1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * FIB front-end. 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 */ 9 10 /* Changes: 11 * 12 * YOSHIFUJI Hideaki @USAGI 13 * reworked default router selection. 14 * - respect outgoing interface 15 * - select from (probably) reachable routers (i.e. 16 * routers in REACHABLE, STALE, DELAY or PROBE states). 17 * - always select the same router if it is (probably) 18 * reachable. otherwise, round-robin the list. 19 * Ville Nuorvala 20 * Fixed routing subtrees. 21 */ 22 23 #define pr_fmt(fmt) "IPv6: " fmt 24 25 #include <linux/capability.h> 26 #include <linux/errno.h> 27 #include <linux/export.h> 28 #include <linux/types.h> 29 #include <linux/times.h> 30 #include <linux/socket.h> 31 #include <linux/sockios.h> 32 #include <linux/net.h> 33 #include <linux/route.h> 34 #include <linux/netdevice.h> 35 #include <linux/in6.h> 36 #include <linux/mroute6.h> 37 #include <linux/init.h> 38 #include <linux/if_arp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/nsproxy.h> 42 #include <linux/slab.h> 43 #include <linux/jhash.h> 44 #include <net/net_namespace.h> 45 #include <net/snmp.h> 46 #include <net/ipv6.h> 47 #include <net/ip6_fib.h> 48 #include <net/ip6_route.h> 49 #include <net/ndisc.h> 50 #include <net/addrconf.h> 51 #include <net/tcp.h> 52 #include <linux/rtnetlink.h> 53 #include <net/dst.h> 54 #include <net/dst_metadata.h> 55 #include <net/xfrm.h> 56 #include <net/netevent.h> 57 #include <net/netlink.h> 58 #include <net/rtnh.h> 59 #include <net/lwtunnel.h> 60 #include <net/ip_tunnels.h> 61 #include <net/l3mdev.h> 62 #include <net/ip.h> 63 #include <linux/uaccess.h> 64 #include <linux/btf_ids.h> 65 66 #ifdef CONFIG_SYSCTL 67 #include <linux/sysctl.h> 68 #endif 69 70 static int ip6_rt_type_to_error(u8 fib6_type); 71 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/fib6.h> 74 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 75 #undef CREATE_TRACE_POINTS 76 77 enum rt6_nud_state { 78 RT6_NUD_FAIL_HARD = -3, 79 RT6_NUD_FAIL_PROBE = -2, 80 RT6_NUD_FAIL_DO_RR = -1, 81 RT6_NUD_SUCCEED = 1 82 }; 83 84 INDIRECT_CALLABLE_SCOPE 85 struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 86 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 87 INDIRECT_CALLABLE_SCOPE 88 unsigned int ip6_mtu(const struct dst_entry *dst); 89 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 90 static void ip6_dst_destroy(struct dst_entry *); 91 static void ip6_dst_ifdown(struct dst_entry *, 92 struct net_device *dev, int how); 93 static int ip6_dst_gc(struct dst_ops *ops); 94 95 static int ip6_pkt_discard(struct sk_buff *skb); 96 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 97 static int ip6_pkt_prohibit(struct sk_buff *skb); 98 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 99 static void ip6_link_failure(struct sk_buff *skb); 100 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 101 struct sk_buff *skb, u32 mtu, 102 bool confirm_neigh); 103 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 104 struct sk_buff *skb); 105 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 106 int strict); 107 static size_t rt6_nlmsg_size(struct fib6_info *f6i); 108 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 109 struct fib6_info *rt, struct dst_entry *dst, 110 struct in6_addr *dest, struct in6_addr *src, 111 int iif, int type, u32 portid, u32 seq, 112 unsigned int flags); 113 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 114 const struct in6_addr *daddr, 115 const struct in6_addr *saddr); 116 117 #ifdef CONFIG_IPV6_ROUTE_INFO 118 static struct fib6_info *rt6_add_route_info(struct net *net, 119 const struct in6_addr *prefix, int prefixlen, 120 const struct in6_addr *gwaddr, 121 struct net_device *dev, 122 unsigned int pref); 123 static struct fib6_info *rt6_get_route_info(struct net *net, 124 const struct in6_addr *prefix, int prefixlen, 125 const struct in6_addr *gwaddr, 126 struct net_device *dev); 127 #endif 128 129 struct uncached_list { 130 spinlock_t lock; 131 struct list_head head; 132 }; 133 134 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 135 136 void rt6_uncached_list_add(struct rt6_info *rt) 137 { 138 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 139 140 rt->rt6i_uncached_list = ul; 141 142 spin_lock_bh(&ul->lock); 143 list_add_tail(&rt->rt6i_uncached, &ul->head); 144 spin_unlock_bh(&ul->lock); 145 } 146 147 void rt6_uncached_list_del(struct rt6_info *rt) 148 { 149 if (!list_empty(&rt->rt6i_uncached)) { 150 struct uncached_list *ul = rt->rt6i_uncached_list; 151 struct net *net = dev_net(rt->dst.dev); 152 153 spin_lock_bh(&ul->lock); 154 list_del(&rt->rt6i_uncached); 155 atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache); 156 spin_unlock_bh(&ul->lock); 157 } 158 } 159 160 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev) 161 { 162 struct net_device *loopback_dev = net->loopback_dev; 163 int cpu; 164 165 if (dev == loopback_dev) 166 return; 167 168 for_each_possible_cpu(cpu) { 169 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 170 struct rt6_info *rt; 171 172 spin_lock_bh(&ul->lock); 173 list_for_each_entry(rt, &ul->head, rt6i_uncached) { 174 struct inet6_dev *rt_idev = rt->rt6i_idev; 175 struct net_device *rt_dev = rt->dst.dev; 176 177 if (rt_idev->dev == dev) { 178 rt->rt6i_idev = in6_dev_get(loopback_dev); 179 in6_dev_put(rt_idev); 180 } 181 182 if (rt_dev == dev) { 183 rt->dst.dev = blackhole_netdev; 184 dev_hold(rt->dst.dev); 185 dev_put(rt_dev); 186 } 187 } 188 spin_unlock_bh(&ul->lock); 189 } 190 } 191 192 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 193 struct sk_buff *skb, 194 const void *daddr) 195 { 196 if (!ipv6_addr_any(p)) 197 return (const void *) p; 198 else if (skb) 199 return &ipv6_hdr(skb)->daddr; 200 return daddr; 201 } 202 203 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 204 struct net_device *dev, 205 struct sk_buff *skb, 206 const void *daddr) 207 { 208 struct neighbour *n; 209 210 daddr = choose_neigh_daddr(gw, skb, daddr); 211 n = __ipv6_neigh_lookup(dev, daddr); 212 if (n) 213 return n; 214 215 n = neigh_create(&nd_tbl, daddr, dev); 216 return IS_ERR(n) ? NULL : n; 217 } 218 219 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 220 struct sk_buff *skb, 221 const void *daddr) 222 { 223 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); 224 225 return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any), 226 dst->dev, skb, daddr); 227 } 228 229 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 230 { 231 struct net_device *dev = dst->dev; 232 struct rt6_info *rt = (struct rt6_info *)dst; 233 234 daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr); 235 if (!daddr) 236 return; 237 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 238 return; 239 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 240 return; 241 __ipv6_confirm_neigh(dev, daddr); 242 } 243 244 static struct dst_ops ip6_dst_ops_template = { 245 .family = AF_INET6, 246 .gc = ip6_dst_gc, 247 .gc_thresh = 1024, 248 .check = ip6_dst_check, 249 .default_advmss = ip6_default_advmss, 250 .mtu = ip6_mtu, 251 .cow_metrics = dst_cow_metrics_generic, 252 .destroy = ip6_dst_destroy, 253 .ifdown = ip6_dst_ifdown, 254 .negative_advice = ip6_negative_advice, 255 .link_failure = ip6_link_failure, 256 .update_pmtu = ip6_rt_update_pmtu, 257 .redirect = rt6_do_redirect, 258 .local_out = __ip6_local_out, 259 .neigh_lookup = ip6_dst_neigh_lookup, 260 .confirm_neigh = ip6_confirm_neigh, 261 }; 262 263 static struct dst_ops ip6_dst_blackhole_ops = { 264 .family = AF_INET6, 265 .default_advmss = ip6_default_advmss, 266 .neigh_lookup = ip6_dst_neigh_lookup, 267 .check = ip6_dst_check, 268 .destroy = ip6_dst_destroy, 269 .cow_metrics = dst_cow_metrics_generic, 270 .update_pmtu = dst_blackhole_update_pmtu, 271 .redirect = dst_blackhole_redirect, 272 .mtu = dst_blackhole_mtu, 273 }; 274 275 static const u32 ip6_template_metrics[RTAX_MAX] = { 276 [RTAX_HOPLIMIT - 1] = 0, 277 }; 278 279 static const struct fib6_info fib6_null_entry_template = { 280 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 281 .fib6_protocol = RTPROT_KERNEL, 282 .fib6_metric = ~(u32)0, 283 .fib6_ref = REFCOUNT_INIT(1), 284 .fib6_type = RTN_UNREACHABLE, 285 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 286 }; 287 288 static const struct rt6_info ip6_null_entry_template = { 289 .dst = { 290 .__refcnt = ATOMIC_INIT(1), 291 .__use = 1, 292 .obsolete = DST_OBSOLETE_FORCE_CHK, 293 .error = -ENETUNREACH, 294 .input = ip6_pkt_discard, 295 .output = ip6_pkt_discard_out, 296 }, 297 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 298 }; 299 300 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 301 302 static const struct rt6_info ip6_prohibit_entry_template = { 303 .dst = { 304 .__refcnt = ATOMIC_INIT(1), 305 .__use = 1, 306 .obsolete = DST_OBSOLETE_FORCE_CHK, 307 .error = -EACCES, 308 .input = ip6_pkt_prohibit, 309 .output = ip6_pkt_prohibit_out, 310 }, 311 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 312 }; 313 314 static const struct rt6_info ip6_blk_hole_entry_template = { 315 .dst = { 316 .__refcnt = ATOMIC_INIT(1), 317 .__use = 1, 318 .obsolete = DST_OBSOLETE_FORCE_CHK, 319 .error = -EINVAL, 320 .input = dst_discard, 321 .output = dst_discard_out, 322 }, 323 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 324 }; 325 326 #endif 327 328 static void rt6_info_init(struct rt6_info *rt) 329 { 330 struct dst_entry *dst = &rt->dst; 331 332 memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst)); 333 INIT_LIST_HEAD(&rt->rt6i_uncached); 334 } 335 336 /* allocate dst with ip6_dst_ops */ 337 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 338 int flags) 339 { 340 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 341 1, DST_OBSOLETE_FORCE_CHK, flags); 342 343 if (rt) { 344 rt6_info_init(rt); 345 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 346 } 347 348 return rt; 349 } 350 EXPORT_SYMBOL(ip6_dst_alloc); 351 352 static void ip6_dst_destroy(struct dst_entry *dst) 353 { 354 struct rt6_info *rt = (struct rt6_info *)dst; 355 struct fib6_info *from; 356 struct inet6_dev *idev; 357 358 ip_dst_metrics_put(dst); 359 rt6_uncached_list_del(rt); 360 361 idev = rt->rt6i_idev; 362 if (idev) { 363 rt->rt6i_idev = NULL; 364 in6_dev_put(idev); 365 } 366 367 from = xchg((__force struct fib6_info **)&rt->from, NULL); 368 fib6_info_release(from); 369 } 370 371 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 372 int how) 373 { 374 struct rt6_info *rt = (struct rt6_info *)dst; 375 struct inet6_dev *idev = rt->rt6i_idev; 376 struct net_device *loopback_dev = 377 dev_net(dev)->loopback_dev; 378 379 if (idev && idev->dev != loopback_dev) { 380 struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev); 381 if (loopback_idev) { 382 rt->rt6i_idev = loopback_idev; 383 in6_dev_put(idev); 384 } 385 } 386 } 387 388 static bool __rt6_check_expired(const struct rt6_info *rt) 389 { 390 if (rt->rt6i_flags & RTF_EXPIRES) 391 return time_after(jiffies, rt->dst.expires); 392 else 393 return false; 394 } 395 396 static bool rt6_check_expired(const struct rt6_info *rt) 397 { 398 struct fib6_info *from; 399 400 from = rcu_dereference(rt->from); 401 402 if (rt->rt6i_flags & RTF_EXPIRES) { 403 if (time_after(jiffies, rt->dst.expires)) 404 return true; 405 } else if (from) { 406 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || 407 fib6_check_expired(from); 408 } 409 return false; 410 } 411 412 void fib6_select_path(const struct net *net, struct fib6_result *res, 413 struct flowi6 *fl6, int oif, bool have_oif_match, 414 const struct sk_buff *skb, int strict) 415 { 416 struct fib6_info *sibling, *next_sibling; 417 struct fib6_info *match = res->f6i; 418 419 if (!match->nh && (!match->fib6_nsiblings || have_oif_match)) 420 goto out; 421 422 if (match->nh && have_oif_match && res->nh) 423 return; 424 425 /* We might have already computed the hash for ICMPv6 errors. In such 426 * case it will always be non-zero. Otherwise now is the time to do it. 427 */ 428 if (!fl6->mp_hash && 429 (!match->nh || nexthop_is_multipath(match->nh))) 430 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 431 432 if (unlikely(match->nh)) { 433 nexthop_path_fib6_result(res, fl6->mp_hash); 434 return; 435 } 436 437 if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound)) 438 goto out; 439 440 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, 441 fib6_siblings) { 442 const struct fib6_nh *nh = sibling->fib6_nh; 443 int nh_upper_bound; 444 445 nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); 446 if (fl6->mp_hash > nh_upper_bound) 447 continue; 448 if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) 449 break; 450 match = sibling; 451 break; 452 } 453 454 out: 455 res->f6i = match; 456 res->nh = match->fib6_nh; 457 } 458 459 /* 460 * Route lookup. rcu_read_lock() should be held. 461 */ 462 463 static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, 464 const struct in6_addr *saddr, int oif, int flags) 465 { 466 const struct net_device *dev; 467 468 if (nh->fib_nh_flags & RTNH_F_DEAD) 469 return false; 470 471 dev = nh->fib_nh_dev; 472 if (oif) { 473 if (dev->ifindex == oif) 474 return true; 475 } else { 476 if (ipv6_chk_addr(net, saddr, dev, 477 flags & RT6_LOOKUP_F_IFACE)) 478 return true; 479 } 480 481 return false; 482 } 483 484 struct fib6_nh_dm_arg { 485 struct net *net; 486 const struct in6_addr *saddr; 487 int oif; 488 int flags; 489 struct fib6_nh *nh; 490 }; 491 492 static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) 493 { 494 struct fib6_nh_dm_arg *arg = _arg; 495 496 arg->nh = nh; 497 return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, 498 arg->flags); 499 } 500 501 /* returns fib6_nh from nexthop or NULL */ 502 static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, 503 struct fib6_result *res, 504 const struct in6_addr *saddr, 505 int oif, int flags) 506 { 507 struct fib6_nh_dm_arg arg = { 508 .net = net, 509 .saddr = saddr, 510 .oif = oif, 511 .flags = flags, 512 }; 513 514 if (nexthop_is_blackhole(nh)) 515 return NULL; 516 517 if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) 518 return arg.nh; 519 520 return NULL; 521 } 522 523 static void rt6_device_match(struct net *net, struct fib6_result *res, 524 const struct in6_addr *saddr, int oif, int flags) 525 { 526 struct fib6_info *f6i = res->f6i; 527 struct fib6_info *spf6i; 528 struct fib6_nh *nh; 529 530 if (!oif && ipv6_addr_any(saddr)) { 531 if (unlikely(f6i->nh)) { 532 nh = nexthop_fib6_nh(f6i->nh); 533 if (nexthop_is_blackhole(f6i->nh)) 534 goto out_blackhole; 535 } else { 536 nh = f6i->fib6_nh; 537 } 538 if (!(nh->fib_nh_flags & RTNH_F_DEAD)) 539 goto out; 540 } 541 542 for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { 543 bool matched = false; 544 545 if (unlikely(spf6i->nh)) { 546 nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, 547 oif, flags); 548 if (nh) 549 matched = true; 550 } else { 551 nh = spf6i->fib6_nh; 552 if (__rt6_device_match(net, nh, saddr, oif, flags)) 553 matched = true; 554 } 555 if (matched) { 556 res->f6i = spf6i; 557 goto out; 558 } 559 } 560 561 if (oif && flags & RT6_LOOKUP_F_IFACE) { 562 res->f6i = net->ipv6.fib6_null_entry; 563 nh = res->f6i->fib6_nh; 564 goto out; 565 } 566 567 if (unlikely(f6i->nh)) { 568 nh = nexthop_fib6_nh(f6i->nh); 569 if (nexthop_is_blackhole(f6i->nh)) 570 goto out_blackhole; 571 } else { 572 nh = f6i->fib6_nh; 573 } 574 575 if (nh->fib_nh_flags & RTNH_F_DEAD) { 576 res->f6i = net->ipv6.fib6_null_entry; 577 nh = res->f6i->fib6_nh; 578 } 579 out: 580 res->nh = nh; 581 res->fib6_type = res->f6i->fib6_type; 582 res->fib6_flags = res->f6i->fib6_flags; 583 return; 584 585 out_blackhole: 586 res->fib6_flags |= RTF_REJECT; 587 res->fib6_type = RTN_BLACKHOLE; 588 res->nh = nh; 589 } 590 591 #ifdef CONFIG_IPV6_ROUTER_PREF 592 struct __rt6_probe_work { 593 struct work_struct work; 594 struct in6_addr target; 595 struct net_device *dev; 596 }; 597 598 static void rt6_probe_deferred(struct work_struct *w) 599 { 600 struct in6_addr mcaddr; 601 struct __rt6_probe_work *work = 602 container_of(w, struct __rt6_probe_work, work); 603 604 addrconf_addr_solict_mult(&work->target, &mcaddr); 605 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 606 dev_put(work->dev); 607 kfree(work); 608 } 609 610 static void rt6_probe(struct fib6_nh *fib6_nh) 611 { 612 struct __rt6_probe_work *work = NULL; 613 const struct in6_addr *nh_gw; 614 unsigned long last_probe; 615 struct neighbour *neigh; 616 struct net_device *dev; 617 struct inet6_dev *idev; 618 619 /* 620 * Okay, this does not seem to be appropriate 621 * for now, however, we need to check if it 622 * is really so; aka Router Reachability Probing. 623 * 624 * Router Reachability Probe MUST be rate-limited 625 * to no more than one per minute. 626 */ 627 if (!fib6_nh->fib_nh_gw_family) 628 return; 629 630 nh_gw = &fib6_nh->fib_nh_gw6; 631 dev = fib6_nh->fib_nh_dev; 632 rcu_read_lock_bh(); 633 last_probe = READ_ONCE(fib6_nh->last_probe); 634 idev = __in6_dev_get(dev); 635 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 636 if (neigh) { 637 if (neigh->nud_state & NUD_VALID) 638 goto out; 639 640 write_lock(&neigh->lock); 641 if (!(neigh->nud_state & NUD_VALID) && 642 time_after(jiffies, 643 neigh->updated + idev->cnf.rtr_probe_interval)) { 644 work = kmalloc(sizeof(*work), GFP_ATOMIC); 645 if (work) 646 __neigh_set_probe_once(neigh); 647 } 648 write_unlock(&neigh->lock); 649 } else if (time_after(jiffies, last_probe + 650 idev->cnf.rtr_probe_interval)) { 651 work = kmalloc(sizeof(*work), GFP_ATOMIC); 652 } 653 654 if (!work || cmpxchg(&fib6_nh->last_probe, 655 last_probe, jiffies) != last_probe) { 656 kfree(work); 657 } else { 658 INIT_WORK(&work->work, rt6_probe_deferred); 659 work->target = *nh_gw; 660 dev_hold(dev); 661 work->dev = dev; 662 schedule_work(&work->work); 663 } 664 665 out: 666 rcu_read_unlock_bh(); 667 } 668 #else 669 static inline void rt6_probe(struct fib6_nh *fib6_nh) 670 { 671 } 672 #endif 673 674 /* 675 * Default Router Selection (RFC 2461 6.3.6) 676 */ 677 static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) 678 { 679 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 680 struct neighbour *neigh; 681 682 rcu_read_lock_bh(); 683 neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, 684 &fib6_nh->fib_nh_gw6); 685 if (neigh) { 686 read_lock(&neigh->lock); 687 if (neigh->nud_state & NUD_VALID) 688 ret = RT6_NUD_SUCCEED; 689 #ifdef CONFIG_IPV6_ROUTER_PREF 690 else if (!(neigh->nud_state & NUD_FAILED)) 691 ret = RT6_NUD_SUCCEED; 692 else 693 ret = RT6_NUD_FAIL_PROBE; 694 #endif 695 read_unlock(&neigh->lock); 696 } else { 697 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 698 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 699 } 700 rcu_read_unlock_bh(); 701 702 return ret; 703 } 704 705 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 706 int strict) 707 { 708 int m = 0; 709 710 if (!oif || nh->fib_nh_dev->ifindex == oif) 711 m = 2; 712 713 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 714 return RT6_NUD_FAIL_HARD; 715 #ifdef CONFIG_IPV6_ROUTER_PREF 716 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; 717 #endif 718 if ((strict & RT6_LOOKUP_F_REACHABLE) && 719 !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { 720 int n = rt6_check_neigh(nh); 721 if (n < 0) 722 return n; 723 } 724 return m; 725 } 726 727 static bool find_match(struct fib6_nh *nh, u32 fib6_flags, 728 int oif, int strict, int *mpri, bool *do_rr) 729 { 730 bool match_do_rr = false; 731 bool rc = false; 732 int m; 733 734 if (nh->fib_nh_flags & RTNH_F_DEAD) 735 goto out; 736 737 if (ip6_ignore_linkdown(nh->fib_nh_dev) && 738 nh->fib_nh_flags & RTNH_F_LINKDOWN && 739 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 740 goto out; 741 742 m = rt6_score_route(nh, fib6_flags, oif, strict); 743 if (m == RT6_NUD_FAIL_DO_RR) { 744 match_do_rr = true; 745 m = 0; /* lowest valid score */ 746 } else if (m == RT6_NUD_FAIL_HARD) { 747 goto out; 748 } 749 750 if (strict & RT6_LOOKUP_F_REACHABLE) 751 rt6_probe(nh); 752 753 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 754 if (m > *mpri) { 755 *do_rr = match_do_rr; 756 *mpri = m; 757 rc = true; 758 } 759 out: 760 return rc; 761 } 762 763 struct fib6_nh_frl_arg { 764 u32 flags; 765 int oif; 766 int strict; 767 int *mpri; 768 bool *do_rr; 769 struct fib6_nh *nh; 770 }; 771 772 static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) 773 { 774 struct fib6_nh_frl_arg *arg = _arg; 775 776 arg->nh = nh; 777 return find_match(nh, arg->flags, arg->oif, arg->strict, 778 arg->mpri, arg->do_rr); 779 } 780 781 static void __find_rr_leaf(struct fib6_info *f6i_start, 782 struct fib6_info *nomatch, u32 metric, 783 struct fib6_result *res, struct fib6_info **cont, 784 int oif, int strict, bool *do_rr, int *mpri) 785 { 786 struct fib6_info *f6i; 787 788 for (f6i = f6i_start; 789 f6i && f6i != nomatch; 790 f6i = rcu_dereference(f6i->fib6_next)) { 791 bool matched = false; 792 struct fib6_nh *nh; 793 794 if (cont && f6i->fib6_metric != metric) { 795 *cont = f6i; 796 return; 797 } 798 799 if (fib6_check_expired(f6i)) 800 continue; 801 802 if (unlikely(f6i->nh)) { 803 struct fib6_nh_frl_arg arg = { 804 .flags = f6i->fib6_flags, 805 .oif = oif, 806 .strict = strict, 807 .mpri = mpri, 808 .do_rr = do_rr 809 }; 810 811 if (nexthop_is_blackhole(f6i->nh)) { 812 res->fib6_flags = RTF_REJECT; 813 res->fib6_type = RTN_BLACKHOLE; 814 res->f6i = f6i; 815 res->nh = nexthop_fib6_nh(f6i->nh); 816 return; 817 } 818 if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, 819 &arg)) { 820 matched = true; 821 nh = arg.nh; 822 } 823 } else { 824 nh = f6i->fib6_nh; 825 if (find_match(nh, f6i->fib6_flags, oif, strict, 826 mpri, do_rr)) 827 matched = true; 828 } 829 if (matched) { 830 res->f6i = f6i; 831 res->nh = nh; 832 res->fib6_flags = f6i->fib6_flags; 833 res->fib6_type = f6i->fib6_type; 834 } 835 } 836 } 837 838 static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, 839 struct fib6_info *rr_head, int oif, int strict, 840 bool *do_rr, struct fib6_result *res) 841 { 842 u32 metric = rr_head->fib6_metric; 843 struct fib6_info *cont = NULL; 844 int mpri = -1; 845 846 __find_rr_leaf(rr_head, NULL, metric, res, &cont, 847 oif, strict, do_rr, &mpri); 848 849 __find_rr_leaf(leaf, rr_head, metric, res, &cont, 850 oif, strict, do_rr, &mpri); 851 852 if (res->f6i || !cont) 853 return; 854 855 __find_rr_leaf(cont, NULL, metric, res, NULL, 856 oif, strict, do_rr, &mpri); 857 } 858 859 static void rt6_select(struct net *net, struct fib6_node *fn, int oif, 860 struct fib6_result *res, int strict) 861 { 862 struct fib6_info *leaf = rcu_dereference(fn->leaf); 863 struct fib6_info *rt0; 864 bool do_rr = false; 865 int key_plen; 866 867 /* make sure this function or its helpers sets f6i */ 868 res->f6i = NULL; 869 870 if (!leaf || leaf == net->ipv6.fib6_null_entry) 871 goto out; 872 873 rt0 = rcu_dereference(fn->rr_ptr); 874 if (!rt0) 875 rt0 = leaf; 876 877 /* Double check to make sure fn is not an intermediate node 878 * and fn->leaf does not points to its child's leaf 879 * (This might happen if all routes under fn are deleted from 880 * the tree and fib6_repair_tree() is called on the node.) 881 */ 882 key_plen = rt0->fib6_dst.plen; 883 #ifdef CONFIG_IPV6_SUBTREES 884 if (rt0->fib6_src.plen) 885 key_plen = rt0->fib6_src.plen; 886 #endif 887 if (fn->fn_bit != key_plen) 888 goto out; 889 890 find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); 891 if (do_rr) { 892 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 893 894 /* no entries matched; do round-robin */ 895 if (!next || next->fib6_metric != rt0->fib6_metric) 896 next = leaf; 897 898 if (next != rt0) { 899 spin_lock_bh(&leaf->fib6_table->tb6_lock); 900 /* make sure next is not being deleted from the tree */ 901 if (next->fib6_node) 902 rcu_assign_pointer(fn->rr_ptr, next); 903 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 904 } 905 } 906 907 out: 908 if (!res->f6i) { 909 res->f6i = net->ipv6.fib6_null_entry; 910 res->nh = res->f6i->fib6_nh; 911 res->fib6_flags = res->f6i->fib6_flags; 912 res->fib6_type = res->f6i->fib6_type; 913 } 914 } 915 916 static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) 917 { 918 return (res->f6i->fib6_flags & RTF_NONEXTHOP) || 919 res->nh->fib_nh_gw_family; 920 } 921 922 #ifdef CONFIG_IPV6_ROUTE_INFO 923 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 924 const struct in6_addr *gwaddr) 925 { 926 struct net *net = dev_net(dev); 927 struct route_info *rinfo = (struct route_info *) opt; 928 struct in6_addr prefix_buf, *prefix; 929 unsigned int pref; 930 unsigned long lifetime; 931 struct fib6_info *rt; 932 933 if (len < sizeof(struct route_info)) { 934 return -EINVAL; 935 } 936 937 /* Sanity check for prefix_len and length */ 938 if (rinfo->length > 3) { 939 return -EINVAL; 940 } else if (rinfo->prefix_len > 128) { 941 return -EINVAL; 942 } else if (rinfo->prefix_len > 64) { 943 if (rinfo->length < 2) { 944 return -EINVAL; 945 } 946 } else if (rinfo->prefix_len > 0) { 947 if (rinfo->length < 1) { 948 return -EINVAL; 949 } 950 } 951 952 pref = rinfo->route_pref; 953 if (pref == ICMPV6_ROUTER_PREF_INVALID) 954 return -EINVAL; 955 956 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 957 958 if (rinfo->length == 3) 959 prefix = (struct in6_addr *)rinfo->prefix; 960 else { 961 /* this function is safe */ 962 ipv6_addr_prefix(&prefix_buf, 963 (struct in6_addr *)rinfo->prefix, 964 rinfo->prefix_len); 965 prefix = &prefix_buf; 966 } 967 968 if (rinfo->prefix_len == 0) 969 rt = rt6_get_dflt_router(net, gwaddr, dev); 970 else 971 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 972 gwaddr, dev); 973 974 if (rt && !lifetime) { 975 ip6_del_rt(net, rt, false); 976 rt = NULL; 977 } 978 979 if (!rt && lifetime) 980 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 981 dev, pref); 982 else if (rt) 983 rt->fib6_flags = RTF_ROUTEINFO | 984 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 985 986 if (rt) { 987 if (!addrconf_finite_timeout(lifetime)) 988 fib6_clean_expires(rt); 989 else 990 fib6_set_expires(rt, jiffies + HZ * lifetime); 991 992 fib6_info_release(rt); 993 } 994 return 0; 995 } 996 #endif 997 998 /* 999 * Misc support functions 1000 */ 1001 1002 /* called with rcu_lock held */ 1003 static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) 1004 { 1005 struct net_device *dev = res->nh->fib_nh_dev; 1006 1007 if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 1008 /* for copies of local routes, dst->dev needs to be the 1009 * device if it is a master device, the master device if 1010 * device is enslaved, and the loopback as the default 1011 */ 1012 if (netif_is_l3_slave(dev) && 1013 !rt6_need_strict(&res->f6i->fib6_dst.addr)) 1014 dev = l3mdev_master_dev_rcu(dev); 1015 else if (!netif_is_l3_master(dev)) 1016 dev = dev_net(dev)->loopback_dev; 1017 /* last case is netif_is_l3_master(dev) is true in which 1018 * case we want dev returned to be dev 1019 */ 1020 } 1021 1022 return dev; 1023 } 1024 1025 static const int fib6_prop[RTN_MAX + 1] = { 1026 [RTN_UNSPEC] = 0, 1027 [RTN_UNICAST] = 0, 1028 [RTN_LOCAL] = 0, 1029 [RTN_BROADCAST] = 0, 1030 [RTN_ANYCAST] = 0, 1031 [RTN_MULTICAST] = 0, 1032 [RTN_BLACKHOLE] = -EINVAL, 1033 [RTN_UNREACHABLE] = -EHOSTUNREACH, 1034 [RTN_PROHIBIT] = -EACCES, 1035 [RTN_THROW] = -EAGAIN, 1036 [RTN_NAT] = -EINVAL, 1037 [RTN_XRESOLVE] = -EINVAL, 1038 }; 1039 1040 static int ip6_rt_type_to_error(u8 fib6_type) 1041 { 1042 return fib6_prop[fib6_type]; 1043 } 1044 1045 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 1046 { 1047 unsigned short flags = 0; 1048 1049 if (rt->dst_nocount) 1050 flags |= DST_NOCOUNT; 1051 if (rt->dst_nopolicy) 1052 flags |= DST_NOPOLICY; 1053 1054 return flags; 1055 } 1056 1057 static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) 1058 { 1059 rt->dst.error = ip6_rt_type_to_error(fib6_type); 1060 1061 switch (fib6_type) { 1062 case RTN_BLACKHOLE: 1063 rt->dst.output = dst_discard_out; 1064 rt->dst.input = dst_discard; 1065 break; 1066 case RTN_PROHIBIT: 1067 rt->dst.output = ip6_pkt_prohibit_out; 1068 rt->dst.input = ip6_pkt_prohibit; 1069 break; 1070 case RTN_THROW: 1071 case RTN_UNREACHABLE: 1072 default: 1073 rt->dst.output = ip6_pkt_discard_out; 1074 rt->dst.input = ip6_pkt_discard; 1075 break; 1076 } 1077 } 1078 1079 static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) 1080 { 1081 struct fib6_info *f6i = res->f6i; 1082 1083 if (res->fib6_flags & RTF_REJECT) { 1084 ip6_rt_init_dst_reject(rt, res->fib6_type); 1085 return; 1086 } 1087 1088 rt->dst.error = 0; 1089 rt->dst.output = ip6_output; 1090 1091 if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { 1092 rt->dst.input = ip6_input; 1093 } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 1094 rt->dst.input = ip6_mc_input; 1095 } else { 1096 rt->dst.input = ip6_forward; 1097 } 1098 1099 if (res->nh->fib_nh_lws) { 1100 rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); 1101 lwtunnel_set_redirect(&rt->dst); 1102 } 1103 1104 rt->dst.lastuse = jiffies; 1105 } 1106 1107 /* Caller must already hold reference to @from */ 1108 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 1109 { 1110 rt->rt6i_flags &= ~RTF_EXPIRES; 1111 rcu_assign_pointer(rt->from, from); 1112 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 1113 } 1114 1115 /* Caller must already hold reference to f6i in result */ 1116 static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) 1117 { 1118 const struct fib6_nh *nh = res->nh; 1119 const struct net_device *dev = nh->fib_nh_dev; 1120 struct fib6_info *f6i = res->f6i; 1121 1122 ip6_rt_init_dst(rt, res); 1123 1124 rt->rt6i_dst = f6i->fib6_dst; 1125 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 1126 rt->rt6i_flags = res->fib6_flags; 1127 if (nh->fib_nh_gw_family) { 1128 rt->rt6i_gateway = nh->fib_nh_gw6; 1129 rt->rt6i_flags |= RTF_GATEWAY; 1130 } 1131 rt6_set_from(rt, f6i); 1132 #ifdef CONFIG_IPV6_SUBTREES 1133 rt->rt6i_src = f6i->fib6_src; 1134 #endif 1135 } 1136 1137 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1138 struct in6_addr *saddr) 1139 { 1140 struct fib6_node *pn, *sn; 1141 while (1) { 1142 if (fn->fn_flags & RTN_TL_ROOT) 1143 return NULL; 1144 pn = rcu_dereference(fn->parent); 1145 sn = FIB6_SUBTREE(pn); 1146 if (sn && sn != fn) 1147 fn = fib6_node_lookup(sn, NULL, saddr); 1148 else 1149 fn = pn; 1150 if (fn->fn_flags & RTN_RTINFO) 1151 return fn; 1152 } 1153 } 1154 1155 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) 1156 { 1157 struct rt6_info *rt = *prt; 1158 1159 if (dst_hold_safe(&rt->dst)) 1160 return true; 1161 if (net) { 1162 rt = net->ipv6.ip6_null_entry; 1163 dst_hold(&rt->dst); 1164 } else { 1165 rt = NULL; 1166 } 1167 *prt = rt; 1168 return false; 1169 } 1170 1171 /* called with rcu_lock held */ 1172 static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) 1173 { 1174 struct net_device *dev = res->nh->fib_nh_dev; 1175 struct fib6_info *f6i = res->f6i; 1176 unsigned short flags; 1177 struct rt6_info *nrt; 1178 1179 if (!fib6_info_hold_safe(f6i)) 1180 goto fallback; 1181 1182 flags = fib6_info_dst_flags(f6i); 1183 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1184 if (!nrt) { 1185 fib6_info_release(f6i); 1186 goto fallback; 1187 } 1188 1189 ip6_rt_copy_init(nrt, res); 1190 return nrt; 1191 1192 fallback: 1193 nrt = dev_net(dev)->ipv6.ip6_null_entry; 1194 dst_hold(&nrt->dst); 1195 return nrt; 1196 } 1197 1198 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net, 1199 struct fib6_table *table, 1200 struct flowi6 *fl6, 1201 const struct sk_buff *skb, 1202 int flags) 1203 { 1204 struct fib6_result res = {}; 1205 struct fib6_node *fn; 1206 struct rt6_info *rt; 1207 1208 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1209 flags &= ~RT6_LOOKUP_F_IFACE; 1210 1211 rcu_read_lock(); 1212 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1213 restart: 1214 res.f6i = rcu_dereference(fn->leaf); 1215 if (!res.f6i) 1216 res.f6i = net->ipv6.fib6_null_entry; 1217 else 1218 rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, 1219 flags); 1220 1221 if (res.f6i == net->ipv6.fib6_null_entry) { 1222 fn = fib6_backtrack(fn, &fl6->saddr); 1223 if (fn) 1224 goto restart; 1225 1226 rt = net->ipv6.ip6_null_entry; 1227 dst_hold(&rt->dst); 1228 goto out; 1229 } else if (res.fib6_flags & RTF_REJECT) { 1230 goto do_create; 1231 } 1232 1233 fib6_select_path(net, &res, fl6, fl6->flowi6_oif, 1234 fl6->flowi6_oif != 0, skb, flags); 1235 1236 /* Search through exception table */ 1237 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 1238 if (rt) { 1239 if (ip6_hold_safe(net, &rt)) 1240 dst_use_noref(&rt->dst, jiffies); 1241 } else { 1242 do_create: 1243 rt = ip6_create_rt_rcu(&res); 1244 } 1245 1246 out: 1247 trace_fib6_table_lookup(net, &res, table, fl6); 1248 1249 rcu_read_unlock(); 1250 1251 return rt; 1252 } 1253 1254 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1255 const struct sk_buff *skb, int flags) 1256 { 1257 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1258 } 1259 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1260 1261 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1262 const struct in6_addr *saddr, int oif, 1263 const struct sk_buff *skb, int strict) 1264 { 1265 struct flowi6 fl6 = { 1266 .flowi6_oif = oif, 1267 .daddr = *daddr, 1268 }; 1269 struct dst_entry *dst; 1270 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1271 1272 if (saddr) { 1273 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1274 flags |= RT6_LOOKUP_F_HAS_SADDR; 1275 } 1276 1277 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1278 if (dst->error == 0) 1279 return (struct rt6_info *) dst; 1280 1281 dst_release(dst); 1282 1283 return NULL; 1284 } 1285 EXPORT_SYMBOL(rt6_lookup); 1286 1287 /* ip6_ins_rt is called with FREE table->tb6_lock. 1288 * It takes new route entry, the addition fails by any reason the 1289 * route is released. 1290 * Caller must hold dst before calling it. 1291 */ 1292 1293 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1294 struct netlink_ext_ack *extack) 1295 { 1296 int err; 1297 struct fib6_table *table; 1298 1299 table = rt->fib6_table; 1300 spin_lock_bh(&table->tb6_lock); 1301 err = fib6_add(&table->tb6_root, rt, info, extack); 1302 spin_unlock_bh(&table->tb6_lock); 1303 1304 return err; 1305 } 1306 1307 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1308 { 1309 struct nl_info info = { .nl_net = net, }; 1310 1311 return __ip6_ins_rt(rt, &info, NULL); 1312 } 1313 1314 static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, 1315 const struct in6_addr *daddr, 1316 const struct in6_addr *saddr) 1317 { 1318 struct fib6_info *f6i = res->f6i; 1319 struct net_device *dev; 1320 struct rt6_info *rt; 1321 1322 /* 1323 * Clone the route. 1324 */ 1325 1326 if (!fib6_info_hold_safe(f6i)) 1327 return NULL; 1328 1329 dev = ip6_rt_get_dev_rcu(res); 1330 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1331 if (!rt) { 1332 fib6_info_release(f6i); 1333 return NULL; 1334 } 1335 1336 ip6_rt_copy_init(rt, res); 1337 rt->rt6i_flags |= RTF_CACHE; 1338 rt->rt6i_dst.addr = *daddr; 1339 rt->rt6i_dst.plen = 128; 1340 1341 if (!rt6_is_gw_or_nonexthop(res)) { 1342 if (f6i->fib6_dst.plen != 128 && 1343 ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) 1344 rt->rt6i_flags |= RTF_ANYCAST; 1345 #ifdef CONFIG_IPV6_SUBTREES 1346 if (rt->rt6i_src.plen && saddr) { 1347 rt->rt6i_src.addr = *saddr; 1348 rt->rt6i_src.plen = 128; 1349 } 1350 #endif 1351 } 1352 1353 return rt; 1354 } 1355 1356 static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) 1357 { 1358 struct fib6_info *f6i = res->f6i; 1359 unsigned short flags = fib6_info_dst_flags(f6i); 1360 struct net_device *dev; 1361 struct rt6_info *pcpu_rt; 1362 1363 if (!fib6_info_hold_safe(f6i)) 1364 return NULL; 1365 1366 rcu_read_lock(); 1367 dev = ip6_rt_get_dev_rcu(res); 1368 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT); 1369 rcu_read_unlock(); 1370 if (!pcpu_rt) { 1371 fib6_info_release(f6i); 1372 return NULL; 1373 } 1374 ip6_rt_copy_init(pcpu_rt, res); 1375 pcpu_rt->rt6i_flags |= RTF_PCPU; 1376 1377 if (f6i->nh) 1378 pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev)); 1379 1380 return pcpu_rt; 1381 } 1382 1383 static bool rt6_is_valid(const struct rt6_info *rt6) 1384 { 1385 return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev)); 1386 } 1387 1388 /* It should be called with rcu_read_lock() acquired */ 1389 static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) 1390 { 1391 struct rt6_info *pcpu_rt; 1392 1393 pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); 1394 1395 if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) { 1396 struct rt6_info *prev, **p; 1397 1398 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1399 prev = xchg(p, NULL); 1400 if (prev) { 1401 dst_dev_put(&prev->dst); 1402 dst_release(&prev->dst); 1403 } 1404 1405 pcpu_rt = NULL; 1406 } 1407 1408 return pcpu_rt; 1409 } 1410 1411 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1412 const struct fib6_result *res) 1413 { 1414 struct rt6_info *pcpu_rt, *prev, **p; 1415 1416 pcpu_rt = ip6_rt_pcpu_alloc(res); 1417 if (!pcpu_rt) 1418 return NULL; 1419 1420 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1421 prev = cmpxchg(p, NULL, pcpu_rt); 1422 BUG_ON(prev); 1423 1424 if (res->f6i->fib6_destroying) { 1425 struct fib6_info *from; 1426 1427 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 1428 fib6_info_release(from); 1429 } 1430 1431 return pcpu_rt; 1432 } 1433 1434 /* exception hash table implementation 1435 */ 1436 static DEFINE_SPINLOCK(rt6_exception_lock); 1437 1438 /* Remove rt6_ex from hash table and free the memory 1439 * Caller must hold rt6_exception_lock 1440 */ 1441 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1442 struct rt6_exception *rt6_ex) 1443 { 1444 struct fib6_info *from; 1445 struct net *net; 1446 1447 if (!bucket || !rt6_ex) 1448 return; 1449 1450 net = dev_net(rt6_ex->rt6i->dst.dev); 1451 net->ipv6.rt6_stats->fib_rt_cache--; 1452 1453 /* purge completely the exception to allow releasing the held resources: 1454 * some [sk] cache may keep the dst around for unlimited time 1455 */ 1456 from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL); 1457 fib6_info_release(from); 1458 dst_dev_put(&rt6_ex->rt6i->dst); 1459 1460 hlist_del_rcu(&rt6_ex->hlist); 1461 dst_release(&rt6_ex->rt6i->dst); 1462 kfree_rcu(rt6_ex, rcu); 1463 WARN_ON_ONCE(!bucket->depth); 1464 bucket->depth--; 1465 } 1466 1467 /* Remove oldest rt6_ex in bucket and free the memory 1468 * Caller must hold rt6_exception_lock 1469 */ 1470 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1471 { 1472 struct rt6_exception *rt6_ex, *oldest = NULL; 1473 1474 if (!bucket) 1475 return; 1476 1477 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1478 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1479 oldest = rt6_ex; 1480 } 1481 rt6_remove_exception(bucket, oldest); 1482 } 1483 1484 static u32 rt6_exception_hash(const struct in6_addr *dst, 1485 const struct in6_addr *src) 1486 { 1487 static u32 seed __read_mostly; 1488 u32 val; 1489 1490 net_get_random_once(&seed, sizeof(seed)); 1491 val = jhash2((const u32 *)dst, sizeof(*dst)/sizeof(u32), seed); 1492 1493 #ifdef CONFIG_IPV6_SUBTREES 1494 if (src) 1495 val = jhash2((const u32 *)src, sizeof(*src)/sizeof(u32), val); 1496 #endif 1497 return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1498 } 1499 1500 /* Helper function to find the cached rt in the hash table 1501 * and update bucket pointer to point to the bucket for this 1502 * (daddr, saddr) pair 1503 * Caller must hold rt6_exception_lock 1504 */ 1505 static struct rt6_exception * 1506 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1507 const struct in6_addr *daddr, 1508 const struct in6_addr *saddr) 1509 { 1510 struct rt6_exception *rt6_ex; 1511 u32 hval; 1512 1513 if (!(*bucket) || !daddr) 1514 return NULL; 1515 1516 hval = rt6_exception_hash(daddr, saddr); 1517 *bucket += hval; 1518 1519 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1520 struct rt6_info *rt6 = rt6_ex->rt6i; 1521 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1522 1523 #ifdef CONFIG_IPV6_SUBTREES 1524 if (matched && saddr) 1525 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1526 #endif 1527 if (matched) 1528 return rt6_ex; 1529 } 1530 return NULL; 1531 } 1532 1533 /* Helper function to find the cached rt in the hash table 1534 * and update bucket pointer to point to the bucket for this 1535 * (daddr, saddr) pair 1536 * Caller must hold rcu_read_lock() 1537 */ 1538 static struct rt6_exception * 1539 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1540 const struct in6_addr *daddr, 1541 const struct in6_addr *saddr) 1542 { 1543 struct rt6_exception *rt6_ex; 1544 u32 hval; 1545 1546 WARN_ON_ONCE(!rcu_read_lock_held()); 1547 1548 if (!(*bucket) || !daddr) 1549 return NULL; 1550 1551 hval = rt6_exception_hash(daddr, saddr); 1552 *bucket += hval; 1553 1554 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1555 struct rt6_info *rt6 = rt6_ex->rt6i; 1556 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1557 1558 #ifdef CONFIG_IPV6_SUBTREES 1559 if (matched && saddr) 1560 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1561 #endif 1562 if (matched) 1563 return rt6_ex; 1564 } 1565 return NULL; 1566 } 1567 1568 static unsigned int fib6_mtu(const struct fib6_result *res) 1569 { 1570 const struct fib6_nh *nh = res->nh; 1571 unsigned int mtu; 1572 1573 if (res->f6i->fib6_pmtu) { 1574 mtu = res->f6i->fib6_pmtu; 1575 } else { 1576 struct net_device *dev = nh->fib_nh_dev; 1577 struct inet6_dev *idev; 1578 1579 rcu_read_lock(); 1580 idev = __in6_dev_get(dev); 1581 mtu = idev->cnf.mtu6; 1582 rcu_read_unlock(); 1583 } 1584 1585 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1586 1587 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 1588 } 1589 1590 #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL 1591 1592 /* used when the flushed bit is not relevant, only access to the bucket 1593 * (ie., all bucket users except rt6_insert_exception); 1594 * 1595 * called under rcu lock; sometimes called with rt6_exception_lock held 1596 */ 1597 static 1598 struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, 1599 spinlock_t *lock) 1600 { 1601 struct rt6_exception_bucket *bucket; 1602 1603 if (lock) 1604 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1605 lockdep_is_held(lock)); 1606 else 1607 bucket = rcu_dereference(nh->rt6i_exception_bucket); 1608 1609 /* remove bucket flushed bit if set */ 1610 if (bucket) { 1611 unsigned long p = (unsigned long)bucket; 1612 1613 p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; 1614 bucket = (struct rt6_exception_bucket *)p; 1615 } 1616 1617 return bucket; 1618 } 1619 1620 static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) 1621 { 1622 unsigned long p = (unsigned long)bucket; 1623 1624 return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); 1625 } 1626 1627 /* called with rt6_exception_lock held */ 1628 static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, 1629 spinlock_t *lock) 1630 { 1631 struct rt6_exception_bucket *bucket; 1632 unsigned long p; 1633 1634 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1635 lockdep_is_held(lock)); 1636 1637 p = (unsigned long)bucket; 1638 p |= FIB6_EXCEPTION_BUCKET_FLUSHED; 1639 bucket = (struct rt6_exception_bucket *)p; 1640 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1641 } 1642 1643 static int rt6_insert_exception(struct rt6_info *nrt, 1644 const struct fib6_result *res) 1645 { 1646 struct net *net = dev_net(nrt->dst.dev); 1647 struct rt6_exception_bucket *bucket; 1648 struct fib6_info *f6i = res->f6i; 1649 struct in6_addr *src_key = NULL; 1650 struct rt6_exception *rt6_ex; 1651 struct fib6_nh *nh = res->nh; 1652 int err = 0; 1653 1654 spin_lock_bh(&rt6_exception_lock); 1655 1656 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1657 lockdep_is_held(&rt6_exception_lock)); 1658 if (!bucket) { 1659 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1660 GFP_ATOMIC); 1661 if (!bucket) { 1662 err = -ENOMEM; 1663 goto out; 1664 } 1665 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1666 } else if (fib6_nh_excptn_bucket_flushed(bucket)) { 1667 err = -EINVAL; 1668 goto out; 1669 } 1670 1671 #ifdef CONFIG_IPV6_SUBTREES 1672 /* fib6_src.plen != 0 indicates f6i is in subtree 1673 * and exception table is indexed by a hash of 1674 * both fib6_dst and fib6_src. 1675 * Otherwise, the exception table is indexed by 1676 * a hash of only fib6_dst. 1677 */ 1678 if (f6i->fib6_src.plen) 1679 src_key = &nrt->rt6i_src.addr; 1680 #endif 1681 /* rt6_mtu_change() might lower mtu on f6i. 1682 * Only insert this exception route if its mtu 1683 * is less than f6i's mtu value. 1684 */ 1685 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { 1686 err = -EINVAL; 1687 goto out; 1688 } 1689 1690 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1691 src_key); 1692 if (rt6_ex) 1693 rt6_remove_exception(bucket, rt6_ex); 1694 1695 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1696 if (!rt6_ex) { 1697 err = -ENOMEM; 1698 goto out; 1699 } 1700 rt6_ex->rt6i = nrt; 1701 rt6_ex->stamp = jiffies; 1702 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1703 bucket->depth++; 1704 net->ipv6.rt6_stats->fib_rt_cache++; 1705 1706 if (bucket->depth > FIB6_MAX_DEPTH) 1707 rt6_exception_remove_oldest(bucket); 1708 1709 out: 1710 spin_unlock_bh(&rt6_exception_lock); 1711 1712 /* Update fn->fn_sernum to invalidate all cached dst */ 1713 if (!err) { 1714 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1715 fib6_update_sernum(net, f6i); 1716 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1717 fib6_force_start_gc(net); 1718 } 1719 1720 return err; 1721 } 1722 1723 static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) 1724 { 1725 struct rt6_exception_bucket *bucket; 1726 struct rt6_exception *rt6_ex; 1727 struct hlist_node *tmp; 1728 int i; 1729 1730 spin_lock_bh(&rt6_exception_lock); 1731 1732 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1733 if (!bucket) 1734 goto out; 1735 1736 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1737 if (!from) 1738 fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); 1739 1740 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1741 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { 1742 if (!from || 1743 rcu_access_pointer(rt6_ex->rt6i->from) == from) 1744 rt6_remove_exception(bucket, rt6_ex); 1745 } 1746 WARN_ON_ONCE(!from && bucket->depth); 1747 bucket++; 1748 } 1749 out: 1750 spin_unlock_bh(&rt6_exception_lock); 1751 } 1752 1753 static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) 1754 { 1755 struct fib6_info *f6i = arg; 1756 1757 fib6_nh_flush_exceptions(nh, f6i); 1758 1759 return 0; 1760 } 1761 1762 void rt6_flush_exceptions(struct fib6_info *f6i) 1763 { 1764 if (f6i->nh) 1765 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, 1766 f6i); 1767 else 1768 fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); 1769 } 1770 1771 /* Find cached rt in the hash table inside passed in rt 1772 * Caller has to hold rcu_read_lock() 1773 */ 1774 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 1775 const struct in6_addr *daddr, 1776 const struct in6_addr *saddr) 1777 { 1778 const struct in6_addr *src_key = NULL; 1779 struct rt6_exception_bucket *bucket; 1780 struct rt6_exception *rt6_ex; 1781 struct rt6_info *ret = NULL; 1782 1783 #ifdef CONFIG_IPV6_SUBTREES 1784 /* fib6i_src.plen != 0 indicates f6i is in subtree 1785 * and exception table is indexed by a hash of 1786 * both fib6_dst and fib6_src. 1787 * However, the src addr used to create the hash 1788 * might not be exactly the passed in saddr which 1789 * is a /128 addr from the flow. 1790 * So we need to use f6i->fib6_src to redo lookup 1791 * if the passed in saddr does not find anything. 1792 * (See the logic in ip6_rt_cache_alloc() on how 1793 * rt->rt6i_src is updated.) 1794 */ 1795 if (res->f6i->fib6_src.plen) 1796 src_key = saddr; 1797 find_ex: 1798 #endif 1799 bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); 1800 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1801 1802 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1803 ret = rt6_ex->rt6i; 1804 1805 #ifdef CONFIG_IPV6_SUBTREES 1806 /* Use fib6_src as src_key and redo lookup */ 1807 if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { 1808 src_key = &res->f6i->fib6_src.addr; 1809 goto find_ex; 1810 } 1811 #endif 1812 1813 return ret; 1814 } 1815 1816 /* Remove the passed in cached rt from the hash table that contains it */ 1817 static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, 1818 const struct rt6_info *rt) 1819 { 1820 const struct in6_addr *src_key = NULL; 1821 struct rt6_exception_bucket *bucket; 1822 struct rt6_exception *rt6_ex; 1823 int err; 1824 1825 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 1826 return -ENOENT; 1827 1828 spin_lock_bh(&rt6_exception_lock); 1829 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1830 1831 #ifdef CONFIG_IPV6_SUBTREES 1832 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1833 * and exception table is indexed by a hash of 1834 * both rt6i_dst and rt6i_src. 1835 * Otherwise, the exception table is indexed by 1836 * a hash of only rt6i_dst. 1837 */ 1838 if (plen) 1839 src_key = &rt->rt6i_src.addr; 1840 #endif 1841 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1842 &rt->rt6i_dst.addr, 1843 src_key); 1844 if (rt6_ex) { 1845 rt6_remove_exception(bucket, rt6_ex); 1846 err = 0; 1847 } else { 1848 err = -ENOENT; 1849 } 1850 1851 spin_unlock_bh(&rt6_exception_lock); 1852 return err; 1853 } 1854 1855 struct fib6_nh_excptn_arg { 1856 struct rt6_info *rt; 1857 int plen; 1858 }; 1859 1860 static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) 1861 { 1862 struct fib6_nh_excptn_arg *arg = _arg; 1863 int err; 1864 1865 err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); 1866 if (err == 0) 1867 return 1; 1868 1869 return 0; 1870 } 1871 1872 static int rt6_remove_exception_rt(struct rt6_info *rt) 1873 { 1874 struct fib6_info *from; 1875 1876 from = rcu_dereference(rt->from); 1877 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1878 return -EINVAL; 1879 1880 if (from->nh) { 1881 struct fib6_nh_excptn_arg arg = { 1882 .rt = rt, 1883 .plen = from->fib6_src.plen 1884 }; 1885 int rc; 1886 1887 /* rc = 1 means an entry was found */ 1888 rc = nexthop_for_each_fib6_nh(from->nh, 1889 rt6_nh_remove_exception_rt, 1890 &arg); 1891 return rc ? 0 : -ENOENT; 1892 } 1893 1894 return fib6_nh_remove_exception(from->fib6_nh, 1895 from->fib6_src.plen, rt); 1896 } 1897 1898 /* Find rt6_ex which contains the passed in rt cache and 1899 * refresh its stamp 1900 */ 1901 static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, 1902 const struct rt6_info *rt) 1903 { 1904 const struct in6_addr *src_key = NULL; 1905 struct rt6_exception_bucket *bucket; 1906 struct rt6_exception *rt6_ex; 1907 1908 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 1909 #ifdef CONFIG_IPV6_SUBTREES 1910 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1911 * and exception table is indexed by a hash of 1912 * both rt6i_dst and rt6i_src. 1913 * Otherwise, the exception table is indexed by 1914 * a hash of only rt6i_dst. 1915 */ 1916 if (plen) 1917 src_key = &rt->rt6i_src.addr; 1918 #endif 1919 rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); 1920 if (rt6_ex) 1921 rt6_ex->stamp = jiffies; 1922 } 1923 1924 struct fib6_nh_match_arg { 1925 const struct net_device *dev; 1926 const struct in6_addr *gw; 1927 struct fib6_nh *match; 1928 }; 1929 1930 /* determine if fib6_nh has given device and gateway */ 1931 static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) 1932 { 1933 struct fib6_nh_match_arg *arg = _arg; 1934 1935 if (arg->dev != nh->fib_nh_dev || 1936 (arg->gw && !nh->fib_nh_gw_family) || 1937 (!arg->gw && nh->fib_nh_gw_family) || 1938 (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) 1939 return 0; 1940 1941 arg->match = nh; 1942 1943 /* found a match, break the loop */ 1944 return 1; 1945 } 1946 1947 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 1948 { 1949 struct fib6_info *from; 1950 struct fib6_nh *fib6_nh; 1951 1952 rcu_read_lock(); 1953 1954 from = rcu_dereference(rt->from); 1955 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1956 goto unlock; 1957 1958 if (from->nh) { 1959 struct fib6_nh_match_arg arg = { 1960 .dev = rt->dst.dev, 1961 .gw = &rt->rt6i_gateway, 1962 }; 1963 1964 nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); 1965 1966 if (!arg.match) 1967 goto unlock; 1968 fib6_nh = arg.match; 1969 } else { 1970 fib6_nh = from->fib6_nh; 1971 } 1972 fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); 1973 unlock: 1974 rcu_read_unlock(); 1975 } 1976 1977 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 1978 struct rt6_info *rt, int mtu) 1979 { 1980 /* If the new MTU is lower than the route PMTU, this new MTU will be the 1981 * lowest MTU in the path: always allow updating the route PMTU to 1982 * reflect PMTU decreases. 1983 * 1984 * If the new MTU is higher, and the route PMTU is equal to the local 1985 * MTU, this means the old MTU is the lowest in the path, so allow 1986 * updating it: if other nodes now have lower MTUs, PMTU discovery will 1987 * handle this. 1988 */ 1989 1990 if (dst_mtu(&rt->dst) >= mtu) 1991 return true; 1992 1993 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 1994 return true; 1995 1996 return false; 1997 } 1998 1999 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 2000 const struct fib6_nh *nh, int mtu) 2001 { 2002 struct rt6_exception_bucket *bucket; 2003 struct rt6_exception *rt6_ex; 2004 int i; 2005 2006 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2007 if (!bucket) 2008 return; 2009 2010 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2011 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 2012 struct rt6_info *entry = rt6_ex->rt6i; 2013 2014 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 2015 * route), the metrics of its rt->from have already 2016 * been updated. 2017 */ 2018 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 2019 rt6_mtu_change_route_allowed(idev, entry, mtu)) 2020 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 2021 } 2022 bucket++; 2023 } 2024 } 2025 2026 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 2027 2028 static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, 2029 const struct in6_addr *gateway) 2030 { 2031 struct rt6_exception_bucket *bucket; 2032 struct rt6_exception *rt6_ex; 2033 struct hlist_node *tmp; 2034 int i; 2035 2036 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2037 return; 2038 2039 spin_lock_bh(&rt6_exception_lock); 2040 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2041 if (bucket) { 2042 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2043 hlist_for_each_entry_safe(rt6_ex, tmp, 2044 &bucket->chain, hlist) { 2045 struct rt6_info *entry = rt6_ex->rt6i; 2046 2047 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 2048 RTF_CACHE_GATEWAY && 2049 ipv6_addr_equal(gateway, 2050 &entry->rt6i_gateway)) { 2051 rt6_remove_exception(bucket, rt6_ex); 2052 } 2053 } 2054 bucket++; 2055 } 2056 } 2057 2058 spin_unlock_bh(&rt6_exception_lock); 2059 } 2060 2061 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 2062 struct rt6_exception *rt6_ex, 2063 struct fib6_gc_args *gc_args, 2064 unsigned long now) 2065 { 2066 struct rt6_info *rt = rt6_ex->rt6i; 2067 2068 /* we are pruning and obsoleting aged-out and non gateway exceptions 2069 * even if others have still references to them, so that on next 2070 * dst_check() such references can be dropped. 2071 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 2072 * expired, independently from their aging, as per RFC 8201 section 4 2073 */ 2074 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 2075 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 2076 RT6_TRACE("aging clone %p\n", rt); 2077 rt6_remove_exception(bucket, rt6_ex); 2078 return; 2079 } 2080 } else if (time_after(jiffies, rt->dst.expires)) { 2081 RT6_TRACE("purging expired route %p\n", rt); 2082 rt6_remove_exception(bucket, rt6_ex); 2083 return; 2084 } 2085 2086 if (rt->rt6i_flags & RTF_GATEWAY) { 2087 struct neighbour *neigh; 2088 2089 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 2090 2091 if (!(neigh && (neigh->flags & NTF_ROUTER))) { 2092 RT6_TRACE("purging route %p via non-router but gateway\n", 2093 rt); 2094 rt6_remove_exception(bucket, rt6_ex); 2095 return; 2096 } 2097 } 2098 2099 gc_args->more++; 2100 } 2101 2102 static void fib6_nh_age_exceptions(const struct fib6_nh *nh, 2103 struct fib6_gc_args *gc_args, 2104 unsigned long now) 2105 { 2106 struct rt6_exception_bucket *bucket; 2107 struct rt6_exception *rt6_ex; 2108 struct hlist_node *tmp; 2109 int i; 2110 2111 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2112 return; 2113 2114 rcu_read_lock_bh(); 2115 spin_lock(&rt6_exception_lock); 2116 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2117 if (bucket) { 2118 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2119 hlist_for_each_entry_safe(rt6_ex, tmp, 2120 &bucket->chain, hlist) { 2121 rt6_age_examine_exception(bucket, rt6_ex, 2122 gc_args, now); 2123 } 2124 bucket++; 2125 } 2126 } 2127 spin_unlock(&rt6_exception_lock); 2128 rcu_read_unlock_bh(); 2129 } 2130 2131 struct fib6_nh_age_excptn_arg { 2132 struct fib6_gc_args *gc_args; 2133 unsigned long now; 2134 }; 2135 2136 static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) 2137 { 2138 struct fib6_nh_age_excptn_arg *arg = _arg; 2139 2140 fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); 2141 return 0; 2142 } 2143 2144 void rt6_age_exceptions(struct fib6_info *f6i, 2145 struct fib6_gc_args *gc_args, 2146 unsigned long now) 2147 { 2148 if (f6i->nh) { 2149 struct fib6_nh_age_excptn_arg arg = { 2150 .gc_args = gc_args, 2151 .now = now 2152 }; 2153 2154 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, 2155 &arg); 2156 } else { 2157 fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); 2158 } 2159 } 2160 2161 /* must be called with rcu lock held */ 2162 int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, 2163 struct flowi6 *fl6, struct fib6_result *res, int strict) 2164 { 2165 struct fib6_node *fn, *saved_fn; 2166 2167 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2168 saved_fn = fn; 2169 2170 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 2171 oif = 0; 2172 2173 redo_rt6_select: 2174 rt6_select(net, fn, oif, res, strict); 2175 if (res->f6i == net->ipv6.fib6_null_entry) { 2176 fn = fib6_backtrack(fn, &fl6->saddr); 2177 if (fn) 2178 goto redo_rt6_select; 2179 else if (strict & RT6_LOOKUP_F_REACHABLE) { 2180 /* also consider unreachable route */ 2181 strict &= ~RT6_LOOKUP_F_REACHABLE; 2182 fn = saved_fn; 2183 goto redo_rt6_select; 2184 } 2185 } 2186 2187 trace_fib6_table_lookup(net, res, table, fl6); 2188 2189 return 0; 2190 } 2191 2192 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 2193 int oif, struct flowi6 *fl6, 2194 const struct sk_buff *skb, int flags) 2195 { 2196 struct fib6_result res = {}; 2197 struct rt6_info *rt = NULL; 2198 int strict = 0; 2199 2200 WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && 2201 !rcu_read_lock_held()); 2202 2203 strict |= flags & RT6_LOOKUP_F_IFACE; 2204 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 2205 if (net->ipv6.devconf_all->forwarding == 0) 2206 strict |= RT6_LOOKUP_F_REACHABLE; 2207 2208 rcu_read_lock(); 2209 2210 fib6_table_lookup(net, table, oif, fl6, &res, strict); 2211 if (res.f6i == net->ipv6.fib6_null_entry) 2212 goto out; 2213 2214 fib6_select_path(net, &res, fl6, oif, false, skb, strict); 2215 2216 /*Search through exception table */ 2217 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 2218 if (rt) { 2219 goto out; 2220 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 2221 !res.nh->fib_nh_gw_family)) { 2222 /* Create a RTF_CACHE clone which will not be 2223 * owned by the fib6 tree. It is for the special case where 2224 * the daddr in the skb during the neighbor look-up is different 2225 * from the fl6->daddr used to look-up route here. 2226 */ 2227 rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); 2228 2229 if (rt) { 2230 /* 1 refcnt is taken during ip6_rt_cache_alloc(). 2231 * As rt6_uncached_list_add() does not consume refcnt, 2232 * this refcnt is always returned to the caller even 2233 * if caller sets RT6_LOOKUP_F_DST_NOREF flag. 2234 */ 2235 rt6_uncached_list_add(rt); 2236 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 2237 rcu_read_unlock(); 2238 2239 return rt; 2240 } 2241 } else { 2242 /* Get a percpu copy */ 2243 local_bh_disable(); 2244 rt = rt6_get_pcpu_route(&res); 2245 2246 if (!rt) 2247 rt = rt6_make_pcpu_route(net, &res); 2248 2249 local_bh_enable(); 2250 } 2251 out: 2252 if (!rt) 2253 rt = net->ipv6.ip6_null_entry; 2254 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 2255 ip6_hold_safe(net, &rt); 2256 rcu_read_unlock(); 2257 2258 return rt; 2259 } 2260 EXPORT_SYMBOL_GPL(ip6_pol_route); 2261 2262 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net, 2263 struct fib6_table *table, 2264 struct flowi6 *fl6, 2265 const struct sk_buff *skb, 2266 int flags) 2267 { 2268 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 2269 } 2270 2271 struct dst_entry *ip6_route_input_lookup(struct net *net, 2272 struct net_device *dev, 2273 struct flowi6 *fl6, 2274 const struct sk_buff *skb, 2275 int flags) 2276 { 2277 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 2278 flags |= RT6_LOOKUP_F_IFACE; 2279 2280 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 2281 } 2282 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 2283 2284 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 2285 struct flow_keys *keys, 2286 struct flow_keys *flkeys) 2287 { 2288 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 2289 const struct ipv6hdr *key_iph = outer_iph; 2290 struct flow_keys *_flkeys = flkeys; 2291 const struct ipv6hdr *inner_iph; 2292 const struct icmp6hdr *icmph; 2293 struct ipv6hdr _inner_iph; 2294 struct icmp6hdr _icmph; 2295 2296 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 2297 goto out; 2298 2299 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 2300 sizeof(_icmph), &_icmph); 2301 if (!icmph) 2302 goto out; 2303 2304 if (!icmpv6_is_err(icmph->icmp6_type)) 2305 goto out; 2306 2307 inner_iph = skb_header_pointer(skb, 2308 skb_transport_offset(skb) + sizeof(*icmph), 2309 sizeof(_inner_iph), &_inner_iph); 2310 if (!inner_iph) 2311 goto out; 2312 2313 key_iph = inner_iph; 2314 _flkeys = NULL; 2315 out: 2316 if (_flkeys) { 2317 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 2318 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 2319 keys->tags.flow_label = _flkeys->tags.flow_label; 2320 keys->basic.ip_proto = _flkeys->basic.ip_proto; 2321 } else { 2322 keys->addrs.v6addrs.src = key_iph->saddr; 2323 keys->addrs.v6addrs.dst = key_iph->daddr; 2324 keys->tags.flow_label = ip6_flowlabel(key_iph); 2325 keys->basic.ip_proto = key_iph->nexthdr; 2326 } 2327 } 2328 2329 /* if skb is set it will be used and fl6 can be NULL */ 2330 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 2331 const struct sk_buff *skb, struct flow_keys *flkeys) 2332 { 2333 struct flow_keys hash_keys; 2334 u32 mhash; 2335 2336 switch (ip6_multipath_hash_policy(net)) { 2337 case 0: 2338 memset(&hash_keys, 0, sizeof(hash_keys)); 2339 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2340 if (skb) { 2341 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2342 } else { 2343 hash_keys.addrs.v6addrs.src = fl6->saddr; 2344 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2345 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2346 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2347 } 2348 break; 2349 case 1: 2350 if (skb) { 2351 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 2352 struct flow_keys keys; 2353 2354 /* short-circuit if we already have L4 hash present */ 2355 if (skb->l4_hash) 2356 return skb_get_hash_raw(skb) >> 1; 2357 2358 memset(&hash_keys, 0, sizeof(hash_keys)); 2359 2360 if (!flkeys) { 2361 skb_flow_dissect_flow_keys(skb, &keys, flag); 2362 flkeys = &keys; 2363 } 2364 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2365 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2366 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2367 hash_keys.ports.src = flkeys->ports.src; 2368 hash_keys.ports.dst = flkeys->ports.dst; 2369 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2370 } else { 2371 memset(&hash_keys, 0, sizeof(hash_keys)); 2372 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2373 hash_keys.addrs.v6addrs.src = fl6->saddr; 2374 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2375 hash_keys.ports.src = fl6->fl6_sport; 2376 hash_keys.ports.dst = fl6->fl6_dport; 2377 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2378 } 2379 break; 2380 case 2: 2381 memset(&hash_keys, 0, sizeof(hash_keys)); 2382 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2383 if (skb) { 2384 struct flow_keys keys; 2385 2386 if (!flkeys) { 2387 skb_flow_dissect_flow_keys(skb, &keys, 0); 2388 flkeys = &keys; 2389 } 2390 2391 /* Inner can be v4 or v6 */ 2392 if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2393 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2394 hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; 2395 hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; 2396 } else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2397 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2398 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2399 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2400 hash_keys.tags.flow_label = flkeys->tags.flow_label; 2401 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2402 } else { 2403 /* Same as case 0 */ 2404 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2405 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2406 } 2407 } else { 2408 /* Same as case 0 */ 2409 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2410 hash_keys.addrs.v6addrs.src = fl6->saddr; 2411 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2412 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2413 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2414 } 2415 break; 2416 } 2417 mhash = flow_hash_from_keys(&hash_keys); 2418 2419 return mhash >> 1; 2420 } 2421 2422 /* Called with rcu held */ 2423 void ip6_route_input(struct sk_buff *skb) 2424 { 2425 const struct ipv6hdr *iph = ipv6_hdr(skb); 2426 struct net *net = dev_net(skb->dev); 2427 int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; 2428 struct ip_tunnel_info *tun_info; 2429 struct flowi6 fl6 = { 2430 .flowi6_iif = skb->dev->ifindex, 2431 .daddr = iph->daddr, 2432 .saddr = iph->saddr, 2433 .flowlabel = ip6_flowinfo(iph), 2434 .flowi6_mark = skb->mark, 2435 .flowi6_proto = iph->nexthdr, 2436 }; 2437 struct flow_keys *flkeys = NULL, _flkeys; 2438 2439 tun_info = skb_tunnel_info(skb); 2440 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2441 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2442 2443 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2444 flkeys = &_flkeys; 2445 2446 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2447 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2448 skb_dst_drop(skb); 2449 skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, 2450 &fl6, skb, flags)); 2451 } 2452 2453 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net, 2454 struct fib6_table *table, 2455 struct flowi6 *fl6, 2456 const struct sk_buff *skb, 2457 int flags) 2458 { 2459 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2460 } 2461 2462 struct dst_entry *ip6_route_output_flags_noref(struct net *net, 2463 const struct sock *sk, 2464 struct flowi6 *fl6, int flags) 2465 { 2466 bool any_src; 2467 2468 if (ipv6_addr_type(&fl6->daddr) & 2469 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2470 struct dst_entry *dst; 2471 2472 /* This function does not take refcnt on the dst */ 2473 dst = l3mdev_link_scope_lookup(net, fl6); 2474 if (dst) 2475 return dst; 2476 } 2477 2478 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2479 2480 flags |= RT6_LOOKUP_F_DST_NOREF; 2481 any_src = ipv6_addr_any(&fl6->saddr); 2482 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2483 (fl6->flowi6_oif && any_src)) 2484 flags |= RT6_LOOKUP_F_IFACE; 2485 2486 if (!any_src) 2487 flags |= RT6_LOOKUP_F_HAS_SADDR; 2488 else if (sk) 2489 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 2490 2491 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2492 } 2493 EXPORT_SYMBOL_GPL(ip6_route_output_flags_noref); 2494 2495 struct dst_entry *ip6_route_output_flags(struct net *net, 2496 const struct sock *sk, 2497 struct flowi6 *fl6, 2498 int flags) 2499 { 2500 struct dst_entry *dst; 2501 struct rt6_info *rt6; 2502 2503 rcu_read_lock(); 2504 dst = ip6_route_output_flags_noref(net, sk, fl6, flags); 2505 rt6 = (struct rt6_info *)dst; 2506 /* For dst cached in uncached_list, refcnt is already taken. */ 2507 if (list_empty(&rt6->rt6i_uncached) && !dst_hold_safe(dst)) { 2508 dst = &net->ipv6.ip6_null_entry->dst; 2509 dst_hold(dst); 2510 } 2511 rcu_read_unlock(); 2512 2513 return dst; 2514 } 2515 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2516 2517 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2518 { 2519 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 2520 struct net_device *loopback_dev = net->loopback_dev; 2521 struct dst_entry *new = NULL; 2522 2523 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, 2524 DST_OBSOLETE_DEAD, 0); 2525 if (rt) { 2526 rt6_info_init(rt); 2527 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2528 2529 new = &rt->dst; 2530 new->__use = 1; 2531 new->input = dst_discard; 2532 new->output = dst_discard_out; 2533 2534 dst_copy_metrics(new, &ort->dst); 2535 2536 rt->rt6i_idev = in6_dev_get(loopback_dev); 2537 rt->rt6i_gateway = ort->rt6i_gateway; 2538 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2539 2540 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2541 #ifdef CONFIG_IPV6_SUBTREES 2542 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2543 #endif 2544 } 2545 2546 dst_release(dst_orig); 2547 return new ? new : ERR_PTR(-ENOMEM); 2548 } 2549 2550 /* 2551 * Destination cache support functions 2552 */ 2553 2554 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2555 { 2556 u32 rt_cookie = 0; 2557 2558 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2559 return false; 2560 2561 if (fib6_check_expired(f6i)) 2562 return false; 2563 2564 return true; 2565 } 2566 2567 static struct dst_entry *rt6_check(struct rt6_info *rt, 2568 struct fib6_info *from, 2569 u32 cookie) 2570 { 2571 u32 rt_cookie = 0; 2572 2573 if (!from || !fib6_get_cookie_safe(from, &rt_cookie) || 2574 rt_cookie != cookie) 2575 return NULL; 2576 2577 if (rt6_check_expired(rt)) 2578 return NULL; 2579 2580 return &rt->dst; 2581 } 2582 2583 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2584 struct fib6_info *from, 2585 u32 cookie) 2586 { 2587 if (!__rt6_check_expired(rt) && 2588 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && 2589 fib6_check(from, cookie)) 2590 return &rt->dst; 2591 else 2592 return NULL; 2593 } 2594 2595 INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, 2596 u32 cookie) 2597 { 2598 struct dst_entry *dst_ret; 2599 struct fib6_info *from; 2600 struct rt6_info *rt; 2601 2602 rt = container_of(dst, struct rt6_info, dst); 2603 2604 if (rt->sernum) 2605 return rt6_is_valid(rt) ? dst : NULL; 2606 2607 rcu_read_lock(); 2608 2609 /* All IPV6 dsts are created with ->obsolete set to the value 2610 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2611 * into this function always. 2612 */ 2613 2614 from = rcu_dereference(rt->from); 2615 2616 if (from && (rt->rt6i_flags & RTF_PCPU || 2617 unlikely(!list_empty(&rt->rt6i_uncached)))) 2618 dst_ret = rt6_dst_from_check(rt, from, cookie); 2619 else 2620 dst_ret = rt6_check(rt, from, cookie); 2621 2622 rcu_read_unlock(); 2623 2624 return dst_ret; 2625 } 2626 EXPORT_INDIRECT_CALLABLE(ip6_dst_check); 2627 2628 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 2629 { 2630 struct rt6_info *rt = (struct rt6_info *) dst; 2631 2632 if (rt) { 2633 if (rt->rt6i_flags & RTF_CACHE) { 2634 rcu_read_lock(); 2635 if (rt6_check_expired(rt)) { 2636 rt6_remove_exception_rt(rt); 2637 dst = NULL; 2638 } 2639 rcu_read_unlock(); 2640 } else { 2641 dst_release(dst); 2642 dst = NULL; 2643 } 2644 } 2645 return dst; 2646 } 2647 2648 static void ip6_link_failure(struct sk_buff *skb) 2649 { 2650 struct rt6_info *rt; 2651 2652 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2653 2654 rt = (struct rt6_info *) skb_dst(skb); 2655 if (rt) { 2656 rcu_read_lock(); 2657 if (rt->rt6i_flags & RTF_CACHE) { 2658 rt6_remove_exception_rt(rt); 2659 } else { 2660 struct fib6_info *from; 2661 struct fib6_node *fn; 2662 2663 from = rcu_dereference(rt->from); 2664 if (from) { 2665 fn = rcu_dereference(from->fib6_node); 2666 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2667 fn->fn_sernum = -1; 2668 } 2669 } 2670 rcu_read_unlock(); 2671 } 2672 } 2673 2674 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2675 { 2676 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2677 struct fib6_info *from; 2678 2679 rcu_read_lock(); 2680 from = rcu_dereference(rt0->from); 2681 if (from) 2682 rt0->dst.expires = from->expires; 2683 rcu_read_unlock(); 2684 } 2685 2686 dst_set_expires(&rt0->dst, timeout); 2687 rt0->rt6i_flags |= RTF_EXPIRES; 2688 } 2689 2690 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2691 { 2692 struct net *net = dev_net(rt->dst.dev); 2693 2694 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2695 rt->rt6i_flags |= RTF_MODIFIED; 2696 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2697 } 2698 2699 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2700 { 2701 return !(rt->rt6i_flags & RTF_CACHE) && 2702 (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); 2703 } 2704 2705 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2706 const struct ipv6hdr *iph, u32 mtu, 2707 bool confirm_neigh) 2708 { 2709 const struct in6_addr *daddr, *saddr; 2710 struct rt6_info *rt6 = (struct rt6_info *)dst; 2711 2712 /* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU) 2713 * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it. 2714 * [see also comment in rt6_mtu_change_route()] 2715 */ 2716 2717 if (iph) { 2718 daddr = &iph->daddr; 2719 saddr = &iph->saddr; 2720 } else if (sk) { 2721 daddr = &sk->sk_v6_daddr; 2722 saddr = &inet6_sk(sk)->saddr; 2723 } else { 2724 daddr = NULL; 2725 saddr = NULL; 2726 } 2727 2728 if (confirm_neigh) 2729 dst_confirm_neigh(dst, daddr); 2730 2731 if (mtu < IPV6_MIN_MTU) 2732 return; 2733 if (mtu >= dst_mtu(dst)) 2734 return; 2735 2736 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2737 rt6_do_update_pmtu(rt6, mtu); 2738 /* update rt6_ex->stamp for cache */ 2739 if (rt6->rt6i_flags & RTF_CACHE) 2740 rt6_update_exception_stamp_rt(rt6); 2741 } else if (daddr) { 2742 struct fib6_result res = {}; 2743 struct rt6_info *nrt6; 2744 2745 rcu_read_lock(); 2746 res.f6i = rcu_dereference(rt6->from); 2747 if (!res.f6i) 2748 goto out_unlock; 2749 2750 res.fib6_flags = res.f6i->fib6_flags; 2751 res.fib6_type = res.f6i->fib6_type; 2752 2753 if (res.f6i->nh) { 2754 struct fib6_nh_match_arg arg = { 2755 .dev = dst->dev, 2756 .gw = &rt6->rt6i_gateway, 2757 }; 2758 2759 nexthop_for_each_fib6_nh(res.f6i->nh, 2760 fib6_nh_find_match, &arg); 2761 2762 /* fib6_info uses a nexthop that does not have fib6_nh 2763 * using the dst->dev + gw. Should be impossible. 2764 */ 2765 if (!arg.match) 2766 goto out_unlock; 2767 2768 res.nh = arg.match; 2769 } else { 2770 res.nh = res.f6i->fib6_nh; 2771 } 2772 2773 nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); 2774 if (nrt6) { 2775 rt6_do_update_pmtu(nrt6, mtu); 2776 if (rt6_insert_exception(nrt6, &res)) 2777 dst_release_immediate(&nrt6->dst); 2778 } 2779 out_unlock: 2780 rcu_read_unlock(); 2781 } 2782 } 2783 2784 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2785 struct sk_buff *skb, u32 mtu, 2786 bool confirm_neigh) 2787 { 2788 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu, 2789 confirm_neigh); 2790 } 2791 2792 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2793 int oif, u32 mark, kuid_t uid) 2794 { 2795 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2796 struct dst_entry *dst; 2797 struct flowi6 fl6 = { 2798 .flowi6_oif = oif, 2799 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 2800 .daddr = iph->daddr, 2801 .saddr = iph->saddr, 2802 .flowlabel = ip6_flowinfo(iph), 2803 .flowi6_uid = uid, 2804 }; 2805 2806 dst = ip6_route_output(net, NULL, &fl6); 2807 if (!dst->error) 2808 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true); 2809 dst_release(dst); 2810 } 2811 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 2812 2813 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 2814 { 2815 int oif = sk->sk_bound_dev_if; 2816 struct dst_entry *dst; 2817 2818 if (!oif && skb->dev) 2819 oif = l3mdev_master_ifindex(skb->dev); 2820 2821 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid); 2822 2823 dst = __sk_dst_get(sk); 2824 if (!dst || !dst->obsolete || 2825 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 2826 return; 2827 2828 bh_lock_sock(sk); 2829 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 2830 ip6_datagram_dst_update(sk, false); 2831 bh_unlock_sock(sk); 2832 } 2833 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 2834 2835 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 2836 const struct flowi6 *fl6) 2837 { 2838 #ifdef CONFIG_IPV6_SUBTREES 2839 struct ipv6_pinfo *np = inet6_sk(sk); 2840 #endif 2841 2842 ip6_dst_store(sk, dst, 2843 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 2844 &sk->sk_v6_daddr : NULL, 2845 #ifdef CONFIG_IPV6_SUBTREES 2846 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 2847 &np->saddr : 2848 #endif 2849 NULL); 2850 } 2851 2852 static bool ip6_redirect_nh_match(const struct fib6_result *res, 2853 struct flowi6 *fl6, 2854 const struct in6_addr *gw, 2855 struct rt6_info **ret) 2856 { 2857 const struct fib6_nh *nh = res->nh; 2858 2859 if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || 2860 fl6->flowi6_oif != nh->fib_nh_dev->ifindex) 2861 return false; 2862 2863 /* rt_cache's gateway might be different from its 'parent' 2864 * in the case of an ip redirect. 2865 * So we keep searching in the exception table if the gateway 2866 * is different. 2867 */ 2868 if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { 2869 struct rt6_info *rt_cache; 2870 2871 rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); 2872 if (rt_cache && 2873 ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { 2874 *ret = rt_cache; 2875 return true; 2876 } 2877 return false; 2878 } 2879 return true; 2880 } 2881 2882 struct fib6_nh_rd_arg { 2883 struct fib6_result *res; 2884 struct flowi6 *fl6; 2885 const struct in6_addr *gw; 2886 struct rt6_info **ret; 2887 }; 2888 2889 static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) 2890 { 2891 struct fib6_nh_rd_arg *arg = _arg; 2892 2893 arg->res->nh = nh; 2894 return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); 2895 } 2896 2897 /* Handle redirects */ 2898 struct ip6rd_flowi { 2899 struct flowi6 fl6; 2900 struct in6_addr gateway; 2901 }; 2902 2903 INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net, 2904 struct fib6_table *table, 2905 struct flowi6 *fl6, 2906 const struct sk_buff *skb, 2907 int flags) 2908 { 2909 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 2910 struct rt6_info *ret = NULL; 2911 struct fib6_result res = {}; 2912 struct fib6_nh_rd_arg arg = { 2913 .res = &res, 2914 .fl6 = fl6, 2915 .gw = &rdfl->gateway, 2916 .ret = &ret 2917 }; 2918 struct fib6_info *rt; 2919 struct fib6_node *fn; 2920 2921 /* l3mdev_update_flow overrides oif if the device is enslaved; in 2922 * this case we must match on the real ingress device, so reset it 2923 */ 2924 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 2925 fl6->flowi6_oif = skb->dev->ifindex; 2926 2927 /* Get the "current" route for this destination and 2928 * check if the redirect has come from appropriate router. 2929 * 2930 * RFC 4861 specifies that redirects should only be 2931 * accepted if they come from the nexthop to the target. 2932 * Due to the way the routes are chosen, this notion 2933 * is a bit fuzzy and one might need to check all possible 2934 * routes. 2935 */ 2936 2937 rcu_read_lock(); 2938 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2939 restart: 2940 for_each_fib6_node_rt_rcu(fn) { 2941 res.f6i = rt; 2942 if (fib6_check_expired(rt)) 2943 continue; 2944 if (rt->fib6_flags & RTF_REJECT) 2945 break; 2946 if (unlikely(rt->nh)) { 2947 if (nexthop_is_blackhole(rt->nh)) 2948 continue; 2949 /* on match, res->nh is filled in and potentially ret */ 2950 if (nexthop_for_each_fib6_nh(rt->nh, 2951 fib6_nh_redirect_match, 2952 &arg)) 2953 goto out; 2954 } else { 2955 res.nh = rt->fib6_nh; 2956 if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, 2957 &ret)) 2958 goto out; 2959 } 2960 } 2961 2962 if (!rt) 2963 rt = net->ipv6.fib6_null_entry; 2964 else if (rt->fib6_flags & RTF_REJECT) { 2965 ret = net->ipv6.ip6_null_entry; 2966 goto out; 2967 } 2968 2969 if (rt == net->ipv6.fib6_null_entry) { 2970 fn = fib6_backtrack(fn, &fl6->saddr); 2971 if (fn) 2972 goto restart; 2973 } 2974 2975 res.f6i = rt; 2976 res.nh = rt->fib6_nh; 2977 out: 2978 if (ret) { 2979 ip6_hold_safe(net, &ret); 2980 } else { 2981 res.fib6_flags = res.f6i->fib6_flags; 2982 res.fib6_type = res.f6i->fib6_type; 2983 ret = ip6_create_rt_rcu(&res); 2984 } 2985 2986 rcu_read_unlock(); 2987 2988 trace_fib6_table_lookup(net, &res, table, fl6); 2989 return ret; 2990 }; 2991 2992 static struct dst_entry *ip6_route_redirect(struct net *net, 2993 const struct flowi6 *fl6, 2994 const struct sk_buff *skb, 2995 const struct in6_addr *gateway) 2996 { 2997 int flags = RT6_LOOKUP_F_HAS_SADDR; 2998 struct ip6rd_flowi rdfl; 2999 3000 rdfl.fl6 = *fl6; 3001 rdfl.gateway = *gateway; 3002 3003 return fib6_rule_lookup(net, &rdfl.fl6, skb, 3004 flags, __ip6_route_redirect); 3005 } 3006 3007 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 3008 kuid_t uid) 3009 { 3010 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 3011 struct dst_entry *dst; 3012 struct flowi6 fl6 = { 3013 .flowi6_iif = LOOPBACK_IFINDEX, 3014 .flowi6_oif = oif, 3015 .flowi6_mark = mark, 3016 .daddr = iph->daddr, 3017 .saddr = iph->saddr, 3018 .flowlabel = ip6_flowinfo(iph), 3019 .flowi6_uid = uid, 3020 }; 3021 3022 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 3023 rt6_do_redirect(dst, NULL, skb); 3024 dst_release(dst); 3025 } 3026 EXPORT_SYMBOL_GPL(ip6_redirect); 3027 3028 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 3029 { 3030 const struct ipv6hdr *iph = ipv6_hdr(skb); 3031 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 3032 struct dst_entry *dst; 3033 struct flowi6 fl6 = { 3034 .flowi6_iif = LOOPBACK_IFINDEX, 3035 .flowi6_oif = oif, 3036 .daddr = msg->dest, 3037 .saddr = iph->daddr, 3038 .flowi6_uid = sock_net_uid(net, NULL), 3039 }; 3040 3041 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 3042 rt6_do_redirect(dst, NULL, skb); 3043 dst_release(dst); 3044 } 3045 3046 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 3047 { 3048 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark, 3049 sk->sk_uid); 3050 } 3051 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 3052 3053 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 3054 { 3055 struct net_device *dev = dst->dev; 3056 unsigned int mtu = dst_mtu(dst); 3057 struct net *net = dev_net(dev); 3058 3059 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 3060 3061 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 3062 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 3063 3064 /* 3065 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 3066 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 3067 * IPV6_MAXPLEN is also valid and means: "any MSS, 3068 * rely only on pmtu discovery" 3069 */ 3070 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 3071 mtu = IPV6_MAXPLEN; 3072 return mtu; 3073 } 3074 3075 INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst) 3076 { 3077 struct inet6_dev *idev; 3078 unsigned int mtu; 3079 3080 mtu = dst_metric_raw(dst, RTAX_MTU); 3081 if (mtu) 3082 goto out; 3083 3084 mtu = IPV6_MIN_MTU; 3085 3086 rcu_read_lock(); 3087 idev = __in6_dev_get(dst->dev); 3088 if (idev) 3089 mtu = idev->cnf.mtu6; 3090 rcu_read_unlock(); 3091 3092 out: 3093 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3094 3095 return mtu - lwtunnel_headroom(dst->lwtstate, mtu); 3096 } 3097 EXPORT_INDIRECT_CALLABLE(ip6_mtu); 3098 3099 /* MTU selection: 3100 * 1. mtu on route is locked - use it 3101 * 2. mtu from nexthop exception 3102 * 3. mtu from egress device 3103 * 3104 * based on ip6_dst_mtu_forward and exception logic of 3105 * rt6_find_cached_rt; called with rcu_read_lock 3106 */ 3107 u32 ip6_mtu_from_fib6(const struct fib6_result *res, 3108 const struct in6_addr *daddr, 3109 const struct in6_addr *saddr) 3110 { 3111 const struct fib6_nh *nh = res->nh; 3112 struct fib6_info *f6i = res->f6i; 3113 struct inet6_dev *idev; 3114 struct rt6_info *rt; 3115 u32 mtu = 0; 3116 3117 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 3118 mtu = f6i->fib6_pmtu; 3119 if (mtu) 3120 goto out; 3121 } 3122 3123 rt = rt6_find_cached_rt(res, daddr, saddr); 3124 if (unlikely(rt)) { 3125 mtu = dst_metric_raw(&rt->dst, RTAX_MTU); 3126 } else { 3127 struct net_device *dev = nh->fib_nh_dev; 3128 3129 mtu = IPV6_MIN_MTU; 3130 idev = __in6_dev_get(dev); 3131 if (idev && idev->cnf.mtu6 > mtu) 3132 mtu = idev->cnf.mtu6; 3133 } 3134 3135 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3136 out: 3137 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 3138 } 3139 3140 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 3141 struct flowi6 *fl6) 3142 { 3143 struct dst_entry *dst; 3144 struct rt6_info *rt; 3145 struct inet6_dev *idev = in6_dev_get(dev); 3146 struct net *net = dev_net(dev); 3147 3148 if (unlikely(!idev)) 3149 return ERR_PTR(-ENODEV); 3150 3151 rt = ip6_dst_alloc(net, dev, 0); 3152 if (unlikely(!rt)) { 3153 in6_dev_put(idev); 3154 dst = ERR_PTR(-ENOMEM); 3155 goto out; 3156 } 3157 3158 rt->dst.input = ip6_input; 3159 rt->dst.output = ip6_output; 3160 rt->rt6i_gateway = fl6->daddr; 3161 rt->rt6i_dst.addr = fl6->daddr; 3162 rt->rt6i_dst.plen = 128; 3163 rt->rt6i_idev = idev; 3164 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 3165 3166 /* Add this dst into uncached_list so that rt6_disable_ip() can 3167 * do proper release of the net_device 3168 */ 3169 rt6_uncached_list_add(rt); 3170 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 3171 3172 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 3173 3174 out: 3175 return dst; 3176 } 3177 3178 static int ip6_dst_gc(struct dst_ops *ops) 3179 { 3180 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 3181 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 3182 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size; 3183 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 3184 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 3185 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 3186 int entries; 3187 3188 entries = dst_entries_get_fast(ops); 3189 if (entries > rt_max_size) 3190 entries = dst_entries_get_slow(ops); 3191 3192 if (time_after(rt_last_gc + rt_min_interval, jiffies) && 3193 entries <= rt_max_size) 3194 goto out; 3195 3196 net->ipv6.ip6_rt_gc_expire++; 3197 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true); 3198 entries = dst_entries_get_slow(ops); 3199 if (entries < ops->gc_thresh) 3200 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1; 3201 out: 3202 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity; 3203 return entries > rt_max_size; 3204 } 3205 3206 static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg, 3207 const struct in6_addr *gw_addr, u32 tbid, 3208 int flags, struct fib6_result *res) 3209 { 3210 struct flowi6 fl6 = { 3211 .flowi6_oif = cfg->fc_ifindex, 3212 .daddr = *gw_addr, 3213 .saddr = cfg->fc_prefsrc, 3214 }; 3215 struct fib6_table *table; 3216 int err; 3217 3218 table = fib6_get_table(net, tbid); 3219 if (!table) 3220 return -EINVAL; 3221 3222 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 3223 flags |= RT6_LOOKUP_F_HAS_SADDR; 3224 3225 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 3226 3227 err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags); 3228 if (!err && res->f6i != net->ipv6.fib6_null_entry) 3229 fib6_select_path(net, res, &fl6, cfg->fc_ifindex, 3230 cfg->fc_ifindex != 0, NULL, flags); 3231 3232 return err; 3233 } 3234 3235 static int ip6_route_check_nh_onlink(struct net *net, 3236 struct fib6_config *cfg, 3237 const struct net_device *dev, 3238 struct netlink_ext_ack *extack) 3239 { 3240 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 3241 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3242 struct fib6_result res = {}; 3243 int err; 3244 3245 err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res); 3246 if (!err && !(res.fib6_flags & RTF_REJECT) && 3247 /* ignore match if it is the default route */ 3248 !ipv6_addr_any(&res.f6i->fib6_dst.addr) && 3249 (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) { 3250 NL_SET_ERR_MSG(extack, 3251 "Nexthop has invalid gateway or device mismatch"); 3252 err = -EINVAL; 3253 } 3254 3255 return err; 3256 } 3257 3258 static int ip6_route_check_nh(struct net *net, 3259 struct fib6_config *cfg, 3260 struct net_device **_dev, 3261 struct inet6_dev **idev) 3262 { 3263 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3264 struct net_device *dev = _dev ? *_dev : NULL; 3265 int flags = RT6_LOOKUP_F_IFACE; 3266 struct fib6_result res = {}; 3267 int err = -EHOSTUNREACH; 3268 3269 if (cfg->fc_table) { 3270 err = ip6_nh_lookup_table(net, cfg, gw_addr, 3271 cfg->fc_table, flags, &res); 3272 /* gw_addr can not require a gateway or resolve to a reject 3273 * route. If a device is given, it must match the result. 3274 */ 3275 if (err || res.fib6_flags & RTF_REJECT || 3276 res.nh->fib_nh_gw_family || 3277 (dev && dev != res.nh->fib_nh_dev)) 3278 err = -EHOSTUNREACH; 3279 } 3280 3281 if (err < 0) { 3282 struct flowi6 fl6 = { 3283 .flowi6_oif = cfg->fc_ifindex, 3284 .daddr = *gw_addr, 3285 }; 3286 3287 err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags); 3288 if (err || res.fib6_flags & RTF_REJECT || 3289 res.nh->fib_nh_gw_family) 3290 err = -EHOSTUNREACH; 3291 3292 if (err) 3293 return err; 3294 3295 fib6_select_path(net, &res, &fl6, cfg->fc_ifindex, 3296 cfg->fc_ifindex != 0, NULL, flags); 3297 } 3298 3299 err = 0; 3300 if (dev) { 3301 if (dev != res.nh->fib_nh_dev) 3302 err = -EHOSTUNREACH; 3303 } else { 3304 *_dev = dev = res.nh->fib_nh_dev; 3305 dev_hold(dev); 3306 *idev = in6_dev_get(dev); 3307 } 3308 3309 return err; 3310 } 3311 3312 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 3313 struct net_device **_dev, struct inet6_dev **idev, 3314 struct netlink_ext_ack *extack) 3315 { 3316 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3317 int gwa_type = ipv6_addr_type(gw_addr); 3318 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 3319 const struct net_device *dev = *_dev; 3320 bool need_addr_check = !dev; 3321 int err = -EINVAL; 3322 3323 /* if gw_addr is local we will fail to detect this in case 3324 * address is still TENTATIVE (DAD in progress). rt6_lookup() 3325 * will return already-added prefix route via interface that 3326 * prefix route was assigned to, which might be non-loopback. 3327 */ 3328 if (dev && 3329 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3330 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3331 goto out; 3332 } 3333 3334 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 3335 /* IPv6 strictly inhibits using not link-local 3336 * addresses as nexthop address. 3337 * Otherwise, router will not able to send redirects. 3338 * It is very good, but in some (rare!) circumstances 3339 * (SIT, PtP, NBMA NOARP links) it is handy to allow 3340 * some exceptions. --ANK 3341 * We allow IPv4-mapped nexthops to support RFC4798-type 3342 * addressing 3343 */ 3344 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 3345 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 3346 goto out; 3347 } 3348 3349 rcu_read_lock(); 3350 3351 if (cfg->fc_flags & RTNH_F_ONLINK) 3352 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 3353 else 3354 err = ip6_route_check_nh(net, cfg, _dev, idev); 3355 3356 rcu_read_unlock(); 3357 3358 if (err) 3359 goto out; 3360 } 3361 3362 /* reload in case device was changed */ 3363 dev = *_dev; 3364 3365 err = -EINVAL; 3366 if (!dev) { 3367 NL_SET_ERR_MSG(extack, "Egress device not specified"); 3368 goto out; 3369 } else if (dev->flags & IFF_LOOPBACK) { 3370 NL_SET_ERR_MSG(extack, 3371 "Egress device can not be loopback device for this route"); 3372 goto out; 3373 } 3374 3375 /* if we did not check gw_addr above, do so now that the 3376 * egress device has been resolved. 3377 */ 3378 if (need_addr_check && 3379 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3380 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3381 goto out; 3382 } 3383 3384 err = 0; 3385 out: 3386 return err; 3387 } 3388 3389 static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) 3390 { 3391 if ((flags & RTF_REJECT) || 3392 (dev && (dev->flags & IFF_LOOPBACK) && 3393 !(addr_type & IPV6_ADDR_LOOPBACK) && 3394 !(flags & (RTF_ANYCAST | RTF_LOCAL)))) 3395 return true; 3396 3397 return false; 3398 } 3399 3400 int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, 3401 struct fib6_config *cfg, gfp_t gfp_flags, 3402 struct netlink_ext_ack *extack) 3403 { 3404 struct net_device *dev = NULL; 3405 struct inet6_dev *idev = NULL; 3406 int addr_type; 3407 int err; 3408 3409 fib6_nh->fib_nh_family = AF_INET6; 3410 #ifdef CONFIG_IPV6_ROUTER_PREF 3411 fib6_nh->last_probe = jiffies; 3412 #endif 3413 if (cfg->fc_is_fdb) { 3414 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3415 fib6_nh->fib_nh_gw_family = AF_INET6; 3416 return 0; 3417 } 3418 3419 err = -ENODEV; 3420 if (cfg->fc_ifindex) { 3421 dev = dev_get_by_index(net, cfg->fc_ifindex); 3422 if (!dev) 3423 goto out; 3424 idev = in6_dev_get(dev); 3425 if (!idev) 3426 goto out; 3427 } 3428 3429 if (cfg->fc_flags & RTNH_F_ONLINK) { 3430 if (!dev) { 3431 NL_SET_ERR_MSG(extack, 3432 "Nexthop device required for onlink"); 3433 goto out; 3434 } 3435 3436 if (!(dev->flags & IFF_UP)) { 3437 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3438 err = -ENETDOWN; 3439 goto out; 3440 } 3441 3442 fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; 3443 } 3444 3445 fib6_nh->fib_nh_weight = 1; 3446 3447 /* We cannot add true routes via loopback here, 3448 * they would result in kernel looping; promote them to reject routes 3449 */ 3450 addr_type = ipv6_addr_type(&cfg->fc_dst); 3451 if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { 3452 /* hold loopback dev/idev if we haven't done so. */ 3453 if (dev != net->loopback_dev) { 3454 if (dev) { 3455 dev_put(dev); 3456 in6_dev_put(idev); 3457 } 3458 dev = net->loopback_dev; 3459 dev_hold(dev); 3460 idev = in6_dev_get(dev); 3461 if (!idev) { 3462 err = -ENODEV; 3463 goto out; 3464 } 3465 } 3466 goto pcpu_alloc; 3467 } 3468 3469 if (cfg->fc_flags & RTF_GATEWAY) { 3470 err = ip6_validate_gw(net, cfg, &dev, &idev, extack); 3471 if (err) 3472 goto out; 3473 3474 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3475 fib6_nh->fib_nh_gw_family = AF_INET6; 3476 } 3477 3478 err = -ENODEV; 3479 if (!dev) 3480 goto out; 3481 3482 if (idev->cnf.disable_ipv6) { 3483 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3484 err = -EACCES; 3485 goto out; 3486 } 3487 3488 if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { 3489 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3490 err = -ENETDOWN; 3491 goto out; 3492 } 3493 3494 if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3495 !netif_carrier_ok(dev)) 3496 fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 3497 3498 err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap, 3499 cfg->fc_encap_type, cfg, gfp_flags, extack); 3500 if (err) 3501 goto out; 3502 3503 pcpu_alloc: 3504 fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); 3505 if (!fib6_nh->rt6i_pcpu) { 3506 err = -ENOMEM; 3507 goto out; 3508 } 3509 3510 fib6_nh->fib_nh_dev = dev; 3511 fib6_nh->fib_nh_oif = dev->ifindex; 3512 err = 0; 3513 out: 3514 if (idev) 3515 in6_dev_put(idev); 3516 3517 if (err) { 3518 lwtstate_put(fib6_nh->fib_nh_lws); 3519 fib6_nh->fib_nh_lws = NULL; 3520 if (dev) 3521 dev_put(dev); 3522 } 3523 3524 return err; 3525 } 3526 3527 void fib6_nh_release(struct fib6_nh *fib6_nh) 3528 { 3529 struct rt6_exception_bucket *bucket; 3530 3531 rcu_read_lock(); 3532 3533 fib6_nh_flush_exceptions(fib6_nh, NULL); 3534 bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); 3535 if (bucket) { 3536 rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); 3537 kfree(bucket); 3538 } 3539 3540 rcu_read_unlock(); 3541 3542 if (fib6_nh->rt6i_pcpu) { 3543 int cpu; 3544 3545 for_each_possible_cpu(cpu) { 3546 struct rt6_info **ppcpu_rt; 3547 struct rt6_info *pcpu_rt; 3548 3549 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 3550 pcpu_rt = *ppcpu_rt; 3551 if (pcpu_rt) { 3552 dst_dev_put(&pcpu_rt->dst); 3553 dst_release(&pcpu_rt->dst); 3554 *ppcpu_rt = NULL; 3555 } 3556 } 3557 3558 free_percpu(fib6_nh->rt6i_pcpu); 3559 } 3560 3561 fib_nh_common_release(&fib6_nh->nh_common); 3562 } 3563 3564 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 3565 gfp_t gfp_flags, 3566 struct netlink_ext_ack *extack) 3567 { 3568 struct net *net = cfg->fc_nlinfo.nl_net; 3569 struct fib6_info *rt = NULL; 3570 struct nexthop *nh = NULL; 3571 struct fib6_table *table; 3572 struct fib6_nh *fib6_nh; 3573 int err = -EINVAL; 3574 int addr_type; 3575 3576 /* RTF_PCPU is an internal flag; can not be set by userspace */ 3577 if (cfg->fc_flags & RTF_PCPU) { 3578 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 3579 goto out; 3580 } 3581 3582 /* RTF_CACHE is an internal flag; can not be set by userspace */ 3583 if (cfg->fc_flags & RTF_CACHE) { 3584 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 3585 goto out; 3586 } 3587 3588 if (cfg->fc_type > RTN_MAX) { 3589 NL_SET_ERR_MSG(extack, "Invalid route type"); 3590 goto out; 3591 } 3592 3593 if (cfg->fc_dst_len > 128) { 3594 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 3595 goto out; 3596 } 3597 if (cfg->fc_src_len > 128) { 3598 NL_SET_ERR_MSG(extack, "Invalid source address length"); 3599 goto out; 3600 } 3601 #ifndef CONFIG_IPV6_SUBTREES 3602 if (cfg->fc_src_len) { 3603 NL_SET_ERR_MSG(extack, 3604 "Specifying source address requires IPV6_SUBTREES to be enabled"); 3605 goto out; 3606 } 3607 #endif 3608 if (cfg->fc_nh_id) { 3609 nh = nexthop_find_by_id(net, cfg->fc_nh_id); 3610 if (!nh) { 3611 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 3612 goto out; 3613 } 3614 err = fib6_check_nexthop(nh, cfg, extack); 3615 if (err) 3616 goto out; 3617 } 3618 3619 err = -ENOBUFS; 3620 if (cfg->fc_nlinfo.nlh && 3621 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 3622 table = fib6_get_table(net, cfg->fc_table); 3623 if (!table) { 3624 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 3625 table = fib6_new_table(net, cfg->fc_table); 3626 } 3627 } else { 3628 table = fib6_new_table(net, cfg->fc_table); 3629 } 3630 3631 if (!table) 3632 goto out; 3633 3634 err = -ENOMEM; 3635 rt = fib6_info_alloc(gfp_flags, !nh); 3636 if (!rt) 3637 goto out; 3638 3639 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len, 3640 extack); 3641 if (IS_ERR(rt->fib6_metrics)) { 3642 err = PTR_ERR(rt->fib6_metrics); 3643 /* Do not leave garbage there. */ 3644 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; 3645 goto out; 3646 } 3647 3648 if (cfg->fc_flags & RTF_ADDRCONF) 3649 rt->dst_nocount = true; 3650 3651 if (cfg->fc_flags & RTF_EXPIRES) 3652 fib6_set_expires(rt, jiffies + 3653 clock_t_to_jiffies(cfg->fc_expires)); 3654 else 3655 fib6_clean_expires(rt); 3656 3657 if (cfg->fc_protocol == RTPROT_UNSPEC) 3658 cfg->fc_protocol = RTPROT_BOOT; 3659 rt->fib6_protocol = cfg->fc_protocol; 3660 3661 rt->fib6_table = table; 3662 rt->fib6_metric = cfg->fc_metric; 3663 rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; 3664 rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; 3665 3666 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3667 rt->fib6_dst.plen = cfg->fc_dst_len; 3668 3669 #ifdef CONFIG_IPV6_SUBTREES 3670 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3671 rt->fib6_src.plen = cfg->fc_src_len; 3672 #endif 3673 if (nh) { 3674 if (rt->fib6_src.plen) { 3675 NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); 3676 goto out; 3677 } 3678 if (!nexthop_get(nh)) { 3679 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 3680 goto out; 3681 } 3682 rt->nh = nh; 3683 fib6_nh = nexthop_fib6_nh(rt->nh); 3684 } else { 3685 err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); 3686 if (err) 3687 goto out; 3688 3689 fib6_nh = rt->fib6_nh; 3690 3691 /* We cannot add true routes via loopback here, they would 3692 * result in kernel looping; promote them to reject routes 3693 */ 3694 addr_type = ipv6_addr_type(&cfg->fc_dst); 3695 if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, 3696 addr_type)) 3697 rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; 3698 } 3699 3700 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3701 struct net_device *dev = fib6_nh->fib_nh_dev; 3702 3703 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3704 NL_SET_ERR_MSG(extack, "Invalid source address"); 3705 err = -EINVAL; 3706 goto out; 3707 } 3708 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3709 rt->fib6_prefsrc.plen = 128; 3710 } else 3711 rt->fib6_prefsrc.plen = 0; 3712 3713 return rt; 3714 out: 3715 fib6_info_release(rt); 3716 return ERR_PTR(err); 3717 } 3718 3719 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3720 struct netlink_ext_ack *extack) 3721 { 3722 struct fib6_info *rt; 3723 int err; 3724 3725 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3726 if (IS_ERR(rt)) 3727 return PTR_ERR(rt); 3728 3729 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3730 fib6_info_release(rt); 3731 3732 return err; 3733 } 3734 3735 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3736 { 3737 struct net *net = info->nl_net; 3738 struct fib6_table *table; 3739 int err; 3740 3741 if (rt == net->ipv6.fib6_null_entry) { 3742 err = -ENOENT; 3743 goto out; 3744 } 3745 3746 table = rt->fib6_table; 3747 spin_lock_bh(&table->tb6_lock); 3748 err = fib6_del(rt, info); 3749 spin_unlock_bh(&table->tb6_lock); 3750 3751 out: 3752 fib6_info_release(rt); 3753 return err; 3754 } 3755 3756 int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) 3757 { 3758 struct nl_info info = { 3759 .nl_net = net, 3760 .skip_notify = skip_notify 3761 }; 3762 3763 return __ip6_del_rt(rt, &info); 3764 } 3765 3766 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3767 { 3768 struct nl_info *info = &cfg->fc_nlinfo; 3769 struct net *net = info->nl_net; 3770 struct sk_buff *skb = NULL; 3771 struct fib6_table *table; 3772 int err = -ENOENT; 3773 3774 if (rt == net->ipv6.fib6_null_entry) 3775 goto out_put; 3776 table = rt->fib6_table; 3777 spin_lock_bh(&table->tb6_lock); 3778 3779 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3780 struct fib6_info *sibling, *next_sibling; 3781 struct fib6_node *fn; 3782 3783 /* prefer to send a single notification with all hops */ 3784 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 3785 if (skb) { 3786 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 3787 3788 if (rt6_fill_node(net, skb, rt, NULL, 3789 NULL, NULL, 0, RTM_DELROUTE, 3790 info->portid, seq, 0) < 0) { 3791 kfree_skb(skb); 3792 skb = NULL; 3793 } else 3794 info->skip_notify = 1; 3795 } 3796 3797 /* 'rt' points to the first sibling route. If it is not the 3798 * leaf, then we do not need to send a notification. Otherwise, 3799 * we need to check if the last sibling has a next route or not 3800 * and emit a replace or delete notification, respectively. 3801 */ 3802 info->skip_notify_kernel = 1; 3803 fn = rcu_dereference_protected(rt->fib6_node, 3804 lockdep_is_held(&table->tb6_lock)); 3805 if (rcu_access_pointer(fn->leaf) == rt) { 3806 struct fib6_info *last_sibling, *replace_rt; 3807 3808 last_sibling = list_last_entry(&rt->fib6_siblings, 3809 struct fib6_info, 3810 fib6_siblings); 3811 replace_rt = rcu_dereference_protected( 3812 last_sibling->fib6_next, 3813 lockdep_is_held(&table->tb6_lock)); 3814 if (replace_rt) 3815 call_fib6_entry_notifiers_replace(net, 3816 replace_rt); 3817 else 3818 call_fib6_multipath_entry_notifiers(net, 3819 FIB_EVENT_ENTRY_DEL, 3820 rt, rt->fib6_nsiblings, 3821 NULL); 3822 } 3823 list_for_each_entry_safe(sibling, next_sibling, 3824 &rt->fib6_siblings, 3825 fib6_siblings) { 3826 err = fib6_del(sibling, info); 3827 if (err) 3828 goto out_unlock; 3829 } 3830 } 3831 3832 err = fib6_del(rt, info); 3833 out_unlock: 3834 spin_unlock_bh(&table->tb6_lock); 3835 out_put: 3836 fib6_info_release(rt); 3837 3838 if (skb) { 3839 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 3840 info->nlh, gfp_any()); 3841 } 3842 return err; 3843 } 3844 3845 static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 3846 { 3847 int rc = -ESRCH; 3848 3849 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 3850 goto out; 3851 3852 if (cfg->fc_flags & RTF_GATEWAY && 3853 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 3854 goto out; 3855 3856 rc = rt6_remove_exception_rt(rt); 3857 out: 3858 return rc; 3859 } 3860 3861 static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, 3862 struct fib6_nh *nh) 3863 { 3864 struct fib6_result res = { 3865 .f6i = rt, 3866 .nh = nh, 3867 }; 3868 struct rt6_info *rt_cache; 3869 3870 rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); 3871 if (rt_cache) 3872 return __ip6_del_cached_rt(rt_cache, cfg); 3873 3874 return 0; 3875 } 3876 3877 struct fib6_nh_del_cached_rt_arg { 3878 struct fib6_config *cfg; 3879 struct fib6_info *f6i; 3880 }; 3881 3882 static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) 3883 { 3884 struct fib6_nh_del_cached_rt_arg *arg = _arg; 3885 int rc; 3886 3887 rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); 3888 return rc != -ESRCH ? rc : 0; 3889 } 3890 3891 static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) 3892 { 3893 struct fib6_nh_del_cached_rt_arg arg = { 3894 .cfg = cfg, 3895 .f6i = f6i 3896 }; 3897 3898 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); 3899 } 3900 3901 static int ip6_route_del(struct fib6_config *cfg, 3902 struct netlink_ext_ack *extack) 3903 { 3904 struct fib6_table *table; 3905 struct fib6_info *rt; 3906 struct fib6_node *fn; 3907 int err = -ESRCH; 3908 3909 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 3910 if (!table) { 3911 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 3912 return err; 3913 } 3914 3915 rcu_read_lock(); 3916 3917 fn = fib6_locate(&table->tb6_root, 3918 &cfg->fc_dst, cfg->fc_dst_len, 3919 &cfg->fc_src, cfg->fc_src_len, 3920 !(cfg->fc_flags & RTF_CACHE)); 3921 3922 if (fn) { 3923 for_each_fib6_node_rt_rcu(fn) { 3924 struct fib6_nh *nh; 3925 3926 if (rt->nh && cfg->fc_nh_id && 3927 rt->nh->id != cfg->fc_nh_id) 3928 continue; 3929 3930 if (cfg->fc_flags & RTF_CACHE) { 3931 int rc = 0; 3932 3933 if (rt->nh) { 3934 rc = ip6_del_cached_rt_nh(cfg, rt); 3935 } else if (cfg->fc_nh_id) { 3936 continue; 3937 } else { 3938 nh = rt->fib6_nh; 3939 rc = ip6_del_cached_rt(cfg, rt, nh); 3940 } 3941 if (rc != -ESRCH) { 3942 rcu_read_unlock(); 3943 return rc; 3944 } 3945 continue; 3946 } 3947 3948 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 3949 continue; 3950 if (cfg->fc_protocol && 3951 cfg->fc_protocol != rt->fib6_protocol) 3952 continue; 3953 3954 if (rt->nh) { 3955 if (!fib6_info_hold_safe(rt)) 3956 continue; 3957 rcu_read_unlock(); 3958 3959 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3960 } 3961 if (cfg->fc_nh_id) 3962 continue; 3963 3964 nh = rt->fib6_nh; 3965 if (cfg->fc_ifindex && 3966 (!nh->fib_nh_dev || 3967 nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) 3968 continue; 3969 if (cfg->fc_flags & RTF_GATEWAY && 3970 !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) 3971 continue; 3972 if (!fib6_info_hold_safe(rt)) 3973 continue; 3974 rcu_read_unlock(); 3975 3976 /* if gateway was specified only delete the one hop */ 3977 if (cfg->fc_flags & RTF_GATEWAY) 3978 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3979 3980 return __ip6_del_rt_siblings(rt, cfg); 3981 } 3982 } 3983 rcu_read_unlock(); 3984 3985 return err; 3986 } 3987 3988 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 3989 { 3990 struct netevent_redirect netevent; 3991 struct rt6_info *rt, *nrt = NULL; 3992 struct fib6_result res = {}; 3993 struct ndisc_options ndopts; 3994 struct inet6_dev *in6_dev; 3995 struct neighbour *neigh; 3996 struct rd_msg *msg; 3997 int optlen, on_link; 3998 u8 *lladdr; 3999 4000 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 4001 optlen -= sizeof(*msg); 4002 4003 if (optlen < 0) { 4004 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 4005 return; 4006 } 4007 4008 msg = (struct rd_msg *)icmp6_hdr(skb); 4009 4010 if (ipv6_addr_is_multicast(&msg->dest)) { 4011 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 4012 return; 4013 } 4014 4015 on_link = 0; 4016 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 4017 on_link = 1; 4018 } else if (ipv6_addr_type(&msg->target) != 4019 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 4020 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 4021 return; 4022 } 4023 4024 in6_dev = __in6_dev_get(skb->dev); 4025 if (!in6_dev) 4026 return; 4027 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) 4028 return; 4029 4030 /* RFC2461 8.1: 4031 * The IP source address of the Redirect MUST be the same as the current 4032 * first-hop router for the specified ICMP Destination Address. 4033 */ 4034 4035 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 4036 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 4037 return; 4038 } 4039 4040 lladdr = NULL; 4041 if (ndopts.nd_opts_tgt_lladdr) { 4042 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 4043 skb->dev); 4044 if (!lladdr) { 4045 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 4046 return; 4047 } 4048 } 4049 4050 rt = (struct rt6_info *) dst; 4051 if (rt->rt6i_flags & RTF_REJECT) { 4052 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 4053 return; 4054 } 4055 4056 /* Redirect received -> path was valid. 4057 * Look, redirects are sent only in response to data packets, 4058 * so that this nexthop apparently is reachable. --ANK 4059 */ 4060 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 4061 4062 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 4063 if (!neigh) 4064 return; 4065 4066 /* 4067 * We have finally decided to accept it. 4068 */ 4069 4070 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 4071 NEIGH_UPDATE_F_WEAK_OVERRIDE| 4072 NEIGH_UPDATE_F_OVERRIDE| 4073 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 4074 NEIGH_UPDATE_F_ISROUTER)), 4075 NDISC_REDIRECT, &ndopts); 4076 4077 rcu_read_lock(); 4078 res.f6i = rcu_dereference(rt->from); 4079 if (!res.f6i) 4080 goto out; 4081 4082 if (res.f6i->nh) { 4083 struct fib6_nh_match_arg arg = { 4084 .dev = dst->dev, 4085 .gw = &rt->rt6i_gateway, 4086 }; 4087 4088 nexthop_for_each_fib6_nh(res.f6i->nh, 4089 fib6_nh_find_match, &arg); 4090 4091 /* fib6_info uses a nexthop that does not have fib6_nh 4092 * using the dst->dev. Should be impossible 4093 */ 4094 if (!arg.match) 4095 goto out; 4096 res.nh = arg.match; 4097 } else { 4098 res.nh = res.f6i->fib6_nh; 4099 } 4100 4101 res.fib6_flags = res.f6i->fib6_flags; 4102 res.fib6_type = res.f6i->fib6_type; 4103 nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); 4104 if (!nrt) 4105 goto out; 4106 4107 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 4108 if (on_link) 4109 nrt->rt6i_flags &= ~RTF_GATEWAY; 4110 4111 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 4112 4113 /* rt6_insert_exception() will take care of duplicated exceptions */ 4114 if (rt6_insert_exception(nrt, &res)) { 4115 dst_release_immediate(&nrt->dst); 4116 goto out; 4117 } 4118 4119 netevent.old = &rt->dst; 4120 netevent.new = &nrt->dst; 4121 netevent.daddr = &msg->dest; 4122 netevent.neigh = neigh; 4123 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 4124 4125 out: 4126 rcu_read_unlock(); 4127 neigh_release(neigh); 4128 } 4129 4130 #ifdef CONFIG_IPV6_ROUTE_INFO 4131 static struct fib6_info *rt6_get_route_info(struct net *net, 4132 const struct in6_addr *prefix, int prefixlen, 4133 const struct in6_addr *gwaddr, 4134 struct net_device *dev) 4135 { 4136 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4137 int ifindex = dev->ifindex; 4138 struct fib6_node *fn; 4139 struct fib6_info *rt = NULL; 4140 struct fib6_table *table; 4141 4142 table = fib6_get_table(net, tb_id); 4143 if (!table) 4144 return NULL; 4145 4146 rcu_read_lock(); 4147 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 4148 if (!fn) 4149 goto out; 4150 4151 for_each_fib6_node_rt_rcu(fn) { 4152 /* these routes do not use nexthops */ 4153 if (rt->nh) 4154 continue; 4155 if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) 4156 continue; 4157 if (!(rt->fib6_flags & RTF_ROUTEINFO) || 4158 !rt->fib6_nh->fib_nh_gw_family) 4159 continue; 4160 if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) 4161 continue; 4162 if (!fib6_info_hold_safe(rt)) 4163 continue; 4164 break; 4165 } 4166 out: 4167 rcu_read_unlock(); 4168 return rt; 4169 } 4170 4171 static struct fib6_info *rt6_add_route_info(struct net *net, 4172 const struct in6_addr *prefix, int prefixlen, 4173 const struct in6_addr *gwaddr, 4174 struct net_device *dev, 4175 unsigned int pref) 4176 { 4177 struct fib6_config cfg = { 4178 .fc_metric = IP6_RT_PRIO_USER, 4179 .fc_ifindex = dev->ifindex, 4180 .fc_dst_len = prefixlen, 4181 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 4182 RTF_UP | RTF_PREF(pref), 4183 .fc_protocol = RTPROT_RA, 4184 .fc_type = RTN_UNICAST, 4185 .fc_nlinfo.portid = 0, 4186 .fc_nlinfo.nlh = NULL, 4187 .fc_nlinfo.nl_net = net, 4188 }; 4189 4190 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4191 cfg.fc_dst = *prefix; 4192 cfg.fc_gateway = *gwaddr; 4193 4194 /* We should treat it as a default route if prefix length is 0. */ 4195 if (!prefixlen) 4196 cfg.fc_flags |= RTF_DEFAULT; 4197 4198 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 4199 4200 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 4201 } 4202 #endif 4203 4204 struct fib6_info *rt6_get_dflt_router(struct net *net, 4205 const struct in6_addr *addr, 4206 struct net_device *dev) 4207 { 4208 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 4209 struct fib6_info *rt; 4210 struct fib6_table *table; 4211 4212 table = fib6_get_table(net, tb_id); 4213 if (!table) 4214 return NULL; 4215 4216 rcu_read_lock(); 4217 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4218 struct fib6_nh *nh; 4219 4220 /* RA routes do not use nexthops */ 4221 if (rt->nh) 4222 continue; 4223 4224 nh = rt->fib6_nh; 4225 if (dev == nh->fib_nh_dev && 4226 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 4227 ipv6_addr_equal(&nh->fib_nh_gw6, addr)) 4228 break; 4229 } 4230 if (rt && !fib6_info_hold_safe(rt)) 4231 rt = NULL; 4232 rcu_read_unlock(); 4233 return rt; 4234 } 4235 4236 struct fib6_info *rt6_add_dflt_router(struct net *net, 4237 const struct in6_addr *gwaddr, 4238 struct net_device *dev, 4239 unsigned int pref, 4240 u32 defrtr_usr_metric) 4241 { 4242 struct fib6_config cfg = { 4243 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 4244 .fc_metric = defrtr_usr_metric, 4245 .fc_ifindex = dev->ifindex, 4246 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 4247 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 4248 .fc_protocol = RTPROT_RA, 4249 .fc_type = RTN_UNICAST, 4250 .fc_nlinfo.portid = 0, 4251 .fc_nlinfo.nlh = NULL, 4252 .fc_nlinfo.nl_net = net, 4253 }; 4254 4255 cfg.fc_gateway = *gwaddr; 4256 4257 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 4258 struct fib6_table *table; 4259 4260 table = fib6_get_table(dev_net(dev), cfg.fc_table); 4261 if (table) 4262 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 4263 } 4264 4265 return rt6_get_dflt_router(net, gwaddr, dev); 4266 } 4267 4268 static void __rt6_purge_dflt_routers(struct net *net, 4269 struct fib6_table *table) 4270 { 4271 struct fib6_info *rt; 4272 4273 restart: 4274 rcu_read_lock(); 4275 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4276 struct net_device *dev = fib6_info_nh_dev(rt); 4277 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 4278 4279 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 4280 (!idev || idev->cnf.accept_ra != 2) && 4281 fib6_info_hold_safe(rt)) { 4282 rcu_read_unlock(); 4283 ip6_del_rt(net, rt, false); 4284 goto restart; 4285 } 4286 } 4287 rcu_read_unlock(); 4288 4289 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 4290 } 4291 4292 void rt6_purge_dflt_routers(struct net *net) 4293 { 4294 struct fib6_table *table; 4295 struct hlist_head *head; 4296 unsigned int h; 4297 4298 rcu_read_lock(); 4299 4300 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 4301 head = &net->ipv6.fib_table_hash[h]; 4302 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 4303 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 4304 __rt6_purge_dflt_routers(net, table); 4305 } 4306 } 4307 4308 rcu_read_unlock(); 4309 } 4310 4311 static void rtmsg_to_fib6_config(struct net *net, 4312 struct in6_rtmsg *rtmsg, 4313 struct fib6_config *cfg) 4314 { 4315 *cfg = (struct fib6_config){ 4316 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 4317 : RT6_TABLE_MAIN, 4318 .fc_ifindex = rtmsg->rtmsg_ifindex, 4319 .fc_metric = rtmsg->rtmsg_metric ? : IP6_RT_PRIO_USER, 4320 .fc_expires = rtmsg->rtmsg_info, 4321 .fc_dst_len = rtmsg->rtmsg_dst_len, 4322 .fc_src_len = rtmsg->rtmsg_src_len, 4323 .fc_flags = rtmsg->rtmsg_flags, 4324 .fc_type = rtmsg->rtmsg_type, 4325 4326 .fc_nlinfo.nl_net = net, 4327 4328 .fc_dst = rtmsg->rtmsg_dst, 4329 .fc_src = rtmsg->rtmsg_src, 4330 .fc_gateway = rtmsg->rtmsg_gateway, 4331 }; 4332 } 4333 4334 int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg) 4335 { 4336 struct fib6_config cfg; 4337 int err; 4338 4339 if (cmd != SIOCADDRT && cmd != SIOCDELRT) 4340 return -EINVAL; 4341 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 4342 return -EPERM; 4343 4344 rtmsg_to_fib6_config(net, rtmsg, &cfg); 4345 4346 rtnl_lock(); 4347 switch (cmd) { 4348 case SIOCADDRT: 4349 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 4350 break; 4351 case SIOCDELRT: 4352 err = ip6_route_del(&cfg, NULL); 4353 break; 4354 } 4355 rtnl_unlock(); 4356 return err; 4357 } 4358 4359 /* 4360 * Drop the packet on the floor 4361 */ 4362 4363 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 4364 { 4365 struct dst_entry *dst = skb_dst(skb); 4366 struct net *net = dev_net(dst->dev); 4367 struct inet6_dev *idev; 4368 int type; 4369 4370 if (netif_is_l3_master(skb->dev) && 4371 dst->dev == net->loopback_dev) 4372 idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); 4373 else 4374 idev = ip6_dst_idev(dst); 4375 4376 switch (ipstats_mib_noroutes) { 4377 case IPSTATS_MIB_INNOROUTES: 4378 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 4379 if (type == IPV6_ADDR_ANY) { 4380 IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); 4381 break; 4382 } 4383 fallthrough; 4384 case IPSTATS_MIB_OUTNOROUTES: 4385 IP6_INC_STATS(net, idev, ipstats_mib_noroutes); 4386 break; 4387 } 4388 4389 /* Start over by dropping the dst for l3mdev case */ 4390 if (netif_is_l3_master(skb->dev)) 4391 skb_dst_drop(skb); 4392 4393 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 4394 kfree_skb(skb); 4395 return 0; 4396 } 4397 4398 static int ip6_pkt_discard(struct sk_buff *skb) 4399 { 4400 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 4401 } 4402 4403 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4404 { 4405 skb->dev = skb_dst(skb)->dev; 4406 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 4407 } 4408 4409 static int ip6_pkt_prohibit(struct sk_buff *skb) 4410 { 4411 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 4412 } 4413 4414 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4415 { 4416 skb->dev = skb_dst(skb)->dev; 4417 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 4418 } 4419 4420 /* 4421 * Allocate a dst for local (unicast / anycast) address. 4422 */ 4423 4424 struct fib6_info *addrconf_f6i_alloc(struct net *net, 4425 struct inet6_dev *idev, 4426 const struct in6_addr *addr, 4427 bool anycast, gfp_t gfp_flags) 4428 { 4429 struct fib6_config cfg = { 4430 .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, 4431 .fc_ifindex = idev->dev->ifindex, 4432 .fc_flags = RTF_UP | RTF_NONEXTHOP, 4433 .fc_dst = *addr, 4434 .fc_dst_len = 128, 4435 .fc_protocol = RTPROT_KERNEL, 4436 .fc_nlinfo.nl_net = net, 4437 .fc_ignore_dev_down = true, 4438 }; 4439 struct fib6_info *f6i; 4440 4441 if (anycast) { 4442 cfg.fc_type = RTN_ANYCAST; 4443 cfg.fc_flags |= RTF_ANYCAST; 4444 } else { 4445 cfg.fc_type = RTN_LOCAL; 4446 cfg.fc_flags |= RTF_LOCAL; 4447 } 4448 4449 f6i = ip6_route_info_create(&cfg, gfp_flags, NULL); 4450 if (!IS_ERR(f6i)) 4451 f6i->dst_nocount = true; 4452 return f6i; 4453 } 4454 4455 /* remove deleted ip from prefsrc entries */ 4456 struct arg_dev_net_ip { 4457 struct net_device *dev; 4458 struct net *net; 4459 struct in6_addr *addr; 4460 }; 4461 4462 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 4463 { 4464 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 4465 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 4466 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 4467 4468 if (!rt->nh && 4469 ((void *)rt->fib6_nh->fib_nh_dev == dev || !dev) && 4470 rt != net->ipv6.fib6_null_entry && 4471 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) { 4472 spin_lock_bh(&rt6_exception_lock); 4473 /* remove prefsrc entry */ 4474 rt->fib6_prefsrc.plen = 0; 4475 spin_unlock_bh(&rt6_exception_lock); 4476 } 4477 return 0; 4478 } 4479 4480 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 4481 { 4482 struct net *net = dev_net(ifp->idev->dev); 4483 struct arg_dev_net_ip adni = { 4484 .dev = ifp->idev->dev, 4485 .net = net, 4486 .addr = &ifp->addr, 4487 }; 4488 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 4489 } 4490 4491 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) 4492 4493 /* Remove routers and update dst entries when gateway turn into host. */ 4494 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 4495 { 4496 struct in6_addr *gateway = (struct in6_addr *)arg; 4497 struct fib6_nh *nh; 4498 4499 /* RA routes do not use nexthops */ 4500 if (rt->nh) 4501 return 0; 4502 4503 nh = rt->fib6_nh; 4504 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 4505 nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) 4506 return -1; 4507 4508 /* Further clean up cached routes in exception table. 4509 * This is needed because cached route may have a different 4510 * gateway than its 'parent' in the case of an ip redirect. 4511 */ 4512 fib6_nh_exceptions_clean_tohost(nh, gateway); 4513 4514 return 0; 4515 } 4516 4517 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 4518 { 4519 fib6_clean_all(net, fib6_clean_tohost, gateway); 4520 } 4521 4522 struct arg_netdev_event { 4523 const struct net_device *dev; 4524 union { 4525 unsigned char nh_flags; 4526 unsigned long event; 4527 }; 4528 }; 4529 4530 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 4531 { 4532 struct fib6_info *iter; 4533 struct fib6_node *fn; 4534 4535 fn = rcu_dereference_protected(rt->fib6_node, 4536 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4537 iter = rcu_dereference_protected(fn->leaf, 4538 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4539 while (iter) { 4540 if (iter->fib6_metric == rt->fib6_metric && 4541 rt6_qualify_for_ecmp(iter)) 4542 return iter; 4543 iter = rcu_dereference_protected(iter->fib6_next, 4544 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4545 } 4546 4547 return NULL; 4548 } 4549 4550 /* only called for fib entries with builtin fib6_nh */ 4551 static bool rt6_is_dead(const struct fib6_info *rt) 4552 { 4553 if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || 4554 (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && 4555 ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) 4556 return true; 4557 4558 return false; 4559 } 4560 4561 static int rt6_multipath_total_weight(const struct fib6_info *rt) 4562 { 4563 struct fib6_info *iter; 4564 int total = 0; 4565 4566 if (!rt6_is_dead(rt)) 4567 total += rt->fib6_nh->fib_nh_weight; 4568 4569 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 4570 if (!rt6_is_dead(iter)) 4571 total += iter->fib6_nh->fib_nh_weight; 4572 } 4573 4574 return total; 4575 } 4576 4577 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 4578 { 4579 int upper_bound = -1; 4580 4581 if (!rt6_is_dead(rt)) { 4582 *weight += rt->fib6_nh->fib_nh_weight; 4583 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 4584 total) - 1; 4585 } 4586 atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); 4587 } 4588 4589 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 4590 { 4591 struct fib6_info *iter; 4592 int weight = 0; 4593 4594 rt6_upper_bound_set(rt, &weight, total); 4595 4596 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4597 rt6_upper_bound_set(iter, &weight, total); 4598 } 4599 4600 void rt6_multipath_rebalance(struct fib6_info *rt) 4601 { 4602 struct fib6_info *first; 4603 int total; 4604 4605 /* In case the entire multipath route was marked for flushing, 4606 * then there is no need to rebalance upon the removal of every 4607 * sibling route. 4608 */ 4609 if (!rt->fib6_nsiblings || rt->should_flush) 4610 return; 4611 4612 /* During lookup routes are evaluated in order, so we need to 4613 * make sure upper bounds are assigned from the first sibling 4614 * onwards. 4615 */ 4616 first = rt6_multipath_first_sibling(rt); 4617 if (WARN_ON_ONCE(!first)) 4618 return; 4619 4620 total = rt6_multipath_total_weight(first); 4621 rt6_multipath_upper_bound_set(first, total); 4622 } 4623 4624 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 4625 { 4626 const struct arg_netdev_event *arg = p_arg; 4627 struct net *net = dev_net(arg->dev); 4628 4629 if (rt != net->ipv6.fib6_null_entry && !rt->nh && 4630 rt->fib6_nh->fib_nh_dev == arg->dev) { 4631 rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; 4632 fib6_update_sernum_upto_root(net, rt); 4633 rt6_multipath_rebalance(rt); 4634 } 4635 4636 return 0; 4637 } 4638 4639 void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) 4640 { 4641 struct arg_netdev_event arg = { 4642 .dev = dev, 4643 { 4644 .nh_flags = nh_flags, 4645 }, 4646 }; 4647 4648 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 4649 arg.nh_flags |= RTNH_F_LINKDOWN; 4650 4651 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 4652 } 4653 4654 /* only called for fib entries with inline fib6_nh */ 4655 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 4656 const struct net_device *dev) 4657 { 4658 struct fib6_info *iter; 4659 4660 if (rt->fib6_nh->fib_nh_dev == dev) 4661 return true; 4662 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4663 if (iter->fib6_nh->fib_nh_dev == dev) 4664 return true; 4665 4666 return false; 4667 } 4668 4669 static void rt6_multipath_flush(struct fib6_info *rt) 4670 { 4671 struct fib6_info *iter; 4672 4673 rt->should_flush = 1; 4674 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4675 iter->should_flush = 1; 4676 } 4677 4678 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 4679 const struct net_device *down_dev) 4680 { 4681 struct fib6_info *iter; 4682 unsigned int dead = 0; 4683 4684 if (rt->fib6_nh->fib_nh_dev == down_dev || 4685 rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4686 dead++; 4687 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4688 if (iter->fib6_nh->fib_nh_dev == down_dev || 4689 iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4690 dead++; 4691 4692 return dead; 4693 } 4694 4695 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 4696 const struct net_device *dev, 4697 unsigned char nh_flags) 4698 { 4699 struct fib6_info *iter; 4700 4701 if (rt->fib6_nh->fib_nh_dev == dev) 4702 rt->fib6_nh->fib_nh_flags |= nh_flags; 4703 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4704 if (iter->fib6_nh->fib_nh_dev == dev) 4705 iter->fib6_nh->fib_nh_flags |= nh_flags; 4706 } 4707 4708 /* called with write lock held for table with rt */ 4709 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 4710 { 4711 const struct arg_netdev_event *arg = p_arg; 4712 const struct net_device *dev = arg->dev; 4713 struct net *net = dev_net(dev); 4714 4715 if (rt == net->ipv6.fib6_null_entry || rt->nh) 4716 return 0; 4717 4718 switch (arg->event) { 4719 case NETDEV_UNREGISTER: 4720 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4721 case NETDEV_DOWN: 4722 if (rt->should_flush) 4723 return -1; 4724 if (!rt->fib6_nsiblings) 4725 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4726 if (rt6_multipath_uses_dev(rt, dev)) { 4727 unsigned int count; 4728 4729 count = rt6_multipath_dead_count(rt, dev); 4730 if (rt->fib6_nsiblings + 1 == count) { 4731 rt6_multipath_flush(rt); 4732 return -1; 4733 } 4734 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4735 RTNH_F_LINKDOWN); 4736 fib6_update_sernum(net, rt); 4737 rt6_multipath_rebalance(rt); 4738 } 4739 return -2; 4740 case NETDEV_CHANGE: 4741 if (rt->fib6_nh->fib_nh_dev != dev || 4742 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4743 break; 4744 rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 4745 rt6_multipath_rebalance(rt); 4746 break; 4747 } 4748 4749 return 0; 4750 } 4751 4752 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4753 { 4754 struct arg_netdev_event arg = { 4755 .dev = dev, 4756 { 4757 .event = event, 4758 }, 4759 }; 4760 struct net *net = dev_net(dev); 4761 4762 if (net->ipv6.sysctl.skip_notify_on_dev_down) 4763 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 4764 else 4765 fib6_clean_all(net, fib6_ifdown, &arg); 4766 } 4767 4768 void rt6_disable_ip(struct net_device *dev, unsigned long event) 4769 { 4770 rt6_sync_down_dev(dev, event); 4771 rt6_uncached_list_flush_dev(dev_net(dev), dev); 4772 neigh_ifdown(&nd_tbl, dev); 4773 } 4774 4775 struct rt6_mtu_change_arg { 4776 struct net_device *dev; 4777 unsigned int mtu; 4778 struct fib6_info *f6i; 4779 }; 4780 4781 static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) 4782 { 4783 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; 4784 struct fib6_info *f6i = arg->f6i; 4785 4786 /* For administrative MTU increase, there is no way to discover 4787 * IPv6 PMTU increase, so PMTU increase should be updated here. 4788 * Since RFC 1981 doesn't include administrative MTU increase 4789 * update PMTU increase is a MUST. (i.e. jumbo frame) 4790 */ 4791 if (nh->fib_nh_dev == arg->dev) { 4792 struct inet6_dev *idev = __in6_dev_get(arg->dev); 4793 u32 mtu = f6i->fib6_pmtu; 4794 4795 if (mtu >= arg->mtu || 4796 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 4797 fib6_metric_set(f6i, RTAX_MTU, arg->mtu); 4798 4799 spin_lock_bh(&rt6_exception_lock); 4800 rt6_exceptions_update_pmtu(idev, nh, arg->mtu); 4801 spin_unlock_bh(&rt6_exception_lock); 4802 } 4803 4804 return 0; 4805 } 4806 4807 static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) 4808 { 4809 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 4810 struct inet6_dev *idev; 4811 4812 /* In IPv6 pmtu discovery is not optional, 4813 so that RTAX_MTU lock cannot disable it. 4814 We still use this lock to block changes 4815 caused by addrconf/ndisc. 4816 */ 4817 4818 idev = __in6_dev_get(arg->dev); 4819 if (!idev) 4820 return 0; 4821 4822 if (fib6_metric_locked(f6i, RTAX_MTU)) 4823 return 0; 4824 4825 arg->f6i = f6i; 4826 if (f6i->nh) { 4827 /* fib6_nh_mtu_change only returns 0, so this is safe */ 4828 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, 4829 arg); 4830 } 4831 4832 return fib6_nh_mtu_change(f6i->fib6_nh, arg); 4833 } 4834 4835 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 4836 { 4837 struct rt6_mtu_change_arg arg = { 4838 .dev = dev, 4839 .mtu = mtu, 4840 }; 4841 4842 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 4843 } 4844 4845 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 4846 [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, 4847 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 4848 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 4849 [RTA_OIF] = { .type = NLA_U32 }, 4850 [RTA_IIF] = { .type = NLA_U32 }, 4851 [RTA_PRIORITY] = { .type = NLA_U32 }, 4852 [RTA_METRICS] = { .type = NLA_NESTED }, 4853 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 4854 [RTA_PREF] = { .type = NLA_U8 }, 4855 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 4856 [RTA_ENCAP] = { .type = NLA_NESTED }, 4857 [RTA_EXPIRES] = { .type = NLA_U32 }, 4858 [RTA_UID] = { .type = NLA_U32 }, 4859 [RTA_MARK] = { .type = NLA_U32 }, 4860 [RTA_TABLE] = { .type = NLA_U32 }, 4861 [RTA_IP_PROTO] = { .type = NLA_U8 }, 4862 [RTA_SPORT] = { .type = NLA_U16 }, 4863 [RTA_DPORT] = { .type = NLA_U16 }, 4864 [RTA_NH_ID] = { .type = NLA_U32 }, 4865 }; 4866 4867 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 4868 struct fib6_config *cfg, 4869 struct netlink_ext_ack *extack) 4870 { 4871 struct rtmsg *rtm; 4872 struct nlattr *tb[RTA_MAX+1]; 4873 unsigned int pref; 4874 int err; 4875 4876 err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 4877 rtm_ipv6_policy, extack); 4878 if (err < 0) 4879 goto errout; 4880 4881 err = -EINVAL; 4882 rtm = nlmsg_data(nlh); 4883 4884 *cfg = (struct fib6_config){ 4885 .fc_table = rtm->rtm_table, 4886 .fc_dst_len = rtm->rtm_dst_len, 4887 .fc_src_len = rtm->rtm_src_len, 4888 .fc_flags = RTF_UP, 4889 .fc_protocol = rtm->rtm_protocol, 4890 .fc_type = rtm->rtm_type, 4891 4892 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 4893 .fc_nlinfo.nlh = nlh, 4894 .fc_nlinfo.nl_net = sock_net(skb->sk), 4895 }; 4896 4897 if (rtm->rtm_type == RTN_UNREACHABLE || 4898 rtm->rtm_type == RTN_BLACKHOLE || 4899 rtm->rtm_type == RTN_PROHIBIT || 4900 rtm->rtm_type == RTN_THROW) 4901 cfg->fc_flags |= RTF_REJECT; 4902 4903 if (rtm->rtm_type == RTN_LOCAL) 4904 cfg->fc_flags |= RTF_LOCAL; 4905 4906 if (rtm->rtm_flags & RTM_F_CLONED) 4907 cfg->fc_flags |= RTF_CACHE; 4908 4909 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 4910 4911 if (tb[RTA_NH_ID]) { 4912 if (tb[RTA_GATEWAY] || tb[RTA_OIF] || 4913 tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { 4914 NL_SET_ERR_MSG(extack, 4915 "Nexthop specification and nexthop id are mutually exclusive"); 4916 goto errout; 4917 } 4918 cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); 4919 } 4920 4921 if (tb[RTA_GATEWAY]) { 4922 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 4923 cfg->fc_flags |= RTF_GATEWAY; 4924 } 4925 if (tb[RTA_VIA]) { 4926 NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); 4927 goto errout; 4928 } 4929 4930 if (tb[RTA_DST]) { 4931 int plen = (rtm->rtm_dst_len + 7) >> 3; 4932 4933 if (nla_len(tb[RTA_DST]) < plen) 4934 goto errout; 4935 4936 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 4937 } 4938 4939 if (tb[RTA_SRC]) { 4940 int plen = (rtm->rtm_src_len + 7) >> 3; 4941 4942 if (nla_len(tb[RTA_SRC]) < plen) 4943 goto errout; 4944 4945 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 4946 } 4947 4948 if (tb[RTA_PREFSRC]) 4949 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 4950 4951 if (tb[RTA_OIF]) 4952 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 4953 4954 if (tb[RTA_PRIORITY]) 4955 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 4956 4957 if (tb[RTA_METRICS]) { 4958 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 4959 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 4960 } 4961 4962 if (tb[RTA_TABLE]) 4963 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 4964 4965 if (tb[RTA_MULTIPATH]) { 4966 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 4967 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 4968 4969 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, 4970 cfg->fc_mp_len, extack); 4971 if (err < 0) 4972 goto errout; 4973 } 4974 4975 if (tb[RTA_PREF]) { 4976 pref = nla_get_u8(tb[RTA_PREF]); 4977 if (pref != ICMPV6_ROUTER_PREF_LOW && 4978 pref != ICMPV6_ROUTER_PREF_HIGH) 4979 pref = ICMPV6_ROUTER_PREF_MEDIUM; 4980 cfg->fc_flags |= RTF_PREF(pref); 4981 } 4982 4983 if (tb[RTA_ENCAP]) 4984 cfg->fc_encap = tb[RTA_ENCAP]; 4985 4986 if (tb[RTA_ENCAP_TYPE]) { 4987 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 4988 4989 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 4990 if (err < 0) 4991 goto errout; 4992 } 4993 4994 if (tb[RTA_EXPIRES]) { 4995 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 4996 4997 if (addrconf_finite_timeout(timeout)) { 4998 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 4999 cfg->fc_flags |= RTF_EXPIRES; 5000 } 5001 } 5002 5003 err = 0; 5004 errout: 5005 return err; 5006 } 5007 5008 struct rt6_nh { 5009 struct fib6_info *fib6_info; 5010 struct fib6_config r_cfg; 5011 struct list_head next; 5012 }; 5013 5014 static int ip6_route_info_append(struct net *net, 5015 struct list_head *rt6_nh_list, 5016 struct fib6_info *rt, 5017 struct fib6_config *r_cfg) 5018 { 5019 struct rt6_nh *nh; 5020 int err = -EEXIST; 5021 5022 list_for_each_entry(nh, rt6_nh_list, next) { 5023 /* check if fib6_info already exists */ 5024 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 5025 return err; 5026 } 5027 5028 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 5029 if (!nh) 5030 return -ENOMEM; 5031 nh->fib6_info = rt; 5032 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 5033 list_add_tail(&nh->next, rt6_nh_list); 5034 5035 return 0; 5036 } 5037 5038 static void ip6_route_mpath_notify(struct fib6_info *rt, 5039 struct fib6_info *rt_last, 5040 struct nl_info *info, 5041 __u16 nlflags) 5042 { 5043 /* if this is an APPEND route, then rt points to the first route 5044 * inserted and rt_last points to last route inserted. Userspace 5045 * wants a consistent dump of the route which starts at the first 5046 * nexthop. Since sibling routes are always added at the end of 5047 * the list, find the first sibling of the last route appended 5048 */ 5049 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { 5050 rt = list_first_entry(&rt_last->fib6_siblings, 5051 struct fib6_info, 5052 fib6_siblings); 5053 } 5054 5055 if (rt) 5056 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 5057 } 5058 5059 static bool ip6_route_mpath_should_notify(const struct fib6_info *rt) 5060 { 5061 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 5062 bool should_notify = false; 5063 struct fib6_info *leaf; 5064 struct fib6_node *fn; 5065 5066 rcu_read_lock(); 5067 fn = rcu_dereference(rt->fib6_node); 5068 if (!fn) 5069 goto out; 5070 5071 leaf = rcu_dereference(fn->leaf); 5072 if (!leaf) 5073 goto out; 5074 5075 if (rt == leaf || 5076 (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric && 5077 rt6_qualify_for_ecmp(leaf))) 5078 should_notify = true; 5079 out: 5080 rcu_read_unlock(); 5081 5082 return should_notify; 5083 } 5084 5085 static int ip6_route_multipath_add(struct fib6_config *cfg, 5086 struct netlink_ext_ack *extack) 5087 { 5088 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 5089 struct nl_info *info = &cfg->fc_nlinfo; 5090 struct fib6_config r_cfg; 5091 struct rtnexthop *rtnh; 5092 struct fib6_info *rt; 5093 struct rt6_nh *err_nh; 5094 struct rt6_nh *nh, *nh_safe; 5095 __u16 nlflags; 5096 int remaining; 5097 int attrlen; 5098 int err = 1; 5099 int nhn = 0; 5100 int replace = (cfg->fc_nlinfo.nlh && 5101 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 5102 LIST_HEAD(rt6_nh_list); 5103 5104 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 5105 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 5106 nlflags |= NLM_F_APPEND; 5107 5108 remaining = cfg->fc_mp_len; 5109 rtnh = (struct rtnexthop *)cfg->fc_mp; 5110 5111 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 5112 * fib6_info structs per nexthop 5113 */ 5114 while (rtnh_ok(rtnh, remaining)) { 5115 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5116 if (rtnh->rtnh_ifindex) 5117 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5118 5119 attrlen = rtnh_attrlen(rtnh); 5120 if (attrlen > 0) { 5121 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5122 5123 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5124 if (nla) { 5125 r_cfg.fc_gateway = nla_get_in6_addr(nla); 5126 r_cfg.fc_flags |= RTF_GATEWAY; 5127 } 5128 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 5129 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 5130 if (nla) 5131 r_cfg.fc_encap_type = nla_get_u16(nla); 5132 } 5133 5134 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 5135 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 5136 if (IS_ERR(rt)) { 5137 err = PTR_ERR(rt); 5138 rt = NULL; 5139 goto cleanup; 5140 } 5141 if (!rt6_qualify_for_ecmp(rt)) { 5142 err = -EINVAL; 5143 NL_SET_ERR_MSG(extack, 5144 "Device only routes can not be added for IPv6 using the multipath API."); 5145 fib6_info_release(rt); 5146 goto cleanup; 5147 } 5148 5149 rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; 5150 5151 err = ip6_route_info_append(info->nl_net, &rt6_nh_list, 5152 rt, &r_cfg); 5153 if (err) { 5154 fib6_info_release(rt); 5155 goto cleanup; 5156 } 5157 5158 rtnh = rtnh_next(rtnh, &remaining); 5159 } 5160 5161 if (list_empty(&rt6_nh_list)) { 5162 NL_SET_ERR_MSG(extack, 5163 "Invalid nexthop configuration - no valid nexthops"); 5164 return -EINVAL; 5165 } 5166 5167 /* for add and replace send one notification with all nexthops. 5168 * Skip the notification in fib6_add_rt2node and send one with 5169 * the full route when done 5170 */ 5171 info->skip_notify = 1; 5172 5173 /* For add and replace, send one notification with all nexthops. For 5174 * append, send one notification with all appended nexthops. 5175 */ 5176 info->skip_notify_kernel = 1; 5177 5178 err_nh = NULL; 5179 list_for_each_entry(nh, &rt6_nh_list, next) { 5180 err = __ip6_ins_rt(nh->fib6_info, info, extack); 5181 fib6_info_release(nh->fib6_info); 5182 5183 if (!err) { 5184 /* save reference to last route successfully inserted */ 5185 rt_last = nh->fib6_info; 5186 5187 /* save reference to first route for notification */ 5188 if (!rt_notif) 5189 rt_notif = nh->fib6_info; 5190 } 5191 5192 /* nh->fib6_info is used or freed at this point, reset to NULL*/ 5193 nh->fib6_info = NULL; 5194 if (err) { 5195 if (replace && nhn) 5196 NL_SET_ERR_MSG_MOD(extack, 5197 "multipath route replace failed (check consistency of installed routes)"); 5198 err_nh = nh; 5199 goto add_errout; 5200 } 5201 5202 /* Because each route is added like a single route we remove 5203 * these flags after the first nexthop: if there is a collision, 5204 * we have already failed to add the first nexthop: 5205 * fib6_add_rt2node() has rejected it; when replacing, old 5206 * nexthops have been replaced by first new, the rest should 5207 * be added to it. 5208 */ 5209 if (cfg->fc_nlinfo.nlh) { 5210 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 5211 NLM_F_REPLACE); 5212 cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE; 5213 } 5214 nhn++; 5215 } 5216 5217 /* An in-kernel notification should only be sent in case the new 5218 * multipath route is added as the first route in the node, or if 5219 * it was appended to it. We pass 'rt_notif' since it is the first 5220 * sibling and might allow us to skip some checks in the replace case. 5221 */ 5222 if (ip6_route_mpath_should_notify(rt_notif)) { 5223 enum fib_event_type fib_event; 5224 5225 if (rt_notif->fib6_nsiblings != nhn - 1) 5226 fib_event = FIB_EVENT_ENTRY_APPEND; 5227 else 5228 fib_event = FIB_EVENT_ENTRY_REPLACE; 5229 5230 err = call_fib6_multipath_entry_notifiers(info->nl_net, 5231 fib_event, rt_notif, 5232 nhn - 1, extack); 5233 if (err) { 5234 /* Delete all the siblings that were just added */ 5235 err_nh = NULL; 5236 goto add_errout; 5237 } 5238 } 5239 5240 /* success ... tell user about new route */ 5241 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5242 goto cleanup; 5243 5244 add_errout: 5245 /* send notification for routes that were added so that 5246 * the delete notifications sent by ip6_route_del are 5247 * coherent 5248 */ 5249 if (rt_notif) 5250 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5251 5252 /* Delete routes that were already added */ 5253 list_for_each_entry(nh, &rt6_nh_list, next) { 5254 if (err_nh == nh) 5255 break; 5256 ip6_route_del(&nh->r_cfg, extack); 5257 } 5258 5259 cleanup: 5260 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { 5261 if (nh->fib6_info) 5262 fib6_info_release(nh->fib6_info); 5263 list_del(&nh->next); 5264 kfree(nh); 5265 } 5266 5267 return err; 5268 } 5269 5270 static int ip6_route_multipath_del(struct fib6_config *cfg, 5271 struct netlink_ext_ack *extack) 5272 { 5273 struct fib6_config r_cfg; 5274 struct rtnexthop *rtnh; 5275 int last_err = 0; 5276 int remaining; 5277 int attrlen; 5278 int err; 5279 5280 remaining = cfg->fc_mp_len; 5281 rtnh = (struct rtnexthop *)cfg->fc_mp; 5282 5283 /* Parse a Multipath Entry */ 5284 while (rtnh_ok(rtnh, remaining)) { 5285 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5286 if (rtnh->rtnh_ifindex) 5287 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5288 5289 attrlen = rtnh_attrlen(rtnh); 5290 if (attrlen > 0) { 5291 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5292 5293 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5294 if (nla) { 5295 nla_memcpy(&r_cfg.fc_gateway, nla, 16); 5296 r_cfg.fc_flags |= RTF_GATEWAY; 5297 } 5298 } 5299 err = ip6_route_del(&r_cfg, extack); 5300 if (err) 5301 last_err = err; 5302 5303 rtnh = rtnh_next(rtnh, &remaining); 5304 } 5305 5306 return last_err; 5307 } 5308 5309 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5310 struct netlink_ext_ack *extack) 5311 { 5312 struct fib6_config cfg; 5313 int err; 5314 5315 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5316 if (err < 0) 5317 return err; 5318 5319 if (cfg.fc_nh_id && 5320 !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) { 5321 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 5322 return -EINVAL; 5323 } 5324 5325 if (cfg.fc_mp) 5326 return ip6_route_multipath_del(&cfg, extack); 5327 else { 5328 cfg.fc_delete_all_nh = 1; 5329 return ip6_route_del(&cfg, extack); 5330 } 5331 } 5332 5333 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5334 struct netlink_ext_ack *extack) 5335 { 5336 struct fib6_config cfg; 5337 int err; 5338 5339 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5340 if (err < 0) 5341 return err; 5342 5343 if (cfg.fc_metric == 0) 5344 cfg.fc_metric = IP6_RT_PRIO_USER; 5345 5346 if (cfg.fc_mp) 5347 return ip6_route_multipath_add(&cfg, extack); 5348 else 5349 return ip6_route_add(&cfg, GFP_KERNEL, extack); 5350 } 5351 5352 /* add the overhead of this fib6_nh to nexthop_len */ 5353 static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) 5354 { 5355 int *nexthop_len = arg; 5356 5357 *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ 5358 + NLA_ALIGN(sizeof(struct rtnexthop)) 5359 + nla_total_size(16); /* RTA_GATEWAY */ 5360 5361 if (nh->fib_nh_lws) { 5362 /* RTA_ENCAP_TYPE */ 5363 *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5364 /* RTA_ENCAP */ 5365 *nexthop_len += nla_total_size(2); 5366 } 5367 5368 return 0; 5369 } 5370 5371 static size_t rt6_nlmsg_size(struct fib6_info *f6i) 5372 { 5373 int nexthop_len; 5374 5375 if (f6i->nh) { 5376 nexthop_len = nla_total_size(4); /* RTA_NH_ID */ 5377 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, 5378 &nexthop_len); 5379 } else { 5380 struct fib6_nh *nh = f6i->fib6_nh; 5381 5382 nexthop_len = 0; 5383 if (f6i->fib6_nsiblings) { 5384 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */ 5385 + NLA_ALIGN(sizeof(struct rtnexthop)) 5386 + nla_total_size(16) /* RTA_GATEWAY */ 5387 + lwtunnel_get_encap_size(nh->fib_nh_lws); 5388 5389 nexthop_len *= f6i->fib6_nsiblings; 5390 } 5391 nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5392 } 5393 5394 return NLMSG_ALIGN(sizeof(struct rtmsg)) 5395 + nla_total_size(16) /* RTA_SRC */ 5396 + nla_total_size(16) /* RTA_DST */ 5397 + nla_total_size(16) /* RTA_GATEWAY */ 5398 + nla_total_size(16) /* RTA_PREFSRC */ 5399 + nla_total_size(4) /* RTA_TABLE */ 5400 + nla_total_size(4) /* RTA_IIF */ 5401 + nla_total_size(4) /* RTA_OIF */ 5402 + nla_total_size(4) /* RTA_PRIORITY */ 5403 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 5404 + nla_total_size(sizeof(struct rta_cacheinfo)) 5405 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 5406 + nla_total_size(1) /* RTA_PREF */ 5407 + nexthop_len; 5408 } 5409 5410 static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, 5411 unsigned char *flags) 5412 { 5413 if (nexthop_is_multipath(nh)) { 5414 struct nlattr *mp; 5415 5416 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5417 if (!mp) 5418 goto nla_put_failure; 5419 5420 if (nexthop_mpath_fill_node(skb, nh, AF_INET6)) 5421 goto nla_put_failure; 5422 5423 nla_nest_end(skb, mp); 5424 } else { 5425 struct fib6_nh *fib6_nh; 5426 5427 fib6_nh = nexthop_fib6_nh(nh); 5428 if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6, 5429 flags, false) < 0) 5430 goto nla_put_failure; 5431 } 5432 5433 return 0; 5434 5435 nla_put_failure: 5436 return -EMSGSIZE; 5437 } 5438 5439 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 5440 struct fib6_info *rt, struct dst_entry *dst, 5441 struct in6_addr *dest, struct in6_addr *src, 5442 int iif, int type, u32 portid, u32 seq, 5443 unsigned int flags) 5444 { 5445 struct rt6_info *rt6 = (struct rt6_info *)dst; 5446 struct rt6key *rt6_dst, *rt6_src; 5447 u32 *pmetrics, table, rt6_flags; 5448 unsigned char nh_flags = 0; 5449 struct nlmsghdr *nlh; 5450 struct rtmsg *rtm; 5451 long expires = 0; 5452 5453 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 5454 if (!nlh) 5455 return -EMSGSIZE; 5456 5457 if (rt6) { 5458 rt6_dst = &rt6->rt6i_dst; 5459 rt6_src = &rt6->rt6i_src; 5460 rt6_flags = rt6->rt6i_flags; 5461 } else { 5462 rt6_dst = &rt->fib6_dst; 5463 rt6_src = &rt->fib6_src; 5464 rt6_flags = rt->fib6_flags; 5465 } 5466 5467 rtm = nlmsg_data(nlh); 5468 rtm->rtm_family = AF_INET6; 5469 rtm->rtm_dst_len = rt6_dst->plen; 5470 rtm->rtm_src_len = rt6_src->plen; 5471 rtm->rtm_tos = 0; 5472 if (rt->fib6_table) 5473 table = rt->fib6_table->tb6_id; 5474 else 5475 table = RT6_TABLE_UNSPEC; 5476 rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; 5477 if (nla_put_u32(skb, RTA_TABLE, table)) 5478 goto nla_put_failure; 5479 5480 rtm->rtm_type = rt->fib6_type; 5481 rtm->rtm_flags = 0; 5482 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 5483 rtm->rtm_protocol = rt->fib6_protocol; 5484 5485 if (rt6_flags & RTF_CACHE) 5486 rtm->rtm_flags |= RTM_F_CLONED; 5487 5488 if (dest) { 5489 if (nla_put_in6_addr(skb, RTA_DST, dest)) 5490 goto nla_put_failure; 5491 rtm->rtm_dst_len = 128; 5492 } else if (rtm->rtm_dst_len) 5493 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 5494 goto nla_put_failure; 5495 #ifdef CONFIG_IPV6_SUBTREES 5496 if (src) { 5497 if (nla_put_in6_addr(skb, RTA_SRC, src)) 5498 goto nla_put_failure; 5499 rtm->rtm_src_len = 128; 5500 } else if (rtm->rtm_src_len && 5501 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 5502 goto nla_put_failure; 5503 #endif 5504 if (iif) { 5505 #ifdef CONFIG_IPV6_MROUTE 5506 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 5507 int err = ip6mr_get_route(net, skb, rtm, portid); 5508 5509 if (err == 0) 5510 return 0; 5511 if (err < 0) 5512 goto nla_put_failure; 5513 } else 5514 #endif 5515 if (nla_put_u32(skb, RTA_IIF, iif)) 5516 goto nla_put_failure; 5517 } else if (dest) { 5518 struct in6_addr saddr_buf; 5519 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && 5520 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5521 goto nla_put_failure; 5522 } 5523 5524 if (rt->fib6_prefsrc.plen) { 5525 struct in6_addr saddr_buf; 5526 saddr_buf = rt->fib6_prefsrc.addr; 5527 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5528 goto nla_put_failure; 5529 } 5530 5531 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 5532 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 5533 goto nla_put_failure; 5534 5535 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 5536 goto nla_put_failure; 5537 5538 /* For multipath routes, walk the siblings list and add 5539 * each as a nexthop within RTA_MULTIPATH. 5540 */ 5541 if (rt6) { 5542 if (rt6_flags & RTF_GATEWAY && 5543 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 5544 goto nla_put_failure; 5545 5546 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) 5547 goto nla_put_failure; 5548 5549 if (dst->lwtstate && 5550 lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0) 5551 goto nla_put_failure; 5552 } else if (rt->fib6_nsiblings) { 5553 struct fib6_info *sibling, *next_sibling; 5554 struct nlattr *mp; 5555 5556 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5557 if (!mp) 5558 goto nla_put_failure; 5559 5560 if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, 5561 rt->fib6_nh->fib_nh_weight, AF_INET6) < 0) 5562 goto nla_put_failure; 5563 5564 list_for_each_entry_safe(sibling, next_sibling, 5565 &rt->fib6_siblings, fib6_siblings) { 5566 if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, 5567 sibling->fib6_nh->fib_nh_weight, 5568 AF_INET6) < 0) 5569 goto nla_put_failure; 5570 } 5571 5572 nla_nest_end(skb, mp); 5573 } else if (rt->nh) { 5574 if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) 5575 goto nla_put_failure; 5576 5577 if (nexthop_is_blackhole(rt->nh)) 5578 rtm->rtm_type = RTN_BLACKHOLE; 5579 5580 if (net->ipv4.sysctl_nexthop_compat_mode && 5581 rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) 5582 goto nla_put_failure; 5583 5584 rtm->rtm_flags |= nh_flags; 5585 } else { 5586 if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6, 5587 &nh_flags, false) < 0) 5588 goto nla_put_failure; 5589 5590 rtm->rtm_flags |= nh_flags; 5591 } 5592 5593 if (rt6_flags & RTF_EXPIRES) { 5594 expires = dst ? dst->expires : rt->expires; 5595 expires -= jiffies; 5596 } 5597 5598 if (!dst) { 5599 if (rt->offload) 5600 rtm->rtm_flags |= RTM_F_OFFLOAD; 5601 if (rt->trap) 5602 rtm->rtm_flags |= RTM_F_TRAP; 5603 if (rt->offload_failed) 5604 rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED; 5605 } 5606 5607 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 5608 goto nla_put_failure; 5609 5610 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 5611 goto nla_put_failure; 5612 5613 5614 nlmsg_end(skb, nlh); 5615 return 0; 5616 5617 nla_put_failure: 5618 nlmsg_cancel(skb, nlh); 5619 return -EMSGSIZE; 5620 } 5621 5622 static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) 5623 { 5624 const struct net_device *dev = arg; 5625 5626 if (nh->fib_nh_dev == dev) 5627 return 1; 5628 5629 return 0; 5630 } 5631 5632 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 5633 const struct net_device *dev) 5634 { 5635 if (f6i->nh) { 5636 struct net_device *_dev = (struct net_device *)dev; 5637 5638 return !!nexthop_for_each_fib6_nh(f6i->nh, 5639 fib6_info_nh_uses_dev, 5640 _dev); 5641 } 5642 5643 if (f6i->fib6_nh->fib_nh_dev == dev) 5644 return true; 5645 5646 if (f6i->fib6_nsiblings) { 5647 struct fib6_info *sibling, *next_sibling; 5648 5649 list_for_each_entry_safe(sibling, next_sibling, 5650 &f6i->fib6_siblings, fib6_siblings) { 5651 if (sibling->fib6_nh->fib_nh_dev == dev) 5652 return true; 5653 } 5654 } 5655 5656 return false; 5657 } 5658 5659 struct fib6_nh_exception_dump_walker { 5660 struct rt6_rtnl_dump_arg *dump; 5661 struct fib6_info *rt; 5662 unsigned int flags; 5663 unsigned int skip; 5664 unsigned int count; 5665 }; 5666 5667 static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg) 5668 { 5669 struct fib6_nh_exception_dump_walker *w = arg; 5670 struct rt6_rtnl_dump_arg *dump = w->dump; 5671 struct rt6_exception_bucket *bucket; 5672 struct rt6_exception *rt6_ex; 5673 int i, err; 5674 5675 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 5676 if (!bucket) 5677 return 0; 5678 5679 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 5680 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 5681 if (w->skip) { 5682 w->skip--; 5683 continue; 5684 } 5685 5686 /* Expiration of entries doesn't bump sernum, insertion 5687 * does. Removal is triggered by insertion, so we can 5688 * rely on the fact that if entries change between two 5689 * partial dumps, this node is scanned again completely, 5690 * see rt6_insert_exception() and fib6_dump_table(). 5691 * 5692 * Count expired entries we go through as handled 5693 * entries that we'll skip next time, in case of partial 5694 * node dump. Otherwise, if entries expire meanwhile, 5695 * we'll skip the wrong amount. 5696 */ 5697 if (rt6_check_expired(rt6_ex->rt6i)) { 5698 w->count++; 5699 continue; 5700 } 5701 5702 err = rt6_fill_node(dump->net, dump->skb, w->rt, 5703 &rt6_ex->rt6i->dst, NULL, NULL, 0, 5704 RTM_NEWROUTE, 5705 NETLINK_CB(dump->cb->skb).portid, 5706 dump->cb->nlh->nlmsg_seq, w->flags); 5707 if (err) 5708 return err; 5709 5710 w->count++; 5711 } 5712 bucket++; 5713 } 5714 5715 return 0; 5716 } 5717 5718 /* Return -1 if done with node, number of handled routes on partial dump */ 5719 int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip) 5720 { 5721 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 5722 struct fib_dump_filter *filter = &arg->filter; 5723 unsigned int flags = NLM_F_MULTI; 5724 struct net *net = arg->net; 5725 int count = 0; 5726 5727 if (rt == net->ipv6.fib6_null_entry) 5728 return -1; 5729 5730 if ((filter->flags & RTM_F_PREFIX) && 5731 !(rt->fib6_flags & RTF_PREFIX_RT)) { 5732 /* success since this is not a prefix route */ 5733 return -1; 5734 } 5735 if (filter->filter_set && 5736 ((filter->rt_type && rt->fib6_type != filter->rt_type) || 5737 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 5738 (filter->protocol && rt->fib6_protocol != filter->protocol))) { 5739 return -1; 5740 } 5741 5742 if (filter->filter_set || 5743 !filter->dump_routes || !filter->dump_exceptions) { 5744 flags |= NLM_F_DUMP_FILTERED; 5745 } 5746 5747 if (filter->dump_routes) { 5748 if (skip) { 5749 skip--; 5750 } else { 5751 if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 5752 0, RTM_NEWROUTE, 5753 NETLINK_CB(arg->cb->skb).portid, 5754 arg->cb->nlh->nlmsg_seq, flags)) { 5755 return 0; 5756 } 5757 count++; 5758 } 5759 } 5760 5761 if (filter->dump_exceptions) { 5762 struct fib6_nh_exception_dump_walker w = { .dump = arg, 5763 .rt = rt, 5764 .flags = flags, 5765 .skip = skip, 5766 .count = 0 }; 5767 int err; 5768 5769 rcu_read_lock(); 5770 if (rt->nh) { 5771 err = nexthop_for_each_fib6_nh(rt->nh, 5772 rt6_nh_dump_exceptions, 5773 &w); 5774 } else { 5775 err = rt6_nh_dump_exceptions(rt->fib6_nh, &w); 5776 } 5777 rcu_read_unlock(); 5778 5779 if (err) 5780 return count += w.count; 5781 } 5782 5783 return -1; 5784 } 5785 5786 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, 5787 const struct nlmsghdr *nlh, 5788 struct nlattr **tb, 5789 struct netlink_ext_ack *extack) 5790 { 5791 struct rtmsg *rtm; 5792 int i, err; 5793 5794 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 5795 NL_SET_ERR_MSG_MOD(extack, 5796 "Invalid header for get route request"); 5797 return -EINVAL; 5798 } 5799 5800 if (!netlink_strict_get_check(skb)) 5801 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 5802 rtm_ipv6_policy, extack); 5803 5804 rtm = nlmsg_data(nlh); 5805 if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || 5806 (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || 5807 rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || 5808 rtm->rtm_type) { 5809 NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); 5810 return -EINVAL; 5811 } 5812 if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { 5813 NL_SET_ERR_MSG_MOD(extack, 5814 "Invalid flags for get route request"); 5815 return -EINVAL; 5816 } 5817 5818 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 5819 rtm_ipv6_policy, extack); 5820 if (err) 5821 return err; 5822 5823 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 5824 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 5825 NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); 5826 return -EINVAL; 5827 } 5828 5829 for (i = 0; i <= RTA_MAX; i++) { 5830 if (!tb[i]) 5831 continue; 5832 5833 switch (i) { 5834 case RTA_SRC: 5835 case RTA_DST: 5836 case RTA_IIF: 5837 case RTA_OIF: 5838 case RTA_MARK: 5839 case RTA_UID: 5840 case RTA_SPORT: 5841 case RTA_DPORT: 5842 case RTA_IP_PROTO: 5843 break; 5844 default: 5845 NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); 5846 return -EINVAL; 5847 } 5848 } 5849 5850 return 0; 5851 } 5852 5853 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 5854 struct netlink_ext_ack *extack) 5855 { 5856 struct net *net = sock_net(in_skb->sk); 5857 struct nlattr *tb[RTA_MAX+1]; 5858 int err, iif = 0, oif = 0; 5859 struct fib6_info *from; 5860 struct dst_entry *dst; 5861 struct rt6_info *rt; 5862 struct sk_buff *skb; 5863 struct rtmsg *rtm; 5864 struct flowi6 fl6 = {}; 5865 bool fibmatch; 5866 5867 err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 5868 if (err < 0) 5869 goto errout; 5870 5871 err = -EINVAL; 5872 rtm = nlmsg_data(nlh); 5873 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); 5874 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 5875 5876 if (tb[RTA_SRC]) { 5877 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 5878 goto errout; 5879 5880 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 5881 } 5882 5883 if (tb[RTA_DST]) { 5884 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 5885 goto errout; 5886 5887 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 5888 } 5889 5890 if (tb[RTA_IIF]) 5891 iif = nla_get_u32(tb[RTA_IIF]); 5892 5893 if (tb[RTA_OIF]) 5894 oif = nla_get_u32(tb[RTA_OIF]); 5895 5896 if (tb[RTA_MARK]) 5897 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 5898 5899 if (tb[RTA_UID]) 5900 fl6.flowi6_uid = make_kuid(current_user_ns(), 5901 nla_get_u32(tb[RTA_UID])); 5902 else 5903 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 5904 5905 if (tb[RTA_SPORT]) 5906 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 5907 5908 if (tb[RTA_DPORT]) 5909 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 5910 5911 if (tb[RTA_IP_PROTO]) { 5912 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 5913 &fl6.flowi6_proto, AF_INET6, 5914 extack); 5915 if (err) 5916 goto errout; 5917 } 5918 5919 if (iif) { 5920 struct net_device *dev; 5921 int flags = 0; 5922 5923 rcu_read_lock(); 5924 5925 dev = dev_get_by_index_rcu(net, iif); 5926 if (!dev) { 5927 rcu_read_unlock(); 5928 err = -ENODEV; 5929 goto errout; 5930 } 5931 5932 fl6.flowi6_iif = iif; 5933 5934 if (!ipv6_addr_any(&fl6.saddr)) 5935 flags |= RT6_LOOKUP_F_HAS_SADDR; 5936 5937 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 5938 5939 rcu_read_unlock(); 5940 } else { 5941 fl6.flowi6_oif = oif; 5942 5943 dst = ip6_route_output(net, NULL, &fl6); 5944 } 5945 5946 5947 rt = container_of(dst, struct rt6_info, dst); 5948 if (rt->dst.error) { 5949 err = rt->dst.error; 5950 ip6_rt_put(rt); 5951 goto errout; 5952 } 5953 5954 if (rt == net->ipv6.ip6_null_entry) { 5955 err = rt->dst.error; 5956 ip6_rt_put(rt); 5957 goto errout; 5958 } 5959 5960 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 5961 if (!skb) { 5962 ip6_rt_put(rt); 5963 err = -ENOBUFS; 5964 goto errout; 5965 } 5966 5967 skb_dst_set(skb, &rt->dst); 5968 5969 rcu_read_lock(); 5970 from = rcu_dereference(rt->from); 5971 if (from) { 5972 if (fibmatch) 5973 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, 5974 iif, RTM_NEWROUTE, 5975 NETLINK_CB(in_skb).portid, 5976 nlh->nlmsg_seq, 0); 5977 else 5978 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 5979 &fl6.saddr, iif, RTM_NEWROUTE, 5980 NETLINK_CB(in_skb).portid, 5981 nlh->nlmsg_seq, 0); 5982 } else { 5983 err = -ENETUNREACH; 5984 } 5985 rcu_read_unlock(); 5986 5987 if (err < 0) { 5988 kfree_skb(skb); 5989 goto errout; 5990 } 5991 5992 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 5993 errout: 5994 return err; 5995 } 5996 5997 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 5998 unsigned int nlm_flags) 5999 { 6000 struct sk_buff *skb; 6001 struct net *net = info->nl_net; 6002 u32 seq; 6003 int err; 6004 6005 err = -ENOBUFS; 6006 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6007 6008 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6009 if (!skb) 6010 goto errout; 6011 6012 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6013 event, info->portid, seq, nlm_flags); 6014 if (err < 0) { 6015 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6016 WARN_ON(err == -EMSGSIZE); 6017 kfree_skb(skb); 6018 goto errout; 6019 } 6020 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6021 info->nlh, gfp_any()); 6022 return; 6023 errout: 6024 if (err < 0) 6025 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6026 } 6027 6028 void fib6_rt_update(struct net *net, struct fib6_info *rt, 6029 struct nl_info *info) 6030 { 6031 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6032 struct sk_buff *skb; 6033 int err = -ENOBUFS; 6034 6035 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6036 if (!skb) 6037 goto errout; 6038 6039 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6040 RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); 6041 if (err < 0) { 6042 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6043 WARN_ON(err == -EMSGSIZE); 6044 kfree_skb(skb); 6045 goto errout; 6046 } 6047 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6048 info->nlh, gfp_any()); 6049 return; 6050 errout: 6051 if (err < 0) 6052 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6053 } 6054 6055 void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, 6056 bool offload, bool trap, bool offload_failed) 6057 { 6058 struct sk_buff *skb; 6059 int err; 6060 6061 if (f6i->offload == offload && f6i->trap == trap && 6062 f6i->offload_failed == offload_failed) 6063 return; 6064 6065 f6i->offload = offload; 6066 f6i->trap = trap; 6067 6068 /* 2 means send notifications only if offload_failed was changed. */ 6069 if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 && 6070 f6i->offload_failed == offload_failed) 6071 return; 6072 6073 f6i->offload_failed = offload_failed; 6074 6075 if (!rcu_access_pointer(f6i->fib6_node)) 6076 /* The route was removed from the tree, do not send 6077 * notification. 6078 */ 6079 return; 6080 6081 if (!net->ipv6.sysctl.fib_notify_on_flag_change) 6082 return; 6083 6084 skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL); 6085 if (!skb) { 6086 err = -ENOBUFS; 6087 goto errout; 6088 } 6089 6090 err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0, 6091 0, 0); 6092 if (err < 0) { 6093 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6094 WARN_ON(err == -EMSGSIZE); 6095 kfree_skb(skb); 6096 goto errout; 6097 } 6098 6099 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL); 6100 return; 6101 6102 errout: 6103 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6104 } 6105 EXPORT_SYMBOL(fib6_info_hw_flags_set); 6106 6107 static int ip6_route_dev_notify(struct notifier_block *this, 6108 unsigned long event, void *ptr) 6109 { 6110 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6111 struct net *net = dev_net(dev); 6112 6113 if (!(dev->flags & IFF_LOOPBACK)) 6114 return NOTIFY_OK; 6115 6116 if (event == NETDEV_REGISTER) { 6117 net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; 6118 net->ipv6.ip6_null_entry->dst.dev = dev; 6119 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 6120 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6121 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 6122 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 6123 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 6124 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 6125 #endif 6126 } else if (event == NETDEV_UNREGISTER && 6127 dev->reg_state != NETREG_UNREGISTERED) { 6128 /* NETDEV_UNREGISTER could be fired for multiple times by 6129 * netdev_wait_allrefs(). Make sure we only call this once. 6130 */ 6131 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 6132 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6133 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 6134 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 6135 #endif 6136 } 6137 6138 return NOTIFY_OK; 6139 } 6140 6141 /* 6142 * /proc 6143 */ 6144 6145 #ifdef CONFIG_PROC_FS 6146 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 6147 { 6148 struct net *net = (struct net *)seq->private; 6149 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 6150 net->ipv6.rt6_stats->fib_nodes, 6151 net->ipv6.rt6_stats->fib_route_nodes, 6152 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 6153 net->ipv6.rt6_stats->fib_rt_entries, 6154 net->ipv6.rt6_stats->fib_rt_cache, 6155 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 6156 net->ipv6.rt6_stats->fib_discarded_routes); 6157 6158 return 0; 6159 } 6160 #endif /* CONFIG_PROC_FS */ 6161 6162 #ifdef CONFIG_SYSCTL 6163 6164 static int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, 6165 void *buffer, size_t *lenp, loff_t *ppos) 6166 { 6167 struct net *net; 6168 int delay; 6169 int ret; 6170 if (!write) 6171 return -EINVAL; 6172 6173 net = (struct net *)ctl->extra1; 6174 delay = net->ipv6.sysctl.flush_delay; 6175 ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 6176 if (ret) 6177 return ret; 6178 6179 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 6180 return 0; 6181 } 6182 6183 static struct ctl_table ipv6_route_table_template[] = { 6184 { 6185 .procname = "flush", 6186 .data = &init_net.ipv6.sysctl.flush_delay, 6187 .maxlen = sizeof(int), 6188 .mode = 0200, 6189 .proc_handler = ipv6_sysctl_rtcache_flush 6190 }, 6191 { 6192 .procname = "gc_thresh", 6193 .data = &ip6_dst_ops_template.gc_thresh, 6194 .maxlen = sizeof(int), 6195 .mode = 0644, 6196 .proc_handler = proc_dointvec, 6197 }, 6198 { 6199 .procname = "max_size", 6200 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 6201 .maxlen = sizeof(int), 6202 .mode = 0644, 6203 .proc_handler = proc_dointvec, 6204 }, 6205 { 6206 .procname = "gc_min_interval", 6207 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6208 .maxlen = sizeof(int), 6209 .mode = 0644, 6210 .proc_handler = proc_dointvec_jiffies, 6211 }, 6212 { 6213 .procname = "gc_timeout", 6214 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 6215 .maxlen = sizeof(int), 6216 .mode = 0644, 6217 .proc_handler = proc_dointvec_jiffies, 6218 }, 6219 { 6220 .procname = "gc_interval", 6221 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 6222 .maxlen = sizeof(int), 6223 .mode = 0644, 6224 .proc_handler = proc_dointvec_jiffies, 6225 }, 6226 { 6227 .procname = "gc_elasticity", 6228 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 6229 .maxlen = sizeof(int), 6230 .mode = 0644, 6231 .proc_handler = proc_dointvec, 6232 }, 6233 { 6234 .procname = "mtu_expires", 6235 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 6236 .maxlen = sizeof(int), 6237 .mode = 0644, 6238 .proc_handler = proc_dointvec_jiffies, 6239 }, 6240 { 6241 .procname = "min_adv_mss", 6242 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 6243 .maxlen = sizeof(int), 6244 .mode = 0644, 6245 .proc_handler = proc_dointvec, 6246 }, 6247 { 6248 .procname = "gc_min_interval_ms", 6249 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6250 .maxlen = sizeof(int), 6251 .mode = 0644, 6252 .proc_handler = proc_dointvec_ms_jiffies, 6253 }, 6254 { 6255 .procname = "skip_notify_on_dev_down", 6256 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 6257 .maxlen = sizeof(int), 6258 .mode = 0644, 6259 .proc_handler = proc_dointvec_minmax, 6260 .extra1 = SYSCTL_ZERO, 6261 .extra2 = SYSCTL_ONE, 6262 }, 6263 { } 6264 }; 6265 6266 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 6267 { 6268 struct ctl_table *table; 6269 6270 table = kmemdup(ipv6_route_table_template, 6271 sizeof(ipv6_route_table_template), 6272 GFP_KERNEL); 6273 6274 if (table) { 6275 table[0].data = &net->ipv6.sysctl.flush_delay; 6276 table[0].extra1 = net; 6277 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 6278 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size; 6279 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6280 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 6281 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 6282 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 6283 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 6284 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 6285 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6286 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 6287 6288 /* Don't export sysctls to unprivileged users */ 6289 if (net->user_ns != &init_user_ns) 6290 table[0].procname = NULL; 6291 } 6292 6293 return table; 6294 } 6295 #endif 6296 6297 static int __net_init ip6_route_net_init(struct net *net) 6298 { 6299 int ret = -ENOMEM; 6300 6301 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 6302 sizeof(net->ipv6.ip6_dst_ops)); 6303 6304 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 6305 goto out_ip6_dst_ops; 6306 6307 net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); 6308 if (!net->ipv6.fib6_null_entry) 6309 goto out_ip6_dst_entries; 6310 memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, 6311 sizeof(*net->ipv6.fib6_null_entry)); 6312 6313 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 6314 sizeof(*net->ipv6.ip6_null_entry), 6315 GFP_KERNEL); 6316 if (!net->ipv6.ip6_null_entry) 6317 goto out_fib6_null_entry; 6318 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6319 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 6320 ip6_template_metrics, true); 6321 INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->rt6i_uncached); 6322 6323 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6324 net->ipv6.fib6_has_custom_rules = false; 6325 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 6326 sizeof(*net->ipv6.ip6_prohibit_entry), 6327 GFP_KERNEL); 6328 if (!net->ipv6.ip6_prohibit_entry) 6329 goto out_ip6_null_entry; 6330 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6331 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 6332 ip6_template_metrics, true); 6333 INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->rt6i_uncached); 6334 6335 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 6336 sizeof(*net->ipv6.ip6_blk_hole_entry), 6337 GFP_KERNEL); 6338 if (!net->ipv6.ip6_blk_hole_entry) 6339 goto out_ip6_prohibit_entry; 6340 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6341 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 6342 ip6_template_metrics, true); 6343 INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->rt6i_uncached); 6344 #ifdef CONFIG_IPV6_SUBTREES 6345 net->ipv6.fib6_routes_require_src = 0; 6346 #endif 6347 #endif 6348 6349 net->ipv6.sysctl.flush_delay = 0; 6350 net->ipv6.sysctl.ip6_rt_max_size = 4096; 6351 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 6352 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 6353 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 6354 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 6355 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 6356 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 6357 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 6358 6359 net->ipv6.ip6_rt_gc_expire = 30*HZ; 6360 6361 ret = 0; 6362 out: 6363 return ret; 6364 6365 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6366 out_ip6_prohibit_entry: 6367 kfree(net->ipv6.ip6_prohibit_entry); 6368 out_ip6_null_entry: 6369 kfree(net->ipv6.ip6_null_entry); 6370 #endif 6371 out_fib6_null_entry: 6372 kfree(net->ipv6.fib6_null_entry); 6373 out_ip6_dst_entries: 6374 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6375 out_ip6_dst_ops: 6376 goto out; 6377 } 6378 6379 static void __net_exit ip6_route_net_exit(struct net *net) 6380 { 6381 kfree(net->ipv6.fib6_null_entry); 6382 kfree(net->ipv6.ip6_null_entry); 6383 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6384 kfree(net->ipv6.ip6_prohibit_entry); 6385 kfree(net->ipv6.ip6_blk_hole_entry); 6386 #endif 6387 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6388 } 6389 6390 static int __net_init ip6_route_net_init_late(struct net *net) 6391 { 6392 #ifdef CONFIG_PROC_FS 6393 proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops, 6394 sizeof(struct ipv6_route_iter)); 6395 proc_create_net_single("rt6_stats", 0444, net->proc_net, 6396 rt6_stats_seq_show, NULL); 6397 #endif 6398 return 0; 6399 } 6400 6401 static void __net_exit ip6_route_net_exit_late(struct net *net) 6402 { 6403 #ifdef CONFIG_PROC_FS 6404 remove_proc_entry("ipv6_route", net->proc_net); 6405 remove_proc_entry("rt6_stats", net->proc_net); 6406 #endif 6407 } 6408 6409 static struct pernet_operations ip6_route_net_ops = { 6410 .init = ip6_route_net_init, 6411 .exit = ip6_route_net_exit, 6412 }; 6413 6414 static int __net_init ipv6_inetpeer_init(struct net *net) 6415 { 6416 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 6417 6418 if (!bp) 6419 return -ENOMEM; 6420 inet_peer_base_init(bp); 6421 net->ipv6.peers = bp; 6422 return 0; 6423 } 6424 6425 static void __net_exit ipv6_inetpeer_exit(struct net *net) 6426 { 6427 struct inet_peer_base *bp = net->ipv6.peers; 6428 6429 net->ipv6.peers = NULL; 6430 inetpeer_invalidate_tree(bp); 6431 kfree(bp); 6432 } 6433 6434 static struct pernet_operations ipv6_inetpeer_ops = { 6435 .init = ipv6_inetpeer_init, 6436 .exit = ipv6_inetpeer_exit, 6437 }; 6438 6439 static struct pernet_operations ip6_route_net_late_ops = { 6440 .init = ip6_route_net_init_late, 6441 .exit = ip6_route_net_exit_late, 6442 }; 6443 6444 static struct notifier_block ip6_route_dev_notifier = { 6445 .notifier_call = ip6_route_dev_notify, 6446 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 6447 }; 6448 6449 void __init ip6_route_init_special_entries(void) 6450 { 6451 /* Registering of the loopback is done before this portion of code, 6452 * the loopback reference in rt6_info will not be taken, do it 6453 * manually for init_net */ 6454 init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; 6455 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 6456 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6457 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6458 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 6459 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6460 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 6461 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6462 #endif 6463 } 6464 6465 #if IS_BUILTIN(CONFIG_IPV6) 6466 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6467 DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt) 6468 6469 BTF_ID_LIST(btf_fib6_info_id) 6470 BTF_ID(struct, fib6_info) 6471 6472 static const struct bpf_iter_seq_info ipv6_route_seq_info = { 6473 .seq_ops = &ipv6_route_seq_ops, 6474 .init_seq_private = bpf_iter_init_seq_net, 6475 .fini_seq_private = bpf_iter_fini_seq_net, 6476 .seq_priv_size = sizeof(struct ipv6_route_iter), 6477 }; 6478 6479 static struct bpf_iter_reg ipv6_route_reg_info = { 6480 .target = "ipv6_route", 6481 .ctx_arg_info_size = 1, 6482 .ctx_arg_info = { 6483 { offsetof(struct bpf_iter__ipv6_route, rt), 6484 PTR_TO_BTF_ID_OR_NULL }, 6485 }, 6486 .seq_info = &ipv6_route_seq_info, 6487 }; 6488 6489 static int __init bpf_iter_register(void) 6490 { 6491 ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id; 6492 return bpf_iter_reg_target(&ipv6_route_reg_info); 6493 } 6494 6495 static void bpf_iter_unregister(void) 6496 { 6497 bpf_iter_unreg_target(&ipv6_route_reg_info); 6498 } 6499 #endif 6500 #endif 6501 6502 int __init ip6_route_init(void) 6503 { 6504 int ret; 6505 int cpu; 6506 6507 ret = -ENOMEM; 6508 ip6_dst_ops_template.kmem_cachep = 6509 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 6510 SLAB_HWCACHE_ALIGN, NULL); 6511 if (!ip6_dst_ops_template.kmem_cachep) 6512 goto out; 6513 6514 ret = dst_entries_init(&ip6_dst_blackhole_ops); 6515 if (ret) 6516 goto out_kmem_cache; 6517 6518 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 6519 if (ret) 6520 goto out_dst_entries; 6521 6522 ret = register_pernet_subsys(&ip6_route_net_ops); 6523 if (ret) 6524 goto out_register_inetpeer; 6525 6526 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 6527 6528 ret = fib6_init(); 6529 if (ret) 6530 goto out_register_subsys; 6531 6532 ret = xfrm6_init(); 6533 if (ret) 6534 goto out_fib6_init; 6535 6536 ret = fib6_rules_init(); 6537 if (ret) 6538 goto xfrm6_init; 6539 6540 ret = register_pernet_subsys(&ip6_route_net_late_ops); 6541 if (ret) 6542 goto fib6_rules_init; 6543 6544 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, 6545 inet6_rtm_newroute, NULL, 0); 6546 if (ret < 0) 6547 goto out_register_late_subsys; 6548 6549 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, 6550 inet6_rtm_delroute, NULL, 0); 6551 if (ret < 0) 6552 goto out_register_late_subsys; 6553 6554 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, 6555 inet6_rtm_getroute, NULL, 6556 RTNL_FLAG_DOIT_UNLOCKED); 6557 if (ret < 0) 6558 goto out_register_late_subsys; 6559 6560 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 6561 if (ret) 6562 goto out_register_late_subsys; 6563 6564 #if IS_BUILTIN(CONFIG_IPV6) 6565 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6566 ret = bpf_iter_register(); 6567 if (ret) 6568 goto out_register_late_subsys; 6569 #endif 6570 #endif 6571 6572 for_each_possible_cpu(cpu) { 6573 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 6574 6575 INIT_LIST_HEAD(&ul->head); 6576 spin_lock_init(&ul->lock); 6577 } 6578 6579 out: 6580 return ret; 6581 6582 out_register_late_subsys: 6583 rtnl_unregister_all(PF_INET6); 6584 unregister_pernet_subsys(&ip6_route_net_late_ops); 6585 fib6_rules_init: 6586 fib6_rules_cleanup(); 6587 xfrm6_init: 6588 xfrm6_fini(); 6589 out_fib6_init: 6590 fib6_gc_cleanup(); 6591 out_register_subsys: 6592 unregister_pernet_subsys(&ip6_route_net_ops); 6593 out_register_inetpeer: 6594 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6595 out_dst_entries: 6596 dst_entries_destroy(&ip6_dst_blackhole_ops); 6597 out_kmem_cache: 6598 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6599 goto out; 6600 } 6601 6602 void ip6_route_cleanup(void) 6603 { 6604 #if IS_BUILTIN(CONFIG_IPV6) 6605 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6606 bpf_iter_unregister(); 6607 #endif 6608 #endif 6609 unregister_netdevice_notifier(&ip6_route_dev_notifier); 6610 unregister_pernet_subsys(&ip6_route_net_late_ops); 6611 fib6_rules_cleanup(); 6612 xfrm6_fini(); 6613 fib6_gc_cleanup(); 6614 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6615 unregister_pernet_subsys(&ip6_route_net_ops); 6616 dst_entries_destroy(&ip6_dst_blackhole_ops); 6617 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6618 } 6619