xref: /linux/net/ipv6/route.c (revision 6b8e327cfa2dfb9da2bd70326494a1f5ca9968f7)
1 /*
2  *	Linux INET6 implementation
3  *	FIB front-end.
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*	Changes:
15  *
16  *	YOSHIFUJI Hideaki @USAGI
17  *		reworked default router selection.
18  *		- respect outgoing interface
19  *		- select from (probably) reachable routers (i.e.
20  *		routers in REACHABLE, STALE, DELAY or PROBE states).
21  *		- always select the same router if it is (probably)
22  *		reachable.  otherwise, round-robin the list.
23  *	Ville Nuorvala
24  *		Fixed routing subtrees.
25  */
26 
27 #define pr_fmt(fmt) "IPv6: " fmt
28 
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/types.h>
33 #include <linux/times.h>
34 #include <linux/socket.h>
35 #include <linux/sockios.h>
36 #include <linux/net.h>
37 #include <linux/route.h>
38 #include <linux/netdevice.h>
39 #include <linux/in6.h>
40 #include <linux/mroute6.h>
41 #include <linux/init.h>
42 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/nsproxy.h>
46 #include <linux/slab.h>
47 #include <linux/jhash.h>
48 #include <net/net_namespace.h>
49 #include <net/snmp.h>
50 #include <net/ipv6.h>
51 #include <net/ip6_fib.h>
52 #include <net/ip6_route.h>
53 #include <net/ndisc.h>
54 #include <net/addrconf.h>
55 #include <net/tcp.h>
56 #include <linux/rtnetlink.h>
57 #include <net/dst.h>
58 #include <net/dst_metadata.h>
59 #include <net/xfrm.h>
60 #include <net/netevent.h>
61 #include <net/netlink.h>
62 #include <net/nexthop.h>
63 #include <net/lwtunnel.h>
64 #include <net/ip_tunnels.h>
65 #include <net/l3mdev.h>
66 #include <net/ip.h>
67 #include <linux/uaccess.h>
68 
69 #ifdef CONFIG_SYSCTL
70 #include <linux/sysctl.h>
71 #endif
72 
73 static int ip6_rt_type_to_error(u8 fib6_type);
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/fib6.h>
77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
78 #undef CREATE_TRACE_POINTS
79 
80 enum rt6_nud_state {
81 	RT6_NUD_FAIL_HARD = -3,
82 	RT6_NUD_FAIL_PROBE = -2,
83 	RT6_NUD_FAIL_DO_RR = -1,
84 	RT6_NUD_SUCCEED = 1
85 };
86 
87 static struct dst_entry	*ip6_dst_check(struct dst_entry *dst, u32 cookie);
88 static unsigned int	 ip6_default_advmss(const struct dst_entry *dst);
89 static unsigned int	 ip6_mtu(const struct dst_entry *dst);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void		ip6_dst_destroy(struct dst_entry *);
92 static void		ip6_dst_ifdown(struct dst_entry *,
93 				       struct net_device *dev, int how);
94 static int		 ip6_dst_gc(struct dst_ops *ops);
95 
96 static int		ip6_pkt_discard(struct sk_buff *skb);
97 static int		ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
98 static int		ip6_pkt_prohibit(struct sk_buff *skb);
99 static int		ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
100 static void		ip6_link_failure(struct sk_buff *skb);
101 static void		ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
102 					   struct sk_buff *skb, u32 mtu);
103 static void		rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
104 					struct sk_buff *skb);
105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict);
106 static size_t rt6_nlmsg_size(struct fib6_info *rt);
107 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
108 			 struct fib6_info *rt, struct dst_entry *dst,
109 			 struct in6_addr *dest, struct in6_addr *src,
110 			 int iif, int type, u32 portid, u32 seq,
111 			 unsigned int flags);
112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
113 					   struct in6_addr *daddr,
114 					   struct in6_addr *saddr);
115 
116 #ifdef CONFIG_IPV6_ROUTE_INFO
117 static struct fib6_info *rt6_add_route_info(struct net *net,
118 					   const struct in6_addr *prefix, int prefixlen,
119 					   const struct in6_addr *gwaddr,
120 					   struct net_device *dev,
121 					   unsigned int pref);
122 static struct fib6_info *rt6_get_route_info(struct net *net,
123 					   const struct in6_addr *prefix, int prefixlen,
124 					   const struct in6_addr *gwaddr,
125 					   struct net_device *dev);
126 #endif
127 
128 struct uncached_list {
129 	spinlock_t		lock;
130 	struct list_head	head;
131 };
132 
133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
134 
135 void rt6_uncached_list_add(struct rt6_info *rt)
136 {
137 	struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
138 
139 	rt->rt6i_uncached_list = ul;
140 
141 	spin_lock_bh(&ul->lock);
142 	list_add_tail(&rt->rt6i_uncached, &ul->head);
143 	spin_unlock_bh(&ul->lock);
144 }
145 
146 void rt6_uncached_list_del(struct rt6_info *rt)
147 {
148 	if (!list_empty(&rt->rt6i_uncached)) {
149 		struct uncached_list *ul = rt->rt6i_uncached_list;
150 		struct net *net = dev_net(rt->dst.dev);
151 
152 		spin_lock_bh(&ul->lock);
153 		list_del(&rt->rt6i_uncached);
154 		atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache);
155 		spin_unlock_bh(&ul->lock);
156 	}
157 }
158 
159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev)
160 {
161 	struct net_device *loopback_dev = net->loopback_dev;
162 	int cpu;
163 
164 	if (dev == loopback_dev)
165 		return;
166 
167 	for_each_possible_cpu(cpu) {
168 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
169 		struct rt6_info *rt;
170 
171 		spin_lock_bh(&ul->lock);
172 		list_for_each_entry(rt, &ul->head, rt6i_uncached) {
173 			struct inet6_dev *rt_idev = rt->rt6i_idev;
174 			struct net_device *rt_dev = rt->dst.dev;
175 
176 			if (rt_idev->dev == dev) {
177 				rt->rt6i_idev = in6_dev_get(loopback_dev);
178 				in6_dev_put(rt_idev);
179 			}
180 
181 			if (rt_dev == dev) {
182 				rt->dst.dev = loopback_dev;
183 				dev_hold(rt->dst.dev);
184 				dev_put(rt_dev);
185 			}
186 		}
187 		spin_unlock_bh(&ul->lock);
188 	}
189 }
190 
191 static inline const void *choose_neigh_daddr(const struct in6_addr *p,
192 					     struct sk_buff *skb,
193 					     const void *daddr)
194 {
195 	if (!ipv6_addr_any(p))
196 		return (const void *) p;
197 	else if (skb)
198 		return &ipv6_hdr(skb)->daddr;
199 	return daddr;
200 }
201 
202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
203 				   struct net_device *dev,
204 				   struct sk_buff *skb,
205 				   const void *daddr)
206 {
207 	struct neighbour *n;
208 
209 	daddr = choose_neigh_daddr(gw, skb, daddr);
210 	n = __ipv6_neigh_lookup(dev, daddr);
211 	if (n)
212 		return n;
213 	return neigh_create(&nd_tbl, daddr, dev);
214 }
215 
216 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
217 					      struct sk_buff *skb,
218 					      const void *daddr)
219 {
220 	const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
221 
222 	return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr);
223 }
224 
225 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
226 {
227 	struct net_device *dev = dst->dev;
228 	struct rt6_info *rt = (struct rt6_info *)dst;
229 
230 	daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr);
231 	if (!daddr)
232 		return;
233 	if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
234 		return;
235 	if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
236 		return;
237 	__ipv6_confirm_neigh(dev, daddr);
238 }
239 
240 static struct dst_ops ip6_dst_ops_template = {
241 	.family			=	AF_INET6,
242 	.gc			=	ip6_dst_gc,
243 	.gc_thresh		=	1024,
244 	.check			=	ip6_dst_check,
245 	.default_advmss		=	ip6_default_advmss,
246 	.mtu			=	ip6_mtu,
247 	.cow_metrics		=	dst_cow_metrics_generic,
248 	.destroy		=	ip6_dst_destroy,
249 	.ifdown			=	ip6_dst_ifdown,
250 	.negative_advice	=	ip6_negative_advice,
251 	.link_failure		=	ip6_link_failure,
252 	.update_pmtu		=	ip6_rt_update_pmtu,
253 	.redirect		=	rt6_do_redirect,
254 	.local_out		=	__ip6_local_out,
255 	.neigh_lookup		=	ip6_dst_neigh_lookup,
256 	.confirm_neigh		=	ip6_confirm_neigh,
257 };
258 
259 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst)
260 {
261 	unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
262 
263 	return mtu ? : dst->dev->mtu;
264 }
265 
266 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk,
267 					 struct sk_buff *skb, u32 mtu)
268 {
269 }
270 
271 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk,
272 				      struct sk_buff *skb)
273 {
274 }
275 
276 static struct dst_ops ip6_dst_blackhole_ops = {
277 	.family			=	AF_INET6,
278 	.destroy		=	ip6_dst_destroy,
279 	.check			=	ip6_dst_check,
280 	.mtu			=	ip6_blackhole_mtu,
281 	.default_advmss		=	ip6_default_advmss,
282 	.update_pmtu		=	ip6_rt_blackhole_update_pmtu,
283 	.redirect		=	ip6_rt_blackhole_redirect,
284 	.cow_metrics		=	dst_cow_metrics_generic,
285 	.neigh_lookup		=	ip6_dst_neigh_lookup,
286 };
287 
288 static const u32 ip6_template_metrics[RTAX_MAX] = {
289 	[RTAX_HOPLIMIT - 1] = 0,
290 };
291 
292 static const struct fib6_info fib6_null_entry_template = {
293 	.fib6_flags	= (RTF_REJECT | RTF_NONEXTHOP),
294 	.fib6_protocol  = RTPROT_KERNEL,
295 	.fib6_metric	= ~(u32)0,
296 	.fib6_ref	= ATOMIC_INIT(1),
297 	.fib6_type	= RTN_UNREACHABLE,
298 	.fib6_metrics	= (struct dst_metrics *)&dst_default_metrics,
299 };
300 
301 static const struct rt6_info ip6_null_entry_template = {
302 	.dst = {
303 		.__refcnt	= ATOMIC_INIT(1),
304 		.__use		= 1,
305 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
306 		.error		= -ENETUNREACH,
307 		.input		= ip6_pkt_discard,
308 		.output		= ip6_pkt_discard_out,
309 	},
310 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
311 };
312 
313 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
314 
315 static const struct rt6_info ip6_prohibit_entry_template = {
316 	.dst = {
317 		.__refcnt	= ATOMIC_INIT(1),
318 		.__use		= 1,
319 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
320 		.error		= -EACCES,
321 		.input		= ip6_pkt_prohibit,
322 		.output		= ip6_pkt_prohibit_out,
323 	},
324 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
325 };
326 
327 static const struct rt6_info ip6_blk_hole_entry_template = {
328 	.dst = {
329 		.__refcnt	= ATOMIC_INIT(1),
330 		.__use		= 1,
331 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
332 		.error		= -EINVAL,
333 		.input		= dst_discard,
334 		.output		= dst_discard_out,
335 	},
336 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
337 };
338 
339 #endif
340 
341 static void rt6_info_init(struct rt6_info *rt)
342 {
343 	struct dst_entry *dst = &rt->dst;
344 
345 	memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst));
346 	INIT_LIST_HEAD(&rt->rt6i_uncached);
347 }
348 
349 /* allocate dst with ip6_dst_ops */
350 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
351 			       int flags)
352 {
353 	struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
354 					1, DST_OBSOLETE_FORCE_CHK, flags);
355 
356 	if (rt) {
357 		rt6_info_init(rt);
358 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
359 	}
360 
361 	return rt;
362 }
363 EXPORT_SYMBOL(ip6_dst_alloc);
364 
365 static void ip6_dst_destroy(struct dst_entry *dst)
366 {
367 	struct rt6_info *rt = (struct rt6_info *)dst;
368 	struct fib6_info *from;
369 	struct inet6_dev *idev;
370 
371 	dst_destroy_metrics_generic(dst);
372 	rt6_uncached_list_del(rt);
373 
374 	idev = rt->rt6i_idev;
375 	if (idev) {
376 		rt->rt6i_idev = NULL;
377 		in6_dev_put(idev);
378 	}
379 
380 	rcu_read_lock();
381 	from = rcu_dereference(rt->from);
382 	rcu_assign_pointer(rt->from, NULL);
383 	fib6_info_release(from);
384 	rcu_read_unlock();
385 }
386 
387 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
388 			   int how)
389 {
390 	struct rt6_info *rt = (struct rt6_info *)dst;
391 	struct inet6_dev *idev = rt->rt6i_idev;
392 	struct net_device *loopback_dev =
393 		dev_net(dev)->loopback_dev;
394 
395 	if (idev && idev->dev != loopback_dev) {
396 		struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev);
397 		if (loopback_idev) {
398 			rt->rt6i_idev = loopback_idev;
399 			in6_dev_put(idev);
400 		}
401 	}
402 }
403 
404 static bool __rt6_check_expired(const struct rt6_info *rt)
405 {
406 	if (rt->rt6i_flags & RTF_EXPIRES)
407 		return time_after(jiffies, rt->dst.expires);
408 	else
409 		return false;
410 }
411 
412 static bool rt6_check_expired(const struct rt6_info *rt)
413 {
414 	struct fib6_info *from;
415 
416 	from = rcu_dereference(rt->from);
417 
418 	if (rt->rt6i_flags & RTF_EXPIRES) {
419 		if (time_after(jiffies, rt->dst.expires))
420 			return true;
421 	} else if (from) {
422 		return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
423 			fib6_check_expired(from);
424 	}
425 	return false;
426 }
427 
428 struct fib6_info *fib6_multipath_select(const struct net *net,
429 					struct fib6_info *match,
430 					struct flowi6 *fl6, int oif,
431 					const struct sk_buff *skb,
432 					int strict)
433 {
434 	struct fib6_info *sibling, *next_sibling;
435 
436 	/* We might have already computed the hash for ICMPv6 errors. In such
437 	 * case it will always be non-zero. Otherwise now is the time to do it.
438 	 */
439 	if (!fl6->mp_hash)
440 		fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
441 
442 	if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound))
443 		return match;
444 
445 	list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
446 				 fib6_siblings) {
447 		int nh_upper_bound;
448 
449 		nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound);
450 		if (fl6->mp_hash > nh_upper_bound)
451 			continue;
452 		if (rt6_score_route(sibling, oif, strict) < 0)
453 			break;
454 		match = sibling;
455 		break;
456 	}
457 
458 	return match;
459 }
460 
461 /*
462  *	Route lookup. rcu_read_lock() should be held.
463  */
464 
465 static inline struct fib6_info *rt6_device_match(struct net *net,
466 						 struct fib6_info *rt,
467 						    const struct in6_addr *saddr,
468 						    int oif,
469 						    int flags)
470 {
471 	struct fib6_info *sprt;
472 
473 	if (!oif && ipv6_addr_any(saddr) &&
474 	    !(rt->fib6_nh.nh_flags & RTNH_F_DEAD))
475 		return rt;
476 
477 	for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) {
478 		const struct net_device *dev = sprt->fib6_nh.nh_dev;
479 
480 		if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD)
481 			continue;
482 
483 		if (oif) {
484 			if (dev->ifindex == oif)
485 				return sprt;
486 		} else {
487 			if (ipv6_chk_addr(net, saddr, dev,
488 					  flags & RT6_LOOKUP_F_IFACE))
489 				return sprt;
490 		}
491 	}
492 
493 	if (oif && flags & RT6_LOOKUP_F_IFACE)
494 		return net->ipv6.fib6_null_entry;
495 
496 	return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt;
497 }
498 
499 #ifdef CONFIG_IPV6_ROUTER_PREF
500 struct __rt6_probe_work {
501 	struct work_struct work;
502 	struct in6_addr target;
503 	struct net_device *dev;
504 };
505 
506 static void rt6_probe_deferred(struct work_struct *w)
507 {
508 	struct in6_addr mcaddr;
509 	struct __rt6_probe_work *work =
510 		container_of(w, struct __rt6_probe_work, work);
511 
512 	addrconf_addr_solict_mult(&work->target, &mcaddr);
513 	ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
514 	dev_put(work->dev);
515 	kfree(work);
516 }
517 
518 static void rt6_probe(struct fib6_info *rt)
519 {
520 	struct __rt6_probe_work *work;
521 	const struct in6_addr *nh_gw;
522 	struct neighbour *neigh;
523 	struct net_device *dev;
524 
525 	/*
526 	 * Okay, this does not seem to be appropriate
527 	 * for now, however, we need to check if it
528 	 * is really so; aka Router Reachability Probing.
529 	 *
530 	 * Router Reachability Probe MUST be rate-limited
531 	 * to no more than one per minute.
532 	 */
533 	if (!rt || !(rt->fib6_flags & RTF_GATEWAY))
534 		return;
535 
536 	nh_gw = &rt->fib6_nh.nh_gw;
537 	dev = rt->fib6_nh.nh_dev;
538 	rcu_read_lock_bh();
539 	neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
540 	if (neigh) {
541 		struct inet6_dev *idev;
542 
543 		if (neigh->nud_state & NUD_VALID)
544 			goto out;
545 
546 		idev = __in6_dev_get(dev);
547 		work = NULL;
548 		write_lock(&neigh->lock);
549 		if (!(neigh->nud_state & NUD_VALID) &&
550 		    time_after(jiffies,
551 			       neigh->updated + idev->cnf.rtr_probe_interval)) {
552 			work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 			if (work)
554 				__neigh_set_probe_once(neigh);
555 		}
556 		write_unlock(&neigh->lock);
557 	} else {
558 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
559 	}
560 
561 	if (work) {
562 		INIT_WORK(&work->work, rt6_probe_deferred);
563 		work->target = *nh_gw;
564 		dev_hold(dev);
565 		work->dev = dev;
566 		schedule_work(&work->work);
567 	}
568 
569 out:
570 	rcu_read_unlock_bh();
571 }
572 #else
573 static inline void rt6_probe(struct fib6_info *rt)
574 {
575 }
576 #endif
577 
578 /*
579  * Default Router Selection (RFC 2461 6.3.6)
580  */
581 static inline int rt6_check_dev(struct fib6_info *rt, int oif)
582 {
583 	const struct net_device *dev = rt->fib6_nh.nh_dev;
584 
585 	if (!oif || dev->ifindex == oif)
586 		return 2;
587 	return 0;
588 }
589 
590 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt)
591 {
592 	enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
593 	struct neighbour *neigh;
594 
595 	if (rt->fib6_flags & RTF_NONEXTHOP ||
596 	    !(rt->fib6_flags & RTF_GATEWAY))
597 		return RT6_NUD_SUCCEED;
598 
599 	rcu_read_lock_bh();
600 	neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev,
601 					  &rt->fib6_nh.nh_gw);
602 	if (neigh) {
603 		read_lock(&neigh->lock);
604 		if (neigh->nud_state & NUD_VALID)
605 			ret = RT6_NUD_SUCCEED;
606 #ifdef CONFIG_IPV6_ROUTER_PREF
607 		else if (!(neigh->nud_state & NUD_FAILED))
608 			ret = RT6_NUD_SUCCEED;
609 		else
610 			ret = RT6_NUD_FAIL_PROBE;
611 #endif
612 		read_unlock(&neigh->lock);
613 	} else {
614 		ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
615 		      RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
616 	}
617 	rcu_read_unlock_bh();
618 
619 	return ret;
620 }
621 
622 static int rt6_score_route(struct fib6_info *rt, int oif, int strict)
623 {
624 	int m;
625 
626 	m = rt6_check_dev(rt, oif);
627 	if (!m && (strict & RT6_LOOKUP_F_IFACE))
628 		return RT6_NUD_FAIL_HARD;
629 #ifdef CONFIG_IPV6_ROUTER_PREF
630 	m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2;
631 #endif
632 	if (strict & RT6_LOOKUP_F_REACHABLE) {
633 		int n = rt6_check_neigh(rt);
634 		if (n < 0)
635 			return n;
636 	}
637 	return m;
638 }
639 
640 /* called with rc_read_lock held */
641 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i)
642 {
643 	const struct net_device *dev = fib6_info_nh_dev(f6i);
644 	bool rc = false;
645 
646 	if (dev) {
647 		const struct inet6_dev *idev = __in6_dev_get(dev);
648 
649 		rc = !!idev->cnf.ignore_routes_with_linkdown;
650 	}
651 
652 	return rc;
653 }
654 
655 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict,
656 				   int *mpri, struct fib6_info *match,
657 				   bool *do_rr)
658 {
659 	int m;
660 	bool match_do_rr = false;
661 
662 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
663 		goto out;
664 
665 	if (fib6_ignore_linkdown(rt) &&
666 	    rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
667 	    !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
668 		goto out;
669 
670 	if (fib6_check_expired(rt))
671 		goto out;
672 
673 	m = rt6_score_route(rt, oif, strict);
674 	if (m == RT6_NUD_FAIL_DO_RR) {
675 		match_do_rr = true;
676 		m = 0; /* lowest valid score */
677 	} else if (m == RT6_NUD_FAIL_HARD) {
678 		goto out;
679 	}
680 
681 	if (strict & RT6_LOOKUP_F_REACHABLE)
682 		rt6_probe(rt);
683 
684 	/* note that m can be RT6_NUD_FAIL_PROBE at this point */
685 	if (m > *mpri) {
686 		*do_rr = match_do_rr;
687 		*mpri = m;
688 		match = rt;
689 	}
690 out:
691 	return match;
692 }
693 
694 static struct fib6_info *find_rr_leaf(struct fib6_node *fn,
695 				     struct fib6_info *leaf,
696 				     struct fib6_info *rr_head,
697 				     u32 metric, int oif, int strict,
698 				     bool *do_rr)
699 {
700 	struct fib6_info *rt, *match, *cont;
701 	int mpri = -1;
702 
703 	match = NULL;
704 	cont = NULL;
705 	for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) {
706 		if (rt->fib6_metric != metric) {
707 			cont = rt;
708 			break;
709 		}
710 
711 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
712 	}
713 
714 	for (rt = leaf; rt && rt != rr_head;
715 	     rt = rcu_dereference(rt->fib6_next)) {
716 		if (rt->fib6_metric != metric) {
717 			cont = rt;
718 			break;
719 		}
720 
721 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
722 	}
723 
724 	if (match || !cont)
725 		return match;
726 
727 	for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next))
728 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
729 
730 	return match;
731 }
732 
733 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn,
734 				   int oif, int strict)
735 {
736 	struct fib6_info *leaf = rcu_dereference(fn->leaf);
737 	struct fib6_info *match, *rt0;
738 	bool do_rr = false;
739 	int key_plen;
740 
741 	if (!leaf || leaf == net->ipv6.fib6_null_entry)
742 		return net->ipv6.fib6_null_entry;
743 
744 	rt0 = rcu_dereference(fn->rr_ptr);
745 	if (!rt0)
746 		rt0 = leaf;
747 
748 	/* Double check to make sure fn is not an intermediate node
749 	 * and fn->leaf does not points to its child's leaf
750 	 * (This might happen if all routes under fn are deleted from
751 	 * the tree and fib6_repair_tree() is called on the node.)
752 	 */
753 	key_plen = rt0->fib6_dst.plen;
754 #ifdef CONFIG_IPV6_SUBTREES
755 	if (rt0->fib6_src.plen)
756 		key_plen = rt0->fib6_src.plen;
757 #endif
758 	if (fn->fn_bit != key_plen)
759 		return net->ipv6.fib6_null_entry;
760 
761 	match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict,
762 			     &do_rr);
763 
764 	if (do_rr) {
765 		struct fib6_info *next = rcu_dereference(rt0->fib6_next);
766 
767 		/* no entries matched; do round-robin */
768 		if (!next || next->fib6_metric != rt0->fib6_metric)
769 			next = leaf;
770 
771 		if (next != rt0) {
772 			spin_lock_bh(&leaf->fib6_table->tb6_lock);
773 			/* make sure next is not being deleted from the tree */
774 			if (next->fib6_node)
775 				rcu_assign_pointer(fn->rr_ptr, next);
776 			spin_unlock_bh(&leaf->fib6_table->tb6_lock);
777 		}
778 	}
779 
780 	return match ? match : net->ipv6.fib6_null_entry;
781 }
782 
783 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt)
784 {
785 	return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY));
786 }
787 
788 #ifdef CONFIG_IPV6_ROUTE_INFO
789 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
790 		  const struct in6_addr *gwaddr)
791 {
792 	struct net *net = dev_net(dev);
793 	struct route_info *rinfo = (struct route_info *) opt;
794 	struct in6_addr prefix_buf, *prefix;
795 	unsigned int pref;
796 	unsigned long lifetime;
797 	struct fib6_info *rt;
798 
799 	if (len < sizeof(struct route_info)) {
800 		return -EINVAL;
801 	}
802 
803 	/* Sanity check for prefix_len and length */
804 	if (rinfo->length > 3) {
805 		return -EINVAL;
806 	} else if (rinfo->prefix_len > 128) {
807 		return -EINVAL;
808 	} else if (rinfo->prefix_len > 64) {
809 		if (rinfo->length < 2) {
810 			return -EINVAL;
811 		}
812 	} else if (rinfo->prefix_len > 0) {
813 		if (rinfo->length < 1) {
814 			return -EINVAL;
815 		}
816 	}
817 
818 	pref = rinfo->route_pref;
819 	if (pref == ICMPV6_ROUTER_PREF_INVALID)
820 		return -EINVAL;
821 
822 	lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
823 
824 	if (rinfo->length == 3)
825 		prefix = (struct in6_addr *)rinfo->prefix;
826 	else {
827 		/* this function is safe */
828 		ipv6_addr_prefix(&prefix_buf,
829 				 (struct in6_addr *)rinfo->prefix,
830 				 rinfo->prefix_len);
831 		prefix = &prefix_buf;
832 	}
833 
834 	if (rinfo->prefix_len == 0)
835 		rt = rt6_get_dflt_router(net, gwaddr, dev);
836 	else
837 		rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
838 					gwaddr, dev);
839 
840 	if (rt && !lifetime) {
841 		ip6_del_rt(net, rt);
842 		rt = NULL;
843 	}
844 
845 	if (!rt && lifetime)
846 		rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
847 					dev, pref);
848 	else if (rt)
849 		rt->fib6_flags = RTF_ROUTEINFO |
850 				 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
851 
852 	if (rt) {
853 		if (!addrconf_finite_timeout(lifetime))
854 			fib6_clean_expires(rt);
855 		else
856 			fib6_set_expires(rt, jiffies + HZ * lifetime);
857 
858 		fib6_info_release(rt);
859 	}
860 	return 0;
861 }
862 #endif
863 
864 /*
865  *	Misc support functions
866  */
867 
868 /* called with rcu_lock held */
869 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt)
870 {
871 	struct net_device *dev = rt->fib6_nh.nh_dev;
872 
873 	if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
874 		/* for copies of local routes, dst->dev needs to be the
875 		 * device if it is a master device, the master device if
876 		 * device is enslaved, and the loopback as the default
877 		 */
878 		if (netif_is_l3_slave(dev) &&
879 		    !rt6_need_strict(&rt->fib6_dst.addr))
880 			dev = l3mdev_master_dev_rcu(dev);
881 		else if (!netif_is_l3_master(dev))
882 			dev = dev_net(dev)->loopback_dev;
883 		/* last case is netif_is_l3_master(dev) is true in which
884 		 * case we want dev returned to be dev
885 		 */
886 	}
887 
888 	return dev;
889 }
890 
891 static const int fib6_prop[RTN_MAX + 1] = {
892 	[RTN_UNSPEC]	= 0,
893 	[RTN_UNICAST]	= 0,
894 	[RTN_LOCAL]	= 0,
895 	[RTN_BROADCAST]	= 0,
896 	[RTN_ANYCAST]	= 0,
897 	[RTN_MULTICAST]	= 0,
898 	[RTN_BLACKHOLE]	= -EINVAL,
899 	[RTN_UNREACHABLE] = -EHOSTUNREACH,
900 	[RTN_PROHIBIT]	= -EACCES,
901 	[RTN_THROW]	= -EAGAIN,
902 	[RTN_NAT]	= -EINVAL,
903 	[RTN_XRESOLVE]	= -EINVAL,
904 };
905 
906 static int ip6_rt_type_to_error(u8 fib6_type)
907 {
908 	return fib6_prop[fib6_type];
909 }
910 
911 static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
912 {
913 	unsigned short flags = 0;
914 
915 	if (rt->dst_nocount)
916 		flags |= DST_NOCOUNT;
917 	if (rt->dst_nopolicy)
918 		flags |= DST_NOPOLICY;
919 	if (rt->dst_host)
920 		flags |= DST_HOST;
921 
922 	return flags;
923 }
924 
925 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort)
926 {
927 	rt->dst.error = ip6_rt_type_to_error(ort->fib6_type);
928 
929 	switch (ort->fib6_type) {
930 	case RTN_BLACKHOLE:
931 		rt->dst.output = dst_discard_out;
932 		rt->dst.input = dst_discard;
933 		break;
934 	case RTN_PROHIBIT:
935 		rt->dst.output = ip6_pkt_prohibit_out;
936 		rt->dst.input = ip6_pkt_prohibit;
937 		break;
938 	case RTN_THROW:
939 	case RTN_UNREACHABLE:
940 	default:
941 		rt->dst.output = ip6_pkt_discard_out;
942 		rt->dst.input = ip6_pkt_discard;
943 		break;
944 	}
945 }
946 
947 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort)
948 {
949 	if (ort->fib6_flags & RTF_REJECT) {
950 		ip6_rt_init_dst_reject(rt, ort);
951 		return;
952 	}
953 
954 	rt->dst.error = 0;
955 	rt->dst.output = ip6_output;
956 
957 	if (ort->fib6_type == RTN_LOCAL || ort->fib6_type == RTN_ANYCAST) {
958 		rt->dst.input = ip6_input;
959 	} else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
960 		rt->dst.input = ip6_mc_input;
961 	} else {
962 		rt->dst.input = ip6_forward;
963 	}
964 
965 	if (ort->fib6_nh.nh_lwtstate) {
966 		rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
967 		lwtunnel_set_redirect(&rt->dst);
968 	}
969 
970 	rt->dst.lastuse = jiffies;
971 }
972 
973 /* Caller must already hold reference to @from */
974 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
975 {
976 	rt->rt6i_flags &= ~RTF_EXPIRES;
977 	rcu_assign_pointer(rt->from, from);
978 	dst_init_metrics(&rt->dst, from->fib6_metrics->metrics, true);
979 }
980 
981 /* Caller must already hold reference to @ort */
982 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort)
983 {
984 	struct net_device *dev = fib6_info_nh_dev(ort);
985 
986 	ip6_rt_init_dst(rt, ort);
987 
988 	rt->rt6i_dst = ort->fib6_dst;
989 	rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
990 	rt->rt6i_gateway = ort->fib6_nh.nh_gw;
991 	rt->rt6i_flags = ort->fib6_flags;
992 	rt6_set_from(rt, ort);
993 #ifdef CONFIG_IPV6_SUBTREES
994 	rt->rt6i_src = ort->fib6_src;
995 #endif
996 }
997 
998 static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
999 					struct in6_addr *saddr)
1000 {
1001 	struct fib6_node *pn, *sn;
1002 	while (1) {
1003 		if (fn->fn_flags & RTN_TL_ROOT)
1004 			return NULL;
1005 		pn = rcu_dereference(fn->parent);
1006 		sn = FIB6_SUBTREE(pn);
1007 		if (sn && sn != fn)
1008 			fn = fib6_node_lookup(sn, NULL, saddr);
1009 		else
1010 			fn = pn;
1011 		if (fn->fn_flags & RTN_RTINFO)
1012 			return fn;
1013 	}
1014 }
1015 
1016 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt,
1017 			  bool null_fallback)
1018 {
1019 	struct rt6_info *rt = *prt;
1020 
1021 	if (dst_hold_safe(&rt->dst))
1022 		return true;
1023 	if (null_fallback) {
1024 		rt = net->ipv6.ip6_null_entry;
1025 		dst_hold(&rt->dst);
1026 	} else {
1027 		rt = NULL;
1028 	}
1029 	*prt = rt;
1030 	return false;
1031 }
1032 
1033 /* called with rcu_lock held */
1034 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt)
1035 {
1036 	unsigned short flags = fib6_info_dst_flags(rt);
1037 	struct net_device *dev = rt->fib6_nh.nh_dev;
1038 	struct rt6_info *nrt;
1039 
1040 	if (!fib6_info_hold_safe(rt))
1041 		return NULL;
1042 
1043 	nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
1044 	if (nrt)
1045 		ip6_rt_copy_init(nrt, rt);
1046 	else
1047 		fib6_info_release(rt);
1048 
1049 	return nrt;
1050 }
1051 
1052 static struct rt6_info *ip6_pol_route_lookup(struct net *net,
1053 					     struct fib6_table *table,
1054 					     struct flowi6 *fl6,
1055 					     const struct sk_buff *skb,
1056 					     int flags)
1057 {
1058 	struct fib6_info *f6i;
1059 	struct fib6_node *fn;
1060 	struct rt6_info *rt;
1061 
1062 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1063 		flags &= ~RT6_LOOKUP_F_IFACE;
1064 
1065 	rcu_read_lock();
1066 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1067 restart:
1068 	f6i = rcu_dereference(fn->leaf);
1069 	if (!f6i) {
1070 		f6i = net->ipv6.fib6_null_entry;
1071 	} else {
1072 		f6i = rt6_device_match(net, f6i, &fl6->saddr,
1073 				      fl6->flowi6_oif, flags);
1074 		if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0)
1075 			f6i = fib6_multipath_select(net, f6i, fl6,
1076 						    fl6->flowi6_oif, skb,
1077 						    flags);
1078 	}
1079 	if (f6i == net->ipv6.fib6_null_entry) {
1080 		fn = fib6_backtrack(fn, &fl6->saddr);
1081 		if (fn)
1082 			goto restart;
1083 	}
1084 
1085 	trace_fib6_table_lookup(net, f6i, table, fl6);
1086 
1087 	/* Search through exception table */
1088 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1089 	if (rt) {
1090 		if (ip6_hold_safe(net, &rt, true))
1091 			dst_use_noref(&rt->dst, jiffies);
1092 	} else if (f6i == net->ipv6.fib6_null_entry) {
1093 		rt = net->ipv6.ip6_null_entry;
1094 		dst_hold(&rt->dst);
1095 	} else {
1096 		rt = ip6_create_rt_rcu(f6i);
1097 		if (!rt) {
1098 			rt = net->ipv6.ip6_null_entry;
1099 			dst_hold(&rt->dst);
1100 		}
1101 	}
1102 
1103 	rcu_read_unlock();
1104 
1105 	return rt;
1106 }
1107 
1108 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
1109 				   const struct sk_buff *skb, int flags)
1110 {
1111 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
1112 }
1113 EXPORT_SYMBOL_GPL(ip6_route_lookup);
1114 
1115 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
1116 			    const struct in6_addr *saddr, int oif,
1117 			    const struct sk_buff *skb, int strict)
1118 {
1119 	struct flowi6 fl6 = {
1120 		.flowi6_oif = oif,
1121 		.daddr = *daddr,
1122 	};
1123 	struct dst_entry *dst;
1124 	int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
1125 
1126 	if (saddr) {
1127 		memcpy(&fl6.saddr, saddr, sizeof(*saddr));
1128 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1129 	}
1130 
1131 	dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
1132 	if (dst->error == 0)
1133 		return (struct rt6_info *) dst;
1134 
1135 	dst_release(dst);
1136 
1137 	return NULL;
1138 }
1139 EXPORT_SYMBOL(rt6_lookup);
1140 
1141 /* ip6_ins_rt is called with FREE table->tb6_lock.
1142  * It takes new route entry, the addition fails by any reason the
1143  * route is released.
1144  * Caller must hold dst before calling it.
1145  */
1146 
1147 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
1148 			struct netlink_ext_ack *extack)
1149 {
1150 	int err;
1151 	struct fib6_table *table;
1152 
1153 	table = rt->fib6_table;
1154 	spin_lock_bh(&table->tb6_lock);
1155 	err = fib6_add(&table->tb6_root, rt, info, extack);
1156 	spin_unlock_bh(&table->tb6_lock);
1157 
1158 	return err;
1159 }
1160 
1161 int ip6_ins_rt(struct net *net, struct fib6_info *rt)
1162 {
1163 	struct nl_info info = {	.nl_net = net, };
1164 
1165 	return __ip6_ins_rt(rt, &info, NULL);
1166 }
1167 
1168 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort,
1169 					   const struct in6_addr *daddr,
1170 					   const struct in6_addr *saddr)
1171 {
1172 	struct net_device *dev;
1173 	struct rt6_info *rt;
1174 
1175 	/*
1176 	 *	Clone the route.
1177 	 */
1178 
1179 	if (!fib6_info_hold_safe(ort))
1180 		return NULL;
1181 
1182 	dev = ip6_rt_get_dev_rcu(ort);
1183 	rt = ip6_dst_alloc(dev_net(dev), dev, 0);
1184 	if (!rt) {
1185 		fib6_info_release(ort);
1186 		return NULL;
1187 	}
1188 
1189 	ip6_rt_copy_init(rt, ort);
1190 	rt->rt6i_flags |= RTF_CACHE;
1191 	rt->dst.flags |= DST_HOST;
1192 	rt->rt6i_dst.addr = *daddr;
1193 	rt->rt6i_dst.plen = 128;
1194 
1195 	if (!rt6_is_gw_or_nonexthop(ort)) {
1196 		if (ort->fib6_dst.plen != 128 &&
1197 		    ipv6_addr_equal(&ort->fib6_dst.addr, daddr))
1198 			rt->rt6i_flags |= RTF_ANYCAST;
1199 #ifdef CONFIG_IPV6_SUBTREES
1200 		if (rt->rt6i_src.plen && saddr) {
1201 			rt->rt6i_src.addr = *saddr;
1202 			rt->rt6i_src.plen = 128;
1203 		}
1204 #endif
1205 	}
1206 
1207 	return rt;
1208 }
1209 
1210 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt)
1211 {
1212 	unsigned short flags = fib6_info_dst_flags(rt);
1213 	struct net_device *dev;
1214 	struct rt6_info *pcpu_rt;
1215 
1216 	if (!fib6_info_hold_safe(rt))
1217 		return NULL;
1218 
1219 	rcu_read_lock();
1220 	dev = ip6_rt_get_dev_rcu(rt);
1221 	pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags);
1222 	rcu_read_unlock();
1223 	if (!pcpu_rt) {
1224 		fib6_info_release(rt);
1225 		return NULL;
1226 	}
1227 	ip6_rt_copy_init(pcpu_rt, rt);
1228 	pcpu_rt->rt6i_flags |= RTF_PCPU;
1229 	return pcpu_rt;
1230 }
1231 
1232 /* It should be called with rcu_read_lock() acquired */
1233 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt)
1234 {
1235 	struct rt6_info *pcpu_rt, **p;
1236 
1237 	p = this_cpu_ptr(rt->rt6i_pcpu);
1238 	pcpu_rt = *p;
1239 
1240 	if (pcpu_rt)
1241 		ip6_hold_safe(NULL, &pcpu_rt, false);
1242 
1243 	return pcpu_rt;
1244 }
1245 
1246 static struct rt6_info *rt6_make_pcpu_route(struct net *net,
1247 					    struct fib6_info *rt)
1248 {
1249 	struct rt6_info *pcpu_rt, *prev, **p;
1250 
1251 	pcpu_rt = ip6_rt_pcpu_alloc(rt);
1252 	if (!pcpu_rt) {
1253 		dst_hold(&net->ipv6.ip6_null_entry->dst);
1254 		return net->ipv6.ip6_null_entry;
1255 	}
1256 
1257 	dst_hold(&pcpu_rt->dst);
1258 	p = this_cpu_ptr(rt->rt6i_pcpu);
1259 	prev = cmpxchg(p, NULL, pcpu_rt);
1260 	BUG_ON(prev);
1261 
1262 	return pcpu_rt;
1263 }
1264 
1265 /* exception hash table implementation
1266  */
1267 static DEFINE_SPINLOCK(rt6_exception_lock);
1268 
1269 /* Remove rt6_ex from hash table and free the memory
1270  * Caller must hold rt6_exception_lock
1271  */
1272 static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
1273 				 struct rt6_exception *rt6_ex)
1274 {
1275 	struct net *net;
1276 
1277 	if (!bucket || !rt6_ex)
1278 		return;
1279 
1280 	net = dev_net(rt6_ex->rt6i->dst.dev);
1281 	hlist_del_rcu(&rt6_ex->hlist);
1282 	dst_release(&rt6_ex->rt6i->dst);
1283 	kfree_rcu(rt6_ex, rcu);
1284 	WARN_ON_ONCE(!bucket->depth);
1285 	bucket->depth--;
1286 	net->ipv6.rt6_stats->fib_rt_cache--;
1287 }
1288 
1289 /* Remove oldest rt6_ex in bucket and free the memory
1290  * Caller must hold rt6_exception_lock
1291  */
1292 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
1293 {
1294 	struct rt6_exception *rt6_ex, *oldest = NULL;
1295 
1296 	if (!bucket)
1297 		return;
1298 
1299 	hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1300 		if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
1301 			oldest = rt6_ex;
1302 	}
1303 	rt6_remove_exception(bucket, oldest);
1304 }
1305 
1306 static u32 rt6_exception_hash(const struct in6_addr *dst,
1307 			      const struct in6_addr *src)
1308 {
1309 	static u32 seed __read_mostly;
1310 	u32 val;
1311 
1312 	net_get_random_once(&seed, sizeof(seed));
1313 	val = jhash(dst, sizeof(*dst), seed);
1314 
1315 #ifdef CONFIG_IPV6_SUBTREES
1316 	if (src)
1317 		val = jhash(src, sizeof(*src), val);
1318 #endif
1319 	return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
1320 }
1321 
1322 /* Helper function to find the cached rt in the hash table
1323  * and update bucket pointer to point to the bucket for this
1324  * (daddr, saddr) pair
1325  * Caller must hold rt6_exception_lock
1326  */
1327 static struct rt6_exception *
1328 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
1329 			      const struct in6_addr *daddr,
1330 			      const struct in6_addr *saddr)
1331 {
1332 	struct rt6_exception *rt6_ex;
1333 	u32 hval;
1334 
1335 	if (!(*bucket) || !daddr)
1336 		return NULL;
1337 
1338 	hval = rt6_exception_hash(daddr, saddr);
1339 	*bucket += hval;
1340 
1341 	hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
1342 		struct rt6_info *rt6 = rt6_ex->rt6i;
1343 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1344 
1345 #ifdef CONFIG_IPV6_SUBTREES
1346 		if (matched && saddr)
1347 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1348 #endif
1349 		if (matched)
1350 			return rt6_ex;
1351 	}
1352 	return NULL;
1353 }
1354 
1355 /* Helper function to find the cached rt in the hash table
1356  * and update bucket pointer to point to the bucket for this
1357  * (daddr, saddr) pair
1358  * Caller must hold rcu_read_lock()
1359  */
1360 static struct rt6_exception *
1361 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
1362 			 const struct in6_addr *daddr,
1363 			 const struct in6_addr *saddr)
1364 {
1365 	struct rt6_exception *rt6_ex;
1366 	u32 hval;
1367 
1368 	WARN_ON_ONCE(!rcu_read_lock_held());
1369 
1370 	if (!(*bucket) || !daddr)
1371 		return NULL;
1372 
1373 	hval = rt6_exception_hash(daddr, saddr);
1374 	*bucket += hval;
1375 
1376 	hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
1377 		struct rt6_info *rt6 = rt6_ex->rt6i;
1378 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1379 
1380 #ifdef CONFIG_IPV6_SUBTREES
1381 		if (matched && saddr)
1382 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1383 #endif
1384 		if (matched)
1385 			return rt6_ex;
1386 	}
1387 	return NULL;
1388 }
1389 
1390 static unsigned int fib6_mtu(const struct fib6_info *rt)
1391 {
1392 	unsigned int mtu;
1393 
1394 	if (rt->fib6_pmtu) {
1395 		mtu = rt->fib6_pmtu;
1396 	} else {
1397 		struct net_device *dev = fib6_info_nh_dev(rt);
1398 		struct inet6_dev *idev;
1399 
1400 		rcu_read_lock();
1401 		idev = __in6_dev_get(dev);
1402 		mtu = idev->cnf.mtu6;
1403 		rcu_read_unlock();
1404 	}
1405 
1406 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
1407 
1408 	return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu);
1409 }
1410 
1411 static int rt6_insert_exception(struct rt6_info *nrt,
1412 				struct fib6_info *ort)
1413 {
1414 	struct net *net = dev_net(nrt->dst.dev);
1415 	struct rt6_exception_bucket *bucket;
1416 	struct in6_addr *src_key = NULL;
1417 	struct rt6_exception *rt6_ex;
1418 	int err = 0;
1419 
1420 	spin_lock_bh(&rt6_exception_lock);
1421 
1422 	if (ort->exception_bucket_flushed) {
1423 		err = -EINVAL;
1424 		goto out;
1425 	}
1426 
1427 	bucket = rcu_dereference_protected(ort->rt6i_exception_bucket,
1428 					lockdep_is_held(&rt6_exception_lock));
1429 	if (!bucket) {
1430 		bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
1431 				 GFP_ATOMIC);
1432 		if (!bucket) {
1433 			err = -ENOMEM;
1434 			goto out;
1435 		}
1436 		rcu_assign_pointer(ort->rt6i_exception_bucket, bucket);
1437 	}
1438 
1439 #ifdef CONFIG_IPV6_SUBTREES
1440 	/* rt6i_src.plen != 0 indicates ort is in subtree
1441 	 * and exception table is indexed by a hash of
1442 	 * both rt6i_dst and rt6i_src.
1443 	 * Otherwise, the exception table is indexed by
1444 	 * a hash of only rt6i_dst.
1445 	 */
1446 	if (ort->fib6_src.plen)
1447 		src_key = &nrt->rt6i_src.addr;
1448 #endif
1449 	/* rt6_mtu_change() might lower mtu on ort.
1450 	 * Only insert this exception route if its mtu
1451 	 * is less than ort's mtu value.
1452 	 */
1453 	if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) {
1454 		err = -EINVAL;
1455 		goto out;
1456 	}
1457 
1458 	rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
1459 					       src_key);
1460 	if (rt6_ex)
1461 		rt6_remove_exception(bucket, rt6_ex);
1462 
1463 	rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
1464 	if (!rt6_ex) {
1465 		err = -ENOMEM;
1466 		goto out;
1467 	}
1468 	rt6_ex->rt6i = nrt;
1469 	rt6_ex->stamp = jiffies;
1470 	hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
1471 	bucket->depth++;
1472 	net->ipv6.rt6_stats->fib_rt_cache++;
1473 
1474 	if (bucket->depth > FIB6_MAX_DEPTH)
1475 		rt6_exception_remove_oldest(bucket);
1476 
1477 out:
1478 	spin_unlock_bh(&rt6_exception_lock);
1479 
1480 	/* Update fn->fn_sernum to invalidate all cached dst */
1481 	if (!err) {
1482 		spin_lock_bh(&ort->fib6_table->tb6_lock);
1483 		fib6_update_sernum(net, ort);
1484 		spin_unlock_bh(&ort->fib6_table->tb6_lock);
1485 		fib6_force_start_gc(net);
1486 	}
1487 
1488 	return err;
1489 }
1490 
1491 void rt6_flush_exceptions(struct fib6_info *rt)
1492 {
1493 	struct rt6_exception_bucket *bucket;
1494 	struct rt6_exception *rt6_ex;
1495 	struct hlist_node *tmp;
1496 	int i;
1497 
1498 	spin_lock_bh(&rt6_exception_lock);
1499 	/* Prevent rt6_insert_exception() to recreate the bucket list */
1500 	rt->exception_bucket_flushed = 1;
1501 
1502 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1503 				    lockdep_is_held(&rt6_exception_lock));
1504 	if (!bucket)
1505 		goto out;
1506 
1507 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1508 		hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist)
1509 			rt6_remove_exception(bucket, rt6_ex);
1510 		WARN_ON_ONCE(bucket->depth);
1511 		bucket++;
1512 	}
1513 
1514 out:
1515 	spin_unlock_bh(&rt6_exception_lock);
1516 }
1517 
1518 /* Find cached rt in the hash table inside passed in rt
1519  * Caller has to hold rcu_read_lock()
1520  */
1521 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
1522 					   struct in6_addr *daddr,
1523 					   struct in6_addr *saddr)
1524 {
1525 	struct rt6_exception_bucket *bucket;
1526 	struct in6_addr *src_key = NULL;
1527 	struct rt6_exception *rt6_ex;
1528 	struct rt6_info *res = NULL;
1529 
1530 	bucket = rcu_dereference(rt->rt6i_exception_bucket);
1531 
1532 #ifdef CONFIG_IPV6_SUBTREES
1533 	/* rt6i_src.plen != 0 indicates rt is in subtree
1534 	 * and exception table is indexed by a hash of
1535 	 * both rt6i_dst and rt6i_src.
1536 	 * Otherwise, the exception table is indexed by
1537 	 * a hash of only rt6i_dst.
1538 	 */
1539 	if (rt->fib6_src.plen)
1540 		src_key = saddr;
1541 #endif
1542 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
1543 
1544 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
1545 		res = rt6_ex->rt6i;
1546 
1547 	return res;
1548 }
1549 
1550 /* Remove the passed in cached rt from the hash table that contains it */
1551 static int rt6_remove_exception_rt(struct rt6_info *rt)
1552 {
1553 	struct rt6_exception_bucket *bucket;
1554 	struct in6_addr *src_key = NULL;
1555 	struct rt6_exception *rt6_ex;
1556 	struct fib6_info *from;
1557 	int err;
1558 
1559 	from = rcu_dereference(rt->from);
1560 	if (!from ||
1561 	    !(rt->rt6i_flags & RTF_CACHE))
1562 		return -EINVAL;
1563 
1564 	if (!rcu_access_pointer(from->rt6i_exception_bucket))
1565 		return -ENOENT;
1566 
1567 	spin_lock_bh(&rt6_exception_lock);
1568 	bucket = rcu_dereference_protected(from->rt6i_exception_bucket,
1569 				    lockdep_is_held(&rt6_exception_lock));
1570 #ifdef CONFIG_IPV6_SUBTREES
1571 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1572 	 * and exception table is indexed by a hash of
1573 	 * both rt6i_dst and rt6i_src.
1574 	 * Otherwise, the exception table is indexed by
1575 	 * a hash of only rt6i_dst.
1576 	 */
1577 	if (from->fib6_src.plen)
1578 		src_key = &rt->rt6i_src.addr;
1579 #endif
1580 	rt6_ex = __rt6_find_exception_spinlock(&bucket,
1581 					       &rt->rt6i_dst.addr,
1582 					       src_key);
1583 	if (rt6_ex) {
1584 		rt6_remove_exception(bucket, rt6_ex);
1585 		err = 0;
1586 	} else {
1587 		err = -ENOENT;
1588 	}
1589 
1590 	spin_unlock_bh(&rt6_exception_lock);
1591 	return err;
1592 }
1593 
1594 /* Find rt6_ex which contains the passed in rt cache and
1595  * refresh its stamp
1596  */
1597 static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
1598 {
1599 	struct rt6_exception_bucket *bucket;
1600 	struct fib6_info *from = rt->from;
1601 	struct in6_addr *src_key = NULL;
1602 	struct rt6_exception *rt6_ex;
1603 
1604 	if (!from ||
1605 	    !(rt->rt6i_flags & RTF_CACHE))
1606 		return;
1607 
1608 	rcu_read_lock();
1609 	bucket = rcu_dereference(from->rt6i_exception_bucket);
1610 
1611 #ifdef CONFIG_IPV6_SUBTREES
1612 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1613 	 * and exception table is indexed by a hash of
1614 	 * both rt6i_dst and rt6i_src.
1615 	 * Otherwise, the exception table is indexed by
1616 	 * a hash of only rt6i_dst.
1617 	 */
1618 	if (from->fib6_src.plen)
1619 		src_key = &rt->rt6i_src.addr;
1620 #endif
1621 	rt6_ex = __rt6_find_exception_rcu(&bucket,
1622 					  &rt->rt6i_dst.addr,
1623 					  src_key);
1624 	if (rt6_ex)
1625 		rt6_ex->stamp = jiffies;
1626 
1627 	rcu_read_unlock();
1628 }
1629 
1630 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
1631 					 struct rt6_info *rt, int mtu)
1632 {
1633 	/* If the new MTU is lower than the route PMTU, this new MTU will be the
1634 	 * lowest MTU in the path: always allow updating the route PMTU to
1635 	 * reflect PMTU decreases.
1636 	 *
1637 	 * If the new MTU is higher, and the route PMTU is equal to the local
1638 	 * MTU, this means the old MTU is the lowest in the path, so allow
1639 	 * updating it: if other nodes now have lower MTUs, PMTU discovery will
1640 	 * handle this.
1641 	 */
1642 
1643 	if (dst_mtu(&rt->dst) >= mtu)
1644 		return true;
1645 
1646 	if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
1647 		return true;
1648 
1649 	return false;
1650 }
1651 
1652 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
1653 				       struct fib6_info *rt, int mtu)
1654 {
1655 	struct rt6_exception_bucket *bucket;
1656 	struct rt6_exception *rt6_ex;
1657 	int i;
1658 
1659 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1660 					lockdep_is_held(&rt6_exception_lock));
1661 
1662 	if (!bucket)
1663 		return;
1664 
1665 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1666 		hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1667 			struct rt6_info *entry = rt6_ex->rt6i;
1668 
1669 			/* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
1670 			 * route), the metrics of its rt->from have already
1671 			 * been updated.
1672 			 */
1673 			if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
1674 			    rt6_mtu_change_route_allowed(idev, entry, mtu))
1675 				dst_metric_set(&entry->dst, RTAX_MTU, mtu);
1676 		}
1677 		bucket++;
1678 	}
1679 }
1680 
1681 #define RTF_CACHE_GATEWAY	(RTF_GATEWAY | RTF_CACHE)
1682 
1683 static void rt6_exceptions_clean_tohost(struct fib6_info *rt,
1684 					struct in6_addr *gateway)
1685 {
1686 	struct rt6_exception_bucket *bucket;
1687 	struct rt6_exception *rt6_ex;
1688 	struct hlist_node *tmp;
1689 	int i;
1690 
1691 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1692 		return;
1693 
1694 	spin_lock_bh(&rt6_exception_lock);
1695 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1696 				     lockdep_is_held(&rt6_exception_lock));
1697 
1698 	if (bucket) {
1699 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1700 			hlist_for_each_entry_safe(rt6_ex, tmp,
1701 						  &bucket->chain, hlist) {
1702 				struct rt6_info *entry = rt6_ex->rt6i;
1703 
1704 				if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
1705 				    RTF_CACHE_GATEWAY &&
1706 				    ipv6_addr_equal(gateway,
1707 						    &entry->rt6i_gateway)) {
1708 					rt6_remove_exception(bucket, rt6_ex);
1709 				}
1710 			}
1711 			bucket++;
1712 		}
1713 	}
1714 
1715 	spin_unlock_bh(&rt6_exception_lock);
1716 }
1717 
1718 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
1719 				      struct rt6_exception *rt6_ex,
1720 				      struct fib6_gc_args *gc_args,
1721 				      unsigned long now)
1722 {
1723 	struct rt6_info *rt = rt6_ex->rt6i;
1724 
1725 	/* we are pruning and obsoleting aged-out and non gateway exceptions
1726 	 * even if others have still references to them, so that on next
1727 	 * dst_check() such references can be dropped.
1728 	 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
1729 	 * expired, independently from their aging, as per RFC 8201 section 4
1730 	 */
1731 	if (!(rt->rt6i_flags & RTF_EXPIRES)) {
1732 		if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1733 			RT6_TRACE("aging clone %p\n", rt);
1734 			rt6_remove_exception(bucket, rt6_ex);
1735 			return;
1736 		}
1737 	} else if (time_after(jiffies, rt->dst.expires)) {
1738 		RT6_TRACE("purging expired route %p\n", rt);
1739 		rt6_remove_exception(bucket, rt6_ex);
1740 		return;
1741 	}
1742 
1743 	if (rt->rt6i_flags & RTF_GATEWAY) {
1744 		struct neighbour *neigh;
1745 		__u8 neigh_flags = 0;
1746 
1747 		neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
1748 		if (neigh)
1749 			neigh_flags = neigh->flags;
1750 
1751 		if (!(neigh_flags & NTF_ROUTER)) {
1752 			RT6_TRACE("purging route %p via non-router but gateway\n",
1753 				  rt);
1754 			rt6_remove_exception(bucket, rt6_ex);
1755 			return;
1756 		}
1757 	}
1758 
1759 	gc_args->more++;
1760 }
1761 
1762 void rt6_age_exceptions(struct fib6_info *rt,
1763 			struct fib6_gc_args *gc_args,
1764 			unsigned long now)
1765 {
1766 	struct rt6_exception_bucket *bucket;
1767 	struct rt6_exception *rt6_ex;
1768 	struct hlist_node *tmp;
1769 	int i;
1770 
1771 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1772 		return;
1773 
1774 	rcu_read_lock_bh();
1775 	spin_lock(&rt6_exception_lock);
1776 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1777 				    lockdep_is_held(&rt6_exception_lock));
1778 
1779 	if (bucket) {
1780 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1781 			hlist_for_each_entry_safe(rt6_ex, tmp,
1782 						  &bucket->chain, hlist) {
1783 				rt6_age_examine_exception(bucket, rt6_ex,
1784 							  gc_args, now);
1785 			}
1786 			bucket++;
1787 		}
1788 	}
1789 	spin_unlock(&rt6_exception_lock);
1790 	rcu_read_unlock_bh();
1791 }
1792 
1793 /* must be called with rcu lock held */
1794 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table,
1795 				    int oif, struct flowi6 *fl6, int strict)
1796 {
1797 	struct fib6_node *fn, *saved_fn;
1798 	struct fib6_info *f6i;
1799 
1800 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1801 	saved_fn = fn;
1802 
1803 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1804 		oif = 0;
1805 
1806 redo_rt6_select:
1807 	f6i = rt6_select(net, fn, oif, strict);
1808 	if (f6i == net->ipv6.fib6_null_entry) {
1809 		fn = fib6_backtrack(fn, &fl6->saddr);
1810 		if (fn)
1811 			goto redo_rt6_select;
1812 		else if (strict & RT6_LOOKUP_F_REACHABLE) {
1813 			/* also consider unreachable route */
1814 			strict &= ~RT6_LOOKUP_F_REACHABLE;
1815 			fn = saved_fn;
1816 			goto redo_rt6_select;
1817 		}
1818 	}
1819 
1820 	trace_fib6_table_lookup(net, f6i, table, fl6);
1821 
1822 	return f6i;
1823 }
1824 
1825 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
1826 			       int oif, struct flowi6 *fl6,
1827 			       const struct sk_buff *skb, int flags)
1828 {
1829 	struct fib6_info *f6i;
1830 	struct rt6_info *rt;
1831 	int strict = 0;
1832 
1833 	strict |= flags & RT6_LOOKUP_F_IFACE;
1834 	strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
1835 	if (net->ipv6.devconf_all->forwarding == 0)
1836 		strict |= RT6_LOOKUP_F_REACHABLE;
1837 
1838 	rcu_read_lock();
1839 
1840 	f6i = fib6_table_lookup(net, table, oif, fl6, strict);
1841 	if (f6i->fib6_nsiblings)
1842 		f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict);
1843 
1844 	if (f6i == net->ipv6.fib6_null_entry) {
1845 		rt = net->ipv6.ip6_null_entry;
1846 		rcu_read_unlock();
1847 		dst_hold(&rt->dst);
1848 		return rt;
1849 	}
1850 
1851 	/*Search through exception table */
1852 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1853 	if (rt) {
1854 		if (ip6_hold_safe(net, &rt, true))
1855 			dst_use_noref(&rt->dst, jiffies);
1856 
1857 		rcu_read_unlock();
1858 		return rt;
1859 	} else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
1860 			    !(f6i->fib6_flags & RTF_GATEWAY))) {
1861 		/* Create a RTF_CACHE clone which will not be
1862 		 * owned by the fib6 tree.  It is for the special case where
1863 		 * the daddr in the skb during the neighbor look-up is different
1864 		 * from the fl6->daddr used to look-up route here.
1865 		 */
1866 		struct rt6_info *uncached_rt;
1867 
1868 		uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL);
1869 
1870 		rcu_read_unlock();
1871 
1872 		if (uncached_rt) {
1873 			/* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc()
1874 			 * No need for another dst_hold()
1875 			 */
1876 			rt6_uncached_list_add(uncached_rt);
1877 			atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
1878 		} else {
1879 			uncached_rt = net->ipv6.ip6_null_entry;
1880 			dst_hold(&uncached_rt->dst);
1881 		}
1882 
1883 		return uncached_rt;
1884 	} else {
1885 		/* Get a percpu copy */
1886 
1887 		struct rt6_info *pcpu_rt;
1888 
1889 		local_bh_disable();
1890 		pcpu_rt = rt6_get_pcpu_route(f6i);
1891 
1892 		if (!pcpu_rt)
1893 			pcpu_rt = rt6_make_pcpu_route(net, f6i);
1894 
1895 		local_bh_enable();
1896 		rcu_read_unlock();
1897 
1898 		return pcpu_rt;
1899 	}
1900 }
1901 EXPORT_SYMBOL_GPL(ip6_pol_route);
1902 
1903 static struct rt6_info *ip6_pol_route_input(struct net *net,
1904 					    struct fib6_table *table,
1905 					    struct flowi6 *fl6,
1906 					    const struct sk_buff *skb,
1907 					    int flags)
1908 {
1909 	return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
1910 }
1911 
1912 struct dst_entry *ip6_route_input_lookup(struct net *net,
1913 					 struct net_device *dev,
1914 					 struct flowi6 *fl6,
1915 					 const struct sk_buff *skb,
1916 					 int flags)
1917 {
1918 	if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
1919 		flags |= RT6_LOOKUP_F_IFACE;
1920 
1921 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
1922 }
1923 EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
1924 
1925 static void ip6_multipath_l3_keys(const struct sk_buff *skb,
1926 				  struct flow_keys *keys,
1927 				  struct flow_keys *flkeys)
1928 {
1929 	const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
1930 	const struct ipv6hdr *key_iph = outer_iph;
1931 	struct flow_keys *_flkeys = flkeys;
1932 	const struct ipv6hdr *inner_iph;
1933 	const struct icmp6hdr *icmph;
1934 	struct ipv6hdr _inner_iph;
1935 	struct icmp6hdr _icmph;
1936 
1937 	if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
1938 		goto out;
1939 
1940 	icmph = skb_header_pointer(skb, skb_transport_offset(skb),
1941 				   sizeof(_icmph), &_icmph);
1942 	if (!icmph)
1943 		goto out;
1944 
1945 	if (icmph->icmp6_type != ICMPV6_DEST_UNREACH &&
1946 	    icmph->icmp6_type != ICMPV6_PKT_TOOBIG &&
1947 	    icmph->icmp6_type != ICMPV6_TIME_EXCEED &&
1948 	    icmph->icmp6_type != ICMPV6_PARAMPROB)
1949 		goto out;
1950 
1951 	inner_iph = skb_header_pointer(skb,
1952 				       skb_transport_offset(skb) + sizeof(*icmph),
1953 				       sizeof(_inner_iph), &_inner_iph);
1954 	if (!inner_iph)
1955 		goto out;
1956 
1957 	key_iph = inner_iph;
1958 	_flkeys = NULL;
1959 out:
1960 	if (_flkeys) {
1961 		keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
1962 		keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
1963 		keys->tags.flow_label = _flkeys->tags.flow_label;
1964 		keys->basic.ip_proto = _flkeys->basic.ip_proto;
1965 	} else {
1966 		keys->addrs.v6addrs.src = key_iph->saddr;
1967 		keys->addrs.v6addrs.dst = key_iph->daddr;
1968 		keys->tags.flow_label = ip6_flowlabel(key_iph);
1969 		keys->basic.ip_proto = key_iph->nexthdr;
1970 	}
1971 }
1972 
1973 /* if skb is set it will be used and fl6 can be NULL */
1974 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
1975 		       const struct sk_buff *skb, struct flow_keys *flkeys)
1976 {
1977 	struct flow_keys hash_keys;
1978 	u32 mhash;
1979 
1980 	switch (ip6_multipath_hash_policy(net)) {
1981 	case 0:
1982 		memset(&hash_keys, 0, sizeof(hash_keys));
1983 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1984 		if (skb) {
1985 			ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
1986 		} else {
1987 			hash_keys.addrs.v6addrs.src = fl6->saddr;
1988 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
1989 			hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1990 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
1991 		}
1992 		break;
1993 	case 1:
1994 		if (skb) {
1995 			unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
1996 			struct flow_keys keys;
1997 
1998 			/* short-circuit if we already have L4 hash present */
1999 			if (skb->l4_hash)
2000 				return skb_get_hash_raw(skb) >> 1;
2001 
2002 			memset(&hash_keys, 0, sizeof(hash_keys));
2003 
2004                         if (!flkeys) {
2005 				skb_flow_dissect_flow_keys(skb, &keys, flag);
2006 				flkeys = &keys;
2007 			}
2008 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2009 			hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2010 			hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2011 			hash_keys.ports.src = flkeys->ports.src;
2012 			hash_keys.ports.dst = flkeys->ports.dst;
2013 			hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2014 		} else {
2015 			memset(&hash_keys, 0, sizeof(hash_keys));
2016 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2017 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2018 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2019 			hash_keys.ports.src = fl6->fl6_sport;
2020 			hash_keys.ports.dst = fl6->fl6_dport;
2021 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2022 		}
2023 		break;
2024 	}
2025 	mhash = flow_hash_from_keys(&hash_keys);
2026 
2027 	return mhash >> 1;
2028 }
2029 
2030 void ip6_route_input(struct sk_buff *skb)
2031 {
2032 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2033 	struct net *net = dev_net(skb->dev);
2034 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2035 	struct ip_tunnel_info *tun_info;
2036 	struct flowi6 fl6 = {
2037 		.flowi6_iif = skb->dev->ifindex,
2038 		.daddr = iph->daddr,
2039 		.saddr = iph->saddr,
2040 		.flowlabel = ip6_flowinfo(iph),
2041 		.flowi6_mark = skb->mark,
2042 		.flowi6_proto = iph->nexthdr,
2043 	};
2044 	struct flow_keys *flkeys = NULL, _flkeys;
2045 
2046 	tun_info = skb_tunnel_info(skb);
2047 	if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
2048 		fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
2049 
2050 	if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
2051 		flkeys = &_flkeys;
2052 
2053 	if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
2054 		fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
2055 	skb_dst_drop(skb);
2056 	skb_dst_set(skb,
2057 		    ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags));
2058 }
2059 
2060 static struct rt6_info *ip6_pol_route_output(struct net *net,
2061 					     struct fib6_table *table,
2062 					     struct flowi6 *fl6,
2063 					     const struct sk_buff *skb,
2064 					     int flags)
2065 {
2066 	return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
2067 }
2068 
2069 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk,
2070 					 struct flowi6 *fl6, int flags)
2071 {
2072 	bool any_src;
2073 
2074 	if (ipv6_addr_type(&fl6->daddr) &
2075 	    (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) {
2076 		struct dst_entry *dst;
2077 
2078 		dst = l3mdev_link_scope_lookup(net, fl6);
2079 		if (dst)
2080 			return dst;
2081 	}
2082 
2083 	fl6->flowi6_iif = LOOPBACK_IFINDEX;
2084 
2085 	any_src = ipv6_addr_any(&fl6->saddr);
2086 	if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
2087 	    (fl6->flowi6_oif && any_src))
2088 		flags |= RT6_LOOKUP_F_IFACE;
2089 
2090 	if (!any_src)
2091 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2092 	else if (sk)
2093 		flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
2094 
2095 	return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
2096 }
2097 EXPORT_SYMBOL_GPL(ip6_route_output_flags);
2098 
2099 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2100 {
2101 	struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
2102 	struct net_device *loopback_dev = net->loopback_dev;
2103 	struct dst_entry *new = NULL;
2104 
2105 	rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
2106 		       DST_OBSOLETE_DEAD, 0);
2107 	if (rt) {
2108 		rt6_info_init(rt);
2109 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
2110 
2111 		new = &rt->dst;
2112 		new->__use = 1;
2113 		new->input = dst_discard;
2114 		new->output = dst_discard_out;
2115 
2116 		dst_copy_metrics(new, &ort->dst);
2117 
2118 		rt->rt6i_idev = in6_dev_get(loopback_dev);
2119 		rt->rt6i_gateway = ort->rt6i_gateway;
2120 		rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
2121 
2122 		memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
2123 #ifdef CONFIG_IPV6_SUBTREES
2124 		memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
2125 #endif
2126 	}
2127 
2128 	dst_release(dst_orig);
2129 	return new ? new : ERR_PTR(-ENOMEM);
2130 }
2131 
2132 /*
2133  *	Destination cache support functions
2134  */
2135 
2136 static bool fib6_check(struct fib6_info *f6i, u32 cookie)
2137 {
2138 	u32 rt_cookie = 0;
2139 
2140 	if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
2141 		return false;
2142 
2143 	if (fib6_check_expired(f6i))
2144 		return false;
2145 
2146 	return true;
2147 }
2148 
2149 static struct dst_entry *rt6_check(struct rt6_info *rt,
2150 				   struct fib6_info *from,
2151 				   u32 cookie)
2152 {
2153 	u32 rt_cookie = 0;
2154 
2155 	if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) ||
2156 	    rt_cookie != cookie)
2157 		return NULL;
2158 
2159 	if (rt6_check_expired(rt))
2160 		return NULL;
2161 
2162 	return &rt->dst;
2163 }
2164 
2165 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
2166 					    struct fib6_info *from,
2167 					    u32 cookie)
2168 {
2169 	if (!__rt6_check_expired(rt) &&
2170 	    rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
2171 	    fib6_check(from, cookie))
2172 		return &rt->dst;
2173 	else
2174 		return NULL;
2175 }
2176 
2177 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
2178 {
2179 	struct dst_entry *dst_ret;
2180 	struct fib6_info *from;
2181 	struct rt6_info *rt;
2182 
2183 	rt = container_of(dst, struct rt6_info, dst);
2184 
2185 	rcu_read_lock();
2186 
2187 	/* All IPV6 dsts are created with ->obsolete set to the value
2188 	 * DST_OBSOLETE_FORCE_CHK which forces validation calls down
2189 	 * into this function always.
2190 	 */
2191 
2192 	from = rcu_dereference(rt->from);
2193 
2194 	if (from && (rt->rt6i_flags & RTF_PCPU ||
2195 	    unlikely(!list_empty(&rt->rt6i_uncached))))
2196 		dst_ret = rt6_dst_from_check(rt, from, cookie);
2197 	else
2198 		dst_ret = rt6_check(rt, from, cookie);
2199 
2200 	rcu_read_unlock();
2201 
2202 	return dst_ret;
2203 }
2204 
2205 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
2206 {
2207 	struct rt6_info *rt = (struct rt6_info *) dst;
2208 
2209 	if (rt) {
2210 		if (rt->rt6i_flags & RTF_CACHE) {
2211 			rcu_read_lock();
2212 			if (rt6_check_expired(rt)) {
2213 				rt6_remove_exception_rt(rt);
2214 				dst = NULL;
2215 			}
2216 			rcu_read_unlock();
2217 		} else {
2218 			dst_release(dst);
2219 			dst = NULL;
2220 		}
2221 	}
2222 	return dst;
2223 }
2224 
2225 static void ip6_link_failure(struct sk_buff *skb)
2226 {
2227 	struct rt6_info *rt;
2228 
2229 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
2230 
2231 	rt = (struct rt6_info *) skb_dst(skb);
2232 	if (rt) {
2233 		rcu_read_lock();
2234 		if (rt->rt6i_flags & RTF_CACHE) {
2235 			if (dst_hold_safe(&rt->dst))
2236 				rt6_remove_exception_rt(rt);
2237 		} else {
2238 			struct fib6_info *from;
2239 			struct fib6_node *fn;
2240 
2241 			from = rcu_dereference(rt->from);
2242 			if (from) {
2243 				fn = rcu_dereference(from->fib6_node);
2244 				if (fn && (rt->rt6i_flags & RTF_DEFAULT))
2245 					fn->fn_sernum = -1;
2246 			}
2247 		}
2248 		rcu_read_unlock();
2249 	}
2250 }
2251 
2252 static void rt6_update_expires(struct rt6_info *rt0, int timeout)
2253 {
2254 	if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
2255 		struct fib6_info *from;
2256 
2257 		rcu_read_lock();
2258 		from = rcu_dereference(rt0->from);
2259 		if (from)
2260 			rt0->dst.expires = from->expires;
2261 		rcu_read_unlock();
2262 	}
2263 
2264 	dst_set_expires(&rt0->dst, timeout);
2265 	rt0->rt6i_flags |= RTF_EXPIRES;
2266 }
2267 
2268 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
2269 {
2270 	struct net *net = dev_net(rt->dst.dev);
2271 
2272 	dst_metric_set(&rt->dst, RTAX_MTU, mtu);
2273 	rt->rt6i_flags |= RTF_MODIFIED;
2274 	rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
2275 }
2276 
2277 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
2278 {
2279 	bool from_set;
2280 
2281 	rcu_read_lock();
2282 	from_set = !!rcu_dereference(rt->from);
2283 	rcu_read_unlock();
2284 
2285 	return !(rt->rt6i_flags & RTF_CACHE) &&
2286 		(rt->rt6i_flags & RTF_PCPU || from_set);
2287 }
2288 
2289 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
2290 				 const struct ipv6hdr *iph, u32 mtu)
2291 {
2292 	const struct in6_addr *daddr, *saddr;
2293 	struct rt6_info *rt6 = (struct rt6_info *)dst;
2294 
2295 	if (dst_metric_locked(dst, RTAX_MTU))
2296 		return;
2297 
2298 	if (iph) {
2299 		daddr = &iph->daddr;
2300 		saddr = &iph->saddr;
2301 	} else if (sk) {
2302 		daddr = &sk->sk_v6_daddr;
2303 		saddr = &inet6_sk(sk)->saddr;
2304 	} else {
2305 		daddr = NULL;
2306 		saddr = NULL;
2307 	}
2308 	dst_confirm_neigh(dst, daddr);
2309 	mtu = max_t(u32, mtu, IPV6_MIN_MTU);
2310 	if (mtu >= dst_mtu(dst))
2311 		return;
2312 
2313 	if (!rt6_cache_allowed_for_pmtu(rt6)) {
2314 		rt6_do_update_pmtu(rt6, mtu);
2315 		/* update rt6_ex->stamp for cache */
2316 		if (rt6->rt6i_flags & RTF_CACHE)
2317 			rt6_update_exception_stamp_rt(rt6);
2318 	} else if (daddr) {
2319 		struct fib6_info *from;
2320 		struct rt6_info *nrt6;
2321 
2322 		rcu_read_lock();
2323 		from = rcu_dereference(rt6->from);
2324 		nrt6 = ip6_rt_cache_alloc(from, daddr, saddr);
2325 		if (nrt6) {
2326 			rt6_do_update_pmtu(nrt6, mtu);
2327 			if (rt6_insert_exception(nrt6, from))
2328 				dst_release_immediate(&nrt6->dst);
2329 		}
2330 		rcu_read_unlock();
2331 	}
2332 }
2333 
2334 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
2335 			       struct sk_buff *skb, u32 mtu)
2336 {
2337 	__ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu);
2338 }
2339 
2340 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
2341 		     int oif, u32 mark, kuid_t uid)
2342 {
2343 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2344 	struct dst_entry *dst;
2345 	struct flowi6 fl6;
2346 
2347 	memset(&fl6, 0, sizeof(fl6));
2348 	fl6.flowi6_oif = oif;
2349 	fl6.flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark);
2350 	fl6.daddr = iph->daddr;
2351 	fl6.saddr = iph->saddr;
2352 	fl6.flowlabel = ip6_flowinfo(iph);
2353 	fl6.flowi6_uid = uid;
2354 
2355 	dst = ip6_route_output(net, NULL, &fl6);
2356 	if (!dst->error)
2357 		__ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu));
2358 	dst_release(dst);
2359 }
2360 EXPORT_SYMBOL_GPL(ip6_update_pmtu);
2361 
2362 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
2363 {
2364 	struct dst_entry *dst;
2365 
2366 	ip6_update_pmtu(skb, sock_net(sk), mtu,
2367 			sk->sk_bound_dev_if, sk->sk_mark, sk->sk_uid);
2368 
2369 	dst = __sk_dst_get(sk);
2370 	if (!dst || !dst->obsolete ||
2371 	    dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
2372 		return;
2373 
2374 	bh_lock_sock(sk);
2375 	if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
2376 		ip6_datagram_dst_update(sk, false);
2377 	bh_unlock_sock(sk);
2378 }
2379 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
2380 
2381 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
2382 			   const struct flowi6 *fl6)
2383 {
2384 #ifdef CONFIG_IPV6_SUBTREES
2385 	struct ipv6_pinfo *np = inet6_sk(sk);
2386 #endif
2387 
2388 	ip6_dst_store(sk, dst,
2389 		      ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
2390 		      &sk->sk_v6_daddr : NULL,
2391 #ifdef CONFIG_IPV6_SUBTREES
2392 		      ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
2393 		      &np->saddr :
2394 #endif
2395 		      NULL);
2396 }
2397 
2398 /* Handle redirects */
2399 struct ip6rd_flowi {
2400 	struct flowi6 fl6;
2401 	struct in6_addr gateway;
2402 };
2403 
2404 static struct rt6_info *__ip6_route_redirect(struct net *net,
2405 					     struct fib6_table *table,
2406 					     struct flowi6 *fl6,
2407 					     const struct sk_buff *skb,
2408 					     int flags)
2409 {
2410 	struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
2411 	struct rt6_info *ret = NULL, *rt_cache;
2412 	struct fib6_info *rt;
2413 	struct fib6_node *fn;
2414 
2415 	/* Get the "current" route for this destination and
2416 	 * check if the redirect has come from appropriate router.
2417 	 *
2418 	 * RFC 4861 specifies that redirects should only be
2419 	 * accepted if they come from the nexthop to the target.
2420 	 * Due to the way the routes are chosen, this notion
2421 	 * is a bit fuzzy and one might need to check all possible
2422 	 * routes.
2423 	 */
2424 
2425 	rcu_read_lock();
2426 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
2427 restart:
2428 	for_each_fib6_node_rt_rcu(fn) {
2429 		if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
2430 			continue;
2431 		if (fib6_check_expired(rt))
2432 			continue;
2433 		if (rt->fib6_flags & RTF_REJECT)
2434 			break;
2435 		if (!(rt->fib6_flags & RTF_GATEWAY))
2436 			continue;
2437 		if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex)
2438 			continue;
2439 		/* rt_cache's gateway might be different from its 'parent'
2440 		 * in the case of an ip redirect.
2441 		 * So we keep searching in the exception table if the gateway
2442 		 * is different.
2443 		 */
2444 		if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) {
2445 			rt_cache = rt6_find_cached_rt(rt,
2446 						      &fl6->daddr,
2447 						      &fl6->saddr);
2448 			if (rt_cache &&
2449 			    ipv6_addr_equal(&rdfl->gateway,
2450 					    &rt_cache->rt6i_gateway)) {
2451 				ret = rt_cache;
2452 				break;
2453 			}
2454 			continue;
2455 		}
2456 		break;
2457 	}
2458 
2459 	if (!rt)
2460 		rt = net->ipv6.fib6_null_entry;
2461 	else if (rt->fib6_flags & RTF_REJECT) {
2462 		ret = net->ipv6.ip6_null_entry;
2463 		goto out;
2464 	}
2465 
2466 	if (rt == net->ipv6.fib6_null_entry) {
2467 		fn = fib6_backtrack(fn, &fl6->saddr);
2468 		if (fn)
2469 			goto restart;
2470 	}
2471 
2472 out:
2473 	if (ret)
2474 		ip6_hold_safe(net, &ret, true);
2475 	else
2476 		ret = ip6_create_rt_rcu(rt);
2477 
2478 	rcu_read_unlock();
2479 
2480 	trace_fib6_table_lookup(net, rt, table, fl6);
2481 	return ret;
2482 };
2483 
2484 static struct dst_entry *ip6_route_redirect(struct net *net,
2485 					    const struct flowi6 *fl6,
2486 					    const struct sk_buff *skb,
2487 					    const struct in6_addr *gateway)
2488 {
2489 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2490 	struct ip6rd_flowi rdfl;
2491 
2492 	rdfl.fl6 = *fl6;
2493 	rdfl.gateway = *gateway;
2494 
2495 	return fib6_rule_lookup(net, &rdfl.fl6, skb,
2496 				flags, __ip6_route_redirect);
2497 }
2498 
2499 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
2500 		  kuid_t uid)
2501 {
2502 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2503 	struct dst_entry *dst;
2504 	struct flowi6 fl6;
2505 
2506 	memset(&fl6, 0, sizeof(fl6));
2507 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
2508 	fl6.flowi6_oif = oif;
2509 	fl6.flowi6_mark = mark;
2510 	fl6.daddr = iph->daddr;
2511 	fl6.saddr = iph->saddr;
2512 	fl6.flowlabel = ip6_flowinfo(iph);
2513 	fl6.flowi6_uid = uid;
2514 
2515 	dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
2516 	rt6_do_redirect(dst, NULL, skb);
2517 	dst_release(dst);
2518 }
2519 EXPORT_SYMBOL_GPL(ip6_redirect);
2520 
2521 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif,
2522 			    u32 mark)
2523 {
2524 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2525 	const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
2526 	struct dst_entry *dst;
2527 	struct flowi6 fl6;
2528 
2529 	memset(&fl6, 0, sizeof(fl6));
2530 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
2531 	fl6.flowi6_oif = oif;
2532 	fl6.flowi6_mark = mark;
2533 	fl6.daddr = msg->dest;
2534 	fl6.saddr = iph->daddr;
2535 	fl6.flowi6_uid = sock_net_uid(net, NULL);
2536 
2537 	dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
2538 	rt6_do_redirect(dst, NULL, skb);
2539 	dst_release(dst);
2540 }
2541 
2542 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
2543 {
2544 	ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
2545 		     sk->sk_uid);
2546 }
2547 EXPORT_SYMBOL_GPL(ip6_sk_redirect);
2548 
2549 static unsigned int ip6_default_advmss(const struct dst_entry *dst)
2550 {
2551 	struct net_device *dev = dst->dev;
2552 	unsigned int mtu = dst_mtu(dst);
2553 	struct net *net = dev_net(dev);
2554 
2555 	mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
2556 
2557 	if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
2558 		mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
2559 
2560 	/*
2561 	 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
2562 	 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
2563 	 * IPV6_MAXPLEN is also valid and means: "any MSS,
2564 	 * rely only on pmtu discovery"
2565 	 */
2566 	if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
2567 		mtu = IPV6_MAXPLEN;
2568 	return mtu;
2569 }
2570 
2571 static unsigned int ip6_mtu(const struct dst_entry *dst)
2572 {
2573 	struct inet6_dev *idev;
2574 	unsigned int mtu;
2575 
2576 	mtu = dst_metric_raw(dst, RTAX_MTU);
2577 	if (mtu)
2578 		goto out;
2579 
2580 	mtu = IPV6_MIN_MTU;
2581 
2582 	rcu_read_lock();
2583 	idev = __in6_dev_get(dst->dev);
2584 	if (idev)
2585 		mtu = idev->cnf.mtu6;
2586 	rcu_read_unlock();
2587 
2588 out:
2589 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2590 
2591 	return mtu - lwtunnel_headroom(dst->lwtstate, mtu);
2592 }
2593 
2594 /* MTU selection:
2595  * 1. mtu on route is locked - use it
2596  * 2. mtu from nexthop exception
2597  * 3. mtu from egress device
2598  *
2599  * based on ip6_dst_mtu_forward and exception logic of
2600  * rt6_find_cached_rt; called with rcu_read_lock
2601  */
2602 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr,
2603 		      struct in6_addr *saddr)
2604 {
2605 	struct rt6_exception_bucket *bucket;
2606 	struct rt6_exception *rt6_ex;
2607 	struct in6_addr *src_key;
2608 	struct inet6_dev *idev;
2609 	u32 mtu = 0;
2610 
2611 	if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
2612 		mtu = f6i->fib6_pmtu;
2613 		if (mtu)
2614 			goto out;
2615 	}
2616 
2617 	src_key = NULL;
2618 #ifdef CONFIG_IPV6_SUBTREES
2619 	if (f6i->fib6_src.plen)
2620 		src_key = saddr;
2621 #endif
2622 
2623 	bucket = rcu_dereference(f6i->rt6i_exception_bucket);
2624 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
2625 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
2626 		mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU);
2627 
2628 	if (likely(!mtu)) {
2629 		struct net_device *dev = fib6_info_nh_dev(f6i);
2630 
2631 		mtu = IPV6_MIN_MTU;
2632 		idev = __in6_dev_get(dev);
2633 		if (idev && idev->cnf.mtu6 > mtu)
2634 			mtu = idev->cnf.mtu6;
2635 	}
2636 
2637 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2638 out:
2639 	return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu);
2640 }
2641 
2642 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
2643 				  struct flowi6 *fl6)
2644 {
2645 	struct dst_entry *dst;
2646 	struct rt6_info *rt;
2647 	struct inet6_dev *idev = in6_dev_get(dev);
2648 	struct net *net = dev_net(dev);
2649 
2650 	if (unlikely(!idev))
2651 		return ERR_PTR(-ENODEV);
2652 
2653 	rt = ip6_dst_alloc(net, dev, 0);
2654 	if (unlikely(!rt)) {
2655 		in6_dev_put(idev);
2656 		dst = ERR_PTR(-ENOMEM);
2657 		goto out;
2658 	}
2659 
2660 	rt->dst.flags |= DST_HOST;
2661 	rt->dst.input = ip6_input;
2662 	rt->dst.output  = ip6_output;
2663 	rt->rt6i_gateway  = fl6->daddr;
2664 	rt->rt6i_dst.addr = fl6->daddr;
2665 	rt->rt6i_dst.plen = 128;
2666 	rt->rt6i_idev     = idev;
2667 	dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
2668 
2669 	/* Add this dst into uncached_list so that rt6_disable_ip() can
2670 	 * do proper release of the net_device
2671 	 */
2672 	rt6_uncached_list_add(rt);
2673 	atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
2674 
2675 	dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
2676 
2677 out:
2678 	return dst;
2679 }
2680 
2681 static int ip6_dst_gc(struct dst_ops *ops)
2682 {
2683 	struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
2684 	int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
2685 	int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
2686 	int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
2687 	int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
2688 	unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
2689 	int entries;
2690 
2691 	entries = dst_entries_get_fast(ops);
2692 	if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
2693 	    entries <= rt_max_size)
2694 		goto out;
2695 
2696 	net->ipv6.ip6_rt_gc_expire++;
2697 	fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true);
2698 	entries = dst_entries_get_slow(ops);
2699 	if (entries < ops->gc_thresh)
2700 		net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
2701 out:
2702 	net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
2703 	return entries > rt_max_size;
2704 }
2705 
2706 static int ip6_convert_metrics(struct net *net, struct fib6_info *rt,
2707 			       struct fib6_config *cfg)
2708 {
2709 	struct dst_metrics *p;
2710 
2711 	if (!cfg->fc_mx)
2712 		return 0;
2713 
2714 	p = kzalloc(sizeof(*rt->fib6_metrics), GFP_KERNEL);
2715 	if (unlikely(!p))
2716 		return -ENOMEM;
2717 
2718 	refcount_set(&p->refcnt, 1);
2719 	rt->fib6_metrics = p;
2720 
2721 	return ip_metrics_convert(net, cfg->fc_mx, cfg->fc_mx_len, p->metrics);
2722 }
2723 
2724 static struct rt6_info *ip6_nh_lookup_table(struct net *net,
2725 					    struct fib6_config *cfg,
2726 					    const struct in6_addr *gw_addr,
2727 					    u32 tbid, int flags)
2728 {
2729 	struct flowi6 fl6 = {
2730 		.flowi6_oif = cfg->fc_ifindex,
2731 		.daddr = *gw_addr,
2732 		.saddr = cfg->fc_prefsrc,
2733 	};
2734 	struct fib6_table *table;
2735 	struct rt6_info *rt;
2736 
2737 	table = fib6_get_table(net, tbid);
2738 	if (!table)
2739 		return NULL;
2740 
2741 	if (!ipv6_addr_any(&cfg->fc_prefsrc))
2742 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2743 
2744 	flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
2745 	rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags);
2746 
2747 	/* if table lookup failed, fall back to full lookup */
2748 	if (rt == net->ipv6.ip6_null_entry) {
2749 		ip6_rt_put(rt);
2750 		rt = NULL;
2751 	}
2752 
2753 	return rt;
2754 }
2755 
2756 static int ip6_route_check_nh_onlink(struct net *net,
2757 				     struct fib6_config *cfg,
2758 				     const struct net_device *dev,
2759 				     struct netlink_ext_ack *extack)
2760 {
2761 	u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN;
2762 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2763 	u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT;
2764 	struct rt6_info *grt;
2765 	int err;
2766 
2767 	err = 0;
2768 	grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0);
2769 	if (grt) {
2770 		if (!grt->dst.error &&
2771 		    (grt->rt6i_flags & flags || dev != grt->dst.dev)) {
2772 			NL_SET_ERR_MSG(extack,
2773 				       "Nexthop has invalid gateway or device mismatch");
2774 			err = -EINVAL;
2775 		}
2776 
2777 		ip6_rt_put(grt);
2778 	}
2779 
2780 	return err;
2781 }
2782 
2783 static int ip6_route_check_nh(struct net *net,
2784 			      struct fib6_config *cfg,
2785 			      struct net_device **_dev,
2786 			      struct inet6_dev **idev)
2787 {
2788 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2789 	struct net_device *dev = _dev ? *_dev : NULL;
2790 	struct rt6_info *grt = NULL;
2791 	int err = -EHOSTUNREACH;
2792 
2793 	if (cfg->fc_table) {
2794 		int flags = RT6_LOOKUP_F_IFACE;
2795 
2796 		grt = ip6_nh_lookup_table(net, cfg, gw_addr,
2797 					  cfg->fc_table, flags);
2798 		if (grt) {
2799 			if (grt->rt6i_flags & RTF_GATEWAY ||
2800 			    (dev && dev != grt->dst.dev)) {
2801 				ip6_rt_put(grt);
2802 				grt = NULL;
2803 			}
2804 		}
2805 	}
2806 
2807 	if (!grt)
2808 		grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1);
2809 
2810 	if (!grt)
2811 		goto out;
2812 
2813 	if (dev) {
2814 		if (dev != grt->dst.dev) {
2815 			ip6_rt_put(grt);
2816 			goto out;
2817 		}
2818 	} else {
2819 		*_dev = dev = grt->dst.dev;
2820 		*idev = grt->rt6i_idev;
2821 		dev_hold(dev);
2822 		in6_dev_hold(grt->rt6i_idev);
2823 	}
2824 
2825 	if (!(grt->rt6i_flags & RTF_GATEWAY))
2826 		err = 0;
2827 
2828 	ip6_rt_put(grt);
2829 
2830 out:
2831 	return err;
2832 }
2833 
2834 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
2835 			   struct net_device **_dev, struct inet6_dev **idev,
2836 			   struct netlink_ext_ack *extack)
2837 {
2838 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2839 	int gwa_type = ipv6_addr_type(gw_addr);
2840 	bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
2841 	const struct net_device *dev = *_dev;
2842 	bool need_addr_check = !dev;
2843 	int err = -EINVAL;
2844 
2845 	/* if gw_addr is local we will fail to detect this in case
2846 	 * address is still TENTATIVE (DAD in progress). rt6_lookup()
2847 	 * will return already-added prefix route via interface that
2848 	 * prefix route was assigned to, which might be non-loopback.
2849 	 */
2850 	if (dev &&
2851 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2852 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2853 		goto out;
2854 	}
2855 
2856 	if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
2857 		/* IPv6 strictly inhibits using not link-local
2858 		 * addresses as nexthop address.
2859 		 * Otherwise, router will not able to send redirects.
2860 		 * It is very good, but in some (rare!) circumstances
2861 		 * (SIT, PtP, NBMA NOARP links) it is handy to allow
2862 		 * some exceptions. --ANK
2863 		 * We allow IPv4-mapped nexthops to support RFC4798-type
2864 		 * addressing
2865 		 */
2866 		if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
2867 			NL_SET_ERR_MSG(extack, "Invalid gateway address");
2868 			goto out;
2869 		}
2870 
2871 		if (cfg->fc_flags & RTNH_F_ONLINK)
2872 			err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
2873 		else
2874 			err = ip6_route_check_nh(net, cfg, _dev, idev);
2875 
2876 		if (err)
2877 			goto out;
2878 	}
2879 
2880 	/* reload in case device was changed */
2881 	dev = *_dev;
2882 
2883 	err = -EINVAL;
2884 	if (!dev) {
2885 		NL_SET_ERR_MSG(extack, "Egress device not specified");
2886 		goto out;
2887 	} else if (dev->flags & IFF_LOOPBACK) {
2888 		NL_SET_ERR_MSG(extack,
2889 			       "Egress device can not be loopback device for this route");
2890 		goto out;
2891 	}
2892 
2893 	/* if we did not check gw_addr above, do so now that the
2894 	 * egress device has been resolved.
2895 	 */
2896 	if (need_addr_check &&
2897 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2898 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2899 		goto out;
2900 	}
2901 
2902 	err = 0;
2903 out:
2904 	return err;
2905 }
2906 
2907 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
2908 					      gfp_t gfp_flags,
2909 					      struct netlink_ext_ack *extack)
2910 {
2911 	struct net *net = cfg->fc_nlinfo.nl_net;
2912 	struct fib6_info *rt = NULL;
2913 	struct net_device *dev = NULL;
2914 	struct inet6_dev *idev = NULL;
2915 	struct fib6_table *table;
2916 	int addr_type;
2917 	int err = -EINVAL;
2918 
2919 	/* RTF_PCPU is an internal flag; can not be set by userspace */
2920 	if (cfg->fc_flags & RTF_PCPU) {
2921 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
2922 		goto out;
2923 	}
2924 
2925 	/* RTF_CACHE is an internal flag; can not be set by userspace */
2926 	if (cfg->fc_flags & RTF_CACHE) {
2927 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
2928 		goto out;
2929 	}
2930 
2931 	if (cfg->fc_type > RTN_MAX) {
2932 		NL_SET_ERR_MSG(extack, "Invalid route type");
2933 		goto out;
2934 	}
2935 
2936 	if (cfg->fc_dst_len > 128) {
2937 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
2938 		goto out;
2939 	}
2940 	if (cfg->fc_src_len > 128) {
2941 		NL_SET_ERR_MSG(extack, "Invalid source address length");
2942 		goto out;
2943 	}
2944 #ifndef CONFIG_IPV6_SUBTREES
2945 	if (cfg->fc_src_len) {
2946 		NL_SET_ERR_MSG(extack,
2947 			       "Specifying source address requires IPV6_SUBTREES to be enabled");
2948 		goto out;
2949 	}
2950 #endif
2951 	if (cfg->fc_ifindex) {
2952 		err = -ENODEV;
2953 		dev = dev_get_by_index(net, cfg->fc_ifindex);
2954 		if (!dev)
2955 			goto out;
2956 		idev = in6_dev_get(dev);
2957 		if (!idev)
2958 			goto out;
2959 	}
2960 
2961 	if (cfg->fc_metric == 0)
2962 		cfg->fc_metric = IP6_RT_PRIO_USER;
2963 
2964 	if (cfg->fc_flags & RTNH_F_ONLINK) {
2965 		if (!dev) {
2966 			NL_SET_ERR_MSG(extack,
2967 				       "Nexthop device required for onlink");
2968 			err = -ENODEV;
2969 			goto out;
2970 		}
2971 
2972 		if (!(dev->flags & IFF_UP)) {
2973 			NL_SET_ERR_MSG(extack, "Nexthop device is not up");
2974 			err = -ENETDOWN;
2975 			goto out;
2976 		}
2977 	}
2978 
2979 	err = -ENOBUFS;
2980 	if (cfg->fc_nlinfo.nlh &&
2981 	    !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
2982 		table = fib6_get_table(net, cfg->fc_table);
2983 		if (!table) {
2984 			pr_warn("NLM_F_CREATE should be specified when creating new route\n");
2985 			table = fib6_new_table(net, cfg->fc_table);
2986 		}
2987 	} else {
2988 		table = fib6_new_table(net, cfg->fc_table);
2989 	}
2990 
2991 	if (!table)
2992 		goto out;
2993 
2994 	err = -ENOMEM;
2995 	rt = fib6_info_alloc(gfp_flags);
2996 	if (!rt)
2997 		goto out;
2998 
2999 	if (cfg->fc_flags & RTF_ADDRCONF)
3000 		rt->dst_nocount = true;
3001 
3002 	err = ip6_convert_metrics(net, rt, cfg);
3003 	if (err < 0)
3004 		goto out;
3005 
3006 	if (cfg->fc_flags & RTF_EXPIRES)
3007 		fib6_set_expires(rt, jiffies +
3008 				clock_t_to_jiffies(cfg->fc_expires));
3009 	else
3010 		fib6_clean_expires(rt);
3011 
3012 	if (cfg->fc_protocol == RTPROT_UNSPEC)
3013 		cfg->fc_protocol = RTPROT_BOOT;
3014 	rt->fib6_protocol = cfg->fc_protocol;
3015 
3016 	addr_type = ipv6_addr_type(&cfg->fc_dst);
3017 
3018 	if (cfg->fc_encap) {
3019 		struct lwtunnel_state *lwtstate;
3020 
3021 		err = lwtunnel_build_state(cfg->fc_encap_type,
3022 					   cfg->fc_encap, AF_INET6, cfg,
3023 					   &lwtstate, extack);
3024 		if (err)
3025 			goto out;
3026 		rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate);
3027 	}
3028 
3029 	ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
3030 	rt->fib6_dst.plen = cfg->fc_dst_len;
3031 	if (rt->fib6_dst.plen == 128)
3032 		rt->dst_host = true;
3033 
3034 #ifdef CONFIG_IPV6_SUBTREES
3035 	ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
3036 	rt->fib6_src.plen = cfg->fc_src_len;
3037 #endif
3038 
3039 	rt->fib6_metric = cfg->fc_metric;
3040 	rt->fib6_nh.nh_weight = 1;
3041 
3042 	rt->fib6_type = cfg->fc_type;
3043 
3044 	/* We cannot add true routes via loopback here,
3045 	   they would result in kernel looping; promote them to reject routes
3046 	 */
3047 	if ((cfg->fc_flags & RTF_REJECT) ||
3048 	    (dev && (dev->flags & IFF_LOOPBACK) &&
3049 	     !(addr_type & IPV6_ADDR_LOOPBACK) &&
3050 	     !(cfg->fc_flags & RTF_LOCAL))) {
3051 		/* hold loopback dev/idev if we haven't done so. */
3052 		if (dev != net->loopback_dev) {
3053 			if (dev) {
3054 				dev_put(dev);
3055 				in6_dev_put(idev);
3056 			}
3057 			dev = net->loopback_dev;
3058 			dev_hold(dev);
3059 			idev = in6_dev_get(dev);
3060 			if (!idev) {
3061 				err = -ENODEV;
3062 				goto out;
3063 			}
3064 		}
3065 		rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP;
3066 		goto install_route;
3067 	}
3068 
3069 	if (cfg->fc_flags & RTF_GATEWAY) {
3070 		err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
3071 		if (err)
3072 			goto out;
3073 
3074 		rt->fib6_nh.nh_gw = cfg->fc_gateway;
3075 	}
3076 
3077 	err = -ENODEV;
3078 	if (!dev)
3079 		goto out;
3080 
3081 	if (idev->cnf.disable_ipv6) {
3082 		NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
3083 		err = -EACCES;
3084 		goto out;
3085 	}
3086 
3087 	if (!(dev->flags & IFF_UP)) {
3088 		NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3089 		err = -ENETDOWN;
3090 		goto out;
3091 	}
3092 
3093 	if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
3094 		if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
3095 			NL_SET_ERR_MSG(extack, "Invalid source address");
3096 			err = -EINVAL;
3097 			goto out;
3098 		}
3099 		rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
3100 		rt->fib6_prefsrc.plen = 128;
3101 	} else
3102 		rt->fib6_prefsrc.plen = 0;
3103 
3104 	rt->fib6_flags = cfg->fc_flags;
3105 
3106 install_route:
3107 	if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
3108 	    !netif_carrier_ok(dev))
3109 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
3110 	rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK);
3111 	rt->fib6_nh.nh_dev = dev;
3112 	rt->fib6_table = table;
3113 
3114 	if (idev)
3115 		in6_dev_put(idev);
3116 
3117 	return rt;
3118 out:
3119 	if (dev)
3120 		dev_put(dev);
3121 	if (idev)
3122 		in6_dev_put(idev);
3123 
3124 	fib6_info_release(rt);
3125 	return ERR_PTR(err);
3126 }
3127 
3128 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
3129 		  struct netlink_ext_ack *extack)
3130 {
3131 	struct fib6_info *rt;
3132 	int err;
3133 
3134 	rt = ip6_route_info_create(cfg, gfp_flags, extack);
3135 	if (IS_ERR(rt))
3136 		return PTR_ERR(rt);
3137 
3138 	err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
3139 	fib6_info_release(rt);
3140 
3141 	return err;
3142 }
3143 
3144 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
3145 {
3146 	struct net *net = info->nl_net;
3147 	struct fib6_table *table;
3148 	int err;
3149 
3150 	if (rt == net->ipv6.fib6_null_entry) {
3151 		err = -ENOENT;
3152 		goto out;
3153 	}
3154 
3155 	table = rt->fib6_table;
3156 	spin_lock_bh(&table->tb6_lock);
3157 	err = fib6_del(rt, info);
3158 	spin_unlock_bh(&table->tb6_lock);
3159 
3160 out:
3161 	fib6_info_release(rt);
3162 	return err;
3163 }
3164 
3165 int ip6_del_rt(struct net *net, struct fib6_info *rt)
3166 {
3167 	struct nl_info info = { .nl_net = net };
3168 
3169 	return __ip6_del_rt(rt, &info);
3170 }
3171 
3172 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
3173 {
3174 	struct nl_info *info = &cfg->fc_nlinfo;
3175 	struct net *net = info->nl_net;
3176 	struct sk_buff *skb = NULL;
3177 	struct fib6_table *table;
3178 	int err = -ENOENT;
3179 
3180 	if (rt == net->ipv6.fib6_null_entry)
3181 		goto out_put;
3182 	table = rt->fib6_table;
3183 	spin_lock_bh(&table->tb6_lock);
3184 
3185 	if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
3186 		struct fib6_info *sibling, *next_sibling;
3187 
3188 		/* prefer to send a single notification with all hops */
3189 		skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
3190 		if (skb) {
3191 			u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
3192 
3193 			if (rt6_fill_node(net, skb, rt, NULL,
3194 					  NULL, NULL, 0, RTM_DELROUTE,
3195 					  info->portid, seq, 0) < 0) {
3196 				kfree_skb(skb);
3197 				skb = NULL;
3198 			} else
3199 				info->skip_notify = 1;
3200 		}
3201 
3202 		list_for_each_entry_safe(sibling, next_sibling,
3203 					 &rt->fib6_siblings,
3204 					 fib6_siblings) {
3205 			err = fib6_del(sibling, info);
3206 			if (err)
3207 				goto out_unlock;
3208 		}
3209 	}
3210 
3211 	err = fib6_del(rt, info);
3212 out_unlock:
3213 	spin_unlock_bh(&table->tb6_lock);
3214 out_put:
3215 	fib6_info_release(rt);
3216 
3217 	if (skb) {
3218 		rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
3219 			    info->nlh, gfp_any());
3220 	}
3221 	return err;
3222 }
3223 
3224 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
3225 {
3226 	int rc = -ESRCH;
3227 
3228 	if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
3229 		goto out;
3230 
3231 	if (cfg->fc_flags & RTF_GATEWAY &&
3232 	    !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
3233 		goto out;
3234 	if (dst_hold_safe(&rt->dst))
3235 		rc = rt6_remove_exception_rt(rt);
3236 out:
3237 	return rc;
3238 }
3239 
3240 static int ip6_route_del(struct fib6_config *cfg,
3241 			 struct netlink_ext_ack *extack)
3242 {
3243 	struct rt6_info *rt_cache;
3244 	struct fib6_table *table;
3245 	struct fib6_info *rt;
3246 	struct fib6_node *fn;
3247 	int err = -ESRCH;
3248 
3249 	table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
3250 	if (!table) {
3251 		NL_SET_ERR_MSG(extack, "FIB table does not exist");
3252 		return err;
3253 	}
3254 
3255 	rcu_read_lock();
3256 
3257 	fn = fib6_locate(&table->tb6_root,
3258 			 &cfg->fc_dst, cfg->fc_dst_len,
3259 			 &cfg->fc_src, cfg->fc_src_len,
3260 			 !(cfg->fc_flags & RTF_CACHE));
3261 
3262 	if (fn) {
3263 		for_each_fib6_node_rt_rcu(fn) {
3264 			if (cfg->fc_flags & RTF_CACHE) {
3265 				int rc;
3266 
3267 				rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst,
3268 							      &cfg->fc_src);
3269 				if (rt_cache) {
3270 					rc = ip6_del_cached_rt(rt_cache, cfg);
3271 					if (rc != -ESRCH) {
3272 						rcu_read_unlock();
3273 						return rc;
3274 					}
3275 				}
3276 				continue;
3277 			}
3278 			if (cfg->fc_ifindex &&
3279 			    (!rt->fib6_nh.nh_dev ||
3280 			     rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex))
3281 				continue;
3282 			if (cfg->fc_flags & RTF_GATEWAY &&
3283 			    !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw))
3284 				continue;
3285 			if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
3286 				continue;
3287 			if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol)
3288 				continue;
3289 			if (!fib6_info_hold_safe(rt))
3290 				continue;
3291 			rcu_read_unlock();
3292 
3293 			/* if gateway was specified only delete the one hop */
3294 			if (cfg->fc_flags & RTF_GATEWAY)
3295 				return __ip6_del_rt(rt, &cfg->fc_nlinfo);
3296 
3297 			return __ip6_del_rt_siblings(rt, cfg);
3298 		}
3299 	}
3300 	rcu_read_unlock();
3301 
3302 	return err;
3303 }
3304 
3305 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
3306 {
3307 	struct netevent_redirect netevent;
3308 	struct rt6_info *rt, *nrt = NULL;
3309 	struct ndisc_options ndopts;
3310 	struct inet6_dev *in6_dev;
3311 	struct neighbour *neigh;
3312 	struct fib6_info *from;
3313 	struct rd_msg *msg;
3314 	int optlen, on_link;
3315 	u8 *lladdr;
3316 
3317 	optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
3318 	optlen -= sizeof(*msg);
3319 
3320 	if (optlen < 0) {
3321 		net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
3322 		return;
3323 	}
3324 
3325 	msg = (struct rd_msg *)icmp6_hdr(skb);
3326 
3327 	if (ipv6_addr_is_multicast(&msg->dest)) {
3328 		net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
3329 		return;
3330 	}
3331 
3332 	on_link = 0;
3333 	if (ipv6_addr_equal(&msg->dest, &msg->target)) {
3334 		on_link = 1;
3335 	} else if (ipv6_addr_type(&msg->target) !=
3336 		   (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
3337 		net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
3338 		return;
3339 	}
3340 
3341 	in6_dev = __in6_dev_get(skb->dev);
3342 	if (!in6_dev)
3343 		return;
3344 	if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
3345 		return;
3346 
3347 	/* RFC2461 8.1:
3348 	 *	The IP source address of the Redirect MUST be the same as the current
3349 	 *	first-hop router for the specified ICMP Destination Address.
3350 	 */
3351 
3352 	if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
3353 		net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
3354 		return;
3355 	}
3356 
3357 	lladdr = NULL;
3358 	if (ndopts.nd_opts_tgt_lladdr) {
3359 		lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
3360 					     skb->dev);
3361 		if (!lladdr) {
3362 			net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
3363 			return;
3364 		}
3365 	}
3366 
3367 	rt = (struct rt6_info *) dst;
3368 	if (rt->rt6i_flags & RTF_REJECT) {
3369 		net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
3370 		return;
3371 	}
3372 
3373 	/* Redirect received -> path was valid.
3374 	 * Look, redirects are sent only in response to data packets,
3375 	 * so that this nexthop apparently is reachable. --ANK
3376 	 */
3377 	dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
3378 
3379 	neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
3380 	if (!neigh)
3381 		return;
3382 
3383 	/*
3384 	 *	We have finally decided to accept it.
3385 	 */
3386 
3387 	ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
3388 		     NEIGH_UPDATE_F_WEAK_OVERRIDE|
3389 		     NEIGH_UPDATE_F_OVERRIDE|
3390 		     (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
3391 				     NEIGH_UPDATE_F_ISROUTER)),
3392 		     NDISC_REDIRECT, &ndopts);
3393 
3394 	rcu_read_lock();
3395 	from = rcu_dereference(rt->from);
3396 	/* This fib6_info_hold() is safe here because we hold reference to rt
3397 	 * and rt already holds reference to fib6_info.
3398 	 */
3399 	fib6_info_hold(from);
3400 	rcu_read_unlock();
3401 
3402 	nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL);
3403 	if (!nrt)
3404 		goto out;
3405 
3406 	nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
3407 	if (on_link)
3408 		nrt->rt6i_flags &= ~RTF_GATEWAY;
3409 
3410 	nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
3411 
3412 	/* No need to remove rt from the exception table if rt is
3413 	 * a cached route because rt6_insert_exception() will
3414 	 * takes care of it
3415 	 */
3416 	if (rt6_insert_exception(nrt, from)) {
3417 		dst_release_immediate(&nrt->dst);
3418 		goto out;
3419 	}
3420 
3421 	netevent.old = &rt->dst;
3422 	netevent.new = &nrt->dst;
3423 	netevent.daddr = &msg->dest;
3424 	netevent.neigh = neigh;
3425 	call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
3426 
3427 out:
3428 	fib6_info_release(from);
3429 	neigh_release(neigh);
3430 }
3431 
3432 #ifdef CONFIG_IPV6_ROUTE_INFO
3433 static struct fib6_info *rt6_get_route_info(struct net *net,
3434 					   const struct in6_addr *prefix, int prefixlen,
3435 					   const struct in6_addr *gwaddr,
3436 					   struct net_device *dev)
3437 {
3438 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
3439 	int ifindex = dev->ifindex;
3440 	struct fib6_node *fn;
3441 	struct fib6_info *rt = NULL;
3442 	struct fib6_table *table;
3443 
3444 	table = fib6_get_table(net, tb_id);
3445 	if (!table)
3446 		return NULL;
3447 
3448 	rcu_read_lock();
3449 	fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
3450 	if (!fn)
3451 		goto out;
3452 
3453 	for_each_fib6_node_rt_rcu(fn) {
3454 		if (rt->fib6_nh.nh_dev->ifindex != ifindex)
3455 			continue;
3456 		if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
3457 			continue;
3458 		if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr))
3459 			continue;
3460 		if (!fib6_info_hold_safe(rt))
3461 			continue;
3462 		break;
3463 	}
3464 out:
3465 	rcu_read_unlock();
3466 	return rt;
3467 }
3468 
3469 static struct fib6_info *rt6_add_route_info(struct net *net,
3470 					   const struct in6_addr *prefix, int prefixlen,
3471 					   const struct in6_addr *gwaddr,
3472 					   struct net_device *dev,
3473 					   unsigned int pref)
3474 {
3475 	struct fib6_config cfg = {
3476 		.fc_metric	= IP6_RT_PRIO_USER,
3477 		.fc_ifindex	= dev->ifindex,
3478 		.fc_dst_len	= prefixlen,
3479 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
3480 				  RTF_UP | RTF_PREF(pref),
3481 		.fc_protocol = RTPROT_RA,
3482 		.fc_type = RTN_UNICAST,
3483 		.fc_nlinfo.portid = 0,
3484 		.fc_nlinfo.nlh = NULL,
3485 		.fc_nlinfo.nl_net = net,
3486 	};
3487 
3488 	cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO,
3489 	cfg.fc_dst = *prefix;
3490 	cfg.fc_gateway = *gwaddr;
3491 
3492 	/* We should treat it as a default route if prefix length is 0. */
3493 	if (!prefixlen)
3494 		cfg.fc_flags |= RTF_DEFAULT;
3495 
3496 	ip6_route_add(&cfg, GFP_ATOMIC, NULL);
3497 
3498 	return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
3499 }
3500 #endif
3501 
3502 struct fib6_info *rt6_get_dflt_router(struct net *net,
3503 				     const struct in6_addr *addr,
3504 				     struct net_device *dev)
3505 {
3506 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
3507 	struct fib6_info *rt;
3508 	struct fib6_table *table;
3509 
3510 	table = fib6_get_table(net, tb_id);
3511 	if (!table)
3512 		return NULL;
3513 
3514 	rcu_read_lock();
3515 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3516 		if (dev == rt->fib6_nh.nh_dev &&
3517 		    ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
3518 		    ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr))
3519 			break;
3520 	}
3521 	if (rt && !fib6_info_hold_safe(rt))
3522 		rt = NULL;
3523 	rcu_read_unlock();
3524 	return rt;
3525 }
3526 
3527 struct fib6_info *rt6_add_dflt_router(struct net *net,
3528 				     const struct in6_addr *gwaddr,
3529 				     struct net_device *dev,
3530 				     unsigned int pref)
3531 {
3532 	struct fib6_config cfg = {
3533 		.fc_table	= l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
3534 		.fc_metric	= IP6_RT_PRIO_USER,
3535 		.fc_ifindex	= dev->ifindex,
3536 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
3537 				  RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
3538 		.fc_protocol = RTPROT_RA,
3539 		.fc_type = RTN_UNICAST,
3540 		.fc_nlinfo.portid = 0,
3541 		.fc_nlinfo.nlh = NULL,
3542 		.fc_nlinfo.nl_net = net,
3543 	};
3544 
3545 	cfg.fc_gateway = *gwaddr;
3546 
3547 	if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
3548 		struct fib6_table *table;
3549 
3550 		table = fib6_get_table(dev_net(dev), cfg.fc_table);
3551 		if (table)
3552 			table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
3553 	}
3554 
3555 	return rt6_get_dflt_router(net, gwaddr, dev);
3556 }
3557 
3558 static void __rt6_purge_dflt_routers(struct net *net,
3559 				     struct fib6_table *table)
3560 {
3561 	struct fib6_info *rt;
3562 
3563 restart:
3564 	rcu_read_lock();
3565 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3566 		struct net_device *dev = fib6_info_nh_dev(rt);
3567 		struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
3568 
3569 		if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
3570 		    (!idev || idev->cnf.accept_ra != 2) &&
3571 		    fib6_info_hold_safe(rt)) {
3572 			rcu_read_unlock();
3573 			ip6_del_rt(net, rt);
3574 			goto restart;
3575 		}
3576 	}
3577 	rcu_read_unlock();
3578 
3579 	table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
3580 }
3581 
3582 void rt6_purge_dflt_routers(struct net *net)
3583 {
3584 	struct fib6_table *table;
3585 	struct hlist_head *head;
3586 	unsigned int h;
3587 
3588 	rcu_read_lock();
3589 
3590 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
3591 		head = &net->ipv6.fib_table_hash[h];
3592 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
3593 			if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
3594 				__rt6_purge_dflt_routers(net, table);
3595 		}
3596 	}
3597 
3598 	rcu_read_unlock();
3599 }
3600 
3601 static void rtmsg_to_fib6_config(struct net *net,
3602 				 struct in6_rtmsg *rtmsg,
3603 				 struct fib6_config *cfg)
3604 {
3605 	memset(cfg, 0, sizeof(*cfg));
3606 
3607 	cfg->fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
3608 			 : RT6_TABLE_MAIN;
3609 	cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
3610 	cfg->fc_metric = rtmsg->rtmsg_metric;
3611 	cfg->fc_expires = rtmsg->rtmsg_info;
3612 	cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
3613 	cfg->fc_src_len = rtmsg->rtmsg_src_len;
3614 	cfg->fc_flags = rtmsg->rtmsg_flags;
3615 	cfg->fc_type = rtmsg->rtmsg_type;
3616 
3617 	cfg->fc_nlinfo.nl_net = net;
3618 
3619 	cfg->fc_dst = rtmsg->rtmsg_dst;
3620 	cfg->fc_src = rtmsg->rtmsg_src;
3621 	cfg->fc_gateway = rtmsg->rtmsg_gateway;
3622 }
3623 
3624 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3625 {
3626 	struct fib6_config cfg;
3627 	struct in6_rtmsg rtmsg;
3628 	int err;
3629 
3630 	switch (cmd) {
3631 	case SIOCADDRT:		/* Add a route */
3632 	case SIOCDELRT:		/* Delete a route */
3633 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3634 			return -EPERM;
3635 		err = copy_from_user(&rtmsg, arg,
3636 				     sizeof(struct in6_rtmsg));
3637 		if (err)
3638 			return -EFAULT;
3639 
3640 		rtmsg_to_fib6_config(net, &rtmsg, &cfg);
3641 
3642 		rtnl_lock();
3643 		switch (cmd) {
3644 		case SIOCADDRT:
3645 			err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
3646 			break;
3647 		case SIOCDELRT:
3648 			err = ip6_route_del(&cfg, NULL);
3649 			break;
3650 		default:
3651 			err = -EINVAL;
3652 		}
3653 		rtnl_unlock();
3654 
3655 		return err;
3656 	}
3657 
3658 	return -EINVAL;
3659 }
3660 
3661 /*
3662  *	Drop the packet on the floor
3663  */
3664 
3665 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
3666 {
3667 	int type;
3668 	struct dst_entry *dst = skb_dst(skb);
3669 	switch (ipstats_mib_noroutes) {
3670 	case IPSTATS_MIB_INNOROUTES:
3671 		type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
3672 		if (type == IPV6_ADDR_ANY) {
3673 			IP6_INC_STATS(dev_net(dst->dev),
3674 				      __in6_dev_get_safely(skb->dev),
3675 				      IPSTATS_MIB_INADDRERRORS);
3676 			break;
3677 		}
3678 		/* FALLTHROUGH */
3679 	case IPSTATS_MIB_OUTNOROUTES:
3680 		IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
3681 			      ipstats_mib_noroutes);
3682 		break;
3683 	}
3684 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
3685 	kfree_skb(skb);
3686 	return 0;
3687 }
3688 
3689 static int ip6_pkt_discard(struct sk_buff *skb)
3690 {
3691 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
3692 }
3693 
3694 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3695 {
3696 	skb->dev = skb_dst(skb)->dev;
3697 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
3698 }
3699 
3700 static int ip6_pkt_prohibit(struct sk_buff *skb)
3701 {
3702 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
3703 }
3704 
3705 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3706 {
3707 	skb->dev = skb_dst(skb)->dev;
3708 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
3709 }
3710 
3711 /*
3712  *	Allocate a dst for local (unicast / anycast) address.
3713  */
3714 
3715 struct fib6_info *addrconf_f6i_alloc(struct net *net,
3716 				     struct inet6_dev *idev,
3717 				     const struct in6_addr *addr,
3718 				     bool anycast, gfp_t gfp_flags)
3719 {
3720 	u32 tb_id;
3721 	struct net_device *dev = idev->dev;
3722 	struct fib6_info *f6i;
3723 
3724 	f6i = fib6_info_alloc(gfp_flags);
3725 	if (!f6i)
3726 		return ERR_PTR(-ENOMEM);
3727 
3728 	f6i->dst_nocount = true;
3729 	f6i->dst_host = true;
3730 	f6i->fib6_protocol = RTPROT_KERNEL;
3731 	f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP;
3732 	if (anycast) {
3733 		f6i->fib6_type = RTN_ANYCAST;
3734 		f6i->fib6_flags |= RTF_ANYCAST;
3735 	} else {
3736 		f6i->fib6_type = RTN_LOCAL;
3737 		f6i->fib6_flags |= RTF_LOCAL;
3738 	}
3739 
3740 	f6i->fib6_nh.nh_gw = *addr;
3741 	dev_hold(dev);
3742 	f6i->fib6_nh.nh_dev = dev;
3743 	f6i->fib6_dst.addr = *addr;
3744 	f6i->fib6_dst.plen = 128;
3745 	tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL;
3746 	f6i->fib6_table = fib6_get_table(net, tb_id);
3747 
3748 	return f6i;
3749 }
3750 
3751 /* remove deleted ip from prefsrc entries */
3752 struct arg_dev_net_ip {
3753 	struct net_device *dev;
3754 	struct net *net;
3755 	struct in6_addr *addr;
3756 };
3757 
3758 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
3759 {
3760 	struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
3761 	struct net *net = ((struct arg_dev_net_ip *)arg)->net;
3762 	struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
3763 
3764 	if (((void *)rt->fib6_nh.nh_dev == dev || !dev) &&
3765 	    rt != net->ipv6.fib6_null_entry &&
3766 	    ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
3767 		spin_lock_bh(&rt6_exception_lock);
3768 		/* remove prefsrc entry */
3769 		rt->fib6_prefsrc.plen = 0;
3770 		spin_unlock_bh(&rt6_exception_lock);
3771 	}
3772 	return 0;
3773 }
3774 
3775 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
3776 {
3777 	struct net *net = dev_net(ifp->idev->dev);
3778 	struct arg_dev_net_ip adni = {
3779 		.dev = ifp->idev->dev,
3780 		.net = net,
3781 		.addr = &ifp->addr,
3782 	};
3783 	fib6_clean_all(net, fib6_remove_prefsrc, &adni);
3784 }
3785 
3786 #define RTF_RA_ROUTER		(RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY)
3787 
3788 /* Remove routers and update dst entries when gateway turn into host. */
3789 static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
3790 {
3791 	struct in6_addr *gateway = (struct in6_addr *)arg;
3792 
3793 	if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
3794 	    ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) {
3795 		return -1;
3796 	}
3797 
3798 	/* Further clean up cached routes in exception table.
3799 	 * This is needed because cached route may have a different
3800 	 * gateway than its 'parent' in the case of an ip redirect.
3801 	 */
3802 	rt6_exceptions_clean_tohost(rt, gateway);
3803 
3804 	return 0;
3805 }
3806 
3807 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
3808 {
3809 	fib6_clean_all(net, fib6_clean_tohost, gateway);
3810 }
3811 
3812 struct arg_netdev_event {
3813 	const struct net_device *dev;
3814 	union {
3815 		unsigned int nh_flags;
3816 		unsigned long event;
3817 	};
3818 };
3819 
3820 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
3821 {
3822 	struct fib6_info *iter;
3823 	struct fib6_node *fn;
3824 
3825 	fn = rcu_dereference_protected(rt->fib6_node,
3826 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3827 	iter = rcu_dereference_protected(fn->leaf,
3828 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3829 	while (iter) {
3830 		if (iter->fib6_metric == rt->fib6_metric &&
3831 		    rt6_qualify_for_ecmp(iter))
3832 			return iter;
3833 		iter = rcu_dereference_protected(iter->fib6_next,
3834 				lockdep_is_held(&rt->fib6_table->tb6_lock));
3835 	}
3836 
3837 	return NULL;
3838 }
3839 
3840 static bool rt6_is_dead(const struct fib6_info *rt)
3841 {
3842 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD ||
3843 	    (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
3844 	     fib6_ignore_linkdown(rt)))
3845 		return true;
3846 
3847 	return false;
3848 }
3849 
3850 static int rt6_multipath_total_weight(const struct fib6_info *rt)
3851 {
3852 	struct fib6_info *iter;
3853 	int total = 0;
3854 
3855 	if (!rt6_is_dead(rt))
3856 		total += rt->fib6_nh.nh_weight;
3857 
3858 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
3859 		if (!rt6_is_dead(iter))
3860 			total += iter->fib6_nh.nh_weight;
3861 	}
3862 
3863 	return total;
3864 }
3865 
3866 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
3867 {
3868 	int upper_bound = -1;
3869 
3870 	if (!rt6_is_dead(rt)) {
3871 		*weight += rt->fib6_nh.nh_weight;
3872 		upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
3873 						    total) - 1;
3874 	}
3875 	atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound);
3876 }
3877 
3878 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
3879 {
3880 	struct fib6_info *iter;
3881 	int weight = 0;
3882 
3883 	rt6_upper_bound_set(rt, &weight, total);
3884 
3885 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3886 		rt6_upper_bound_set(iter, &weight, total);
3887 }
3888 
3889 void rt6_multipath_rebalance(struct fib6_info *rt)
3890 {
3891 	struct fib6_info *first;
3892 	int total;
3893 
3894 	/* In case the entire multipath route was marked for flushing,
3895 	 * then there is no need to rebalance upon the removal of every
3896 	 * sibling route.
3897 	 */
3898 	if (!rt->fib6_nsiblings || rt->should_flush)
3899 		return;
3900 
3901 	/* During lookup routes are evaluated in order, so we need to
3902 	 * make sure upper bounds are assigned from the first sibling
3903 	 * onwards.
3904 	 */
3905 	first = rt6_multipath_first_sibling(rt);
3906 	if (WARN_ON_ONCE(!first))
3907 		return;
3908 
3909 	total = rt6_multipath_total_weight(first);
3910 	rt6_multipath_upper_bound_set(first, total);
3911 }
3912 
3913 static int fib6_ifup(struct fib6_info *rt, void *p_arg)
3914 {
3915 	const struct arg_netdev_event *arg = p_arg;
3916 	struct net *net = dev_net(arg->dev);
3917 
3918 	if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) {
3919 		rt->fib6_nh.nh_flags &= ~arg->nh_flags;
3920 		fib6_update_sernum_upto_root(net, rt);
3921 		rt6_multipath_rebalance(rt);
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags)
3928 {
3929 	struct arg_netdev_event arg = {
3930 		.dev = dev,
3931 		{
3932 			.nh_flags = nh_flags,
3933 		},
3934 	};
3935 
3936 	if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
3937 		arg.nh_flags |= RTNH_F_LINKDOWN;
3938 
3939 	fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
3940 }
3941 
3942 static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
3943 				   const struct net_device *dev)
3944 {
3945 	struct fib6_info *iter;
3946 
3947 	if (rt->fib6_nh.nh_dev == dev)
3948 		return true;
3949 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3950 		if (iter->fib6_nh.nh_dev == dev)
3951 			return true;
3952 
3953 	return false;
3954 }
3955 
3956 static void rt6_multipath_flush(struct fib6_info *rt)
3957 {
3958 	struct fib6_info *iter;
3959 
3960 	rt->should_flush = 1;
3961 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3962 		iter->should_flush = 1;
3963 }
3964 
3965 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
3966 					     const struct net_device *down_dev)
3967 {
3968 	struct fib6_info *iter;
3969 	unsigned int dead = 0;
3970 
3971 	if (rt->fib6_nh.nh_dev == down_dev ||
3972 	    rt->fib6_nh.nh_flags & RTNH_F_DEAD)
3973 		dead++;
3974 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3975 		if (iter->fib6_nh.nh_dev == down_dev ||
3976 		    iter->fib6_nh.nh_flags & RTNH_F_DEAD)
3977 			dead++;
3978 
3979 	return dead;
3980 }
3981 
3982 static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
3983 				       const struct net_device *dev,
3984 				       unsigned int nh_flags)
3985 {
3986 	struct fib6_info *iter;
3987 
3988 	if (rt->fib6_nh.nh_dev == dev)
3989 		rt->fib6_nh.nh_flags |= nh_flags;
3990 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3991 		if (iter->fib6_nh.nh_dev == dev)
3992 			iter->fib6_nh.nh_flags |= nh_flags;
3993 }
3994 
3995 /* called with write lock held for table with rt */
3996 static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
3997 {
3998 	const struct arg_netdev_event *arg = p_arg;
3999 	const struct net_device *dev = arg->dev;
4000 	struct net *net = dev_net(dev);
4001 
4002 	if (rt == net->ipv6.fib6_null_entry)
4003 		return 0;
4004 
4005 	switch (arg->event) {
4006 	case NETDEV_UNREGISTER:
4007 		return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4008 	case NETDEV_DOWN:
4009 		if (rt->should_flush)
4010 			return -1;
4011 		if (!rt->fib6_nsiblings)
4012 			return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4013 		if (rt6_multipath_uses_dev(rt, dev)) {
4014 			unsigned int count;
4015 
4016 			count = rt6_multipath_dead_count(rt, dev);
4017 			if (rt->fib6_nsiblings + 1 == count) {
4018 				rt6_multipath_flush(rt);
4019 				return -1;
4020 			}
4021 			rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
4022 						   RTNH_F_LINKDOWN);
4023 			fib6_update_sernum(net, rt);
4024 			rt6_multipath_rebalance(rt);
4025 		}
4026 		return -2;
4027 	case NETDEV_CHANGE:
4028 		if (rt->fib6_nh.nh_dev != dev ||
4029 		    rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
4030 			break;
4031 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
4032 		rt6_multipath_rebalance(rt);
4033 		break;
4034 	}
4035 
4036 	return 0;
4037 }
4038 
4039 void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
4040 {
4041 	struct arg_netdev_event arg = {
4042 		.dev = dev,
4043 		{
4044 			.event = event,
4045 		},
4046 	};
4047 
4048 	fib6_clean_all(dev_net(dev), fib6_ifdown, &arg);
4049 }
4050 
4051 void rt6_disable_ip(struct net_device *dev, unsigned long event)
4052 {
4053 	rt6_sync_down_dev(dev, event);
4054 	rt6_uncached_list_flush_dev(dev_net(dev), dev);
4055 	neigh_ifdown(&nd_tbl, dev);
4056 }
4057 
4058 struct rt6_mtu_change_arg {
4059 	struct net_device *dev;
4060 	unsigned int mtu;
4061 };
4062 
4063 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg)
4064 {
4065 	struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
4066 	struct inet6_dev *idev;
4067 
4068 	/* In IPv6 pmtu discovery is not optional,
4069 	   so that RTAX_MTU lock cannot disable it.
4070 	   We still use this lock to block changes
4071 	   caused by addrconf/ndisc.
4072 	*/
4073 
4074 	idev = __in6_dev_get(arg->dev);
4075 	if (!idev)
4076 		return 0;
4077 
4078 	/* For administrative MTU increase, there is no way to discover
4079 	   IPv6 PMTU increase, so PMTU increase should be updated here.
4080 	   Since RFC 1981 doesn't include administrative MTU increase
4081 	   update PMTU increase is a MUST. (i.e. jumbo frame)
4082 	 */
4083 	if (rt->fib6_nh.nh_dev == arg->dev &&
4084 	    !fib6_metric_locked(rt, RTAX_MTU)) {
4085 		u32 mtu = rt->fib6_pmtu;
4086 
4087 		if (mtu >= arg->mtu ||
4088 		    (mtu < arg->mtu && mtu == idev->cnf.mtu6))
4089 			fib6_metric_set(rt, RTAX_MTU, arg->mtu);
4090 
4091 		spin_lock_bh(&rt6_exception_lock);
4092 		rt6_exceptions_update_pmtu(idev, rt, arg->mtu);
4093 		spin_unlock_bh(&rt6_exception_lock);
4094 	}
4095 	return 0;
4096 }
4097 
4098 void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
4099 {
4100 	struct rt6_mtu_change_arg arg = {
4101 		.dev = dev,
4102 		.mtu = mtu,
4103 	};
4104 
4105 	fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
4106 }
4107 
4108 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
4109 	[RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
4110 	[RTA_PREFSRC]		= { .len = sizeof(struct in6_addr) },
4111 	[RTA_OIF]               = { .type = NLA_U32 },
4112 	[RTA_IIF]		= { .type = NLA_U32 },
4113 	[RTA_PRIORITY]          = { .type = NLA_U32 },
4114 	[RTA_METRICS]           = { .type = NLA_NESTED },
4115 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
4116 	[RTA_PREF]              = { .type = NLA_U8 },
4117 	[RTA_ENCAP_TYPE]	= { .type = NLA_U16 },
4118 	[RTA_ENCAP]		= { .type = NLA_NESTED },
4119 	[RTA_EXPIRES]		= { .type = NLA_U32 },
4120 	[RTA_UID]		= { .type = NLA_U32 },
4121 	[RTA_MARK]		= { .type = NLA_U32 },
4122 	[RTA_TABLE]		= { .type = NLA_U32 },
4123 	[RTA_IP_PROTO]		= { .type = NLA_U8 },
4124 	[RTA_SPORT]		= { .type = NLA_U16 },
4125 	[RTA_DPORT]		= { .type = NLA_U16 },
4126 };
4127 
4128 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
4129 			      struct fib6_config *cfg,
4130 			      struct netlink_ext_ack *extack)
4131 {
4132 	struct rtmsg *rtm;
4133 	struct nlattr *tb[RTA_MAX+1];
4134 	unsigned int pref;
4135 	int err;
4136 
4137 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4138 			  NULL);
4139 	if (err < 0)
4140 		goto errout;
4141 
4142 	err = -EINVAL;
4143 	rtm = nlmsg_data(nlh);
4144 	memset(cfg, 0, sizeof(*cfg));
4145 
4146 	cfg->fc_table = rtm->rtm_table;
4147 	cfg->fc_dst_len = rtm->rtm_dst_len;
4148 	cfg->fc_src_len = rtm->rtm_src_len;
4149 	cfg->fc_flags = RTF_UP;
4150 	cfg->fc_protocol = rtm->rtm_protocol;
4151 	cfg->fc_type = rtm->rtm_type;
4152 
4153 	if (rtm->rtm_type == RTN_UNREACHABLE ||
4154 	    rtm->rtm_type == RTN_BLACKHOLE ||
4155 	    rtm->rtm_type == RTN_PROHIBIT ||
4156 	    rtm->rtm_type == RTN_THROW)
4157 		cfg->fc_flags |= RTF_REJECT;
4158 
4159 	if (rtm->rtm_type == RTN_LOCAL)
4160 		cfg->fc_flags |= RTF_LOCAL;
4161 
4162 	if (rtm->rtm_flags & RTM_F_CLONED)
4163 		cfg->fc_flags |= RTF_CACHE;
4164 
4165 	cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
4166 
4167 	cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
4168 	cfg->fc_nlinfo.nlh = nlh;
4169 	cfg->fc_nlinfo.nl_net = sock_net(skb->sk);
4170 
4171 	if (tb[RTA_GATEWAY]) {
4172 		cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
4173 		cfg->fc_flags |= RTF_GATEWAY;
4174 	}
4175 
4176 	if (tb[RTA_DST]) {
4177 		int plen = (rtm->rtm_dst_len + 7) >> 3;
4178 
4179 		if (nla_len(tb[RTA_DST]) < plen)
4180 			goto errout;
4181 
4182 		nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
4183 	}
4184 
4185 	if (tb[RTA_SRC]) {
4186 		int plen = (rtm->rtm_src_len + 7) >> 3;
4187 
4188 		if (nla_len(tb[RTA_SRC]) < plen)
4189 			goto errout;
4190 
4191 		nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
4192 	}
4193 
4194 	if (tb[RTA_PREFSRC])
4195 		cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
4196 
4197 	if (tb[RTA_OIF])
4198 		cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
4199 
4200 	if (tb[RTA_PRIORITY])
4201 		cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
4202 
4203 	if (tb[RTA_METRICS]) {
4204 		cfg->fc_mx = nla_data(tb[RTA_METRICS]);
4205 		cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
4206 	}
4207 
4208 	if (tb[RTA_TABLE])
4209 		cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
4210 
4211 	if (tb[RTA_MULTIPATH]) {
4212 		cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
4213 		cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
4214 
4215 		err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
4216 						     cfg->fc_mp_len, extack);
4217 		if (err < 0)
4218 			goto errout;
4219 	}
4220 
4221 	if (tb[RTA_PREF]) {
4222 		pref = nla_get_u8(tb[RTA_PREF]);
4223 		if (pref != ICMPV6_ROUTER_PREF_LOW &&
4224 		    pref != ICMPV6_ROUTER_PREF_HIGH)
4225 			pref = ICMPV6_ROUTER_PREF_MEDIUM;
4226 		cfg->fc_flags |= RTF_PREF(pref);
4227 	}
4228 
4229 	if (tb[RTA_ENCAP])
4230 		cfg->fc_encap = tb[RTA_ENCAP];
4231 
4232 	if (tb[RTA_ENCAP_TYPE]) {
4233 		cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
4234 
4235 		err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
4236 		if (err < 0)
4237 			goto errout;
4238 	}
4239 
4240 	if (tb[RTA_EXPIRES]) {
4241 		unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
4242 
4243 		if (addrconf_finite_timeout(timeout)) {
4244 			cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
4245 			cfg->fc_flags |= RTF_EXPIRES;
4246 		}
4247 	}
4248 
4249 	err = 0;
4250 errout:
4251 	return err;
4252 }
4253 
4254 struct rt6_nh {
4255 	struct fib6_info *fib6_info;
4256 	struct fib6_config r_cfg;
4257 	struct list_head next;
4258 };
4259 
4260 static void ip6_print_replace_route_err(struct list_head *rt6_nh_list)
4261 {
4262 	struct rt6_nh *nh;
4263 
4264 	list_for_each_entry(nh, rt6_nh_list, next) {
4265 		pr_warn("IPV6: multipath route replace failed (check consistency of installed routes): %pI6c nexthop %pI6c ifi %d\n",
4266 		        &nh->r_cfg.fc_dst, &nh->r_cfg.fc_gateway,
4267 		        nh->r_cfg.fc_ifindex);
4268 	}
4269 }
4270 
4271 static int ip6_route_info_append(struct net *net,
4272 				 struct list_head *rt6_nh_list,
4273 				 struct fib6_info *rt,
4274 				 struct fib6_config *r_cfg)
4275 {
4276 	struct rt6_nh *nh;
4277 	int err = -EEXIST;
4278 
4279 	list_for_each_entry(nh, rt6_nh_list, next) {
4280 		/* check if fib6_info already exists */
4281 		if (rt6_duplicate_nexthop(nh->fib6_info, rt))
4282 			return err;
4283 	}
4284 
4285 	nh = kzalloc(sizeof(*nh), GFP_KERNEL);
4286 	if (!nh)
4287 		return -ENOMEM;
4288 	nh->fib6_info = rt;
4289 	err = ip6_convert_metrics(net, rt, r_cfg);
4290 	if (err) {
4291 		kfree(nh);
4292 		return err;
4293 	}
4294 	memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
4295 	list_add_tail(&nh->next, rt6_nh_list);
4296 
4297 	return 0;
4298 }
4299 
4300 static void ip6_route_mpath_notify(struct fib6_info *rt,
4301 				   struct fib6_info *rt_last,
4302 				   struct nl_info *info,
4303 				   __u16 nlflags)
4304 {
4305 	/* if this is an APPEND route, then rt points to the first route
4306 	 * inserted and rt_last points to last route inserted. Userspace
4307 	 * wants a consistent dump of the route which starts at the first
4308 	 * nexthop. Since sibling routes are always added at the end of
4309 	 * the list, find the first sibling of the last route appended
4310 	 */
4311 	if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
4312 		rt = list_first_entry(&rt_last->fib6_siblings,
4313 				      struct fib6_info,
4314 				      fib6_siblings);
4315 	}
4316 
4317 	if (rt)
4318 		inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
4319 }
4320 
4321 static int ip6_route_multipath_add(struct fib6_config *cfg,
4322 				   struct netlink_ext_ack *extack)
4323 {
4324 	struct fib6_info *rt_notif = NULL, *rt_last = NULL;
4325 	struct nl_info *info = &cfg->fc_nlinfo;
4326 	struct fib6_config r_cfg;
4327 	struct rtnexthop *rtnh;
4328 	struct fib6_info *rt;
4329 	struct rt6_nh *err_nh;
4330 	struct rt6_nh *nh, *nh_safe;
4331 	__u16 nlflags;
4332 	int remaining;
4333 	int attrlen;
4334 	int err = 1;
4335 	int nhn = 0;
4336 	int replace = (cfg->fc_nlinfo.nlh &&
4337 		       (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
4338 	LIST_HEAD(rt6_nh_list);
4339 
4340 	nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
4341 	if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
4342 		nlflags |= NLM_F_APPEND;
4343 
4344 	remaining = cfg->fc_mp_len;
4345 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4346 
4347 	/* Parse a Multipath Entry and build a list (rt6_nh_list) of
4348 	 * fib6_info structs per nexthop
4349 	 */
4350 	while (rtnh_ok(rtnh, remaining)) {
4351 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4352 		if (rtnh->rtnh_ifindex)
4353 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4354 
4355 		attrlen = rtnh_attrlen(rtnh);
4356 		if (attrlen > 0) {
4357 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4358 
4359 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4360 			if (nla) {
4361 				r_cfg.fc_gateway = nla_get_in6_addr(nla);
4362 				r_cfg.fc_flags |= RTF_GATEWAY;
4363 			}
4364 			r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
4365 			nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
4366 			if (nla)
4367 				r_cfg.fc_encap_type = nla_get_u16(nla);
4368 		}
4369 
4370 		r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
4371 		rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
4372 		if (IS_ERR(rt)) {
4373 			err = PTR_ERR(rt);
4374 			rt = NULL;
4375 			goto cleanup;
4376 		}
4377 		if (!rt6_qualify_for_ecmp(rt)) {
4378 			err = -EINVAL;
4379 			NL_SET_ERR_MSG(extack,
4380 				       "Device only routes can not be added for IPv6 using the multipath API.");
4381 			fib6_info_release(rt);
4382 			goto cleanup;
4383 		}
4384 
4385 		rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1;
4386 
4387 		err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
4388 					    rt, &r_cfg);
4389 		if (err) {
4390 			fib6_info_release(rt);
4391 			goto cleanup;
4392 		}
4393 
4394 		rtnh = rtnh_next(rtnh, &remaining);
4395 	}
4396 
4397 	/* for add and replace send one notification with all nexthops.
4398 	 * Skip the notification in fib6_add_rt2node and send one with
4399 	 * the full route when done
4400 	 */
4401 	info->skip_notify = 1;
4402 
4403 	err_nh = NULL;
4404 	list_for_each_entry(nh, &rt6_nh_list, next) {
4405 		err = __ip6_ins_rt(nh->fib6_info, info, extack);
4406 		fib6_info_release(nh->fib6_info);
4407 
4408 		if (!err) {
4409 			/* save reference to last route successfully inserted */
4410 			rt_last = nh->fib6_info;
4411 
4412 			/* save reference to first route for notification */
4413 			if (!rt_notif)
4414 				rt_notif = nh->fib6_info;
4415 		}
4416 
4417 		/* nh->fib6_info is used or freed at this point, reset to NULL*/
4418 		nh->fib6_info = NULL;
4419 		if (err) {
4420 			if (replace && nhn)
4421 				ip6_print_replace_route_err(&rt6_nh_list);
4422 			err_nh = nh;
4423 			goto add_errout;
4424 		}
4425 
4426 		/* Because each route is added like a single route we remove
4427 		 * these flags after the first nexthop: if there is a collision,
4428 		 * we have already failed to add the first nexthop:
4429 		 * fib6_add_rt2node() has rejected it; when replacing, old
4430 		 * nexthops have been replaced by first new, the rest should
4431 		 * be added to it.
4432 		 */
4433 		cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
4434 						     NLM_F_REPLACE);
4435 		nhn++;
4436 	}
4437 
4438 	/* success ... tell user about new route */
4439 	ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4440 	goto cleanup;
4441 
4442 add_errout:
4443 	/* send notification for routes that were added so that
4444 	 * the delete notifications sent by ip6_route_del are
4445 	 * coherent
4446 	 */
4447 	if (rt_notif)
4448 		ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4449 
4450 	/* Delete routes that were already added */
4451 	list_for_each_entry(nh, &rt6_nh_list, next) {
4452 		if (err_nh == nh)
4453 			break;
4454 		ip6_route_del(&nh->r_cfg, extack);
4455 	}
4456 
4457 cleanup:
4458 	list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
4459 		if (nh->fib6_info)
4460 			fib6_info_release(nh->fib6_info);
4461 		list_del(&nh->next);
4462 		kfree(nh);
4463 	}
4464 
4465 	return err;
4466 }
4467 
4468 static int ip6_route_multipath_del(struct fib6_config *cfg,
4469 				   struct netlink_ext_ack *extack)
4470 {
4471 	struct fib6_config r_cfg;
4472 	struct rtnexthop *rtnh;
4473 	int remaining;
4474 	int attrlen;
4475 	int err = 1, last_err = 0;
4476 
4477 	remaining = cfg->fc_mp_len;
4478 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4479 
4480 	/* Parse a Multipath Entry */
4481 	while (rtnh_ok(rtnh, remaining)) {
4482 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4483 		if (rtnh->rtnh_ifindex)
4484 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4485 
4486 		attrlen = rtnh_attrlen(rtnh);
4487 		if (attrlen > 0) {
4488 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4489 
4490 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4491 			if (nla) {
4492 				nla_memcpy(&r_cfg.fc_gateway, nla, 16);
4493 				r_cfg.fc_flags |= RTF_GATEWAY;
4494 			}
4495 		}
4496 		err = ip6_route_del(&r_cfg, extack);
4497 		if (err)
4498 			last_err = err;
4499 
4500 		rtnh = rtnh_next(rtnh, &remaining);
4501 	}
4502 
4503 	return last_err;
4504 }
4505 
4506 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4507 			      struct netlink_ext_ack *extack)
4508 {
4509 	struct fib6_config cfg;
4510 	int err;
4511 
4512 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4513 	if (err < 0)
4514 		return err;
4515 
4516 	if (cfg.fc_mp)
4517 		return ip6_route_multipath_del(&cfg, extack);
4518 	else {
4519 		cfg.fc_delete_all_nh = 1;
4520 		return ip6_route_del(&cfg, extack);
4521 	}
4522 }
4523 
4524 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4525 			      struct netlink_ext_ack *extack)
4526 {
4527 	struct fib6_config cfg;
4528 	int err;
4529 
4530 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4531 	if (err < 0)
4532 		return err;
4533 
4534 	if (cfg.fc_mp)
4535 		return ip6_route_multipath_add(&cfg, extack);
4536 	else
4537 		return ip6_route_add(&cfg, GFP_KERNEL, extack);
4538 }
4539 
4540 static size_t rt6_nlmsg_size(struct fib6_info *rt)
4541 {
4542 	int nexthop_len = 0;
4543 
4544 	if (rt->fib6_nsiblings) {
4545 		nexthop_len = nla_total_size(0)	 /* RTA_MULTIPATH */
4546 			    + NLA_ALIGN(sizeof(struct rtnexthop))
4547 			    + nla_total_size(16) /* RTA_GATEWAY */
4548 			    + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate);
4549 
4550 		nexthop_len *= rt->fib6_nsiblings;
4551 	}
4552 
4553 	return NLMSG_ALIGN(sizeof(struct rtmsg))
4554 	       + nla_total_size(16) /* RTA_SRC */
4555 	       + nla_total_size(16) /* RTA_DST */
4556 	       + nla_total_size(16) /* RTA_GATEWAY */
4557 	       + nla_total_size(16) /* RTA_PREFSRC */
4558 	       + nla_total_size(4) /* RTA_TABLE */
4559 	       + nla_total_size(4) /* RTA_IIF */
4560 	       + nla_total_size(4) /* RTA_OIF */
4561 	       + nla_total_size(4) /* RTA_PRIORITY */
4562 	       + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
4563 	       + nla_total_size(sizeof(struct rta_cacheinfo))
4564 	       + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
4565 	       + nla_total_size(1) /* RTA_PREF */
4566 	       + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate)
4567 	       + nexthop_len;
4568 }
4569 
4570 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt,
4571 			    unsigned int *flags, bool skip_oif)
4572 {
4573 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4574 		*flags |= RTNH_F_DEAD;
4575 
4576 	if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) {
4577 		*flags |= RTNH_F_LINKDOWN;
4578 
4579 		rcu_read_lock();
4580 		if (fib6_ignore_linkdown(rt))
4581 			*flags |= RTNH_F_DEAD;
4582 		rcu_read_unlock();
4583 	}
4584 
4585 	if (rt->fib6_flags & RTF_GATEWAY) {
4586 		if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0)
4587 			goto nla_put_failure;
4588 	}
4589 
4590 	*flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK);
4591 	if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD)
4592 		*flags |= RTNH_F_OFFLOAD;
4593 
4594 	/* not needed for multipath encoding b/c it has a rtnexthop struct */
4595 	if (!skip_oif && rt->fib6_nh.nh_dev &&
4596 	    nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex))
4597 		goto nla_put_failure;
4598 
4599 	if (rt->fib6_nh.nh_lwtstate &&
4600 	    lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0)
4601 		goto nla_put_failure;
4602 
4603 	return 0;
4604 
4605 nla_put_failure:
4606 	return -EMSGSIZE;
4607 }
4608 
4609 /* add multipath next hop */
4610 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt)
4611 {
4612 	const struct net_device *dev = rt->fib6_nh.nh_dev;
4613 	struct rtnexthop *rtnh;
4614 	unsigned int flags = 0;
4615 
4616 	rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh));
4617 	if (!rtnh)
4618 		goto nla_put_failure;
4619 
4620 	rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1;
4621 	rtnh->rtnh_ifindex = dev ? dev->ifindex : 0;
4622 
4623 	if (rt6_nexthop_info(skb, rt, &flags, true) < 0)
4624 		goto nla_put_failure;
4625 
4626 	rtnh->rtnh_flags = flags;
4627 
4628 	/* length of rtnetlink header + attributes */
4629 	rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh;
4630 
4631 	return 0;
4632 
4633 nla_put_failure:
4634 	return -EMSGSIZE;
4635 }
4636 
4637 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
4638 			 struct fib6_info *rt, struct dst_entry *dst,
4639 			 struct in6_addr *dest, struct in6_addr *src,
4640 			 int iif, int type, u32 portid, u32 seq,
4641 			 unsigned int flags)
4642 {
4643 	struct rt6_info *rt6 = (struct rt6_info *)dst;
4644 	struct rt6key *rt6_dst, *rt6_src;
4645 	u32 *pmetrics, table, rt6_flags;
4646 	struct nlmsghdr *nlh;
4647 	struct rtmsg *rtm;
4648 	long expires = 0;
4649 
4650 	nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
4651 	if (!nlh)
4652 		return -EMSGSIZE;
4653 
4654 	if (rt6) {
4655 		rt6_dst = &rt6->rt6i_dst;
4656 		rt6_src = &rt6->rt6i_src;
4657 		rt6_flags = rt6->rt6i_flags;
4658 	} else {
4659 		rt6_dst = &rt->fib6_dst;
4660 		rt6_src = &rt->fib6_src;
4661 		rt6_flags = rt->fib6_flags;
4662 	}
4663 
4664 	rtm = nlmsg_data(nlh);
4665 	rtm->rtm_family = AF_INET6;
4666 	rtm->rtm_dst_len = rt6_dst->plen;
4667 	rtm->rtm_src_len = rt6_src->plen;
4668 	rtm->rtm_tos = 0;
4669 	if (rt->fib6_table)
4670 		table = rt->fib6_table->tb6_id;
4671 	else
4672 		table = RT6_TABLE_UNSPEC;
4673 	rtm->rtm_table = table;
4674 	if (nla_put_u32(skb, RTA_TABLE, table))
4675 		goto nla_put_failure;
4676 
4677 	rtm->rtm_type = rt->fib6_type;
4678 	rtm->rtm_flags = 0;
4679 	rtm->rtm_scope = RT_SCOPE_UNIVERSE;
4680 	rtm->rtm_protocol = rt->fib6_protocol;
4681 
4682 	if (rt6_flags & RTF_CACHE)
4683 		rtm->rtm_flags |= RTM_F_CLONED;
4684 
4685 	if (dest) {
4686 		if (nla_put_in6_addr(skb, RTA_DST, dest))
4687 			goto nla_put_failure;
4688 		rtm->rtm_dst_len = 128;
4689 	} else if (rtm->rtm_dst_len)
4690 		if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr))
4691 			goto nla_put_failure;
4692 #ifdef CONFIG_IPV6_SUBTREES
4693 	if (src) {
4694 		if (nla_put_in6_addr(skb, RTA_SRC, src))
4695 			goto nla_put_failure;
4696 		rtm->rtm_src_len = 128;
4697 	} else if (rtm->rtm_src_len &&
4698 		   nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr))
4699 		goto nla_put_failure;
4700 #endif
4701 	if (iif) {
4702 #ifdef CONFIG_IPV6_MROUTE
4703 		if (ipv6_addr_is_multicast(&rt6_dst->addr)) {
4704 			int err = ip6mr_get_route(net, skb, rtm, portid);
4705 
4706 			if (err == 0)
4707 				return 0;
4708 			if (err < 0)
4709 				goto nla_put_failure;
4710 		} else
4711 #endif
4712 			if (nla_put_u32(skb, RTA_IIF, iif))
4713 				goto nla_put_failure;
4714 	} else if (dest) {
4715 		struct in6_addr saddr_buf;
4716 		if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
4717 		    nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4718 			goto nla_put_failure;
4719 	}
4720 
4721 	if (rt->fib6_prefsrc.plen) {
4722 		struct in6_addr saddr_buf;
4723 		saddr_buf = rt->fib6_prefsrc.addr;
4724 		if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4725 			goto nla_put_failure;
4726 	}
4727 
4728 	pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
4729 	if (rtnetlink_put_metrics(skb, pmetrics) < 0)
4730 		goto nla_put_failure;
4731 
4732 	if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
4733 		goto nla_put_failure;
4734 
4735 	/* For multipath routes, walk the siblings list and add
4736 	 * each as a nexthop within RTA_MULTIPATH.
4737 	 */
4738 	if (rt6) {
4739 		if (rt6_flags & RTF_GATEWAY &&
4740 		    nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway))
4741 			goto nla_put_failure;
4742 
4743 		if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex))
4744 			goto nla_put_failure;
4745 	} else if (rt->fib6_nsiblings) {
4746 		struct fib6_info *sibling, *next_sibling;
4747 		struct nlattr *mp;
4748 
4749 		mp = nla_nest_start(skb, RTA_MULTIPATH);
4750 		if (!mp)
4751 			goto nla_put_failure;
4752 
4753 		if (rt6_add_nexthop(skb, rt) < 0)
4754 			goto nla_put_failure;
4755 
4756 		list_for_each_entry_safe(sibling, next_sibling,
4757 					 &rt->fib6_siblings, fib6_siblings) {
4758 			if (rt6_add_nexthop(skb, sibling) < 0)
4759 				goto nla_put_failure;
4760 		}
4761 
4762 		nla_nest_end(skb, mp);
4763 	} else {
4764 		if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0)
4765 			goto nla_put_failure;
4766 	}
4767 
4768 	if (rt6_flags & RTF_EXPIRES) {
4769 		expires = dst ? dst->expires : rt->expires;
4770 		expires -= jiffies;
4771 	}
4772 
4773 	if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
4774 		goto nla_put_failure;
4775 
4776 	if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags)))
4777 		goto nla_put_failure;
4778 
4779 
4780 	nlmsg_end(skb, nlh);
4781 	return 0;
4782 
4783 nla_put_failure:
4784 	nlmsg_cancel(skb, nlh);
4785 	return -EMSGSIZE;
4786 }
4787 
4788 int rt6_dump_route(struct fib6_info *rt, void *p_arg)
4789 {
4790 	struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
4791 	struct net *net = arg->net;
4792 
4793 	if (rt == net->ipv6.fib6_null_entry)
4794 		return 0;
4795 
4796 	if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
4797 		struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
4798 
4799 		/* user wants prefix routes only */
4800 		if (rtm->rtm_flags & RTM_F_PREFIX &&
4801 		    !(rt->fib6_flags & RTF_PREFIX_RT)) {
4802 			/* success since this is not a prefix route */
4803 			return 1;
4804 		}
4805 	}
4806 
4807 	return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0,
4808 			     RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid,
4809 			     arg->cb->nlh->nlmsg_seq, NLM_F_MULTI);
4810 }
4811 
4812 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
4813 			      struct netlink_ext_ack *extack)
4814 {
4815 	struct net *net = sock_net(in_skb->sk);
4816 	struct nlattr *tb[RTA_MAX+1];
4817 	int err, iif = 0, oif = 0;
4818 	struct fib6_info *from;
4819 	struct dst_entry *dst;
4820 	struct rt6_info *rt;
4821 	struct sk_buff *skb;
4822 	struct rtmsg *rtm;
4823 	struct flowi6 fl6;
4824 	bool fibmatch;
4825 
4826 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4827 			  extack);
4828 	if (err < 0)
4829 		goto errout;
4830 
4831 	err = -EINVAL;
4832 	memset(&fl6, 0, sizeof(fl6));
4833 	rtm = nlmsg_data(nlh);
4834 	fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
4835 	fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
4836 
4837 	if (tb[RTA_SRC]) {
4838 		if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
4839 			goto errout;
4840 
4841 		fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
4842 	}
4843 
4844 	if (tb[RTA_DST]) {
4845 		if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
4846 			goto errout;
4847 
4848 		fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
4849 	}
4850 
4851 	if (tb[RTA_IIF])
4852 		iif = nla_get_u32(tb[RTA_IIF]);
4853 
4854 	if (tb[RTA_OIF])
4855 		oif = nla_get_u32(tb[RTA_OIF]);
4856 
4857 	if (tb[RTA_MARK])
4858 		fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
4859 
4860 	if (tb[RTA_UID])
4861 		fl6.flowi6_uid = make_kuid(current_user_ns(),
4862 					   nla_get_u32(tb[RTA_UID]));
4863 	else
4864 		fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
4865 
4866 	if (tb[RTA_SPORT])
4867 		fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
4868 
4869 	if (tb[RTA_DPORT])
4870 		fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
4871 
4872 	if (tb[RTA_IP_PROTO]) {
4873 		err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
4874 						  &fl6.flowi6_proto, extack);
4875 		if (err)
4876 			goto errout;
4877 	}
4878 
4879 	if (iif) {
4880 		struct net_device *dev;
4881 		int flags = 0;
4882 
4883 		rcu_read_lock();
4884 
4885 		dev = dev_get_by_index_rcu(net, iif);
4886 		if (!dev) {
4887 			rcu_read_unlock();
4888 			err = -ENODEV;
4889 			goto errout;
4890 		}
4891 
4892 		fl6.flowi6_iif = iif;
4893 
4894 		if (!ipv6_addr_any(&fl6.saddr))
4895 			flags |= RT6_LOOKUP_F_HAS_SADDR;
4896 
4897 		dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
4898 
4899 		rcu_read_unlock();
4900 	} else {
4901 		fl6.flowi6_oif = oif;
4902 
4903 		dst = ip6_route_output(net, NULL, &fl6);
4904 	}
4905 
4906 
4907 	rt = container_of(dst, struct rt6_info, dst);
4908 	if (rt->dst.error) {
4909 		err = rt->dst.error;
4910 		ip6_rt_put(rt);
4911 		goto errout;
4912 	}
4913 
4914 	if (rt == net->ipv6.ip6_null_entry) {
4915 		err = rt->dst.error;
4916 		ip6_rt_put(rt);
4917 		goto errout;
4918 	}
4919 
4920 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
4921 	if (!skb) {
4922 		ip6_rt_put(rt);
4923 		err = -ENOBUFS;
4924 		goto errout;
4925 	}
4926 
4927 	skb_dst_set(skb, &rt->dst);
4928 
4929 	rcu_read_lock();
4930 	from = rcu_dereference(rt->from);
4931 
4932 	if (fibmatch)
4933 		err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif,
4934 				    RTM_NEWROUTE, NETLINK_CB(in_skb).portid,
4935 				    nlh->nlmsg_seq, 0);
4936 	else
4937 		err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
4938 				    &fl6.saddr, iif, RTM_NEWROUTE,
4939 				    NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
4940 				    0);
4941 	rcu_read_unlock();
4942 
4943 	if (err < 0) {
4944 		kfree_skb(skb);
4945 		goto errout;
4946 	}
4947 
4948 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
4949 errout:
4950 	return err;
4951 }
4952 
4953 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
4954 		     unsigned int nlm_flags)
4955 {
4956 	struct sk_buff *skb;
4957 	struct net *net = info->nl_net;
4958 	u32 seq;
4959 	int err;
4960 
4961 	err = -ENOBUFS;
4962 	seq = info->nlh ? info->nlh->nlmsg_seq : 0;
4963 
4964 	skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
4965 	if (!skb)
4966 		goto errout;
4967 
4968 	err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
4969 			    event, info->portid, seq, nlm_flags);
4970 	if (err < 0) {
4971 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
4972 		WARN_ON(err == -EMSGSIZE);
4973 		kfree_skb(skb);
4974 		goto errout;
4975 	}
4976 	rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
4977 		    info->nlh, gfp_any());
4978 	return;
4979 errout:
4980 	if (err < 0)
4981 		rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
4982 }
4983 
4984 static int ip6_route_dev_notify(struct notifier_block *this,
4985 				unsigned long event, void *ptr)
4986 {
4987 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4988 	struct net *net = dev_net(dev);
4989 
4990 	if (!(dev->flags & IFF_LOOPBACK))
4991 		return NOTIFY_OK;
4992 
4993 	if (event == NETDEV_REGISTER) {
4994 		net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev;
4995 		net->ipv6.ip6_null_entry->dst.dev = dev;
4996 		net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
4997 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
4998 		net->ipv6.ip6_prohibit_entry->dst.dev = dev;
4999 		net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
5000 		net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
5001 		net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
5002 #endif
5003 	 } else if (event == NETDEV_UNREGISTER &&
5004 		    dev->reg_state != NETREG_UNREGISTERED) {
5005 		/* NETDEV_UNREGISTER could be fired for multiple times by
5006 		 * netdev_wait_allrefs(). Make sure we only call this once.
5007 		 */
5008 		in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
5009 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5010 		in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
5011 		in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
5012 #endif
5013 	}
5014 
5015 	return NOTIFY_OK;
5016 }
5017 
5018 /*
5019  *	/proc
5020  */
5021 
5022 #ifdef CONFIG_PROC_FS
5023 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
5024 {
5025 	struct net *net = (struct net *)seq->private;
5026 	seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
5027 		   net->ipv6.rt6_stats->fib_nodes,
5028 		   net->ipv6.rt6_stats->fib_route_nodes,
5029 		   atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
5030 		   net->ipv6.rt6_stats->fib_rt_entries,
5031 		   net->ipv6.rt6_stats->fib_rt_cache,
5032 		   dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
5033 		   net->ipv6.rt6_stats->fib_discarded_routes);
5034 
5035 	return 0;
5036 }
5037 #endif	/* CONFIG_PROC_FS */
5038 
5039 #ifdef CONFIG_SYSCTL
5040 
5041 static
5042 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
5043 			      void __user *buffer, size_t *lenp, loff_t *ppos)
5044 {
5045 	struct net *net;
5046 	int delay;
5047 	if (!write)
5048 		return -EINVAL;
5049 
5050 	net = (struct net *)ctl->extra1;
5051 	delay = net->ipv6.sysctl.flush_delay;
5052 	proc_dointvec(ctl, write, buffer, lenp, ppos);
5053 	fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
5054 	return 0;
5055 }
5056 
5057 struct ctl_table ipv6_route_table_template[] = {
5058 	{
5059 		.procname	=	"flush",
5060 		.data		=	&init_net.ipv6.sysctl.flush_delay,
5061 		.maxlen		=	sizeof(int),
5062 		.mode		=	0200,
5063 		.proc_handler	=	ipv6_sysctl_rtcache_flush
5064 	},
5065 	{
5066 		.procname	=	"gc_thresh",
5067 		.data		=	&ip6_dst_ops_template.gc_thresh,
5068 		.maxlen		=	sizeof(int),
5069 		.mode		=	0644,
5070 		.proc_handler	=	proc_dointvec,
5071 	},
5072 	{
5073 		.procname	=	"max_size",
5074 		.data		=	&init_net.ipv6.sysctl.ip6_rt_max_size,
5075 		.maxlen		=	sizeof(int),
5076 		.mode		=	0644,
5077 		.proc_handler	=	proc_dointvec,
5078 	},
5079 	{
5080 		.procname	=	"gc_min_interval",
5081 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5082 		.maxlen		=	sizeof(int),
5083 		.mode		=	0644,
5084 		.proc_handler	=	proc_dointvec_jiffies,
5085 	},
5086 	{
5087 		.procname	=	"gc_timeout",
5088 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_timeout,
5089 		.maxlen		=	sizeof(int),
5090 		.mode		=	0644,
5091 		.proc_handler	=	proc_dointvec_jiffies,
5092 	},
5093 	{
5094 		.procname	=	"gc_interval",
5095 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_interval,
5096 		.maxlen		=	sizeof(int),
5097 		.mode		=	0644,
5098 		.proc_handler	=	proc_dointvec_jiffies,
5099 	},
5100 	{
5101 		.procname	=	"gc_elasticity",
5102 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
5103 		.maxlen		=	sizeof(int),
5104 		.mode		=	0644,
5105 		.proc_handler	=	proc_dointvec,
5106 	},
5107 	{
5108 		.procname	=	"mtu_expires",
5109 		.data		=	&init_net.ipv6.sysctl.ip6_rt_mtu_expires,
5110 		.maxlen		=	sizeof(int),
5111 		.mode		=	0644,
5112 		.proc_handler	=	proc_dointvec_jiffies,
5113 	},
5114 	{
5115 		.procname	=	"min_adv_mss",
5116 		.data		=	&init_net.ipv6.sysctl.ip6_rt_min_advmss,
5117 		.maxlen		=	sizeof(int),
5118 		.mode		=	0644,
5119 		.proc_handler	=	proc_dointvec,
5120 	},
5121 	{
5122 		.procname	=	"gc_min_interval_ms",
5123 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5124 		.maxlen		=	sizeof(int),
5125 		.mode		=	0644,
5126 		.proc_handler	=	proc_dointvec_ms_jiffies,
5127 	},
5128 	{ }
5129 };
5130 
5131 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
5132 {
5133 	struct ctl_table *table;
5134 
5135 	table = kmemdup(ipv6_route_table_template,
5136 			sizeof(ipv6_route_table_template),
5137 			GFP_KERNEL);
5138 
5139 	if (table) {
5140 		table[0].data = &net->ipv6.sysctl.flush_delay;
5141 		table[0].extra1 = net;
5142 		table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
5143 		table[2].data = &net->ipv6.sysctl.ip6_rt_max_size;
5144 		table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5145 		table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
5146 		table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
5147 		table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
5148 		table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
5149 		table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
5150 		table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5151 
5152 		/* Don't export sysctls to unprivileged users */
5153 		if (net->user_ns != &init_user_ns)
5154 			table[0].procname = NULL;
5155 	}
5156 
5157 	return table;
5158 }
5159 #endif
5160 
5161 static int __net_init ip6_route_net_init(struct net *net)
5162 {
5163 	int ret = -ENOMEM;
5164 
5165 	memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
5166 	       sizeof(net->ipv6.ip6_dst_ops));
5167 
5168 	if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
5169 		goto out_ip6_dst_ops;
5170 
5171 	net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template,
5172 					    sizeof(*net->ipv6.fib6_null_entry),
5173 					    GFP_KERNEL);
5174 	if (!net->ipv6.fib6_null_entry)
5175 		goto out_ip6_dst_entries;
5176 
5177 	net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
5178 					   sizeof(*net->ipv6.ip6_null_entry),
5179 					   GFP_KERNEL);
5180 	if (!net->ipv6.ip6_null_entry)
5181 		goto out_fib6_null_entry;
5182 	net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5183 	dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
5184 			 ip6_template_metrics, true);
5185 
5186 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5187 	net->ipv6.fib6_has_custom_rules = false;
5188 	net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
5189 					       sizeof(*net->ipv6.ip6_prohibit_entry),
5190 					       GFP_KERNEL);
5191 	if (!net->ipv6.ip6_prohibit_entry)
5192 		goto out_ip6_null_entry;
5193 	net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5194 	dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
5195 			 ip6_template_metrics, true);
5196 
5197 	net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
5198 					       sizeof(*net->ipv6.ip6_blk_hole_entry),
5199 					       GFP_KERNEL);
5200 	if (!net->ipv6.ip6_blk_hole_entry)
5201 		goto out_ip6_prohibit_entry;
5202 	net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5203 	dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
5204 			 ip6_template_metrics, true);
5205 #endif
5206 
5207 	net->ipv6.sysctl.flush_delay = 0;
5208 	net->ipv6.sysctl.ip6_rt_max_size = 4096;
5209 	net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
5210 	net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
5211 	net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
5212 	net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
5213 	net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
5214 	net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
5215 
5216 	net->ipv6.ip6_rt_gc_expire = 30*HZ;
5217 
5218 	ret = 0;
5219 out:
5220 	return ret;
5221 
5222 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5223 out_ip6_prohibit_entry:
5224 	kfree(net->ipv6.ip6_prohibit_entry);
5225 out_ip6_null_entry:
5226 	kfree(net->ipv6.ip6_null_entry);
5227 #endif
5228 out_fib6_null_entry:
5229 	kfree(net->ipv6.fib6_null_entry);
5230 out_ip6_dst_entries:
5231 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5232 out_ip6_dst_ops:
5233 	goto out;
5234 }
5235 
5236 static void __net_exit ip6_route_net_exit(struct net *net)
5237 {
5238 	kfree(net->ipv6.fib6_null_entry);
5239 	kfree(net->ipv6.ip6_null_entry);
5240 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5241 	kfree(net->ipv6.ip6_prohibit_entry);
5242 	kfree(net->ipv6.ip6_blk_hole_entry);
5243 #endif
5244 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5245 }
5246 
5247 static int __net_init ip6_route_net_init_late(struct net *net)
5248 {
5249 #ifdef CONFIG_PROC_FS
5250 	proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops,
5251 			sizeof(struct ipv6_route_iter));
5252 	proc_create_net_single("rt6_stats", 0444, net->proc_net,
5253 			rt6_stats_seq_show, NULL);
5254 #endif
5255 	return 0;
5256 }
5257 
5258 static void __net_exit ip6_route_net_exit_late(struct net *net)
5259 {
5260 #ifdef CONFIG_PROC_FS
5261 	remove_proc_entry("ipv6_route", net->proc_net);
5262 	remove_proc_entry("rt6_stats", net->proc_net);
5263 #endif
5264 }
5265 
5266 static struct pernet_operations ip6_route_net_ops = {
5267 	.init = ip6_route_net_init,
5268 	.exit = ip6_route_net_exit,
5269 };
5270 
5271 static int __net_init ipv6_inetpeer_init(struct net *net)
5272 {
5273 	struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
5274 
5275 	if (!bp)
5276 		return -ENOMEM;
5277 	inet_peer_base_init(bp);
5278 	net->ipv6.peers = bp;
5279 	return 0;
5280 }
5281 
5282 static void __net_exit ipv6_inetpeer_exit(struct net *net)
5283 {
5284 	struct inet_peer_base *bp = net->ipv6.peers;
5285 
5286 	net->ipv6.peers = NULL;
5287 	inetpeer_invalidate_tree(bp);
5288 	kfree(bp);
5289 }
5290 
5291 static struct pernet_operations ipv6_inetpeer_ops = {
5292 	.init	=	ipv6_inetpeer_init,
5293 	.exit	=	ipv6_inetpeer_exit,
5294 };
5295 
5296 static struct pernet_operations ip6_route_net_late_ops = {
5297 	.init = ip6_route_net_init_late,
5298 	.exit = ip6_route_net_exit_late,
5299 };
5300 
5301 static struct notifier_block ip6_route_dev_notifier = {
5302 	.notifier_call = ip6_route_dev_notify,
5303 	.priority = ADDRCONF_NOTIFY_PRIORITY - 10,
5304 };
5305 
5306 void __init ip6_route_init_special_entries(void)
5307 {
5308 	/* Registering of the loopback is done before this portion of code,
5309 	 * the loopback reference in rt6_info will not be taken, do it
5310 	 * manually for init_net */
5311 	init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev;
5312 	init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
5313 	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5314   #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5315 	init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
5316 	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5317 	init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
5318 	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5319   #endif
5320 }
5321 
5322 int __init ip6_route_init(void)
5323 {
5324 	int ret;
5325 	int cpu;
5326 
5327 	ret = -ENOMEM;
5328 	ip6_dst_ops_template.kmem_cachep =
5329 		kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
5330 				  SLAB_HWCACHE_ALIGN, NULL);
5331 	if (!ip6_dst_ops_template.kmem_cachep)
5332 		goto out;
5333 
5334 	ret = dst_entries_init(&ip6_dst_blackhole_ops);
5335 	if (ret)
5336 		goto out_kmem_cache;
5337 
5338 	ret = register_pernet_subsys(&ipv6_inetpeer_ops);
5339 	if (ret)
5340 		goto out_dst_entries;
5341 
5342 	ret = register_pernet_subsys(&ip6_route_net_ops);
5343 	if (ret)
5344 		goto out_register_inetpeer;
5345 
5346 	ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
5347 
5348 	ret = fib6_init();
5349 	if (ret)
5350 		goto out_register_subsys;
5351 
5352 	ret = xfrm6_init();
5353 	if (ret)
5354 		goto out_fib6_init;
5355 
5356 	ret = fib6_rules_init();
5357 	if (ret)
5358 		goto xfrm6_init;
5359 
5360 	ret = register_pernet_subsys(&ip6_route_net_late_ops);
5361 	if (ret)
5362 		goto fib6_rules_init;
5363 
5364 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
5365 				   inet6_rtm_newroute, NULL, 0);
5366 	if (ret < 0)
5367 		goto out_register_late_subsys;
5368 
5369 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
5370 				   inet6_rtm_delroute, NULL, 0);
5371 	if (ret < 0)
5372 		goto out_register_late_subsys;
5373 
5374 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
5375 				   inet6_rtm_getroute, NULL,
5376 				   RTNL_FLAG_DOIT_UNLOCKED);
5377 	if (ret < 0)
5378 		goto out_register_late_subsys;
5379 
5380 	ret = register_netdevice_notifier(&ip6_route_dev_notifier);
5381 	if (ret)
5382 		goto out_register_late_subsys;
5383 
5384 	for_each_possible_cpu(cpu) {
5385 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
5386 
5387 		INIT_LIST_HEAD(&ul->head);
5388 		spin_lock_init(&ul->lock);
5389 	}
5390 
5391 out:
5392 	return ret;
5393 
5394 out_register_late_subsys:
5395 	rtnl_unregister_all(PF_INET6);
5396 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5397 fib6_rules_init:
5398 	fib6_rules_cleanup();
5399 xfrm6_init:
5400 	xfrm6_fini();
5401 out_fib6_init:
5402 	fib6_gc_cleanup();
5403 out_register_subsys:
5404 	unregister_pernet_subsys(&ip6_route_net_ops);
5405 out_register_inetpeer:
5406 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5407 out_dst_entries:
5408 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5409 out_kmem_cache:
5410 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5411 	goto out;
5412 }
5413 
5414 void ip6_route_cleanup(void)
5415 {
5416 	unregister_netdevice_notifier(&ip6_route_dev_notifier);
5417 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5418 	fib6_rules_cleanup();
5419 	xfrm6_fini();
5420 	fib6_gc_cleanup();
5421 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5422 	unregister_pernet_subsys(&ip6_route_net_ops);
5423 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5424 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5425 }
5426