 684 rt6_probe(rt); 685 686 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 687 if (m > *mpri) { 688 *do_rr = match_do_rr; 689 *mpri = m; 690 match = rt; 691 } 692 out: 693 return match; 694 } 695 696 static struct fib6_info *find_rr_leaf(struct fib6_node *fn, 697 struct fib6_info *leaf, 698 struct fib6_info *rr_head, 699 u32 metric, int oif, int strict, 700 bool *do_rr) 701 { 702 struct fib6_info *rt, *match, *cont; 703 int mpri = -1; 704 705 match = NULL; 706 cont = NULL; 707 for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) { 708 if (rt->fib6_metric != metric) { 709 cont = rt; 710 break; 711 } 712 713 match = find_match(rt, oif, strict, &mpri, match, do_rr); 714 } 715 716 for (rt = leaf; rt && rt != rr_head; 717 rt = rcu_dereference(rt->fib6_next)) { 718 if (rt->fib6_metric != metric) { 719 cont = rt; 720 break; 721 } 722 723 match = find_match(rt, oif, strict, &mpri, match, do_rr); 724 } 725 726 if (match || !cont) 727 return match; 728 729 for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next)) 730 match = find_match(rt, oif, strict, &mpri, match, do_rr); 731 732 return match; 733 } 734 735 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn, 736 int oif, int strict) 737 { 738 struct fib6_info *leaf = rcu_dereference(fn->leaf); 739 struct fib6_info *match, *rt0; 740 bool do_rr = false; 741 int key_plen; 742 743 if (!leaf || leaf == net->ipv6.fib6_null_entry) 744 return net->ipv6.fib6_null_entry; 745 746 rt0 = rcu_dereference(fn->rr_ptr); 747 if (!rt0) 748 rt0 = leaf; 749 750 /* Double check to make sure fn is not an intermediate node 751 * and fn->leaf does not points to its child's leaf 752 * (This might happen if all routes under fn are deleted from 753 * the tree and fib6_repair_tree() is called on the node.) 754 */ 755 key_plen = rt0->fib6_dst.plen; 756 #ifdef CONFIG_IPV6_SUBTREES 757 if (rt0->fib6_src.plen) 758 key_plen = rt0->fib6_src.plen; 759 #endif 760 if (fn->fn_bit != key_plen) 761 return net->ipv6.fib6_null_entry; 762 763 match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict, 764 &do_rr); 765 766 if (do_rr) { 767 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 768 769 /* no entries matched; do round-robin */ 770 if (!next || next->fib6_metric != rt0->fib6_metric) 771 next = leaf; 772 773 if (next != rt0) { 774 spin_lock_bh(&leaf->fib6_table->tb6_lock); 775 /* make sure next is not being deleted from the tree */ 776 if (next->fib6_node) 777 rcu_assign_pointer(fn->rr_ptr, next); 778 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 779 } 780 } 781 782 return match ? match : net->ipv6.fib6_null_entry; 783 } 784 785 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt) 786 { 787 return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY)); 788 } 789 790 #ifdef CONFIG_IPV6_ROUTE_INFO 791 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 792 const struct in6_addr *gwaddr) 793 { 794 struct net *net = dev_net(dev); 795 struct route_info *rinfo = (struct route_info *) opt; 796 struct in6_addr prefix_buf, *prefix; 797 unsigned int pref; 798 unsigned long lifetime; 799 struct fib6_info *rt; 800 801 if (len < sizeof(struct route_info)) { 802 return -EINVAL; 803 } 804 805 /* Sanity check for prefix_len and length */ 806 if (rinfo->length > 3) { 807 return -EINVAL; 808 } else if (rinfo->prefix_len > 128) { 809 return -EINVAL; 810 } else if (rinfo->prefix_len > 64) { 811 if (rinfo->length < 2) { 812 return -EINVAL; 813 } 814 } else if (rinfo->prefix_len > 0) { 815 if (rinfo->length < 1) { 816 return -EINVAL; 817 } 818 } 819 820 pref = rinfo->route_pref; 821 if (pref == ICMPV6_ROUTER_PREF_INVALID) 822 return -EINVAL; 823 824 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 825 826 if (rinfo->length == 3) 827 prefix = (struct in6_addr *)rinfo->prefix; 828 else { 829 /* this function is safe */ 830 ipv6_addr_prefix(&prefix_buf, 831 (struct in6_addr *)rinfo->prefix, 832 rinfo->prefix_len); 833 prefix = &prefix_buf; 834 } 835 836 if (rinfo->prefix_len == 0) 837 rt = rt6_get_dflt_router(net, gwaddr, dev); 838 else 839 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 840 gwaddr, dev); 841 842 if (rt && !lifetime) { 843 ip6_del_rt(net, rt); 844 rt = NULL; 845 } 846 847 if (!rt && lifetime) 848 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 849 dev, pref); 850 else if (rt) 851 rt->fib6_flags = RTF_ROUTEINFO | 852 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 853 854 if (rt) { 855 if (!addrconf_finite_timeout(lifetime)) 856 fib6_clean_expires(rt); 857 else 858 fib6_set_expires(rt, jiffies + HZ * lifetime); 859 860 fib6_info_release(rt); 861 } 862 return 0; 863 } 864 #endif 865 866 /* 867 * Misc support functions 868 */ 869 870 /* called with rcu_lock held */ 871 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt) 872 { 873 struct net_device *dev = rt->fib6_nh.nh_dev; 874 875 if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 876 /* for copies of local routes, dst->dev needs to be the 877 * device if it is a master device, the master device if 878 * device is enslaved, and the loopback as the default 879 */ 880 if (netif_is_l3_slave(dev) && 881 !rt6_need_strict(&rt->fib6_dst.addr)) 882 dev = l3mdev_master_dev_rcu(dev); 883 else if (!netif_is_l3_master(dev)) 884 dev = dev_net(dev)->loopback_dev; 885 /* last case is netif_is_l3_master(dev) is true in which 886 * case we want dev returned to be dev 887 */ 888 } 889 890 return dev; 891 } 892 893 static const int fib6_prop[RTN_MAX + 1] = { 894 [RTN_UNSPEC] = 0, 895 [RTN_UNICAST] = 0, 896 [RTN_LOCAL] = 0, 897 [RTN_BROADCAST] = 0, 898 [RTN_ANYCAST] = 0, 899 [RTN_MULTICAST] = 0, 900 [RTN_BLACKHOLE] = -EINVAL, 901 [RTN_UNREACHABLE] = -EHOSTUNREACH, 902 [RTN_PROHIBIT] = -EACCES, 903 [RTN_THROW] = -EAGAIN, 904 [RTN_NAT] = -EINVAL, 905 [RTN_XRESOLVE] = -EINVAL, 906 }; 907 908 static int ip6_rt_type_to_error(u8 fib6_type) 909 { 910 return fib6_prop[fib6_type]; 911 } 912 913 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 914 { 915 unsigned short flags = 0; 916 917 if (rt->dst_nocount) 918 flags |= DST_NOCOUNT; 919 if (rt->dst_nopolicy) 920 flags |= DST_NOPOLICY; 921 if (rt->dst_host) 922 flags |= DST_HOST; 923 924 return flags; 925 } 926 927 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort) 928 { 929 rt->dst.error = ip6_rt_type_to_error(ort->fib6_type); 930 931 switch (ort->fib6_type) { 932 case RTN_BLACKHOLE: 933 rt->dst.output = dst_discard_out; 934 rt->dst.input = dst_discard; 935 break; 936 case RTN_PROHIBIT: 937 rt->dst.output = ip6_pkt_prohibit_out; 938 rt->dst.input = ip6_pkt_prohibit; 939 break; 940 case RTN_THROW: 941 case RTN_UNREACHABLE: 942 default: 943 rt->dst.output = ip6_pkt_discard_out; 944 rt->dst.input = ip6_pkt_discard; 945 break; 946 } 947 } 948 949 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort) 950 { 951 if (ort->fib6_flags & RTF_REJECT) { 952 ip6_rt_init_dst_reject(rt, ort); 953 return; 954 } 955 956 rt->dst.error = 0; 957 rt->dst.output = ip6_output; 958 959 if (ort->fib6_type == RTN_LOCAL || ort->fib6_type == RTN_ANYCAST) { 960 rt->dst.input = ip6_input; 961 } else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 962 rt->dst.input = ip6_mc_input; 963 } else { 964 rt->dst.input = ip6_forward; 965 } 966 967 if (ort->fib6_nh.nh_lwtstate) { 968 rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate); 969 lwtunnel_set_redirect(&rt->dst); 970 } 971 972 rt->dst.lastuse = jiffies; 973 } 974 975 /* Caller must already hold reference to @from */ 976 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 977 { 978 rt->rt6i_flags &= ~RTF_EXPIRES; 979 rcu_assign_pointer(rt->from, from); 980 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 981 } 982 983 /* Caller must already hold reference to @ort */ 984 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort) 985 { 986 struct net_device *dev = fib6_info_nh_dev(ort); 987 988 ip6_rt_init_dst(rt, ort); 989 990 rt->rt6i_dst = ort->fib6_dst; 991 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 992 rt->rt6i_gateway = ort->fib6_nh.nh_gw; 993 rt->rt6i_flags = ort->fib6_flags; 994 rt6_set_from(rt, ort); 995 #ifdef CONFIG_IPV6_SUBTREES 996 rt->rt6i_src = ort->fib6_src; 997 #endif 998 } 999 1000 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1001 struct in6_addr *saddr) 1002 { 1003 struct fib6_node *pn, *sn; 1004 while (1) { 1005 if (fn->fn_flags & RTN_TL_ROOT) 1006 return NULL; 1007 pn = rcu_dereference(fn->parent); 1008 sn = FIB6_SUBTREE(pn); 1009 if (sn && sn != fn) 1010 fn = fib6_node_lookup(sn, NULL, saddr); 1011 else 1012 fn = pn; 1013 if (fn->fn_flags & RTN_RTINFO) 1014 return fn; 1015 } 1016 } 1017 1018 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt, 1019 bool null_fallback) 1020 { 1021 struct rt6_info *rt = *prt; 1022 1023 if (dst_hold_safe(&rt->dst)) 1024 return true; 1025 if (null_fallback) { 1026 rt = net->ipv6.ip6_null_entry; 1027 dst_hold(&rt->dst); 1028 } else { 1029 rt = NULL; 1030 } 1031 *prt = rt; 1032 return false; 1033 } 1034 1035 /* called with rcu_lock held */ 1036 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt) 1037 { 1038 unsigned short flags = fib6_info_dst_flags(rt); 1039 struct net_device *dev = rt->fib6_nh.nh_dev; 1040 struct rt6_info *nrt; 1041 1042 if (!fib6_info_hold_safe(rt)) 1043 return NULL; 1044 1045 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1046 if (nrt) 1047 ip6_rt_copy_init(nrt, rt); 1048 else 1049 fib6_info_release(rt); 1050 1051 return nrt; 1052 } 1053 1054 static struct rt6_info *ip6_pol_route_lookup(struct net *net, 1055 struct fib6_table *table, 1056 struct flowi6 *fl6, 1057 const struct sk_buff *skb, 1058 int flags) 1059 { 1060 struct fib6_info *f6i; 1061 struct fib6_node *fn; 1062 struct rt6_info *rt; 1063 1064 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1065 flags &= ~RT6_LOOKUP_F_IFACE; 1066 1067 rcu_read_lock(); 1068 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1069 restart: 1070 f6i = rcu_dereference(fn->leaf); 1071 if (!f6i) { 1072 f6i = net->ipv6.fib6_null_entry; 1073 } else { 1074 f6i = rt6_device_match(net, f6i, &fl6->saddr, 1075 fl6->flowi6_oif, flags); 1076 if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0) 1077 f6i = fib6_multipath_select(net, f6i, fl6, 1078 fl6->flowi6_oif, skb, 1079 flags); 1080 } 1081 if (f6i == net->ipv6.fib6_null_entry) { 1082 fn = fib6_backtrack(fn, &fl6->saddr); 1083 if (fn) 1084 goto restart; 1085 } 1086 1087 trace_fib6_table_lookup(net, f6i, table, fl6); 1088 1089 /* Search through exception table */ 1090 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr); 1091 if (rt) { 1092 if (ip6_hold_safe(net, &rt, true)) 1093 dst_use_noref(&rt->dst, jiffies); 1094 } else if (f6i == net->ipv6.fib6_null_entry) { 1095 rt = net->ipv6.ip6_null_entry; 1096 dst_hold(&rt->dst); 1097 } else { 1098 rt = ip6_create_rt_rcu(f6i); 1099 if (!rt) { 1100 rt = net->ipv6.ip6_null_entry; 1101 dst_hold(&rt->dst); 1102 } 1103 } 1104 1105 rcu_read_unlock(); 1106 1107 return rt; 1108 } 1109 1110 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1111 const struct sk_buff *skb, int flags) 1112 { 1113 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1114 } 1115 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1116 1117 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1118 const struct in6_addr *saddr, int oif, 1119 const struct sk_buff *skb, int strict) 1120 { 1121 struct flowi6 fl6 = { 1122 .flowi6_oif = oif, 1123 .daddr = *daddr, 1124 }; 1125 struct dst_entry *dst; 1126 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1127 1128 if (saddr) { 1129 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1130 flags |= RT6_LOOKUP_F_HAS_SADDR; 1131 } 1132 1133 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1134 if (dst->error == 0) 1135 return (struct rt6_info *) dst; 1136 1137 dst_release(dst); 1138 1139 return NULL; 1140 } 1141 EXPORT_SYMBOL(rt6_lookup); 1142 1143 /* ip6_ins_rt is called with FREE table->tb6_lock. 1144 * It takes new route entry, the addition fails by any reason the 1145 * route is released. 1146 * Caller must hold dst before calling it. 1147 */ 1148 1149 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1150 struct netlink_ext_ack *extack) 1151 { 1152 int err; 1153 struct fib6_table *table; 1154 1155 table = rt->fib6_table; 1156 spin_lock_bh(&table->tb6_lock); 1157 err = fib6_add(&table->tb6_root, rt, info, extack); 1158 spin_unlock_bh(&table->tb6_lock); 1159 1160 return err; 1161 } 1162 1163 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1164 { 1165 struct nl_info info = { .nl_net = net, }; 1166 1167 return __ip6_ins_rt(rt, &info, NULL); 1168 } 1169 1170 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort, 1171 const struct in6_addr *daddr, 1172 const struct in6_addr *saddr) 1173 { 1174 struct net_device *dev; 1175 struct rt6_info *rt; 1176 1177 /* 1178 * Clone the route. 1179 */ 1180 1181 if (!fib6_info_hold_safe(ort)) 1182 return NULL; 1183 1184 dev = ip6_rt_get_dev_rcu(ort); 1185 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1186 if (!rt) { 1187 fib6_info_release(ort); 1188 return NULL; 1189 } 1190 1191 ip6_rt_copy_init(rt, ort); 1192 rt->rt6i_flags |= RTF_CACHE; 1193 rt->dst.flags |= DST_HOST; 1194 rt->rt6i_dst.addr = *daddr; 1195 rt->rt6i_dst.plen = 128; 1196 1197 if (!rt6_is_gw_or_nonexthop(ort)) { 1198 if (ort->fib6_dst.plen != 128 && 1199 ipv6_addr_equal(&ort->fib6_dst.addr, daddr)) 1200 rt->rt6i_flags |= RTF_ANYCAST; 1201 #ifdef CONFIG_IPV6_SUBTREES 1202 if (rt->rt6i_src.plen && saddr) { 1203 rt->rt6i_src.addr = *saddr; 1204 rt->rt6i_src.plen = 128; 1205 } 1206 #endif 1207 } 1208 1209 return rt; 1210 } 1211 1212 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt) 1213 { 1214 unsigned short flags = fib6_info_dst_flags(rt); 1215 struct net_device *dev; 1216 struct rt6_info *pcpu_rt; 1217 1218 if (!fib6_info_hold_safe(rt)) 1219 return NULL; 1220 1221 rcu_read_lock(); 1222 dev = ip6_rt_get_dev_rcu(rt); 1223 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags); 1224 rcu_read_unlock(); 1225 if (!pcpu_rt) { 1226 fib6_info_release(rt); 1227 return NULL; 1228 } 1229 ip6_rt_copy_init(pcpu_rt, rt); 1230 pcpu_rt->rt6i_flags |= RTF_PCPU; 1231 return pcpu_rt; 1232 } 1233 1234 /* It should be called with rcu_read_lock() acquired */ 1235 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt) 1236 { 1237 struct rt6_info *pcpu_rt, **p; 1238 1239 p = this_cpu_ptr(rt->rt6i_pcpu); 1240 pcpu_rt = *p; 1241 1242 if (pcpu_rt) 1243 ip6_hold_safe(NULL, &pcpu_rt, false); 1244 1245 return pcpu_rt; 1246 } 1247 1248 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1249 struct fib6_info *rt) 1250 { 1251 struct rt6_info *pcpu_rt, *prev, **p; 1252 1253 pcpu_rt = ip6_rt_pcpu_alloc(rt); 1254 if (!pcpu_rt) { 1255 dst_hold(&net->ipv6.ip6_null_entry->dst); 1256 return net->ipv6.ip6_null_entry; 1257 } 1258 1259 dst_hold(&pcpu_rt->dst); 1260 p = this_cpu_ptr(rt->rt6i_pcpu); 1261 prev = cmpxchg(p, NULL, pcpu_rt); 1262 BUG_ON(prev); 1263 1264 return pcpu_rt; 1265 } 1266 1267 /* exception hash table implementation 1268 */ 1269 static DEFINE_SPINLOCK(rt6_exception_lock); 1270 1271 /* Remove rt6_ex from hash table and free the memory 1272 * Caller must hold rt6_exception_lock 1273 */ 1274 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1275 struct rt6_exception *rt6_ex) 1276 { 1277 struct net *net; 1278 1279 if (!bucket || !rt6_ex) 1280 return; 1281 1282 net = dev_net(rt6_ex->rt6i->dst.dev); 1283 hlist_del_rcu(&rt6_ex->hlist); 1284 dst_release(&rt6_ex->rt6i->dst); 1285 kfree_rcu(rt6_ex, rcu); 1286 WARN_ON_ONCE(!bucket->depth); 1287 bucket->depth--; 1288 net->ipv6.rt6_stats->fib_rt_cache--; 1289 } 1290 1291 /* Remove oldest rt6_ex in bucket and free the memory 1292 * Caller must hold rt6_exception_lock 1293 */ 1294 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1295 { 1296 struct rt6_exception *rt6_ex, *oldest = NULL; 1297 1298 if (!bucket) 1299 return; 1300 1301 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1302 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1303 oldest = rt6_ex; 1304 } 1305 rt6_remove_exception(bucket, oldest); 1306 } 1307 1308 static u32 rt6_exception_hash(const struct in6_addr *dst, 1309 const struct in6_addr *src) 1310 { 1311 static u32 seed __read_mostly; 1312 u32 val; 1313 1314 net_get_random_once(&seed, sizeof(seed)); 1315 val = jhash(dst, sizeof(*dst), seed); 1316 1317 #ifdef CONFIG_IPV6_SUBTREES 1318 if (src) 1319 val = jhash(src, sizeof(*src), val); 1320 #endif 1321 return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1322 } 1323 1324 /* Helper function to find the cached rt in the hash table 1325 * and update bucket pointer to point to the bucket for this 1326 * (daddr, saddr) pair 1327 * Caller must hold rt6_exception_lock 1328 */ 1329 static struct rt6_exception * 1330 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1331 const struct in6_addr *daddr, 1332 const struct in6_addr *saddr) 1333 { 1334 struct rt6_exception *rt6_ex; 1335 u32 hval; 1336 1337 if (!(*bucket) || !daddr) 1338 return NULL; 1339 1340 hval = rt6_exception_hash(daddr, saddr); 1341 *bucket += hval; 1342 1343 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1344 struct rt6_info *rt6 = rt6_ex->rt6i; 1345 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1346 1347 #ifdef CONFIG_IPV6_SUBTREES 1348 if (matched && saddr) 1349 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1350 #endif 1351 if (matched) 1352 return rt6_ex; 1353 } 1354 return NULL; 1355 } 1356 1357 /* Helper function to find the cached rt in the hash table 1358 * and update bucket pointer to point to the bucket for this 1359 * (daddr, saddr) pair 1360 * Caller must hold rcu_read_lock() 1361 */ 1362 static struct rt6_exception * 1363 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1364 const struct in6_addr *daddr, 1365 const struct in6_addr *saddr) 1366 { 1367 struct rt6_exception *rt6_ex; 1368 u32 hval; 1369 1370 WARN_ON_ONCE(!rcu_read_lock_held()); 1371 1372 if (!(*bucket) || !daddr) 1373 return NULL; 1374 1375 hval = rt6_exception_hash(daddr, saddr); 1376 *bucket += hval; 1377 1378 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1379 struct rt6_info *rt6 = rt6_ex->rt6i; 1380 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1381 1382 #ifdef CONFIG_IPV6_SUBTREES 1383 if (matched && saddr) 1384 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1385 #endif 1386 if (matched) 1387 return rt6_ex; 1388 } 1389 return NULL; 1390 } 1391 1392 static unsigned int fib6_mtu(const struct fib6_info *rt) 1393 { 1394 unsigned int mtu; 1395 1396 if (rt->fib6_pmtu) { 1397 mtu = rt->fib6_pmtu; 1398 } else { 1399 struct net_device *dev = fib6_info_nh_dev(rt); 1400 struct inet6_dev *idev; 1401 1402 rcu_read_lock(); 1403 idev = __in6_dev_get(dev); 1404 mtu = idev->cnf.mtu6; 1405 rcu_read_unlock(); 1406 } 1407 1408 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1409 1410 return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu); 1411 } 1412 1413 static int rt6_insert_exception(struct rt6_info *nrt, 1414 struct fib6_info *ort) 1415 { 1416 struct net *net = dev_net(nrt->dst.dev); 1417 struct rt6_exception_bucket *bucket; 1418 struct in6_addr *src_key = NULL; 1419 struct rt6_exception *rt6_ex; 1420 int err = 0; 1421 1422 spin_lock_bh(&rt6_exception_lock); 1423 1424 if (ort->exception_bucket_flushed) { 1425 err = -EINVAL; 1426 goto out; 1427 } 1428 1429 bucket = rcu_dereference_protected(ort->rt6i_exception_bucket, 1430 lockdep_is_held(&rt6_exception_lock)); 1431 if (!bucket) { 1432 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1433 GFP_ATOMIC); 1434 if (!bucket) { 1435 err = -ENOMEM; 1436 goto out; 1437 } 1438 rcu_assign_pointer(ort->rt6i_exception_bucket, bucket); 1439 } 1440 1441 #ifdef CONFIG_IPV6_SUBTREES 1442 /* rt6i_src.plen != 0 indicates ort is in subtree 1443 * and exception table is indexed by a hash of 1444 * both rt6i_dst and rt6i_src. 1445 * Otherwise, the exception table is indexed by 1446 * a hash of only rt6i_dst. 1447 */ 1448 if (ort->fib6_src.plen) 1449 src_key = &nrt->rt6i_src.addr; 1450 #endif 1451 /* rt6_mtu_change() might lower mtu on ort. 1452 * Only insert this exception route if its mtu 1453 * is less than ort's mtu value. 1454 */ 1455 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) { 1456 err = -EINVAL; 1457 goto out; 1458 } 1459 1460 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1461 src_key); 1462 if (rt6_ex) 1463 rt6_remove_exception(bucket, rt6_ex); 1464 1465 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1466 if (!rt6_ex) { 1467 err = -ENOMEM; 1468 goto out; 1469 } 1470 rt6_ex->rt6i = nrt; 1471 rt6_ex->stamp = jiffies; 1472 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1473 bucket->depth++; 1474 net->ipv6.rt6_stats->fib_rt_cache++; 1475 1476 if (bucket->depth > FIB6_MAX_DEPTH) 1477 rt6_exception_remove_oldest(bucket); 1478 1479 out: 1480 spin_unlock_bh(&rt6_exception_lock); 1481 1482 /* Update fn->fn_sernum to invalidate all cached dst */ 1483 if (!err) { 1484 spin_lock_bh(&ort->fib6_table->tb6_lock); 1485 fib6_update_sernum(net, ort); 1486 spin_unlock_bh(&ort->fib6_table->tb6_lock); 1487 fib6_force_start_gc(net); 1488 } 1489 1490 return err; 1491 } 1492 1493 void rt6_flush_exceptions(struct fib6_info *rt) 1494 { 1495 struct rt6_exception_bucket *bucket; 1496 struct rt6_exception *rt6_ex; 1497 struct hlist_node *tmp; 1498 int i; 1499 1500 spin_lock_bh(&rt6_exception_lock); 1501 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1502 rt->exception_bucket_flushed = 1; 1503 1504 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1505 lockdep_is_held(&rt6_exception_lock)); 1506 if (!bucket) 1507 goto out; 1508 1509 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1510 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) 1511 rt6_remove_exception(bucket, rt6_ex); 1512 WARN_ON_ONCE(bucket->depth); 1513 bucket++; 1514 } 1515 1516 out: 1517 spin_unlock_bh(&rt6_exception_lock); 1518 } 1519 1520 /* Find cached rt in the hash table inside passed in rt 1521 * Caller has to hold rcu_read_lock() 1522 */ 1523 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt, 1524 struct in6_addr *daddr, 1525 struct in6_addr *saddr) 1526 { 1527 struct rt6_exception_bucket *bucket; 1528 struct in6_addr *src_key = NULL; 1529 struct rt6_exception *rt6_ex; 1530 struct rt6_info *res = NULL; 1531 1532 bucket = rcu_dereference(rt->rt6i_exception_bucket); 1533 1534 #ifdef CONFIG_IPV6_SUBTREES 1535 /* rt6i_src.plen != 0 indicates rt is in subtree 1536 * and exception table is indexed by a hash of 1537 * both rt6i_dst and rt6i_src. 1538 * Otherwise, the exception table is indexed by 1539 * a hash of only rt6i_dst. 1540 */ 1541 if (rt->fib6_src.plen) 1542 src_key = saddr; 1543 #endif 1544 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1545 1546 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1547 res = rt6_ex->rt6i; 1548 1549 return res; 1550 } 1551 1552 /* Remove the passed in cached rt from the hash table that contains it */ 1553 static int rt6_remove_exception_rt(struct rt6_info *rt) 1554 { 1555 struct rt6_exception_bucket *bucket; 1556 struct in6_addr *src_key = NULL; 1557 struct rt6_exception *rt6_ex; 1558 struct fib6_info *from; 1559 int err; 1560 1561 from = rcu_dereference(rt->from); 1562 if (!from || 1563 !(rt->rt6i_flags & RTF_CACHE)) 1564 return -EINVAL; 1565 1566 if (!rcu_access_pointer(from->rt6i_exception_bucket)) 1567 return -ENOENT; 1568 1569 spin_lock_bh(&rt6_exception_lock); 1570 bucket = rcu_dereference_protected(from->rt6i_exception_bucket, 1571 lockdep_is_held(&rt6_exception_lock)); 1572 #ifdef CONFIG_IPV6_SUBTREES 1573 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1574 * and exception table is indexed by a hash of 1575 * both rt6i_dst and rt6i_src. 1576 * Otherwise, the exception table is indexed by 1577 * a hash of only rt6i_dst. 1578 */ 1579 if (from->fib6_src.plen) 1580 src_key = &rt->rt6i_src.addr; 1581 #endif 1582 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1583 &rt->rt6i_dst.addr, 1584 src_key); 1585 if (rt6_ex) { 1586 rt6_remove_exception(bucket, rt6_ex); 1587 err = 0; 1588 } else { 1589 err = -ENOENT; 1590 } 1591 1592 spin_unlock_bh(&rt6_exception_lock); 1593 return err; 1594 } 1595 1596 /* Find rt6_ex which contains the passed in rt cache and 1597 * refresh its stamp 1598 */ 1599 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 1600 { 1601 struct rt6_exception_bucket *bucket; 1602 struct fib6_info *from = rt->from; 1603 struct in6_addr *src_key = NULL; 1604 struct rt6_exception *rt6_ex; 1605 1606 if (!from || 1607 !(rt->rt6i_flags & RTF_CACHE)) 1608 return; 1609 1610 rcu_read_lock(); 1611 bucket = rcu_dereference(from->rt6i_exception_bucket); 1612 1613 #ifdef CONFIG_IPV6_SUBTREES 1614 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1615 * and exception table is indexed by a hash of 1616 * both rt6i_dst and rt6i_src. 1617 * Otherwise, the exception table is indexed by 1618 * a hash of only rt6i_dst. 1619 */ 1620 if (from->fib6_src.plen) 1621 src_key = &rt->rt6i_src.addr; 1622 #endif 1623 rt6_ex = __rt6_find_exception_rcu(&bucket, 1624 &rt->rt6i_dst.addr, 1625 src_key); 1626 if (rt6_ex) 1627 rt6_ex->stamp = jiffies; 1628 1629 rcu_read_unlock(); 1630 } 1631 1632 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 1633 struct rt6_info *rt, int mtu) 1634 { 1635 /* If the new MTU is lower than the route PMTU, this new MTU will be the 1636 * lowest MTU in the path: always allow updating the route PMTU to 1637 * reflect PMTU decreases. 1638 * 1639 * If the new MTU is higher, and the route PMTU is equal to the local 1640 * MTU, this means the old MTU is the lowest in the path, so allow 1641 * updating it: if other nodes now have lower MTUs, PMTU discovery will 1642 * handle this. 1643 */ 1644 1645 if (dst_mtu(&rt->dst) >= mtu) 1646 return true; 1647 1648 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 1649 return true; 1650 1651 return false; 1652 } 1653 1654 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 1655 struct fib6_info *rt, int mtu) 1656 { 1657 struct rt6_exception_bucket *bucket; 1658 struct rt6_exception *rt6_ex; 1659 int i; 1660 1661 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1662 lockdep_is_held(&rt6_exception_lock)); 1663 1664 if (!bucket) 1665 return; 1666 1667 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1668 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1669 struct rt6_info *entry = rt6_ex->rt6i; 1670 1671 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 1672 * route), the metrics of its rt->from have already 1673 * been updated. 1674 */ 1675 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 1676 rt6_mtu_change_route_allowed(idev, entry, mtu)) 1677 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 1678 } 1679 bucket++; 1680 } 1681 } 1682 1683 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 1684 1685 static void rt6_exceptions_clean_tohost(struct fib6_info *rt, 1686 struct in6_addr *gateway) 1687 { 1688 struct rt6_exception_bucket *bucket; 1689 struct rt6_exception *rt6_ex; 1690 struct hlist_node *tmp; 1691 int i; 1692 1693 if (!rcu_access_pointer(rt->rt6i_exception_bucket)) 1694 return; 1695 1696 spin_lock_bh(&rt6_exception_lock); 1697 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1698 lockdep_is_held(&rt6_exception_lock)); 1699 1700 if (bucket) { 1701 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1702 hlist_for_each_entry_safe(rt6_ex, tmp, 1703 &bucket->chain, hlist) { 1704 struct rt6_info *entry = rt6_ex->rt6i; 1705 1706 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 1707 RTF_CACHE_GATEWAY && 1708 ipv6_addr_equal(gateway, 1709 &entry->rt6i_gateway)) { 1710 rt6_remove_exception(bucket, rt6_ex); 1711 } 1712 } 1713 bucket++; 1714 } 1715 } 1716 1717 spin_unlock_bh(&rt6_exception_lock); 1718 } 1719 1720 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 1721 struct rt6_exception *rt6_ex, 1722 struct fib6_gc_args *gc_args, 1723 unsigned long now) 1724 { 1725 struct rt6_info *rt = rt6_ex->rt6i; 1726 1727 /* we are pruning and obsoleting aged-out and non gateway exceptions 1728 * even if others have still references to them, so that on next 1729 * dst_check() such references can be dropped. 1730 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 1731 * expired, independently from their aging, as per RFC 8201 section 4 1732 */ 1733 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 1734 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 1735 RT6_TRACE("aging clone %p\n", rt); 1736 rt6_remove_exception(bucket, rt6_ex); 1737 return; 1738 } 1739 } else if (time_after(jiffies, rt->dst.expires)) { 1740 RT6_TRACE("purging expired route %p\n", rt); 1741 rt6_remove_exception(bucket, rt6_ex); 1742 return; 1743 } 1744 1745 if (rt->rt6i_flags & RTF_GATEWAY) { 1746 struct neighbour *neigh; 1747 __u8 neigh_flags = 0; 1748 1749 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 1750 if (neigh) 1751 neigh_flags = neigh->flags; 1752 1753 if (!(neigh_flags & NTF_ROUTER)) { 1754 RT6_TRACE("purging route %p via non-router but gateway\n", 1755 rt); 1756 rt6_remove_exception(bucket, rt6_ex); 1757 return; 1758 } 1759 } 1760 1761 gc_args->more++; 1762 } 1763 1764 void rt6_age_exceptions(struct fib6_info *rt, 1765 struct fib6_gc_args *gc_args, 1766 unsigned long now) 1767 { 1768 struct rt6_exception_bucket *bucket; 1769 struct rt6_exception *rt6_ex; 1770 struct hlist_node *tmp; 1771 int i; 1772 1773 if (!rcu_access_pointer(rt->rt6i_exception_bucket)) 1774 return; 1775 1776 rcu_read_lock_bh(); 1777 spin_lock(&rt6_exception_lock); 1778 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1779 lockdep_is_held(&rt6_exception_lock)); 1780 1781 if (bucket) { 1782 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1783 hlist_for_each_entry_safe(rt6_ex, tmp, 1784 &bucket->chain, hlist) { 1785 rt6_age_examine_exception(bucket, rt6_ex, 1786 gc_args, now); 1787 } 1788 bucket++; 1789 } 1790 } 1791 spin_unlock(&rt6_exception_lock); 1792 rcu_read_unlock_bh(); 1793 } 1794 1795 /* must be called with rcu lock held */ 1796 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table, 1797 int oif, struct flowi6 *fl6, int strict) 1798 { 1799 struct fib6_node *fn, *saved_fn; 1800 struct fib6_info *f6i; 1801 1802 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1803 saved_fn = fn; 1804 1805 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1806 oif = 0; 1807 1808 redo_rt6_select: 1809 f6i = rt6_select(net, fn, oif, strict); 1810 if (f6i == net->ipv6.fib6_null_entry) { 1811 fn = fib6_backtrack(fn, &fl6->saddr); 1812 if (fn) 1813 goto redo_rt6_select; 1814 else if (strict & RT6_LOOKUP_F_REACHABLE) { 1815 /* also consider unreachable route */ 1816 strict &= ~RT6_LOOKUP_F_REACHABLE; 1817 fn = saved_fn; 1818 goto redo_rt6_select; 1819 } 1820 } 1821 1822 trace_fib6_table_lookup(net, f6i, table, fl6); 1823 1824 return f6i; 1825 } 1826 1827 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 1828 int oif, struct flowi6 *fl6, 1829 const struct sk_buff *skb, int flags) 1830 { 1831 struct fib6_info *f6i; 1832 struct rt6_info *rt; 1833 int strict = 0; 1834 1835 strict |= flags & RT6_LOOKUP_F_IFACE; 1836 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 1837 if (net->ipv6.devconf_all->forwarding == 0) 1838 strict |= RT6_LOOKUP_F_REACHABLE; 1839 1840 rcu_read_lock(); 1841 1842 f6i = fib6_table_lookup(net, table, oif, fl6, strict); 1843 if (f6i->fib6_nsiblings) 1844 f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict); 1845 1846 if (f6i == net->ipv6.fib6_null_entry) { 1847 rt = net->ipv6.ip6_null_entry; 1848 rcu_read_unlock(); 1849 dst_hold(&rt->dst); 1850 return rt; 1851 } 1852 1853 /*Search through exception table */ 1854 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr); 1855 if (rt) { 1856 if (ip6_hold_safe(net, &rt, true)) 1857 dst_use_noref(&rt->dst, jiffies); 1858 1859 rcu_read_unlock(); 1860 return rt; 1861 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 1862 !(f6i->fib6_flags & RTF_GATEWAY))) { 1863 /* Create a RTF_CACHE clone which will not be 1864 * owned by the fib6 tree. It is for the special case where 1865 * the daddr in the skb during the neighbor look-up is different 1866 * from the fl6->daddr used to look-up route here. 1867 */ 1868 struct rt6_info *uncached_rt; 1869 1870 uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL); 1871 1872 rcu_read_unlock(); 1873 1874 if (uncached_rt) { 1875 /* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc() 1876 * No need for another dst_hold() 1877 */ 1878 rt6_uncached_list_add(uncached_rt); 1879 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 1880 } else { 1881 uncached_rt = net->ipv6.ip6_null_entry; 1882 dst_hold(&uncached_rt->dst); 1883 } 1884 1885 return uncached_rt; 1886 } else { 1887 /* Get a percpu copy */ 1888 1889 struct rt6_info *pcpu_rt; 1890 1891 local_bh_disable(); 1892 pcpu_rt = rt6_get_pcpu_route(f6i); 1893 1894 if (!pcpu_rt) 1895 pcpu_rt = rt6_make_pcpu_route(net, f6i); 1896 1897 local_bh_enable(); 1898 rcu_read_unlock(); 1899 1900 return pcpu_rt; 1901 } 1902 } 1903 EXPORT_SYMBOL_GPL(ip6_pol_route); 1904 1905 static struct rt6_info *ip6_pol_route_input(struct net *net, 1906 struct fib6_table *table, 1907 struct flowi6 *fl6, 1908 const struct sk_buff *skb, 1909 int flags) 1910 { 1911 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 1912 } 1913 1914 struct dst_entry *ip6_route_input_lookup(struct net *net, 1915 struct net_device *dev, 1916 struct flowi6 *fl6, 1917 const struct sk_buff *skb, 1918 int flags) 1919 { 1920 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 1921 flags |= RT6_LOOKUP_F_IFACE; 1922 1923 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 1924 } 1925 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 1926 1927 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 1928 struct flow_keys *keys, 1929 struct flow_keys *flkeys) 1930 { 1931 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 1932 const struct ipv6hdr *key_iph = outer_iph; 1933 struct flow_keys *_flkeys = flkeys; 1934 const struct ipv6hdr *inner_iph; 1935 const struct icmp6hdr *icmph; 1936 struct ipv6hdr _inner_iph; 1937 struct icmp6hdr _icmph; 1938 1939 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 1940 goto out; 1941 1942 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 1943 sizeof(_icmph), &_icmph); 1944 if (!icmph) 1945 goto out; 1946 1947 if (icmph->icmp6_type != ICMPV6_DEST_UNREACH && 1948 icmph->icmp6_type != ICMPV6_PKT_TOOBIG && 1949 icmph->icmp6_type != ICMPV6_TIME_EXCEED && 1950 icmph->icmp6_type != ICMPV6_PARAMPROB) 1951 goto out; 1952 1953 inner_iph = skb_header_pointer(skb, 1954 skb_transport_offset(skb) + sizeof(*icmph), 1955 sizeof(_inner_iph), &_inner_iph); 1956 if (!inner_iph) 1957 goto out; 1958 1959 key_iph = inner_iph; 1960 _flkeys = NULL; 1961 out: 1962 if (_flkeys) { 1963 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 1964 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 1965 keys->tags.flow_label = _flkeys->tags.flow_label; 1966 keys->basic.ip_proto = _flkeys->basic.ip_proto; 1967 } else { 1968 keys->addrs.v6addrs.src = key_iph->saddr; 1969 keys->addrs.v6addrs.dst = key_iph->daddr; 1970 keys->tags.flow_label = ip6_flowlabel(key_iph); 1971 keys->basic.ip_proto = key_iph->nexthdr; 1972 } 1973 } 1974 1975 /* if skb is set it will be used and fl6 can be NULL */ 1976 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 1977 const struct sk_buff *skb, struct flow_keys *flkeys) 1978 { 1979 struct flow_keys hash_keys; 1980 u32 mhash; 1981 1982 switch (ip6_multipath_hash_policy(net)) { 1983 case 0: 1984 memset(&hash_keys, 0, sizeof(hash_keys)); 1985 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1986 if (skb) { 1987 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 1988 } else { 1989 hash_keys.addrs.v6addrs.src = fl6->saddr; 1990 hash_keys.addrs.v6addrs.dst = fl6->daddr; 1991 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 1992 hash_keys.basic.ip_proto = fl6->flowi6_proto; 1993 } 1994 break; 1995 case 1: 1996 if (skb) { 1997 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 1998 struct flow_keys keys; 1999 2000 /* short-circuit if we already have L4 hash present */ 2001 if (skb->l4_hash) 2002 return skb_get_hash_raw(skb) >> 1; 2003 2004 memset(&hash_keys, 0, sizeof(hash_keys)); 2005 2006 if (!flkeys) { 2007 skb_flow_dissect_flow_keys(skb, &keys, flag); 2008 flkeys = &keys; 2009 } 2010 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2011 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2012 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2013 hash_keys.ports.src = flkeys->ports.src; 2014 hash_keys.ports.dst = flkeys->ports.dst; 2015 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2016 } else { 2017 memset(&hash_keys, 0, sizeof(hash_keys)); 2018 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2019 hash_keys.addrs.v6addrs.src = fl6->saddr; 2020 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2021 hash_keys.ports.src = fl6->fl6_sport; 2022 hash_keys.ports.dst = fl6->fl6_dport; 2023 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2024 } 2025 break; 2026 } 2027 mhash = flow_hash_from_keys(&hash_keys); 2028 2029 return mhash >> 1; 2030 } 2031 2032 void ip6_route_input(struct sk_buff *skb) 2033 { 2034 const struct ipv6hdr *iph = ipv6_hdr(skb); 2035 struct net *net = dev_net(skb->dev); 2036 int flags = RT6_LOOKUP_F_HAS_SADDR; 2037 struct ip_tunnel_info *tun_info; 2038 struct flowi6 fl6 = { 2039 .flowi6_iif = skb->dev->ifindex, 2040 .daddr = iph->daddr, 2041 .saddr = iph->saddr, 2042 .flowlabel = ip6_flowinfo(iph), 2043 .flowi6_mark = skb->mark, 2044 .flowi6_proto = iph->nexthdr, 2045 }; 2046 struct flow_keys *flkeys = NULL, _flkeys; 2047 2048 tun_info = skb_tunnel_info(skb); 2049 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2050 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2051 2052 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2053 flkeys = &_flkeys; 2054 2055 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2056 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2057 skb_dst_drop(skb); 2058 skb_dst_set(skb, 2059 ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags)); 2060 } 2061 2062 static struct rt6_info *ip6_pol_route_output(struct net *net, 2063 struct fib6_table *table, 2064 struct flowi6 *fl6, 2065 const struct sk_buff *skb, 2066 int flags) 2067 { 2068 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2069 } 2070 2071 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk, 2072 struct flowi6 *fl6, int flags) 2073 { 2074 bool any_src; 2075 2076 if (ipv6_addr_type(&fl6->daddr) & 2077 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2078 struct dst_entry *dst; 2079 2080 dst = l3mdev_link_scope_lookup(net, fl6); 2081 if (dst) 2082 return dst; 2083 } 2084 2085 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2086 2087 any_src = ipv6_addr_any(&fl6->saddr); 2088 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2089 (fl6->flowi6_oif && any_src)) 2090 flags |= RT6_LOOKUP_F_IFACE; 2091 2092 if (!any_src) 2093 flags |= RT6_LOOKUP_F_HAS_SADDR; 2094 else if (sk) 2095 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 2096 2097 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2098 } 2099 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2100 2101 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2102 { 2103 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 2104 struct net_device *loopback_dev = net->loopback_dev; 2105 struct dst_entry *new = NULL; 2106 2107 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, 2108 DST_OBSOLETE_DEAD, 0); 2109 if (rt) { 2110 rt6_info_init(rt); 2111 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2112 2113 new = &rt->dst; 2114 new->__use = 1; 2115 new->input = dst_discard; 2116 new->output = dst_discard_out; 2117 2118 dst_copy_metrics(new, &ort->dst); 2119 2120 rt->rt6i_idev = in6_dev_get(loopback_dev); 2121 rt->rt6i_gateway = ort->rt6i_gateway; 2122 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2123 2124 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2125 #ifdef CONFIG_IPV6_SUBTREES 2126 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2127 #endif 2128 } 2129 2130 dst_release(dst_orig); 2131 return new ? new : ERR_PTR(-ENOMEM); 2132 } 2133 2134 /* 2135 * Destination cache support functions 2136 */ 2137 2138 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2139 { 2140 u32 rt_cookie = 0; 2141 2142 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2143 return false; 2144 2145 if (fib6_check_expired(f6i)) 2146 return false; 2147 2148 return true; 2149 } 2150 2151 static struct dst_entry *rt6_check(struct rt6_info *rt, 2152 struct fib6_info *from, 2153 u32 cookie) 2154 { 2155 u32 rt_cookie = 0; 2156 2157 if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) || 2158 rt_cookie != cookie) 2159 return NULL; 2160 2161 if (rt6_check_expired(rt)) 2162 return NULL; 2163 2164 return &rt->dst; 2165 } 2166 2167 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2168 struct fib6_info *from, 2169 u32 cookie) 2170 { 2171 if (!__rt6_check_expired(rt) && 2172 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && 2173 fib6_check(from, cookie)) 2174 return &rt->dst; 2175 else 2176 return NULL; 2177 } 2178 2179 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie) 2180 { 2181 struct dst_entry *dst_ret; 2182 struct fib6_info *from; 2183 struct rt6_info *rt; 2184 2185 rt = container_of(dst, struct rt6_info, dst); 2186 2187 rcu_read_lock(); 2188 2189 /* All IPV6 dsts are created with ->obsolete set to the value 2190 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2191 * into this function always. 2192 */ 2193 2194 from = rcu_dereference(rt->from); 2195 2196 if (from && (rt->rt6i_flags & RTF_PCPU || 2197 unlikely(!list_empty(&rt->rt6i_uncached)))) 2198 dst_ret = rt6_dst_from_check(rt, from, cookie); 2199 else 2200 dst_ret = rt6_check(rt, from, cookie); 2201 2202 rcu_read_unlock(); 2203 2204 return dst_ret; 2205 } 2206 2207 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 2208 { 2209 struct rt6_info *rt = (struct rt6_info *) dst; 2210 2211 if (rt) { 2212 if (rt->rt6i_flags & RTF_CACHE) { 2213 rcu_read_lock(); 2214 if (rt6_check_expired(rt)) { 2215 rt6_remove_exception_rt(rt); 2216 dst = NULL; 2217 } 2218 rcu_read_unlock(); 2219 } else { 2220 dst_release(dst); 2221 dst = NULL; 2222 } 2223 } 2224 return dst; 2225 } 2226 2227 static void ip6_link_failure(struct sk_buff *skb) 2228 { 2229 struct rt6_info *rt; 2230 2231 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2232 2233 rt = (struct rt6_info *) skb_dst(skb); 2234 if (rt) { 2235 rcu_read_lock(); 2236 if (rt->rt6i_flags & RTF_CACHE) { 2237 rt6_remove_exception_rt(rt); 2238 } else { 2239 struct fib6_info *from; 2240 struct fib6_node *fn; 2241 2242 from = rcu_dereference(rt->from); 2243 if (from) { 2244 fn = rcu_dereference(from->fib6_node); 2245 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2246 fn->fn_sernum = -1; 2247 } 2248 } 2249 rcu_read_unlock(); 2250 } 2251 } 2252 2253 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2254 { 2255 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2256 struct fib6_info *from; 2257 2258 rcu_read_lock(); 2259 from = rcu_dereference(rt0->from); 2260 if (from) 2261 rt0->dst.expires = from->expires; 2262 rcu_read_unlock(); 2263 } 2264 2265 dst_set_expires(&rt0->dst, timeout); 2266 rt0->rt6i_flags |= RTF_EXPIRES; 2267 } 2268 2269 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2270 { 2271 struct net *net = dev_net(rt->dst.dev); 2272 2273 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2274 rt->rt6i_flags |= RTF_MODIFIED; 2275 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2276 } 2277 2278 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2279 { 2280 bool from_set; 2281 2282 rcu_read_lock(); 2283 from_set = !!rcu_dereference(rt->from); 2284 rcu_read_unlock(); 2285 2286 return !(rt->rt6i_flags & RTF_CACHE) && 2287 (rt->rt6i_flags & RTF_PCPU || from_set); 2288 } 2289 2290 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2291 const struct ipv6hdr *iph, u32 mtu) 2292 { 2293 const struct in6_addr *daddr, *saddr; 2294 struct rt6_info *rt6 = (struct rt6_info *)dst; 2295 2296 if (dst_metric_locked(dst, RTAX_MTU)) 2297 return; 2298 2299 if (iph) { 2300 daddr = &iph->daddr; 2301 saddr = &iph->saddr; 2302 } else if (sk) { 2303 daddr = &sk->sk_v6_daddr; 2304 saddr = &inet6_sk(sk)->saddr; 2305 } else { 2306 daddr = NULL; 2307 saddr = NULL; 2308 } 2309 dst_confirm_neigh(dst, daddr); 2310 mtu = max_t(u32, mtu, IPV6_MIN_MTU); 2311 if (mtu >= dst_mtu(dst)) 2312 return; 2313 2314 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2315 rt6_do_update_pmtu(rt6, mtu); 2316 /* update rt6_ex->stamp for cache */ 2317 if (rt6->rt6i_flags & RTF_CACHE) 2318 rt6_update_exception_stamp_rt(rt6); 2319 } else if (daddr) { 2320 struct fib6_info *from; 2321 struct rt6_info *nrt6; 2322 2323 rcu_read_lock(); 2324 from = rcu_dereference(rt6->from); 2325 nrt6 = ip6_rt_cache_alloc(from, daddr, saddr); 2326 if (nrt6) { 2327 rt6_do_update_pmtu(nrt6, mtu); 2328 if (rt6_insert_exception(nrt6, from)) 2329 dst_release_immediate(&nrt6->dst); 2330 } 2331 rcu_read_unlock(); 2332 } 2333 } 2334 2335 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2336 struct sk_buff *skb, u32 mtu) 2337 { 2338 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu); 2339 } 2340 2341 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2342 int oif, u32 mark, kuid_t uid) 2343 { 2344 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2345 struct dst_entry *dst; 2346 struct flowi6 fl6 = { 2347 .flowi6_oif = oif, 2348 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 2349 .daddr = iph->daddr, 2350 .saddr = iph->saddr, 2351 .flowlabel = ip6_flowinfo(iph), 2352 .flowi6_uid = uid, 2353 }; 2354 2355 dst = ip6_route_output(net, NULL, &fl6); 2356 if (!dst->error) 2357 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu)); 2358 dst_release(dst); 2359 } 2360 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 2361 2362 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 2363 { 2364 int oif = sk->sk_bound_dev_if; 2365 struct dst_entry *dst; 2366 2367 if (!oif && skb->dev) 2368 oif = l3mdev_master_ifindex(skb->dev); 2369 2370 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid); 2371 2372 dst = __sk_dst_get(sk); 2373 if (!dst || !dst->obsolete || 2374 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 2375 return; 2376 2377 bh_lock_sock(sk); 2378 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 2379 ip6_datagram_dst_update(sk, false); 2380 bh_unlock_sock(sk); 2381 } 2382 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 2383 2384 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 2385 const struct flowi6 *fl6) 2386 { 2387 #ifdef CONFIG_IPV6_SUBTREES 2388 struct ipv6_pinfo *np = inet6_sk(sk); 2389 #endif 2390 2391 ip6_dst_store(sk, dst, 2392 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 2393 &sk->sk_v6_daddr : NULL, 2394 #ifdef CONFIG_IPV6_SUBTREES 2395 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 2396 &np->saddr : 2397 #endif 2398 NULL); 2399 } 2400 2401 /* Handle redirects */ 2402 struct ip6rd_flowi { 2403 struct flowi6 fl6; 2404 struct in6_addr gateway; 2405 }; 2406 2407 static struct rt6_info *__ip6_route_redirect(struct net *net, 2408 struct fib6_table *table, 2409 struct flowi6 *fl6, 2410 const struct sk_buff *skb, 2411 int flags) 2412 { 2413 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 2414 struct rt6_info *ret = NULL, *rt_cache; 2415 struct fib6_info *rt; 2416 struct fib6_node *fn; 2417 2418 /* Get the "current" route for this destination and 2419 * check if the redirect has come from appropriate router. 2420 * 2421 * RFC 4861 specifies that redirects should only be 2422 * accepted if they come from the nexthop to the target. 2423 * Due to the way the routes are chosen, this notion 2424 * is a bit fuzzy and one might need to check all possible 2425 * routes. 2426 */ 2427 2428 rcu_read_lock(); 2429 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2430 restart: 2431 for_each_fib6_node_rt_rcu(fn) { 2432 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 2433 continue; 2434 if (fib6_check_expired(rt)) 2435 continue; 2436 if (rt->fib6_flags & RTF_REJECT) 2437 break; 2438 if (!(rt->fib6_flags & RTF_GATEWAY)) 2439 continue; 2440 if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex) 2441 continue; 2442 /* rt_cache's gateway might be different from its 'parent' 2443 * in the case of an ip redirect. 2444 * So we keep searching in the exception table if the gateway 2445 * is different. 2446 */ 2447 if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) { 2448 rt_cache = rt6_find_cached_rt(rt, 2449 &fl6->daddr, 2450 &fl6->saddr); 2451 if (rt_cache && 2452 ipv6_addr_equal(&rdfl->gateway, 2453 &rt_cache->rt6i_gateway)) { 2454 ret = rt_cache; 2455 break; 2456 } 2457 continue; 2458 } 2459 break; 2460 } 2461 2462 if (!rt) 2463 rt = net->ipv6.fib6_null_entry; 2464 else if (rt->fib6_flags & RTF_REJECT) { 2465 ret = net->ipv6.ip6_null_entry; 2466 goto out; 2467 } 2468 2469 if (rt == net->ipv6.fib6_null_entry) { 2470 fn = fib6_backtrack(fn, &fl6->saddr); 2471 if (fn) 2472 goto restart; 2473 } 2474 2475 out: 2476 if (ret) 2477 ip6_hold_safe(net, &ret, true); 2478 else 2479 ret = ip6_create_rt_rcu(rt); 2480 2481 rcu_read_unlock(); 2482 2483 trace_fib6_table_lookup(net, rt, table, fl6); 2484 return ret; 2485 }; 2486 2487 static struct dst_entry *ip6_route_redirect(struct net *net, 2488 const struct flowi6 *fl6, 2489 const struct sk_buff *skb, 2490 const struct in6_addr *gateway) 2491 { 2492 int flags = RT6_LOOKUP_F_HAS_SADDR; 2493 struct ip6rd_flowi rdfl; 2494 2495 rdfl.fl6 = *fl6; 2496 rdfl.gateway = *gateway; 2497 2498 return fib6_rule_lookup(net, &rdfl.fl6, skb, 2499 flags, __ip6_route_redirect); 2500 } 2501 2502 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 2503 kuid_t uid) 2504 { 2505 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2506 struct dst_entry *dst; 2507 struct flowi6 fl6 = { 2508 .flowi6_iif = LOOPBACK_IFINDEX, 2509 .flowi6_oif = oif, 2510 .flowi6_mark = mark, 2511 .daddr = iph->daddr, 2512 .saddr = iph->saddr, 2513 .flowlabel = ip6_flowinfo(iph), 2514 .flowi6_uid = uid, 2515 }; 2516 2517 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 2518 rt6_do_redirect(dst, NULL, skb); 2519 dst_release(dst); 2520 } 2521 EXPORT_SYMBOL_GPL(ip6_redirect); 2522 2523 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 2524 { 2525 const struct ipv6hdr *iph = ipv6_hdr(skb); 2526 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 2527 struct dst_entry *dst; 2528 struct flowi6 fl6 = { 2529 .flowi6_iif = LOOPBACK_IFINDEX, 2530 .flowi6_oif = oif, 2531 .daddr = msg->dest, 2532 .saddr = iph->daddr, 2533 .flowi6_uid = sock_net_uid(net, NULL), 2534 }; 2535 2536 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 2537 rt6_do_redirect(dst, NULL, skb); 2538 dst_release(dst); 2539 } 2540 2541 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 2542 { 2543 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark, 2544 sk->sk_uid); 2545 } 2546 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 2547 2548 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 2549 { 2550 struct net_device *dev = dst->dev; 2551 unsigned int mtu = dst_mtu(dst); 2552 struct net *net = dev_net(dev); 2553 2554 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 2555 2556 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 2557 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 2558 2559 /* 2560 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 2561 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 2562 * IPV6_MAXPLEN is also valid and means: "any MSS, 2563 * rely only on pmtu discovery" 2564 */ 2565 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 2566 mtu = IPV6_MAXPLEN; 2567 return mtu; 2568 } 2569 2570 static unsigned int ip6_mtu(const struct dst_entry *dst) 2571 { 2572 struct inet6_dev *idev; 2573 unsigned int mtu; 2574 2575 mtu = dst_metric_raw(dst, RTAX_MTU); 2576 if (mtu) 2577 goto out; 2578 2579 mtu = IPV6_MIN_MTU; 2580 2581 rcu_read_lock(); 2582 idev = __in6_dev_get(dst->dev); 2583 if (idev) 2584 mtu = idev->cnf.mtu6; 2585 rcu_read_unlock(); 2586 2587 out: 2588 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 2589 2590 return mtu - lwtunnel_headroom(dst->lwtstate, mtu); 2591 } 2592 2593 /* MTU selection: 2594 * 1. mtu on route is locked - use it 2595 * 2. mtu from nexthop exception 2596 * 3. mtu from egress device 2597 * 2598 * based on ip6_dst_mtu_forward and exception logic of 2599 * rt6_find_cached_rt; called with rcu_read_lock 2600 */ 2601 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr, 2602 struct in6_addr *saddr) 2603 { 2604 struct rt6_exception_bucket *bucket; 2605 struct rt6_exception *rt6_ex; 2606 struct in6_addr *src_key; 2607 struct inet6_dev *idev; 2608 u32 mtu = 0; 2609 2610 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 2611 mtu = f6i->fib6_pmtu; 2612 if (mtu) 2613 goto out; 2614 } 2615 2616 src_key = NULL; 2617 #ifdef CONFIG_IPV6_SUBTREES 2618 if (f6i->fib6_src.plen) 2619 src_key = saddr; 2620 #endif 2621 2622 bucket = rcu_dereference(f6i->rt6i_exception_bucket); 2623 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 2624 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 2625 mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU); 2626 2627 if (likely(!mtu)) { 2628 struct net_device *dev = fib6_info_nh_dev(f6i); 2629 2630 mtu = IPV6_MIN_MTU; 2631 idev = __in6_dev_get(dev); 2632 if (idev && idev->cnf.mtu6 > mtu) 2633 mtu = idev->cnf.mtu6; 2634 } 2635 2636 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 2637 out: 2638 return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu); 2639 } 2640 2641 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 2642 struct flowi6 *fl6) 2643 { 2644 struct dst_entry *dst; 2645 struct rt6_info *rt; 2646 struct inet6_dev *idev = in6_dev_get(dev); 2647 struct net *net = dev_net(dev); 2648 2649 if (unlikely(!idev)) 2650 return ERR_PTR(-ENODEV); 2651 2652 rt = ip6_dst_alloc(net, dev, 0); 2653 if (unlikely(!rt)) { 2654 in6_dev_put(idev); 2655 dst = ERR_PTR(-ENOMEM); 2656 goto out; 2657 } 2658 2659 rt->dst.flags |= DST_HOST; 2660 rt->dst.input = ip6_input; 2661 rt->dst.output = ip6_output; 2662 rt->rt6i_gateway = fl6->daddr; 2663 rt->rt6i_dst.addr = fl6->daddr; 2664 rt->rt6i_dst.plen = 128; 2665 rt->rt6i_idev = idev; 2666 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 2667 2668 /* Add this dst into uncached_list so that rt6_disable_ip() can 2669 * do proper release of the net_device 2670 */ 2671 rt6_uncached_list_add(rt); 2672 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 2673 2674 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 2675 2676 out: 2677 return dst; 2678 } 2679 2680 static int ip6_dst_gc(struct dst_ops *ops) 2681 { 2682 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 2683 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 2684 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size; 2685 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 2686 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 2687 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 2688 int entries; 2689 2690 entries = dst_entries_get_fast(ops); 2691 if (time_after(rt_last_gc + rt_min_interval, jiffies) && 2692 entries <= rt_max_size) 2693 goto out; 2694 2695 net->ipv6.ip6_rt_gc_expire++; 2696 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true); 2697 entries = dst_entries_get_slow(ops); 2698 if (entries < ops->gc_thresh) 2699 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1; 2700 out: 2701 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity; 2702 return entries > rt_max_size; 2703 } 2704 2705 static struct rt6_info *ip6_nh_lookup_table(struct net *net, 2706 struct fib6_config *cfg, 2707 const struct in6_addr *gw_addr, 2708 u32 tbid, int flags) 2709 { 2710 struct flowi6 fl6 = { 2711 .flowi6_oif = cfg->fc_ifindex, 2712 .daddr = *gw_addr, 2713 .saddr = cfg->fc_prefsrc, 2714 }; 2715 struct fib6_table *table; 2716 struct rt6_info *rt; 2717 2718 table = fib6_get_table(net, tbid); 2719 if (!table) 2720 return NULL; 2721 2722 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 2723 flags |= RT6_LOOKUP_F_HAS_SADDR; 2724 2725 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 2726 rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags); 2727 2728 /* if table lookup failed, fall back to full lookup */ 2729 if (rt == net->ipv6.ip6_null_entry) { 2730 ip6_rt_put(rt); 2731 rt = NULL; 2732 } 2733 2734 return rt; 2735 } 2736 2737 static int ip6_route_check_nh_onlink(struct net *net, 2738 struct fib6_config *cfg, 2739 const struct net_device *dev, 2740 struct netlink_ext_ack *extack) 2741 { 2742 u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN; 2743 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2744 u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT; 2745 struct rt6_info *grt; 2746 int err; 2747 2748 err = 0; 2749 grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0); 2750 if (grt) { 2751 if (!grt->dst.error && 2752 /* ignore match if it is the default route */ 2753 grt->from && !ipv6_addr_any(&grt->from->fib6_dst.addr) && 2754 (grt->rt6i_flags & flags || dev != grt->dst.dev)) { 2755 NL_SET_ERR_MSG(extack, 2756 "Nexthop has invalid gateway or device mismatch"); 2757 err = -EINVAL; 2758 } 2759 2760 ip6_rt_put(grt); 2761 } 2762 2763 return err; 2764 } 2765 2766 static int ip6_route_check_nh(struct net *net, 2767 struct fib6_config *cfg, 2768 struct net_device **_dev, 2769 struct inet6_dev **idev) 2770 { 2771 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2772 struct net_device *dev = _dev ? *_dev : NULL; 2773 struct rt6_info *grt = NULL; 2774 int err = -EHOSTUNREACH; 2775 2776 if (cfg->fc_table) { 2777 int flags = RT6_LOOKUP_F_IFACE; 2778 2779 grt = ip6_nh_lookup_table(net, cfg, gw_addr, 2780 cfg->fc_table, flags); 2781 if (grt) { 2782 if (grt->rt6i_flags & RTF_GATEWAY || 2783 (dev && dev != grt->dst.dev)) { 2784 ip6_rt_put(grt); 2785 grt = NULL; 2786 } 2787 } 2788 } 2789 2790 if (!grt) 2791 grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1); 2792 2793 if (!grt) 2794 goto out; 2795 2796 if (dev) { 2797 if (dev != grt->dst.dev) { 2798 ip6_rt_put(grt); 2799 goto out; 2800 } 2801 } else { 2802 *_dev = dev = grt->dst.dev; 2803 *idev = grt->rt6i_idev; 2804 dev_hold(dev); 2805 in6_dev_hold(grt->rt6i_idev); 2806 } 2807 2808 if (!(grt->rt6i_flags & RTF_GATEWAY)) 2809 err = 0; 2810 2811 ip6_rt_put(grt); 2812 2813 out: 2814 return err; 2815 } 2816 2817 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 2818 struct net_device **_dev, struct inet6_dev **idev, 2819 struct netlink_ext_ack *extack) 2820 { 2821 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2822 int gwa_type = ipv6_addr_type(gw_addr); 2823 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 2824 const struct net_device *dev = *_dev; 2825 bool need_addr_check = !dev; 2826 int err = -EINVAL; 2827 2828 /* if gw_addr is local we will fail to detect this in case 2829 * address is still TENTATIVE (DAD in progress). rt6_lookup() 2830 * will return already-added prefix route via interface that 2831 * prefix route was assigned to, which might be non-loopback. 2832 */ 2833 if (dev && 2834 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 2835 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 2836 goto out; 2837 } 2838 2839 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 2840 /* IPv6 strictly inhibits using not link-local 2841 * addresses as nexthop address. 2842 * Otherwise, router will not able to send redirects. 2843 * It is very good, but in some (rare!) circumstances 2844 * (SIT, PtP, NBMA NOARP links) it is handy to allow 2845 * some exceptions. --ANK 2846 * We allow IPv4-mapped nexthops to support RFC4798-type 2847 * addressing 2848 */ 2849 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 2850 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 2851 goto out; 2852 } 2853 2854 if (cfg->fc_flags & RTNH_F_ONLINK) 2855 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 2856 else 2857 err = ip6_route_check_nh(net, cfg, _dev, idev); 2858 2859 if (err) 2860 goto out; 2861 } 2862 2863 /* reload in case device was changed */ 2864 dev = *_dev; 2865 2866 err = -EINVAL; 2867 if (!dev) { 2868 NL_SET_ERR_MSG(extack, "Egress device not specified"); 2869 goto out; 2870 } else if (dev->flags & IFF_LOOPBACK) { 2871 NL_SET_ERR_MSG(extack, 2872 "Egress device can not be loopback device for this route"); 2873 goto out; 2874 } 2875 2876 /* if we did not check gw_addr above, do so now that the 2877 * egress device has been resolved. 2878 */ 2879 if (need_addr_check && 2880 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 2881 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 2882 goto out; 2883 } 2884 2885 err = 0; 2886 out: 2887 return err; 2888 } 2889 2890 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 2891 gfp_t gfp_flags, 2892 struct netlink_ext_ack *extack) 2893 { 2894 struct net *net = cfg->fc_nlinfo.nl_net; 2895 struct fib6_info *rt = NULL; 2896 struct net_device *dev = NULL; 2897 struct inet6_dev *idev = NULL; 2898 struct fib6_table *table; 2899 int addr_type; 2900 int err = -EINVAL; 2901 2902 /* RTF_PCPU is an internal flag; can not be set by userspace */ 2903 if (cfg->fc_flags & RTF_PCPU) { 2904 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 2905 goto out; 2906 } 2907 2908 /* RTF_CACHE is an internal flag; can not be set by userspace */ 2909 if (cfg->fc_flags & RTF_CACHE) { 2910 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 2911 goto out; 2912 } 2913 2914 if (cfg->fc_type > RTN_MAX) { 2915 NL_SET_ERR_MSG(extack, "Invalid route type"); 2916 goto out; 2917 } 2918 2919 if (cfg->fc_dst_len > 128) { 2920 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 2921 goto out; 2922 } 2923 if (cfg->fc_src_len > 128) { 2924 NL_SET_ERR_MSG(extack, "Invalid source address length"); 2925 goto out; 2926 } 2927 #ifndef CONFIG_IPV6_SUBTREES 2928 if (cfg->fc_src_len) { 2929 NL_SET_ERR_MSG(extack, 2930 "Specifying source address requires IPV6_SUBTREES to be enabled"); 2931 goto out; 2932 } 2933 #endif 2934 if (cfg->fc_ifindex) { 2935 err = -ENODEV; 2936 dev = dev_get_by_index(net, cfg->fc_ifindex); 2937 if (!dev) 2938 goto out; 2939 idev = in6_dev_get(dev); 2940 if (!idev) 2941 goto out; 2942 } 2943 2944 if (cfg->fc_metric == 0) 2945 cfg->fc_metric = IP6_RT_PRIO_USER; 2946 2947 if (cfg->fc_flags & RTNH_F_ONLINK) { 2948 if (!dev) { 2949 NL_SET_ERR_MSG(extack, 2950 "Nexthop device required for onlink"); 2951 err = -ENODEV; 2952 goto out; 2953 } 2954 2955 if (!(dev->flags & IFF_UP)) { 2956 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 2957 err = -ENETDOWN; 2958 goto out; 2959 } 2960 } 2961 2962 err = -ENOBUFS; 2963 if (cfg->fc_nlinfo.nlh && 2964 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 2965 table = fib6_get_table(net, cfg->fc_table); 2966 if (!table) { 2967 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 2968 table = fib6_new_table(net, cfg->fc_table); 2969 } 2970 } else { 2971 table = fib6_new_table(net, cfg->fc_table); 2972 } 2973 2974 if (!table) 2975 goto out; 2976 2977 err = -ENOMEM; 2978 rt = fib6_info_alloc(gfp_flags); 2979 if (!rt) 2980 goto out; 2981 2982 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len, 2983 extack); 2984 if (IS_ERR(rt->fib6_metrics)) { 2985 err = PTR_ERR(rt->fib6_metrics); 2986 /* Do not leave garbage there. */ 2987 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; 2988 goto out; 2989 } 2990 2991 if (cfg->fc_flags & RTF_ADDRCONF) 2992 rt->dst_nocount = true; 2993 2994 if (cfg->fc_flags & RTF_EXPIRES) 2995 fib6_set_expires(rt, jiffies + 2996 clock_t_to_jiffies(cfg->fc_expires)); 2997 else 2998 fib6_clean_expires(rt); 2999 3000 if (cfg->fc_protocol == RTPROT_UNSPEC) 3001 cfg->fc_protocol = RTPROT_BOOT; 3002 rt->fib6_protocol = cfg->fc_protocol; 3003 3004 addr_type = ipv6_addr_type(&cfg->fc_dst); 3005 3006 if (cfg->fc_encap) { 3007 struct lwtunnel_state *lwtstate; 3008 3009 err = lwtunnel_build_state(cfg->fc_encap_type, 3010 cfg->fc_encap, AF_INET6, cfg, 3011 &lwtstate, extack); 3012 if (err) 3013 goto out; 3014 rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate); 3015 } 3016 3017 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3018 rt->fib6_dst.plen = cfg->fc_dst_len; 3019 if (rt->fib6_dst.plen == 128) 3020 rt->dst_host = true; 3021 3022 #ifdef CONFIG_IPV6_SUBTREES 3023 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3024 rt->fib6_src.plen = cfg->fc_src_len; 3025 #endif 3026 3027 rt->fib6_metric = cfg->fc_metric; 3028 rt->fib6_nh.nh_weight = 1; 3029 3030 rt->fib6_type = cfg->fc_type; 3031 3032 /* We cannot add true routes via loopback here, 3033 they would result in kernel looping; promote them to reject routes 3034 */ 3035 if ((cfg->fc_flags & RTF_REJECT) || 3036 (dev && (dev->flags & IFF_LOOPBACK) && 3037 !(addr_type & IPV6_ADDR_LOOPBACK) && 3038 !(cfg->fc_flags & RTF_LOCAL))) { 3039 /* hold loopback dev/idev if we haven't done so. */ 3040 if (dev != net->loopback_dev) { 3041 if (dev) { 3042 dev_put(dev); 3043 in6_dev_put(idev); 3044 } 3045 dev = net->loopback_dev; 3046 dev_hold(dev); 3047 idev = in6_dev_get(dev); 3048 if (!idev) { 3049 err = -ENODEV; 3050 goto out; 3051 } 3052 } 3053 rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP; 3054 goto install_route; 3055 } 3056 3057 if (cfg->fc_flags & RTF_GATEWAY) { 3058 err = ip6_validate_gw(net, cfg, &dev, &idev, extack); 3059 if (err) 3060 goto out; 3061 3062 rt->fib6_nh.nh_gw = cfg->fc_gateway; 3063 } 3064 3065 err = -ENODEV; 3066 if (!dev) 3067 goto out; 3068 3069 if (idev->cnf.disable_ipv6) { 3070 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3071 err = -EACCES; 3072 goto out; 3073 } 3074 3075 if (!(dev->flags & IFF_UP)) { 3076 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3077 err = -ENETDOWN; 3078 goto out; 3079 } 3080 3081 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3082 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3083 NL_SET_ERR_MSG(extack, "Invalid source address"); 3084 err = -EINVAL; 3085 goto out; 3086 } 3087 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3088 rt->fib6_prefsrc.plen = 128; 3089 } else 3090 rt->fib6_prefsrc.plen = 0; 3091 3092 rt->fib6_flags = cfg->fc_flags; 3093 3094 install_route: 3095 if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3096 !netif_carrier_ok(dev)) 3097 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN; 3098 rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK); 3099 rt->fib6_nh.nh_dev = dev; 3100 rt->fib6_table = table; 3101 3102 if (idev) 3103 in6_dev_put(idev); 3104 3105 return rt; 3106 out: 3107 if (dev) 3108 dev_put(dev); 3109 if (idev) 3110 in6_dev_put(idev); 3111 3112 fib6_info_release(rt); 3113 return ERR_PTR(err); 3114 } 3115 3116 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3117 struct netlink_ext_ack *extack) 3118 { 3119 struct fib6_info *rt; 3120 int err; 3121 3122 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3123 if (IS_ERR(rt)) 3124 return PTR_ERR(rt); 3125 3126 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3127 fib6_info_release(rt); 3128 3129 return err; 3130 } 3131 3132 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3133 { 3134 struct net *net = info->nl_net; 3135 struct fib6_table *table; 3136 int err; 3137 3138 if (rt == net->ipv6.fib6_null_entry) { 3139 err = -ENOENT; 3140 goto out; 3141 } 3142 3143 table = rt->fib6_table; 3144 spin_lock_bh(&table->tb6_lock); 3145 err = fib6_del(rt, info); 3146 spin_unlock_bh(&table->tb6_lock); 3147 3148 out: 3149 fib6_info_release(rt); 3150 return err; 3151 } 3152 3153 int ip6_del_rt(struct net *net, struct fib6_info *rt) 3154 { 3155 struct nl_info info = { .nl_net = net }; 3156 3157 return __ip6_del_rt(rt, &info); 3158 } 3159 3160 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3161 { 3162 struct nl_info *info = &cfg->fc_nlinfo; 3163 struct net *net = info->nl_net; 3164 struct sk_buff *skb = NULL; 3165 struct fib6_table *table; 3166 int err = -ENOENT; 3167 3168 if (rt == net->ipv6.fib6_null_entry) 3169 goto out_put; 3170 table = rt->fib6_table; 3171 spin_lock_bh(&table->tb6_lock); 3172 3173 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3174 struct fib6_info *sibling, *next_sibling; 3175 3176 /* prefer to send a single notification with all hops */ 3177 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 3178 if (skb) { 3179 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 3180 3181 if (rt6_fill_node(net, skb, rt, NULL, 3182 NULL, NULL, 0, RTM_DELROUTE, 3183 info->portid, seq, 0) < 0) { 3184 kfree_skb(skb); 3185 skb = NULL; 3186 } else 3187 info->skip_notify = 1; 3188 } 3189 3190 list_for_each_entry_safe(sibling, next_sibling, 3191 &rt->fib6_siblings, 3192 fib6_siblings) { 3193 err = fib6_del(sibling, info); 3194 if (err) 3195 goto out_unlock; 3196 } 3197 } 3198 3199 err = fib6_del(rt, info); 3200 out_unlock: 3201 spin_unlock_bh(&table->tb6_lock); 3202 out_put: 3203 fib6_info_release(rt); 3204 3205 if (skb) { 3206 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 3207 info->nlh, gfp_any()); 3208 } 3209 return err; 3210 } 3211 3212 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 3213 { 3214 int rc = -ESRCH; 3215 3216 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 3217 goto out; 3218 3219 if (cfg->fc_flags & RTF_GATEWAY && 3220 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 3221 goto out; 3222 3223 rc = rt6_remove_exception_rt(rt); 3224 out: 3225 return rc; 3226 } 3227 3228 static int ip6_route_del(struct fib6_config *cfg, 3229 struct netlink_ext_ack *extack) 3230 { 3231 struct rt6_info *rt_cache; 3232 struct fib6_table *table; 3233 struct fib6_info *rt; 3234 struct fib6_node *fn; 3235 int err = -ESRCH; 3236 3237 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 3238 if (!table) { 3239 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 3240 return err; 3241 } 3242 3243 rcu_read_lock(); 3244 3245 fn = fib6_locate(&table->tb6_root, 3246 &cfg->fc_dst, cfg->fc_dst_len, 3247 &cfg->fc_src, cfg->fc_src_len, 3248 !(cfg->fc_flags & RTF_CACHE)); 3249 3250 if (fn) { 3251 for_each_fib6_node_rt_rcu(fn) { 3252 if (cfg->fc_flags & RTF_CACHE) { 3253 int rc; 3254 3255 rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst, 3256 &cfg->fc_src); 3257 if (rt_cache) { 3258 rc = ip6_del_cached_rt(rt_cache, cfg); 3259 if (rc != -ESRCH) { 3260 rcu_read_unlock(); 3261 return rc; 3262 } 3263 } 3264 continue; 3265 } 3266 if (cfg->fc_ifindex && 3267 (!rt->fib6_nh.nh_dev || 3268 rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex)) 3269 continue; 3270 if (cfg->fc_flags & RTF_GATEWAY && 3271 !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw)) 3272 continue; 3273 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 3274 continue; 3275 if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol) 3276 continue; 3277 if (!fib6_info_hold_safe(rt)) 3278 continue; 3279 rcu_read_unlock(); 3280 3281 /* if gateway was specified only delete the one hop */ 3282 if (cfg->fc_flags & RTF_GATEWAY) 3283 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3284 3285 return __ip6_del_rt_siblings(rt, cfg); 3286 } 3287 } 3288 rcu_read_unlock(); 3289 3290 return err; 3291 } 3292 3293 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 3294 { 3295 struct netevent_redirect netevent; 3296 struct rt6_info *rt, *nrt = NULL; 3297 struct ndisc_options ndopts; 3298 struct inet6_dev *in6_dev; 3299 struct neighbour *neigh; 3300 struct fib6_info *from; 3301 struct rd_msg *msg; 3302 int optlen, on_link; 3303 u8 *lladdr; 3304 3305 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 3306 optlen -= sizeof(*msg); 3307 3308 if (optlen < 0) { 3309 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 3310 return; 3311 } 3312 3313 msg = (struct rd_msg *)icmp6_hdr(skb); 3314 3315 if (ipv6_addr_is_multicast(&msg->dest)) { 3316 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 3317 return; 3318 } 3319 3320 on_link = 0; 3321 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 3322 on_link = 1; 3323 } else if (ipv6_addr_type(&msg->target) != 3324 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 3325 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 3326 return; 3327 } 3328 3329 in6_dev = __in6_dev_get(skb->dev); 3330 if (!in6_dev) 3331 return; 3332 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) 3333 return; 3334 3335 /* RFC2461 8.1: 3336 * The IP source address of the Redirect MUST be the same as the current 3337 * first-hop router for the specified ICMP Destination Address. 3338 */ 3339 3340 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 3341 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 3342 return; 3343 } 3344 3345 lladdr = NULL; 3346 if (ndopts.nd_opts_tgt_lladdr) { 3347 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 3348 skb->dev); 3349 if (!lladdr) { 3350 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 3351 return; 3352 } 3353 } 3354 3355 rt = (struct rt6_info *) dst; 3356 if (rt->rt6i_flags & RTF_REJECT) { 3357 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 3358 return; 3359 } 3360 3361 /* Redirect received -> path was valid. 3362 * Look, redirects are sent only in response to data packets, 3363 * so that this nexthop apparently is reachable. --ANK 3364 */ 3365 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 3366 3367 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 3368 if (!neigh) 3369 return; 3370 3371 /* 3372 * We have finally decided to accept it. 3373 */ 3374 3375 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 3376 NEIGH_UPDATE_F_WEAK_OVERRIDE| 3377 NEIGH_UPDATE_F_OVERRIDE| 3378 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 3379 NEIGH_UPDATE_F_ISROUTER)), 3380 NDISC_REDIRECT, &ndopts); 3381 3382 rcu_read_lock(); 3383 from = rcu_dereference(rt->from); 3384 /* This fib6_info_hold() is safe here because we hold reference to rt 3385 * and rt already holds reference to fib6_info. 3386 */ 3387 fib6_info_hold(from); 3388 rcu_read_unlock(); 3389 3390 nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL); 3391 if (!nrt) 3392 goto out; 3393 3394 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 3395 if (on_link) 3396 nrt->rt6i_flags &= ~RTF_GATEWAY; 3397 3398 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 3399 3400 /* No need to remove rt from the exception table if rt is 3401 * a cached route because rt6_insert_exception() will 3402 * takes care of it 3403 */ 3404 if (rt6_insert_exception(nrt, from)) { 3405 dst_release_immediate(&nrt->dst); 3406 goto out; 3407 } 3408 3409 netevent.old = &rt->dst; 3410 netevent.new = &nrt->dst; 3411 netevent.daddr = &msg->dest; 3412 netevent.neigh = neigh; 3413 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 3414 3415 out: 3416 fib6_info_release(from); 3417 neigh_release(neigh); 3418 } 3419 3420 #ifdef CONFIG_IPV6_ROUTE_INFO 3421 static struct fib6_info *rt6_get_route_info(struct net *net, 3422 const struct in6_addr *prefix, int prefixlen, 3423 const struct in6_addr *gwaddr, 3424 struct net_device *dev) 3425 { 3426 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 3427 int ifindex = dev->ifindex; 3428 struct fib6_node *fn; 3429 struct fib6_info *rt = NULL; 3430 struct fib6_table *table; 3431 3432 table = fib6_get_table(net, tb_id); 3433 if (!table) 3434 return NULL; 3435 3436 rcu_read_lock(); 3437 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 3438 if (!fn) 3439 goto out; 3440 3441 for_each_fib6_node_rt_rcu(fn) { 3442 if (rt->fib6_nh.nh_dev->ifindex != ifindex) 3443 continue; 3444 if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY)) 3445 continue; 3446 if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr)) 3447 continue; 3448 if (!fib6_info_hold_safe(rt)) 3449 continue; 3450 break; 3451 } 3452 out: 3453 rcu_read_unlock(); 3454 return rt; 3455 } 3456 3457 static struct fib6_info *rt6_add_route_info(struct net *net, 3458 const struct in6_addr *prefix, int prefixlen, 3459 const struct in6_addr *gwaddr, 3460 struct net_device *dev, 3461 unsigned int pref) 3462 { 3463 struct fib6_config cfg = { 3464 .fc_metric = IP6_RT_PRIO_USER, 3465 .fc_ifindex = dev->ifindex, 3466 .fc_dst_len = prefixlen, 3467 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 3468 RTF_UP | RTF_PREF(pref), 3469 .fc_protocol = RTPROT_RA, 3470 .fc_type = RTN_UNICAST, 3471 .fc_nlinfo.portid = 0, 3472 .fc_nlinfo.nlh = NULL, 3473 .fc_nlinfo.nl_net = net, 3474 }; 3475 3476 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO, 3477 cfg.fc_dst = *prefix; 3478 cfg.fc_gateway = *gwaddr; 3479 3480 /* We should treat it as a default route if prefix length is 0. */ 3481 if (!prefixlen) 3482 cfg.fc_flags |= RTF_DEFAULT; 3483 3484 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 3485 3486 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 3487 } 3488 #endif 3489 3490 struct fib6_info *rt6_get_dflt_router(struct net *net, 3491 const struct in6_addr *addr, 3492 struct net_device *dev) 3493 { 3494 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 3495 struct fib6_info *rt; 3496 struct fib6_table *table; 3497 3498 table = fib6_get_table(net, tb_id); 3499 if (!table) 3500 return NULL; 3501 3502 rcu_read_lock(); 3503 for_each_fib6_node_rt_rcu(&table->tb6_root) { 3504 if (dev == rt->fib6_nh.nh_dev && 3505 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 3506 ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr)) 3507 break; 3508 } 3509 if (rt && !fib6_info_hold_safe(rt)) 3510 rt = NULL; 3511 rcu_read_unlock(); 3512 return rt; 3513 } 3514 3515 struct fib6_info *rt6_add_dflt_router(struct net *net, 3516 const struct in6_addr *gwaddr, 3517 struct net_device *dev, 3518 unsigned int pref) 3519 { 3520 struct fib6_config cfg = { 3521 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 3522 .fc_metric = IP6_RT_PRIO_USER, 3523 .fc_ifindex = dev->ifindex, 3524 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 3525 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 3526 .fc_protocol = RTPROT_RA, 3527 .fc_type = RTN_UNICAST, 3528 .fc_nlinfo.portid = 0, 3529 .fc_nlinfo.nlh = NULL, 3530 .fc_nlinfo.nl_net = net, 3531 }; 3532 3533 cfg.fc_gateway = *gwaddr; 3534 3535 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 3536 struct fib6_table *table; 3537 3538 table = fib6_get_table(dev_net(dev), cfg.fc_table); 3539 if (table) 3540 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 3541 } 3542 3543 return rt6_get_dflt_router(net, gwaddr, dev); 3544 } 3545 3546 static void __rt6_purge_dflt_routers(struct net *net, 3547 struct fib6_table *table) 3548 { 3549 struct fib6_info *rt; 3550 3551 restart: 3552 rcu_read_lock(); 3553 for_each_fib6_node_rt_rcu(&table->tb6_root) { 3554 struct net_device *dev = fib6_info_nh_dev(rt); 3555 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 3556 3557 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 3558 (!idev || idev->cnf.accept_ra != 2) && 3559 fib6_info_hold_safe(rt)) { 3560 rcu_read_unlock(); 3561 ip6_del_rt(net, rt); 3562 goto restart; 3563 } 3564 } 3565 rcu_read_unlock(); 3566 3567 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 3568 } 3569 3570 void rt6_purge_dflt_routers(struct net *net) 3571 { 3572 struct fib6_table *table; 3573 struct hlist_head *head; 3574 unsigned int h; 3575 3576 rcu_read_lock(); 3577 3578 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 3579 head = &net->ipv6.fib_table_hash[h]; 3580 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 3581 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 3582 __rt6_purge_dflt_routers(net, table); 3583 } 3584 } 3585 3586 rcu_read_unlock(); 3587 } 3588 3589 static void rtmsg_to_fib6_config(struct net *net, 3590 struct in6_rtmsg *rtmsg, 3591 struct fib6_config *cfg) 3592 { 3593 *cfg = (struct fib6_config){ 3594 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 3595 : RT6_TABLE_MAIN, 3596 .fc_ifindex = rtmsg->rtmsg_ifindex, 3597 .fc_metric = rtmsg->rtmsg_metric, 3598 .fc_expires = rtmsg->rtmsg_info, 3599 .fc_dst_len = rtmsg->rtmsg_dst_len, 3600 .fc_src_len = rtmsg->rtmsg_src_len, 3601 .fc_flags = rtmsg->rtmsg_flags, 3602 .fc_type = rtmsg->rtmsg_type, 3603 3604 .fc_nlinfo.nl_net = net, 3605 3606 .fc_dst = rtmsg->rtmsg_dst, 3607 .fc_src = rtmsg->rtmsg_src, 3608 .fc_gateway = rtmsg->rtmsg_gateway, 3609 }; 3610 } 3611 3612 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3613 { 3614 struct fib6_config cfg; 3615 struct in6_rtmsg rtmsg; 3616 int err; 3617 3618 switch (cmd) { 3619 case SIOCADDRT: /* Add a route */ 3620 case SIOCDELRT: /* Delete a route */ 3621 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 3622 return -EPERM; 3623 err = copy_from_user(&rtmsg, arg, 3624 sizeof(struct in6_rtmsg)); 3625 if (err) 3626 return -EFAULT; 3627 3628 rtmsg_to_fib6_config(net, &rtmsg, &cfg); 3629 3630 rtnl_lock(); 3631 switch (cmd) { 3632 case SIOCADDRT: 3633 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 3634 break; 3635 case SIOCDELRT: 3636 err = ip6_route_del(&cfg, NULL); 3637 break; 3638 default: 3639 err = -EINVAL; 3640 } 3641 rtnl_unlock(); 3642 3643 return err; 3644 } 3645 3646 return -EINVAL; 3647 } 3648 3649 /* 3650 * Drop the packet on the floor 3651 */ 3652 3653 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 3654 { 3655 int type; 3656 struct dst_entry *dst = skb_dst(skb); 3657 switch (ipstats_mib_noroutes) { 3658 case IPSTATS_MIB_INNOROUTES: 3659 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 3660 if (type == IPV6_ADDR_ANY) { 3661 IP6_INC_STATS(dev_net(dst->dev), 3662 __in6_dev_get_safely(skb->dev), 3663 IPSTATS_MIB_INADDRERRORS); 3664 break; 3665 } 3666 /* FALLTHROUGH */ 3667 case IPSTATS_MIB_OUTNOROUTES: 3668 IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), 3669 ipstats_mib_noroutes); 3670 break; 3671 } 3672 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 3673 kfree_skb(skb); 3674 return 0; 3675 } 3676 3677 static int ip6_pkt_discard(struct sk_buff *skb) 3678 { 3679 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 3680 } 3681 3682 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 3683 { 3684 skb->dev = skb_dst(skb)->dev; 3685 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 3686 } 3687 3688 static int ip6_pkt_prohibit(struct sk_buff *skb) 3689 { 3690 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 3691 } 3692 3693 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 3694 { 3695 skb->dev = skb_dst(skb)->dev; 3696 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 3697 } 3698 3699 /* 3700 * Allocate a dst for local (unicast / anycast) address. 3701 */ 3702 3703 struct fib6_info *addrconf_f6i_alloc(struct net *net, 3704 struct inet6_dev *idev, 3705 const struct in6_addr *addr, 3706 bool anycast, gfp_t gfp_flags) 3707 { 3708 u32 tb_id; 3709 struct net_device *dev = idev->dev; 3710 struct fib6_info *f6i; 3711 3712 f6i = fib6_info_alloc(gfp_flags); 3713 if (!f6i) 3714 return ERR_PTR(-ENOMEM); 3715 3716 f6i->fib6_metrics = ip_fib_metrics_init(net, NULL, 0, NULL); 3717 f6i->dst_nocount = true; 3718 f6i->dst_host = true; 3719 f6i->fib6_protocol = RTPROT_KERNEL; 3720 f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP; 3721 if (anycast) { 3722 f6i->fib6_type = RTN_ANYCAST; 3723 f6i->fib6_flags |= RTF_ANYCAST; 3724 } else { 3725 f6i->fib6_type = RTN_LOCAL; 3726 f6i->fib6_flags |= RTF_LOCAL; 3727 } 3728 3729 f6i->fib6_nh.nh_gw = *addr; 3730 dev_hold(dev); 3731 f6i->fib6_nh.nh_dev = dev; 3732 f6i->fib6_dst.addr = *addr; 3733 f6i->fib6_dst.plen = 128; 3734 tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL; 3735 f6i->fib6_table = fib6_get_table(net, tb_id); 3736 3737 return f6i; 3738 } 3739 3740 /* remove deleted ip from prefsrc entries */ 3741 struct arg_dev_net_ip { 3742 struct net_device *dev; 3743 struct net *net; 3744 struct in6_addr *addr; 3745 }; 3746 3747 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 3748 { 3749 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 3750 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 3751 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 3752 3753 if (((void *)rt->fib6_nh.nh_dev == dev || !dev) && 3754 rt != net->ipv6.fib6_null_entry && 3755 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) { 3756 spin_lock_bh(&rt6_exception_lock); 3757 /* remove prefsrc entry */ 3758 rt->fib6_prefsrc.plen = 0; 3759 spin_unlock_bh(&rt6_exception_lock); 3760 } 3761 return 0; 3762 } 3763 3764 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 3765 { 3766 struct net *net = dev_net(ifp->idev->dev); 3767 struct arg_dev_net_ip adni = { 3768 .dev = ifp->idev->dev, 3769 .net = net, 3770 .addr = &ifp->addr, 3771 }; 3772 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 3773 } 3774 3775 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY) 3776 3777 /* Remove routers and update dst entries when gateway turn into host. */ 3778 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 3779 { 3780 struct in6_addr *gateway = (struct in6_addr *)arg; 3781 3782 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 3783 ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) { 3784 return -1; 3785 } 3786 3787 /* Further clean up cached routes in exception table. 3788 * This is needed because cached route may have a different 3789 * gateway than its 'parent' in the case of an ip redirect. 3790 */ 3791 rt6_exceptions_clean_tohost(rt, gateway); 3792 3793 return 0; 3794 } 3795 3796 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 3797 { 3798 fib6_clean_all(net, fib6_clean_tohost, gateway); 3799 } 3800 3801 struct arg_netdev_event { 3802 const struct net_device *dev; 3803 union { 3804 unsigned int nh_flags; 3805 unsigned long event; 3806 }; 3807 }; 3808 3809 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 3810 { 3811 struct fib6_info *iter; 3812 struct fib6_node *fn; 3813 3814 fn = rcu_dereference_protected(rt->fib6_node, 3815 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3816 iter = rcu_dereference_protected(fn->leaf, 3817 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3818 while (iter) { 3819 if (iter->fib6_metric == rt->fib6_metric && 3820 rt6_qualify_for_ecmp(iter)) 3821 return iter; 3822 iter = rcu_dereference_protected(iter->fib6_next, 3823 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3824 } 3825 3826 return NULL; 3827 } 3828 3829 static bool rt6_is_dead(const struct fib6_info *rt) 3830 { 3831 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD || 3832 (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN && 3833 fib6_ignore_linkdown(rt))) 3834 return true; 3835 3836 return false; 3837 } 3838 3839 static int rt6_multipath_total_weight(const struct fib6_info *rt) 3840 { 3841 struct fib6_info *iter; 3842 int total = 0; 3843 3844 if (!rt6_is_dead(rt)) 3845 total += rt->fib6_nh.nh_weight; 3846 3847 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 3848 if (!rt6_is_dead(iter)) 3849 total += iter->fib6_nh.nh_weight; 3850 } 3851 3852 return total; 3853 } 3854 3855 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 3856 { 3857 int upper_bound = -1; 3858 3859 if (!rt6_is_dead(rt)) { 3860 *weight += rt->fib6_nh.nh_weight; 3861 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 3862 total) - 1; 3863 } 3864 atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound); 3865 } 3866 3867 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 3868 { 3869 struct fib6_info *iter; 3870 int weight = 0; 3871 3872 rt6_upper_bound_set(rt, &weight, total); 3873 3874 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3875 rt6_upper_bound_set(iter, &weight, total); 3876 } 3877 3878 void rt6_multipath_rebalance(struct fib6_info *rt) 3879 { 3880 struct fib6_info *first; 3881 int total; 3882 3883 /* In case the entire multipath route was marked for flushing, 3884 * then there is no need to rebalance upon the removal of every 3885 * sibling route. 3886 */ 3887 if (!rt->fib6_nsiblings || rt->should_flush) 3888 return; 3889 3890 /* During lookup routes are evaluated in order, so we need to 3891 * make sure upper bounds are assigned from the first sibling 3892 * onwards. 3893 */ 3894 first = rt6_multipath_first_sibling(rt); 3895 if (WARN_ON_ONCE(!first)) 3896 return; 3897 3898 total = rt6_multipath_total_weight(first); 3899 rt6_multipath_upper_bound_set(first, total); 3900 } 3901 3902 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 3903 { 3904 const struct arg_netdev_event *arg = p_arg; 3905 struct net *net = dev_net(arg->dev); 3906 3907 if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) { 3908 rt->fib6_nh.nh_flags &= ~arg->nh_flags; 3909 fib6_update_sernum_upto_root(net, rt); 3910 rt6_multipath_rebalance(rt); 3911 } 3912 3913 return 0; 3914 } 3915 3916 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags) 3917 { 3918 struct arg_netdev_event arg = { 3919 .dev = dev, 3920 { 3921 .nh_flags = nh_flags, 3922 }, 3923 }; 3924 3925 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 3926 arg.nh_flags |= RTNH_F_LINKDOWN; 3927 3928 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 3929 } 3930 3931 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 3932 const struct net_device *dev) 3933 { 3934 struct fib6_info *iter; 3935 3936 if (rt->fib6_nh.nh_dev == dev) 3937 return true; 3938 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3939 if (iter->fib6_nh.nh_dev == dev) 3940 return true; 3941 3942 return false; 3943 } 3944 3945 static void rt6_multipath_flush(struct fib6_info *rt) 3946 { 3947 struct fib6_info *iter; 3948 3949 rt->should_flush = 1; 3950 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3951 iter->should_flush = 1; 3952 } 3953 3954 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 3955 const struct net_device *down_dev) 3956 { 3957 struct fib6_info *iter; 3958 unsigned int dead = 0; 3959 3960 if (rt->fib6_nh.nh_dev == down_dev || 3961 rt->fib6_nh.nh_flags & RTNH_F_DEAD) 3962 dead++; 3963 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3964 if (iter->fib6_nh.nh_dev == down_dev || 3965 iter->fib6_nh.nh_flags & RTNH_F_DEAD) 3966 dead++; 3967 3968 return dead; 3969 } 3970 3971 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 3972 const struct net_device *dev, 3973 unsigned int nh_flags) 3974 { 3975 struct fib6_info *iter; 3976 3977 if (rt->fib6_nh.nh_dev == dev) 3978 rt->fib6_nh.nh_flags |= nh_flags; 3979 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3980 if (iter->fib6_nh.nh_dev == dev) 3981 iter->fib6_nh.nh_flags |= nh_flags; 3982 } 3983 3984 /* called with write lock held for table with rt */ 3985 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 3986 { 3987 const struct arg_netdev_event *arg = p_arg; 3988 const struct net_device *dev = arg->dev; 3989 struct net *net = dev_net(dev); 3990 3991 if (rt == net->ipv6.fib6_null_entry) 3992 return 0; 3993 3994 switch (arg->event) { 3995 case NETDEV_UNREGISTER: 3996 return rt->fib6_nh.nh_dev == dev ? -1 : 0; 3997 case NETDEV_DOWN: 3998 if (rt->should_flush) 3999 return -1; 4000 if (!rt->fib6_nsiblings) 4001 return rt->fib6_nh.nh_dev == dev ? -1 : 0; 4002 if (rt6_multipath_uses_dev(rt, dev)) { 4003 unsigned int count; 4004 4005 count = rt6_multipath_dead_count(rt, dev); 4006 if (rt->fib6_nsiblings + 1 == count) { 4007 rt6_multipath_flush(rt); 4008 return -1; 4009 } 4010 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4011 RTNH_F_LINKDOWN); 4012 fib6_update_sernum(net, rt); 4013 rt6_multipath_rebalance(rt); 4014 } 4015 return -2; 4016 case NETDEV_CHANGE: 4017 if (rt->fib6_nh.nh_dev != dev || 4018 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4019 break; 4020 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN; 4021 rt6_multipath_rebalance(rt); 4022 break; 4023 } 4024 4025 return 0; 4026 } 4027 4028 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4029 { 4030 struct arg_netdev_event arg = { 4031 .dev = dev, 4032 { 4033 .event = event, 4034 }, 4035 }; 4036 struct net *net = dev_net(dev); 4037 4038 if (net->ipv6.sysctl.skip_notify_on_dev_down) 4039 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 4040 else 4041 fib6_clean_all(net, fib6_ifdown, &arg); 4042 } 4043 4044 void rt6_disable_ip(struct net_device *dev, unsigned long event) 4045 { 4046 rt6_sync_down_dev(dev, event); 4047 rt6_uncached_list_flush_dev(dev_net(dev), dev); 4048 neigh_ifdown(&nd_tbl, dev); 4049 } 4050 4051 struct rt6_mtu_change_arg { 4052 struct net_device *dev; 4053 unsigned int mtu; 4054 }; 4055 4056 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg) 4057 { 4058 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 4059 struct inet6_dev *idev; 4060 4061 /* In IPv6 pmtu discovery is not optional, 4062 so that RTAX_MTU lock cannot disable it. 4063 We still use this lock to block changes 4064 caused by addrconf/ndisc. 4065 */ 4066 4067 idev = __in6_dev_get(arg->dev); 4068 if (!idev) 4069 return 0; 4070 4071 /* For administrative MTU increase, there is no way to discover 4072 IPv6 PMTU increase, so PMTU increase should be updated here. 4073 Since RFC 1981 doesn't include administrative MTU increase 4074 update PMTU increase is a MUST. (i.e. jumbo frame) 4075 */ 4076 if (rt->fib6_nh.nh_dev == arg->dev && 4077 !fib6_metric_locked(rt, RTAX_MTU)) { 4078 u32 mtu = rt->fib6_pmtu; 4079 4080 if (mtu >= arg->mtu || 4081 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 4082 fib6_metric_set(rt, RTAX_MTU, arg->mtu); 4083 4084 spin_lock_bh(&rt6_exception_lock); 4085 rt6_exceptions_update_pmtu(idev, rt, arg->mtu); 4086 spin_unlock_bh(&rt6_exception_lock); 4087 } 4088 return 0; 4089 } 4090 4091 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 4092 { 4093 struct rt6_mtu_change_arg arg = { 4094 .dev = dev, 4095 .mtu = mtu, 4096 }; 4097 4098 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 4099 } 4100 4101 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 4102 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 4103 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 4104 [RTA_OIF] = { .type = NLA_U32 }, 4105 [RTA_IIF] = { .type = NLA_U32 }, 4106 [RTA_PRIORITY] = { .type = NLA_U32 }, 4107 [RTA_METRICS] = { .type = NLA_NESTED }, 4108 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 4109 [RTA_PREF] = { .type = NLA_U8 }, 4110 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 4111 [RTA_ENCAP] = { .type = NLA_NESTED }, 4112 [RTA_EXPIRES] = { .type = NLA_U32 }, 4113 [RTA_UID] = { .type = NLA_U32 }, 4114 [RTA_MARK] = { .type = NLA_U32 }, 4115 [RTA_TABLE] = { .type = NLA_U32 }, 4116 [RTA_IP_PROTO] = { .type = NLA_U8 }, 4117 [RTA_SPORT] = { .type = NLA_U16 }, 4118 [RTA_DPORT] = { .type = NLA_U16 }, 4119 }; 4120 4121 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 4122 struct fib6_config *cfg, 4123 struct netlink_ext_ack *extack) 4124 { 4125 struct rtmsg *rtm; 4126 struct nlattr *tb[RTA_MAX+1]; 4127 unsigned int pref; 4128 int err; 4129 4130 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, 4131 extack); 4132 if (err < 0) 4133 goto errout; 4134 4135 err = -EINVAL; 4136 rtm = nlmsg_data(nlh); 4137 4138 *cfg = (struct fib6_config){ 4139 .fc_table = rtm->rtm_table, 4140 .fc_dst_len = rtm->rtm_dst_len, 4141 .fc_src_len = rtm->rtm_src_len, 4142 .fc_flags = RTF_UP, 4143 .fc_protocol = rtm->rtm_protocol, 4144 .fc_type = rtm->rtm_type, 4145 4146 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 4147 .fc_nlinfo.nlh = nlh, 4148 .fc_nlinfo.nl_net = sock_net(skb->sk), 4149 }; 4150 4151 if (rtm->rtm_type == RTN_UNREACHABLE || 4152 rtm->rtm_type == RTN_BLACKHOLE || 4153 rtm->rtm_type == RTN_PROHIBIT || 4154 rtm->rtm_type == RTN_THROW) 4155 cfg->fc_flags |= RTF_REJECT; 4156 4157 if (rtm->rtm_type == RTN_LOCAL) 4158 cfg->fc_flags |= RTF_LOCAL; 4159 4160 if (rtm->rtm_flags & RTM_F_CLONED) 4161 cfg->fc_flags |= RTF_CACHE; 4162 4163 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 4164 4165 if (tb[RTA_GATEWAY]) { 4166 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 4167 cfg->fc_flags |= RTF_GATEWAY; 4168 } 4169 4170 if (tb[RTA_DST]) { 4171 int plen = (rtm->rtm_dst_len + 7) >> 3; 4172 4173 if (nla_len(tb[RTA_DST]) < plen) 4174 goto errout; 4175 4176 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 4177 } 4178 4179 if (tb[RTA_SRC]) { 4180 int plen = (rtm->rtm_src_len + 7) >> 3; 4181 4182 if (nla_len(tb[RTA_SRC]) < plen) 4183 goto errout; 4184 4185 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 4186 } 4187 4188 if (tb[RTA_PREFSRC]) 4189 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 4190 4191 if (tb[RTA_OIF]) 4192 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 4193 4194 if (tb[RTA_PRIORITY]) 4195 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 4196 4197 if (tb[RTA_METRICS]) { 4198 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 4199 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 4200 } 4201 4202 if (tb[RTA_TABLE]) 4203 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 4204 4205 if (tb[RTA_MULTIPATH]) { 4206 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 4207 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 4208 4209 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, 4210 cfg->fc_mp_len, extack); 4211 if (err < 0) 4212 goto errout; 4213 } 4214 4215 if (tb[RTA_PREF]) { 4216 pref = nla_get_u8(tb[RTA_PREF]); 4217 if (pref != ICMPV6_ROUTER_PREF_LOW && 4218 pref != ICMPV6_ROUTER_PREF_HIGH) 4219 pref = ICMPV6_ROUTER_PREF_MEDIUM; 4220 cfg->fc_flags |= RTF_PREF(pref); 4221 } 4222 4223 if (tb[RTA_ENCAP]) 4224 cfg->fc_encap = tb[RTA_ENCAP]; 4225 4226 if (tb[RTA_ENCAP_TYPE]) { 4227 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 4228 4229 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 4230 if (err < 0) 4231 goto errout; 4232 } 4233 4234 if (tb[RTA_EXPIRES]) { 4235 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 4236 4237 if (addrconf_finite_timeout(timeout)) { 4238 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 4239 cfg->fc_flags |= RTF_EXPIRES; 4240 } 4241 } 4242 4243 err = 0; 4244 errout: 4245 return err; 4246 } 4247 4248 struct rt6_nh { 4249 struct fib6_info *fib6_info; 4250 struct fib6_config r_cfg; 4251 struct list_head next; 4252 }; 4253 4254 static void ip6_print_replace_route_err(struct list_head *rt6_nh_list) 4255 { 4256 struct rt6_nh *nh; 4257 4258 list_for_each_entry(nh, rt6_nh_list, next) { 4259 pr_warn("IPV6: multipath route replace failed (check consistency of installed routes): %pI6c nexthop %pI6c ifi %d\n", 4260 &nh->r_cfg.fc_dst, &nh->r_cfg.fc_gateway, 4261 nh->r_cfg.fc_ifindex); 4262 } 4263 } 4264 4265 static int ip6_route_info_append(struct net *net, 4266 struct list_head *rt6_nh_list, 4267 struct fib6_info *rt, 4268 struct fib6_config *r_cfg) 4269 { 4270 struct rt6_nh *nh; 4271 int err = -EEXIST; 4272 4273 list_for_each_entry(nh, rt6_nh_list, next) { 4274 /* check if fib6_info already exists */ 4275 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 4276 return err; 4277 } 4278 4279 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 4280 if (!nh) 4281 return -ENOMEM; 4282 nh->fib6_info = rt; 4283 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 4284 list_add_tail(&nh->next, rt6_nh_list); 4285 4286 return 0; 4287 } 4288 4289 static void ip6_route_mpath_notify(struct fib6_info *rt, 4290 struct fib6_info *rt_last, 4291 struct nl_info *info, 4292 __u16 nlflags) 4293 { 4294 /* if this is an APPEND route, then rt points to the first route 4295 * inserted and rt_last points to last route inserted. Userspace 4296 * wants a consistent dump of the route which starts at the first 4297 * nexthop. Since sibling routes are always added at the end of 4298 * the list, find the first sibling of the last route appended 4299 */ 4300 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { 4301 rt = list_first_entry(&rt_last->fib6_siblings, 4302 struct fib6_info, 4303 fib6_siblings); 4304 } 4305 4306 if (rt) 4307 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 4308 } 4309 4310 static int ip6_route_multipath_add(struct fib6_config *cfg, 4311 struct netlink_ext_ack *extack) 4312 { 4313 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 4314 struct nl_info *info = &cfg->fc_nlinfo; 4315 struct fib6_config r_cfg; 4316 struct rtnexthop *rtnh; 4317 struct fib6_info *rt; 4318 struct rt6_nh *err_nh; 4319 struct rt6_nh *nh, *nh_safe; 4320 __u16 nlflags; 4321 int remaining; 4322 int attrlen; 4323 int err = 1; 4324 int nhn = 0; 4325 int replace = (cfg->fc_nlinfo.nlh && 4326 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 4327 LIST_HEAD(rt6_nh_list); 4328 4329 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 4330 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 4331 nlflags |= NLM_F_APPEND; 4332 4333 remaining = cfg->fc_mp_len; 4334 rtnh = (struct rtnexthop *)cfg->fc_mp; 4335 4336 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 4337 * fib6_info structs per nexthop 4338 */ 4339 while (rtnh_ok(rtnh, remaining)) { 4340 memcpy(&r_cfg, cfg, sizeof(*cfg)); 4341 if (rtnh->rtnh_ifindex) 4342 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 4343 4344 attrlen = rtnh_attrlen(rtnh); 4345 if (attrlen > 0) { 4346 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 4347 4348 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 4349 if (nla) { 4350 r_cfg.fc_gateway = nla_get_in6_addr(nla); 4351 r_cfg.fc_flags |= RTF_GATEWAY; 4352 } 4353 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 4354 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 4355 if (nla) 4356 r_cfg.fc_encap_type = nla_get_u16(nla); 4357 } 4358 4359 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 4360 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 4361 if (IS_ERR(rt)) { 4362 err = PTR_ERR(rt); 4363 rt = NULL; 4364 goto cleanup; 4365 } 4366 if (!rt6_qualify_for_ecmp(rt)) { 4367 err = -EINVAL; 4368 NL_SET_ERR_MSG(extack, 4369 "Device only routes can not be added for IPv6 using the multipath API."); 4370 fib6_info_release(rt); 4371 goto cleanup; 4372 } 4373 4374 rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1; 4375 4376 err = ip6_route_info_append(info->nl_net, &rt6_nh_list, 4377 rt, &r_cfg); 4378 if (err) { 4379 fib6_info_release(rt); 4380 goto cleanup; 4381 } 4382 4383 rtnh = rtnh_next(rtnh, &remaining); 4384 } 4385 4386 /* for add and replace send one notification with all nexthops. 4387 * Skip the notification in fib6_add_rt2node and send one with 4388 * the full route when done 4389 */ 4390 info->skip_notify = 1; 4391 4392 err_nh = NULL; 4393 list_for_each_entry(nh, &rt6_nh_list, next) { 4394 err = __ip6_ins_rt(nh->fib6_info, info, extack); 4395 fib6_info_release(nh->fib6_info); 4396 4397 if (!err) { 4398 /* save reference to last route successfully inserted */ 4399 rt_last = nh->fib6_info; 4400 4401 /* save reference to first route for notification */ 4402 if (!rt_notif) 4403 rt_notif = nh->fib6_info; 4404 } 4405 4406 /* nh->fib6_info is used or freed at this point, reset to NULL*/ 4407 nh->fib6_info = NULL; 4408 if (err) { 4409 if (replace && nhn) 4410 ip6_print_replace_route_err(&rt6_nh_list); 4411 err_nh = nh; 4412 goto add_errout; 4413 } 4414 4415 /* Because each route is added like a single route we remove 4416 * these flags after the first nexthop: if there is a collision, 4417 * we have already failed to add the first nexthop: 4418 * fib6_add_rt2node() has rejected it; when replacing, old 4419 * nexthops have been replaced by first new, the rest should 4420 * be added to it. 4421 */ 4422 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 4423 NLM_F_REPLACE); 4424 nhn++; 4425 } 4426 4427 /* success ... tell user about new route */ 4428 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 4429 goto cleanup; 4430 4431 add_errout: 4432 /* send notification for routes that were added so that 4433 * the delete notifications sent by ip6_route_del are 4434 * coherent 4435 */ 4436 if (rt_notif) 4437 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 4438 4439 /* Delete routes that were already added */ 4440 list_for_each_entry(nh, &rt6_nh_list, next) { 4441 if (err_nh == nh) 4442 break; 4443 ip6_route_del(&nh->r_cfg, extack); 4444 } 4445 4446 cleanup: 4447 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { 4448 if (nh->fib6_info) 4449 fib6_info_release(nh->fib6_info); 4450 list_del(&nh->next); 4451 kfree(nh); 4452 } 4453 4454 return err; 4455 } 4456 4457 static int ip6_route_multipath_del(struct fib6_config *cfg, 4458 struct netlink_ext_ack *extack) 4459 { 4460 struct fib6_config r_cfg; 4461 struct rtnexthop *rtnh; 4462 int remaining; 4463 int attrlen; 4464 int err = 1, last_err = 0; 4465 4466 remaining = cfg->fc_mp_len; 4467 rtnh = (struct rtnexthop *)cfg->fc_mp; 4468 4469 /* Parse a Multipath Entry */ 4470 while (rtnh_ok(rtnh, remaining)) { 4471 memcpy(&r_cfg, cfg, sizeof(*cfg)); 4472 if (rtnh->rtnh_ifindex) 4473 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 4474 4475 attrlen = rtnh_attrlen(rtnh); 4476 if (attrlen > 0) { 4477 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 4478 4479 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 4480 if (nla) { 4481 nla_memcpy(&r_cfg.fc_gateway, nla, 16); 4482 r_cfg.fc_flags |= RTF_GATEWAY; 4483 } 4484 } 4485 err = ip6_route_del(&r_cfg, extack); 4486 if (err) 4487 last_err = err; 4488 4489 rtnh = rtnh_next(rtnh, &remaining); 4490 } 4491 4492 return last_err; 4493 } 4494 4495 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 4496 struct netlink_ext_ack *extack) 4497 { 4498 struct fib6_config cfg; 4499 int err; 4500 4501 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 4502 if (err < 0) 4503 return err; 4504 4505 if (cfg.fc_mp) 4506 return ip6_route_multipath_del(&cfg, extack); 4507 else { 4508 cfg.fc_delete_all_nh = 1; 4509 return ip6_route_del(&cfg, extack); 4510 } 4511 } 4512 4513 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 4514 struct netlink_ext_ack *extack) 4515 { 4516 struct fib6_config cfg; 4517 int err; 4518 4519 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 4520 if (err < 0) 4521 return err; 4522 4523 if (cfg.fc_mp) 4524 return ip6_route_multipath_add(&cfg, extack); 4525 else 4526 return ip6_route_add(&cfg, GFP_KERNEL, extack); 4527 } 4528 4529 static size_t rt6_nlmsg_size(struct fib6_info *rt) 4530 { 4531 int nexthop_len = 0; 4532 4533 if (rt->fib6_nsiblings) { 4534 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */ 4535 + NLA_ALIGN(sizeof(struct rtnexthop)) 4536 + nla_total_size(16) /* RTA_GATEWAY */ 4537 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate); 4538 4539 nexthop_len *= rt->fib6_nsiblings; 4540 } 4541 4542 return NLMSG_ALIGN(sizeof(struct rtmsg)) 4543 + nla_total_size(16) /* RTA_SRC */ 4544 + nla_total_size(16) /* RTA_DST */ 4545 + nla_total_size(16) /* RTA_GATEWAY */ 4546 + nla_total_size(16) /* RTA_PREFSRC */ 4547 + nla_total_size(4) /* RTA_TABLE */ 4548 + nla_total_size(4) /* RTA_IIF */ 4549 + nla_total_size(4) /* RTA_OIF */ 4550 + nla_total_size(4) /* RTA_PRIORITY */ 4551 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 4552 + nla_total_size(sizeof(struct rta_cacheinfo)) 4553 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 4554 + nla_total_size(1) /* RTA_PREF */ 4555 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate) 4556 + nexthop_len; 4557 } 4558 4559 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt, 4560 unsigned int *flags, bool skip_oif) 4561 { 4562 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 4563 *flags |= RTNH_F_DEAD; 4564 4565 if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) { 4566 *flags |= RTNH_F_LINKDOWN; 4567 4568 rcu_read_lock(); 4569 if (fib6_ignore_linkdown(rt)) 4570 *flags |= RTNH_F_DEAD; 4571 rcu_read_unlock(); 4572 } 4573 4574 if (rt->fib6_flags & RTF_GATEWAY) { 4575 if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0) 4576 goto nla_put_failure; 4577 } 4578 4579 *flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK); 4580 if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD) 4581 *flags |= RTNH_F_OFFLOAD; 4582 4583 /* not needed for multipath encoding b/c it has a rtnexthop struct */ 4584 if (!skip_oif && rt->fib6_nh.nh_dev && 4585 nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex)) 4586 goto nla_put_failure; 4587 4588 if (rt->fib6_nh.nh_lwtstate && 4589 lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0) 4590 goto nla_put_failure; 4591 4592 return 0; 4593 4594 nla_put_failure: 4595 return -EMSGSIZE; 4596 } 4597 4598 /* add multipath next hop */ 4599 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt) 4600 { 4601 const struct net_device *dev = rt->fib6_nh.nh_dev; 4602 struct rtnexthop *rtnh; 4603 unsigned int flags = 0; 4604 4605 rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh)); 4606 if (!rtnh) 4607 goto nla_put_failure; 4608 4609 rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1; 4610 rtnh->rtnh_ifindex = dev ? dev->ifindex : 0; 4611 4612 if (rt6_nexthop_info(skb, rt, &flags, true) < 0) 4613 goto nla_put_failure; 4614 4615 rtnh->rtnh_flags = flags; 4616 4617 /* length of rtnetlink header + attributes */ 4618 rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh; 4619 4620 return 0; 4621 4622 nla_put_failure: 4623 return -EMSGSIZE; 4624 } 4625 4626 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 4627 struct fib6_info *rt, struct dst_entry *dst, 4628 struct in6_addr *dest, struct in6_addr *src, 4629 int iif, int type, u32 portid, u32 seq, 4630 unsigned int flags) 4631 { 4632 struct rt6_info *rt6 = (struct rt6_info *)dst; 4633 struct rt6key *rt6_dst, *rt6_src; 4634 u32 *pmetrics, table, rt6_flags; 4635 struct nlmsghdr *nlh; 4636 struct rtmsg *rtm; 4637 long expires = 0; 4638 4639 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 4640 if (!nlh) 4641 return -EMSGSIZE; 4642 4643 if (rt6) { 4644 rt6_dst = &rt6->rt6i_dst; 4645 rt6_src = &rt6->rt6i_src; 4646 rt6_flags = rt6->rt6i_flags; 4647 } else { 4648 rt6_dst = &rt->fib6_dst; 4649 rt6_src = &rt->fib6_src; 4650 rt6_flags = rt->fib6_flags; 4651 } 4652 4653 rtm = nlmsg_data(nlh); 4654 rtm->rtm_family = AF_INET6; 4655 rtm->rtm_dst_len = rt6_dst->plen; 4656 rtm->rtm_src_len = rt6_src->plen; 4657 rtm->rtm_tos = 0; 4658 if (rt->fib6_table) 4659 table = rt->fib6_table->tb6_id; 4660 else 4661 table = RT6_TABLE_UNSPEC; 4662 rtm->rtm_table = table; 4663 if (nla_put_u32(skb, RTA_TABLE, table)) 4664 goto nla_put_failure; 4665 4666 rtm->rtm_type = rt->fib6_type; 4667 rtm->rtm_flags = 0; 4668 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 4669 rtm->rtm_protocol = rt->fib6_protocol; 4670 4671 if (rt6_flags & RTF_CACHE) 4672 rtm->rtm_flags |= RTM_F_CLONED; 4673 4674 if (dest) { 4675 if (nla_put_in6_addr(skb, RTA_DST, dest)) 4676 goto nla_put_failure; 4677 rtm->rtm_dst_len = 128; 4678 } else if (rtm->rtm_dst_len) 4679 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 4680 goto nla_put_failure; 4681 #ifdef CONFIG_IPV6_SUBTREES 4682 if (src) { 4683 if (nla_put_in6_addr(skb, RTA_SRC, src)) 4684 goto nla_put_failure; 4685 rtm->rtm_src_len = 128; 4686 } else if (rtm->rtm_src_len && 4687 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 4688 goto nla_put_failure; 4689 #endif 4690 if (iif) { 4691 #ifdef CONFIG_IPV6_MROUTE 4692 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 4693 int err = ip6mr_get_route(net, skb, rtm, portid); 4694 4695 if (err == 0) 4696 return 0; 4697 if (err < 0) 4698 goto nla_put_failure; 4699 } else 4700 #endif 4701 if (nla_put_u32(skb, RTA_IIF, iif)) 4702 goto nla_put_failure; 4703 } else if (dest) { 4704 struct in6_addr saddr_buf; 4705 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && 4706 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 4707 goto nla_put_failure; 4708 } 4709 4710 if (rt->fib6_prefsrc.plen) { 4711 struct in6_addr saddr_buf; 4712 saddr_buf = rt->fib6_prefsrc.addr; 4713 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 4714 goto nla_put_failure; 4715 } 4716 4717 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 4718 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 4719 goto nla_put_failure; 4720 4721 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 4722 goto nla_put_failure; 4723 4724 /* For multipath routes, walk the siblings list and add 4725 * each as a nexthop within RTA_MULTIPATH. 4726 */ 4727 if (rt6) { 4728 if (rt6_flags & RTF_GATEWAY && 4729 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 4730 goto nla_put_failure; 4731 4732 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) 4733 goto nla_put_failure; 4734 } else if (rt->fib6_nsiblings) { 4735 struct fib6_info *sibling, *next_sibling; 4736 struct nlattr *mp; 4737 4738 mp = nla_nest_start(skb, RTA_MULTIPATH); 4739 if (!mp) 4740 goto nla_put_failure; 4741 4742 if (rt6_add_nexthop(skb, rt) < 0) 4743 goto nla_put_failure; 4744 4745 list_for_each_entry_safe(sibling, next_sibling, 4746 &rt->fib6_siblings, fib6_siblings) { 4747 if (rt6_add_nexthop(skb, sibling) < 0) 4748 goto nla_put_failure; 4749 } 4750 4751 nla_nest_end(skb, mp); 4752 } else { 4753 if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0) 4754 goto nla_put_failure; 4755 } 4756 4757 if (rt6_flags & RTF_EXPIRES) { 4758 expires = dst ? dst->expires : rt->expires; 4759 expires -= jiffies; 4760 } 4761 4762 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 4763 goto nla_put_failure; 4764 4765 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 4766 goto nla_put_failure; 4767 4768 4769 nlmsg_end(skb, nlh); 4770 return 0; 4771 4772 nla_put_failure: 4773 nlmsg_cancel(skb, nlh); 4774 return -EMSGSIZE; 4775 } 4776 4777 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 4778 const struct net_device *dev) 4779 { 4780 if (f6i->fib6_nh.nh_dev == dev) 4781 return true; 4782 4783 if (f6i->fib6_nsiblings) { 4784 struct fib6_info *sibling, *next_sibling; 4785 4786 list_for_each_entry_safe(sibling, next_sibling, 4787 &f6i->fib6_siblings, fib6_siblings) { 4788 if (sibling->fib6_nh.nh_dev == dev) 4789 return true; 4790 } 4791 } 4792 4793 return false; 4794 } 4795 4796 int rt6_dump_route(struct fib6_info *rt, void *p_arg) 4797 { 4798 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 4799 struct fib_dump_filter *filter = &arg->filter; 4800 unsigned int flags = NLM_F_MULTI; 4801 struct net *net = arg->net; 4802 4803 if (rt == net->ipv6.fib6_null_entry) 4804 return 0; 4805 4806 if ((filter->flags & RTM_F_PREFIX) && 4807 !(rt->fib6_flags & RTF_PREFIX_RT)) { 4808 /* success since this is not a prefix route */ 4809 return 1; 4810 } 4811 if (filter->filter_set) { 4812 if ((filter->rt_type && rt->fib6_type != filter->rt_type) || 4813 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 4814 (filter->protocol && rt->fib6_protocol != filter->protocol)) { 4815 return 1; 4816 } 4817 flags |= NLM_F_DUMP_FILTERED; 4818 } 4819 4820 return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0, 4821 RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid, 4822 arg->cb->nlh->nlmsg_seq, flags); 4823 } 4824 4825 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 4826 struct netlink_ext_ack *extack) 4827 { 4828 struct net *net = sock_net(in_skb->sk); 4829 struct nlattr *tb[RTA_MAX+1]; 4830 int err, iif = 0, oif = 0; 4831 struct fib6_info *from; 4832 struct dst_entry *dst; 4833 struct rt6_info *rt; 4834 struct sk_buff *skb; 4835 struct rtmsg *rtm; 4836 struct flowi6 fl6 = {}; 4837 bool fibmatch; 4838 4839 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, 4840 extack); 4841 if (err < 0) 4842 goto errout; 4843 4844 err = -EINVAL; 4845 rtm = nlmsg_data(nlh); 4846 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); 4847 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 4848 4849 if (tb[RTA_SRC]) { 4850 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 4851 goto errout; 4852 4853 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 4854 } 4855 4856 if (tb[RTA_DST]) { 4857 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 4858 goto errout; 4859 4860 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 4861 } 4862 4863 if (tb[RTA_IIF]) 4864 iif = nla_get_u32(tb[RTA_IIF]); 4865 4866 if (tb[RTA_OIF]) 4867 oif = nla_get_u32(tb[RTA_OIF]); 4868 4869 if (tb[RTA_MARK]) 4870 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 4871 4872 if (tb[RTA_UID]) 4873 fl6.flowi6_uid = make_kuid(current_user_ns(), 4874 nla_get_u32(tb[RTA_UID])); 4875 else 4876 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 4877 4878 if (tb[RTA_SPORT]) 4879 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 4880 4881 if (tb[RTA_DPORT]) 4882 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 4883 4884 if (tb[RTA_IP_PROTO]) { 4885 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 4886 &fl6.flowi6_proto, extack); 4887 if (err) 4888 goto errout; 4889 } 4890 4891 if (iif) { 4892 struct net_device *dev; 4893 int flags = 0; 4894 4895 rcu_read_lock(); 4896 4897 dev = dev_get_by_index_rcu(net, iif); 4898 if (!dev) { 4899 rcu_read_unlock(); 4900 err = -ENODEV; 4901 goto errout; 4902 } 4903 4904 fl6.flowi6_iif = iif; 4905 4906 if (!ipv6_addr_any(&fl6.saddr)) 4907 flags |= RT6_LOOKUP_F_HAS_SADDR; 4908 4909 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 4910 4911 rcu_read_unlock(); 4912 } else { 4913 fl6.flowi6_oif = oif; 4914 4915 dst = ip6_route_output(net, NULL, &fl6); 4916 } 4917 4918 4919 rt = container_of(dst, struct rt6_info, dst); 4920 if (rt->dst.error) { 4921 err = rt->dst.error; 4922 ip6_rt_put(rt); 4923 goto errout; 4924 } 4925 4926 if (rt == net->ipv6.ip6_null_entry) { 4927 err = rt->dst.error; 4928 ip6_rt_put(rt); 4929 goto errout; 4930 } 4931 4932 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 4933 if (!skb) { 4934 ip6_rt_put(rt); 4935 err = -ENOBUFS; 4936 goto errout; 4937 } 4938 4939 skb_dst_set(skb, &rt->dst); 4940 4941 rcu_read_lock(); 4942 from = rcu_dereference(rt->from); 4943 4944 if (fibmatch) 4945 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif, 4946 RTM_NEWROUTE, NETLINK_CB(in_skb).portid, 4947 nlh->nlmsg_seq, 0); 4948 else 4949 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 4950 &fl6.saddr, iif, RTM_NEWROUTE, 4951 NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 4952 0); 4953 rcu_read_unlock(); 4954 4955 if (err < 0) { 4956 kfree_skb(skb); 4957 goto errout; 4958 } 4959 4960 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 4961 errout: 4962 return err; 4963 } 4964 4965 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 4966 unsigned int nlm_flags) 4967 { 4968 struct sk_buff *skb; 4969 struct net *net = info->nl_net; 4970 u32 seq; 4971 int err; 4972 4973 err = -ENOBUFS; 4974 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 4975 4976 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 4977 if (!skb) 4978 goto errout; 4979 4980 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 4981 event, info->portid, seq, nlm_flags); 4982 if (err < 0) { 4983 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 4984 WARN_ON(err == -EMSGSIZE); 4985 kfree_skb(skb); 4986 goto errout; 4987 } 4988 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 4989 info->nlh, gfp_any()); 4990 return; 4991 errout: 4992 if (err < 0) 4993 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 4994 } 4995 4996 static int ip6_route_dev_notify(struct notifier_block *this, 4997 unsigned long event, void *ptr) 4998 { 4999 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 5000 struct net *net = dev_net(dev); 5001 5002 if (!(dev->flags & IFF_LOOPBACK)) 5003 return NOTIFY_OK; 5004 5005 if (event == NETDEV_REGISTER) { 5006 net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev; 5007 net->ipv6.ip6_null_entry->dst.dev = dev; 5008 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 5009 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5010 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 5011 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 5012 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 5013 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 5014 #endif 5015 } else if (event == NETDEV_UNREGISTER && 5016 dev->reg_state != NETREG_UNREGISTERED) { 5017 /* NETDEV_UNREGISTER could be fired for multiple times by 5018 * netdev_wait_allrefs(). Make sure we only call this once. 5019 */ 5020 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 5021 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5022 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 5023 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 5024 #endif 5025 } 5026 5027 return NOTIFY_OK; 5028 } 5029 5030 /* 5031 * /proc 5032 */ 5033 5034 #ifdef CONFIG_PROC_FS 5035 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 5036 { 5037 struct net *net = (struct net *)seq->private; 5038 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 5039 net->ipv6.rt6_stats->fib_nodes, 5040 net->ipv6.rt6_stats->fib_route_nodes, 5041 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 5042 net->ipv6.rt6_stats->fib_rt_entries, 5043 net->ipv6.rt6_stats->fib_rt_cache, 5044 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 5045 net->ipv6.rt6_stats->fib_discarded_routes); 5046 5047 return 0; 5048 } 5049 #endif /* CONFIG_PROC_FS */ 5050 5051 #ifdef CONFIG_SYSCTL 5052 5053 static 5054 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, 5055 void __user *buffer, size_t *lenp, loff_t *ppos) 5056 { 5057 struct net *net; 5058 int delay; 5059 int ret; 5060 if (!write) 5061 return -EINVAL; 5062 5063 net = (struct net *)ctl->extra1; 5064 delay = net->ipv6.sysctl.flush_delay; 5065 ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 5066 if (ret) 5067 return ret; 5068 5069 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 5070 return 0; 5071 } 5072 5073 static int zero; 5074 static int one = 1; 5075 5076 static struct ctl_table ipv6_route_table_template[] = { 5077 { 5078 .procname = "flush", 5079 .data = &init_net.ipv6.sysctl.flush_delay, 5080 .maxlen = sizeof(int), 5081 .mode = 0200, 5082 .proc_handler = ipv6_sysctl_rtcache_flush 5083 }, 5084 { 5085 .procname = "gc_thresh", 5086 .data = &ip6_dst_ops_template.gc_thresh, 5087 .maxlen = sizeof(int), 5088 .mode = 0644, 5089 .proc_handler = proc_dointvec, 5090 }, 5091 { 5092 .procname = "max_size", 5093 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 5094 .maxlen = sizeof(int), 5095 .mode = 0644, 5096 .proc_handler = proc_dointvec, 5097 }, 5098 { 5099 .procname = "gc_min_interval", 5100 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 5101 .maxlen = sizeof(int), 5102 .mode = 0644, 5103 .proc_handler = proc_dointvec_jiffies, 5104 }, 5105 { 5106 .procname = "gc_timeout", 5107 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 5108 .maxlen = sizeof(int), 5109 .mode = 0644, 5110 .proc_handler = proc_dointvec_jiffies, 5111 }, 5112 { 5113 .procname = "gc_interval", 5114 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 5115 .maxlen = sizeof(int), 5116 .mode = 0644, 5117 .proc_handler = proc_dointvec_jiffies, 5118 }, 5119 { 5120 .procname = "gc_elasticity", 5121 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 5122 .maxlen = sizeof(int), 5123 .mode = 0644, 5124 .proc_handler = proc_dointvec, 5125 }, 5126 { 5127 .procname = "mtu_expires", 5128 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 5129 .maxlen = sizeof(int), 5130 .mode = 0644, 5131 .proc_handler = proc_dointvec_jiffies, 5132 }, 5133 { 5134 .procname = "min_adv_mss", 5135 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 5136 .maxlen = sizeof(int), 5137 .mode = 0644, 5138 .proc_handler = proc_dointvec, 5139 }, 5140 { 5141 .procname = "gc_min_interval_ms", 5142 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 5143 .maxlen = sizeof(int), 5144 .mode = 0644, 5145 .proc_handler = proc_dointvec_ms_jiffies, 5146 }, 5147 { 5148 .procname = "skip_notify_on_dev_down", 5149 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 5150 .maxlen = sizeof(int), 5151 .mode = 0644, 5152 .proc_handler = proc_dointvec, 5153 .extra1 = &zero, 5154 .extra2 = &one, 5155 }, 5156 { } 5157 }; 5158 5159 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 5160 { 5161 struct ctl_table *table; 5162 5163 table = kmemdup(ipv6_route_table_template, 5164 sizeof(ipv6_route_table_template), 5165 GFP_KERNEL); 5166 5167 if (table) { 5168 table[0].data = &net->ipv6.sysctl.flush_delay; 5169 table[0].extra1 = net; 5170 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 5171 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size; 5172 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 5173 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 5174 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 5175 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 5176 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 5177 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 5178 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 5179 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 5180 5181 /* Don't export sysctls to unprivileged users */ 5182 if (net->user_ns != &init_user_ns) 5183 table[0].procname = NULL; 5184 } 5185 5186 return table; 5187 } 5188 #endif 5189 5190 static int __net_init ip6_route_net_init(struct net *net) 5191 { 5192 int ret = -ENOMEM; 5193 5194 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 5195 sizeof(net->ipv6.ip6_dst_ops)); 5196 5197 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 5198 goto out_ip6_dst_ops; 5199 5200 net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template, 5201 sizeof(*net->ipv6.fib6_null_entry), 5202 GFP_KERNEL); 5203 if (!net->ipv6.fib6_null_entry) 5204 goto out_ip6_dst_entries; 5205 5206 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 5207 sizeof(*net->ipv6.ip6_null_entry), 5208 GFP_KERNEL); 5209 if (!net->ipv6.ip6_null_entry) 5210 goto out_fib6_null_entry; 5211 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5212 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 5213 ip6_template_metrics, true); 5214 5215 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5216 net->ipv6.fib6_has_custom_rules = false; 5217 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 5218 sizeof(*net->ipv6.ip6_prohibit_entry), 5219 GFP_KERNEL); 5220 if (!net->ipv6.ip6_prohibit_entry) 5221 goto out_ip6_null_entry; 5222 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5223 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 5224 ip6_template_metrics, true); 5225 5226 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 5227 sizeof(*net->ipv6.ip6_blk_hole_entry), 5228 GFP_KERNEL); 5229 if (!net->ipv6.ip6_blk_hole_entry) 5230 goto out_ip6_prohibit_entry; 5231 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5232 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 5233 ip6_template_metrics, true); 5234 #endif 5235 5236 net->ipv6.sysctl.flush_delay = 0; 5237 net->ipv6.sysctl.ip6_rt_max_size = 4096; 5238 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 5239 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 5240 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 5241 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 5242 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 5243 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 5244 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 5245 5246 net->ipv6.ip6_rt_gc_expire = 30*HZ; 5247 5248 ret = 0; 5249 out: 5250 return ret; 5251 5252 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5253 out_ip6_prohibit_entry: 5254 kfree(net->ipv6.ip6_prohibit_entry); 5255 out_ip6_null_entry: 5256 kfree(net->ipv6.ip6_null_entry); 5257 #endif 5258 out_fib6_null_entry: 5259 kfree(net->ipv6.fib6_null_entry); 5260 out_ip6_dst_entries: 5261 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 5262 out_ip6_dst_ops: 5263 goto out; 5264 } 5265 5266 static void __net_exit ip6_route_net_exit(struct net *net) 5267 { 5268 kfree(net->ipv6.fib6_null_entry); 5269 kfree(net->ipv6.ip6_null_entry); 5270 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5271 kfree(net->ipv6.ip6_prohibit_entry); 5272 kfree(net->ipv6.ip6_blk_hole_entry); 5273 #endif 5274 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 5275 } 5276 5277 static int __net_init ip6_route_net_init_late(struct net *net) 5278 { 5279 #ifdef CONFIG_PROC_FS 5280 proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops, 5281 sizeof(struct ipv6_route_iter)); 5282 proc_create_net_single("rt6_stats", 0444, net->proc_net, 5283 rt6_stats_seq_show, NULL); 5284 #endif 5285 return 0; 5286 } 5287 5288 static void __net_exit ip6_route_net_exit_late(struct net *net) 5289 { 5290 #ifdef CONFIG_PROC_FS 5291 remove_proc_entry("ipv6_route", net->proc_net); 5292 remove_proc_entry("rt6_stats", net->proc_net); 5293 #endif 5294 } 5295 5296 static struct pernet_operations ip6_route_net_ops = { 5297 .init = ip6_route_net_init, 5298 .exit = ip6_route_net_exit, 5299 }; 5300 5301 static int __net_init ipv6_inetpeer_init(struct net *net) 5302 { 5303 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 5304 5305 if (!bp) 5306 return -ENOMEM; 5307 inet_peer_base_init(bp); 5308 net->ipv6.peers = bp; 5309 return 0; 5310 } 5311 5312 static void __net_exit ipv6_inetpeer_exit(struct net *net) 5313 { 5314 struct inet_peer_base *bp = net->ipv6.peers; 5315 5316 net->ipv6.peers = NULL; 5317 inetpeer_invalidate_tree(bp); 5318 kfree(bp); 5319 } 5320 5321 static struct pernet_operations ipv6_inetpeer_ops = { 5322 .init = ipv6_inetpeer_init, 5323 .exit = ipv6_inetpeer_exit, 5324 }; 5325 5326 static struct pernet_operations ip6_route_net_late_ops = { 5327 .init = ip6_route_net_init_late, 5328 .exit = ip6_route_net_exit_late, 5329 }; 5330 5331 static struct notifier_block ip6_route_dev_notifier = { 5332 .notifier_call = ip6_route_dev_notify, 5333 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 5334 }; 5335 5336 void __init ip6_route_init_special_entries(void) 5337 { 5338 /* Registering of the loopback is done before this portion of code, 5339 * the loopback reference in rt6_info will not be taken, do it 5340 * manually for init_net */ 5341 init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev; 5342 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 5343 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5344 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5345 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 5346 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5347 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 5348 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5349 #endif 5350 } 5351 5352 int __init ip6_route_init(void) 5353 { 5354 int ret; 5355 int cpu; 5356 5357 ret = -ENOMEM; 5358 ip6_dst_ops_template.kmem_cachep = 5359 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 5360 SLAB_HWCACHE_ALIGN, NULL); 5361 if (!ip6_dst_ops_template.kmem_cachep) 5362 goto out; 5363 5364 ret = dst_entries_init(&ip6_dst_blackhole_ops); 5365 if (ret) 5366 goto out_kmem_cache; 5367 5368 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 5369 if (ret) 5370 goto out_dst_entries; 5371 5372 ret = register_pernet_subsys(&ip6_route_net_ops); 5373 if (ret) 5374 goto out_register_inetpeer; 5375 5376 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 5377 5378 ret = fib6_init(); 5379 if (ret) 5380 goto out_register_subsys; 5381 5382 ret = xfrm6_init(); 5383 if (ret) 5384 goto out_fib6_init; 5385 5386 ret = fib6_rules_init(); 5387 if (ret) 5388 goto xfrm6_init; 5389 5390 ret = register_pernet_subsys(&ip6_route_net_late_ops); 5391 if (ret) 5392 goto fib6_rules_init; 5393 5394 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, 5395 inet6_rtm_newroute, NULL, 0); 5396 if (ret < 0) 5397 goto out_register_late_subsys; 5398 5399 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, 5400 inet6_rtm_delroute, NULL, 0); 5401 if (ret < 0) 5402 goto out_register_late_subsys; 5403 5404 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, 5405 inet6_rtm_getroute, NULL, 5406 RTNL_FLAG_DOIT_UNLOCKED); 5407 if (ret < 0) 5408 goto out_register_late_subsys; 5409 5410 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 5411 if (ret) 5412 goto out_register_late_subsys; 5413 5414 for_each_possible_cpu(cpu) { 5415 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 5416 5417 INIT_LIST_HEAD(&ul->head); 5418 spin_lock_init(&ul->lock); 5419 } 5420 5421 out: 5422 return ret; 5423 5424 out_register_late_subsys: 5425 rtnl_unregister_all(PF_INET6); 5426 unregister_pernet_subsys(&ip6_route_net_late_ops); 5427 fib6_rules_init: 5428 fib6_rules_cleanup(); 5429 xfrm6_init: 5430 xfrm6_fini(); 5431 out_fib6_init: 5432 fib6_gc_cleanup(); 5433 out_register_subsys: 5434 unregister_pernet_subsys(&ip6_route_net_ops); 5435 out_register_inetpeer: 5436 unregister_pernet_subsys(&ipv6_inetpeer_ops); 5437 out_dst_entries: 5438 dst_entries_destroy(&ip6_dst_blackhole_ops); 5439 out_kmem_cache: 5440 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 5441 goto out; 5442 } 5443 5444 void ip6_route_cleanup(void) 5445 { 5446 unregister_netdevice_notifier(&ip6_route_dev_notifier); 5447 unregister_pernet_subsys(&ip6_route_net_late_ops); 5448 fib6_rules_cleanup(); 5449 xfrm6_fini(); 5450 fib6_gc_cleanup(); 5451 unregister_pernet_subsys(&ipv6_inetpeer_ops); 5452 unregister_pernet_subsys(&ip6_route_net_ops); 5453 dst_entries_destroy(&ip6_dst_blackhole_ops); 5454 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 5455 } 5456