1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * FIB front-end. 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 */ 9 10 /* Changes: 11 * 12 * YOSHIFUJI Hideaki @USAGI 13 * reworked default router selection. 14 * - respect outgoing interface 15 * - select from (probably) reachable routers (i.e. 16 * routers in REACHABLE, STALE, DELAY or PROBE states). 17 * - always select the same router if it is (probably) 18 * reachable. otherwise, round-robin the list. 19 * Ville Nuorvala 20 * Fixed routing subtrees. 21 */ 22 23 #define pr_fmt(fmt) "IPv6: " fmt 24 25 #include <linux/capability.h> 26 #include <linux/errno.h> 27 #include <linux/export.h> 28 #include <linux/types.h> 29 #include <linux/times.h> 30 #include <linux/socket.h> 31 #include <linux/sockios.h> 32 #include <linux/net.h> 33 #include <linux/route.h> 34 #include <linux/netdevice.h> 35 #include <linux/in6.h> 36 #include <linux/mroute6.h> 37 #include <linux/init.h> 38 #include <linux/if_arp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/nsproxy.h> 42 #include <linux/slab.h> 43 #include <linux/jhash.h> 44 #include <linux/siphash.h> 45 #include <net/net_namespace.h> 46 #include <net/snmp.h> 47 #include <net/ipv6.h> 48 #include <net/ip6_fib.h> 49 #include <net/ip6_route.h> 50 #include <net/ndisc.h> 51 #include <net/addrconf.h> 52 #include <net/tcp.h> 53 #include <linux/rtnetlink.h> 54 #include <net/dst.h> 55 #include <net/dst_metadata.h> 56 #include <net/xfrm.h> 57 #include <net/netevent.h> 58 #include <net/netlink.h> 59 #include <net/rtnh.h> 60 #include <net/lwtunnel.h> 61 #include <net/ip_tunnels.h> 62 #include <net/l3mdev.h> 63 #include <net/ip.h> 64 #include <linux/uaccess.h> 65 #include <linux/btf_ids.h> 66 67 #ifdef CONFIG_SYSCTL 68 #include <linux/sysctl.h> 69 #endif 70 71 static int ip6_rt_type_to_error(u8 fib6_type); 72 73 #define CREATE_TRACE_POINTS 74 #include <trace/events/fib6.h> 75 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 76 #undef CREATE_TRACE_POINTS 77 78 enum rt6_nud_state { 79 RT6_NUD_FAIL_HARD = -3, 80 RT6_NUD_FAIL_PROBE = -2, 81 RT6_NUD_FAIL_DO_RR = -1, 82 RT6_NUD_SUCCEED = 1 83 }; 84 85 INDIRECT_CALLABLE_SCOPE 86 struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 87 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 88 INDIRECT_CALLABLE_SCOPE 89 unsigned int ip6_mtu(const struct dst_entry *dst); 90 static void ip6_negative_advice(struct sock *sk, 91 struct dst_entry *dst); 92 static void ip6_dst_destroy(struct dst_entry *); 93 static void ip6_dst_ifdown(struct dst_entry *, 94 struct net_device *dev); 95 static void ip6_dst_gc(struct dst_ops *ops); 96 97 static int ip6_pkt_discard(struct sk_buff *skb); 98 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 99 static int ip6_pkt_prohibit(struct sk_buff *skb); 100 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 101 static void ip6_link_failure(struct sk_buff *skb); 102 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 103 struct sk_buff *skb, u32 mtu, 104 bool confirm_neigh); 105 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 106 struct sk_buff *skb); 107 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 108 int strict); 109 static size_t rt6_nlmsg_size(struct fib6_info *f6i); 110 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 111 struct fib6_info *rt, struct dst_entry *dst, 112 struct in6_addr *dest, struct in6_addr *src, 113 int iif, int type, u32 portid, u32 seq, 114 unsigned int flags); 115 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 116 const struct in6_addr *daddr, 117 const struct in6_addr *saddr); 118 119 #ifdef CONFIG_IPV6_ROUTE_INFO 120 static struct fib6_info *rt6_add_route_info(struct net *net, 121 const struct in6_addr *prefix, int prefixlen, 122 const struct in6_addr *gwaddr, 123 struct net_device *dev, 124 unsigned int pref); 125 static struct fib6_info *rt6_get_route_info(struct net *net, 126 const struct in6_addr *prefix, int prefixlen, 127 const struct in6_addr *gwaddr, 128 struct net_device *dev); 129 #endif 130 131 struct uncached_list { 132 spinlock_t lock; 133 struct list_head head; 134 }; 135 136 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 137 138 void rt6_uncached_list_add(struct rt6_info *rt) 139 { 140 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 141 142 rt->dst.rt_uncached_list = ul; 143 144 spin_lock_bh(&ul->lock); 145 list_add_tail(&rt->dst.rt_uncached, &ul->head); 146 spin_unlock_bh(&ul->lock); 147 } 148 149 void rt6_uncached_list_del(struct rt6_info *rt) 150 { 151 if (!list_empty(&rt->dst.rt_uncached)) { 152 struct uncached_list *ul = rt->dst.rt_uncached_list; 153 154 spin_lock_bh(&ul->lock); 155 list_del_init(&rt->dst.rt_uncached); 156 spin_unlock_bh(&ul->lock); 157 } 158 } 159 160 static void rt6_uncached_list_flush_dev(struct net_device *dev) 161 { 162 int cpu; 163 164 for_each_possible_cpu(cpu) { 165 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 166 struct rt6_info *rt, *safe; 167 168 if (list_empty(&ul->head)) 169 continue; 170 171 spin_lock_bh(&ul->lock); 172 list_for_each_entry_safe(rt, safe, &ul->head, dst.rt_uncached) { 173 struct inet6_dev *rt_idev = rt->rt6i_idev; 174 struct net_device *rt_dev = rt->dst.dev; 175 bool handled = false; 176 177 if (rt_idev && rt_idev->dev == dev) { 178 rt->rt6i_idev = in6_dev_get(blackhole_netdev); 179 in6_dev_put(rt_idev); 180 handled = true; 181 } 182 183 if (rt_dev == dev) { 184 rt->dst.dev = blackhole_netdev; 185 netdev_ref_replace(rt_dev, blackhole_netdev, 186 &rt->dst.dev_tracker, 187 GFP_ATOMIC); 188 handled = true; 189 } 190 if (handled) 191 list_del_init(&rt->dst.rt_uncached); 192 } 193 spin_unlock_bh(&ul->lock); 194 } 195 } 196 197 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 198 struct sk_buff *skb, 199 const void *daddr) 200 { 201 if (!ipv6_addr_any(p)) 202 return (const void *) p; 203 else if (skb) 204 return &ipv6_hdr(skb)->daddr; 205 return daddr; 206 } 207 208 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 209 struct net_device *dev, 210 struct sk_buff *skb, 211 const void *daddr) 212 { 213 struct neighbour *n; 214 215 daddr = choose_neigh_daddr(gw, skb, daddr); 216 n = __ipv6_neigh_lookup(dev, daddr); 217 if (n) 218 return n; 219 220 n = neigh_create(&nd_tbl, daddr, dev); 221 return IS_ERR(n) ? NULL : n; 222 } 223 224 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 225 struct sk_buff *skb, 226 const void *daddr) 227 { 228 const struct rt6_info *rt = dst_rt6_info(dst); 229 230 return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any), 231 dst_dev(dst), skb, daddr); 232 } 233 234 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 235 { 236 const struct rt6_info *rt = dst_rt6_info(dst); 237 struct net_device *dev = dst_dev(dst); 238 239 daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr); 240 if (!daddr) 241 return; 242 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 243 return; 244 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 245 return; 246 __ipv6_confirm_neigh(dev, daddr); 247 } 248 249 static struct dst_ops ip6_dst_ops_template = { 250 .family = AF_INET6, 251 .gc = ip6_dst_gc, 252 .gc_thresh = 1024, 253 .check = ip6_dst_check, 254 .default_advmss = ip6_default_advmss, 255 .mtu = ip6_mtu, 256 .cow_metrics = dst_cow_metrics_generic, 257 .destroy = ip6_dst_destroy, 258 .ifdown = ip6_dst_ifdown, 259 .negative_advice = ip6_negative_advice, 260 .link_failure = ip6_link_failure, 261 .update_pmtu = ip6_rt_update_pmtu, 262 .redirect = rt6_do_redirect, 263 .local_out = __ip6_local_out, 264 .neigh_lookup = ip6_dst_neigh_lookup, 265 .confirm_neigh = ip6_confirm_neigh, 266 }; 267 268 static struct dst_ops ip6_dst_blackhole_ops = { 269 .family = AF_INET6, 270 .default_advmss = ip6_default_advmss, 271 .neigh_lookup = ip6_dst_neigh_lookup, 272 .check = ip6_dst_check, 273 .destroy = ip6_dst_destroy, 274 .cow_metrics = dst_cow_metrics_generic, 275 .update_pmtu = dst_blackhole_update_pmtu, 276 .redirect = dst_blackhole_redirect, 277 .mtu = dst_blackhole_mtu, 278 }; 279 280 static const u32 ip6_template_metrics[RTAX_MAX] = { 281 [RTAX_HOPLIMIT - 1] = 0, 282 }; 283 284 static const struct fib6_info fib6_null_entry_template = { 285 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 286 .fib6_protocol = RTPROT_KERNEL, 287 .fib6_metric = ~(u32)0, 288 .fib6_ref = REFCOUNT_INIT(1), 289 .fib6_type = RTN_UNREACHABLE, 290 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 291 }; 292 293 static const struct rt6_info ip6_null_entry_template = { 294 .dst = { 295 .__rcuref = RCUREF_INIT(1), 296 .__use = 1, 297 .obsolete = DST_OBSOLETE_FORCE_CHK, 298 .error = -ENETUNREACH, 299 .input = ip6_pkt_discard, 300 .output = ip6_pkt_discard_out, 301 }, 302 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 303 }; 304 305 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 306 307 static const struct rt6_info ip6_prohibit_entry_template = { 308 .dst = { 309 .__rcuref = RCUREF_INIT(1), 310 .__use = 1, 311 .obsolete = DST_OBSOLETE_FORCE_CHK, 312 .error = -EACCES, 313 .input = ip6_pkt_prohibit, 314 .output = ip6_pkt_prohibit_out, 315 }, 316 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 317 }; 318 319 static const struct rt6_info ip6_blk_hole_entry_template = { 320 .dst = { 321 .__rcuref = RCUREF_INIT(1), 322 .__use = 1, 323 .obsolete = DST_OBSOLETE_FORCE_CHK, 324 .error = -EINVAL, 325 .input = dst_discard, 326 .output = dst_discard_out, 327 }, 328 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 329 }; 330 331 #endif 332 333 static void rt6_info_init(struct rt6_info *rt) 334 { 335 memset_after(rt, 0, dst); 336 } 337 338 /* allocate dst with ip6_dst_ops */ 339 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 340 int flags) 341 { 342 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 343 DST_OBSOLETE_FORCE_CHK, flags); 344 345 if (rt) { 346 rt6_info_init(rt); 347 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 348 } 349 350 return rt; 351 } 352 EXPORT_SYMBOL(ip6_dst_alloc); 353 354 static void ip6_dst_destroy(struct dst_entry *dst) 355 { 356 struct rt6_info *rt = dst_rt6_info(dst); 357 struct fib6_info *from; 358 struct inet6_dev *idev; 359 360 ip_dst_metrics_put(dst); 361 rt6_uncached_list_del(rt); 362 363 idev = rt->rt6i_idev; 364 if (idev) { 365 rt->rt6i_idev = NULL; 366 in6_dev_put(idev); 367 } 368 369 from = unrcu_pointer(xchg(&rt->from, NULL)); 370 fib6_info_release(from); 371 } 372 373 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev) 374 { 375 struct rt6_info *rt = dst_rt6_info(dst); 376 struct inet6_dev *idev = rt->rt6i_idev; 377 struct fib6_info *from; 378 379 if (idev && idev->dev != blackhole_netdev) { 380 struct inet6_dev *blackhole_idev = in6_dev_get(blackhole_netdev); 381 382 if (blackhole_idev) { 383 rt->rt6i_idev = blackhole_idev; 384 in6_dev_put(idev); 385 } 386 } 387 from = unrcu_pointer(xchg(&rt->from, NULL)); 388 fib6_info_release(from); 389 } 390 391 static bool __rt6_check_expired(const struct rt6_info *rt) 392 { 393 if (rt->rt6i_flags & RTF_EXPIRES) 394 return time_after(jiffies, READ_ONCE(rt->dst.expires)); 395 return false; 396 } 397 398 static bool rt6_check_expired(const struct rt6_info *rt) 399 { 400 struct fib6_info *from; 401 402 from = rcu_dereference(rt->from); 403 404 if (rt->rt6i_flags & RTF_EXPIRES) { 405 if (time_after(jiffies, READ_ONCE(rt->dst.expires))) 406 return true; 407 } else if (from) { 408 return READ_ONCE(rt->dst.obsolete) != DST_OBSOLETE_FORCE_CHK || 409 fib6_check_expired(from); 410 } 411 return false; 412 } 413 414 static struct fib6_info * 415 rt6_multipath_first_sibling_rcu(const struct fib6_info *rt) 416 { 417 struct fib6_info *iter; 418 struct fib6_node *fn; 419 420 fn = rcu_dereference(rt->fib6_node); 421 if (!fn) 422 goto out; 423 iter = rcu_dereference(fn->leaf); 424 if (!iter) 425 goto out; 426 427 while (iter) { 428 if (iter->fib6_metric == rt->fib6_metric && 429 rt6_qualify_for_ecmp(iter)) 430 return iter; 431 iter = rcu_dereference(iter->fib6_next); 432 } 433 434 out: 435 return NULL; 436 } 437 438 void fib6_select_path(const struct net *net, struct fib6_result *res, 439 struct flowi6 *fl6, int oif, bool have_oif_match, 440 const struct sk_buff *skb, int strict) 441 { 442 struct fib6_info *first, *match = res->f6i; 443 struct fib6_info *sibling; 444 int hash; 445 446 if (!match->nh && (!match->fib6_nsiblings || have_oif_match)) 447 goto out; 448 449 if (match->nh && have_oif_match && res->nh) 450 return; 451 452 if (skb) 453 IP6CB(skb)->flags |= IP6SKB_MULTIPATH; 454 455 /* We might have already computed the hash for ICMPv6 errors. In such 456 * case it will always be non-zero. Otherwise now is the time to do it. 457 */ 458 if (!fl6->mp_hash && 459 (!match->nh || nexthop_is_multipath(match->nh))) 460 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 461 462 if (unlikely(match->nh)) { 463 nexthop_path_fib6_result(res, fl6->mp_hash); 464 return; 465 } 466 467 first = rt6_multipath_first_sibling_rcu(match); 468 if (!first) 469 goto out; 470 471 hash = fl6->mp_hash; 472 if (hash <= atomic_read(&first->fib6_nh->fib_nh_upper_bound)) { 473 if (rt6_score_route(first->fib6_nh, first->fib6_flags, oif, 474 strict) >= 0) 475 match = first; 476 goto out; 477 } 478 479 list_for_each_entry_rcu(sibling, &first->fib6_siblings, 480 fib6_siblings) { 481 const struct fib6_nh *nh = sibling->fib6_nh; 482 int nh_upper_bound; 483 484 nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); 485 if (hash > nh_upper_bound) 486 continue; 487 if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) 488 break; 489 match = sibling; 490 break; 491 } 492 493 out: 494 res->f6i = match; 495 res->nh = match->fib6_nh; 496 } 497 498 /* 499 * Route lookup. rcu_read_lock() should be held. 500 */ 501 502 static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, 503 const struct in6_addr *saddr, int oif, int flags) 504 { 505 const struct net_device *dev; 506 507 if (nh->fib_nh_flags & RTNH_F_DEAD) 508 return false; 509 510 dev = nh->fib_nh_dev; 511 if (oif) { 512 if (dev->ifindex == oif) 513 return true; 514 } else { 515 if (ipv6_chk_addr(net, saddr, dev, 516 flags & RT6_LOOKUP_F_IFACE)) 517 return true; 518 } 519 520 return false; 521 } 522 523 struct fib6_nh_dm_arg { 524 struct net *net; 525 const struct in6_addr *saddr; 526 int oif; 527 int flags; 528 struct fib6_nh *nh; 529 }; 530 531 static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) 532 { 533 struct fib6_nh_dm_arg *arg = _arg; 534 535 arg->nh = nh; 536 return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, 537 arg->flags); 538 } 539 540 /* returns fib6_nh from nexthop or NULL */ 541 static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, 542 struct fib6_result *res, 543 const struct in6_addr *saddr, 544 int oif, int flags) 545 { 546 struct fib6_nh_dm_arg arg = { 547 .net = net, 548 .saddr = saddr, 549 .oif = oif, 550 .flags = flags, 551 }; 552 553 if (nexthop_is_blackhole(nh)) 554 return NULL; 555 556 if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) 557 return arg.nh; 558 559 return NULL; 560 } 561 562 static void rt6_device_match(struct net *net, struct fib6_result *res, 563 const struct in6_addr *saddr, int oif, int flags) 564 { 565 struct fib6_info *f6i = res->f6i; 566 struct fib6_info *spf6i; 567 struct fib6_nh *nh; 568 569 if (!oif && ipv6_addr_any(saddr)) { 570 if (unlikely(f6i->nh)) { 571 nh = nexthop_fib6_nh(f6i->nh); 572 if (nexthop_is_blackhole(f6i->nh)) 573 goto out_blackhole; 574 } else { 575 nh = f6i->fib6_nh; 576 } 577 if (!(nh->fib_nh_flags & RTNH_F_DEAD)) 578 goto out; 579 } 580 581 for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { 582 bool matched = false; 583 584 if (unlikely(spf6i->nh)) { 585 nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, 586 oif, flags); 587 if (nh) 588 matched = true; 589 } else { 590 nh = spf6i->fib6_nh; 591 if (__rt6_device_match(net, nh, saddr, oif, flags)) 592 matched = true; 593 } 594 if (matched) { 595 res->f6i = spf6i; 596 goto out; 597 } 598 } 599 600 if (oif && flags & RT6_LOOKUP_F_IFACE) { 601 res->f6i = net->ipv6.fib6_null_entry; 602 nh = res->f6i->fib6_nh; 603 goto out; 604 } 605 606 if (unlikely(f6i->nh)) { 607 nh = nexthop_fib6_nh(f6i->nh); 608 if (nexthop_is_blackhole(f6i->nh)) 609 goto out_blackhole; 610 } else { 611 nh = f6i->fib6_nh; 612 } 613 614 if (nh->fib_nh_flags & RTNH_F_DEAD) { 615 res->f6i = net->ipv6.fib6_null_entry; 616 nh = res->f6i->fib6_nh; 617 } 618 out: 619 res->nh = nh; 620 res->fib6_type = res->f6i->fib6_type; 621 res->fib6_flags = res->f6i->fib6_flags; 622 return; 623 624 out_blackhole: 625 res->fib6_flags |= RTF_REJECT; 626 res->fib6_type = RTN_BLACKHOLE; 627 res->nh = nh; 628 } 629 630 #ifdef CONFIG_IPV6_ROUTER_PREF 631 struct __rt6_probe_work { 632 struct work_struct work; 633 struct in6_addr target; 634 struct net_device *dev; 635 netdevice_tracker dev_tracker; 636 }; 637 638 static void rt6_probe_deferred(struct work_struct *w) 639 { 640 struct in6_addr mcaddr; 641 struct __rt6_probe_work *work = 642 container_of(w, struct __rt6_probe_work, work); 643 644 addrconf_addr_solict_mult(&work->target, &mcaddr); 645 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 646 netdev_put(work->dev, &work->dev_tracker); 647 kfree(work); 648 } 649 650 static void rt6_probe(struct fib6_nh *fib6_nh) 651 { 652 struct __rt6_probe_work *work = NULL; 653 const struct in6_addr *nh_gw; 654 unsigned long last_probe; 655 struct neighbour *neigh; 656 struct net_device *dev; 657 struct inet6_dev *idev; 658 659 /* 660 * Okay, this does not seem to be appropriate 661 * for now, however, we need to check if it 662 * is really so; aka Router Reachability Probing. 663 * 664 * Router Reachability Probe MUST be rate-limited 665 * to no more than one per minute. 666 */ 667 if (!fib6_nh->fib_nh_gw_family) 668 return; 669 670 nh_gw = &fib6_nh->fib_nh_gw6; 671 dev = fib6_nh->fib_nh_dev; 672 rcu_read_lock(); 673 last_probe = READ_ONCE(fib6_nh->last_probe); 674 idev = __in6_dev_get(dev); 675 if (!idev) 676 goto out; 677 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 678 if (neigh) { 679 if (READ_ONCE(neigh->nud_state) & NUD_VALID) 680 goto out; 681 682 write_lock_bh(&neigh->lock); 683 if (!(neigh->nud_state & NUD_VALID) && 684 time_after(jiffies, 685 neigh->updated + 686 READ_ONCE(idev->cnf.rtr_probe_interval))) { 687 work = kmalloc(sizeof(*work), GFP_ATOMIC); 688 if (work) 689 __neigh_set_probe_once(neigh); 690 } 691 write_unlock_bh(&neigh->lock); 692 } else if (time_after(jiffies, last_probe + 693 READ_ONCE(idev->cnf.rtr_probe_interval))) { 694 work = kmalloc(sizeof(*work), GFP_ATOMIC); 695 } 696 697 if (!work || cmpxchg(&fib6_nh->last_probe, 698 last_probe, jiffies) != last_probe) { 699 kfree(work); 700 } else { 701 INIT_WORK(&work->work, rt6_probe_deferred); 702 work->target = *nh_gw; 703 netdev_hold(dev, &work->dev_tracker, GFP_ATOMIC); 704 work->dev = dev; 705 schedule_work(&work->work); 706 } 707 708 out: 709 rcu_read_unlock(); 710 } 711 #else 712 static inline void rt6_probe(struct fib6_nh *fib6_nh) 713 { 714 } 715 #endif 716 717 /* 718 * Default Router Selection (RFC 2461 6.3.6) 719 */ 720 static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) 721 { 722 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 723 struct neighbour *neigh; 724 725 rcu_read_lock(); 726 neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, 727 &fib6_nh->fib_nh_gw6); 728 if (neigh) { 729 u8 nud_state = READ_ONCE(neigh->nud_state); 730 731 if (nud_state & NUD_VALID) 732 ret = RT6_NUD_SUCCEED; 733 #ifdef CONFIG_IPV6_ROUTER_PREF 734 else if (!(nud_state & NUD_FAILED)) 735 ret = RT6_NUD_SUCCEED; 736 else 737 ret = RT6_NUD_FAIL_PROBE; 738 #endif 739 } else { 740 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 741 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 742 } 743 rcu_read_unlock(); 744 745 return ret; 746 } 747 748 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 749 int strict) 750 { 751 int m = 0; 752 753 if (!oif || nh->fib_nh_dev->ifindex == oif) 754 m = 2; 755 756 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 757 return RT6_NUD_FAIL_HARD; 758 #ifdef CONFIG_IPV6_ROUTER_PREF 759 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; 760 #endif 761 if ((strict & RT6_LOOKUP_F_REACHABLE) && 762 !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { 763 int n = rt6_check_neigh(nh); 764 if (n < 0) 765 return n; 766 } 767 return m; 768 } 769 770 static bool find_match(struct fib6_nh *nh, u32 fib6_flags, 771 int oif, int strict, int *mpri, bool *do_rr) 772 { 773 bool match_do_rr = false; 774 bool rc = false; 775 int m; 776 777 if (nh->fib_nh_flags & RTNH_F_DEAD) 778 goto out; 779 780 if (ip6_ignore_linkdown(nh->fib_nh_dev) && 781 nh->fib_nh_flags & RTNH_F_LINKDOWN && 782 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 783 goto out; 784 785 m = rt6_score_route(nh, fib6_flags, oif, strict); 786 if (m == RT6_NUD_FAIL_DO_RR) { 787 match_do_rr = true; 788 m = 0; /* lowest valid score */ 789 } else if (m == RT6_NUD_FAIL_HARD) { 790 goto out; 791 } 792 793 if (strict & RT6_LOOKUP_F_REACHABLE) 794 rt6_probe(nh); 795 796 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 797 if (m > *mpri) { 798 *do_rr = match_do_rr; 799 *mpri = m; 800 rc = true; 801 } 802 out: 803 return rc; 804 } 805 806 struct fib6_nh_frl_arg { 807 u32 flags; 808 int oif; 809 int strict; 810 int *mpri; 811 bool *do_rr; 812 struct fib6_nh *nh; 813 }; 814 815 static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) 816 { 817 struct fib6_nh_frl_arg *arg = _arg; 818 819 arg->nh = nh; 820 return find_match(nh, arg->flags, arg->oif, arg->strict, 821 arg->mpri, arg->do_rr); 822 } 823 824 static void __find_rr_leaf(struct fib6_info *f6i_start, 825 struct fib6_info *nomatch, u32 metric, 826 struct fib6_result *res, struct fib6_info **cont, 827 int oif, int strict, bool *do_rr, int *mpri) 828 { 829 struct fib6_info *f6i; 830 831 for (f6i = f6i_start; 832 f6i && f6i != nomatch; 833 f6i = rcu_dereference(f6i->fib6_next)) { 834 bool matched = false; 835 struct fib6_nh *nh; 836 837 if (cont && f6i->fib6_metric != metric) { 838 *cont = f6i; 839 return; 840 } 841 842 if (fib6_check_expired(f6i)) 843 continue; 844 845 if (unlikely(f6i->nh)) { 846 struct fib6_nh_frl_arg arg = { 847 .flags = f6i->fib6_flags, 848 .oif = oif, 849 .strict = strict, 850 .mpri = mpri, 851 .do_rr = do_rr 852 }; 853 854 if (nexthop_is_blackhole(f6i->nh)) { 855 res->fib6_flags = RTF_REJECT; 856 res->fib6_type = RTN_BLACKHOLE; 857 res->f6i = f6i; 858 res->nh = nexthop_fib6_nh(f6i->nh); 859 return; 860 } 861 if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, 862 &arg)) { 863 matched = true; 864 nh = arg.nh; 865 } 866 } else { 867 nh = f6i->fib6_nh; 868 if (find_match(nh, f6i->fib6_flags, oif, strict, 869 mpri, do_rr)) 870 matched = true; 871 } 872 if (matched) { 873 res->f6i = f6i; 874 res->nh = nh; 875 res->fib6_flags = f6i->fib6_flags; 876 res->fib6_type = f6i->fib6_type; 877 } 878 } 879 } 880 881 static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, 882 struct fib6_info *rr_head, int oif, int strict, 883 bool *do_rr, struct fib6_result *res) 884 { 885 u32 metric = rr_head->fib6_metric; 886 struct fib6_info *cont = NULL; 887 int mpri = -1; 888 889 __find_rr_leaf(rr_head, NULL, metric, res, &cont, 890 oif, strict, do_rr, &mpri); 891 892 __find_rr_leaf(leaf, rr_head, metric, res, &cont, 893 oif, strict, do_rr, &mpri); 894 895 if (res->f6i || !cont) 896 return; 897 898 __find_rr_leaf(cont, NULL, metric, res, NULL, 899 oif, strict, do_rr, &mpri); 900 } 901 902 static void rt6_select(struct net *net, struct fib6_node *fn, int oif, 903 struct fib6_result *res, int strict) 904 { 905 struct fib6_info *leaf = rcu_dereference(fn->leaf); 906 struct fib6_info *rt0; 907 bool do_rr = false; 908 int key_plen; 909 910 /* make sure this function or its helpers sets f6i */ 911 res->f6i = NULL; 912 913 if (!leaf || leaf == net->ipv6.fib6_null_entry) 914 goto out; 915 916 rt0 = rcu_dereference(fn->rr_ptr); 917 if (!rt0) 918 rt0 = leaf; 919 920 /* Double check to make sure fn is not an intermediate node 921 * and fn->leaf does not points to its child's leaf 922 * (This might happen if all routes under fn are deleted from 923 * the tree and fib6_repair_tree() is called on the node.) 924 */ 925 key_plen = rt0->fib6_dst.plen; 926 #ifdef CONFIG_IPV6_SUBTREES 927 if (rt0->fib6_src.plen) 928 key_plen = rt0->fib6_src.plen; 929 #endif 930 if (fn->fn_bit != key_plen) 931 goto out; 932 933 find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); 934 if (do_rr) { 935 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 936 937 /* no entries matched; do round-robin */ 938 if (!next || next->fib6_metric != rt0->fib6_metric) 939 next = leaf; 940 941 if (next != rt0) { 942 spin_lock_bh(&leaf->fib6_table->tb6_lock); 943 /* make sure next is not being deleted from the tree */ 944 if (next->fib6_node) 945 rcu_assign_pointer(fn->rr_ptr, next); 946 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 947 } 948 } 949 950 out: 951 if (!res->f6i) { 952 res->f6i = net->ipv6.fib6_null_entry; 953 res->nh = res->f6i->fib6_nh; 954 res->fib6_flags = res->f6i->fib6_flags; 955 res->fib6_type = res->f6i->fib6_type; 956 } 957 } 958 959 static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) 960 { 961 return (res->f6i->fib6_flags & RTF_NONEXTHOP) || 962 res->nh->fib_nh_gw_family; 963 } 964 965 #ifdef CONFIG_IPV6_ROUTE_INFO 966 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 967 const struct in6_addr *gwaddr) 968 { 969 struct net *net = dev_net(dev); 970 struct route_info *rinfo = (struct route_info *) opt; 971 struct in6_addr prefix_buf, *prefix; 972 struct fib6_table *table; 973 unsigned int pref; 974 unsigned long lifetime; 975 struct fib6_info *rt; 976 977 if (len < sizeof(struct route_info)) { 978 return -EINVAL; 979 } 980 981 /* Sanity check for prefix_len and length */ 982 if (rinfo->length > 3) { 983 return -EINVAL; 984 } else if (rinfo->prefix_len > 128) { 985 return -EINVAL; 986 } else if (rinfo->prefix_len > 64) { 987 if (rinfo->length < 2) { 988 return -EINVAL; 989 } 990 } else if (rinfo->prefix_len > 0) { 991 if (rinfo->length < 1) { 992 return -EINVAL; 993 } 994 } 995 996 pref = rinfo->route_pref; 997 if (pref == ICMPV6_ROUTER_PREF_INVALID) 998 return -EINVAL; 999 1000 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 1001 1002 if (rinfo->length == 3) 1003 prefix = (struct in6_addr *)rinfo->prefix; 1004 else { 1005 /* this function is safe */ 1006 ipv6_addr_prefix(&prefix_buf, 1007 (struct in6_addr *)rinfo->prefix, 1008 rinfo->prefix_len); 1009 prefix = &prefix_buf; 1010 } 1011 1012 if (rinfo->prefix_len == 0) 1013 rt = rt6_get_dflt_router(net, gwaddr, dev); 1014 else 1015 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 1016 gwaddr, dev); 1017 1018 if (rt && !lifetime) { 1019 ip6_del_rt(net, rt, false); 1020 rt = NULL; 1021 } 1022 1023 if (!rt && lifetime) 1024 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 1025 dev, pref); 1026 else if (rt) 1027 rt->fib6_flags = RTF_ROUTEINFO | 1028 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 1029 1030 if (rt) { 1031 table = rt->fib6_table; 1032 spin_lock_bh(&table->tb6_lock); 1033 1034 if (!addrconf_finite_timeout(lifetime)) { 1035 fib6_clean_expires(rt); 1036 fib6_remove_gc_list(rt); 1037 } else { 1038 fib6_set_expires(rt, jiffies + HZ * lifetime); 1039 fib6_add_gc_list(rt); 1040 } 1041 1042 spin_unlock_bh(&table->tb6_lock); 1043 1044 fib6_info_release(rt); 1045 } 1046 return 0; 1047 } 1048 #endif 1049 1050 /* 1051 * Misc support functions 1052 */ 1053 1054 /* called with rcu_lock held */ 1055 static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) 1056 { 1057 struct net_device *dev = res->nh->fib_nh_dev; 1058 1059 if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 1060 /* for copies of local routes, dst->dev needs to be the 1061 * device if it is a master device, the master device if 1062 * device is enslaved, and the loopback as the default 1063 */ 1064 if (netif_is_l3_slave(dev) && 1065 !rt6_need_strict(&res->f6i->fib6_dst.addr)) 1066 dev = l3mdev_master_dev_rcu(dev); 1067 else if (!netif_is_l3_master(dev)) 1068 dev = dev_net(dev)->loopback_dev; 1069 /* last case is netif_is_l3_master(dev) is true in which 1070 * case we want dev returned to be dev 1071 */ 1072 } 1073 1074 return dev; 1075 } 1076 1077 static const int fib6_prop[RTN_MAX + 1] = { 1078 [RTN_UNSPEC] = 0, 1079 [RTN_UNICAST] = 0, 1080 [RTN_LOCAL] = 0, 1081 [RTN_BROADCAST] = 0, 1082 [RTN_ANYCAST] = 0, 1083 [RTN_MULTICAST] = 0, 1084 [RTN_BLACKHOLE] = -EINVAL, 1085 [RTN_UNREACHABLE] = -EHOSTUNREACH, 1086 [RTN_PROHIBIT] = -EACCES, 1087 [RTN_THROW] = -EAGAIN, 1088 [RTN_NAT] = -EINVAL, 1089 [RTN_XRESOLVE] = -EINVAL, 1090 }; 1091 1092 static int ip6_rt_type_to_error(u8 fib6_type) 1093 { 1094 return fib6_prop[fib6_type]; 1095 } 1096 1097 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 1098 { 1099 unsigned short flags = 0; 1100 1101 if (rt->dst_nocount) 1102 flags |= DST_NOCOUNT; 1103 if (rt->dst_nopolicy) 1104 flags |= DST_NOPOLICY; 1105 1106 return flags; 1107 } 1108 1109 static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) 1110 { 1111 rt->dst.error = ip6_rt_type_to_error(fib6_type); 1112 1113 switch (fib6_type) { 1114 case RTN_BLACKHOLE: 1115 rt->dst.output = dst_discard_out; 1116 rt->dst.input = dst_discard; 1117 break; 1118 case RTN_PROHIBIT: 1119 rt->dst.output = ip6_pkt_prohibit_out; 1120 rt->dst.input = ip6_pkt_prohibit; 1121 break; 1122 case RTN_THROW: 1123 case RTN_UNREACHABLE: 1124 default: 1125 rt->dst.output = ip6_pkt_discard_out; 1126 rt->dst.input = ip6_pkt_discard; 1127 break; 1128 } 1129 } 1130 1131 static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) 1132 { 1133 struct fib6_info *f6i = res->f6i; 1134 1135 if (res->fib6_flags & RTF_REJECT) { 1136 ip6_rt_init_dst_reject(rt, res->fib6_type); 1137 return; 1138 } 1139 1140 rt->dst.error = 0; 1141 rt->dst.output = ip6_output; 1142 1143 if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { 1144 rt->dst.input = ip6_input; 1145 } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 1146 rt->dst.input = ip6_mc_input; 1147 rt->dst.output = ip6_mr_output; 1148 } else { 1149 rt->dst.input = ip6_forward; 1150 } 1151 1152 if (res->nh->fib_nh_lws) { 1153 rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); 1154 lwtunnel_set_redirect(&rt->dst); 1155 } 1156 1157 rt->dst.lastuse = jiffies; 1158 } 1159 1160 /* Caller must already hold reference to @from */ 1161 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 1162 { 1163 rt->rt6i_flags &= ~RTF_EXPIRES; 1164 rcu_assign_pointer(rt->from, from); 1165 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 1166 } 1167 1168 /* Caller must already hold reference to f6i in result */ 1169 static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) 1170 { 1171 const struct fib6_nh *nh = res->nh; 1172 const struct net_device *dev = nh->fib_nh_dev; 1173 struct fib6_info *f6i = res->f6i; 1174 1175 ip6_rt_init_dst(rt, res); 1176 1177 rt->rt6i_dst = f6i->fib6_dst; 1178 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 1179 rt->rt6i_flags = res->fib6_flags; 1180 if (nh->fib_nh_gw_family) { 1181 rt->rt6i_gateway = nh->fib_nh_gw6; 1182 rt->rt6i_flags |= RTF_GATEWAY; 1183 } 1184 rt6_set_from(rt, f6i); 1185 #ifdef CONFIG_IPV6_SUBTREES 1186 rt->rt6i_src = f6i->fib6_src; 1187 #endif 1188 } 1189 1190 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1191 struct in6_addr *saddr) 1192 { 1193 struct fib6_node *pn, *sn; 1194 while (1) { 1195 if (fn->fn_flags & RTN_TL_ROOT) 1196 return NULL; 1197 pn = rcu_dereference(fn->parent); 1198 sn = FIB6_SUBTREE(pn); 1199 if (sn && sn != fn) 1200 fn = fib6_node_lookup(sn, NULL, saddr); 1201 else 1202 fn = pn; 1203 if (fn->fn_flags & RTN_RTINFO) 1204 return fn; 1205 } 1206 } 1207 1208 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) 1209 { 1210 struct rt6_info *rt = *prt; 1211 1212 if (dst_hold_safe(&rt->dst)) 1213 return true; 1214 if (net) { 1215 rt = net->ipv6.ip6_null_entry; 1216 dst_hold(&rt->dst); 1217 } else { 1218 rt = NULL; 1219 } 1220 *prt = rt; 1221 return false; 1222 } 1223 1224 /* called with rcu_lock held */ 1225 static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) 1226 { 1227 struct net_device *dev = res->nh->fib_nh_dev; 1228 struct fib6_info *f6i = res->f6i; 1229 unsigned short flags; 1230 struct rt6_info *nrt; 1231 1232 if (!fib6_info_hold_safe(f6i)) 1233 goto fallback; 1234 1235 flags = fib6_info_dst_flags(f6i); 1236 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1237 if (!nrt) { 1238 fib6_info_release(f6i); 1239 goto fallback; 1240 } 1241 1242 ip6_rt_copy_init(nrt, res); 1243 return nrt; 1244 1245 fallback: 1246 nrt = dev_net(dev)->ipv6.ip6_null_entry; 1247 dst_hold(&nrt->dst); 1248 return nrt; 1249 } 1250 1251 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net, 1252 struct fib6_table *table, 1253 struct flowi6 *fl6, 1254 const struct sk_buff *skb, 1255 int flags) 1256 { 1257 struct fib6_result res = {}; 1258 struct fib6_node *fn; 1259 struct rt6_info *rt; 1260 1261 rcu_read_lock(); 1262 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1263 restart: 1264 res.f6i = rcu_dereference(fn->leaf); 1265 if (!res.f6i) 1266 res.f6i = net->ipv6.fib6_null_entry; 1267 else 1268 rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, 1269 flags); 1270 1271 if (res.f6i == net->ipv6.fib6_null_entry) { 1272 fn = fib6_backtrack(fn, &fl6->saddr); 1273 if (fn) 1274 goto restart; 1275 1276 rt = net->ipv6.ip6_null_entry; 1277 dst_hold(&rt->dst); 1278 goto out; 1279 } else if (res.fib6_flags & RTF_REJECT) { 1280 goto do_create; 1281 } 1282 1283 fib6_select_path(net, &res, fl6, fl6->flowi6_oif, 1284 fl6->flowi6_oif != 0, skb, flags); 1285 1286 /* Search through exception table */ 1287 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 1288 if (rt) { 1289 if (ip6_hold_safe(net, &rt)) 1290 dst_use_noref(&rt->dst, jiffies); 1291 } else { 1292 do_create: 1293 rt = ip6_create_rt_rcu(&res); 1294 } 1295 1296 out: 1297 trace_fib6_table_lookup(net, &res, table, fl6); 1298 1299 rcu_read_unlock(); 1300 1301 return rt; 1302 } 1303 1304 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1305 const struct sk_buff *skb, int flags) 1306 { 1307 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1308 } 1309 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1310 1311 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1312 const struct in6_addr *saddr, int oif, 1313 const struct sk_buff *skb, int strict) 1314 { 1315 struct flowi6 fl6 = { 1316 .flowi6_oif = oif, 1317 .daddr = *daddr, 1318 }; 1319 struct dst_entry *dst; 1320 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1321 1322 if (saddr) { 1323 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1324 flags |= RT6_LOOKUP_F_HAS_SADDR; 1325 } 1326 1327 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1328 if (dst->error == 0) 1329 return dst_rt6_info(dst); 1330 1331 dst_release(dst); 1332 1333 return NULL; 1334 } 1335 EXPORT_SYMBOL(rt6_lookup); 1336 1337 /* ip6_ins_rt is called with FREE table->tb6_lock. 1338 * It takes new route entry, the addition fails by any reason the 1339 * route is released. 1340 * Caller must hold dst before calling it. 1341 */ 1342 1343 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1344 struct netlink_ext_ack *extack) 1345 { 1346 int err; 1347 struct fib6_table *table; 1348 1349 table = rt->fib6_table; 1350 spin_lock_bh(&table->tb6_lock); 1351 err = fib6_add(&table->tb6_root, rt, info, extack); 1352 spin_unlock_bh(&table->tb6_lock); 1353 1354 return err; 1355 } 1356 1357 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1358 { 1359 struct nl_info info = { .nl_net = net, }; 1360 1361 return __ip6_ins_rt(rt, &info, NULL); 1362 } 1363 1364 static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, 1365 const struct in6_addr *daddr, 1366 const struct in6_addr *saddr) 1367 { 1368 struct fib6_info *f6i = res->f6i; 1369 struct net_device *dev; 1370 struct rt6_info *rt; 1371 1372 /* 1373 * Clone the route. 1374 */ 1375 1376 if (!fib6_info_hold_safe(f6i)) 1377 return NULL; 1378 1379 dev = ip6_rt_get_dev_rcu(res); 1380 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1381 if (!rt) { 1382 fib6_info_release(f6i); 1383 return NULL; 1384 } 1385 1386 ip6_rt_copy_init(rt, res); 1387 rt->rt6i_flags |= RTF_CACHE; 1388 rt->rt6i_dst.addr = *daddr; 1389 rt->rt6i_dst.plen = 128; 1390 1391 if (!rt6_is_gw_or_nonexthop(res)) { 1392 if (f6i->fib6_dst.plen != 128 && 1393 ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) 1394 rt->rt6i_flags |= RTF_ANYCAST; 1395 #ifdef CONFIG_IPV6_SUBTREES 1396 if (rt->rt6i_src.plen && saddr) { 1397 rt->rt6i_src.addr = *saddr; 1398 rt->rt6i_src.plen = 128; 1399 } 1400 #endif 1401 } 1402 1403 return rt; 1404 } 1405 1406 static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) 1407 { 1408 struct fib6_info *f6i = res->f6i; 1409 unsigned short flags = fib6_info_dst_flags(f6i); 1410 struct net_device *dev; 1411 struct rt6_info *pcpu_rt; 1412 1413 if (!fib6_info_hold_safe(f6i)) 1414 return NULL; 1415 1416 rcu_read_lock(); 1417 dev = ip6_rt_get_dev_rcu(res); 1418 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT); 1419 rcu_read_unlock(); 1420 if (!pcpu_rt) { 1421 fib6_info_release(f6i); 1422 return NULL; 1423 } 1424 ip6_rt_copy_init(pcpu_rt, res); 1425 pcpu_rt->rt6i_flags |= RTF_PCPU; 1426 1427 if (f6i->nh) 1428 pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev)); 1429 1430 return pcpu_rt; 1431 } 1432 1433 static bool rt6_is_valid(const struct rt6_info *rt6) 1434 { 1435 return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev)); 1436 } 1437 1438 /* It should be called with rcu_read_lock() acquired */ 1439 static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) 1440 { 1441 struct rt6_info *pcpu_rt; 1442 1443 pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); 1444 1445 if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) { 1446 struct rt6_info *prev, **p; 1447 1448 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1449 /* Paired with READ_ONCE() in __fib6_drop_pcpu_from() */ 1450 prev = xchg(p, NULL); 1451 if (prev) { 1452 dst_dev_put(&prev->dst); 1453 dst_release(&prev->dst); 1454 } 1455 1456 pcpu_rt = NULL; 1457 } 1458 1459 return pcpu_rt; 1460 } 1461 1462 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1463 const struct fib6_result *res) 1464 { 1465 struct rt6_info *pcpu_rt, *prev, **p; 1466 1467 pcpu_rt = ip6_rt_pcpu_alloc(res); 1468 if (!pcpu_rt) 1469 return NULL; 1470 1471 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1472 prev = cmpxchg(p, NULL, pcpu_rt); 1473 if (unlikely(prev)) { 1474 /* 1475 * Another task on this CPU already installed a pcpu_rt. 1476 * This can happen on PREEMPT_RT where preemption is possible. 1477 * Free our allocation and return the existing one. 1478 */ 1479 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RT)); 1480 1481 dst_dev_put(&pcpu_rt->dst); 1482 dst_release(&pcpu_rt->dst); 1483 return prev; 1484 } 1485 1486 if (res->f6i->fib6_destroying) { 1487 struct fib6_info *from; 1488 1489 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL)); 1490 fib6_info_release(from); 1491 } 1492 1493 return pcpu_rt; 1494 } 1495 1496 /* exception hash table implementation 1497 */ 1498 static DEFINE_SPINLOCK(rt6_exception_lock); 1499 1500 /* Remove rt6_ex from hash table and free the memory 1501 * Caller must hold rt6_exception_lock 1502 */ 1503 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1504 struct rt6_exception *rt6_ex) 1505 { 1506 struct net *net; 1507 1508 if (!bucket || !rt6_ex) 1509 return; 1510 1511 net = dev_net(rt6_ex->rt6i->dst.dev); 1512 net->ipv6.rt6_stats->fib_rt_cache--; 1513 1514 /* purge completely the exception to allow releasing the held resources: 1515 * some [sk] cache may keep the dst around for unlimited time 1516 */ 1517 dst_dev_put(&rt6_ex->rt6i->dst); 1518 1519 hlist_del_rcu(&rt6_ex->hlist); 1520 dst_release(&rt6_ex->rt6i->dst); 1521 kfree_rcu(rt6_ex, rcu); 1522 WARN_ON_ONCE(!bucket->depth); 1523 bucket->depth--; 1524 } 1525 1526 /* Remove oldest rt6_ex in bucket and free the memory 1527 * Caller must hold rt6_exception_lock 1528 */ 1529 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1530 { 1531 struct rt6_exception *rt6_ex, *oldest = NULL; 1532 1533 if (!bucket) 1534 return; 1535 1536 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1537 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1538 oldest = rt6_ex; 1539 } 1540 rt6_remove_exception(bucket, oldest); 1541 } 1542 1543 static u32 rt6_exception_hash(const struct in6_addr *dst, 1544 const struct in6_addr *src) 1545 { 1546 static siphash_aligned_key_t rt6_exception_key; 1547 struct { 1548 struct in6_addr dst; 1549 struct in6_addr src; 1550 } __aligned(SIPHASH_ALIGNMENT) combined = { 1551 .dst = *dst, 1552 }; 1553 u64 val; 1554 1555 net_get_random_once(&rt6_exception_key, sizeof(rt6_exception_key)); 1556 1557 #ifdef CONFIG_IPV6_SUBTREES 1558 if (src) 1559 combined.src = *src; 1560 #endif 1561 val = siphash(&combined, sizeof(combined), &rt6_exception_key); 1562 1563 return hash_64(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1564 } 1565 1566 /* Helper function to find the cached rt in the hash table 1567 * and update bucket pointer to point to the bucket for this 1568 * (daddr, saddr) pair 1569 * Caller must hold rt6_exception_lock 1570 */ 1571 static struct rt6_exception * 1572 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1573 const struct in6_addr *daddr, 1574 const struct in6_addr *saddr) 1575 { 1576 struct rt6_exception *rt6_ex; 1577 u32 hval; 1578 1579 if (!(*bucket) || !daddr) 1580 return NULL; 1581 1582 hval = rt6_exception_hash(daddr, saddr); 1583 *bucket += hval; 1584 1585 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1586 struct rt6_info *rt6 = rt6_ex->rt6i; 1587 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1588 1589 #ifdef CONFIG_IPV6_SUBTREES 1590 if (matched && saddr) 1591 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1592 #endif 1593 if (matched) 1594 return rt6_ex; 1595 } 1596 return NULL; 1597 } 1598 1599 /* Helper function to find the cached rt in the hash table 1600 * and update bucket pointer to point to the bucket for this 1601 * (daddr, saddr) pair 1602 * Caller must hold rcu_read_lock() 1603 */ 1604 static struct rt6_exception * 1605 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1606 const struct in6_addr *daddr, 1607 const struct in6_addr *saddr) 1608 { 1609 struct rt6_exception *rt6_ex; 1610 u32 hval; 1611 1612 WARN_ON_ONCE(!rcu_read_lock_held()); 1613 1614 if (!(*bucket) || !daddr) 1615 return NULL; 1616 1617 hval = rt6_exception_hash(daddr, saddr); 1618 *bucket += hval; 1619 1620 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1621 struct rt6_info *rt6 = rt6_ex->rt6i; 1622 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1623 1624 #ifdef CONFIG_IPV6_SUBTREES 1625 if (matched && saddr) 1626 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1627 #endif 1628 if (matched) 1629 return rt6_ex; 1630 } 1631 return NULL; 1632 } 1633 1634 static unsigned int fib6_mtu(const struct fib6_result *res) 1635 { 1636 const struct fib6_nh *nh = res->nh; 1637 unsigned int mtu; 1638 1639 if (res->f6i->fib6_pmtu) { 1640 mtu = res->f6i->fib6_pmtu; 1641 } else { 1642 struct net_device *dev = nh->fib_nh_dev; 1643 struct inet6_dev *idev; 1644 1645 rcu_read_lock(); 1646 idev = __in6_dev_get(dev); 1647 mtu = READ_ONCE(idev->cnf.mtu6); 1648 rcu_read_unlock(); 1649 } 1650 1651 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1652 1653 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 1654 } 1655 1656 #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL 1657 1658 /* used when the flushed bit is not relevant, only access to the bucket 1659 * (ie., all bucket users except rt6_insert_exception); 1660 * 1661 * called under rcu lock; sometimes called with rt6_exception_lock held 1662 */ 1663 static 1664 struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, 1665 spinlock_t *lock) 1666 { 1667 struct rt6_exception_bucket *bucket; 1668 1669 if (lock) 1670 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1671 lockdep_is_held(lock)); 1672 else 1673 bucket = rcu_dereference(nh->rt6i_exception_bucket); 1674 1675 /* remove bucket flushed bit if set */ 1676 if (bucket) { 1677 unsigned long p = (unsigned long)bucket; 1678 1679 p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; 1680 bucket = (struct rt6_exception_bucket *)p; 1681 } 1682 1683 return bucket; 1684 } 1685 1686 static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) 1687 { 1688 unsigned long p = (unsigned long)bucket; 1689 1690 return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); 1691 } 1692 1693 /* called with rt6_exception_lock held */ 1694 static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, 1695 spinlock_t *lock) 1696 { 1697 struct rt6_exception_bucket *bucket; 1698 unsigned long p; 1699 1700 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1701 lockdep_is_held(lock)); 1702 1703 p = (unsigned long)bucket; 1704 p |= FIB6_EXCEPTION_BUCKET_FLUSHED; 1705 bucket = (struct rt6_exception_bucket *)p; 1706 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1707 } 1708 1709 static int rt6_insert_exception(struct rt6_info *nrt, 1710 const struct fib6_result *res) 1711 { 1712 struct net *net = dev_net(nrt->dst.dev); 1713 struct rt6_exception_bucket *bucket; 1714 struct fib6_info *f6i = res->f6i; 1715 struct in6_addr *src_key = NULL; 1716 struct rt6_exception *rt6_ex; 1717 struct fib6_nh *nh = res->nh; 1718 int max_depth; 1719 int err = 0; 1720 1721 spin_lock_bh(&rt6_exception_lock); 1722 1723 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1724 lockdep_is_held(&rt6_exception_lock)); 1725 if (!bucket) { 1726 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1727 GFP_ATOMIC); 1728 if (!bucket) { 1729 err = -ENOMEM; 1730 goto out; 1731 } 1732 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1733 } else if (fib6_nh_excptn_bucket_flushed(bucket)) { 1734 err = -EINVAL; 1735 goto out; 1736 } 1737 1738 #ifdef CONFIG_IPV6_SUBTREES 1739 /* fib6_src.plen != 0 indicates f6i is in subtree 1740 * and exception table is indexed by a hash of 1741 * both fib6_dst and fib6_src. 1742 * Otherwise, the exception table is indexed by 1743 * a hash of only fib6_dst. 1744 */ 1745 if (f6i->fib6_src.plen) 1746 src_key = &nrt->rt6i_src.addr; 1747 #endif 1748 /* rt6_mtu_change() might lower mtu on f6i. 1749 * Only insert this exception route if its mtu 1750 * is less than f6i's mtu value. 1751 */ 1752 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { 1753 err = -EINVAL; 1754 goto out; 1755 } 1756 1757 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1758 src_key); 1759 if (rt6_ex) 1760 rt6_remove_exception(bucket, rt6_ex); 1761 1762 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1763 if (!rt6_ex) { 1764 err = -ENOMEM; 1765 goto out; 1766 } 1767 rt6_ex->rt6i = nrt; 1768 rt6_ex->stamp = jiffies; 1769 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1770 bucket->depth++; 1771 net->ipv6.rt6_stats->fib_rt_cache++; 1772 1773 /* Randomize max depth to avoid some side channels attacks. */ 1774 max_depth = FIB6_MAX_DEPTH + get_random_u32_below(FIB6_MAX_DEPTH); 1775 while (bucket->depth > max_depth) 1776 rt6_exception_remove_oldest(bucket); 1777 1778 out: 1779 spin_unlock_bh(&rt6_exception_lock); 1780 1781 /* Update fn->fn_sernum to invalidate all cached dst */ 1782 if (!err) { 1783 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1784 fib6_update_sernum(net, f6i); 1785 fib6_add_gc_list(f6i); 1786 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1787 fib6_force_start_gc(net); 1788 } 1789 1790 return err; 1791 } 1792 1793 static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) 1794 { 1795 struct rt6_exception_bucket *bucket; 1796 struct rt6_exception *rt6_ex; 1797 struct hlist_node *tmp; 1798 int i; 1799 1800 spin_lock_bh(&rt6_exception_lock); 1801 1802 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1803 if (!bucket) 1804 goto out; 1805 1806 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1807 if (!from) 1808 fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); 1809 1810 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1811 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { 1812 if (!from || 1813 rcu_access_pointer(rt6_ex->rt6i->from) == from) 1814 rt6_remove_exception(bucket, rt6_ex); 1815 } 1816 WARN_ON_ONCE(!from && bucket->depth); 1817 bucket++; 1818 } 1819 out: 1820 spin_unlock_bh(&rt6_exception_lock); 1821 } 1822 1823 static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) 1824 { 1825 struct fib6_info *f6i = arg; 1826 1827 fib6_nh_flush_exceptions(nh, f6i); 1828 1829 return 0; 1830 } 1831 1832 void rt6_flush_exceptions(struct fib6_info *f6i) 1833 { 1834 if (f6i->nh) { 1835 rcu_read_lock(); 1836 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, f6i); 1837 rcu_read_unlock(); 1838 } else { 1839 fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); 1840 } 1841 } 1842 1843 /* Find cached rt in the hash table inside passed in rt 1844 * Caller has to hold rcu_read_lock() 1845 */ 1846 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 1847 const struct in6_addr *daddr, 1848 const struct in6_addr *saddr) 1849 { 1850 const struct in6_addr *src_key = NULL; 1851 struct rt6_exception_bucket *bucket; 1852 struct rt6_exception *rt6_ex; 1853 struct rt6_info *ret = NULL; 1854 1855 #ifdef CONFIG_IPV6_SUBTREES 1856 /* fib6i_src.plen != 0 indicates f6i is in subtree 1857 * and exception table is indexed by a hash of 1858 * both fib6_dst and fib6_src. 1859 * However, the src addr used to create the hash 1860 * might not be exactly the passed in saddr which 1861 * is a /128 addr from the flow. 1862 * So we need to use f6i->fib6_src to redo lookup 1863 * if the passed in saddr does not find anything. 1864 * (See the logic in ip6_rt_cache_alloc() on how 1865 * rt->rt6i_src is updated.) 1866 */ 1867 if (res->f6i->fib6_src.plen) 1868 src_key = saddr; 1869 find_ex: 1870 #endif 1871 bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); 1872 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1873 1874 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1875 ret = rt6_ex->rt6i; 1876 1877 #ifdef CONFIG_IPV6_SUBTREES 1878 /* Use fib6_src as src_key and redo lookup */ 1879 if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { 1880 src_key = &res->f6i->fib6_src.addr; 1881 goto find_ex; 1882 } 1883 #endif 1884 1885 return ret; 1886 } 1887 1888 /* Remove the passed in cached rt from the hash table that contains it */ 1889 static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, 1890 const struct rt6_info *rt) 1891 { 1892 const struct in6_addr *src_key = NULL; 1893 struct rt6_exception_bucket *bucket; 1894 struct rt6_exception *rt6_ex; 1895 int err; 1896 1897 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 1898 return -ENOENT; 1899 1900 spin_lock_bh(&rt6_exception_lock); 1901 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1902 1903 #ifdef CONFIG_IPV6_SUBTREES 1904 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1905 * and exception table is indexed by a hash of 1906 * both rt6i_dst and rt6i_src. 1907 * Otherwise, the exception table is indexed by 1908 * a hash of only rt6i_dst. 1909 */ 1910 if (plen) 1911 src_key = &rt->rt6i_src.addr; 1912 #endif 1913 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1914 &rt->rt6i_dst.addr, 1915 src_key); 1916 if (rt6_ex) { 1917 rt6_remove_exception(bucket, rt6_ex); 1918 err = 0; 1919 } else { 1920 err = -ENOENT; 1921 } 1922 1923 spin_unlock_bh(&rt6_exception_lock); 1924 return err; 1925 } 1926 1927 struct fib6_nh_excptn_arg { 1928 struct rt6_info *rt; 1929 int plen; 1930 }; 1931 1932 static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) 1933 { 1934 struct fib6_nh_excptn_arg *arg = _arg; 1935 int err; 1936 1937 err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); 1938 if (err == 0) 1939 return 1; 1940 1941 return 0; 1942 } 1943 1944 static int rt6_remove_exception_rt(struct rt6_info *rt) 1945 { 1946 struct fib6_info *from; 1947 1948 from = rcu_dereference(rt->from); 1949 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1950 return -EINVAL; 1951 1952 if (from->nh) { 1953 struct fib6_nh_excptn_arg arg = { 1954 .rt = rt, 1955 .plen = from->fib6_src.plen 1956 }; 1957 int rc; 1958 1959 /* rc = 1 means an entry was found */ 1960 rc = nexthop_for_each_fib6_nh(from->nh, 1961 rt6_nh_remove_exception_rt, 1962 &arg); 1963 return rc ? 0 : -ENOENT; 1964 } 1965 1966 return fib6_nh_remove_exception(from->fib6_nh, 1967 from->fib6_src.plen, rt); 1968 } 1969 1970 /* Find rt6_ex which contains the passed in rt cache and 1971 * refresh its stamp 1972 */ 1973 static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, 1974 const struct rt6_info *rt) 1975 { 1976 const struct in6_addr *src_key = NULL; 1977 struct rt6_exception_bucket *bucket; 1978 struct rt6_exception *rt6_ex; 1979 1980 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 1981 #ifdef CONFIG_IPV6_SUBTREES 1982 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1983 * and exception table is indexed by a hash of 1984 * both rt6i_dst and rt6i_src. 1985 * Otherwise, the exception table is indexed by 1986 * a hash of only rt6i_dst. 1987 */ 1988 if (plen) 1989 src_key = &rt->rt6i_src.addr; 1990 #endif 1991 rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); 1992 if (rt6_ex) 1993 rt6_ex->stamp = jiffies; 1994 } 1995 1996 struct fib6_nh_match_arg { 1997 const struct net_device *dev; 1998 const struct in6_addr *gw; 1999 struct fib6_nh *match; 2000 }; 2001 2002 /* determine if fib6_nh has given device and gateway */ 2003 static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) 2004 { 2005 struct fib6_nh_match_arg *arg = _arg; 2006 2007 if (arg->dev != nh->fib_nh_dev || 2008 (arg->gw && !nh->fib_nh_gw_family) || 2009 (!arg->gw && nh->fib_nh_gw_family) || 2010 (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) 2011 return 0; 2012 2013 arg->match = nh; 2014 2015 /* found a match, break the loop */ 2016 return 1; 2017 } 2018 2019 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 2020 { 2021 struct fib6_info *from; 2022 struct fib6_nh *fib6_nh; 2023 2024 rcu_read_lock(); 2025 2026 from = rcu_dereference(rt->from); 2027 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 2028 goto unlock; 2029 2030 if (from->nh) { 2031 struct fib6_nh_match_arg arg = { 2032 .dev = rt->dst.dev, 2033 .gw = &rt->rt6i_gateway, 2034 }; 2035 2036 nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); 2037 2038 if (!arg.match) 2039 goto unlock; 2040 fib6_nh = arg.match; 2041 } else { 2042 fib6_nh = from->fib6_nh; 2043 } 2044 fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); 2045 unlock: 2046 rcu_read_unlock(); 2047 } 2048 2049 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 2050 struct rt6_info *rt, int mtu) 2051 { 2052 /* If the new MTU is lower than the route PMTU, this new MTU will be the 2053 * lowest MTU in the path: always allow updating the route PMTU to 2054 * reflect PMTU decreases. 2055 * 2056 * If the new MTU is higher, and the route PMTU is equal to the local 2057 * MTU, this means the old MTU is the lowest in the path, so allow 2058 * updating it: if other nodes now have lower MTUs, PMTU discovery will 2059 * handle this. 2060 */ 2061 2062 if (dst_mtu(&rt->dst) >= mtu) 2063 return true; 2064 2065 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 2066 return true; 2067 2068 return false; 2069 } 2070 2071 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 2072 const struct fib6_nh *nh, int mtu) 2073 { 2074 struct rt6_exception_bucket *bucket; 2075 struct rt6_exception *rt6_ex; 2076 int i; 2077 2078 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2079 if (!bucket) 2080 return; 2081 2082 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2083 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 2084 struct rt6_info *entry = rt6_ex->rt6i; 2085 2086 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 2087 * route), the metrics of its rt->from have already 2088 * been updated. 2089 */ 2090 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 2091 rt6_mtu_change_route_allowed(idev, entry, mtu)) 2092 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 2093 } 2094 bucket++; 2095 } 2096 } 2097 2098 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 2099 2100 static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, 2101 const struct in6_addr *gateway) 2102 { 2103 struct rt6_exception_bucket *bucket; 2104 struct rt6_exception *rt6_ex; 2105 struct hlist_node *tmp; 2106 int i; 2107 2108 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2109 return; 2110 2111 spin_lock_bh(&rt6_exception_lock); 2112 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2113 if (bucket) { 2114 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2115 hlist_for_each_entry_safe(rt6_ex, tmp, 2116 &bucket->chain, hlist) { 2117 struct rt6_info *entry = rt6_ex->rt6i; 2118 2119 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 2120 RTF_CACHE_GATEWAY && 2121 ipv6_addr_equal(gateway, 2122 &entry->rt6i_gateway)) { 2123 rt6_remove_exception(bucket, rt6_ex); 2124 } 2125 } 2126 bucket++; 2127 } 2128 } 2129 2130 spin_unlock_bh(&rt6_exception_lock); 2131 } 2132 2133 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 2134 struct rt6_exception *rt6_ex, 2135 struct fib6_gc_args *gc_args, 2136 unsigned long now) 2137 { 2138 struct rt6_info *rt = rt6_ex->rt6i; 2139 2140 /* we are pruning and obsoleting aged-out and non gateway exceptions 2141 * even if others have still references to them, so that on next 2142 * dst_check() such references can be dropped. 2143 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 2144 * expired, independently from their aging, as per RFC 8201 section 4 2145 */ 2146 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 2147 if (time_after_eq(now, READ_ONCE(rt->dst.lastuse) + 2148 gc_args->timeout)) { 2149 pr_debug("aging clone %p\n", rt); 2150 rt6_remove_exception(bucket, rt6_ex); 2151 return; 2152 } 2153 } else if (time_after(jiffies, READ_ONCE(rt->dst.expires))) { 2154 pr_debug("purging expired route %p\n", rt); 2155 rt6_remove_exception(bucket, rt6_ex); 2156 return; 2157 } 2158 2159 if (rt->rt6i_flags & RTF_GATEWAY) { 2160 struct neighbour *neigh; 2161 2162 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 2163 2164 if (!(neigh && (neigh->flags & NTF_ROUTER))) { 2165 pr_debug("purging route %p via non-router but gateway\n", 2166 rt); 2167 rt6_remove_exception(bucket, rt6_ex); 2168 return; 2169 } 2170 } 2171 2172 gc_args->more++; 2173 } 2174 2175 static void fib6_nh_age_exceptions(const struct fib6_nh *nh, 2176 struct fib6_gc_args *gc_args, 2177 unsigned long now) 2178 { 2179 struct rt6_exception_bucket *bucket; 2180 struct rt6_exception *rt6_ex; 2181 struct hlist_node *tmp; 2182 int i; 2183 2184 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2185 return; 2186 2187 rcu_read_lock_bh(); 2188 spin_lock(&rt6_exception_lock); 2189 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2190 if (bucket) { 2191 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2192 hlist_for_each_entry_safe(rt6_ex, tmp, 2193 &bucket->chain, hlist) { 2194 rt6_age_examine_exception(bucket, rt6_ex, 2195 gc_args, now); 2196 } 2197 bucket++; 2198 } 2199 } 2200 spin_unlock(&rt6_exception_lock); 2201 rcu_read_unlock_bh(); 2202 } 2203 2204 struct fib6_nh_age_excptn_arg { 2205 struct fib6_gc_args *gc_args; 2206 unsigned long now; 2207 }; 2208 2209 static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) 2210 { 2211 struct fib6_nh_age_excptn_arg *arg = _arg; 2212 2213 fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); 2214 return 0; 2215 } 2216 2217 void rt6_age_exceptions(struct fib6_info *f6i, 2218 struct fib6_gc_args *gc_args, 2219 unsigned long now) 2220 { 2221 if (f6i->nh) { 2222 struct fib6_nh_age_excptn_arg arg = { 2223 .gc_args = gc_args, 2224 .now = now 2225 }; 2226 2227 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, 2228 &arg); 2229 } else { 2230 fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); 2231 } 2232 } 2233 2234 /* must be called with rcu lock held */ 2235 int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, 2236 struct flowi6 *fl6, struct fib6_result *res, int strict) 2237 { 2238 struct fib6_node *fn, *saved_fn; 2239 2240 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2241 saved_fn = fn; 2242 2243 redo_rt6_select: 2244 rt6_select(net, fn, oif, res, strict); 2245 if (res->f6i == net->ipv6.fib6_null_entry) { 2246 fn = fib6_backtrack(fn, &fl6->saddr); 2247 if (fn) 2248 goto redo_rt6_select; 2249 else if (strict & RT6_LOOKUP_F_REACHABLE) { 2250 /* also consider unreachable route */ 2251 strict &= ~RT6_LOOKUP_F_REACHABLE; 2252 fn = saved_fn; 2253 goto redo_rt6_select; 2254 } 2255 } 2256 2257 trace_fib6_table_lookup(net, res, table, fl6); 2258 2259 return 0; 2260 } 2261 2262 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 2263 int oif, struct flowi6 *fl6, 2264 const struct sk_buff *skb, int flags) 2265 { 2266 struct fib6_result res = {}; 2267 struct rt6_info *rt = NULL; 2268 int strict = 0; 2269 2270 WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && 2271 !rcu_read_lock_held()); 2272 2273 strict |= flags & RT6_LOOKUP_F_IFACE; 2274 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 2275 if (READ_ONCE(net->ipv6.devconf_all->forwarding) == 0) 2276 strict |= RT6_LOOKUP_F_REACHABLE; 2277 2278 rcu_read_lock(); 2279 2280 fib6_table_lookup(net, table, oif, fl6, &res, strict); 2281 if (res.f6i == net->ipv6.fib6_null_entry) 2282 goto out; 2283 2284 fib6_select_path(net, &res, fl6, oif, false, skb, strict); 2285 2286 /*Search through exception table */ 2287 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 2288 if (rt) { 2289 goto out; 2290 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 2291 !res.nh->fib_nh_gw_family)) { 2292 /* Create a RTF_CACHE clone which will not be 2293 * owned by the fib6 tree. It is for the special case where 2294 * the daddr in the skb during the neighbor look-up is different 2295 * from the fl6->daddr used to look-up route here. 2296 */ 2297 rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); 2298 2299 if (rt) { 2300 /* 1 refcnt is taken during ip6_rt_cache_alloc(). 2301 * As rt6_uncached_list_add() does not consume refcnt, 2302 * this refcnt is always returned to the caller even 2303 * if caller sets RT6_LOOKUP_F_DST_NOREF flag. 2304 */ 2305 rt6_uncached_list_add(rt); 2306 rcu_read_unlock(); 2307 2308 return rt; 2309 } 2310 } else { 2311 /* Get a percpu copy */ 2312 local_bh_disable(); 2313 rt = rt6_get_pcpu_route(&res); 2314 2315 if (!rt) 2316 rt = rt6_make_pcpu_route(net, &res); 2317 2318 local_bh_enable(); 2319 } 2320 out: 2321 if (!rt) 2322 rt = net->ipv6.ip6_null_entry; 2323 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 2324 ip6_hold_safe(net, &rt); 2325 rcu_read_unlock(); 2326 2327 return rt; 2328 } 2329 EXPORT_SYMBOL_GPL(ip6_pol_route); 2330 2331 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net, 2332 struct fib6_table *table, 2333 struct flowi6 *fl6, 2334 const struct sk_buff *skb, 2335 int flags) 2336 { 2337 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 2338 } 2339 2340 struct dst_entry *ip6_route_input_lookup(struct net *net, 2341 struct net_device *dev, 2342 struct flowi6 *fl6, 2343 const struct sk_buff *skb, 2344 int flags) 2345 { 2346 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 2347 flags |= RT6_LOOKUP_F_IFACE; 2348 2349 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 2350 } 2351 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 2352 2353 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 2354 struct flow_keys *keys, 2355 struct flow_keys *flkeys) 2356 { 2357 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 2358 const struct ipv6hdr *key_iph = outer_iph; 2359 struct flow_keys *_flkeys = flkeys; 2360 const struct ipv6hdr *inner_iph; 2361 const struct icmp6hdr *icmph; 2362 struct ipv6hdr _inner_iph; 2363 struct icmp6hdr _icmph; 2364 2365 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 2366 goto out; 2367 2368 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 2369 sizeof(_icmph), &_icmph); 2370 if (!icmph) 2371 goto out; 2372 2373 if (!icmpv6_is_err(icmph->icmp6_type)) 2374 goto out; 2375 2376 inner_iph = skb_header_pointer(skb, 2377 skb_transport_offset(skb) + sizeof(*icmph), 2378 sizeof(_inner_iph), &_inner_iph); 2379 if (!inner_iph) 2380 goto out; 2381 2382 key_iph = inner_iph; 2383 _flkeys = NULL; 2384 out: 2385 if (_flkeys) { 2386 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 2387 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 2388 keys->tags.flow_label = _flkeys->tags.flow_label; 2389 keys->basic.ip_proto = _flkeys->basic.ip_proto; 2390 } else { 2391 keys->addrs.v6addrs.src = key_iph->saddr; 2392 keys->addrs.v6addrs.dst = key_iph->daddr; 2393 keys->tags.flow_label = ip6_flowlabel(key_iph); 2394 keys->basic.ip_proto = key_iph->nexthdr; 2395 } 2396 } 2397 2398 static u32 rt6_multipath_custom_hash_outer(const struct net *net, 2399 const struct sk_buff *skb, 2400 bool *p_has_inner) 2401 { 2402 u32 hash_fields = ip6_multipath_hash_fields(net); 2403 struct flow_keys keys, hash_keys; 2404 2405 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) 2406 return 0; 2407 2408 memset(&hash_keys, 0, sizeof(hash_keys)); 2409 skb_flow_dissect_flow_keys(skb, &keys, FLOW_DISSECTOR_F_STOP_AT_ENCAP); 2410 2411 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2412 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) 2413 hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 2414 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) 2415 hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; 2416 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) 2417 hash_keys.basic.ip_proto = keys.basic.ip_proto; 2418 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) 2419 hash_keys.tags.flow_label = keys.tags.flow_label; 2420 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) 2421 hash_keys.ports.src = keys.ports.src; 2422 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) 2423 hash_keys.ports.dst = keys.ports.dst; 2424 2425 *p_has_inner = !!(keys.control.flags & FLOW_DIS_ENCAPSULATION); 2426 return fib_multipath_hash_from_keys(net, &hash_keys); 2427 } 2428 2429 static u32 rt6_multipath_custom_hash_inner(const struct net *net, 2430 const struct sk_buff *skb, 2431 bool has_inner) 2432 { 2433 u32 hash_fields = ip6_multipath_hash_fields(net); 2434 struct flow_keys keys, hash_keys; 2435 2436 /* We assume the packet carries an encapsulation, but if none was 2437 * encountered during dissection of the outer flow, then there is no 2438 * point in calling the flow dissector again. 2439 */ 2440 if (!has_inner) 2441 return 0; 2442 2443 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_MASK)) 2444 return 0; 2445 2446 memset(&hash_keys, 0, sizeof(hash_keys)); 2447 skb_flow_dissect_flow_keys(skb, &keys, 0); 2448 2449 if (!(keys.control.flags & FLOW_DIS_ENCAPSULATION)) 2450 return 0; 2451 2452 if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2453 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2454 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) 2455 hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; 2456 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) 2457 hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst; 2458 } else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2459 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2460 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) 2461 hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 2462 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) 2463 hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; 2464 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_FLOWLABEL) 2465 hash_keys.tags.flow_label = keys.tags.flow_label; 2466 } 2467 2468 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_IP_PROTO) 2469 hash_keys.basic.ip_proto = keys.basic.ip_proto; 2470 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_PORT) 2471 hash_keys.ports.src = keys.ports.src; 2472 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_PORT) 2473 hash_keys.ports.dst = keys.ports.dst; 2474 2475 return fib_multipath_hash_from_keys(net, &hash_keys); 2476 } 2477 2478 static u32 rt6_multipath_custom_hash_skb(const struct net *net, 2479 const struct sk_buff *skb) 2480 { 2481 u32 mhash, mhash_inner; 2482 bool has_inner = true; 2483 2484 mhash = rt6_multipath_custom_hash_outer(net, skb, &has_inner); 2485 mhash_inner = rt6_multipath_custom_hash_inner(net, skb, has_inner); 2486 2487 return jhash_2words(mhash, mhash_inner, 0); 2488 } 2489 2490 static u32 rt6_multipath_custom_hash_fl6(const struct net *net, 2491 const struct flowi6 *fl6) 2492 { 2493 u32 hash_fields = ip6_multipath_hash_fields(net); 2494 struct flow_keys hash_keys; 2495 2496 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) 2497 return 0; 2498 2499 memset(&hash_keys, 0, sizeof(hash_keys)); 2500 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2501 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) 2502 hash_keys.addrs.v6addrs.src = fl6->saddr; 2503 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) 2504 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2505 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) 2506 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2507 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) 2508 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2509 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) { 2510 if (fl6->flowi6_flags & FLOWI_FLAG_ANY_SPORT) 2511 hash_keys.ports.src = (__force __be16)get_random_u16(); 2512 else 2513 hash_keys.ports.src = fl6->fl6_sport; 2514 } 2515 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) 2516 hash_keys.ports.dst = fl6->fl6_dport; 2517 2518 return fib_multipath_hash_from_keys(net, &hash_keys); 2519 } 2520 2521 /* if skb is set it will be used and fl6 can be NULL */ 2522 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 2523 const struct sk_buff *skb, struct flow_keys *flkeys) 2524 { 2525 struct flow_keys hash_keys; 2526 u32 mhash = 0; 2527 2528 switch (ip6_multipath_hash_policy(net)) { 2529 case 0: 2530 memset(&hash_keys, 0, sizeof(hash_keys)); 2531 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2532 if (skb) { 2533 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2534 } else { 2535 hash_keys.addrs.v6addrs.src = fl6->saddr; 2536 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2537 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2538 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2539 } 2540 mhash = fib_multipath_hash_from_keys(net, &hash_keys); 2541 break; 2542 case 1: 2543 if (skb) { 2544 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 2545 struct flow_keys keys; 2546 2547 /* short-circuit if we already have L4 hash present */ 2548 if (skb->l4_hash) 2549 return skb_get_hash_raw(skb) >> 1; 2550 2551 memset(&hash_keys, 0, sizeof(hash_keys)); 2552 2553 if (!flkeys) { 2554 skb_flow_dissect_flow_keys(skb, &keys, flag); 2555 flkeys = &keys; 2556 } 2557 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2558 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2559 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2560 hash_keys.ports.src = flkeys->ports.src; 2561 hash_keys.ports.dst = flkeys->ports.dst; 2562 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2563 } else { 2564 memset(&hash_keys, 0, sizeof(hash_keys)); 2565 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2566 hash_keys.addrs.v6addrs.src = fl6->saddr; 2567 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2568 if (fl6->flowi6_flags & FLOWI_FLAG_ANY_SPORT) 2569 hash_keys.ports.src = (__force __be16)get_random_u16(); 2570 else 2571 hash_keys.ports.src = fl6->fl6_sport; 2572 hash_keys.ports.dst = fl6->fl6_dport; 2573 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2574 } 2575 mhash = fib_multipath_hash_from_keys(net, &hash_keys); 2576 break; 2577 case 2: 2578 memset(&hash_keys, 0, sizeof(hash_keys)); 2579 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2580 if (skb) { 2581 struct flow_keys keys; 2582 2583 if (!flkeys) { 2584 skb_flow_dissect_flow_keys(skb, &keys, 0); 2585 flkeys = &keys; 2586 } 2587 2588 /* Inner can be v4 or v6 */ 2589 if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2590 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2591 hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; 2592 hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; 2593 } else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2594 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2595 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2596 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2597 hash_keys.tags.flow_label = flkeys->tags.flow_label; 2598 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2599 } else { 2600 /* Same as case 0 */ 2601 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2602 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2603 } 2604 } else { 2605 /* Same as case 0 */ 2606 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2607 hash_keys.addrs.v6addrs.src = fl6->saddr; 2608 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2609 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2610 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2611 } 2612 mhash = fib_multipath_hash_from_keys(net, &hash_keys); 2613 break; 2614 case 3: 2615 if (skb) 2616 mhash = rt6_multipath_custom_hash_skb(net, skb); 2617 else 2618 mhash = rt6_multipath_custom_hash_fl6(net, fl6); 2619 break; 2620 } 2621 2622 return mhash >> 1; 2623 } 2624 2625 /* Called with rcu held */ 2626 void ip6_route_input(struct sk_buff *skb) 2627 { 2628 const struct ipv6hdr *iph = ipv6_hdr(skb); 2629 struct net *net = dev_net(skb->dev); 2630 int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; 2631 struct ip_tunnel_info *tun_info; 2632 struct flowi6 fl6 = { 2633 .flowi6_iif = skb->dev->ifindex, 2634 .daddr = iph->daddr, 2635 .saddr = iph->saddr, 2636 .flowlabel = ip6_flowinfo(iph), 2637 .flowi6_mark = skb->mark, 2638 .flowi6_proto = iph->nexthdr, 2639 }; 2640 struct flow_keys *flkeys = NULL, _flkeys; 2641 2642 tun_info = skb_tunnel_info(skb); 2643 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2644 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2645 2646 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2647 flkeys = &_flkeys; 2648 2649 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2650 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2651 skb_dst_drop(skb); 2652 skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, 2653 &fl6, skb, flags)); 2654 } 2655 2656 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net, 2657 struct fib6_table *table, 2658 struct flowi6 *fl6, 2659 const struct sk_buff *skb, 2660 int flags) 2661 { 2662 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2663 } 2664 2665 static struct dst_entry *ip6_route_output_flags_noref(struct net *net, 2666 const struct sock *sk, 2667 struct flowi6 *fl6, 2668 int flags) 2669 { 2670 bool any_src; 2671 2672 if (ipv6_addr_type(&fl6->daddr) & 2673 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2674 struct dst_entry *dst; 2675 2676 /* This function does not take refcnt on the dst */ 2677 dst = l3mdev_link_scope_lookup(net, fl6); 2678 if (dst) 2679 return dst; 2680 } 2681 2682 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2683 2684 flags |= RT6_LOOKUP_F_DST_NOREF; 2685 any_src = ipv6_addr_any(&fl6->saddr); 2686 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2687 (fl6->flowi6_oif && any_src)) 2688 flags |= RT6_LOOKUP_F_IFACE; 2689 2690 if (!any_src) 2691 flags |= RT6_LOOKUP_F_HAS_SADDR; 2692 else if (sk) 2693 flags |= rt6_srcprefs2flags(READ_ONCE(inet6_sk(sk)->srcprefs)); 2694 2695 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2696 } 2697 2698 struct dst_entry *ip6_route_output_flags(struct net *net, 2699 const struct sock *sk, 2700 struct flowi6 *fl6, 2701 int flags) 2702 { 2703 struct dst_entry *dst; 2704 struct rt6_info *rt6; 2705 2706 rcu_read_lock(); 2707 dst = ip6_route_output_flags_noref(net, sk, fl6, flags); 2708 rt6 = dst_rt6_info(dst); 2709 /* For dst cached in uncached_list, refcnt is already taken. */ 2710 if (list_empty(&rt6->dst.rt_uncached) && !dst_hold_safe(dst)) { 2711 dst = &net->ipv6.ip6_null_entry->dst; 2712 dst_hold(dst); 2713 } 2714 rcu_read_unlock(); 2715 2716 return dst; 2717 } 2718 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2719 2720 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2721 { 2722 struct rt6_info *rt, *ort = dst_rt6_info(dst_orig); 2723 struct net_device *loopback_dev = net->loopback_dev; 2724 struct dst_entry *new = NULL; 2725 2726 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 2727 DST_OBSOLETE_DEAD, 0); 2728 if (rt) { 2729 rt6_info_init(rt); 2730 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2731 2732 new = &rt->dst; 2733 new->__use = 1; 2734 new->input = dst_discard; 2735 new->output = dst_discard_out; 2736 2737 dst_copy_metrics(new, &ort->dst); 2738 2739 rt->rt6i_idev = in6_dev_get(loopback_dev); 2740 rt->rt6i_gateway = ort->rt6i_gateway; 2741 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2742 2743 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2744 #ifdef CONFIG_IPV6_SUBTREES 2745 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2746 #endif 2747 } 2748 2749 dst_release(dst_orig); 2750 return new ? new : ERR_PTR(-ENOMEM); 2751 } 2752 2753 /* 2754 * Destination cache support functions 2755 */ 2756 2757 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2758 { 2759 u32 rt_cookie = 0; 2760 2761 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2762 return false; 2763 2764 if (fib6_check_expired(f6i)) 2765 return false; 2766 2767 return true; 2768 } 2769 2770 static struct dst_entry *rt6_check(struct rt6_info *rt, 2771 struct fib6_info *from, 2772 u32 cookie) 2773 { 2774 u32 rt_cookie = 0; 2775 2776 if (!from || !fib6_get_cookie_safe(from, &rt_cookie) || 2777 rt_cookie != cookie) 2778 return NULL; 2779 2780 if (rt6_check_expired(rt)) 2781 return NULL; 2782 2783 return &rt->dst; 2784 } 2785 2786 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2787 struct fib6_info *from, 2788 u32 cookie) 2789 { 2790 if (!__rt6_check_expired(rt) && 2791 READ_ONCE(rt->dst.obsolete) == DST_OBSOLETE_FORCE_CHK && 2792 fib6_check(from, cookie)) 2793 return &rt->dst; 2794 return NULL; 2795 } 2796 2797 INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, 2798 u32 cookie) 2799 { 2800 struct dst_entry *dst_ret; 2801 struct fib6_info *from; 2802 struct rt6_info *rt; 2803 2804 rt = dst_rt6_info(dst); 2805 2806 if (rt->sernum) 2807 return rt6_is_valid(rt) ? dst : NULL; 2808 2809 rcu_read_lock(); 2810 2811 /* All IPV6 dsts are created with ->obsolete set to the value 2812 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2813 * into this function always. 2814 */ 2815 2816 from = rcu_dereference(rt->from); 2817 2818 if (from && (rt->rt6i_flags & RTF_PCPU || 2819 unlikely(!list_empty(&rt->dst.rt_uncached)))) 2820 dst_ret = rt6_dst_from_check(rt, from, cookie); 2821 else 2822 dst_ret = rt6_check(rt, from, cookie); 2823 2824 rcu_read_unlock(); 2825 2826 return dst_ret; 2827 } 2828 EXPORT_INDIRECT_CALLABLE(ip6_dst_check); 2829 2830 static void ip6_negative_advice(struct sock *sk, 2831 struct dst_entry *dst) 2832 { 2833 struct rt6_info *rt = dst_rt6_info(dst); 2834 2835 if (rt->rt6i_flags & RTF_CACHE) { 2836 rcu_read_lock(); 2837 if (rt6_check_expired(rt)) { 2838 /* rt/dst can not be destroyed yet, 2839 * because of rcu_read_lock() 2840 */ 2841 sk_dst_reset(sk); 2842 rt6_remove_exception_rt(rt); 2843 } 2844 rcu_read_unlock(); 2845 return; 2846 } 2847 sk_dst_reset(sk); 2848 } 2849 2850 static void ip6_link_failure(struct sk_buff *skb) 2851 { 2852 struct rt6_info *rt; 2853 2854 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2855 2856 rt = dst_rt6_info(skb_dst(skb)); 2857 if (rt) { 2858 rcu_read_lock(); 2859 if (rt->rt6i_flags & RTF_CACHE) { 2860 rt6_remove_exception_rt(rt); 2861 } else { 2862 struct fib6_info *from; 2863 struct fib6_node *fn; 2864 2865 from = rcu_dereference(rt->from); 2866 if (from) { 2867 fn = rcu_dereference(from->fib6_node); 2868 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2869 WRITE_ONCE(fn->fn_sernum, -1); 2870 } 2871 } 2872 rcu_read_unlock(); 2873 } 2874 } 2875 2876 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2877 { 2878 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2879 struct fib6_info *from; 2880 2881 rcu_read_lock(); 2882 from = rcu_dereference(rt0->from); 2883 if (from) 2884 WRITE_ONCE(rt0->dst.expires, from->expires); 2885 rcu_read_unlock(); 2886 } 2887 2888 dst_set_expires(&rt0->dst, timeout); 2889 rt0->rt6i_flags |= RTF_EXPIRES; 2890 } 2891 2892 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2893 { 2894 struct net *net = dev_net(rt->dst.dev); 2895 2896 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2897 rt->rt6i_flags |= RTF_MODIFIED; 2898 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2899 } 2900 2901 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2902 { 2903 return !(rt->rt6i_flags & RTF_CACHE) && 2904 (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); 2905 } 2906 2907 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2908 const struct ipv6hdr *iph, u32 mtu, 2909 bool confirm_neigh) 2910 { 2911 const struct in6_addr *daddr, *saddr; 2912 struct rt6_info *rt6 = dst_rt6_info(dst); 2913 2914 /* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU) 2915 * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it. 2916 * [see also comment in rt6_mtu_change_route()] 2917 */ 2918 2919 if (iph) { 2920 daddr = &iph->daddr; 2921 saddr = &iph->saddr; 2922 } else if (sk) { 2923 daddr = &sk->sk_v6_daddr; 2924 saddr = &inet6_sk(sk)->saddr; 2925 } else { 2926 daddr = NULL; 2927 saddr = NULL; 2928 } 2929 2930 if (confirm_neigh) 2931 dst_confirm_neigh(dst, daddr); 2932 2933 if (mtu < IPV6_MIN_MTU) 2934 return; 2935 if (mtu >= dst_mtu(dst)) 2936 return; 2937 2938 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2939 rt6_do_update_pmtu(rt6, mtu); 2940 /* update rt6_ex->stamp for cache */ 2941 if (rt6->rt6i_flags & RTF_CACHE) 2942 rt6_update_exception_stamp_rt(rt6); 2943 } else if (daddr) { 2944 struct fib6_result res = {}; 2945 struct rt6_info *nrt6; 2946 2947 rcu_read_lock(); 2948 res.f6i = rcu_dereference(rt6->from); 2949 if (!res.f6i) 2950 goto out_unlock; 2951 2952 res.fib6_flags = res.f6i->fib6_flags; 2953 res.fib6_type = res.f6i->fib6_type; 2954 2955 if (res.f6i->nh) { 2956 struct fib6_nh_match_arg arg = { 2957 .dev = dst_dev_rcu(dst), 2958 .gw = &rt6->rt6i_gateway, 2959 }; 2960 2961 nexthop_for_each_fib6_nh(res.f6i->nh, 2962 fib6_nh_find_match, &arg); 2963 2964 /* fib6_info uses a nexthop that does not have fib6_nh 2965 * using the dst->dev + gw. Should be impossible. 2966 */ 2967 if (!arg.match) 2968 goto out_unlock; 2969 2970 res.nh = arg.match; 2971 } else { 2972 res.nh = res.f6i->fib6_nh; 2973 } 2974 2975 nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); 2976 if (nrt6) { 2977 rt6_do_update_pmtu(nrt6, mtu); 2978 if (rt6_insert_exception(nrt6, &res)) 2979 dst_release_immediate(&nrt6->dst); 2980 } 2981 out_unlock: 2982 rcu_read_unlock(); 2983 } 2984 } 2985 2986 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2987 struct sk_buff *skb, u32 mtu, 2988 bool confirm_neigh) 2989 { 2990 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu, 2991 confirm_neigh); 2992 } 2993 2994 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2995 int oif, u32 mark, kuid_t uid) 2996 { 2997 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2998 struct dst_entry *dst; 2999 struct flowi6 fl6 = { 3000 .flowi6_oif = oif, 3001 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 3002 .daddr = iph->daddr, 3003 .saddr = iph->saddr, 3004 .flowlabel = ip6_flowinfo(iph), 3005 .flowi6_uid = uid, 3006 }; 3007 3008 dst = ip6_route_output(net, NULL, &fl6); 3009 if (!dst->error) 3010 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true); 3011 dst_release(dst); 3012 } 3013 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 3014 3015 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 3016 { 3017 int oif = sk->sk_bound_dev_if; 3018 struct dst_entry *dst; 3019 3020 if (!oif && skb->dev) 3021 oif = l3mdev_master_ifindex(skb->dev); 3022 3023 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, READ_ONCE(sk->sk_mark), 3024 sk_uid(sk)); 3025 3026 dst = __sk_dst_get(sk); 3027 if (!dst || !READ_ONCE(dst->obsolete) || 3028 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 3029 return; 3030 3031 bh_lock_sock(sk); 3032 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 3033 ip6_datagram_dst_update(sk, false); 3034 bh_unlock_sock(sk); 3035 } 3036 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 3037 3038 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 3039 const struct flowi6 *fl6) 3040 { 3041 #ifdef CONFIG_IPV6_SUBTREES 3042 struct ipv6_pinfo *np = inet6_sk(sk); 3043 #endif 3044 3045 ip6_dst_store(sk, dst, 3046 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr), 3047 #ifdef CONFIG_IPV6_SUBTREES 3048 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 3049 true : 3050 #endif 3051 false); 3052 } 3053 3054 static bool ip6_redirect_nh_match(const struct fib6_result *res, 3055 struct flowi6 *fl6, 3056 const struct in6_addr *gw, 3057 struct rt6_info **ret) 3058 { 3059 const struct fib6_nh *nh = res->nh; 3060 3061 if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || 3062 fl6->flowi6_oif != nh->fib_nh_dev->ifindex) 3063 return false; 3064 3065 /* rt_cache's gateway might be different from its 'parent' 3066 * in the case of an ip redirect. 3067 * So we keep searching in the exception table if the gateway 3068 * is different. 3069 */ 3070 if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { 3071 struct rt6_info *rt_cache; 3072 3073 rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); 3074 if (rt_cache && 3075 ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { 3076 *ret = rt_cache; 3077 return true; 3078 } 3079 return false; 3080 } 3081 return true; 3082 } 3083 3084 struct fib6_nh_rd_arg { 3085 struct fib6_result *res; 3086 struct flowi6 *fl6; 3087 const struct in6_addr *gw; 3088 struct rt6_info **ret; 3089 }; 3090 3091 static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) 3092 { 3093 struct fib6_nh_rd_arg *arg = _arg; 3094 3095 arg->res->nh = nh; 3096 return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); 3097 } 3098 3099 /* Handle redirects */ 3100 struct ip6rd_flowi { 3101 struct flowi6 fl6; 3102 struct in6_addr gateway; 3103 }; 3104 3105 INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net, 3106 struct fib6_table *table, 3107 struct flowi6 *fl6, 3108 const struct sk_buff *skb, 3109 int flags) 3110 { 3111 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 3112 struct rt6_info *ret = NULL; 3113 struct fib6_result res = {}; 3114 struct fib6_nh_rd_arg arg = { 3115 .res = &res, 3116 .fl6 = fl6, 3117 .gw = &rdfl->gateway, 3118 .ret = &ret 3119 }; 3120 struct fib6_info *rt; 3121 struct fib6_node *fn; 3122 3123 /* Get the "current" route for this destination and 3124 * check if the redirect has come from appropriate router. 3125 * 3126 * RFC 4861 specifies that redirects should only be 3127 * accepted if they come from the nexthop to the target. 3128 * Due to the way the routes are chosen, this notion 3129 * is a bit fuzzy and one might need to check all possible 3130 * routes. 3131 */ 3132 3133 rcu_read_lock(); 3134 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 3135 restart: 3136 for_each_fib6_node_rt_rcu(fn) { 3137 res.f6i = rt; 3138 if (fib6_check_expired(rt)) 3139 continue; 3140 if (rt->fib6_flags & RTF_REJECT) 3141 break; 3142 if (unlikely(rt->nh)) { 3143 if (nexthop_is_blackhole(rt->nh)) 3144 continue; 3145 /* on match, res->nh is filled in and potentially ret */ 3146 if (nexthop_for_each_fib6_nh(rt->nh, 3147 fib6_nh_redirect_match, 3148 &arg)) 3149 goto out; 3150 } else { 3151 res.nh = rt->fib6_nh; 3152 if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, 3153 &ret)) 3154 goto out; 3155 } 3156 } 3157 3158 if (!rt) 3159 rt = net->ipv6.fib6_null_entry; 3160 else if (rt->fib6_flags & RTF_REJECT) { 3161 ret = net->ipv6.ip6_null_entry; 3162 goto out; 3163 } 3164 3165 if (rt == net->ipv6.fib6_null_entry) { 3166 fn = fib6_backtrack(fn, &fl6->saddr); 3167 if (fn) 3168 goto restart; 3169 } 3170 3171 res.f6i = rt; 3172 res.nh = rt->fib6_nh; 3173 out: 3174 if (ret) { 3175 ip6_hold_safe(net, &ret); 3176 } else { 3177 res.fib6_flags = res.f6i->fib6_flags; 3178 res.fib6_type = res.f6i->fib6_type; 3179 ret = ip6_create_rt_rcu(&res); 3180 } 3181 3182 rcu_read_unlock(); 3183 3184 trace_fib6_table_lookup(net, &res, table, fl6); 3185 return ret; 3186 }; 3187 3188 static struct dst_entry *ip6_route_redirect(struct net *net, 3189 const struct flowi6 *fl6, 3190 const struct sk_buff *skb, 3191 const struct in6_addr *gateway) 3192 { 3193 int flags = RT6_LOOKUP_F_HAS_SADDR; 3194 struct ip6rd_flowi rdfl; 3195 3196 rdfl.fl6 = *fl6; 3197 rdfl.gateway = *gateway; 3198 3199 return fib6_rule_lookup(net, &rdfl.fl6, skb, 3200 flags, __ip6_route_redirect); 3201 } 3202 3203 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 3204 kuid_t uid) 3205 { 3206 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 3207 struct dst_entry *dst; 3208 struct flowi6 fl6 = { 3209 .flowi6_iif = LOOPBACK_IFINDEX, 3210 .flowi6_oif = oif, 3211 .flowi6_mark = mark, 3212 .daddr = iph->daddr, 3213 .saddr = iph->saddr, 3214 .flowlabel = ip6_flowinfo(iph), 3215 .flowi6_uid = uid, 3216 }; 3217 3218 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 3219 rt6_do_redirect(dst, NULL, skb); 3220 dst_release(dst); 3221 } 3222 EXPORT_SYMBOL_GPL(ip6_redirect); 3223 3224 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 3225 { 3226 const struct ipv6hdr *iph = ipv6_hdr(skb); 3227 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 3228 struct dst_entry *dst; 3229 struct flowi6 fl6 = { 3230 .flowi6_iif = LOOPBACK_IFINDEX, 3231 .flowi6_oif = oif, 3232 .daddr = msg->dest, 3233 .saddr = iph->daddr, 3234 .flowi6_uid = sock_net_uid(net, NULL), 3235 }; 3236 3237 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 3238 rt6_do_redirect(dst, NULL, skb); 3239 dst_release(dst); 3240 } 3241 3242 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 3243 { 3244 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, 3245 READ_ONCE(sk->sk_mark), sk_uid(sk)); 3246 } 3247 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 3248 3249 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 3250 { 3251 unsigned int mtu = dst_mtu(dst); 3252 struct net *net; 3253 3254 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 3255 3256 rcu_read_lock(); 3257 3258 net = dst_dev_net_rcu(dst); 3259 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 3260 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 3261 3262 rcu_read_unlock(); 3263 3264 /* 3265 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 3266 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 3267 * IPV6_MAXPLEN is also valid and means: "any MSS, 3268 * rely only on pmtu discovery" 3269 */ 3270 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 3271 mtu = IPV6_MAXPLEN; 3272 return mtu; 3273 } 3274 3275 INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst) 3276 { 3277 return ip6_dst_mtu_maybe_forward(dst, false); 3278 } 3279 EXPORT_INDIRECT_CALLABLE(ip6_mtu); 3280 3281 /* MTU selection: 3282 * 1. mtu on route is locked - use it 3283 * 2. mtu from nexthop exception 3284 * 3. mtu from egress device 3285 * 3286 * based on ip6_dst_mtu_forward and exception logic of 3287 * rt6_find_cached_rt; called with rcu_read_lock 3288 */ 3289 u32 ip6_mtu_from_fib6(const struct fib6_result *res, 3290 const struct in6_addr *daddr, 3291 const struct in6_addr *saddr) 3292 { 3293 const struct fib6_nh *nh = res->nh; 3294 struct fib6_info *f6i = res->f6i; 3295 struct inet6_dev *idev; 3296 struct rt6_info *rt; 3297 u32 mtu = 0; 3298 3299 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 3300 mtu = f6i->fib6_pmtu; 3301 if (mtu) 3302 goto out; 3303 } 3304 3305 rt = rt6_find_cached_rt(res, daddr, saddr); 3306 if (unlikely(rt)) { 3307 mtu = dst_metric_raw(&rt->dst, RTAX_MTU); 3308 } else { 3309 struct net_device *dev = nh->fib_nh_dev; 3310 3311 mtu = IPV6_MIN_MTU; 3312 idev = __in6_dev_get(dev); 3313 if (idev) 3314 mtu = max_t(u32, mtu, READ_ONCE(idev->cnf.mtu6)); 3315 } 3316 3317 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3318 out: 3319 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 3320 } 3321 3322 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 3323 struct flowi6 *fl6) 3324 { 3325 struct dst_entry *dst; 3326 struct rt6_info *rt; 3327 struct inet6_dev *idev = in6_dev_get(dev); 3328 struct net *net = dev_net(dev); 3329 3330 if (unlikely(!idev)) 3331 return ERR_PTR(-ENODEV); 3332 3333 rt = ip6_dst_alloc(net, dev, 0); 3334 if (unlikely(!rt)) { 3335 in6_dev_put(idev); 3336 dst = ERR_PTR(-ENOMEM); 3337 goto out; 3338 } 3339 3340 rt->dst.input = ip6_input; 3341 rt->dst.output = ip6_output; 3342 rt->rt6i_gateway = fl6->daddr; 3343 rt->rt6i_dst.addr = fl6->daddr; 3344 rt->rt6i_dst.plen = 128; 3345 rt->rt6i_idev = idev; 3346 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 3347 3348 /* Add this dst into uncached_list so that rt6_disable_ip() can 3349 * do proper release of the net_device 3350 */ 3351 rt6_uncached_list_add(rt); 3352 3353 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 3354 3355 out: 3356 return dst; 3357 } 3358 3359 static void ip6_dst_gc(struct dst_ops *ops) 3360 { 3361 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 3362 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 3363 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 3364 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 3365 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 3366 unsigned int val; 3367 int entries; 3368 3369 if (time_after(rt_last_gc + rt_min_interval, jiffies)) 3370 goto out; 3371 3372 fib6_run_gc(atomic_inc_return(&net->ipv6.ip6_rt_gc_expire), net, true); 3373 entries = dst_entries_get_slow(ops); 3374 if (entries < ops->gc_thresh) 3375 atomic_set(&net->ipv6.ip6_rt_gc_expire, rt_gc_timeout >> 1); 3376 out: 3377 val = atomic_read(&net->ipv6.ip6_rt_gc_expire); 3378 atomic_set(&net->ipv6.ip6_rt_gc_expire, val - (val >> rt_elasticity)); 3379 } 3380 3381 static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg, 3382 const struct in6_addr *gw_addr, u32 tbid, 3383 int flags, struct fib6_result *res) 3384 { 3385 struct flowi6 fl6 = { 3386 .flowi6_oif = cfg->fc_ifindex, 3387 .daddr = *gw_addr, 3388 .saddr = cfg->fc_prefsrc, 3389 }; 3390 struct fib6_table *table; 3391 int err; 3392 3393 table = fib6_get_table(net, tbid); 3394 if (!table) 3395 return -EINVAL; 3396 3397 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 3398 flags |= RT6_LOOKUP_F_HAS_SADDR; 3399 3400 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 3401 3402 err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags); 3403 if (!err && res->f6i != net->ipv6.fib6_null_entry) 3404 fib6_select_path(net, res, &fl6, cfg->fc_ifindex, 3405 cfg->fc_ifindex != 0, NULL, flags); 3406 3407 return err; 3408 } 3409 3410 static int ip6_route_check_nh_onlink(struct net *net, 3411 struct fib6_config *cfg, 3412 const struct net_device *dev, 3413 struct netlink_ext_ack *extack) 3414 { 3415 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 3416 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3417 struct fib6_result res = {}; 3418 int err; 3419 3420 err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res); 3421 if (!err && !(res.fib6_flags & RTF_REJECT) && 3422 /* ignore match if it is the default route */ 3423 !ipv6_addr_any(&res.f6i->fib6_dst.addr) && 3424 (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) { 3425 NL_SET_ERR_MSG(extack, 3426 "Nexthop has invalid gateway or device mismatch"); 3427 err = -EINVAL; 3428 } 3429 3430 return err; 3431 } 3432 3433 static int ip6_route_check_nh(struct net *net, 3434 struct fib6_config *cfg, 3435 struct net_device **_dev, 3436 netdevice_tracker *dev_tracker, 3437 struct inet6_dev **idev) 3438 { 3439 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3440 struct net_device *dev = _dev ? *_dev : NULL; 3441 int flags = RT6_LOOKUP_F_IFACE; 3442 struct fib6_result res = {}; 3443 int err = -EHOSTUNREACH; 3444 3445 if (cfg->fc_table) { 3446 err = ip6_nh_lookup_table(net, cfg, gw_addr, 3447 cfg->fc_table, flags, &res); 3448 /* gw_addr can not require a gateway or resolve to a reject 3449 * route. If a device is given, it must match the result. 3450 */ 3451 if (err || res.fib6_flags & RTF_REJECT || 3452 res.nh->fib_nh_gw_family || 3453 (dev && dev != res.nh->fib_nh_dev)) 3454 err = -EHOSTUNREACH; 3455 } 3456 3457 if (err < 0) { 3458 struct flowi6 fl6 = { 3459 .flowi6_oif = cfg->fc_ifindex, 3460 .daddr = *gw_addr, 3461 }; 3462 3463 err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags); 3464 if (err || res.fib6_flags & RTF_REJECT || 3465 res.nh->fib_nh_gw_family) 3466 err = -EHOSTUNREACH; 3467 3468 if (err) 3469 return err; 3470 3471 fib6_select_path(net, &res, &fl6, cfg->fc_ifindex, 3472 cfg->fc_ifindex != 0, NULL, flags); 3473 } 3474 3475 err = 0; 3476 if (dev) { 3477 if (dev != res.nh->fib_nh_dev) 3478 err = -EHOSTUNREACH; 3479 } else { 3480 *_dev = dev = res.nh->fib_nh_dev; 3481 netdev_hold(dev, dev_tracker, GFP_ATOMIC); 3482 *idev = in6_dev_get(dev); 3483 } 3484 3485 return err; 3486 } 3487 3488 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 3489 struct net_device **_dev, 3490 netdevice_tracker *dev_tracker, 3491 struct inet6_dev **idev, 3492 struct netlink_ext_ack *extack) 3493 { 3494 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3495 int gwa_type = ipv6_addr_type(gw_addr); 3496 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 3497 const struct net_device *dev = *_dev; 3498 bool need_addr_check = !dev; 3499 int err = -EINVAL; 3500 3501 /* if gw_addr is local we will fail to detect this in case 3502 * address is still TENTATIVE (DAD in progress). rt6_lookup() 3503 * will return already-added prefix route via interface that 3504 * prefix route was assigned to, which might be non-loopback. 3505 */ 3506 if (dev && 3507 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3508 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3509 goto out; 3510 } 3511 3512 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 3513 /* IPv6 strictly inhibits using not link-local 3514 * addresses as nexthop address. 3515 * Otherwise, router will not able to send redirects. 3516 * It is very good, but in some (rare!) circumstances 3517 * (SIT, PtP, NBMA NOARP links) it is handy to allow 3518 * some exceptions. --ANK 3519 * We allow IPv4-mapped nexthops to support RFC4798-type 3520 * addressing 3521 */ 3522 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 3523 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 3524 goto out; 3525 } 3526 3527 rcu_read_lock(); 3528 3529 if (cfg->fc_flags & RTNH_F_ONLINK) 3530 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 3531 else 3532 err = ip6_route_check_nh(net, cfg, _dev, dev_tracker, 3533 idev); 3534 3535 rcu_read_unlock(); 3536 3537 if (err) 3538 goto out; 3539 } 3540 3541 /* reload in case device was changed */ 3542 dev = *_dev; 3543 3544 err = -EINVAL; 3545 if (!dev) { 3546 NL_SET_ERR_MSG(extack, "Egress device not specified"); 3547 goto out; 3548 } else if (dev->flags & IFF_LOOPBACK) { 3549 NL_SET_ERR_MSG(extack, 3550 "Egress device can not be loopback device for this route"); 3551 goto out; 3552 } 3553 3554 /* if we did not check gw_addr above, do so now that the 3555 * egress device has been resolved. 3556 */ 3557 if (need_addr_check && 3558 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3559 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3560 goto out; 3561 } 3562 3563 err = 0; 3564 out: 3565 return err; 3566 } 3567 3568 static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) 3569 { 3570 if ((flags & RTF_REJECT) || 3571 (dev && (dev->flags & IFF_LOOPBACK) && 3572 !(addr_type & IPV6_ADDR_LOOPBACK) && 3573 !(flags & (RTF_ANYCAST | RTF_LOCAL)))) 3574 return true; 3575 3576 return false; 3577 } 3578 3579 int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, 3580 struct fib6_config *cfg, gfp_t gfp_flags, 3581 struct netlink_ext_ack *extack) 3582 { 3583 netdevice_tracker *dev_tracker = &fib6_nh->fib_nh_dev_tracker; 3584 struct net_device *dev = NULL; 3585 struct inet6_dev *idev = NULL; 3586 int addr_type; 3587 int err; 3588 3589 fib6_nh->fib_nh_family = AF_INET6; 3590 #ifdef CONFIG_IPV6_ROUTER_PREF 3591 fib6_nh->last_probe = jiffies; 3592 #endif 3593 if (cfg->fc_is_fdb) { 3594 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3595 fib6_nh->fib_nh_gw_family = AF_INET6; 3596 return 0; 3597 } 3598 3599 err = -ENODEV; 3600 if (cfg->fc_ifindex) { 3601 dev = netdev_get_by_index(net, cfg->fc_ifindex, 3602 dev_tracker, gfp_flags); 3603 if (!dev) 3604 goto out; 3605 idev = in6_dev_get(dev); 3606 if (!idev) 3607 goto out; 3608 } 3609 3610 if (cfg->fc_flags & RTNH_F_ONLINK) { 3611 if (!dev) { 3612 NL_SET_ERR_MSG(extack, 3613 "Nexthop device required for onlink"); 3614 goto out; 3615 } 3616 3617 if (!(dev->flags & IFF_UP)) { 3618 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3619 err = -ENETDOWN; 3620 goto out; 3621 } 3622 3623 fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; 3624 } 3625 3626 fib6_nh->fib_nh_weight = 1; 3627 3628 /* We cannot add true routes via loopback here, 3629 * they would result in kernel looping; promote them to reject routes 3630 */ 3631 addr_type = ipv6_addr_type(&cfg->fc_dst); 3632 if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { 3633 /* hold loopback dev/idev if we haven't done so. */ 3634 if (dev != net->loopback_dev) { 3635 if (dev) { 3636 netdev_put(dev, dev_tracker); 3637 in6_dev_put(idev); 3638 } 3639 dev = net->loopback_dev; 3640 netdev_hold(dev, dev_tracker, gfp_flags); 3641 idev = in6_dev_get(dev); 3642 if (!idev) { 3643 err = -ENODEV; 3644 goto out; 3645 } 3646 } 3647 goto pcpu_alloc; 3648 } 3649 3650 if (cfg->fc_flags & RTF_GATEWAY) { 3651 err = ip6_validate_gw(net, cfg, &dev, dev_tracker, 3652 &idev, extack); 3653 if (err) 3654 goto out; 3655 3656 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3657 fib6_nh->fib_nh_gw_family = AF_INET6; 3658 } 3659 3660 err = -ENODEV; 3661 if (!dev) 3662 goto out; 3663 3664 if (!idev || idev->cnf.disable_ipv6) { 3665 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3666 err = -EACCES; 3667 goto out; 3668 } 3669 3670 if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { 3671 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3672 err = -ENETDOWN; 3673 goto out; 3674 } 3675 3676 if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3677 !netif_carrier_ok(dev)) 3678 fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 3679 3680 err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap, 3681 cfg->fc_encap_type, cfg, gfp_flags, extack); 3682 if (err) 3683 goto out; 3684 3685 pcpu_alloc: 3686 fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); 3687 if (!fib6_nh->rt6i_pcpu) { 3688 err = -ENOMEM; 3689 goto out; 3690 } 3691 3692 fib6_nh->fib_nh_dev = dev; 3693 fib6_nh->fib_nh_oif = dev->ifindex; 3694 err = 0; 3695 out: 3696 if (idev) 3697 in6_dev_put(idev); 3698 3699 if (err) { 3700 fib_nh_common_release(&fib6_nh->nh_common); 3701 fib6_nh->nh_common.nhc_pcpu_rth_output = NULL; 3702 fib6_nh->fib_nh_lws = NULL; 3703 netdev_put(dev, dev_tracker); 3704 } 3705 3706 return err; 3707 } 3708 3709 void fib6_nh_release(struct fib6_nh *fib6_nh) 3710 { 3711 struct rt6_exception_bucket *bucket; 3712 3713 rcu_read_lock(); 3714 3715 fib6_nh_flush_exceptions(fib6_nh, NULL); 3716 bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); 3717 if (bucket) { 3718 rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); 3719 kfree(bucket); 3720 } 3721 3722 rcu_read_unlock(); 3723 3724 fib6_nh_release_dsts(fib6_nh); 3725 free_percpu(fib6_nh->rt6i_pcpu); 3726 3727 fib_nh_common_release(&fib6_nh->nh_common); 3728 } 3729 3730 void fib6_nh_release_dsts(struct fib6_nh *fib6_nh) 3731 { 3732 int cpu; 3733 3734 if (!fib6_nh->rt6i_pcpu) 3735 return; 3736 3737 for_each_possible_cpu(cpu) { 3738 struct rt6_info *pcpu_rt, **ppcpu_rt; 3739 3740 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 3741 pcpu_rt = xchg(ppcpu_rt, NULL); 3742 if (pcpu_rt) { 3743 dst_dev_put(&pcpu_rt->dst); 3744 dst_release(&pcpu_rt->dst); 3745 } 3746 } 3747 } 3748 3749 static int fib6_config_validate(struct fib6_config *cfg, 3750 struct netlink_ext_ack *extack) 3751 { 3752 /* RTF_PCPU is an internal flag; can not be set by userspace */ 3753 if (cfg->fc_flags & RTF_PCPU) { 3754 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 3755 goto errout; 3756 } 3757 3758 /* RTF_CACHE is an internal flag; can not be set by userspace */ 3759 if (cfg->fc_flags & RTF_CACHE) { 3760 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 3761 goto errout; 3762 } 3763 3764 if (cfg->fc_type > RTN_MAX) { 3765 NL_SET_ERR_MSG(extack, "Invalid route type"); 3766 goto errout; 3767 } 3768 3769 if (cfg->fc_dst_len > 128) { 3770 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 3771 goto errout; 3772 } 3773 3774 #ifdef CONFIG_IPV6_SUBTREES 3775 if (cfg->fc_src_len > 128) { 3776 NL_SET_ERR_MSG(extack, "Invalid source address length"); 3777 goto errout; 3778 } 3779 3780 if (cfg->fc_nh_id && cfg->fc_src_len) { 3781 NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); 3782 goto errout; 3783 } 3784 #else 3785 if (cfg->fc_src_len) { 3786 NL_SET_ERR_MSG(extack, 3787 "Specifying source address requires IPV6_SUBTREES to be enabled"); 3788 goto errout; 3789 } 3790 #endif 3791 return 0; 3792 errout: 3793 return -EINVAL; 3794 } 3795 3796 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 3797 gfp_t gfp_flags, 3798 struct netlink_ext_ack *extack) 3799 { 3800 struct net *net = cfg->fc_nlinfo.nl_net; 3801 struct fib6_table *table; 3802 struct fib6_info *rt; 3803 int err; 3804 3805 if (cfg->fc_nlinfo.nlh && 3806 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 3807 table = fib6_get_table(net, cfg->fc_table); 3808 if (!table) { 3809 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 3810 table = fib6_new_table(net, cfg->fc_table); 3811 } 3812 } else { 3813 table = fib6_new_table(net, cfg->fc_table); 3814 } 3815 if (!table) { 3816 err = -ENOBUFS; 3817 goto err; 3818 } 3819 3820 rt = fib6_info_alloc(gfp_flags, !cfg->fc_nh_id); 3821 if (!rt) { 3822 err = -ENOMEM; 3823 goto err; 3824 } 3825 3826 rt->fib6_metrics = ip_fib_metrics_init(cfg->fc_mx, cfg->fc_mx_len, 3827 extack); 3828 if (IS_ERR(rt->fib6_metrics)) { 3829 err = PTR_ERR(rt->fib6_metrics); 3830 goto free; 3831 } 3832 3833 if (cfg->fc_flags & RTF_ADDRCONF) 3834 rt->dst_nocount = true; 3835 3836 if (cfg->fc_flags & RTF_EXPIRES) 3837 fib6_set_expires(rt, jiffies + 3838 clock_t_to_jiffies(cfg->fc_expires)); 3839 3840 if (cfg->fc_protocol == RTPROT_UNSPEC) 3841 cfg->fc_protocol = RTPROT_BOOT; 3842 3843 rt->fib6_protocol = cfg->fc_protocol; 3844 rt->fib6_table = table; 3845 rt->fib6_metric = cfg->fc_metric; 3846 rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; 3847 rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; 3848 3849 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3850 rt->fib6_dst.plen = cfg->fc_dst_len; 3851 3852 #ifdef CONFIG_IPV6_SUBTREES 3853 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3854 rt->fib6_src.plen = cfg->fc_src_len; 3855 #endif 3856 return rt; 3857 free: 3858 kfree(rt); 3859 err: 3860 return ERR_PTR(err); 3861 } 3862 3863 static int ip6_route_info_create_nh(struct fib6_info *rt, 3864 struct fib6_config *cfg, 3865 gfp_t gfp_flags, 3866 struct netlink_ext_ack *extack) 3867 { 3868 struct net *net = cfg->fc_nlinfo.nl_net; 3869 struct fib6_nh *fib6_nh; 3870 int err; 3871 3872 if (cfg->fc_nh_id) { 3873 struct nexthop *nh; 3874 3875 rcu_read_lock(); 3876 3877 nh = nexthop_find_by_id(net, cfg->fc_nh_id); 3878 if (!nh) { 3879 err = -EINVAL; 3880 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 3881 goto out_free; 3882 } 3883 3884 err = fib6_check_nexthop(nh, cfg, extack); 3885 if (err) 3886 goto out_free; 3887 3888 if (!nexthop_get(nh)) { 3889 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 3890 err = -ENOENT; 3891 goto out_free; 3892 } 3893 3894 rt->nh = nh; 3895 fib6_nh = nexthop_fib6_nh(rt->nh); 3896 3897 rcu_read_unlock(); 3898 } else { 3899 int addr_type; 3900 3901 err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); 3902 if (err) 3903 goto out_release; 3904 3905 fib6_nh = rt->fib6_nh; 3906 3907 /* We cannot add true routes via loopback here, they would 3908 * result in kernel looping; promote them to reject routes 3909 */ 3910 addr_type = ipv6_addr_type(&cfg->fc_dst); 3911 if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, 3912 addr_type)) 3913 rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; 3914 } 3915 3916 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3917 struct net_device *dev = fib6_nh->fib_nh_dev; 3918 3919 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3920 NL_SET_ERR_MSG(extack, "Invalid source address"); 3921 err = -EINVAL; 3922 goto out_release; 3923 } 3924 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3925 rt->fib6_prefsrc.plen = 128; 3926 } 3927 3928 return 0; 3929 out_release: 3930 fib6_info_release(rt); 3931 return err; 3932 out_free: 3933 rcu_read_unlock(); 3934 ip_fib_metrics_put(rt->fib6_metrics); 3935 kfree(rt); 3936 return err; 3937 } 3938 3939 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3940 struct netlink_ext_ack *extack) 3941 { 3942 struct fib6_info *rt; 3943 int err; 3944 3945 err = fib6_config_validate(cfg, extack); 3946 if (err) 3947 return err; 3948 3949 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3950 if (IS_ERR(rt)) 3951 return PTR_ERR(rt); 3952 3953 err = ip6_route_info_create_nh(rt, cfg, gfp_flags, extack); 3954 if (err) 3955 return err; 3956 3957 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3958 fib6_info_release(rt); 3959 3960 return err; 3961 } 3962 3963 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3964 { 3965 struct net *net = info->nl_net; 3966 struct fib6_table *table; 3967 int err; 3968 3969 if (rt == net->ipv6.fib6_null_entry) { 3970 err = -ENOENT; 3971 goto out; 3972 } 3973 3974 table = rt->fib6_table; 3975 spin_lock_bh(&table->tb6_lock); 3976 err = fib6_del(rt, info); 3977 spin_unlock_bh(&table->tb6_lock); 3978 3979 out: 3980 fib6_info_release(rt); 3981 return err; 3982 } 3983 3984 int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) 3985 { 3986 struct nl_info info = { 3987 .nl_net = net, 3988 .skip_notify = skip_notify 3989 }; 3990 3991 return __ip6_del_rt(rt, &info); 3992 } 3993 3994 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3995 { 3996 struct nl_info *info = &cfg->fc_nlinfo; 3997 struct net *net = info->nl_net; 3998 struct sk_buff *skb = NULL; 3999 struct fib6_table *table; 4000 int err = -ENOENT; 4001 4002 if (rt == net->ipv6.fib6_null_entry) 4003 goto out_put; 4004 table = rt->fib6_table; 4005 spin_lock_bh(&table->tb6_lock); 4006 4007 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 4008 struct fib6_info *sibling, *next_sibling; 4009 struct fib6_node *fn; 4010 4011 /* prefer to send a single notification with all hops */ 4012 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 4013 if (skb) { 4014 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 4015 4016 if (rt6_fill_node(net, skb, rt, NULL, 4017 NULL, NULL, 0, RTM_DELROUTE, 4018 info->portid, seq, 0) < 0) { 4019 kfree_skb(skb); 4020 skb = NULL; 4021 } else 4022 info->skip_notify = 1; 4023 } 4024 4025 /* 'rt' points to the first sibling route. If it is not the 4026 * leaf, then we do not need to send a notification. Otherwise, 4027 * we need to check if the last sibling has a next route or not 4028 * and emit a replace or delete notification, respectively. 4029 */ 4030 info->skip_notify_kernel = 1; 4031 fn = rcu_dereference_protected(rt->fib6_node, 4032 lockdep_is_held(&table->tb6_lock)); 4033 if (rcu_access_pointer(fn->leaf) == rt) { 4034 struct fib6_info *last_sibling, *replace_rt; 4035 4036 last_sibling = list_last_entry(&rt->fib6_siblings, 4037 struct fib6_info, 4038 fib6_siblings); 4039 replace_rt = rcu_dereference_protected( 4040 last_sibling->fib6_next, 4041 lockdep_is_held(&table->tb6_lock)); 4042 if (replace_rt) 4043 call_fib6_entry_notifiers_replace(net, 4044 replace_rt); 4045 else 4046 call_fib6_multipath_entry_notifiers(net, 4047 FIB_EVENT_ENTRY_DEL, 4048 rt, rt->fib6_nsiblings, 4049 NULL); 4050 } 4051 list_for_each_entry_safe(sibling, next_sibling, 4052 &rt->fib6_siblings, 4053 fib6_siblings) { 4054 err = fib6_del(sibling, info); 4055 if (err) 4056 goto out_unlock; 4057 } 4058 } 4059 4060 err = fib6_del(rt, info); 4061 out_unlock: 4062 spin_unlock_bh(&table->tb6_lock); 4063 out_put: 4064 fib6_info_release(rt); 4065 4066 if (skb) { 4067 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 4068 info->nlh, gfp_any()); 4069 } 4070 return err; 4071 } 4072 4073 static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 4074 { 4075 int rc = -ESRCH; 4076 4077 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 4078 goto out; 4079 4080 if (cfg->fc_flags & RTF_GATEWAY && 4081 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 4082 goto out; 4083 4084 rc = rt6_remove_exception_rt(rt); 4085 out: 4086 return rc; 4087 } 4088 4089 static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, 4090 struct fib6_nh *nh) 4091 { 4092 struct fib6_result res = { 4093 .f6i = rt, 4094 .nh = nh, 4095 }; 4096 struct rt6_info *rt_cache; 4097 4098 rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); 4099 if (rt_cache) 4100 return __ip6_del_cached_rt(rt_cache, cfg); 4101 4102 return 0; 4103 } 4104 4105 struct fib6_nh_del_cached_rt_arg { 4106 struct fib6_config *cfg; 4107 struct fib6_info *f6i; 4108 }; 4109 4110 static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) 4111 { 4112 struct fib6_nh_del_cached_rt_arg *arg = _arg; 4113 int rc; 4114 4115 rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); 4116 return rc != -ESRCH ? rc : 0; 4117 } 4118 4119 static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) 4120 { 4121 struct fib6_nh_del_cached_rt_arg arg = { 4122 .cfg = cfg, 4123 .f6i = f6i 4124 }; 4125 4126 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); 4127 } 4128 4129 static int ip6_route_del(struct fib6_config *cfg, 4130 struct netlink_ext_ack *extack) 4131 { 4132 struct fib6_table *table; 4133 struct fib6_info *rt; 4134 struct fib6_node *fn; 4135 int err = -ESRCH; 4136 4137 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 4138 if (!table) { 4139 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 4140 return err; 4141 } 4142 4143 rcu_read_lock(); 4144 4145 fn = fib6_locate(&table->tb6_root, 4146 &cfg->fc_dst, cfg->fc_dst_len, 4147 &cfg->fc_src, cfg->fc_src_len, 4148 !(cfg->fc_flags & RTF_CACHE)); 4149 4150 if (fn) { 4151 for_each_fib6_node_rt_rcu(fn) { 4152 struct fib6_nh *nh; 4153 4154 if (rt->nh && cfg->fc_nh_id && 4155 rt->nh->id != cfg->fc_nh_id) 4156 continue; 4157 4158 if (cfg->fc_flags & RTF_CACHE) { 4159 int rc = 0; 4160 4161 if (rt->nh) { 4162 rc = ip6_del_cached_rt_nh(cfg, rt); 4163 } else if (cfg->fc_nh_id) { 4164 continue; 4165 } else { 4166 nh = rt->fib6_nh; 4167 rc = ip6_del_cached_rt(cfg, rt, nh); 4168 } 4169 if (rc != -ESRCH) { 4170 rcu_read_unlock(); 4171 return rc; 4172 } 4173 continue; 4174 } 4175 4176 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 4177 continue; 4178 if (cfg->fc_protocol && 4179 cfg->fc_protocol != rt->fib6_protocol) 4180 continue; 4181 4182 if (rt->nh) { 4183 if (!fib6_info_hold_safe(rt)) 4184 continue; 4185 4186 err = __ip6_del_rt(rt, &cfg->fc_nlinfo); 4187 break; 4188 } 4189 if (cfg->fc_nh_id) 4190 continue; 4191 4192 nh = rt->fib6_nh; 4193 if (cfg->fc_ifindex && 4194 (!nh->fib_nh_dev || 4195 nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) 4196 continue; 4197 if (cfg->fc_flags & RTF_GATEWAY && 4198 !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) 4199 continue; 4200 if (!fib6_info_hold_safe(rt)) 4201 continue; 4202 4203 /* if gateway was specified only delete the one hop */ 4204 if (cfg->fc_flags & RTF_GATEWAY) 4205 err = __ip6_del_rt(rt, &cfg->fc_nlinfo); 4206 else 4207 err = __ip6_del_rt_siblings(rt, cfg); 4208 break; 4209 } 4210 } 4211 rcu_read_unlock(); 4212 4213 return err; 4214 } 4215 4216 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 4217 { 4218 struct netevent_redirect netevent; 4219 struct rt6_info *rt, *nrt = NULL; 4220 struct fib6_result res = {}; 4221 struct ndisc_options ndopts; 4222 struct inet6_dev *in6_dev; 4223 struct neighbour *neigh; 4224 struct rd_msg *msg; 4225 int optlen, on_link; 4226 u8 *lladdr; 4227 4228 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 4229 optlen -= sizeof(*msg); 4230 4231 if (optlen < 0) { 4232 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 4233 return; 4234 } 4235 4236 msg = (struct rd_msg *)icmp6_hdr(skb); 4237 4238 if (ipv6_addr_is_multicast(&msg->dest)) { 4239 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 4240 return; 4241 } 4242 4243 on_link = 0; 4244 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 4245 on_link = 1; 4246 } else if (ipv6_addr_type(&msg->target) != 4247 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 4248 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 4249 return; 4250 } 4251 4252 in6_dev = __in6_dev_get(skb->dev); 4253 if (!in6_dev) 4254 return; 4255 if (READ_ONCE(in6_dev->cnf.forwarding) || 4256 !READ_ONCE(in6_dev->cnf.accept_redirects)) 4257 return; 4258 4259 /* RFC2461 8.1: 4260 * The IP source address of the Redirect MUST be the same as the current 4261 * first-hop router for the specified ICMP Destination Address. 4262 */ 4263 4264 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 4265 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 4266 return; 4267 } 4268 4269 lladdr = NULL; 4270 if (ndopts.nd_opts_tgt_lladdr) { 4271 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 4272 skb->dev); 4273 if (!lladdr) { 4274 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 4275 return; 4276 } 4277 } 4278 4279 rt = dst_rt6_info(dst); 4280 if (rt->rt6i_flags & RTF_REJECT) { 4281 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 4282 return; 4283 } 4284 4285 /* Redirect received -> path was valid. 4286 * Look, redirects are sent only in response to data packets, 4287 * so that this nexthop apparently is reachable. --ANK 4288 */ 4289 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 4290 4291 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 4292 if (!neigh) 4293 return; 4294 4295 /* 4296 * We have finally decided to accept it. 4297 */ 4298 4299 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 4300 NEIGH_UPDATE_F_WEAK_OVERRIDE| 4301 NEIGH_UPDATE_F_OVERRIDE| 4302 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 4303 NEIGH_UPDATE_F_ISROUTER)), 4304 NDISC_REDIRECT, &ndopts); 4305 4306 rcu_read_lock(); 4307 res.f6i = rcu_dereference(rt->from); 4308 if (!res.f6i) 4309 goto out; 4310 4311 if (res.f6i->nh) { 4312 struct fib6_nh_match_arg arg = { 4313 .dev = dst_dev_rcu(dst), 4314 .gw = &rt->rt6i_gateway, 4315 }; 4316 4317 nexthop_for_each_fib6_nh(res.f6i->nh, 4318 fib6_nh_find_match, &arg); 4319 4320 /* fib6_info uses a nexthop that does not have fib6_nh 4321 * using the dst->dev. Should be impossible 4322 */ 4323 if (!arg.match) 4324 goto out; 4325 res.nh = arg.match; 4326 } else { 4327 res.nh = res.f6i->fib6_nh; 4328 } 4329 4330 res.fib6_flags = res.f6i->fib6_flags; 4331 res.fib6_type = res.f6i->fib6_type; 4332 nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); 4333 if (!nrt) 4334 goto out; 4335 4336 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 4337 if (on_link) 4338 nrt->rt6i_flags &= ~RTF_GATEWAY; 4339 4340 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 4341 4342 /* rt6_insert_exception() will take care of duplicated exceptions */ 4343 if (rt6_insert_exception(nrt, &res)) { 4344 dst_release_immediate(&nrt->dst); 4345 goto out; 4346 } 4347 4348 netevent.old = &rt->dst; 4349 netevent.new = &nrt->dst; 4350 netevent.daddr = &msg->dest; 4351 netevent.neigh = neigh; 4352 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 4353 4354 out: 4355 rcu_read_unlock(); 4356 neigh_release(neigh); 4357 } 4358 4359 #ifdef CONFIG_IPV6_ROUTE_INFO 4360 static struct fib6_info *rt6_get_route_info(struct net *net, 4361 const struct in6_addr *prefix, int prefixlen, 4362 const struct in6_addr *gwaddr, 4363 struct net_device *dev) 4364 { 4365 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4366 int ifindex = dev->ifindex; 4367 struct fib6_node *fn; 4368 struct fib6_info *rt = NULL; 4369 struct fib6_table *table; 4370 4371 table = fib6_get_table(net, tb_id); 4372 if (!table) 4373 return NULL; 4374 4375 rcu_read_lock(); 4376 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 4377 if (!fn) 4378 goto out; 4379 4380 for_each_fib6_node_rt_rcu(fn) { 4381 /* these routes do not use nexthops */ 4382 if (rt->nh) 4383 continue; 4384 if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) 4385 continue; 4386 if (!(rt->fib6_flags & RTF_ROUTEINFO) || 4387 !rt->fib6_nh->fib_nh_gw_family) 4388 continue; 4389 if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) 4390 continue; 4391 if (!fib6_info_hold_safe(rt)) 4392 continue; 4393 break; 4394 } 4395 out: 4396 rcu_read_unlock(); 4397 return rt; 4398 } 4399 4400 static struct fib6_info *rt6_add_route_info(struct net *net, 4401 const struct in6_addr *prefix, int prefixlen, 4402 const struct in6_addr *gwaddr, 4403 struct net_device *dev, 4404 unsigned int pref) 4405 { 4406 struct fib6_config cfg = { 4407 .fc_metric = IP6_RT_PRIO_USER, 4408 .fc_ifindex = dev->ifindex, 4409 .fc_dst_len = prefixlen, 4410 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 4411 RTF_UP | RTF_PREF(pref), 4412 .fc_protocol = RTPROT_RA, 4413 .fc_type = RTN_UNICAST, 4414 .fc_nlinfo.portid = 0, 4415 .fc_nlinfo.nlh = NULL, 4416 .fc_nlinfo.nl_net = net, 4417 }; 4418 4419 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4420 cfg.fc_dst = *prefix; 4421 cfg.fc_gateway = *gwaddr; 4422 4423 /* We should treat it as a default route if prefix length is 0. */ 4424 if (!prefixlen) 4425 cfg.fc_flags |= RTF_DEFAULT; 4426 4427 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 4428 4429 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 4430 } 4431 #endif 4432 4433 struct fib6_info *rt6_get_dflt_router(struct net *net, 4434 const struct in6_addr *addr, 4435 struct net_device *dev) 4436 { 4437 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 4438 struct fib6_info *rt; 4439 struct fib6_table *table; 4440 4441 table = fib6_get_table(net, tb_id); 4442 if (!table) 4443 return NULL; 4444 4445 rcu_read_lock(); 4446 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4447 struct fib6_nh *nh; 4448 4449 /* RA routes do not use nexthops */ 4450 if (rt->nh) 4451 continue; 4452 4453 nh = rt->fib6_nh; 4454 if (dev == nh->fib_nh_dev && 4455 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 4456 ipv6_addr_equal(&nh->fib_nh_gw6, addr)) 4457 break; 4458 } 4459 if (rt && !fib6_info_hold_safe(rt)) 4460 rt = NULL; 4461 rcu_read_unlock(); 4462 return rt; 4463 } 4464 4465 struct fib6_info *rt6_add_dflt_router(struct net *net, 4466 const struct in6_addr *gwaddr, 4467 struct net_device *dev, 4468 unsigned int pref, 4469 u32 defrtr_usr_metric, 4470 int lifetime) 4471 { 4472 struct fib6_config cfg = { 4473 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 4474 .fc_metric = defrtr_usr_metric, 4475 .fc_ifindex = dev->ifindex, 4476 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 4477 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 4478 .fc_protocol = RTPROT_RA, 4479 .fc_type = RTN_UNICAST, 4480 .fc_nlinfo.portid = 0, 4481 .fc_nlinfo.nlh = NULL, 4482 .fc_nlinfo.nl_net = net, 4483 .fc_expires = jiffies_to_clock_t(lifetime * HZ), 4484 }; 4485 4486 cfg.fc_gateway = *gwaddr; 4487 4488 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 4489 struct fib6_table *table; 4490 4491 table = fib6_get_table(dev_net(dev), cfg.fc_table); 4492 if (table) 4493 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 4494 } 4495 4496 return rt6_get_dflt_router(net, gwaddr, dev); 4497 } 4498 4499 static void __rt6_purge_dflt_routers(struct net *net, 4500 struct fib6_table *table) 4501 { 4502 struct fib6_info *rt; 4503 4504 restart: 4505 rcu_read_lock(); 4506 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4507 struct net_device *dev = fib6_info_nh_dev(rt); 4508 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 4509 4510 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 4511 (!idev || idev->cnf.accept_ra != 2) && 4512 fib6_info_hold_safe(rt)) { 4513 rcu_read_unlock(); 4514 ip6_del_rt(net, rt, false); 4515 goto restart; 4516 } 4517 } 4518 rcu_read_unlock(); 4519 4520 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 4521 } 4522 4523 void rt6_purge_dflt_routers(struct net *net) 4524 { 4525 struct fib6_table *table; 4526 struct hlist_head *head; 4527 unsigned int h; 4528 4529 rcu_read_lock(); 4530 4531 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 4532 head = &net->ipv6.fib_table_hash[h]; 4533 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 4534 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 4535 __rt6_purge_dflt_routers(net, table); 4536 } 4537 } 4538 4539 rcu_read_unlock(); 4540 } 4541 4542 static void rtmsg_to_fib6_config(struct net *net, 4543 struct in6_rtmsg *rtmsg, 4544 struct fib6_config *cfg) 4545 { 4546 *cfg = (struct fib6_config){ 4547 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 4548 : RT6_TABLE_MAIN, 4549 .fc_ifindex = rtmsg->rtmsg_ifindex, 4550 .fc_metric = rtmsg->rtmsg_metric, 4551 .fc_expires = rtmsg->rtmsg_info, 4552 .fc_dst_len = rtmsg->rtmsg_dst_len, 4553 .fc_src_len = rtmsg->rtmsg_src_len, 4554 .fc_flags = rtmsg->rtmsg_flags, 4555 .fc_type = rtmsg->rtmsg_type, 4556 4557 .fc_nlinfo.nl_net = net, 4558 4559 .fc_dst = rtmsg->rtmsg_dst, 4560 .fc_src = rtmsg->rtmsg_src, 4561 .fc_gateway = rtmsg->rtmsg_gateway, 4562 }; 4563 } 4564 4565 int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg) 4566 { 4567 struct fib6_config cfg; 4568 int err; 4569 4570 if (cmd != SIOCADDRT && cmd != SIOCDELRT) 4571 return -EINVAL; 4572 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 4573 return -EPERM; 4574 4575 rtmsg_to_fib6_config(net, rtmsg, &cfg); 4576 4577 switch (cmd) { 4578 case SIOCADDRT: 4579 /* Only do the default setting of fc_metric in route adding */ 4580 if (cfg.fc_metric == 0) 4581 cfg.fc_metric = IP6_RT_PRIO_USER; 4582 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 4583 break; 4584 case SIOCDELRT: 4585 err = ip6_route_del(&cfg, NULL); 4586 break; 4587 } 4588 4589 return err; 4590 } 4591 4592 /* 4593 * Drop the packet on the floor 4594 */ 4595 4596 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 4597 { 4598 struct dst_entry *dst = skb_dst(skb); 4599 struct net_device *dev = dst_dev(dst); 4600 struct net *net = dev_net(dev); 4601 struct inet6_dev *idev; 4602 SKB_DR(reason); 4603 int type; 4604 4605 if (netif_is_l3_master(skb->dev) || 4606 dev == net->loopback_dev) 4607 idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); 4608 else 4609 idev = ip6_dst_idev(dst); 4610 4611 switch (ipstats_mib_noroutes) { 4612 case IPSTATS_MIB_INNOROUTES: 4613 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 4614 if (type == IPV6_ADDR_ANY) { 4615 SKB_DR_SET(reason, IP_INADDRERRORS); 4616 IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); 4617 break; 4618 } 4619 SKB_DR_SET(reason, IP_INNOROUTES); 4620 fallthrough; 4621 case IPSTATS_MIB_OUTNOROUTES: 4622 SKB_DR_OR(reason, IP_OUTNOROUTES); 4623 IP6_INC_STATS(net, idev, ipstats_mib_noroutes); 4624 break; 4625 } 4626 4627 /* Start over by dropping the dst for l3mdev case */ 4628 if (netif_is_l3_master(skb->dev)) 4629 skb_dst_drop(skb); 4630 4631 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 4632 kfree_skb_reason(skb, reason); 4633 return 0; 4634 } 4635 4636 static int ip6_pkt_discard(struct sk_buff *skb) 4637 { 4638 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 4639 } 4640 4641 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4642 { 4643 skb->dev = skb_dst_dev(skb); 4644 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 4645 } 4646 4647 static int ip6_pkt_prohibit(struct sk_buff *skb) 4648 { 4649 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 4650 } 4651 4652 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4653 { 4654 skb->dev = skb_dst_dev(skb); 4655 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 4656 } 4657 4658 /* 4659 * Allocate a dst for local (unicast / anycast) address. 4660 */ 4661 4662 struct fib6_info *addrconf_f6i_alloc(struct net *net, 4663 struct inet6_dev *idev, 4664 const struct in6_addr *addr, 4665 bool anycast, gfp_t gfp_flags, 4666 struct netlink_ext_ack *extack) 4667 { 4668 struct fib6_config cfg = { 4669 .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, 4670 .fc_ifindex = idev->dev->ifindex, 4671 .fc_flags = RTF_UP | RTF_NONEXTHOP, 4672 .fc_dst = *addr, 4673 .fc_dst_len = 128, 4674 .fc_protocol = RTPROT_KERNEL, 4675 .fc_nlinfo.nl_net = net, 4676 .fc_ignore_dev_down = true, 4677 }; 4678 struct fib6_info *f6i; 4679 int err; 4680 4681 if (anycast) { 4682 cfg.fc_type = RTN_ANYCAST; 4683 cfg.fc_flags |= RTF_ANYCAST; 4684 } else { 4685 cfg.fc_type = RTN_LOCAL; 4686 cfg.fc_flags |= RTF_LOCAL; 4687 } 4688 4689 f6i = ip6_route_info_create(&cfg, gfp_flags, extack); 4690 if (IS_ERR(f6i)) 4691 return f6i; 4692 4693 err = ip6_route_info_create_nh(f6i, &cfg, gfp_flags, extack); 4694 if (err) 4695 return ERR_PTR(err); 4696 4697 f6i->dst_nocount = true; 4698 4699 if (!anycast && 4700 (READ_ONCE(net->ipv6.devconf_all->disable_policy) || 4701 READ_ONCE(idev->cnf.disable_policy))) 4702 f6i->dst_nopolicy = true; 4703 4704 return f6i; 4705 } 4706 4707 /* remove deleted ip from prefsrc entries */ 4708 struct arg_dev_net_ip { 4709 struct net *net; 4710 struct in6_addr *addr; 4711 }; 4712 4713 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 4714 { 4715 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 4716 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 4717 4718 if (!rt->nh && 4719 rt != net->ipv6.fib6_null_entry && 4720 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr) && 4721 !ipv6_chk_addr(net, addr, rt->fib6_nh->fib_nh_dev, 0)) { 4722 spin_lock_bh(&rt6_exception_lock); 4723 /* remove prefsrc entry */ 4724 rt->fib6_prefsrc.plen = 0; 4725 spin_unlock_bh(&rt6_exception_lock); 4726 } 4727 return 0; 4728 } 4729 4730 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 4731 { 4732 struct net *net = dev_net(ifp->idev->dev); 4733 struct arg_dev_net_ip adni = { 4734 .net = net, 4735 .addr = &ifp->addr, 4736 }; 4737 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 4738 } 4739 4740 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) 4741 4742 /* Remove routers and update dst entries when gateway turn into host. */ 4743 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 4744 { 4745 struct in6_addr *gateway = (struct in6_addr *)arg; 4746 struct fib6_nh *nh; 4747 4748 /* RA routes do not use nexthops */ 4749 if (rt->nh) 4750 return 0; 4751 4752 nh = rt->fib6_nh; 4753 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 4754 nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) 4755 return -1; 4756 4757 /* Further clean up cached routes in exception table. 4758 * This is needed because cached route may have a different 4759 * gateway than its 'parent' in the case of an ip redirect. 4760 */ 4761 fib6_nh_exceptions_clean_tohost(nh, gateway); 4762 4763 return 0; 4764 } 4765 4766 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 4767 { 4768 fib6_clean_all(net, fib6_clean_tohost, gateway); 4769 } 4770 4771 struct arg_netdev_event { 4772 const struct net_device *dev; 4773 union { 4774 unsigned char nh_flags; 4775 unsigned long event; 4776 }; 4777 }; 4778 4779 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 4780 { 4781 struct fib6_info *iter; 4782 struct fib6_node *fn; 4783 4784 fn = rcu_dereference_protected(rt->fib6_node, 4785 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4786 iter = rcu_dereference_protected(fn->leaf, 4787 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4788 while (iter) { 4789 if (iter->fib6_metric == rt->fib6_metric && 4790 rt6_qualify_for_ecmp(iter)) 4791 return iter; 4792 iter = rcu_dereference_protected(iter->fib6_next, 4793 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4794 } 4795 4796 return NULL; 4797 } 4798 4799 /* only called for fib entries with builtin fib6_nh */ 4800 static bool rt6_is_dead(const struct fib6_info *rt) 4801 { 4802 if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || 4803 (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && 4804 ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) 4805 return true; 4806 4807 return false; 4808 } 4809 4810 static int rt6_multipath_total_weight(const struct fib6_info *rt) 4811 { 4812 struct fib6_info *iter; 4813 int total = 0; 4814 4815 if (!rt6_is_dead(rt)) 4816 total += rt->fib6_nh->fib_nh_weight; 4817 4818 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 4819 if (!rt6_is_dead(iter)) 4820 total += iter->fib6_nh->fib_nh_weight; 4821 } 4822 4823 return total; 4824 } 4825 4826 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 4827 { 4828 int upper_bound = -1; 4829 4830 if (!rt6_is_dead(rt)) { 4831 *weight += rt->fib6_nh->fib_nh_weight; 4832 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 4833 total) - 1; 4834 } 4835 atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); 4836 } 4837 4838 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 4839 { 4840 struct fib6_info *iter; 4841 int weight = 0; 4842 4843 rt6_upper_bound_set(rt, &weight, total); 4844 4845 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4846 rt6_upper_bound_set(iter, &weight, total); 4847 } 4848 4849 void rt6_multipath_rebalance(struct fib6_info *rt) 4850 { 4851 struct fib6_info *first; 4852 int total; 4853 4854 /* In case the entire multipath route was marked for flushing, 4855 * then there is no need to rebalance upon the removal of every 4856 * sibling route. 4857 */ 4858 if (!rt->fib6_nsiblings || rt->should_flush) 4859 return; 4860 4861 /* During lookup routes are evaluated in order, so we need to 4862 * make sure upper bounds are assigned from the first sibling 4863 * onwards. 4864 */ 4865 first = rt6_multipath_first_sibling(rt); 4866 if (WARN_ON_ONCE(!first)) 4867 return; 4868 4869 total = rt6_multipath_total_weight(first); 4870 rt6_multipath_upper_bound_set(first, total); 4871 } 4872 4873 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 4874 { 4875 const struct arg_netdev_event *arg = p_arg; 4876 struct net *net = dev_net(arg->dev); 4877 4878 if (rt != net->ipv6.fib6_null_entry && !rt->nh && 4879 rt->fib6_nh->fib_nh_dev == arg->dev) { 4880 rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; 4881 fib6_update_sernum_upto_root(net, rt); 4882 rt6_multipath_rebalance(rt); 4883 } 4884 4885 return 0; 4886 } 4887 4888 void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) 4889 { 4890 struct arg_netdev_event arg = { 4891 .dev = dev, 4892 { 4893 .nh_flags = nh_flags, 4894 }, 4895 }; 4896 4897 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 4898 arg.nh_flags |= RTNH_F_LINKDOWN; 4899 4900 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 4901 } 4902 4903 /* only called for fib entries with inline fib6_nh */ 4904 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 4905 const struct net_device *dev) 4906 { 4907 struct fib6_info *iter; 4908 4909 if (rt->fib6_nh->fib_nh_dev == dev) 4910 return true; 4911 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4912 if (iter->fib6_nh->fib_nh_dev == dev) 4913 return true; 4914 4915 return false; 4916 } 4917 4918 static void rt6_multipath_flush(struct fib6_info *rt) 4919 { 4920 struct fib6_info *iter; 4921 4922 rt->should_flush = 1; 4923 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4924 iter->should_flush = 1; 4925 } 4926 4927 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 4928 const struct net_device *down_dev) 4929 { 4930 struct fib6_info *iter; 4931 unsigned int dead = 0; 4932 4933 if (rt->fib6_nh->fib_nh_dev == down_dev || 4934 rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4935 dead++; 4936 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4937 if (iter->fib6_nh->fib_nh_dev == down_dev || 4938 iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4939 dead++; 4940 4941 return dead; 4942 } 4943 4944 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 4945 const struct net_device *dev, 4946 unsigned char nh_flags) 4947 { 4948 struct fib6_info *iter; 4949 4950 if (rt->fib6_nh->fib_nh_dev == dev) 4951 rt->fib6_nh->fib_nh_flags |= nh_flags; 4952 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4953 if (iter->fib6_nh->fib_nh_dev == dev) 4954 iter->fib6_nh->fib_nh_flags |= nh_flags; 4955 } 4956 4957 /* called with write lock held for table with rt */ 4958 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 4959 { 4960 const struct arg_netdev_event *arg = p_arg; 4961 const struct net_device *dev = arg->dev; 4962 struct net *net = dev_net(dev); 4963 4964 if (rt == net->ipv6.fib6_null_entry || rt->nh) 4965 return 0; 4966 4967 switch (arg->event) { 4968 case NETDEV_UNREGISTER: 4969 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4970 case NETDEV_DOWN: 4971 if (rt->should_flush) 4972 return -1; 4973 if (!rt->fib6_nsiblings) 4974 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4975 if (rt6_multipath_uses_dev(rt, dev)) { 4976 unsigned int count; 4977 4978 count = rt6_multipath_dead_count(rt, dev); 4979 if (rt->fib6_nsiblings + 1 == count) { 4980 rt6_multipath_flush(rt); 4981 return -1; 4982 } 4983 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4984 RTNH_F_LINKDOWN); 4985 fib6_update_sernum(net, rt); 4986 rt6_multipath_rebalance(rt); 4987 } 4988 return -2; 4989 case NETDEV_CHANGE: 4990 if (rt->fib6_nh->fib_nh_dev != dev || 4991 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4992 break; 4993 rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 4994 rt6_multipath_rebalance(rt); 4995 break; 4996 } 4997 4998 return 0; 4999 } 5000 5001 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 5002 { 5003 struct arg_netdev_event arg = { 5004 .dev = dev, 5005 { 5006 .event = event, 5007 }, 5008 }; 5009 struct net *net = dev_net(dev); 5010 5011 if (net->ipv6.sysctl.skip_notify_on_dev_down) 5012 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 5013 else 5014 fib6_clean_all(net, fib6_ifdown, &arg); 5015 } 5016 5017 void rt6_disable_ip(struct net_device *dev, unsigned long event) 5018 { 5019 rt6_sync_down_dev(dev, event); 5020 rt6_uncached_list_flush_dev(dev); 5021 neigh_ifdown(&nd_tbl, dev); 5022 } 5023 5024 struct rt6_mtu_change_arg { 5025 struct net_device *dev; 5026 unsigned int mtu; 5027 struct fib6_info *f6i; 5028 }; 5029 5030 static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) 5031 { 5032 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; 5033 struct fib6_info *f6i = arg->f6i; 5034 5035 /* For administrative MTU increase, there is no way to discover 5036 * IPv6 PMTU increase, so PMTU increase should be updated here. 5037 * Since RFC 1981 doesn't include administrative MTU increase 5038 * update PMTU increase is a MUST. (i.e. jumbo frame) 5039 */ 5040 if (nh->fib_nh_dev == arg->dev) { 5041 struct inet6_dev *idev = __in6_dev_get(arg->dev); 5042 u32 mtu = f6i->fib6_pmtu; 5043 5044 if (mtu >= arg->mtu || 5045 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 5046 fib6_metric_set(f6i, RTAX_MTU, arg->mtu); 5047 5048 spin_lock_bh(&rt6_exception_lock); 5049 rt6_exceptions_update_pmtu(idev, nh, arg->mtu); 5050 spin_unlock_bh(&rt6_exception_lock); 5051 } 5052 5053 return 0; 5054 } 5055 5056 static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) 5057 { 5058 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 5059 struct inet6_dev *idev; 5060 5061 /* In IPv6 pmtu discovery is not optional, 5062 so that RTAX_MTU lock cannot disable it. 5063 We still use this lock to block changes 5064 caused by addrconf/ndisc. 5065 */ 5066 5067 idev = __in6_dev_get(arg->dev); 5068 if (!idev) 5069 return 0; 5070 5071 if (fib6_metric_locked(f6i, RTAX_MTU)) 5072 return 0; 5073 5074 arg->f6i = f6i; 5075 if (f6i->nh) { 5076 /* fib6_nh_mtu_change only returns 0, so this is safe */ 5077 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, 5078 arg); 5079 } 5080 5081 return fib6_nh_mtu_change(f6i->fib6_nh, arg); 5082 } 5083 5084 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 5085 { 5086 struct rt6_mtu_change_arg arg = { 5087 .dev = dev, 5088 .mtu = mtu, 5089 }; 5090 5091 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 5092 } 5093 5094 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 5095 [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, 5096 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 5097 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 5098 [RTA_OIF] = { .type = NLA_U32 }, 5099 [RTA_IIF] = { .type = NLA_U32 }, 5100 [RTA_PRIORITY] = { .type = NLA_U32 }, 5101 [RTA_METRICS] = { .type = NLA_NESTED }, 5102 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 5103 [RTA_PREF] = { .type = NLA_U8 }, 5104 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 5105 [RTA_ENCAP] = { .type = NLA_NESTED }, 5106 [RTA_EXPIRES] = { .type = NLA_U32 }, 5107 [RTA_UID] = { .type = NLA_U32 }, 5108 [RTA_MARK] = { .type = NLA_U32 }, 5109 [RTA_TABLE] = { .type = NLA_U32 }, 5110 [RTA_IP_PROTO] = { .type = NLA_U8 }, 5111 [RTA_SPORT] = { .type = NLA_U16 }, 5112 [RTA_DPORT] = { .type = NLA_U16 }, 5113 [RTA_NH_ID] = { .type = NLA_U32 }, 5114 [RTA_FLOWLABEL] = { .type = NLA_BE32 }, 5115 }; 5116 5117 static int rtm_to_fib6_multipath_config(struct fib6_config *cfg, 5118 struct netlink_ext_ack *extack, 5119 bool newroute) 5120 { 5121 struct rtnexthop *rtnh; 5122 int remaining; 5123 5124 remaining = cfg->fc_mp_len; 5125 rtnh = (struct rtnexthop *)cfg->fc_mp; 5126 5127 if (!rtnh_ok(rtnh, remaining)) { 5128 NL_SET_ERR_MSG(extack, "Invalid nexthop configuration - no valid nexthops"); 5129 return -EINVAL; 5130 } 5131 5132 do { 5133 bool has_gateway = cfg->fc_flags & RTF_GATEWAY; 5134 int attrlen = rtnh_attrlen(rtnh); 5135 5136 if (attrlen > 0) { 5137 struct nlattr *nla, *attrs; 5138 5139 attrs = rtnh_attrs(rtnh); 5140 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5141 if (nla) { 5142 if (nla_len(nla) < sizeof(cfg->fc_gateway)) { 5143 NL_SET_ERR_MSG(extack, 5144 "Invalid IPv6 address in RTA_GATEWAY"); 5145 return -EINVAL; 5146 } 5147 5148 has_gateway = true; 5149 } 5150 } 5151 5152 if (newroute && (cfg->fc_nh_id || !has_gateway)) { 5153 NL_SET_ERR_MSG(extack, 5154 "Device only routes can not be added for IPv6 using the multipath API."); 5155 return -EINVAL; 5156 } 5157 5158 rtnh = rtnh_next(rtnh, &remaining); 5159 } while (rtnh_ok(rtnh, remaining)); 5160 5161 return lwtunnel_valid_encap_type_attr(cfg->fc_mp, cfg->fc_mp_len, extack); 5162 } 5163 5164 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 5165 struct fib6_config *cfg, 5166 struct netlink_ext_ack *extack) 5167 { 5168 bool newroute = nlh->nlmsg_type == RTM_NEWROUTE; 5169 struct nlattr *tb[RTA_MAX+1]; 5170 struct rtmsg *rtm; 5171 unsigned int pref; 5172 int err; 5173 5174 err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 5175 rtm_ipv6_policy, extack); 5176 if (err < 0) 5177 goto errout; 5178 5179 err = -EINVAL; 5180 rtm = nlmsg_data(nlh); 5181 5182 if (rtm->rtm_tos) { 5183 NL_SET_ERR_MSG(extack, 5184 "Invalid dsfield (tos): option not available for IPv6"); 5185 goto errout; 5186 } 5187 5188 if (tb[RTA_FLOWLABEL]) { 5189 NL_SET_ERR_MSG_ATTR(extack, tb[RTA_FLOWLABEL], 5190 "Flow label cannot be specified for this operation"); 5191 goto errout; 5192 } 5193 5194 *cfg = (struct fib6_config){ 5195 .fc_table = rtm->rtm_table, 5196 .fc_dst_len = rtm->rtm_dst_len, 5197 .fc_src_len = rtm->rtm_src_len, 5198 .fc_flags = RTF_UP, 5199 .fc_protocol = rtm->rtm_protocol, 5200 .fc_type = rtm->rtm_type, 5201 5202 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 5203 .fc_nlinfo.nlh = nlh, 5204 .fc_nlinfo.nl_net = sock_net(skb->sk), 5205 }; 5206 5207 if (rtm->rtm_type == RTN_UNREACHABLE || 5208 rtm->rtm_type == RTN_BLACKHOLE || 5209 rtm->rtm_type == RTN_PROHIBIT || 5210 rtm->rtm_type == RTN_THROW) 5211 cfg->fc_flags |= RTF_REJECT; 5212 5213 if (rtm->rtm_type == RTN_LOCAL) 5214 cfg->fc_flags |= RTF_LOCAL; 5215 5216 if (rtm->rtm_flags & RTM_F_CLONED) 5217 cfg->fc_flags |= RTF_CACHE; 5218 5219 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 5220 5221 if (tb[RTA_NH_ID]) { 5222 if (tb[RTA_GATEWAY] || tb[RTA_OIF] || 5223 tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { 5224 NL_SET_ERR_MSG(extack, 5225 "Nexthop specification and nexthop id are mutually exclusive"); 5226 goto errout; 5227 } 5228 cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); 5229 } 5230 5231 if (tb[RTA_GATEWAY]) { 5232 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 5233 cfg->fc_flags |= RTF_GATEWAY; 5234 } 5235 if (tb[RTA_VIA]) { 5236 NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); 5237 goto errout; 5238 } 5239 5240 if (tb[RTA_DST]) { 5241 int plen = (rtm->rtm_dst_len + 7) >> 3; 5242 5243 if (nla_len(tb[RTA_DST]) < plen) 5244 goto errout; 5245 5246 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 5247 } 5248 5249 if (tb[RTA_SRC]) { 5250 int plen = (rtm->rtm_src_len + 7) >> 3; 5251 5252 if (nla_len(tb[RTA_SRC]) < plen) 5253 goto errout; 5254 5255 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 5256 } 5257 5258 if (tb[RTA_PREFSRC]) 5259 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 5260 5261 if (tb[RTA_OIF]) 5262 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 5263 5264 if (tb[RTA_PRIORITY]) 5265 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 5266 5267 if (tb[RTA_METRICS]) { 5268 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 5269 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 5270 } 5271 5272 if (tb[RTA_TABLE]) 5273 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 5274 5275 if (tb[RTA_MULTIPATH]) { 5276 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 5277 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 5278 5279 err = rtm_to_fib6_multipath_config(cfg, extack, newroute); 5280 if (err < 0) 5281 goto errout; 5282 } 5283 5284 if (tb[RTA_PREF]) { 5285 pref = nla_get_u8(tb[RTA_PREF]); 5286 if (pref != ICMPV6_ROUTER_PREF_LOW && 5287 pref != ICMPV6_ROUTER_PREF_HIGH) 5288 pref = ICMPV6_ROUTER_PREF_MEDIUM; 5289 cfg->fc_flags |= RTF_PREF(pref); 5290 } 5291 5292 if (tb[RTA_ENCAP]) 5293 cfg->fc_encap = tb[RTA_ENCAP]; 5294 5295 if (tb[RTA_ENCAP_TYPE]) { 5296 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 5297 5298 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 5299 if (err < 0) 5300 goto errout; 5301 } 5302 5303 if (tb[RTA_EXPIRES]) { 5304 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 5305 5306 if (addrconf_finite_timeout(timeout)) { 5307 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 5308 cfg->fc_flags |= RTF_EXPIRES; 5309 } 5310 } 5311 5312 err = 0; 5313 errout: 5314 return err; 5315 } 5316 5317 struct rt6_nh { 5318 struct fib6_info *fib6_info; 5319 struct fib6_config r_cfg; 5320 struct list_head list; 5321 }; 5322 5323 static int ip6_route_info_append(struct list_head *rt6_nh_list, 5324 struct fib6_info *rt, 5325 struct fib6_config *r_cfg) 5326 { 5327 struct rt6_nh *nh; 5328 5329 list_for_each_entry(nh, rt6_nh_list, list) { 5330 /* check if fib6_info already exists */ 5331 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 5332 return -EEXIST; 5333 } 5334 5335 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 5336 if (!nh) 5337 return -ENOMEM; 5338 5339 nh->fib6_info = rt; 5340 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 5341 list_add_tail(&nh->list, rt6_nh_list); 5342 5343 return 0; 5344 } 5345 5346 static void ip6_route_mpath_notify(struct fib6_info *rt, 5347 struct fib6_info *rt_last, 5348 struct nl_info *info, 5349 __u16 nlflags) 5350 { 5351 /* if this is an APPEND route, then rt points to the first route 5352 * inserted and rt_last points to last route inserted. Userspace 5353 * wants a consistent dump of the route which starts at the first 5354 * nexthop. Since sibling routes are always added at the end of 5355 * the list, find the first sibling of the last route appended 5356 */ 5357 rcu_read_lock(); 5358 5359 if ((nlflags & NLM_F_APPEND) && rt_last && 5360 READ_ONCE(rt_last->fib6_nsiblings)) { 5361 rt = list_first_or_null_rcu(&rt_last->fib6_siblings, 5362 struct fib6_info, 5363 fib6_siblings); 5364 } 5365 5366 if (rt) 5367 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 5368 5369 rcu_read_unlock(); 5370 } 5371 5372 static bool ip6_route_mpath_should_notify(const struct fib6_info *rt) 5373 { 5374 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 5375 bool should_notify = false; 5376 struct fib6_info *leaf; 5377 struct fib6_node *fn; 5378 5379 rcu_read_lock(); 5380 fn = rcu_dereference(rt->fib6_node); 5381 if (!fn) 5382 goto out; 5383 5384 leaf = rcu_dereference(fn->leaf); 5385 if (!leaf) 5386 goto out; 5387 5388 if (rt == leaf || 5389 (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric && 5390 rt6_qualify_for_ecmp(leaf))) 5391 should_notify = true; 5392 out: 5393 rcu_read_unlock(); 5394 5395 return should_notify; 5396 } 5397 5398 static int ip6_route_multipath_add(struct fib6_config *cfg, 5399 struct netlink_ext_ack *extack) 5400 { 5401 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 5402 struct nl_info *info = &cfg->fc_nlinfo; 5403 struct rt6_nh *nh, *nh_safe; 5404 struct fib6_config r_cfg; 5405 struct rtnexthop *rtnh; 5406 LIST_HEAD(rt6_nh_list); 5407 struct rt6_nh *err_nh; 5408 struct fib6_info *rt; 5409 __u16 nlflags; 5410 int remaining; 5411 int attrlen; 5412 int replace; 5413 int nhn = 0; 5414 int err; 5415 5416 err = fib6_config_validate(cfg, extack); 5417 if (err) 5418 return err; 5419 5420 replace = (cfg->fc_nlinfo.nlh && 5421 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 5422 5423 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 5424 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 5425 nlflags |= NLM_F_APPEND; 5426 5427 remaining = cfg->fc_mp_len; 5428 rtnh = (struct rtnexthop *)cfg->fc_mp; 5429 5430 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 5431 * fib6_info structs per nexthop 5432 */ 5433 while (rtnh_ok(rtnh, remaining)) { 5434 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5435 if (rtnh->rtnh_ifindex) 5436 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5437 5438 attrlen = rtnh_attrlen(rtnh); 5439 if (attrlen > 0) { 5440 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5441 5442 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5443 if (nla) { 5444 r_cfg.fc_gateway = nla_get_in6_addr(nla); 5445 r_cfg.fc_flags |= RTF_GATEWAY; 5446 } 5447 5448 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 5449 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 5450 if (nla) 5451 r_cfg.fc_encap_type = nla_get_u16(nla); 5452 } 5453 5454 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 5455 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 5456 if (IS_ERR(rt)) { 5457 err = PTR_ERR(rt); 5458 rt = NULL; 5459 goto cleanup; 5460 } 5461 5462 err = ip6_route_info_create_nh(rt, &r_cfg, GFP_KERNEL, extack); 5463 if (err) { 5464 rt = NULL; 5465 goto cleanup; 5466 } 5467 5468 rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; 5469 5470 err = ip6_route_info_append(&rt6_nh_list, rt, &r_cfg); 5471 if (err) { 5472 fib6_info_release(rt); 5473 goto cleanup; 5474 } 5475 5476 rtnh = rtnh_next(rtnh, &remaining); 5477 } 5478 5479 /* for add and replace send one notification with all nexthops. 5480 * Skip the notification in fib6_add_rt2node and send one with 5481 * the full route when done 5482 */ 5483 info->skip_notify = 1; 5484 5485 /* For add and replace, send one notification with all nexthops. For 5486 * append, send one notification with all appended nexthops. 5487 */ 5488 info->skip_notify_kernel = 1; 5489 5490 err_nh = NULL; 5491 list_for_each_entry(nh, &rt6_nh_list, list) { 5492 err = __ip6_ins_rt(nh->fib6_info, info, extack); 5493 5494 if (err) { 5495 if (replace && nhn) 5496 NL_SET_ERR_MSG_MOD(extack, 5497 "multipath route replace failed (check consistency of installed routes)"); 5498 err_nh = nh; 5499 goto add_errout; 5500 } 5501 /* save reference to last route successfully inserted */ 5502 rt_last = nh->fib6_info; 5503 5504 /* save reference to first route for notification */ 5505 if (!rt_notif) 5506 rt_notif = nh->fib6_info; 5507 5508 /* Because each route is added like a single route we remove 5509 * these flags after the first nexthop: if there is a collision, 5510 * we have already failed to add the first nexthop: 5511 * fib6_add_rt2node() has rejected it; when replacing, old 5512 * nexthops have been replaced by first new, the rest should 5513 * be added to it. 5514 */ 5515 if (cfg->fc_nlinfo.nlh) { 5516 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 5517 NLM_F_REPLACE); 5518 cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE; 5519 } 5520 nhn++; 5521 } 5522 5523 /* An in-kernel notification should only be sent in case the new 5524 * multipath route is added as the first route in the node, or if 5525 * it was appended to it. We pass 'rt_notif' since it is the first 5526 * sibling and might allow us to skip some checks in the replace case. 5527 */ 5528 if (ip6_route_mpath_should_notify(rt_notif)) { 5529 enum fib_event_type fib_event; 5530 5531 if (rt_notif->fib6_nsiblings != nhn - 1) 5532 fib_event = FIB_EVENT_ENTRY_APPEND; 5533 else 5534 fib_event = FIB_EVENT_ENTRY_REPLACE; 5535 5536 err = call_fib6_multipath_entry_notifiers(info->nl_net, 5537 fib_event, rt_notif, 5538 nhn - 1, extack); 5539 if (err) { 5540 /* Delete all the siblings that were just added */ 5541 err_nh = NULL; 5542 goto add_errout; 5543 } 5544 } 5545 5546 /* success ... tell user about new route */ 5547 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5548 goto cleanup; 5549 5550 add_errout: 5551 /* send notification for routes that were added so that 5552 * the delete notifications sent by ip6_route_del are 5553 * coherent 5554 */ 5555 if (rt_notif) 5556 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5557 5558 /* Delete routes that were already added */ 5559 list_for_each_entry(nh, &rt6_nh_list, list) { 5560 if (err_nh == nh) 5561 break; 5562 ip6_route_del(&nh->r_cfg, extack); 5563 } 5564 5565 cleanup: 5566 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, list) { 5567 fib6_info_release(nh->fib6_info); 5568 list_del(&nh->list); 5569 kfree(nh); 5570 } 5571 5572 return err; 5573 } 5574 5575 static int ip6_route_multipath_del(struct fib6_config *cfg, 5576 struct netlink_ext_ack *extack) 5577 { 5578 struct fib6_config r_cfg; 5579 struct rtnexthop *rtnh; 5580 int last_err = 0; 5581 int remaining; 5582 int attrlen; 5583 int err; 5584 5585 remaining = cfg->fc_mp_len; 5586 rtnh = (struct rtnexthop *)cfg->fc_mp; 5587 5588 /* Parse a Multipath Entry */ 5589 while (rtnh_ok(rtnh, remaining)) { 5590 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5591 if (rtnh->rtnh_ifindex) 5592 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5593 5594 attrlen = rtnh_attrlen(rtnh); 5595 if (attrlen > 0) { 5596 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5597 5598 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5599 if (nla) { 5600 r_cfg.fc_gateway = nla_get_in6_addr(nla); 5601 r_cfg.fc_flags |= RTF_GATEWAY; 5602 } 5603 } 5604 5605 err = ip6_route_del(&r_cfg, extack); 5606 if (err) 5607 last_err = err; 5608 5609 rtnh = rtnh_next(rtnh, &remaining); 5610 } 5611 5612 return last_err; 5613 } 5614 5615 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5616 struct netlink_ext_ack *extack) 5617 { 5618 struct fib6_config cfg; 5619 int err; 5620 5621 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5622 if (err < 0) 5623 return err; 5624 5625 if (cfg.fc_nh_id) { 5626 rcu_read_lock(); 5627 err = !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id); 5628 rcu_read_unlock(); 5629 5630 if (err) { 5631 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 5632 return -EINVAL; 5633 } 5634 } 5635 5636 if (cfg.fc_mp) { 5637 return ip6_route_multipath_del(&cfg, extack); 5638 } else { 5639 cfg.fc_delete_all_nh = 1; 5640 return ip6_route_del(&cfg, extack); 5641 } 5642 } 5643 5644 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5645 struct netlink_ext_ack *extack) 5646 { 5647 struct fib6_config cfg; 5648 int err; 5649 5650 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5651 if (err < 0) 5652 return err; 5653 5654 if (cfg.fc_metric == 0) 5655 cfg.fc_metric = IP6_RT_PRIO_USER; 5656 5657 if (cfg.fc_mp) 5658 return ip6_route_multipath_add(&cfg, extack); 5659 else 5660 return ip6_route_add(&cfg, GFP_KERNEL, extack); 5661 } 5662 5663 /* add the overhead of this fib6_nh to nexthop_len */ 5664 static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) 5665 { 5666 int *nexthop_len = arg; 5667 5668 *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ 5669 + NLA_ALIGN(sizeof(struct rtnexthop)) 5670 + nla_total_size(16); /* RTA_GATEWAY */ 5671 5672 if (nh->fib_nh_lws) { 5673 /* RTA_ENCAP_TYPE */ 5674 *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5675 /* RTA_ENCAP */ 5676 *nexthop_len += nla_total_size(2); 5677 } 5678 5679 return 0; 5680 } 5681 5682 static size_t rt6_nlmsg_size(struct fib6_info *f6i) 5683 { 5684 struct fib6_info *sibling; 5685 struct fib6_nh *nh; 5686 int nexthop_len; 5687 5688 if (f6i->nh) { 5689 nexthop_len = nla_total_size(4); /* RTA_NH_ID */ 5690 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, 5691 &nexthop_len); 5692 goto common; 5693 } 5694 5695 rcu_read_lock(); 5696 retry: 5697 nh = f6i->fib6_nh; 5698 nexthop_len = 0; 5699 if (READ_ONCE(f6i->fib6_nsiblings)) { 5700 rt6_nh_nlmsg_size(nh, &nexthop_len); 5701 5702 list_for_each_entry_rcu(sibling, &f6i->fib6_siblings, 5703 fib6_siblings) { 5704 rt6_nh_nlmsg_size(sibling->fib6_nh, &nexthop_len); 5705 if (!READ_ONCE(f6i->fib6_nsiblings)) 5706 goto retry; 5707 } 5708 } 5709 rcu_read_unlock(); 5710 nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5711 common: 5712 return NLMSG_ALIGN(sizeof(struct rtmsg)) 5713 + nla_total_size(16) /* RTA_SRC */ 5714 + nla_total_size(16) /* RTA_DST */ 5715 + nla_total_size(16) /* RTA_GATEWAY */ 5716 + nla_total_size(16) /* RTA_PREFSRC */ 5717 + nla_total_size(4) /* RTA_TABLE */ 5718 + nla_total_size(4) /* RTA_IIF */ 5719 + nla_total_size(4) /* RTA_OIF */ 5720 + nla_total_size(4) /* RTA_PRIORITY */ 5721 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 5722 + nla_total_size(sizeof(struct rta_cacheinfo)) 5723 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 5724 + nla_total_size(1) /* RTA_PREF */ 5725 + nexthop_len; 5726 } 5727 5728 static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, 5729 unsigned char *flags) 5730 { 5731 if (nexthop_is_multipath(nh)) { 5732 struct nlattr *mp; 5733 5734 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5735 if (!mp) 5736 goto nla_put_failure; 5737 5738 if (nexthop_mpath_fill_node(skb, nh, AF_INET6)) 5739 goto nla_put_failure; 5740 5741 nla_nest_end(skb, mp); 5742 } else { 5743 struct fib6_nh *fib6_nh; 5744 5745 fib6_nh = nexthop_fib6_nh(nh); 5746 if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6, 5747 flags, false) < 0) 5748 goto nla_put_failure; 5749 } 5750 5751 return 0; 5752 5753 nla_put_failure: 5754 return -EMSGSIZE; 5755 } 5756 5757 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 5758 struct fib6_info *rt, struct dst_entry *dst, 5759 struct in6_addr *dest, struct in6_addr *src, 5760 int iif, int type, u32 portid, u32 seq, 5761 unsigned int flags) 5762 { 5763 struct rt6_info *rt6 = dst_rt6_info(dst); 5764 struct rt6key *rt6_dst, *rt6_src; 5765 u32 *pmetrics, table, rt6_flags; 5766 unsigned char nh_flags = 0; 5767 struct nlmsghdr *nlh; 5768 struct rtmsg *rtm; 5769 long expires = 0; 5770 5771 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 5772 if (!nlh) 5773 return -EMSGSIZE; 5774 5775 if (rt6) { 5776 rt6_dst = &rt6->rt6i_dst; 5777 rt6_src = &rt6->rt6i_src; 5778 rt6_flags = rt6->rt6i_flags; 5779 } else { 5780 rt6_dst = &rt->fib6_dst; 5781 rt6_src = &rt->fib6_src; 5782 rt6_flags = rt->fib6_flags; 5783 } 5784 5785 rtm = nlmsg_data(nlh); 5786 rtm->rtm_family = AF_INET6; 5787 rtm->rtm_dst_len = rt6_dst->plen; 5788 rtm->rtm_src_len = rt6_src->plen; 5789 rtm->rtm_tos = 0; 5790 if (rt->fib6_table) 5791 table = rt->fib6_table->tb6_id; 5792 else 5793 table = RT6_TABLE_UNSPEC; 5794 rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; 5795 if (nla_put_u32(skb, RTA_TABLE, table)) 5796 goto nla_put_failure; 5797 5798 rtm->rtm_type = rt->fib6_type; 5799 rtm->rtm_flags = 0; 5800 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 5801 rtm->rtm_protocol = rt->fib6_protocol; 5802 5803 if (rt6_flags & RTF_CACHE) 5804 rtm->rtm_flags |= RTM_F_CLONED; 5805 5806 if (dest) { 5807 if (nla_put_in6_addr(skb, RTA_DST, dest)) 5808 goto nla_put_failure; 5809 rtm->rtm_dst_len = 128; 5810 } else if (rtm->rtm_dst_len) 5811 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 5812 goto nla_put_failure; 5813 #ifdef CONFIG_IPV6_SUBTREES 5814 if (src) { 5815 if (nla_put_in6_addr(skb, RTA_SRC, src)) 5816 goto nla_put_failure; 5817 rtm->rtm_src_len = 128; 5818 } else if (rtm->rtm_src_len && 5819 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 5820 goto nla_put_failure; 5821 #endif 5822 if (iif) { 5823 #ifdef CONFIG_IPV6_MROUTE 5824 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 5825 int err = ip6mr_get_route(net, skb, rtm, portid); 5826 5827 if (err == 0) 5828 return 0; 5829 if (err < 0) 5830 goto nla_put_failure; 5831 } else 5832 #endif 5833 if (nla_put_u32(skb, RTA_IIF, iif)) 5834 goto nla_put_failure; 5835 } else if (dest) { 5836 struct in6_addr saddr_buf; 5837 if (ip6_route_get_saddr(net, rt, dest, 0, 0, &saddr_buf) == 0 && 5838 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5839 goto nla_put_failure; 5840 } 5841 5842 if (rt->fib6_prefsrc.plen) { 5843 struct in6_addr saddr_buf; 5844 saddr_buf = rt->fib6_prefsrc.addr; 5845 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5846 goto nla_put_failure; 5847 } 5848 5849 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 5850 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 5851 goto nla_put_failure; 5852 5853 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 5854 goto nla_put_failure; 5855 5856 /* For multipath routes, walk the siblings list and add 5857 * each as a nexthop within RTA_MULTIPATH. 5858 */ 5859 if (rt6) { 5860 struct net_device *dev; 5861 5862 if (rt6_flags & RTF_GATEWAY && 5863 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 5864 goto nla_put_failure; 5865 5866 dev = dst_dev(dst); 5867 if (dev && nla_put_u32(skb, RTA_OIF, dev->ifindex)) 5868 goto nla_put_failure; 5869 5870 if (lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0) 5871 goto nla_put_failure; 5872 } else if (READ_ONCE(rt->fib6_nsiblings)) { 5873 struct fib6_info *sibling; 5874 struct nlattr *mp; 5875 5876 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5877 if (!mp) 5878 goto nla_put_failure; 5879 5880 if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, 5881 rt->fib6_nh->fib_nh_weight, AF_INET6, 5882 0) < 0) 5883 goto nla_put_failure; 5884 5885 rcu_read_lock(); 5886 5887 list_for_each_entry_rcu(sibling, &rt->fib6_siblings, 5888 fib6_siblings) { 5889 if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, 5890 sibling->fib6_nh->fib_nh_weight, 5891 AF_INET6, 0) < 0) { 5892 rcu_read_unlock(); 5893 5894 goto nla_put_failure; 5895 } 5896 } 5897 5898 rcu_read_unlock(); 5899 5900 nla_nest_end(skb, mp); 5901 } else if (rt->nh) { 5902 if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) 5903 goto nla_put_failure; 5904 5905 if (nexthop_is_blackhole(rt->nh)) 5906 rtm->rtm_type = RTN_BLACKHOLE; 5907 5908 if (READ_ONCE(net->ipv4.sysctl_nexthop_compat_mode) && 5909 rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) 5910 goto nla_put_failure; 5911 5912 rtm->rtm_flags |= nh_flags; 5913 } else { 5914 if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6, 5915 &nh_flags, false) < 0) 5916 goto nla_put_failure; 5917 5918 rtm->rtm_flags |= nh_flags; 5919 } 5920 5921 if (rt6_flags & RTF_EXPIRES) { 5922 expires = dst ? READ_ONCE(dst->expires) : rt->expires; 5923 expires -= jiffies; 5924 } 5925 5926 if (!dst) { 5927 if (READ_ONCE(rt->offload)) 5928 rtm->rtm_flags |= RTM_F_OFFLOAD; 5929 if (READ_ONCE(rt->trap)) 5930 rtm->rtm_flags |= RTM_F_TRAP; 5931 if (READ_ONCE(rt->offload_failed)) 5932 rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED; 5933 } 5934 5935 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 5936 goto nla_put_failure; 5937 5938 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 5939 goto nla_put_failure; 5940 5941 5942 nlmsg_end(skb, nlh); 5943 return 0; 5944 5945 nla_put_failure: 5946 nlmsg_cancel(skb, nlh); 5947 return -EMSGSIZE; 5948 } 5949 5950 static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) 5951 { 5952 const struct net_device *dev = arg; 5953 5954 if (nh->fib_nh_dev == dev) 5955 return 1; 5956 5957 return 0; 5958 } 5959 5960 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 5961 const struct net_device *dev) 5962 { 5963 if (f6i->nh) { 5964 struct net_device *_dev = (struct net_device *)dev; 5965 5966 return !!nexthop_for_each_fib6_nh(f6i->nh, 5967 fib6_info_nh_uses_dev, 5968 _dev); 5969 } 5970 5971 if (f6i->fib6_nh->fib_nh_dev == dev) 5972 return true; 5973 5974 if (READ_ONCE(f6i->fib6_nsiblings)) { 5975 const struct fib6_info *sibling; 5976 5977 rcu_read_lock(); 5978 list_for_each_entry_rcu(sibling, &f6i->fib6_siblings, 5979 fib6_siblings) { 5980 if (sibling->fib6_nh->fib_nh_dev == dev) { 5981 rcu_read_unlock(); 5982 return true; 5983 } 5984 if (!READ_ONCE(f6i->fib6_nsiblings)) 5985 break; 5986 } 5987 rcu_read_unlock(); 5988 } 5989 return false; 5990 } 5991 5992 struct fib6_nh_exception_dump_walker { 5993 struct rt6_rtnl_dump_arg *dump; 5994 struct fib6_info *rt; 5995 unsigned int flags; 5996 unsigned int skip; 5997 unsigned int count; 5998 }; 5999 6000 static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg) 6001 { 6002 struct fib6_nh_exception_dump_walker *w = arg; 6003 struct rt6_rtnl_dump_arg *dump = w->dump; 6004 struct rt6_exception_bucket *bucket; 6005 struct rt6_exception *rt6_ex; 6006 int i, err; 6007 6008 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 6009 if (!bucket) 6010 return 0; 6011 6012 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 6013 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 6014 if (w->skip) { 6015 w->skip--; 6016 continue; 6017 } 6018 6019 /* Expiration of entries doesn't bump sernum, insertion 6020 * does. Removal is triggered by insertion, so we can 6021 * rely on the fact that if entries change between two 6022 * partial dumps, this node is scanned again completely, 6023 * see rt6_insert_exception() and fib6_dump_table(). 6024 * 6025 * Count expired entries we go through as handled 6026 * entries that we'll skip next time, in case of partial 6027 * node dump. Otherwise, if entries expire meanwhile, 6028 * we'll skip the wrong amount. 6029 */ 6030 if (rt6_check_expired(rt6_ex->rt6i)) { 6031 w->count++; 6032 continue; 6033 } 6034 6035 err = rt6_fill_node(dump->net, dump->skb, w->rt, 6036 &rt6_ex->rt6i->dst, NULL, NULL, 0, 6037 RTM_NEWROUTE, 6038 NETLINK_CB(dump->cb->skb).portid, 6039 dump->cb->nlh->nlmsg_seq, w->flags); 6040 if (err) 6041 return err; 6042 6043 w->count++; 6044 } 6045 bucket++; 6046 } 6047 6048 return 0; 6049 } 6050 6051 /* Return -1 if done with node, number of handled routes on partial dump */ 6052 int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip) 6053 { 6054 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 6055 struct fib_dump_filter *filter = &arg->filter; 6056 unsigned int flags = NLM_F_MULTI; 6057 struct net *net = arg->net; 6058 int count = 0; 6059 6060 if (rt == net->ipv6.fib6_null_entry) 6061 return -1; 6062 6063 if ((filter->flags & RTM_F_PREFIX) && 6064 !(rt->fib6_flags & RTF_PREFIX_RT)) { 6065 /* success since this is not a prefix route */ 6066 return -1; 6067 } 6068 if (filter->filter_set && 6069 ((filter->rt_type && rt->fib6_type != filter->rt_type) || 6070 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 6071 (filter->protocol && rt->fib6_protocol != filter->protocol))) { 6072 return -1; 6073 } 6074 6075 if (filter->filter_set || 6076 !filter->dump_routes || !filter->dump_exceptions) { 6077 flags |= NLM_F_DUMP_FILTERED; 6078 } 6079 6080 if (filter->dump_routes) { 6081 if (skip) { 6082 skip--; 6083 } else { 6084 if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 6085 0, RTM_NEWROUTE, 6086 NETLINK_CB(arg->cb->skb).portid, 6087 arg->cb->nlh->nlmsg_seq, flags)) { 6088 return 0; 6089 } 6090 count++; 6091 } 6092 } 6093 6094 if (filter->dump_exceptions) { 6095 struct fib6_nh_exception_dump_walker w = { .dump = arg, 6096 .rt = rt, 6097 .flags = flags, 6098 .skip = skip, 6099 .count = 0 }; 6100 int err; 6101 6102 rcu_read_lock(); 6103 if (rt->nh) { 6104 err = nexthop_for_each_fib6_nh(rt->nh, 6105 rt6_nh_dump_exceptions, 6106 &w); 6107 } else { 6108 err = rt6_nh_dump_exceptions(rt->fib6_nh, &w); 6109 } 6110 rcu_read_unlock(); 6111 6112 if (err) 6113 return count + w.count; 6114 } 6115 6116 return -1; 6117 } 6118 6119 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, 6120 const struct nlmsghdr *nlh, 6121 struct nlattr **tb, 6122 struct netlink_ext_ack *extack) 6123 { 6124 struct rtmsg *rtm; 6125 int i, err; 6126 6127 rtm = nlmsg_payload(nlh, sizeof(*rtm)); 6128 if (!rtm) { 6129 NL_SET_ERR_MSG_MOD(extack, 6130 "Invalid header for get route request"); 6131 return -EINVAL; 6132 } 6133 6134 if (!netlink_strict_get_check(skb)) 6135 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 6136 rtm_ipv6_policy, extack); 6137 6138 if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || 6139 (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || 6140 rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || 6141 rtm->rtm_type) { 6142 NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); 6143 return -EINVAL; 6144 } 6145 if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { 6146 NL_SET_ERR_MSG_MOD(extack, 6147 "Invalid flags for get route request"); 6148 return -EINVAL; 6149 } 6150 6151 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 6152 rtm_ipv6_policy, extack); 6153 if (err) 6154 return err; 6155 6156 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 6157 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 6158 NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); 6159 return -EINVAL; 6160 } 6161 6162 if (tb[RTA_FLOWLABEL] && 6163 (nla_get_be32(tb[RTA_FLOWLABEL]) & ~IPV6_FLOWLABEL_MASK)) { 6164 NL_SET_ERR_MSG_ATTR(extack, tb[RTA_FLOWLABEL], 6165 "Invalid flow label"); 6166 return -EINVAL; 6167 } 6168 6169 for (i = 0; i <= RTA_MAX; i++) { 6170 if (!tb[i]) 6171 continue; 6172 6173 switch (i) { 6174 case RTA_SRC: 6175 case RTA_DST: 6176 case RTA_IIF: 6177 case RTA_OIF: 6178 case RTA_MARK: 6179 case RTA_UID: 6180 case RTA_SPORT: 6181 case RTA_DPORT: 6182 case RTA_IP_PROTO: 6183 case RTA_FLOWLABEL: 6184 break; 6185 default: 6186 NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); 6187 return -EINVAL; 6188 } 6189 } 6190 6191 return 0; 6192 } 6193 6194 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 6195 struct netlink_ext_ack *extack) 6196 { 6197 struct net *net = sock_net(in_skb->sk); 6198 struct nlattr *tb[RTA_MAX+1]; 6199 int err, iif = 0, oif = 0; 6200 struct fib6_info *from; 6201 struct dst_entry *dst; 6202 struct rt6_info *rt; 6203 struct sk_buff *skb; 6204 struct rtmsg *rtm; 6205 struct flowi6 fl6 = {}; 6206 __be32 flowlabel; 6207 bool fibmatch; 6208 6209 err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 6210 if (err < 0) 6211 goto errout; 6212 6213 err = -EINVAL; 6214 rtm = nlmsg_data(nlh); 6215 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 6216 6217 if (tb[RTA_SRC]) { 6218 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 6219 goto errout; 6220 6221 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 6222 } 6223 6224 if (tb[RTA_DST]) { 6225 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 6226 goto errout; 6227 6228 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 6229 } 6230 6231 if (tb[RTA_IIF]) 6232 iif = nla_get_u32(tb[RTA_IIF]); 6233 6234 if (tb[RTA_OIF]) 6235 oif = nla_get_u32(tb[RTA_OIF]); 6236 6237 if (tb[RTA_MARK]) 6238 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 6239 6240 if (tb[RTA_UID]) 6241 fl6.flowi6_uid = make_kuid(current_user_ns(), 6242 nla_get_u32(tb[RTA_UID])); 6243 else 6244 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 6245 6246 if (tb[RTA_SPORT]) 6247 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 6248 6249 if (tb[RTA_DPORT]) 6250 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 6251 6252 if (tb[RTA_IP_PROTO]) { 6253 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 6254 &fl6.flowi6_proto, AF_INET6, 6255 extack); 6256 if (err) 6257 goto errout; 6258 } 6259 6260 flowlabel = nla_get_be32_default(tb[RTA_FLOWLABEL], 0); 6261 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, flowlabel); 6262 6263 if (iif) { 6264 struct net_device *dev; 6265 int flags = 0; 6266 6267 rcu_read_lock(); 6268 6269 dev = dev_get_by_index_rcu(net, iif); 6270 if (!dev) { 6271 rcu_read_unlock(); 6272 err = -ENODEV; 6273 goto errout; 6274 } 6275 6276 fl6.flowi6_iif = iif; 6277 6278 if (!ipv6_addr_any(&fl6.saddr)) 6279 flags |= RT6_LOOKUP_F_HAS_SADDR; 6280 6281 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 6282 6283 rcu_read_unlock(); 6284 } else { 6285 fl6.flowi6_oif = oif; 6286 6287 dst = ip6_route_output(net, NULL, &fl6); 6288 } 6289 6290 6291 rt = dst_rt6_info(dst); 6292 if (rt->dst.error) { 6293 err = rt->dst.error; 6294 ip6_rt_put(rt); 6295 goto errout; 6296 } 6297 6298 if (rt == net->ipv6.ip6_null_entry) { 6299 err = rt->dst.error; 6300 ip6_rt_put(rt); 6301 goto errout; 6302 } 6303 6304 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 6305 if (!skb) { 6306 ip6_rt_put(rt); 6307 err = -ENOBUFS; 6308 goto errout; 6309 } 6310 6311 skb_dst_set(skb, &rt->dst); 6312 6313 rcu_read_lock(); 6314 from = rcu_dereference(rt->from); 6315 if (from) { 6316 if (fibmatch) 6317 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, 6318 iif, RTM_NEWROUTE, 6319 NETLINK_CB(in_skb).portid, 6320 nlh->nlmsg_seq, 0); 6321 else 6322 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 6323 &fl6.saddr, iif, RTM_NEWROUTE, 6324 NETLINK_CB(in_skb).portid, 6325 nlh->nlmsg_seq, 0); 6326 } else { 6327 err = -ENETUNREACH; 6328 } 6329 rcu_read_unlock(); 6330 6331 if (err < 0) { 6332 kfree_skb(skb); 6333 goto errout; 6334 } 6335 6336 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 6337 errout: 6338 return err; 6339 } 6340 6341 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 6342 unsigned int nlm_flags) 6343 { 6344 struct net *net = info->nl_net; 6345 struct sk_buff *skb; 6346 size_t sz; 6347 u32 seq; 6348 int err; 6349 6350 err = -ENOBUFS; 6351 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6352 6353 rcu_read_lock(); 6354 sz = rt6_nlmsg_size(rt); 6355 retry: 6356 skb = nlmsg_new(sz, GFP_ATOMIC); 6357 if (!skb) 6358 goto errout; 6359 6360 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6361 event, info->portid, seq, nlm_flags); 6362 if (err < 0) { 6363 kfree_skb(skb); 6364 /* -EMSGSIZE implies needed space grew under us. */ 6365 if (err == -EMSGSIZE) { 6366 sz = max(rt6_nlmsg_size(rt), sz << 1); 6367 goto retry; 6368 } 6369 goto errout; 6370 } 6371 6372 rcu_read_unlock(); 6373 6374 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6375 info->nlh, GFP_ATOMIC); 6376 return; 6377 errout: 6378 rcu_read_unlock(); 6379 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6380 } 6381 6382 void fib6_rt_update(struct net *net, struct fib6_info *rt, 6383 struct nl_info *info) 6384 { 6385 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6386 struct sk_buff *skb; 6387 int err = -ENOBUFS; 6388 6389 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6390 if (!skb) 6391 goto errout; 6392 6393 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6394 RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); 6395 if (err < 0) { 6396 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6397 WARN_ON(err == -EMSGSIZE); 6398 kfree_skb(skb); 6399 goto errout; 6400 } 6401 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6402 info->nlh, gfp_any()); 6403 return; 6404 errout: 6405 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6406 } 6407 6408 void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, 6409 bool offload, bool trap, bool offload_failed) 6410 { 6411 struct sk_buff *skb; 6412 int err; 6413 6414 if (READ_ONCE(f6i->offload) == offload && 6415 READ_ONCE(f6i->trap) == trap && 6416 READ_ONCE(f6i->offload_failed) == offload_failed) 6417 return; 6418 6419 WRITE_ONCE(f6i->offload, offload); 6420 WRITE_ONCE(f6i->trap, trap); 6421 6422 /* 2 means send notifications only if offload_failed was changed. */ 6423 if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 && 6424 READ_ONCE(f6i->offload_failed) == offload_failed) 6425 return; 6426 6427 WRITE_ONCE(f6i->offload_failed, offload_failed); 6428 6429 if (!rcu_access_pointer(f6i->fib6_node)) 6430 /* The route was removed from the tree, do not send 6431 * notification. 6432 */ 6433 return; 6434 6435 if (!net->ipv6.sysctl.fib_notify_on_flag_change) 6436 return; 6437 6438 skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL); 6439 if (!skb) { 6440 err = -ENOBUFS; 6441 goto errout; 6442 } 6443 6444 err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0, 6445 0, 0); 6446 if (err < 0) { 6447 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6448 WARN_ON(err == -EMSGSIZE); 6449 kfree_skb(skb); 6450 goto errout; 6451 } 6452 6453 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL); 6454 return; 6455 6456 errout: 6457 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6458 } 6459 EXPORT_SYMBOL(fib6_info_hw_flags_set); 6460 6461 static int ip6_route_dev_notify(struct notifier_block *this, 6462 unsigned long event, void *ptr) 6463 { 6464 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6465 struct net *net = dev_net(dev); 6466 6467 if (!(dev->flags & IFF_LOOPBACK)) 6468 return NOTIFY_OK; 6469 6470 if (event == NETDEV_REGISTER) { 6471 net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; 6472 net->ipv6.ip6_null_entry->dst.dev = dev; 6473 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 6474 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6475 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 6476 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 6477 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 6478 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 6479 #endif 6480 } else if (event == NETDEV_UNREGISTER && 6481 dev->reg_state != NETREG_UNREGISTERED) { 6482 /* NETDEV_UNREGISTER could be fired for multiple times by 6483 * netdev_wait_allrefs(). Make sure we only call this once. 6484 */ 6485 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 6486 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6487 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 6488 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 6489 #endif 6490 } 6491 6492 return NOTIFY_OK; 6493 } 6494 6495 /* 6496 * /proc 6497 */ 6498 6499 #ifdef CONFIG_PROC_FS 6500 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 6501 { 6502 struct net *net = (struct net *)seq->private; 6503 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 6504 net->ipv6.rt6_stats->fib_nodes, 6505 net->ipv6.rt6_stats->fib_route_nodes, 6506 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 6507 net->ipv6.rt6_stats->fib_rt_entries, 6508 net->ipv6.rt6_stats->fib_rt_cache, 6509 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 6510 net->ipv6.rt6_stats->fib_discarded_routes); 6511 6512 return 0; 6513 } 6514 #endif /* CONFIG_PROC_FS */ 6515 6516 #ifdef CONFIG_SYSCTL 6517 6518 static int ipv6_sysctl_rtcache_flush(const struct ctl_table *ctl, int write, 6519 void *buffer, size_t *lenp, loff_t *ppos) 6520 { 6521 struct net *net; 6522 int delay; 6523 int ret; 6524 if (!write) 6525 return -EINVAL; 6526 6527 ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 6528 if (ret) 6529 return ret; 6530 6531 net = (struct net *)ctl->extra1; 6532 delay = net->ipv6.sysctl.flush_delay; 6533 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 6534 return 0; 6535 } 6536 6537 static struct ctl_table ipv6_route_table_template[] = { 6538 { 6539 .procname = "max_size", 6540 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 6541 .maxlen = sizeof(int), 6542 .mode = 0644, 6543 .proc_handler = proc_dointvec, 6544 }, 6545 { 6546 .procname = "gc_thresh", 6547 .data = &ip6_dst_ops_template.gc_thresh, 6548 .maxlen = sizeof(int), 6549 .mode = 0644, 6550 .proc_handler = proc_dointvec, 6551 }, 6552 { 6553 .procname = "flush", 6554 .data = &init_net.ipv6.sysctl.flush_delay, 6555 .maxlen = sizeof(int), 6556 .mode = 0200, 6557 .proc_handler = ipv6_sysctl_rtcache_flush 6558 }, 6559 { 6560 .procname = "gc_min_interval", 6561 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6562 .maxlen = sizeof(int), 6563 .mode = 0644, 6564 .proc_handler = proc_dointvec_jiffies, 6565 }, 6566 { 6567 .procname = "gc_timeout", 6568 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 6569 .maxlen = sizeof(int), 6570 .mode = 0644, 6571 .proc_handler = proc_dointvec_jiffies, 6572 }, 6573 { 6574 .procname = "gc_interval", 6575 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 6576 .maxlen = sizeof(int), 6577 .mode = 0644, 6578 .proc_handler = proc_dointvec_jiffies, 6579 }, 6580 { 6581 .procname = "gc_elasticity", 6582 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 6583 .maxlen = sizeof(int), 6584 .mode = 0644, 6585 .proc_handler = proc_dointvec, 6586 }, 6587 { 6588 .procname = "mtu_expires", 6589 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 6590 .maxlen = sizeof(int), 6591 .mode = 0644, 6592 .proc_handler = proc_dointvec_jiffies, 6593 }, 6594 { 6595 .procname = "min_adv_mss", 6596 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 6597 .maxlen = sizeof(int), 6598 .mode = 0644, 6599 .proc_handler = proc_dointvec, 6600 }, 6601 { 6602 .procname = "gc_min_interval_ms", 6603 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6604 .maxlen = sizeof(int), 6605 .mode = 0644, 6606 .proc_handler = proc_dointvec_ms_jiffies, 6607 }, 6608 { 6609 .procname = "skip_notify_on_dev_down", 6610 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 6611 .maxlen = sizeof(u8), 6612 .mode = 0644, 6613 .proc_handler = proc_dou8vec_minmax, 6614 .extra1 = SYSCTL_ZERO, 6615 .extra2 = SYSCTL_ONE, 6616 }, 6617 }; 6618 6619 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 6620 { 6621 struct ctl_table *table; 6622 6623 table = kmemdup(ipv6_route_table_template, 6624 sizeof(ipv6_route_table_template), 6625 GFP_KERNEL); 6626 6627 if (table) { 6628 table[0].data = &net->ipv6.sysctl.ip6_rt_max_size; 6629 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 6630 table[2].data = &net->ipv6.sysctl.flush_delay; 6631 table[2].extra1 = net; 6632 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6633 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 6634 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 6635 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 6636 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 6637 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 6638 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6639 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 6640 } 6641 6642 return table; 6643 } 6644 6645 size_t ipv6_route_sysctl_table_size(struct net *net) 6646 { 6647 /* Don't export sysctls to unprivileged users */ 6648 if (net->user_ns != &init_user_ns) 6649 return 1; 6650 6651 return ARRAY_SIZE(ipv6_route_table_template); 6652 } 6653 #endif 6654 6655 static int __net_init ip6_route_net_init(struct net *net) 6656 { 6657 int ret = -ENOMEM; 6658 6659 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 6660 sizeof(net->ipv6.ip6_dst_ops)); 6661 6662 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 6663 goto out_ip6_dst_ops; 6664 6665 net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); 6666 if (!net->ipv6.fib6_null_entry) 6667 goto out_ip6_dst_entries; 6668 memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, 6669 sizeof(*net->ipv6.fib6_null_entry)); 6670 6671 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 6672 sizeof(*net->ipv6.ip6_null_entry), 6673 GFP_KERNEL); 6674 if (!net->ipv6.ip6_null_entry) 6675 goto out_fib6_null_entry; 6676 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6677 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 6678 ip6_template_metrics, true); 6679 INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->dst.rt_uncached); 6680 6681 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6682 net->ipv6.fib6_has_custom_rules = false; 6683 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 6684 sizeof(*net->ipv6.ip6_prohibit_entry), 6685 GFP_KERNEL); 6686 if (!net->ipv6.ip6_prohibit_entry) 6687 goto out_ip6_null_entry; 6688 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6689 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 6690 ip6_template_metrics, true); 6691 INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->dst.rt_uncached); 6692 6693 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 6694 sizeof(*net->ipv6.ip6_blk_hole_entry), 6695 GFP_KERNEL); 6696 if (!net->ipv6.ip6_blk_hole_entry) 6697 goto out_ip6_prohibit_entry; 6698 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6699 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 6700 ip6_template_metrics, true); 6701 INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->dst.rt_uncached); 6702 #ifdef CONFIG_IPV6_SUBTREES 6703 net->ipv6.fib6_routes_require_src = 0; 6704 #endif 6705 #endif 6706 6707 net->ipv6.sysctl.flush_delay = 0; 6708 net->ipv6.sysctl.ip6_rt_max_size = INT_MAX; 6709 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 6710 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 6711 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 6712 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 6713 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 6714 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 6715 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 6716 6717 atomic_set(&net->ipv6.ip6_rt_gc_expire, 30*HZ); 6718 6719 ret = 0; 6720 out: 6721 return ret; 6722 6723 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6724 out_ip6_prohibit_entry: 6725 kfree(net->ipv6.ip6_prohibit_entry); 6726 out_ip6_null_entry: 6727 kfree(net->ipv6.ip6_null_entry); 6728 #endif 6729 out_fib6_null_entry: 6730 kfree(net->ipv6.fib6_null_entry); 6731 out_ip6_dst_entries: 6732 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6733 out_ip6_dst_ops: 6734 goto out; 6735 } 6736 6737 static void __net_exit ip6_route_net_exit(struct net *net) 6738 { 6739 kfree(net->ipv6.fib6_null_entry); 6740 kfree(net->ipv6.ip6_null_entry); 6741 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6742 kfree(net->ipv6.ip6_prohibit_entry); 6743 kfree(net->ipv6.ip6_blk_hole_entry); 6744 #endif 6745 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6746 } 6747 6748 static int __net_init ip6_route_net_init_late(struct net *net) 6749 { 6750 #ifdef CONFIG_PROC_FS 6751 if (!proc_create_net("ipv6_route", 0, net->proc_net, 6752 &ipv6_route_seq_ops, 6753 sizeof(struct ipv6_route_iter))) 6754 return -ENOMEM; 6755 6756 if (!proc_create_net_single("rt6_stats", 0444, net->proc_net, 6757 rt6_stats_seq_show, NULL)) { 6758 remove_proc_entry("ipv6_route", net->proc_net); 6759 return -ENOMEM; 6760 } 6761 #endif 6762 return 0; 6763 } 6764 6765 static void __net_exit ip6_route_net_exit_late(struct net *net) 6766 { 6767 #ifdef CONFIG_PROC_FS 6768 remove_proc_entry("ipv6_route", net->proc_net); 6769 remove_proc_entry("rt6_stats", net->proc_net); 6770 #endif 6771 } 6772 6773 static struct pernet_operations ip6_route_net_ops = { 6774 .init = ip6_route_net_init, 6775 .exit = ip6_route_net_exit, 6776 }; 6777 6778 static int __net_init ipv6_inetpeer_init(struct net *net) 6779 { 6780 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 6781 6782 if (!bp) 6783 return -ENOMEM; 6784 inet_peer_base_init(bp); 6785 net->ipv6.peers = bp; 6786 return 0; 6787 } 6788 6789 static void __net_exit ipv6_inetpeer_exit(struct net *net) 6790 { 6791 struct inet_peer_base *bp = net->ipv6.peers; 6792 6793 net->ipv6.peers = NULL; 6794 inetpeer_invalidate_tree(bp); 6795 kfree(bp); 6796 } 6797 6798 static struct pernet_operations ipv6_inetpeer_ops = { 6799 .init = ipv6_inetpeer_init, 6800 .exit = ipv6_inetpeer_exit, 6801 }; 6802 6803 static struct pernet_operations ip6_route_net_late_ops = { 6804 .init = ip6_route_net_init_late, 6805 .exit = ip6_route_net_exit_late, 6806 }; 6807 6808 static struct notifier_block ip6_route_dev_notifier = { 6809 .notifier_call = ip6_route_dev_notify, 6810 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 6811 }; 6812 6813 void __init ip6_route_init_special_entries(void) 6814 { 6815 /* Registering of the loopback is done before this portion of code, 6816 * the loopback reference in rt6_info will not be taken, do it 6817 * manually for init_net */ 6818 init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; 6819 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 6820 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6821 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6822 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 6823 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6824 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 6825 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6826 #endif 6827 } 6828 6829 #if IS_BUILTIN(CONFIG_IPV6) 6830 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6831 DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt) 6832 6833 BTF_ID_LIST_SINGLE(btf_fib6_info_id, struct, fib6_info) 6834 6835 static const struct bpf_iter_seq_info ipv6_route_seq_info = { 6836 .seq_ops = &ipv6_route_seq_ops, 6837 .init_seq_private = bpf_iter_init_seq_net, 6838 .fini_seq_private = bpf_iter_fini_seq_net, 6839 .seq_priv_size = sizeof(struct ipv6_route_iter), 6840 }; 6841 6842 static struct bpf_iter_reg ipv6_route_reg_info = { 6843 .target = "ipv6_route", 6844 .ctx_arg_info_size = 1, 6845 .ctx_arg_info = { 6846 { offsetof(struct bpf_iter__ipv6_route, rt), 6847 PTR_TO_BTF_ID_OR_NULL }, 6848 }, 6849 .seq_info = &ipv6_route_seq_info, 6850 }; 6851 6852 static int __init bpf_iter_register(void) 6853 { 6854 ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id; 6855 return bpf_iter_reg_target(&ipv6_route_reg_info); 6856 } 6857 6858 static void bpf_iter_unregister(void) 6859 { 6860 bpf_iter_unreg_target(&ipv6_route_reg_info); 6861 } 6862 #endif 6863 #endif 6864 6865 static const struct rtnl_msg_handler ip6_route_rtnl_msg_handlers[] __initconst_or_module = { 6866 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_NEWROUTE, 6867 .doit = inet6_rtm_newroute, .flags = RTNL_FLAG_DOIT_UNLOCKED}, 6868 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_DELROUTE, 6869 .doit = inet6_rtm_delroute, .flags = RTNL_FLAG_DOIT_UNLOCKED}, 6870 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE, 6871 .doit = inet6_rtm_getroute, .flags = RTNL_FLAG_DOIT_UNLOCKED}, 6872 }; 6873 6874 int __init ip6_route_init(void) 6875 { 6876 int ret; 6877 int cpu; 6878 6879 ret = -ENOMEM; 6880 ip6_dst_ops_template.kmem_cachep = 6881 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 6882 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); 6883 if (!ip6_dst_ops_template.kmem_cachep) 6884 goto out; 6885 6886 ret = dst_entries_init(&ip6_dst_blackhole_ops); 6887 if (ret) 6888 goto out_kmem_cache; 6889 6890 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 6891 if (ret) 6892 goto out_dst_entries; 6893 6894 ret = register_pernet_subsys(&ip6_route_net_ops); 6895 if (ret) 6896 goto out_register_inetpeer; 6897 6898 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 6899 6900 ret = fib6_init(); 6901 if (ret) 6902 goto out_register_subsys; 6903 6904 ret = xfrm6_init(); 6905 if (ret) 6906 goto out_fib6_init; 6907 6908 ret = fib6_rules_init(); 6909 if (ret) 6910 goto xfrm6_init; 6911 6912 ret = register_pernet_subsys(&ip6_route_net_late_ops); 6913 if (ret) 6914 goto fib6_rules_init; 6915 6916 ret = rtnl_register_many(ip6_route_rtnl_msg_handlers); 6917 if (ret < 0) 6918 goto out_register_late_subsys; 6919 6920 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 6921 if (ret) 6922 goto out_register_late_subsys; 6923 6924 #if IS_BUILTIN(CONFIG_IPV6) 6925 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6926 ret = bpf_iter_register(); 6927 if (ret) 6928 goto out_register_late_subsys; 6929 #endif 6930 #endif 6931 6932 for_each_possible_cpu(cpu) { 6933 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 6934 6935 INIT_LIST_HEAD(&ul->head); 6936 spin_lock_init(&ul->lock); 6937 } 6938 6939 out: 6940 return ret; 6941 6942 out_register_late_subsys: 6943 rtnl_unregister_all(PF_INET6); 6944 unregister_pernet_subsys(&ip6_route_net_late_ops); 6945 fib6_rules_init: 6946 fib6_rules_cleanup(); 6947 xfrm6_init: 6948 xfrm6_fini(); 6949 out_fib6_init: 6950 fib6_gc_cleanup(); 6951 out_register_subsys: 6952 unregister_pernet_subsys(&ip6_route_net_ops); 6953 out_register_inetpeer: 6954 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6955 out_dst_entries: 6956 dst_entries_destroy(&ip6_dst_blackhole_ops); 6957 out_kmem_cache: 6958 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6959 goto out; 6960 } 6961 6962 void ip6_route_cleanup(void) 6963 { 6964 #if IS_BUILTIN(CONFIG_IPV6) 6965 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6966 bpf_iter_unregister(); 6967 #endif 6968 #endif 6969 unregister_netdevice_notifier(&ip6_route_dev_notifier); 6970 unregister_pernet_subsys(&ip6_route_net_late_ops); 6971 fib6_rules_cleanup(); 6972 xfrm6_fini(); 6973 fib6_gc_cleanup(); 6974 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6975 unregister_pernet_subsys(&ip6_route_net_ops); 6976 dst_entries_destroy(&ip6_dst_blackhole_ops); 6977 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6978 } 6979