1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * FIB front-end. 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 */ 9 10 /* Changes: 11 * 12 * YOSHIFUJI Hideaki @USAGI 13 * reworked default router selection. 14 * - respect outgoing interface 15 * - select from (probably) reachable routers (i.e. 16 * routers in REACHABLE, STALE, DELAY or PROBE states). 17 * - always select the same router if it is (probably) 18 * reachable. otherwise, round-robin the list. 19 * Ville Nuorvala 20 * Fixed routing subtrees. 21 */ 22 23 #define pr_fmt(fmt) "IPv6: " fmt 24 25 #include <linux/capability.h> 26 #include <linux/errno.h> 27 #include <linux/export.h> 28 #include <linux/types.h> 29 #include <linux/times.h> 30 #include <linux/socket.h> 31 #include <linux/sockios.h> 32 #include <linux/net.h> 33 #include <linux/route.h> 34 #include <linux/netdevice.h> 35 #include <linux/in6.h> 36 #include <linux/mroute6.h> 37 #include <linux/init.h> 38 #include <linux/if_arp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/nsproxy.h> 42 #include <linux/slab.h> 43 #include <linux/jhash.h> 44 #include <linux/siphash.h> 45 #include <net/net_namespace.h> 46 #include <net/snmp.h> 47 #include <net/ipv6.h> 48 #include <net/ip6_fib.h> 49 #include <net/ip6_route.h> 50 #include <net/ndisc.h> 51 #include <net/addrconf.h> 52 #include <net/tcp.h> 53 #include <linux/rtnetlink.h> 54 #include <net/dst.h> 55 #include <net/dst_metadata.h> 56 #include <net/xfrm.h> 57 #include <net/netevent.h> 58 #include <net/netlink.h> 59 #include <net/rtnh.h> 60 #include <net/lwtunnel.h> 61 #include <net/ip_tunnels.h> 62 #include <net/l3mdev.h> 63 #include <net/ip.h> 64 #include <linux/uaccess.h> 65 #include <linux/btf_ids.h> 66 67 #ifdef CONFIG_SYSCTL 68 #include <linux/sysctl.h> 69 #endif 70 71 static int ip6_rt_type_to_error(u8 fib6_type); 72 73 #define CREATE_TRACE_POINTS 74 #include <trace/events/fib6.h> 75 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 76 #undef CREATE_TRACE_POINTS 77 78 enum rt6_nud_state { 79 RT6_NUD_FAIL_HARD = -3, 80 RT6_NUD_FAIL_PROBE = -2, 81 RT6_NUD_FAIL_DO_RR = -1, 82 RT6_NUD_SUCCEED = 1 83 }; 84 85 INDIRECT_CALLABLE_SCOPE 86 struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 87 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 88 INDIRECT_CALLABLE_SCOPE 89 unsigned int ip6_mtu(const struct dst_entry *dst); 90 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 91 static void ip6_dst_destroy(struct dst_entry *); 92 static void ip6_dst_ifdown(struct dst_entry *, 93 struct net_device *dev, int how); 94 static int ip6_dst_gc(struct dst_ops *ops); 95 96 static int ip6_pkt_discard(struct sk_buff *skb); 97 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 98 static int ip6_pkt_prohibit(struct sk_buff *skb); 99 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 100 static void ip6_link_failure(struct sk_buff *skb); 101 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 102 struct sk_buff *skb, u32 mtu, 103 bool confirm_neigh); 104 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 105 struct sk_buff *skb); 106 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 107 int strict); 108 static size_t rt6_nlmsg_size(struct fib6_info *f6i); 109 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 110 struct fib6_info *rt, struct dst_entry *dst, 111 struct in6_addr *dest, struct in6_addr *src, 112 int iif, int type, u32 portid, u32 seq, 113 unsigned int flags); 114 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 115 const struct in6_addr *daddr, 116 const struct in6_addr *saddr); 117 118 #ifdef CONFIG_IPV6_ROUTE_INFO 119 static struct fib6_info *rt6_add_route_info(struct net *net, 120 const struct in6_addr *prefix, int prefixlen, 121 const struct in6_addr *gwaddr, 122 struct net_device *dev, 123 unsigned int pref); 124 static struct fib6_info *rt6_get_route_info(struct net *net, 125 const struct in6_addr *prefix, int prefixlen, 126 const struct in6_addr *gwaddr, 127 struct net_device *dev); 128 #endif 129 130 struct uncached_list { 131 spinlock_t lock; 132 struct list_head head; 133 struct list_head quarantine; 134 }; 135 136 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 137 138 void rt6_uncached_list_add(struct rt6_info *rt) 139 { 140 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 141 142 rt->rt6i_uncached_list = ul; 143 144 spin_lock_bh(&ul->lock); 145 list_add_tail(&rt->rt6i_uncached, &ul->head); 146 spin_unlock_bh(&ul->lock); 147 } 148 149 void rt6_uncached_list_del(struct rt6_info *rt) 150 { 151 if (!list_empty(&rt->rt6i_uncached)) { 152 struct uncached_list *ul = rt->rt6i_uncached_list; 153 154 spin_lock_bh(&ul->lock); 155 list_del_init(&rt->rt6i_uncached); 156 spin_unlock_bh(&ul->lock); 157 } 158 } 159 160 static void rt6_uncached_list_flush_dev(struct net_device *dev) 161 { 162 int cpu; 163 164 for_each_possible_cpu(cpu) { 165 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 166 struct rt6_info *rt, *safe; 167 168 if (list_empty(&ul->head)) 169 continue; 170 171 spin_lock_bh(&ul->lock); 172 list_for_each_entry_safe(rt, safe, &ul->head, rt6i_uncached) { 173 struct inet6_dev *rt_idev = rt->rt6i_idev; 174 struct net_device *rt_dev = rt->dst.dev; 175 bool handled = false; 176 177 if (rt_idev->dev == dev) { 178 rt->rt6i_idev = in6_dev_get(blackhole_netdev); 179 in6_dev_put(rt_idev); 180 handled = true; 181 } 182 183 if (rt_dev == dev) { 184 rt->dst.dev = blackhole_netdev; 185 dev_replace_track(rt_dev, blackhole_netdev, 186 &rt->dst.dev_tracker, 187 GFP_ATOMIC); 188 handled = true; 189 } 190 if (handled) 191 list_move(&rt->rt6i_uncached, 192 &ul->quarantine); 193 } 194 spin_unlock_bh(&ul->lock); 195 } 196 } 197 198 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 199 struct sk_buff *skb, 200 const void *daddr) 201 { 202 if (!ipv6_addr_any(p)) 203 return (const void *) p; 204 else if (skb) 205 return &ipv6_hdr(skb)->daddr; 206 return daddr; 207 } 208 209 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 210 struct net_device *dev, 211 struct sk_buff *skb, 212 const void *daddr) 213 { 214 struct neighbour *n; 215 216 daddr = choose_neigh_daddr(gw, skb, daddr); 217 n = __ipv6_neigh_lookup(dev, daddr); 218 if (n) 219 return n; 220 221 n = neigh_create(&nd_tbl, daddr, dev); 222 return IS_ERR(n) ? NULL : n; 223 } 224 225 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 226 struct sk_buff *skb, 227 const void *daddr) 228 { 229 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); 230 231 return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any), 232 dst->dev, skb, daddr); 233 } 234 235 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 236 { 237 struct net_device *dev = dst->dev; 238 struct rt6_info *rt = (struct rt6_info *)dst; 239 240 daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr); 241 if (!daddr) 242 return; 243 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 244 return; 245 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 246 return; 247 __ipv6_confirm_neigh(dev, daddr); 248 } 249 250 static struct dst_ops ip6_dst_ops_template = { 251 .family = AF_INET6, 252 .gc = ip6_dst_gc, 253 .gc_thresh = 1024, 254 .check = ip6_dst_check, 255 .default_advmss = ip6_default_advmss, 256 .mtu = ip6_mtu, 257 .cow_metrics = dst_cow_metrics_generic, 258 .destroy = ip6_dst_destroy, 259 .ifdown = ip6_dst_ifdown, 260 .negative_advice = ip6_negative_advice, 261 .link_failure = ip6_link_failure, 262 .update_pmtu = ip6_rt_update_pmtu, 263 .redirect = rt6_do_redirect, 264 .local_out = __ip6_local_out, 265 .neigh_lookup = ip6_dst_neigh_lookup, 266 .confirm_neigh = ip6_confirm_neigh, 267 }; 268 269 static struct dst_ops ip6_dst_blackhole_ops = { 270 .family = AF_INET6, 271 .default_advmss = ip6_default_advmss, 272 .neigh_lookup = ip6_dst_neigh_lookup, 273 .check = ip6_dst_check, 274 .destroy = ip6_dst_destroy, 275 .cow_metrics = dst_cow_metrics_generic, 276 .update_pmtu = dst_blackhole_update_pmtu, 277 .redirect = dst_blackhole_redirect, 278 .mtu = dst_blackhole_mtu, 279 }; 280 281 static const u32 ip6_template_metrics[RTAX_MAX] = { 282 [RTAX_HOPLIMIT - 1] = 0, 283 }; 284 285 static const struct fib6_info fib6_null_entry_template = { 286 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 287 .fib6_protocol = RTPROT_KERNEL, 288 .fib6_metric = ~(u32)0, 289 .fib6_ref = REFCOUNT_INIT(1), 290 .fib6_type = RTN_UNREACHABLE, 291 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 292 }; 293 294 static const struct rt6_info ip6_null_entry_template = { 295 .dst = { 296 .__refcnt = ATOMIC_INIT(1), 297 .__use = 1, 298 .obsolete = DST_OBSOLETE_FORCE_CHK, 299 .error = -ENETUNREACH, 300 .input = ip6_pkt_discard, 301 .output = ip6_pkt_discard_out, 302 }, 303 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 304 }; 305 306 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 307 308 static const struct rt6_info ip6_prohibit_entry_template = { 309 .dst = { 310 .__refcnt = ATOMIC_INIT(1), 311 .__use = 1, 312 .obsolete = DST_OBSOLETE_FORCE_CHK, 313 .error = -EACCES, 314 .input = ip6_pkt_prohibit, 315 .output = ip6_pkt_prohibit_out, 316 }, 317 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 318 }; 319 320 static const struct rt6_info ip6_blk_hole_entry_template = { 321 .dst = { 322 .__refcnt = ATOMIC_INIT(1), 323 .__use = 1, 324 .obsolete = DST_OBSOLETE_FORCE_CHK, 325 .error = -EINVAL, 326 .input = dst_discard, 327 .output = dst_discard_out, 328 }, 329 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 330 }; 331 332 #endif 333 334 static void rt6_info_init(struct rt6_info *rt) 335 { 336 memset_after(rt, 0, dst); 337 INIT_LIST_HEAD(&rt->rt6i_uncached); 338 } 339 340 /* allocate dst with ip6_dst_ops */ 341 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 342 int flags) 343 { 344 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 345 1, DST_OBSOLETE_FORCE_CHK, flags); 346 347 if (rt) { 348 rt6_info_init(rt); 349 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 350 } 351 352 return rt; 353 } 354 EXPORT_SYMBOL(ip6_dst_alloc); 355 356 static void ip6_dst_destroy(struct dst_entry *dst) 357 { 358 struct rt6_info *rt = (struct rt6_info *)dst; 359 struct fib6_info *from; 360 struct inet6_dev *idev; 361 362 ip_dst_metrics_put(dst); 363 rt6_uncached_list_del(rt); 364 365 idev = rt->rt6i_idev; 366 if (idev) { 367 rt->rt6i_idev = NULL; 368 in6_dev_put(idev); 369 } 370 371 from = xchg((__force struct fib6_info **)&rt->from, NULL); 372 fib6_info_release(from); 373 } 374 375 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 376 int how) 377 { 378 struct rt6_info *rt = (struct rt6_info *)dst; 379 struct inet6_dev *idev = rt->rt6i_idev; 380 381 if (idev && idev->dev != blackhole_netdev) { 382 struct inet6_dev *blackhole_idev = in6_dev_get(blackhole_netdev); 383 384 if (blackhole_idev) { 385 rt->rt6i_idev = blackhole_idev; 386 in6_dev_put(idev); 387 } 388 } 389 } 390 391 static bool __rt6_check_expired(const struct rt6_info *rt) 392 { 393 if (rt->rt6i_flags & RTF_EXPIRES) 394 return time_after(jiffies, rt->dst.expires); 395 else 396 return false; 397 } 398 399 static bool rt6_check_expired(const struct rt6_info *rt) 400 { 401 struct fib6_info *from; 402 403 from = rcu_dereference(rt->from); 404 405 if (rt->rt6i_flags & RTF_EXPIRES) { 406 if (time_after(jiffies, rt->dst.expires)) 407 return true; 408 } else if (from) { 409 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || 410 fib6_check_expired(from); 411 } 412 return false; 413 } 414 415 void fib6_select_path(const struct net *net, struct fib6_result *res, 416 struct flowi6 *fl6, int oif, bool have_oif_match, 417 const struct sk_buff *skb, int strict) 418 { 419 struct fib6_info *sibling, *next_sibling; 420 struct fib6_info *match = res->f6i; 421 422 if (!match->nh && (!match->fib6_nsiblings || have_oif_match)) 423 goto out; 424 425 if (match->nh && have_oif_match && res->nh) 426 return; 427 428 /* We might have already computed the hash for ICMPv6 errors. In such 429 * case it will always be non-zero. Otherwise now is the time to do it. 430 */ 431 if (!fl6->mp_hash && 432 (!match->nh || nexthop_is_multipath(match->nh))) 433 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 434 435 if (unlikely(match->nh)) { 436 nexthop_path_fib6_result(res, fl6->mp_hash); 437 return; 438 } 439 440 if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound)) 441 goto out; 442 443 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, 444 fib6_siblings) { 445 const struct fib6_nh *nh = sibling->fib6_nh; 446 int nh_upper_bound; 447 448 nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); 449 if (fl6->mp_hash > nh_upper_bound) 450 continue; 451 if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) 452 break; 453 match = sibling; 454 break; 455 } 456 457 out: 458 res->f6i = match; 459 res->nh = match->fib6_nh; 460 } 461 462 /* 463 * Route lookup. rcu_read_lock() should be held. 464 */ 465 466 static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, 467 const struct in6_addr *saddr, int oif, int flags) 468 { 469 const struct net_device *dev; 470 471 if (nh->fib_nh_flags & RTNH_F_DEAD) 472 return false; 473 474 dev = nh->fib_nh_dev; 475 if (oif) { 476 if (dev->ifindex == oif) 477 return true; 478 } else { 479 if (ipv6_chk_addr(net, saddr, dev, 480 flags & RT6_LOOKUP_F_IFACE)) 481 return true; 482 } 483 484 return false; 485 } 486 487 struct fib6_nh_dm_arg { 488 struct net *net; 489 const struct in6_addr *saddr; 490 int oif; 491 int flags; 492 struct fib6_nh *nh; 493 }; 494 495 static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) 496 { 497 struct fib6_nh_dm_arg *arg = _arg; 498 499 arg->nh = nh; 500 return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, 501 arg->flags); 502 } 503 504 /* returns fib6_nh from nexthop or NULL */ 505 static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, 506 struct fib6_result *res, 507 const struct in6_addr *saddr, 508 int oif, int flags) 509 { 510 struct fib6_nh_dm_arg arg = { 511 .net = net, 512 .saddr = saddr, 513 .oif = oif, 514 .flags = flags, 515 }; 516 517 if (nexthop_is_blackhole(nh)) 518 return NULL; 519 520 if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) 521 return arg.nh; 522 523 return NULL; 524 } 525 526 static void rt6_device_match(struct net *net, struct fib6_result *res, 527 const struct in6_addr *saddr, int oif, int flags) 528 { 529 struct fib6_info *f6i = res->f6i; 530 struct fib6_info *spf6i; 531 struct fib6_nh *nh; 532 533 if (!oif && ipv6_addr_any(saddr)) { 534 if (unlikely(f6i->nh)) { 535 nh = nexthop_fib6_nh(f6i->nh); 536 if (nexthop_is_blackhole(f6i->nh)) 537 goto out_blackhole; 538 } else { 539 nh = f6i->fib6_nh; 540 } 541 if (!(nh->fib_nh_flags & RTNH_F_DEAD)) 542 goto out; 543 } 544 545 for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { 546 bool matched = false; 547 548 if (unlikely(spf6i->nh)) { 549 nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, 550 oif, flags); 551 if (nh) 552 matched = true; 553 } else { 554 nh = spf6i->fib6_nh; 555 if (__rt6_device_match(net, nh, saddr, oif, flags)) 556 matched = true; 557 } 558 if (matched) { 559 res->f6i = spf6i; 560 goto out; 561 } 562 } 563 564 if (oif && flags & RT6_LOOKUP_F_IFACE) { 565 res->f6i = net->ipv6.fib6_null_entry; 566 nh = res->f6i->fib6_nh; 567 goto out; 568 } 569 570 if (unlikely(f6i->nh)) { 571 nh = nexthop_fib6_nh(f6i->nh); 572 if (nexthop_is_blackhole(f6i->nh)) 573 goto out_blackhole; 574 } else { 575 nh = f6i->fib6_nh; 576 } 577 578 if (nh->fib_nh_flags & RTNH_F_DEAD) { 579 res->f6i = net->ipv6.fib6_null_entry; 580 nh = res->f6i->fib6_nh; 581 } 582 out: 583 res->nh = nh; 584 res->fib6_type = res->f6i->fib6_type; 585 res->fib6_flags = res->f6i->fib6_flags; 586 return; 587 588 out_blackhole: 589 res->fib6_flags |= RTF_REJECT; 590 res->fib6_type = RTN_BLACKHOLE; 591 res->nh = nh; 592 } 593 594 #ifdef CONFIG_IPV6_ROUTER_PREF 595 struct __rt6_probe_work { 596 struct work_struct work; 597 struct in6_addr target; 598 struct net_device *dev; 599 netdevice_tracker dev_tracker; 600 }; 601 602 static void rt6_probe_deferred(struct work_struct *w) 603 { 604 struct in6_addr mcaddr; 605 struct __rt6_probe_work *work = 606 container_of(w, struct __rt6_probe_work, work); 607 608 addrconf_addr_solict_mult(&work->target, &mcaddr); 609 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 610 dev_put_track(work->dev, &work->dev_tracker); 611 kfree(work); 612 } 613 614 static void rt6_probe(struct fib6_nh *fib6_nh) 615 { 616 struct __rt6_probe_work *work = NULL; 617 const struct in6_addr *nh_gw; 618 unsigned long last_probe; 619 struct neighbour *neigh; 620 struct net_device *dev; 621 struct inet6_dev *idev; 622 623 /* 624 * Okay, this does not seem to be appropriate 625 * for now, however, we need to check if it 626 * is really so; aka Router Reachability Probing. 627 * 628 * Router Reachability Probe MUST be rate-limited 629 * to no more than one per minute. 630 */ 631 if (!fib6_nh->fib_nh_gw_family) 632 return; 633 634 nh_gw = &fib6_nh->fib_nh_gw6; 635 dev = fib6_nh->fib_nh_dev; 636 rcu_read_lock_bh(); 637 last_probe = READ_ONCE(fib6_nh->last_probe); 638 idev = __in6_dev_get(dev); 639 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 640 if (neigh) { 641 if (neigh->nud_state & NUD_VALID) 642 goto out; 643 644 write_lock(&neigh->lock); 645 if (!(neigh->nud_state & NUD_VALID) && 646 time_after(jiffies, 647 neigh->updated + idev->cnf.rtr_probe_interval)) { 648 work = kmalloc(sizeof(*work), GFP_ATOMIC); 649 if (work) 650 __neigh_set_probe_once(neigh); 651 } 652 write_unlock(&neigh->lock); 653 } else if (time_after(jiffies, last_probe + 654 idev->cnf.rtr_probe_interval)) { 655 work = kmalloc(sizeof(*work), GFP_ATOMIC); 656 } 657 658 if (!work || cmpxchg(&fib6_nh->last_probe, 659 last_probe, jiffies) != last_probe) { 660 kfree(work); 661 } else { 662 INIT_WORK(&work->work, rt6_probe_deferred); 663 work->target = *nh_gw; 664 dev_hold_track(dev, &work->dev_tracker, GFP_ATOMIC); 665 work->dev = dev; 666 schedule_work(&work->work); 667 } 668 669 out: 670 rcu_read_unlock_bh(); 671 } 672 #else 673 static inline void rt6_probe(struct fib6_nh *fib6_nh) 674 { 675 } 676 #endif 677 678 /* 679 * Default Router Selection (RFC 2461 6.3.6) 680 */ 681 static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) 682 { 683 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 684 struct neighbour *neigh; 685 686 rcu_read_lock_bh(); 687 neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, 688 &fib6_nh->fib_nh_gw6); 689 if (neigh) { 690 read_lock(&neigh->lock); 691 if (neigh->nud_state & NUD_VALID) 692 ret = RT6_NUD_SUCCEED; 693 #ifdef CONFIG_IPV6_ROUTER_PREF 694 else if (!(neigh->nud_state & NUD_FAILED)) 695 ret = RT6_NUD_SUCCEED; 696 else 697 ret = RT6_NUD_FAIL_PROBE; 698 #endif 699 read_unlock(&neigh->lock); 700 } else { 701 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 702 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 703 } 704 rcu_read_unlock_bh(); 705 706 return ret; 707 } 708 709 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 710 int strict) 711 { 712 int m = 0; 713 714 if (!oif || nh->fib_nh_dev->ifindex == oif) 715 m = 2; 716 717 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 718 return RT6_NUD_FAIL_HARD; 719 #ifdef CONFIG_IPV6_ROUTER_PREF 720 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; 721 #endif 722 if ((strict & RT6_LOOKUP_F_REACHABLE) && 723 !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { 724 int n = rt6_check_neigh(nh); 725 if (n < 0) 726 return n; 727 } 728 return m; 729 } 730 731 static bool find_match(struct fib6_nh *nh, u32 fib6_flags, 732 int oif, int strict, int *mpri, bool *do_rr) 733 { 734 bool match_do_rr = false; 735 bool rc = false; 736 int m; 737 738 if (nh->fib_nh_flags & RTNH_F_DEAD) 739 goto out; 740 741 if (ip6_ignore_linkdown(nh->fib_nh_dev) && 742 nh->fib_nh_flags & RTNH_F_LINKDOWN && 743 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 744 goto out; 745 746 m = rt6_score_route(nh, fib6_flags, oif, strict); 747 if (m == RT6_NUD_FAIL_DO_RR) { 748 match_do_rr = true; 749 m = 0; /* lowest valid score */ 750 } else if (m == RT6_NUD_FAIL_HARD) { 751 goto out; 752 } 753 754 if (strict & RT6_LOOKUP_F_REACHABLE) 755 rt6_probe(nh); 756 757 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 758 if (m > *mpri) { 759 *do_rr = match_do_rr; 760 *mpri = m; 761 rc = true; 762 } 763 out: 764 return rc; 765 } 766 767 struct fib6_nh_frl_arg { 768 u32 flags; 769 int oif; 770 int strict; 771 int *mpri; 772 bool *do_rr; 773 struct fib6_nh *nh; 774 }; 775 776 static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) 777 { 778 struct fib6_nh_frl_arg *arg = _arg; 779 780 arg->nh = nh; 781 return find_match(nh, arg->flags, arg->oif, arg->strict, 782 arg->mpri, arg->do_rr); 783 } 784 785 static void __find_rr_leaf(struct fib6_info *f6i_start, 786 struct fib6_info *nomatch, u32 metric, 787 struct fib6_result *res, struct fib6_info **cont, 788 int oif, int strict, bool *do_rr, int *mpri) 789 { 790 struct fib6_info *f6i; 791 792 for (f6i = f6i_start; 793 f6i && f6i != nomatch; 794 f6i = rcu_dereference(f6i->fib6_next)) { 795 bool matched = false; 796 struct fib6_nh *nh; 797 798 if (cont && f6i->fib6_metric != metric) { 799 *cont = f6i; 800 return; 801 } 802 803 if (fib6_check_expired(f6i)) 804 continue; 805 806 if (unlikely(f6i->nh)) { 807 struct fib6_nh_frl_arg arg = { 808 .flags = f6i->fib6_flags, 809 .oif = oif, 810 .strict = strict, 811 .mpri = mpri, 812 .do_rr = do_rr 813 }; 814 815 if (nexthop_is_blackhole(f6i->nh)) { 816 res->fib6_flags = RTF_REJECT; 817 res->fib6_type = RTN_BLACKHOLE; 818 res->f6i = f6i; 819 res->nh = nexthop_fib6_nh(f6i->nh); 820 return; 821 } 822 if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, 823 &arg)) { 824 matched = true; 825 nh = arg.nh; 826 } 827 } else { 828 nh = f6i->fib6_nh; 829 if (find_match(nh, f6i->fib6_flags, oif, strict, 830 mpri, do_rr)) 831 matched = true; 832 } 833 if (matched) { 834 res->f6i = f6i; 835 res->nh = nh; 836 res->fib6_flags = f6i->fib6_flags; 837 res->fib6_type = f6i->fib6_type; 838 } 839 } 840 } 841 842 static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, 843 struct fib6_info *rr_head, int oif, int strict, 844 bool *do_rr, struct fib6_result *res) 845 { 846 u32 metric = rr_head->fib6_metric; 847 struct fib6_info *cont = NULL; 848 int mpri = -1; 849 850 __find_rr_leaf(rr_head, NULL, metric, res, &cont, 851 oif, strict, do_rr, &mpri); 852 853 __find_rr_leaf(leaf, rr_head, metric, res, &cont, 854 oif, strict, do_rr, &mpri); 855 856 if (res->f6i || !cont) 857 return; 858 859 __find_rr_leaf(cont, NULL, metric, res, NULL, 860 oif, strict, do_rr, &mpri); 861 } 862 863 static void rt6_select(struct net *net, struct fib6_node *fn, int oif, 864 struct fib6_result *res, int strict) 865 { 866 struct fib6_info *leaf = rcu_dereference(fn->leaf); 867 struct fib6_info *rt0; 868 bool do_rr = false; 869 int key_plen; 870 871 /* make sure this function or its helpers sets f6i */ 872 res->f6i = NULL; 873 874 if (!leaf || leaf == net->ipv6.fib6_null_entry) 875 goto out; 876 877 rt0 = rcu_dereference(fn->rr_ptr); 878 if (!rt0) 879 rt0 = leaf; 880 881 /* Double check to make sure fn is not an intermediate node 882 * and fn->leaf does not points to its child's leaf 883 * (This might happen if all routes under fn are deleted from 884 * the tree and fib6_repair_tree() is called on the node.) 885 */ 886 key_plen = rt0->fib6_dst.plen; 887 #ifdef CONFIG_IPV6_SUBTREES 888 if (rt0->fib6_src.plen) 889 key_plen = rt0->fib6_src.plen; 890 #endif 891 if (fn->fn_bit != key_plen) 892 goto out; 893 894 find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); 895 if (do_rr) { 896 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 897 898 /* no entries matched; do round-robin */ 899 if (!next || next->fib6_metric != rt0->fib6_metric) 900 next = leaf; 901 902 if (next != rt0) { 903 spin_lock_bh(&leaf->fib6_table->tb6_lock); 904 /* make sure next is not being deleted from the tree */ 905 if (next->fib6_node) 906 rcu_assign_pointer(fn->rr_ptr, next); 907 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 908 } 909 } 910 911 out: 912 if (!res->f6i) { 913 res->f6i = net->ipv6.fib6_null_entry; 914 res->nh = res->f6i->fib6_nh; 915 res->fib6_flags = res->f6i->fib6_flags; 916 res->fib6_type = res->f6i->fib6_type; 917 } 918 } 919 920 static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) 921 { 922 return (res->f6i->fib6_flags & RTF_NONEXTHOP) || 923 res->nh->fib_nh_gw_family; 924 } 925 926 #ifdef CONFIG_IPV6_ROUTE_INFO 927 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 928 const struct in6_addr *gwaddr) 929 { 930 struct net *net = dev_net(dev); 931 struct route_info *rinfo = (struct route_info *) opt; 932 struct in6_addr prefix_buf, *prefix; 933 unsigned int pref; 934 unsigned long lifetime; 935 struct fib6_info *rt; 936 937 if (len < sizeof(struct route_info)) { 938 return -EINVAL; 939 } 940 941 /* Sanity check for prefix_len and length */ 942 if (rinfo->length > 3) { 943 return -EINVAL; 944 } else if (rinfo->prefix_len > 128) { 945 return -EINVAL; 946 } else if (rinfo->prefix_len > 64) { 947 if (rinfo->length < 2) { 948 return -EINVAL; 949 } 950 } else if (rinfo->prefix_len > 0) { 951 if (rinfo->length < 1) { 952 return -EINVAL; 953 } 954 } 955 956 pref = rinfo->route_pref; 957 if (pref == ICMPV6_ROUTER_PREF_INVALID) 958 return -EINVAL; 959 960 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 961 962 if (rinfo->length == 3) 963 prefix = (struct in6_addr *)rinfo->prefix; 964 else { 965 /* this function is safe */ 966 ipv6_addr_prefix(&prefix_buf, 967 (struct in6_addr *)rinfo->prefix, 968 rinfo->prefix_len); 969 prefix = &prefix_buf; 970 } 971 972 if (rinfo->prefix_len == 0) 973 rt = rt6_get_dflt_router(net, gwaddr, dev); 974 else 975 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 976 gwaddr, dev); 977 978 if (rt && !lifetime) { 979 ip6_del_rt(net, rt, false); 980 rt = NULL; 981 } 982 983 if (!rt && lifetime) 984 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 985 dev, pref); 986 else if (rt) 987 rt->fib6_flags = RTF_ROUTEINFO | 988 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 989 990 if (rt) { 991 if (!addrconf_finite_timeout(lifetime)) 992 fib6_clean_expires(rt); 993 else 994 fib6_set_expires(rt, jiffies + HZ * lifetime); 995 996 fib6_info_release(rt); 997 } 998 return 0; 999 } 1000 #endif 1001 1002 /* 1003 * Misc support functions 1004 */ 1005 1006 /* called with rcu_lock held */ 1007 static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) 1008 { 1009 struct net_device *dev = res->nh->fib_nh_dev; 1010 1011 if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 1012 /* for copies of local routes, dst->dev needs to be the 1013 * device if it is a master device, the master device if 1014 * device is enslaved, and the loopback as the default 1015 */ 1016 if (netif_is_l3_slave(dev) && 1017 !rt6_need_strict(&res->f6i->fib6_dst.addr)) 1018 dev = l3mdev_master_dev_rcu(dev); 1019 else if (!netif_is_l3_master(dev)) 1020 dev = dev_net(dev)->loopback_dev; 1021 /* last case is netif_is_l3_master(dev) is true in which 1022 * case we want dev returned to be dev 1023 */ 1024 } 1025 1026 return dev; 1027 } 1028 1029 static const int fib6_prop[RTN_MAX + 1] = { 1030 [RTN_UNSPEC] = 0, 1031 [RTN_UNICAST] = 0, 1032 [RTN_LOCAL] = 0, 1033 [RTN_BROADCAST] = 0, 1034 [RTN_ANYCAST] = 0, 1035 [RTN_MULTICAST] = 0, 1036 [RTN_BLACKHOLE] = -EINVAL, 1037 [RTN_UNREACHABLE] = -EHOSTUNREACH, 1038 [RTN_PROHIBIT] = -EACCES, 1039 [RTN_THROW] = -EAGAIN, 1040 [RTN_NAT] = -EINVAL, 1041 [RTN_XRESOLVE] = -EINVAL, 1042 }; 1043 1044 static int ip6_rt_type_to_error(u8 fib6_type) 1045 { 1046 return fib6_prop[fib6_type]; 1047 } 1048 1049 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 1050 { 1051 unsigned short flags = 0; 1052 1053 if (rt->dst_nocount) 1054 flags |= DST_NOCOUNT; 1055 if (rt->dst_nopolicy) 1056 flags |= DST_NOPOLICY; 1057 1058 return flags; 1059 } 1060 1061 static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) 1062 { 1063 rt->dst.error = ip6_rt_type_to_error(fib6_type); 1064 1065 switch (fib6_type) { 1066 case RTN_BLACKHOLE: 1067 rt->dst.output = dst_discard_out; 1068 rt->dst.input = dst_discard; 1069 break; 1070 case RTN_PROHIBIT: 1071 rt->dst.output = ip6_pkt_prohibit_out; 1072 rt->dst.input = ip6_pkt_prohibit; 1073 break; 1074 case RTN_THROW: 1075 case RTN_UNREACHABLE: 1076 default: 1077 rt->dst.output = ip6_pkt_discard_out; 1078 rt->dst.input = ip6_pkt_discard; 1079 break; 1080 } 1081 } 1082 1083 static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) 1084 { 1085 struct fib6_info *f6i = res->f6i; 1086 1087 if (res->fib6_flags & RTF_REJECT) { 1088 ip6_rt_init_dst_reject(rt, res->fib6_type); 1089 return; 1090 } 1091 1092 rt->dst.error = 0; 1093 rt->dst.output = ip6_output; 1094 1095 if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { 1096 rt->dst.input = ip6_input; 1097 } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 1098 rt->dst.input = ip6_mc_input; 1099 } else { 1100 rt->dst.input = ip6_forward; 1101 } 1102 1103 if (res->nh->fib_nh_lws) { 1104 rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); 1105 lwtunnel_set_redirect(&rt->dst); 1106 } 1107 1108 rt->dst.lastuse = jiffies; 1109 } 1110 1111 /* Caller must already hold reference to @from */ 1112 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 1113 { 1114 rt->rt6i_flags &= ~RTF_EXPIRES; 1115 rcu_assign_pointer(rt->from, from); 1116 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 1117 } 1118 1119 /* Caller must already hold reference to f6i in result */ 1120 static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) 1121 { 1122 const struct fib6_nh *nh = res->nh; 1123 const struct net_device *dev = nh->fib_nh_dev; 1124 struct fib6_info *f6i = res->f6i; 1125 1126 ip6_rt_init_dst(rt, res); 1127 1128 rt->rt6i_dst = f6i->fib6_dst; 1129 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 1130 rt->rt6i_flags = res->fib6_flags; 1131 if (nh->fib_nh_gw_family) { 1132 rt->rt6i_gateway = nh->fib_nh_gw6; 1133 rt->rt6i_flags |= RTF_GATEWAY; 1134 } 1135 rt6_set_from(rt, f6i); 1136 #ifdef CONFIG_IPV6_SUBTREES 1137 rt->rt6i_src = f6i->fib6_src; 1138 #endif 1139 } 1140 1141 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1142 struct in6_addr *saddr) 1143 { 1144 struct fib6_node *pn, *sn; 1145 while (1) { 1146 if (fn->fn_flags & RTN_TL_ROOT) 1147 return NULL; 1148 pn = rcu_dereference(fn->parent); 1149 sn = FIB6_SUBTREE(pn); 1150 if (sn && sn != fn) 1151 fn = fib6_node_lookup(sn, NULL, saddr); 1152 else 1153 fn = pn; 1154 if (fn->fn_flags & RTN_RTINFO) 1155 return fn; 1156 } 1157 } 1158 1159 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) 1160 { 1161 struct rt6_info *rt = *prt; 1162 1163 if (dst_hold_safe(&rt->dst)) 1164 return true; 1165 if (net) { 1166 rt = net->ipv6.ip6_null_entry; 1167 dst_hold(&rt->dst); 1168 } else { 1169 rt = NULL; 1170 } 1171 *prt = rt; 1172 return false; 1173 } 1174 1175 /* called with rcu_lock held */ 1176 static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) 1177 { 1178 struct net_device *dev = res->nh->fib_nh_dev; 1179 struct fib6_info *f6i = res->f6i; 1180 unsigned short flags; 1181 struct rt6_info *nrt; 1182 1183 if (!fib6_info_hold_safe(f6i)) 1184 goto fallback; 1185 1186 flags = fib6_info_dst_flags(f6i); 1187 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1188 if (!nrt) { 1189 fib6_info_release(f6i); 1190 goto fallback; 1191 } 1192 1193 ip6_rt_copy_init(nrt, res); 1194 return nrt; 1195 1196 fallback: 1197 nrt = dev_net(dev)->ipv6.ip6_null_entry; 1198 dst_hold(&nrt->dst); 1199 return nrt; 1200 } 1201 1202 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net, 1203 struct fib6_table *table, 1204 struct flowi6 *fl6, 1205 const struct sk_buff *skb, 1206 int flags) 1207 { 1208 struct fib6_result res = {}; 1209 struct fib6_node *fn; 1210 struct rt6_info *rt; 1211 1212 rcu_read_lock(); 1213 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1214 restart: 1215 res.f6i = rcu_dereference(fn->leaf); 1216 if (!res.f6i) 1217 res.f6i = net->ipv6.fib6_null_entry; 1218 else 1219 rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, 1220 flags); 1221 1222 if (res.f6i == net->ipv6.fib6_null_entry) { 1223 fn = fib6_backtrack(fn, &fl6->saddr); 1224 if (fn) 1225 goto restart; 1226 1227 rt = net->ipv6.ip6_null_entry; 1228 dst_hold(&rt->dst); 1229 goto out; 1230 } else if (res.fib6_flags & RTF_REJECT) { 1231 goto do_create; 1232 } 1233 1234 fib6_select_path(net, &res, fl6, fl6->flowi6_oif, 1235 fl6->flowi6_oif != 0, skb, flags); 1236 1237 /* Search through exception table */ 1238 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 1239 if (rt) { 1240 if (ip6_hold_safe(net, &rt)) 1241 dst_use_noref(&rt->dst, jiffies); 1242 } else { 1243 do_create: 1244 rt = ip6_create_rt_rcu(&res); 1245 } 1246 1247 out: 1248 trace_fib6_table_lookup(net, &res, table, fl6); 1249 1250 rcu_read_unlock(); 1251 1252 return rt; 1253 } 1254 1255 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1256 const struct sk_buff *skb, int flags) 1257 { 1258 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1259 } 1260 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1261 1262 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1263 const struct in6_addr *saddr, int oif, 1264 const struct sk_buff *skb, int strict) 1265 { 1266 struct flowi6 fl6 = { 1267 .flowi6_oif = oif, 1268 .daddr = *daddr, 1269 }; 1270 struct dst_entry *dst; 1271 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1272 1273 if (saddr) { 1274 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1275 flags |= RT6_LOOKUP_F_HAS_SADDR; 1276 } 1277 1278 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1279 if (dst->error == 0) 1280 return (struct rt6_info *) dst; 1281 1282 dst_release(dst); 1283 1284 return NULL; 1285 } 1286 EXPORT_SYMBOL(rt6_lookup); 1287 1288 /* ip6_ins_rt is called with FREE table->tb6_lock. 1289 * It takes new route entry, the addition fails by any reason the 1290 * route is released. 1291 * Caller must hold dst before calling it. 1292 */ 1293 1294 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1295 struct netlink_ext_ack *extack) 1296 { 1297 int err; 1298 struct fib6_table *table; 1299 1300 table = rt->fib6_table; 1301 spin_lock_bh(&table->tb6_lock); 1302 err = fib6_add(&table->tb6_root, rt, info, extack); 1303 spin_unlock_bh(&table->tb6_lock); 1304 1305 return err; 1306 } 1307 1308 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1309 { 1310 struct nl_info info = { .nl_net = net, }; 1311 1312 return __ip6_ins_rt(rt, &info, NULL); 1313 } 1314 1315 static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, 1316 const struct in6_addr *daddr, 1317 const struct in6_addr *saddr) 1318 { 1319 struct fib6_info *f6i = res->f6i; 1320 struct net_device *dev; 1321 struct rt6_info *rt; 1322 1323 /* 1324 * Clone the route. 1325 */ 1326 1327 if (!fib6_info_hold_safe(f6i)) 1328 return NULL; 1329 1330 dev = ip6_rt_get_dev_rcu(res); 1331 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1332 if (!rt) { 1333 fib6_info_release(f6i); 1334 return NULL; 1335 } 1336 1337 ip6_rt_copy_init(rt, res); 1338 rt->rt6i_flags |= RTF_CACHE; 1339 rt->rt6i_dst.addr = *daddr; 1340 rt->rt6i_dst.plen = 128; 1341 1342 if (!rt6_is_gw_or_nonexthop(res)) { 1343 if (f6i->fib6_dst.plen != 128 && 1344 ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) 1345 rt->rt6i_flags |= RTF_ANYCAST; 1346 #ifdef CONFIG_IPV6_SUBTREES 1347 if (rt->rt6i_src.plen && saddr) { 1348 rt->rt6i_src.addr = *saddr; 1349 rt->rt6i_src.plen = 128; 1350 } 1351 #endif 1352 } 1353 1354 return rt; 1355 } 1356 1357 static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) 1358 { 1359 struct fib6_info *f6i = res->f6i; 1360 unsigned short flags = fib6_info_dst_flags(f6i); 1361 struct net_device *dev; 1362 struct rt6_info *pcpu_rt; 1363 1364 if (!fib6_info_hold_safe(f6i)) 1365 return NULL; 1366 1367 rcu_read_lock(); 1368 dev = ip6_rt_get_dev_rcu(res); 1369 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT); 1370 rcu_read_unlock(); 1371 if (!pcpu_rt) { 1372 fib6_info_release(f6i); 1373 return NULL; 1374 } 1375 ip6_rt_copy_init(pcpu_rt, res); 1376 pcpu_rt->rt6i_flags |= RTF_PCPU; 1377 1378 if (f6i->nh) 1379 pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev)); 1380 1381 return pcpu_rt; 1382 } 1383 1384 static bool rt6_is_valid(const struct rt6_info *rt6) 1385 { 1386 return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev)); 1387 } 1388 1389 /* It should be called with rcu_read_lock() acquired */ 1390 static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) 1391 { 1392 struct rt6_info *pcpu_rt; 1393 1394 pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); 1395 1396 if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) { 1397 struct rt6_info *prev, **p; 1398 1399 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1400 prev = xchg(p, NULL); 1401 if (prev) { 1402 dst_dev_put(&prev->dst); 1403 dst_release(&prev->dst); 1404 } 1405 1406 pcpu_rt = NULL; 1407 } 1408 1409 return pcpu_rt; 1410 } 1411 1412 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1413 const struct fib6_result *res) 1414 { 1415 struct rt6_info *pcpu_rt, *prev, **p; 1416 1417 pcpu_rt = ip6_rt_pcpu_alloc(res); 1418 if (!pcpu_rt) 1419 return NULL; 1420 1421 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1422 prev = cmpxchg(p, NULL, pcpu_rt); 1423 BUG_ON(prev); 1424 1425 if (res->f6i->fib6_destroying) { 1426 struct fib6_info *from; 1427 1428 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 1429 fib6_info_release(from); 1430 } 1431 1432 return pcpu_rt; 1433 } 1434 1435 /* exception hash table implementation 1436 */ 1437 static DEFINE_SPINLOCK(rt6_exception_lock); 1438 1439 /* Remove rt6_ex from hash table and free the memory 1440 * Caller must hold rt6_exception_lock 1441 */ 1442 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1443 struct rt6_exception *rt6_ex) 1444 { 1445 struct fib6_info *from; 1446 struct net *net; 1447 1448 if (!bucket || !rt6_ex) 1449 return; 1450 1451 net = dev_net(rt6_ex->rt6i->dst.dev); 1452 net->ipv6.rt6_stats->fib_rt_cache--; 1453 1454 /* purge completely the exception to allow releasing the held resources: 1455 * some [sk] cache may keep the dst around for unlimited time 1456 */ 1457 from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL); 1458 fib6_info_release(from); 1459 dst_dev_put(&rt6_ex->rt6i->dst); 1460 1461 hlist_del_rcu(&rt6_ex->hlist); 1462 dst_release(&rt6_ex->rt6i->dst); 1463 kfree_rcu(rt6_ex, rcu); 1464 WARN_ON_ONCE(!bucket->depth); 1465 bucket->depth--; 1466 } 1467 1468 /* Remove oldest rt6_ex in bucket and free the memory 1469 * Caller must hold rt6_exception_lock 1470 */ 1471 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1472 { 1473 struct rt6_exception *rt6_ex, *oldest = NULL; 1474 1475 if (!bucket) 1476 return; 1477 1478 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1479 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1480 oldest = rt6_ex; 1481 } 1482 rt6_remove_exception(bucket, oldest); 1483 } 1484 1485 static u32 rt6_exception_hash(const struct in6_addr *dst, 1486 const struct in6_addr *src) 1487 { 1488 static siphash_aligned_key_t rt6_exception_key; 1489 struct { 1490 struct in6_addr dst; 1491 struct in6_addr src; 1492 } __aligned(SIPHASH_ALIGNMENT) combined = { 1493 .dst = *dst, 1494 }; 1495 u64 val; 1496 1497 net_get_random_once(&rt6_exception_key, sizeof(rt6_exception_key)); 1498 1499 #ifdef CONFIG_IPV6_SUBTREES 1500 if (src) 1501 combined.src = *src; 1502 #endif 1503 val = siphash(&combined, sizeof(combined), &rt6_exception_key); 1504 1505 return hash_64(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1506 } 1507 1508 /* Helper function to find the cached rt in the hash table 1509 * and update bucket pointer to point to the bucket for this 1510 * (daddr, saddr) pair 1511 * Caller must hold rt6_exception_lock 1512 */ 1513 static struct rt6_exception * 1514 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1515 const struct in6_addr *daddr, 1516 const struct in6_addr *saddr) 1517 { 1518 struct rt6_exception *rt6_ex; 1519 u32 hval; 1520 1521 if (!(*bucket) || !daddr) 1522 return NULL; 1523 1524 hval = rt6_exception_hash(daddr, saddr); 1525 *bucket += hval; 1526 1527 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1528 struct rt6_info *rt6 = rt6_ex->rt6i; 1529 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1530 1531 #ifdef CONFIG_IPV6_SUBTREES 1532 if (matched && saddr) 1533 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1534 #endif 1535 if (matched) 1536 return rt6_ex; 1537 } 1538 return NULL; 1539 } 1540 1541 /* Helper function to find the cached rt in the hash table 1542 * and update bucket pointer to point to the bucket for this 1543 * (daddr, saddr) pair 1544 * Caller must hold rcu_read_lock() 1545 */ 1546 static struct rt6_exception * 1547 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1548 const struct in6_addr *daddr, 1549 const struct in6_addr *saddr) 1550 { 1551 struct rt6_exception *rt6_ex; 1552 u32 hval; 1553 1554 WARN_ON_ONCE(!rcu_read_lock_held()); 1555 1556 if (!(*bucket) || !daddr) 1557 return NULL; 1558 1559 hval = rt6_exception_hash(daddr, saddr); 1560 *bucket += hval; 1561 1562 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1563 struct rt6_info *rt6 = rt6_ex->rt6i; 1564 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1565 1566 #ifdef CONFIG_IPV6_SUBTREES 1567 if (matched && saddr) 1568 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1569 #endif 1570 if (matched) 1571 return rt6_ex; 1572 } 1573 return NULL; 1574 } 1575 1576 static unsigned int fib6_mtu(const struct fib6_result *res) 1577 { 1578 const struct fib6_nh *nh = res->nh; 1579 unsigned int mtu; 1580 1581 if (res->f6i->fib6_pmtu) { 1582 mtu = res->f6i->fib6_pmtu; 1583 } else { 1584 struct net_device *dev = nh->fib_nh_dev; 1585 struct inet6_dev *idev; 1586 1587 rcu_read_lock(); 1588 idev = __in6_dev_get(dev); 1589 mtu = idev->cnf.mtu6; 1590 rcu_read_unlock(); 1591 } 1592 1593 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1594 1595 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 1596 } 1597 1598 #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL 1599 1600 /* used when the flushed bit is not relevant, only access to the bucket 1601 * (ie., all bucket users except rt6_insert_exception); 1602 * 1603 * called under rcu lock; sometimes called with rt6_exception_lock held 1604 */ 1605 static 1606 struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, 1607 spinlock_t *lock) 1608 { 1609 struct rt6_exception_bucket *bucket; 1610 1611 if (lock) 1612 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1613 lockdep_is_held(lock)); 1614 else 1615 bucket = rcu_dereference(nh->rt6i_exception_bucket); 1616 1617 /* remove bucket flushed bit if set */ 1618 if (bucket) { 1619 unsigned long p = (unsigned long)bucket; 1620 1621 p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; 1622 bucket = (struct rt6_exception_bucket *)p; 1623 } 1624 1625 return bucket; 1626 } 1627 1628 static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) 1629 { 1630 unsigned long p = (unsigned long)bucket; 1631 1632 return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); 1633 } 1634 1635 /* called with rt6_exception_lock held */ 1636 static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, 1637 spinlock_t *lock) 1638 { 1639 struct rt6_exception_bucket *bucket; 1640 unsigned long p; 1641 1642 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1643 lockdep_is_held(lock)); 1644 1645 p = (unsigned long)bucket; 1646 p |= FIB6_EXCEPTION_BUCKET_FLUSHED; 1647 bucket = (struct rt6_exception_bucket *)p; 1648 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1649 } 1650 1651 static int rt6_insert_exception(struct rt6_info *nrt, 1652 const struct fib6_result *res) 1653 { 1654 struct net *net = dev_net(nrt->dst.dev); 1655 struct rt6_exception_bucket *bucket; 1656 struct fib6_info *f6i = res->f6i; 1657 struct in6_addr *src_key = NULL; 1658 struct rt6_exception *rt6_ex; 1659 struct fib6_nh *nh = res->nh; 1660 int max_depth; 1661 int err = 0; 1662 1663 spin_lock_bh(&rt6_exception_lock); 1664 1665 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1666 lockdep_is_held(&rt6_exception_lock)); 1667 if (!bucket) { 1668 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1669 GFP_ATOMIC); 1670 if (!bucket) { 1671 err = -ENOMEM; 1672 goto out; 1673 } 1674 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1675 } else if (fib6_nh_excptn_bucket_flushed(bucket)) { 1676 err = -EINVAL; 1677 goto out; 1678 } 1679 1680 #ifdef CONFIG_IPV6_SUBTREES 1681 /* fib6_src.plen != 0 indicates f6i is in subtree 1682 * and exception table is indexed by a hash of 1683 * both fib6_dst and fib6_src. 1684 * Otherwise, the exception table is indexed by 1685 * a hash of only fib6_dst. 1686 */ 1687 if (f6i->fib6_src.plen) 1688 src_key = &nrt->rt6i_src.addr; 1689 #endif 1690 /* rt6_mtu_change() might lower mtu on f6i. 1691 * Only insert this exception route if its mtu 1692 * is less than f6i's mtu value. 1693 */ 1694 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { 1695 err = -EINVAL; 1696 goto out; 1697 } 1698 1699 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1700 src_key); 1701 if (rt6_ex) 1702 rt6_remove_exception(bucket, rt6_ex); 1703 1704 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1705 if (!rt6_ex) { 1706 err = -ENOMEM; 1707 goto out; 1708 } 1709 rt6_ex->rt6i = nrt; 1710 rt6_ex->stamp = jiffies; 1711 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1712 bucket->depth++; 1713 net->ipv6.rt6_stats->fib_rt_cache++; 1714 1715 /* Randomize max depth to avoid some side channels attacks. */ 1716 max_depth = FIB6_MAX_DEPTH + prandom_u32_max(FIB6_MAX_DEPTH); 1717 while (bucket->depth > max_depth) 1718 rt6_exception_remove_oldest(bucket); 1719 1720 out: 1721 spin_unlock_bh(&rt6_exception_lock); 1722 1723 /* Update fn->fn_sernum to invalidate all cached dst */ 1724 if (!err) { 1725 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1726 fib6_update_sernum(net, f6i); 1727 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1728 fib6_force_start_gc(net); 1729 } 1730 1731 return err; 1732 } 1733 1734 static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) 1735 { 1736 struct rt6_exception_bucket *bucket; 1737 struct rt6_exception *rt6_ex; 1738 struct hlist_node *tmp; 1739 int i; 1740 1741 spin_lock_bh(&rt6_exception_lock); 1742 1743 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1744 if (!bucket) 1745 goto out; 1746 1747 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1748 if (!from) 1749 fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); 1750 1751 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1752 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { 1753 if (!from || 1754 rcu_access_pointer(rt6_ex->rt6i->from) == from) 1755 rt6_remove_exception(bucket, rt6_ex); 1756 } 1757 WARN_ON_ONCE(!from && bucket->depth); 1758 bucket++; 1759 } 1760 out: 1761 spin_unlock_bh(&rt6_exception_lock); 1762 } 1763 1764 static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) 1765 { 1766 struct fib6_info *f6i = arg; 1767 1768 fib6_nh_flush_exceptions(nh, f6i); 1769 1770 return 0; 1771 } 1772 1773 void rt6_flush_exceptions(struct fib6_info *f6i) 1774 { 1775 if (f6i->nh) 1776 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, 1777 f6i); 1778 else 1779 fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); 1780 } 1781 1782 /* Find cached rt in the hash table inside passed in rt 1783 * Caller has to hold rcu_read_lock() 1784 */ 1785 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 1786 const struct in6_addr *daddr, 1787 const struct in6_addr *saddr) 1788 { 1789 const struct in6_addr *src_key = NULL; 1790 struct rt6_exception_bucket *bucket; 1791 struct rt6_exception *rt6_ex; 1792 struct rt6_info *ret = NULL; 1793 1794 #ifdef CONFIG_IPV6_SUBTREES 1795 /* fib6i_src.plen != 0 indicates f6i is in subtree 1796 * and exception table is indexed by a hash of 1797 * both fib6_dst and fib6_src. 1798 * However, the src addr used to create the hash 1799 * might not be exactly the passed in saddr which 1800 * is a /128 addr from the flow. 1801 * So we need to use f6i->fib6_src to redo lookup 1802 * if the passed in saddr does not find anything. 1803 * (See the logic in ip6_rt_cache_alloc() on how 1804 * rt->rt6i_src is updated.) 1805 */ 1806 if (res->f6i->fib6_src.plen) 1807 src_key = saddr; 1808 find_ex: 1809 #endif 1810 bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); 1811 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1812 1813 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1814 ret = rt6_ex->rt6i; 1815 1816 #ifdef CONFIG_IPV6_SUBTREES 1817 /* Use fib6_src as src_key and redo lookup */ 1818 if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { 1819 src_key = &res->f6i->fib6_src.addr; 1820 goto find_ex; 1821 } 1822 #endif 1823 1824 return ret; 1825 } 1826 1827 /* Remove the passed in cached rt from the hash table that contains it */ 1828 static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, 1829 const struct rt6_info *rt) 1830 { 1831 const struct in6_addr *src_key = NULL; 1832 struct rt6_exception_bucket *bucket; 1833 struct rt6_exception *rt6_ex; 1834 int err; 1835 1836 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 1837 return -ENOENT; 1838 1839 spin_lock_bh(&rt6_exception_lock); 1840 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1841 1842 #ifdef CONFIG_IPV6_SUBTREES 1843 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1844 * and exception table is indexed by a hash of 1845 * both rt6i_dst and rt6i_src. 1846 * Otherwise, the exception table is indexed by 1847 * a hash of only rt6i_dst. 1848 */ 1849 if (plen) 1850 src_key = &rt->rt6i_src.addr; 1851 #endif 1852 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1853 &rt->rt6i_dst.addr, 1854 src_key); 1855 if (rt6_ex) { 1856 rt6_remove_exception(bucket, rt6_ex); 1857 err = 0; 1858 } else { 1859 err = -ENOENT; 1860 } 1861 1862 spin_unlock_bh(&rt6_exception_lock); 1863 return err; 1864 } 1865 1866 struct fib6_nh_excptn_arg { 1867 struct rt6_info *rt; 1868 int plen; 1869 }; 1870 1871 static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) 1872 { 1873 struct fib6_nh_excptn_arg *arg = _arg; 1874 int err; 1875 1876 err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); 1877 if (err == 0) 1878 return 1; 1879 1880 return 0; 1881 } 1882 1883 static int rt6_remove_exception_rt(struct rt6_info *rt) 1884 { 1885 struct fib6_info *from; 1886 1887 from = rcu_dereference(rt->from); 1888 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1889 return -EINVAL; 1890 1891 if (from->nh) { 1892 struct fib6_nh_excptn_arg arg = { 1893 .rt = rt, 1894 .plen = from->fib6_src.plen 1895 }; 1896 int rc; 1897 1898 /* rc = 1 means an entry was found */ 1899 rc = nexthop_for_each_fib6_nh(from->nh, 1900 rt6_nh_remove_exception_rt, 1901 &arg); 1902 return rc ? 0 : -ENOENT; 1903 } 1904 1905 return fib6_nh_remove_exception(from->fib6_nh, 1906 from->fib6_src.plen, rt); 1907 } 1908 1909 /* Find rt6_ex which contains the passed in rt cache and 1910 * refresh its stamp 1911 */ 1912 static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, 1913 const struct rt6_info *rt) 1914 { 1915 const struct in6_addr *src_key = NULL; 1916 struct rt6_exception_bucket *bucket; 1917 struct rt6_exception *rt6_ex; 1918 1919 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 1920 #ifdef CONFIG_IPV6_SUBTREES 1921 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1922 * and exception table is indexed by a hash of 1923 * both rt6i_dst and rt6i_src. 1924 * Otherwise, the exception table is indexed by 1925 * a hash of only rt6i_dst. 1926 */ 1927 if (plen) 1928 src_key = &rt->rt6i_src.addr; 1929 #endif 1930 rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); 1931 if (rt6_ex) 1932 rt6_ex->stamp = jiffies; 1933 } 1934 1935 struct fib6_nh_match_arg { 1936 const struct net_device *dev; 1937 const struct in6_addr *gw; 1938 struct fib6_nh *match; 1939 }; 1940 1941 /* determine if fib6_nh has given device and gateway */ 1942 static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) 1943 { 1944 struct fib6_nh_match_arg *arg = _arg; 1945 1946 if (arg->dev != nh->fib_nh_dev || 1947 (arg->gw && !nh->fib_nh_gw_family) || 1948 (!arg->gw && nh->fib_nh_gw_family) || 1949 (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) 1950 return 0; 1951 1952 arg->match = nh; 1953 1954 /* found a match, break the loop */ 1955 return 1; 1956 } 1957 1958 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 1959 { 1960 struct fib6_info *from; 1961 struct fib6_nh *fib6_nh; 1962 1963 rcu_read_lock(); 1964 1965 from = rcu_dereference(rt->from); 1966 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1967 goto unlock; 1968 1969 if (from->nh) { 1970 struct fib6_nh_match_arg arg = { 1971 .dev = rt->dst.dev, 1972 .gw = &rt->rt6i_gateway, 1973 }; 1974 1975 nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); 1976 1977 if (!arg.match) 1978 goto unlock; 1979 fib6_nh = arg.match; 1980 } else { 1981 fib6_nh = from->fib6_nh; 1982 } 1983 fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); 1984 unlock: 1985 rcu_read_unlock(); 1986 } 1987 1988 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 1989 struct rt6_info *rt, int mtu) 1990 { 1991 /* If the new MTU is lower than the route PMTU, this new MTU will be the 1992 * lowest MTU in the path: always allow updating the route PMTU to 1993 * reflect PMTU decreases. 1994 * 1995 * If the new MTU is higher, and the route PMTU is equal to the local 1996 * MTU, this means the old MTU is the lowest in the path, so allow 1997 * updating it: if other nodes now have lower MTUs, PMTU discovery will 1998 * handle this. 1999 */ 2000 2001 if (dst_mtu(&rt->dst) >= mtu) 2002 return true; 2003 2004 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 2005 return true; 2006 2007 return false; 2008 } 2009 2010 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 2011 const struct fib6_nh *nh, int mtu) 2012 { 2013 struct rt6_exception_bucket *bucket; 2014 struct rt6_exception *rt6_ex; 2015 int i; 2016 2017 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2018 if (!bucket) 2019 return; 2020 2021 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2022 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 2023 struct rt6_info *entry = rt6_ex->rt6i; 2024 2025 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 2026 * route), the metrics of its rt->from have already 2027 * been updated. 2028 */ 2029 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 2030 rt6_mtu_change_route_allowed(idev, entry, mtu)) 2031 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 2032 } 2033 bucket++; 2034 } 2035 } 2036 2037 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 2038 2039 static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, 2040 const struct in6_addr *gateway) 2041 { 2042 struct rt6_exception_bucket *bucket; 2043 struct rt6_exception *rt6_ex; 2044 struct hlist_node *tmp; 2045 int i; 2046 2047 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2048 return; 2049 2050 spin_lock_bh(&rt6_exception_lock); 2051 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2052 if (bucket) { 2053 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2054 hlist_for_each_entry_safe(rt6_ex, tmp, 2055 &bucket->chain, hlist) { 2056 struct rt6_info *entry = rt6_ex->rt6i; 2057 2058 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 2059 RTF_CACHE_GATEWAY && 2060 ipv6_addr_equal(gateway, 2061 &entry->rt6i_gateway)) { 2062 rt6_remove_exception(bucket, rt6_ex); 2063 } 2064 } 2065 bucket++; 2066 } 2067 } 2068 2069 spin_unlock_bh(&rt6_exception_lock); 2070 } 2071 2072 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 2073 struct rt6_exception *rt6_ex, 2074 struct fib6_gc_args *gc_args, 2075 unsigned long now) 2076 { 2077 struct rt6_info *rt = rt6_ex->rt6i; 2078 2079 /* we are pruning and obsoleting aged-out and non gateway exceptions 2080 * even if others have still references to them, so that on next 2081 * dst_check() such references can be dropped. 2082 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 2083 * expired, independently from their aging, as per RFC 8201 section 4 2084 */ 2085 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 2086 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 2087 RT6_TRACE("aging clone %p\n", rt); 2088 rt6_remove_exception(bucket, rt6_ex); 2089 return; 2090 } 2091 } else if (time_after(jiffies, rt->dst.expires)) { 2092 RT6_TRACE("purging expired route %p\n", rt); 2093 rt6_remove_exception(bucket, rt6_ex); 2094 return; 2095 } 2096 2097 if (rt->rt6i_flags & RTF_GATEWAY) { 2098 struct neighbour *neigh; 2099 2100 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 2101 2102 if (!(neigh && (neigh->flags & NTF_ROUTER))) { 2103 RT6_TRACE("purging route %p via non-router but gateway\n", 2104 rt); 2105 rt6_remove_exception(bucket, rt6_ex); 2106 return; 2107 } 2108 } 2109 2110 gc_args->more++; 2111 } 2112 2113 static void fib6_nh_age_exceptions(const struct fib6_nh *nh, 2114 struct fib6_gc_args *gc_args, 2115 unsigned long now) 2116 { 2117 struct rt6_exception_bucket *bucket; 2118 struct rt6_exception *rt6_ex; 2119 struct hlist_node *tmp; 2120 int i; 2121 2122 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2123 return; 2124 2125 rcu_read_lock_bh(); 2126 spin_lock(&rt6_exception_lock); 2127 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2128 if (bucket) { 2129 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2130 hlist_for_each_entry_safe(rt6_ex, tmp, 2131 &bucket->chain, hlist) { 2132 rt6_age_examine_exception(bucket, rt6_ex, 2133 gc_args, now); 2134 } 2135 bucket++; 2136 } 2137 } 2138 spin_unlock(&rt6_exception_lock); 2139 rcu_read_unlock_bh(); 2140 } 2141 2142 struct fib6_nh_age_excptn_arg { 2143 struct fib6_gc_args *gc_args; 2144 unsigned long now; 2145 }; 2146 2147 static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) 2148 { 2149 struct fib6_nh_age_excptn_arg *arg = _arg; 2150 2151 fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); 2152 return 0; 2153 } 2154 2155 void rt6_age_exceptions(struct fib6_info *f6i, 2156 struct fib6_gc_args *gc_args, 2157 unsigned long now) 2158 { 2159 if (f6i->nh) { 2160 struct fib6_nh_age_excptn_arg arg = { 2161 .gc_args = gc_args, 2162 .now = now 2163 }; 2164 2165 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, 2166 &arg); 2167 } else { 2168 fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); 2169 } 2170 } 2171 2172 /* must be called with rcu lock held */ 2173 int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, 2174 struct flowi6 *fl6, struct fib6_result *res, int strict) 2175 { 2176 struct fib6_node *fn, *saved_fn; 2177 2178 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2179 saved_fn = fn; 2180 2181 redo_rt6_select: 2182 rt6_select(net, fn, oif, res, strict); 2183 if (res->f6i == net->ipv6.fib6_null_entry) { 2184 fn = fib6_backtrack(fn, &fl6->saddr); 2185 if (fn) 2186 goto redo_rt6_select; 2187 else if (strict & RT6_LOOKUP_F_REACHABLE) { 2188 /* also consider unreachable route */ 2189 strict &= ~RT6_LOOKUP_F_REACHABLE; 2190 fn = saved_fn; 2191 goto redo_rt6_select; 2192 } 2193 } 2194 2195 trace_fib6_table_lookup(net, res, table, fl6); 2196 2197 return 0; 2198 } 2199 2200 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 2201 int oif, struct flowi6 *fl6, 2202 const struct sk_buff *skb, int flags) 2203 { 2204 struct fib6_result res = {}; 2205 struct rt6_info *rt = NULL; 2206 int strict = 0; 2207 2208 WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && 2209 !rcu_read_lock_held()); 2210 2211 strict |= flags & RT6_LOOKUP_F_IFACE; 2212 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 2213 if (net->ipv6.devconf_all->forwarding == 0) 2214 strict |= RT6_LOOKUP_F_REACHABLE; 2215 2216 rcu_read_lock(); 2217 2218 fib6_table_lookup(net, table, oif, fl6, &res, strict); 2219 if (res.f6i == net->ipv6.fib6_null_entry) 2220 goto out; 2221 2222 fib6_select_path(net, &res, fl6, oif, false, skb, strict); 2223 2224 /*Search through exception table */ 2225 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 2226 if (rt) { 2227 goto out; 2228 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 2229 !res.nh->fib_nh_gw_family)) { 2230 /* Create a RTF_CACHE clone which will not be 2231 * owned by the fib6 tree. It is for the special case where 2232 * the daddr in the skb during the neighbor look-up is different 2233 * from the fl6->daddr used to look-up route here. 2234 */ 2235 rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); 2236 2237 if (rt) { 2238 /* 1 refcnt is taken during ip6_rt_cache_alloc(). 2239 * As rt6_uncached_list_add() does not consume refcnt, 2240 * this refcnt is always returned to the caller even 2241 * if caller sets RT6_LOOKUP_F_DST_NOREF flag. 2242 */ 2243 rt6_uncached_list_add(rt); 2244 rcu_read_unlock(); 2245 2246 return rt; 2247 } 2248 } else { 2249 /* Get a percpu copy */ 2250 local_bh_disable(); 2251 rt = rt6_get_pcpu_route(&res); 2252 2253 if (!rt) 2254 rt = rt6_make_pcpu_route(net, &res); 2255 2256 local_bh_enable(); 2257 } 2258 out: 2259 if (!rt) 2260 rt = net->ipv6.ip6_null_entry; 2261 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 2262 ip6_hold_safe(net, &rt); 2263 rcu_read_unlock(); 2264 2265 return rt; 2266 } 2267 EXPORT_SYMBOL_GPL(ip6_pol_route); 2268 2269 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net, 2270 struct fib6_table *table, 2271 struct flowi6 *fl6, 2272 const struct sk_buff *skb, 2273 int flags) 2274 { 2275 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 2276 } 2277 2278 struct dst_entry *ip6_route_input_lookup(struct net *net, 2279 struct net_device *dev, 2280 struct flowi6 *fl6, 2281 const struct sk_buff *skb, 2282 int flags) 2283 { 2284 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 2285 flags |= RT6_LOOKUP_F_IFACE; 2286 2287 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 2288 } 2289 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 2290 2291 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 2292 struct flow_keys *keys, 2293 struct flow_keys *flkeys) 2294 { 2295 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 2296 const struct ipv6hdr *key_iph = outer_iph; 2297 struct flow_keys *_flkeys = flkeys; 2298 const struct ipv6hdr *inner_iph; 2299 const struct icmp6hdr *icmph; 2300 struct ipv6hdr _inner_iph; 2301 struct icmp6hdr _icmph; 2302 2303 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 2304 goto out; 2305 2306 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 2307 sizeof(_icmph), &_icmph); 2308 if (!icmph) 2309 goto out; 2310 2311 if (!icmpv6_is_err(icmph->icmp6_type)) 2312 goto out; 2313 2314 inner_iph = skb_header_pointer(skb, 2315 skb_transport_offset(skb) + sizeof(*icmph), 2316 sizeof(_inner_iph), &_inner_iph); 2317 if (!inner_iph) 2318 goto out; 2319 2320 key_iph = inner_iph; 2321 _flkeys = NULL; 2322 out: 2323 if (_flkeys) { 2324 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 2325 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 2326 keys->tags.flow_label = _flkeys->tags.flow_label; 2327 keys->basic.ip_proto = _flkeys->basic.ip_proto; 2328 } else { 2329 keys->addrs.v6addrs.src = key_iph->saddr; 2330 keys->addrs.v6addrs.dst = key_iph->daddr; 2331 keys->tags.flow_label = ip6_flowlabel(key_iph); 2332 keys->basic.ip_proto = key_iph->nexthdr; 2333 } 2334 } 2335 2336 static u32 rt6_multipath_custom_hash_outer(const struct net *net, 2337 const struct sk_buff *skb, 2338 bool *p_has_inner) 2339 { 2340 u32 hash_fields = ip6_multipath_hash_fields(net); 2341 struct flow_keys keys, hash_keys; 2342 2343 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) 2344 return 0; 2345 2346 memset(&hash_keys, 0, sizeof(hash_keys)); 2347 skb_flow_dissect_flow_keys(skb, &keys, FLOW_DISSECTOR_F_STOP_AT_ENCAP); 2348 2349 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2350 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) 2351 hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 2352 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) 2353 hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; 2354 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) 2355 hash_keys.basic.ip_proto = keys.basic.ip_proto; 2356 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) 2357 hash_keys.tags.flow_label = keys.tags.flow_label; 2358 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) 2359 hash_keys.ports.src = keys.ports.src; 2360 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) 2361 hash_keys.ports.dst = keys.ports.dst; 2362 2363 *p_has_inner = !!(keys.control.flags & FLOW_DIS_ENCAPSULATION); 2364 return flow_hash_from_keys(&hash_keys); 2365 } 2366 2367 static u32 rt6_multipath_custom_hash_inner(const struct net *net, 2368 const struct sk_buff *skb, 2369 bool has_inner) 2370 { 2371 u32 hash_fields = ip6_multipath_hash_fields(net); 2372 struct flow_keys keys, hash_keys; 2373 2374 /* We assume the packet carries an encapsulation, but if none was 2375 * encountered during dissection of the outer flow, then there is no 2376 * point in calling the flow dissector again. 2377 */ 2378 if (!has_inner) 2379 return 0; 2380 2381 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_MASK)) 2382 return 0; 2383 2384 memset(&hash_keys, 0, sizeof(hash_keys)); 2385 skb_flow_dissect_flow_keys(skb, &keys, 0); 2386 2387 if (!(keys.control.flags & FLOW_DIS_ENCAPSULATION)) 2388 return 0; 2389 2390 if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2391 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2392 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) 2393 hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; 2394 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) 2395 hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst; 2396 } else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2397 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2398 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) 2399 hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 2400 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) 2401 hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; 2402 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_FLOWLABEL) 2403 hash_keys.tags.flow_label = keys.tags.flow_label; 2404 } 2405 2406 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_IP_PROTO) 2407 hash_keys.basic.ip_proto = keys.basic.ip_proto; 2408 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_PORT) 2409 hash_keys.ports.src = keys.ports.src; 2410 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_PORT) 2411 hash_keys.ports.dst = keys.ports.dst; 2412 2413 return flow_hash_from_keys(&hash_keys); 2414 } 2415 2416 static u32 rt6_multipath_custom_hash_skb(const struct net *net, 2417 const struct sk_buff *skb) 2418 { 2419 u32 mhash, mhash_inner; 2420 bool has_inner = true; 2421 2422 mhash = rt6_multipath_custom_hash_outer(net, skb, &has_inner); 2423 mhash_inner = rt6_multipath_custom_hash_inner(net, skb, has_inner); 2424 2425 return jhash_2words(mhash, mhash_inner, 0); 2426 } 2427 2428 static u32 rt6_multipath_custom_hash_fl6(const struct net *net, 2429 const struct flowi6 *fl6) 2430 { 2431 u32 hash_fields = ip6_multipath_hash_fields(net); 2432 struct flow_keys hash_keys; 2433 2434 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) 2435 return 0; 2436 2437 memset(&hash_keys, 0, sizeof(hash_keys)); 2438 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2439 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) 2440 hash_keys.addrs.v6addrs.src = fl6->saddr; 2441 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) 2442 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2443 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) 2444 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2445 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) 2446 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2447 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) 2448 hash_keys.ports.src = fl6->fl6_sport; 2449 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) 2450 hash_keys.ports.dst = fl6->fl6_dport; 2451 2452 return flow_hash_from_keys(&hash_keys); 2453 } 2454 2455 /* if skb is set it will be used and fl6 can be NULL */ 2456 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 2457 const struct sk_buff *skb, struct flow_keys *flkeys) 2458 { 2459 struct flow_keys hash_keys; 2460 u32 mhash = 0; 2461 2462 switch (ip6_multipath_hash_policy(net)) { 2463 case 0: 2464 memset(&hash_keys, 0, sizeof(hash_keys)); 2465 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2466 if (skb) { 2467 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2468 } else { 2469 hash_keys.addrs.v6addrs.src = fl6->saddr; 2470 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2471 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2472 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2473 } 2474 mhash = flow_hash_from_keys(&hash_keys); 2475 break; 2476 case 1: 2477 if (skb) { 2478 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 2479 struct flow_keys keys; 2480 2481 /* short-circuit if we already have L4 hash present */ 2482 if (skb->l4_hash) 2483 return skb_get_hash_raw(skb) >> 1; 2484 2485 memset(&hash_keys, 0, sizeof(hash_keys)); 2486 2487 if (!flkeys) { 2488 skb_flow_dissect_flow_keys(skb, &keys, flag); 2489 flkeys = &keys; 2490 } 2491 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2492 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2493 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2494 hash_keys.ports.src = flkeys->ports.src; 2495 hash_keys.ports.dst = flkeys->ports.dst; 2496 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2497 } else { 2498 memset(&hash_keys, 0, sizeof(hash_keys)); 2499 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2500 hash_keys.addrs.v6addrs.src = fl6->saddr; 2501 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2502 hash_keys.ports.src = fl6->fl6_sport; 2503 hash_keys.ports.dst = fl6->fl6_dport; 2504 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2505 } 2506 mhash = flow_hash_from_keys(&hash_keys); 2507 break; 2508 case 2: 2509 memset(&hash_keys, 0, sizeof(hash_keys)); 2510 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2511 if (skb) { 2512 struct flow_keys keys; 2513 2514 if (!flkeys) { 2515 skb_flow_dissect_flow_keys(skb, &keys, 0); 2516 flkeys = &keys; 2517 } 2518 2519 /* Inner can be v4 or v6 */ 2520 if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2521 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2522 hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; 2523 hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; 2524 } else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2525 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2526 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2527 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2528 hash_keys.tags.flow_label = flkeys->tags.flow_label; 2529 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2530 } else { 2531 /* Same as case 0 */ 2532 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2533 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2534 } 2535 } else { 2536 /* Same as case 0 */ 2537 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2538 hash_keys.addrs.v6addrs.src = fl6->saddr; 2539 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2540 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2541 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2542 } 2543 mhash = flow_hash_from_keys(&hash_keys); 2544 break; 2545 case 3: 2546 if (skb) 2547 mhash = rt6_multipath_custom_hash_skb(net, skb); 2548 else 2549 mhash = rt6_multipath_custom_hash_fl6(net, fl6); 2550 break; 2551 } 2552 2553 return mhash >> 1; 2554 } 2555 2556 /* Called with rcu held */ 2557 void ip6_route_input(struct sk_buff *skb) 2558 { 2559 const struct ipv6hdr *iph = ipv6_hdr(skb); 2560 struct net *net = dev_net(skb->dev); 2561 int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; 2562 struct ip_tunnel_info *tun_info; 2563 struct flowi6 fl6 = { 2564 .flowi6_iif = skb->dev->ifindex, 2565 .daddr = iph->daddr, 2566 .saddr = iph->saddr, 2567 .flowlabel = ip6_flowinfo(iph), 2568 .flowi6_mark = skb->mark, 2569 .flowi6_proto = iph->nexthdr, 2570 }; 2571 struct flow_keys *flkeys = NULL, _flkeys; 2572 2573 tun_info = skb_tunnel_info(skb); 2574 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2575 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2576 2577 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2578 flkeys = &_flkeys; 2579 2580 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2581 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2582 skb_dst_drop(skb); 2583 skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, 2584 &fl6, skb, flags)); 2585 } 2586 2587 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net, 2588 struct fib6_table *table, 2589 struct flowi6 *fl6, 2590 const struct sk_buff *skb, 2591 int flags) 2592 { 2593 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2594 } 2595 2596 struct dst_entry *ip6_route_output_flags_noref(struct net *net, 2597 const struct sock *sk, 2598 struct flowi6 *fl6, int flags) 2599 { 2600 bool any_src; 2601 2602 if (ipv6_addr_type(&fl6->daddr) & 2603 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2604 struct dst_entry *dst; 2605 2606 /* This function does not take refcnt on the dst */ 2607 dst = l3mdev_link_scope_lookup(net, fl6); 2608 if (dst) 2609 return dst; 2610 } 2611 2612 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2613 2614 flags |= RT6_LOOKUP_F_DST_NOREF; 2615 any_src = ipv6_addr_any(&fl6->saddr); 2616 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2617 (fl6->flowi6_oif && any_src)) 2618 flags |= RT6_LOOKUP_F_IFACE; 2619 2620 if (!any_src) 2621 flags |= RT6_LOOKUP_F_HAS_SADDR; 2622 else if (sk) 2623 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 2624 2625 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2626 } 2627 EXPORT_SYMBOL_GPL(ip6_route_output_flags_noref); 2628 2629 struct dst_entry *ip6_route_output_flags(struct net *net, 2630 const struct sock *sk, 2631 struct flowi6 *fl6, 2632 int flags) 2633 { 2634 struct dst_entry *dst; 2635 struct rt6_info *rt6; 2636 2637 rcu_read_lock(); 2638 dst = ip6_route_output_flags_noref(net, sk, fl6, flags); 2639 rt6 = (struct rt6_info *)dst; 2640 /* For dst cached in uncached_list, refcnt is already taken. */ 2641 if (list_empty(&rt6->rt6i_uncached) && !dst_hold_safe(dst)) { 2642 dst = &net->ipv6.ip6_null_entry->dst; 2643 dst_hold(dst); 2644 } 2645 rcu_read_unlock(); 2646 2647 return dst; 2648 } 2649 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2650 2651 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2652 { 2653 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 2654 struct net_device *loopback_dev = net->loopback_dev; 2655 struct dst_entry *new = NULL; 2656 2657 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, 2658 DST_OBSOLETE_DEAD, 0); 2659 if (rt) { 2660 rt6_info_init(rt); 2661 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2662 2663 new = &rt->dst; 2664 new->__use = 1; 2665 new->input = dst_discard; 2666 new->output = dst_discard_out; 2667 2668 dst_copy_metrics(new, &ort->dst); 2669 2670 rt->rt6i_idev = in6_dev_get(loopback_dev); 2671 rt->rt6i_gateway = ort->rt6i_gateway; 2672 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2673 2674 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2675 #ifdef CONFIG_IPV6_SUBTREES 2676 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2677 #endif 2678 } 2679 2680 dst_release(dst_orig); 2681 return new ? new : ERR_PTR(-ENOMEM); 2682 } 2683 2684 /* 2685 * Destination cache support functions 2686 */ 2687 2688 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2689 { 2690 u32 rt_cookie = 0; 2691 2692 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2693 return false; 2694 2695 if (fib6_check_expired(f6i)) 2696 return false; 2697 2698 return true; 2699 } 2700 2701 static struct dst_entry *rt6_check(struct rt6_info *rt, 2702 struct fib6_info *from, 2703 u32 cookie) 2704 { 2705 u32 rt_cookie = 0; 2706 2707 if (!from || !fib6_get_cookie_safe(from, &rt_cookie) || 2708 rt_cookie != cookie) 2709 return NULL; 2710 2711 if (rt6_check_expired(rt)) 2712 return NULL; 2713 2714 return &rt->dst; 2715 } 2716 2717 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2718 struct fib6_info *from, 2719 u32 cookie) 2720 { 2721 if (!__rt6_check_expired(rt) && 2722 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && 2723 fib6_check(from, cookie)) 2724 return &rt->dst; 2725 else 2726 return NULL; 2727 } 2728 2729 INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, 2730 u32 cookie) 2731 { 2732 struct dst_entry *dst_ret; 2733 struct fib6_info *from; 2734 struct rt6_info *rt; 2735 2736 rt = container_of(dst, struct rt6_info, dst); 2737 2738 if (rt->sernum) 2739 return rt6_is_valid(rt) ? dst : NULL; 2740 2741 rcu_read_lock(); 2742 2743 /* All IPV6 dsts are created with ->obsolete set to the value 2744 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2745 * into this function always. 2746 */ 2747 2748 from = rcu_dereference(rt->from); 2749 2750 if (from && (rt->rt6i_flags & RTF_PCPU || 2751 unlikely(!list_empty(&rt->rt6i_uncached)))) 2752 dst_ret = rt6_dst_from_check(rt, from, cookie); 2753 else 2754 dst_ret = rt6_check(rt, from, cookie); 2755 2756 rcu_read_unlock(); 2757 2758 return dst_ret; 2759 } 2760 EXPORT_INDIRECT_CALLABLE(ip6_dst_check); 2761 2762 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 2763 { 2764 struct rt6_info *rt = (struct rt6_info *) dst; 2765 2766 if (rt) { 2767 if (rt->rt6i_flags & RTF_CACHE) { 2768 rcu_read_lock(); 2769 if (rt6_check_expired(rt)) { 2770 rt6_remove_exception_rt(rt); 2771 dst = NULL; 2772 } 2773 rcu_read_unlock(); 2774 } else { 2775 dst_release(dst); 2776 dst = NULL; 2777 } 2778 } 2779 return dst; 2780 } 2781 2782 static void ip6_link_failure(struct sk_buff *skb) 2783 { 2784 struct rt6_info *rt; 2785 2786 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2787 2788 rt = (struct rt6_info *) skb_dst(skb); 2789 if (rt) { 2790 rcu_read_lock(); 2791 if (rt->rt6i_flags & RTF_CACHE) { 2792 rt6_remove_exception_rt(rt); 2793 } else { 2794 struct fib6_info *from; 2795 struct fib6_node *fn; 2796 2797 from = rcu_dereference(rt->from); 2798 if (from) { 2799 fn = rcu_dereference(from->fib6_node); 2800 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2801 WRITE_ONCE(fn->fn_sernum, -1); 2802 } 2803 } 2804 rcu_read_unlock(); 2805 } 2806 } 2807 2808 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2809 { 2810 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2811 struct fib6_info *from; 2812 2813 rcu_read_lock(); 2814 from = rcu_dereference(rt0->from); 2815 if (from) 2816 rt0->dst.expires = from->expires; 2817 rcu_read_unlock(); 2818 } 2819 2820 dst_set_expires(&rt0->dst, timeout); 2821 rt0->rt6i_flags |= RTF_EXPIRES; 2822 } 2823 2824 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2825 { 2826 struct net *net = dev_net(rt->dst.dev); 2827 2828 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2829 rt->rt6i_flags |= RTF_MODIFIED; 2830 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2831 } 2832 2833 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2834 { 2835 return !(rt->rt6i_flags & RTF_CACHE) && 2836 (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); 2837 } 2838 2839 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2840 const struct ipv6hdr *iph, u32 mtu, 2841 bool confirm_neigh) 2842 { 2843 const struct in6_addr *daddr, *saddr; 2844 struct rt6_info *rt6 = (struct rt6_info *)dst; 2845 2846 /* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU) 2847 * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it. 2848 * [see also comment in rt6_mtu_change_route()] 2849 */ 2850 2851 if (iph) { 2852 daddr = &iph->daddr; 2853 saddr = &iph->saddr; 2854 } else if (sk) { 2855 daddr = &sk->sk_v6_daddr; 2856 saddr = &inet6_sk(sk)->saddr; 2857 } else { 2858 daddr = NULL; 2859 saddr = NULL; 2860 } 2861 2862 if (confirm_neigh) 2863 dst_confirm_neigh(dst, daddr); 2864 2865 if (mtu < IPV6_MIN_MTU) 2866 return; 2867 if (mtu >= dst_mtu(dst)) 2868 return; 2869 2870 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2871 rt6_do_update_pmtu(rt6, mtu); 2872 /* update rt6_ex->stamp for cache */ 2873 if (rt6->rt6i_flags & RTF_CACHE) 2874 rt6_update_exception_stamp_rt(rt6); 2875 } else if (daddr) { 2876 struct fib6_result res = {}; 2877 struct rt6_info *nrt6; 2878 2879 rcu_read_lock(); 2880 res.f6i = rcu_dereference(rt6->from); 2881 if (!res.f6i) 2882 goto out_unlock; 2883 2884 res.fib6_flags = res.f6i->fib6_flags; 2885 res.fib6_type = res.f6i->fib6_type; 2886 2887 if (res.f6i->nh) { 2888 struct fib6_nh_match_arg arg = { 2889 .dev = dst->dev, 2890 .gw = &rt6->rt6i_gateway, 2891 }; 2892 2893 nexthop_for_each_fib6_nh(res.f6i->nh, 2894 fib6_nh_find_match, &arg); 2895 2896 /* fib6_info uses a nexthop that does not have fib6_nh 2897 * using the dst->dev + gw. Should be impossible. 2898 */ 2899 if (!arg.match) 2900 goto out_unlock; 2901 2902 res.nh = arg.match; 2903 } else { 2904 res.nh = res.f6i->fib6_nh; 2905 } 2906 2907 nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); 2908 if (nrt6) { 2909 rt6_do_update_pmtu(nrt6, mtu); 2910 if (rt6_insert_exception(nrt6, &res)) 2911 dst_release_immediate(&nrt6->dst); 2912 } 2913 out_unlock: 2914 rcu_read_unlock(); 2915 } 2916 } 2917 2918 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2919 struct sk_buff *skb, u32 mtu, 2920 bool confirm_neigh) 2921 { 2922 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu, 2923 confirm_neigh); 2924 } 2925 2926 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2927 int oif, u32 mark, kuid_t uid) 2928 { 2929 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2930 struct dst_entry *dst; 2931 struct flowi6 fl6 = { 2932 .flowi6_oif = oif, 2933 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 2934 .daddr = iph->daddr, 2935 .saddr = iph->saddr, 2936 .flowlabel = ip6_flowinfo(iph), 2937 .flowi6_uid = uid, 2938 }; 2939 2940 dst = ip6_route_output(net, NULL, &fl6); 2941 if (!dst->error) 2942 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true); 2943 dst_release(dst); 2944 } 2945 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 2946 2947 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 2948 { 2949 int oif = sk->sk_bound_dev_if; 2950 struct dst_entry *dst; 2951 2952 if (!oif && skb->dev) 2953 oif = l3mdev_master_ifindex(skb->dev); 2954 2955 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid); 2956 2957 dst = __sk_dst_get(sk); 2958 if (!dst || !dst->obsolete || 2959 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 2960 return; 2961 2962 bh_lock_sock(sk); 2963 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 2964 ip6_datagram_dst_update(sk, false); 2965 bh_unlock_sock(sk); 2966 } 2967 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 2968 2969 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 2970 const struct flowi6 *fl6) 2971 { 2972 #ifdef CONFIG_IPV6_SUBTREES 2973 struct ipv6_pinfo *np = inet6_sk(sk); 2974 #endif 2975 2976 ip6_dst_store(sk, dst, 2977 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 2978 &sk->sk_v6_daddr : NULL, 2979 #ifdef CONFIG_IPV6_SUBTREES 2980 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 2981 &np->saddr : 2982 #endif 2983 NULL); 2984 } 2985 2986 static bool ip6_redirect_nh_match(const struct fib6_result *res, 2987 struct flowi6 *fl6, 2988 const struct in6_addr *gw, 2989 struct rt6_info **ret) 2990 { 2991 const struct fib6_nh *nh = res->nh; 2992 2993 if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || 2994 fl6->flowi6_oif != nh->fib_nh_dev->ifindex) 2995 return false; 2996 2997 /* rt_cache's gateway might be different from its 'parent' 2998 * in the case of an ip redirect. 2999 * So we keep searching in the exception table if the gateway 3000 * is different. 3001 */ 3002 if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { 3003 struct rt6_info *rt_cache; 3004 3005 rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); 3006 if (rt_cache && 3007 ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { 3008 *ret = rt_cache; 3009 return true; 3010 } 3011 return false; 3012 } 3013 return true; 3014 } 3015 3016 struct fib6_nh_rd_arg { 3017 struct fib6_result *res; 3018 struct flowi6 *fl6; 3019 const struct in6_addr *gw; 3020 struct rt6_info **ret; 3021 }; 3022 3023 static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) 3024 { 3025 struct fib6_nh_rd_arg *arg = _arg; 3026 3027 arg->res->nh = nh; 3028 return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); 3029 } 3030 3031 /* Handle redirects */ 3032 struct ip6rd_flowi { 3033 struct flowi6 fl6; 3034 struct in6_addr gateway; 3035 }; 3036 3037 INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net, 3038 struct fib6_table *table, 3039 struct flowi6 *fl6, 3040 const struct sk_buff *skb, 3041 int flags) 3042 { 3043 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 3044 struct rt6_info *ret = NULL; 3045 struct fib6_result res = {}; 3046 struct fib6_nh_rd_arg arg = { 3047 .res = &res, 3048 .fl6 = fl6, 3049 .gw = &rdfl->gateway, 3050 .ret = &ret 3051 }; 3052 struct fib6_info *rt; 3053 struct fib6_node *fn; 3054 3055 /* Get the "current" route for this destination and 3056 * check if the redirect has come from appropriate router. 3057 * 3058 * RFC 4861 specifies that redirects should only be 3059 * accepted if they come from the nexthop to the target. 3060 * Due to the way the routes are chosen, this notion 3061 * is a bit fuzzy and one might need to check all possible 3062 * routes. 3063 */ 3064 3065 rcu_read_lock(); 3066 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 3067 restart: 3068 for_each_fib6_node_rt_rcu(fn) { 3069 res.f6i = rt; 3070 if (fib6_check_expired(rt)) 3071 continue; 3072 if (rt->fib6_flags & RTF_REJECT) 3073 break; 3074 if (unlikely(rt->nh)) { 3075 if (nexthop_is_blackhole(rt->nh)) 3076 continue; 3077 /* on match, res->nh is filled in and potentially ret */ 3078 if (nexthop_for_each_fib6_nh(rt->nh, 3079 fib6_nh_redirect_match, 3080 &arg)) 3081 goto out; 3082 } else { 3083 res.nh = rt->fib6_nh; 3084 if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, 3085 &ret)) 3086 goto out; 3087 } 3088 } 3089 3090 if (!rt) 3091 rt = net->ipv6.fib6_null_entry; 3092 else if (rt->fib6_flags & RTF_REJECT) { 3093 ret = net->ipv6.ip6_null_entry; 3094 goto out; 3095 } 3096 3097 if (rt == net->ipv6.fib6_null_entry) { 3098 fn = fib6_backtrack(fn, &fl6->saddr); 3099 if (fn) 3100 goto restart; 3101 } 3102 3103 res.f6i = rt; 3104 res.nh = rt->fib6_nh; 3105 out: 3106 if (ret) { 3107 ip6_hold_safe(net, &ret); 3108 } else { 3109 res.fib6_flags = res.f6i->fib6_flags; 3110 res.fib6_type = res.f6i->fib6_type; 3111 ret = ip6_create_rt_rcu(&res); 3112 } 3113 3114 rcu_read_unlock(); 3115 3116 trace_fib6_table_lookup(net, &res, table, fl6); 3117 return ret; 3118 }; 3119 3120 static struct dst_entry *ip6_route_redirect(struct net *net, 3121 const struct flowi6 *fl6, 3122 const struct sk_buff *skb, 3123 const struct in6_addr *gateway) 3124 { 3125 int flags = RT6_LOOKUP_F_HAS_SADDR; 3126 struct ip6rd_flowi rdfl; 3127 3128 rdfl.fl6 = *fl6; 3129 rdfl.gateway = *gateway; 3130 3131 return fib6_rule_lookup(net, &rdfl.fl6, skb, 3132 flags, __ip6_route_redirect); 3133 } 3134 3135 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 3136 kuid_t uid) 3137 { 3138 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 3139 struct dst_entry *dst; 3140 struct flowi6 fl6 = { 3141 .flowi6_iif = LOOPBACK_IFINDEX, 3142 .flowi6_oif = oif, 3143 .flowi6_mark = mark, 3144 .daddr = iph->daddr, 3145 .saddr = iph->saddr, 3146 .flowlabel = ip6_flowinfo(iph), 3147 .flowi6_uid = uid, 3148 }; 3149 3150 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 3151 rt6_do_redirect(dst, NULL, skb); 3152 dst_release(dst); 3153 } 3154 EXPORT_SYMBOL_GPL(ip6_redirect); 3155 3156 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 3157 { 3158 const struct ipv6hdr *iph = ipv6_hdr(skb); 3159 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 3160 struct dst_entry *dst; 3161 struct flowi6 fl6 = { 3162 .flowi6_iif = LOOPBACK_IFINDEX, 3163 .flowi6_oif = oif, 3164 .daddr = msg->dest, 3165 .saddr = iph->daddr, 3166 .flowi6_uid = sock_net_uid(net, NULL), 3167 }; 3168 3169 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 3170 rt6_do_redirect(dst, NULL, skb); 3171 dst_release(dst); 3172 } 3173 3174 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 3175 { 3176 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark, 3177 sk->sk_uid); 3178 } 3179 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 3180 3181 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 3182 { 3183 struct net_device *dev = dst->dev; 3184 unsigned int mtu = dst_mtu(dst); 3185 struct net *net = dev_net(dev); 3186 3187 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 3188 3189 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 3190 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 3191 3192 /* 3193 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 3194 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 3195 * IPV6_MAXPLEN is also valid and means: "any MSS, 3196 * rely only on pmtu discovery" 3197 */ 3198 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 3199 mtu = IPV6_MAXPLEN; 3200 return mtu; 3201 } 3202 3203 INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst) 3204 { 3205 return ip6_dst_mtu_maybe_forward(dst, false); 3206 } 3207 EXPORT_INDIRECT_CALLABLE(ip6_mtu); 3208 3209 /* MTU selection: 3210 * 1. mtu on route is locked - use it 3211 * 2. mtu from nexthop exception 3212 * 3. mtu from egress device 3213 * 3214 * based on ip6_dst_mtu_forward and exception logic of 3215 * rt6_find_cached_rt; called with rcu_read_lock 3216 */ 3217 u32 ip6_mtu_from_fib6(const struct fib6_result *res, 3218 const struct in6_addr *daddr, 3219 const struct in6_addr *saddr) 3220 { 3221 const struct fib6_nh *nh = res->nh; 3222 struct fib6_info *f6i = res->f6i; 3223 struct inet6_dev *idev; 3224 struct rt6_info *rt; 3225 u32 mtu = 0; 3226 3227 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 3228 mtu = f6i->fib6_pmtu; 3229 if (mtu) 3230 goto out; 3231 } 3232 3233 rt = rt6_find_cached_rt(res, daddr, saddr); 3234 if (unlikely(rt)) { 3235 mtu = dst_metric_raw(&rt->dst, RTAX_MTU); 3236 } else { 3237 struct net_device *dev = nh->fib_nh_dev; 3238 3239 mtu = IPV6_MIN_MTU; 3240 idev = __in6_dev_get(dev); 3241 if (idev && idev->cnf.mtu6 > mtu) 3242 mtu = idev->cnf.mtu6; 3243 } 3244 3245 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3246 out: 3247 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 3248 } 3249 3250 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 3251 struct flowi6 *fl6) 3252 { 3253 struct dst_entry *dst; 3254 struct rt6_info *rt; 3255 struct inet6_dev *idev = in6_dev_get(dev); 3256 struct net *net = dev_net(dev); 3257 3258 if (unlikely(!idev)) 3259 return ERR_PTR(-ENODEV); 3260 3261 rt = ip6_dst_alloc(net, dev, 0); 3262 if (unlikely(!rt)) { 3263 in6_dev_put(idev); 3264 dst = ERR_PTR(-ENOMEM); 3265 goto out; 3266 } 3267 3268 rt->dst.input = ip6_input; 3269 rt->dst.output = ip6_output; 3270 rt->rt6i_gateway = fl6->daddr; 3271 rt->rt6i_dst.addr = fl6->daddr; 3272 rt->rt6i_dst.plen = 128; 3273 rt->rt6i_idev = idev; 3274 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 3275 3276 /* Add this dst into uncached_list so that rt6_disable_ip() can 3277 * do proper release of the net_device 3278 */ 3279 rt6_uncached_list_add(rt); 3280 3281 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 3282 3283 out: 3284 return dst; 3285 } 3286 3287 static int ip6_dst_gc(struct dst_ops *ops) 3288 { 3289 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 3290 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 3291 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size; 3292 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 3293 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 3294 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 3295 int entries; 3296 3297 entries = dst_entries_get_fast(ops); 3298 if (entries > rt_max_size) 3299 entries = dst_entries_get_slow(ops); 3300 3301 if (time_after(rt_last_gc + rt_min_interval, jiffies) && 3302 entries <= rt_max_size) 3303 goto out; 3304 3305 net->ipv6.ip6_rt_gc_expire++; 3306 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true); 3307 entries = dst_entries_get_slow(ops); 3308 if (entries < ops->gc_thresh) 3309 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1; 3310 out: 3311 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity; 3312 return entries > rt_max_size; 3313 } 3314 3315 static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg, 3316 const struct in6_addr *gw_addr, u32 tbid, 3317 int flags, struct fib6_result *res) 3318 { 3319 struct flowi6 fl6 = { 3320 .flowi6_oif = cfg->fc_ifindex, 3321 .daddr = *gw_addr, 3322 .saddr = cfg->fc_prefsrc, 3323 }; 3324 struct fib6_table *table; 3325 int err; 3326 3327 table = fib6_get_table(net, tbid); 3328 if (!table) 3329 return -EINVAL; 3330 3331 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 3332 flags |= RT6_LOOKUP_F_HAS_SADDR; 3333 3334 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 3335 3336 err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags); 3337 if (!err && res->f6i != net->ipv6.fib6_null_entry) 3338 fib6_select_path(net, res, &fl6, cfg->fc_ifindex, 3339 cfg->fc_ifindex != 0, NULL, flags); 3340 3341 return err; 3342 } 3343 3344 static int ip6_route_check_nh_onlink(struct net *net, 3345 struct fib6_config *cfg, 3346 const struct net_device *dev, 3347 struct netlink_ext_ack *extack) 3348 { 3349 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 3350 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3351 struct fib6_result res = {}; 3352 int err; 3353 3354 err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res); 3355 if (!err && !(res.fib6_flags & RTF_REJECT) && 3356 /* ignore match if it is the default route */ 3357 !ipv6_addr_any(&res.f6i->fib6_dst.addr) && 3358 (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) { 3359 NL_SET_ERR_MSG(extack, 3360 "Nexthop has invalid gateway or device mismatch"); 3361 err = -EINVAL; 3362 } 3363 3364 return err; 3365 } 3366 3367 static int ip6_route_check_nh(struct net *net, 3368 struct fib6_config *cfg, 3369 struct net_device **_dev, 3370 struct inet6_dev **idev) 3371 { 3372 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3373 struct net_device *dev = _dev ? *_dev : NULL; 3374 int flags = RT6_LOOKUP_F_IFACE; 3375 struct fib6_result res = {}; 3376 int err = -EHOSTUNREACH; 3377 3378 if (cfg->fc_table) { 3379 err = ip6_nh_lookup_table(net, cfg, gw_addr, 3380 cfg->fc_table, flags, &res); 3381 /* gw_addr can not require a gateway or resolve to a reject 3382 * route. If a device is given, it must match the result. 3383 */ 3384 if (err || res.fib6_flags & RTF_REJECT || 3385 res.nh->fib_nh_gw_family || 3386 (dev && dev != res.nh->fib_nh_dev)) 3387 err = -EHOSTUNREACH; 3388 } 3389 3390 if (err < 0) { 3391 struct flowi6 fl6 = { 3392 .flowi6_oif = cfg->fc_ifindex, 3393 .daddr = *gw_addr, 3394 }; 3395 3396 err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags); 3397 if (err || res.fib6_flags & RTF_REJECT || 3398 res.nh->fib_nh_gw_family) 3399 err = -EHOSTUNREACH; 3400 3401 if (err) 3402 return err; 3403 3404 fib6_select_path(net, &res, &fl6, cfg->fc_ifindex, 3405 cfg->fc_ifindex != 0, NULL, flags); 3406 } 3407 3408 err = 0; 3409 if (dev) { 3410 if (dev != res.nh->fib_nh_dev) 3411 err = -EHOSTUNREACH; 3412 } else { 3413 *_dev = dev = res.nh->fib_nh_dev; 3414 dev_hold(dev); 3415 *idev = in6_dev_get(dev); 3416 } 3417 3418 return err; 3419 } 3420 3421 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 3422 struct net_device **_dev, struct inet6_dev **idev, 3423 struct netlink_ext_ack *extack) 3424 { 3425 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3426 int gwa_type = ipv6_addr_type(gw_addr); 3427 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 3428 const struct net_device *dev = *_dev; 3429 bool need_addr_check = !dev; 3430 int err = -EINVAL; 3431 3432 /* if gw_addr is local we will fail to detect this in case 3433 * address is still TENTATIVE (DAD in progress). rt6_lookup() 3434 * will return already-added prefix route via interface that 3435 * prefix route was assigned to, which might be non-loopback. 3436 */ 3437 if (dev && 3438 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3439 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3440 goto out; 3441 } 3442 3443 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 3444 /* IPv6 strictly inhibits using not link-local 3445 * addresses as nexthop address. 3446 * Otherwise, router will not able to send redirects. 3447 * It is very good, but in some (rare!) circumstances 3448 * (SIT, PtP, NBMA NOARP links) it is handy to allow 3449 * some exceptions. --ANK 3450 * We allow IPv4-mapped nexthops to support RFC4798-type 3451 * addressing 3452 */ 3453 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 3454 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 3455 goto out; 3456 } 3457 3458 rcu_read_lock(); 3459 3460 if (cfg->fc_flags & RTNH_F_ONLINK) 3461 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 3462 else 3463 err = ip6_route_check_nh(net, cfg, _dev, idev); 3464 3465 rcu_read_unlock(); 3466 3467 if (err) 3468 goto out; 3469 } 3470 3471 /* reload in case device was changed */ 3472 dev = *_dev; 3473 3474 err = -EINVAL; 3475 if (!dev) { 3476 NL_SET_ERR_MSG(extack, "Egress device not specified"); 3477 goto out; 3478 } else if (dev->flags & IFF_LOOPBACK) { 3479 NL_SET_ERR_MSG(extack, 3480 "Egress device can not be loopback device for this route"); 3481 goto out; 3482 } 3483 3484 /* if we did not check gw_addr above, do so now that the 3485 * egress device has been resolved. 3486 */ 3487 if (need_addr_check && 3488 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3489 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3490 goto out; 3491 } 3492 3493 err = 0; 3494 out: 3495 return err; 3496 } 3497 3498 static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) 3499 { 3500 if ((flags & RTF_REJECT) || 3501 (dev && (dev->flags & IFF_LOOPBACK) && 3502 !(addr_type & IPV6_ADDR_LOOPBACK) && 3503 !(flags & (RTF_ANYCAST | RTF_LOCAL)))) 3504 return true; 3505 3506 return false; 3507 } 3508 3509 int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, 3510 struct fib6_config *cfg, gfp_t gfp_flags, 3511 struct netlink_ext_ack *extack) 3512 { 3513 struct net_device *dev = NULL; 3514 struct inet6_dev *idev = NULL; 3515 int addr_type; 3516 int err; 3517 3518 fib6_nh->fib_nh_family = AF_INET6; 3519 #ifdef CONFIG_IPV6_ROUTER_PREF 3520 fib6_nh->last_probe = jiffies; 3521 #endif 3522 if (cfg->fc_is_fdb) { 3523 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3524 fib6_nh->fib_nh_gw_family = AF_INET6; 3525 return 0; 3526 } 3527 3528 err = -ENODEV; 3529 if (cfg->fc_ifindex) { 3530 dev = dev_get_by_index(net, cfg->fc_ifindex); 3531 if (!dev) 3532 goto out; 3533 idev = in6_dev_get(dev); 3534 if (!idev) 3535 goto out; 3536 } 3537 3538 if (cfg->fc_flags & RTNH_F_ONLINK) { 3539 if (!dev) { 3540 NL_SET_ERR_MSG(extack, 3541 "Nexthop device required for onlink"); 3542 goto out; 3543 } 3544 3545 if (!(dev->flags & IFF_UP)) { 3546 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3547 err = -ENETDOWN; 3548 goto out; 3549 } 3550 3551 fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; 3552 } 3553 3554 fib6_nh->fib_nh_weight = 1; 3555 3556 /* We cannot add true routes via loopback here, 3557 * they would result in kernel looping; promote them to reject routes 3558 */ 3559 addr_type = ipv6_addr_type(&cfg->fc_dst); 3560 if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { 3561 /* hold loopback dev/idev if we haven't done so. */ 3562 if (dev != net->loopback_dev) { 3563 if (dev) { 3564 dev_put(dev); 3565 in6_dev_put(idev); 3566 } 3567 dev = net->loopback_dev; 3568 dev_hold(dev); 3569 idev = in6_dev_get(dev); 3570 if (!idev) { 3571 err = -ENODEV; 3572 goto out; 3573 } 3574 } 3575 goto pcpu_alloc; 3576 } 3577 3578 if (cfg->fc_flags & RTF_GATEWAY) { 3579 err = ip6_validate_gw(net, cfg, &dev, &idev, extack); 3580 if (err) 3581 goto out; 3582 3583 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3584 fib6_nh->fib_nh_gw_family = AF_INET6; 3585 } 3586 3587 err = -ENODEV; 3588 if (!dev) 3589 goto out; 3590 3591 if (idev->cnf.disable_ipv6) { 3592 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3593 err = -EACCES; 3594 goto out; 3595 } 3596 3597 if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { 3598 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3599 err = -ENETDOWN; 3600 goto out; 3601 } 3602 3603 if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3604 !netif_carrier_ok(dev)) 3605 fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 3606 3607 err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap, 3608 cfg->fc_encap_type, cfg, gfp_flags, extack); 3609 if (err) 3610 goto out; 3611 3612 pcpu_alloc: 3613 fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); 3614 if (!fib6_nh->rt6i_pcpu) { 3615 err = -ENOMEM; 3616 goto out; 3617 } 3618 3619 fib6_nh->fib_nh_dev = dev; 3620 netdev_tracker_alloc(dev, &fib6_nh->fib_nh_dev_tracker, gfp_flags); 3621 3622 fib6_nh->fib_nh_oif = dev->ifindex; 3623 err = 0; 3624 out: 3625 if (idev) 3626 in6_dev_put(idev); 3627 3628 if (err) { 3629 lwtstate_put(fib6_nh->fib_nh_lws); 3630 fib6_nh->fib_nh_lws = NULL; 3631 dev_put(dev); 3632 } 3633 3634 return err; 3635 } 3636 3637 void fib6_nh_release(struct fib6_nh *fib6_nh) 3638 { 3639 struct rt6_exception_bucket *bucket; 3640 3641 rcu_read_lock(); 3642 3643 fib6_nh_flush_exceptions(fib6_nh, NULL); 3644 bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); 3645 if (bucket) { 3646 rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); 3647 kfree(bucket); 3648 } 3649 3650 rcu_read_unlock(); 3651 3652 fib6_nh_release_dsts(fib6_nh); 3653 free_percpu(fib6_nh->rt6i_pcpu); 3654 3655 fib_nh_common_release(&fib6_nh->nh_common); 3656 } 3657 3658 void fib6_nh_release_dsts(struct fib6_nh *fib6_nh) 3659 { 3660 int cpu; 3661 3662 if (!fib6_nh->rt6i_pcpu) 3663 return; 3664 3665 for_each_possible_cpu(cpu) { 3666 struct rt6_info *pcpu_rt, **ppcpu_rt; 3667 3668 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 3669 pcpu_rt = xchg(ppcpu_rt, NULL); 3670 if (pcpu_rt) { 3671 dst_dev_put(&pcpu_rt->dst); 3672 dst_release(&pcpu_rt->dst); 3673 } 3674 } 3675 } 3676 3677 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 3678 gfp_t gfp_flags, 3679 struct netlink_ext_ack *extack) 3680 { 3681 struct net *net = cfg->fc_nlinfo.nl_net; 3682 struct fib6_info *rt = NULL; 3683 struct nexthop *nh = NULL; 3684 struct fib6_table *table; 3685 struct fib6_nh *fib6_nh; 3686 int err = -EINVAL; 3687 int addr_type; 3688 3689 /* RTF_PCPU is an internal flag; can not be set by userspace */ 3690 if (cfg->fc_flags & RTF_PCPU) { 3691 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 3692 goto out; 3693 } 3694 3695 /* RTF_CACHE is an internal flag; can not be set by userspace */ 3696 if (cfg->fc_flags & RTF_CACHE) { 3697 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 3698 goto out; 3699 } 3700 3701 if (cfg->fc_type > RTN_MAX) { 3702 NL_SET_ERR_MSG(extack, "Invalid route type"); 3703 goto out; 3704 } 3705 3706 if (cfg->fc_dst_len > 128) { 3707 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 3708 goto out; 3709 } 3710 if (cfg->fc_src_len > 128) { 3711 NL_SET_ERR_MSG(extack, "Invalid source address length"); 3712 goto out; 3713 } 3714 #ifndef CONFIG_IPV6_SUBTREES 3715 if (cfg->fc_src_len) { 3716 NL_SET_ERR_MSG(extack, 3717 "Specifying source address requires IPV6_SUBTREES to be enabled"); 3718 goto out; 3719 } 3720 #endif 3721 if (cfg->fc_nh_id) { 3722 nh = nexthop_find_by_id(net, cfg->fc_nh_id); 3723 if (!nh) { 3724 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 3725 goto out; 3726 } 3727 err = fib6_check_nexthop(nh, cfg, extack); 3728 if (err) 3729 goto out; 3730 } 3731 3732 err = -ENOBUFS; 3733 if (cfg->fc_nlinfo.nlh && 3734 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 3735 table = fib6_get_table(net, cfg->fc_table); 3736 if (!table) { 3737 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 3738 table = fib6_new_table(net, cfg->fc_table); 3739 } 3740 } else { 3741 table = fib6_new_table(net, cfg->fc_table); 3742 } 3743 3744 if (!table) 3745 goto out; 3746 3747 err = -ENOMEM; 3748 rt = fib6_info_alloc(gfp_flags, !nh); 3749 if (!rt) 3750 goto out; 3751 3752 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len, 3753 extack); 3754 if (IS_ERR(rt->fib6_metrics)) { 3755 err = PTR_ERR(rt->fib6_metrics); 3756 /* Do not leave garbage there. */ 3757 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; 3758 goto out_free; 3759 } 3760 3761 if (cfg->fc_flags & RTF_ADDRCONF) 3762 rt->dst_nocount = true; 3763 3764 if (cfg->fc_flags & RTF_EXPIRES) 3765 fib6_set_expires(rt, jiffies + 3766 clock_t_to_jiffies(cfg->fc_expires)); 3767 else 3768 fib6_clean_expires(rt); 3769 3770 if (cfg->fc_protocol == RTPROT_UNSPEC) 3771 cfg->fc_protocol = RTPROT_BOOT; 3772 rt->fib6_protocol = cfg->fc_protocol; 3773 3774 rt->fib6_table = table; 3775 rt->fib6_metric = cfg->fc_metric; 3776 rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; 3777 rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; 3778 3779 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3780 rt->fib6_dst.plen = cfg->fc_dst_len; 3781 3782 #ifdef CONFIG_IPV6_SUBTREES 3783 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3784 rt->fib6_src.plen = cfg->fc_src_len; 3785 #endif 3786 if (nh) { 3787 if (rt->fib6_src.plen) { 3788 NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); 3789 goto out_free; 3790 } 3791 if (!nexthop_get(nh)) { 3792 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 3793 goto out_free; 3794 } 3795 rt->nh = nh; 3796 fib6_nh = nexthop_fib6_nh(rt->nh); 3797 } else { 3798 err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); 3799 if (err) 3800 goto out; 3801 3802 fib6_nh = rt->fib6_nh; 3803 3804 /* We cannot add true routes via loopback here, they would 3805 * result in kernel looping; promote them to reject routes 3806 */ 3807 addr_type = ipv6_addr_type(&cfg->fc_dst); 3808 if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, 3809 addr_type)) 3810 rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; 3811 } 3812 3813 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3814 struct net_device *dev = fib6_nh->fib_nh_dev; 3815 3816 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3817 NL_SET_ERR_MSG(extack, "Invalid source address"); 3818 err = -EINVAL; 3819 goto out; 3820 } 3821 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3822 rt->fib6_prefsrc.plen = 128; 3823 } else 3824 rt->fib6_prefsrc.plen = 0; 3825 3826 return rt; 3827 out: 3828 fib6_info_release(rt); 3829 return ERR_PTR(err); 3830 out_free: 3831 ip_fib_metrics_put(rt->fib6_metrics); 3832 kfree(rt); 3833 return ERR_PTR(err); 3834 } 3835 3836 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3837 struct netlink_ext_ack *extack) 3838 { 3839 struct fib6_info *rt; 3840 int err; 3841 3842 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3843 if (IS_ERR(rt)) 3844 return PTR_ERR(rt); 3845 3846 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3847 fib6_info_release(rt); 3848 3849 return err; 3850 } 3851 3852 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3853 { 3854 struct net *net = info->nl_net; 3855 struct fib6_table *table; 3856 int err; 3857 3858 if (rt == net->ipv6.fib6_null_entry) { 3859 err = -ENOENT; 3860 goto out; 3861 } 3862 3863 table = rt->fib6_table; 3864 spin_lock_bh(&table->tb6_lock); 3865 err = fib6_del(rt, info); 3866 spin_unlock_bh(&table->tb6_lock); 3867 3868 out: 3869 fib6_info_release(rt); 3870 return err; 3871 } 3872 3873 int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) 3874 { 3875 struct nl_info info = { 3876 .nl_net = net, 3877 .skip_notify = skip_notify 3878 }; 3879 3880 return __ip6_del_rt(rt, &info); 3881 } 3882 3883 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3884 { 3885 struct nl_info *info = &cfg->fc_nlinfo; 3886 struct net *net = info->nl_net; 3887 struct sk_buff *skb = NULL; 3888 struct fib6_table *table; 3889 int err = -ENOENT; 3890 3891 if (rt == net->ipv6.fib6_null_entry) 3892 goto out_put; 3893 table = rt->fib6_table; 3894 spin_lock_bh(&table->tb6_lock); 3895 3896 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3897 struct fib6_info *sibling, *next_sibling; 3898 struct fib6_node *fn; 3899 3900 /* prefer to send a single notification with all hops */ 3901 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 3902 if (skb) { 3903 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 3904 3905 if (rt6_fill_node(net, skb, rt, NULL, 3906 NULL, NULL, 0, RTM_DELROUTE, 3907 info->portid, seq, 0) < 0) { 3908 kfree_skb(skb); 3909 skb = NULL; 3910 } else 3911 info->skip_notify = 1; 3912 } 3913 3914 /* 'rt' points to the first sibling route. If it is not the 3915 * leaf, then we do not need to send a notification. Otherwise, 3916 * we need to check if the last sibling has a next route or not 3917 * and emit a replace or delete notification, respectively. 3918 */ 3919 info->skip_notify_kernel = 1; 3920 fn = rcu_dereference_protected(rt->fib6_node, 3921 lockdep_is_held(&table->tb6_lock)); 3922 if (rcu_access_pointer(fn->leaf) == rt) { 3923 struct fib6_info *last_sibling, *replace_rt; 3924 3925 last_sibling = list_last_entry(&rt->fib6_siblings, 3926 struct fib6_info, 3927 fib6_siblings); 3928 replace_rt = rcu_dereference_protected( 3929 last_sibling->fib6_next, 3930 lockdep_is_held(&table->tb6_lock)); 3931 if (replace_rt) 3932 call_fib6_entry_notifiers_replace(net, 3933 replace_rt); 3934 else 3935 call_fib6_multipath_entry_notifiers(net, 3936 FIB_EVENT_ENTRY_DEL, 3937 rt, rt->fib6_nsiblings, 3938 NULL); 3939 } 3940 list_for_each_entry_safe(sibling, next_sibling, 3941 &rt->fib6_siblings, 3942 fib6_siblings) { 3943 err = fib6_del(sibling, info); 3944 if (err) 3945 goto out_unlock; 3946 } 3947 } 3948 3949 err = fib6_del(rt, info); 3950 out_unlock: 3951 spin_unlock_bh(&table->tb6_lock); 3952 out_put: 3953 fib6_info_release(rt); 3954 3955 if (skb) { 3956 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 3957 info->nlh, gfp_any()); 3958 } 3959 return err; 3960 } 3961 3962 static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 3963 { 3964 int rc = -ESRCH; 3965 3966 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 3967 goto out; 3968 3969 if (cfg->fc_flags & RTF_GATEWAY && 3970 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 3971 goto out; 3972 3973 rc = rt6_remove_exception_rt(rt); 3974 out: 3975 return rc; 3976 } 3977 3978 static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, 3979 struct fib6_nh *nh) 3980 { 3981 struct fib6_result res = { 3982 .f6i = rt, 3983 .nh = nh, 3984 }; 3985 struct rt6_info *rt_cache; 3986 3987 rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); 3988 if (rt_cache) 3989 return __ip6_del_cached_rt(rt_cache, cfg); 3990 3991 return 0; 3992 } 3993 3994 struct fib6_nh_del_cached_rt_arg { 3995 struct fib6_config *cfg; 3996 struct fib6_info *f6i; 3997 }; 3998 3999 static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) 4000 { 4001 struct fib6_nh_del_cached_rt_arg *arg = _arg; 4002 int rc; 4003 4004 rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); 4005 return rc != -ESRCH ? rc : 0; 4006 } 4007 4008 static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) 4009 { 4010 struct fib6_nh_del_cached_rt_arg arg = { 4011 .cfg = cfg, 4012 .f6i = f6i 4013 }; 4014 4015 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); 4016 } 4017 4018 static int ip6_route_del(struct fib6_config *cfg, 4019 struct netlink_ext_ack *extack) 4020 { 4021 struct fib6_table *table; 4022 struct fib6_info *rt; 4023 struct fib6_node *fn; 4024 int err = -ESRCH; 4025 4026 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 4027 if (!table) { 4028 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 4029 return err; 4030 } 4031 4032 rcu_read_lock(); 4033 4034 fn = fib6_locate(&table->tb6_root, 4035 &cfg->fc_dst, cfg->fc_dst_len, 4036 &cfg->fc_src, cfg->fc_src_len, 4037 !(cfg->fc_flags & RTF_CACHE)); 4038 4039 if (fn) { 4040 for_each_fib6_node_rt_rcu(fn) { 4041 struct fib6_nh *nh; 4042 4043 if (rt->nh && cfg->fc_nh_id && 4044 rt->nh->id != cfg->fc_nh_id) 4045 continue; 4046 4047 if (cfg->fc_flags & RTF_CACHE) { 4048 int rc = 0; 4049 4050 if (rt->nh) { 4051 rc = ip6_del_cached_rt_nh(cfg, rt); 4052 } else if (cfg->fc_nh_id) { 4053 continue; 4054 } else { 4055 nh = rt->fib6_nh; 4056 rc = ip6_del_cached_rt(cfg, rt, nh); 4057 } 4058 if (rc != -ESRCH) { 4059 rcu_read_unlock(); 4060 return rc; 4061 } 4062 continue; 4063 } 4064 4065 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 4066 continue; 4067 if (cfg->fc_protocol && 4068 cfg->fc_protocol != rt->fib6_protocol) 4069 continue; 4070 4071 if (rt->nh) { 4072 if (!fib6_info_hold_safe(rt)) 4073 continue; 4074 rcu_read_unlock(); 4075 4076 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 4077 } 4078 if (cfg->fc_nh_id) 4079 continue; 4080 4081 nh = rt->fib6_nh; 4082 if (cfg->fc_ifindex && 4083 (!nh->fib_nh_dev || 4084 nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) 4085 continue; 4086 if (cfg->fc_flags & RTF_GATEWAY && 4087 !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) 4088 continue; 4089 if (!fib6_info_hold_safe(rt)) 4090 continue; 4091 rcu_read_unlock(); 4092 4093 /* if gateway was specified only delete the one hop */ 4094 if (cfg->fc_flags & RTF_GATEWAY) 4095 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 4096 4097 return __ip6_del_rt_siblings(rt, cfg); 4098 } 4099 } 4100 rcu_read_unlock(); 4101 4102 return err; 4103 } 4104 4105 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 4106 { 4107 struct netevent_redirect netevent; 4108 struct rt6_info *rt, *nrt = NULL; 4109 struct fib6_result res = {}; 4110 struct ndisc_options ndopts; 4111 struct inet6_dev *in6_dev; 4112 struct neighbour *neigh; 4113 struct rd_msg *msg; 4114 int optlen, on_link; 4115 u8 *lladdr; 4116 4117 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 4118 optlen -= sizeof(*msg); 4119 4120 if (optlen < 0) { 4121 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 4122 return; 4123 } 4124 4125 msg = (struct rd_msg *)icmp6_hdr(skb); 4126 4127 if (ipv6_addr_is_multicast(&msg->dest)) { 4128 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 4129 return; 4130 } 4131 4132 on_link = 0; 4133 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 4134 on_link = 1; 4135 } else if (ipv6_addr_type(&msg->target) != 4136 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 4137 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 4138 return; 4139 } 4140 4141 in6_dev = __in6_dev_get(skb->dev); 4142 if (!in6_dev) 4143 return; 4144 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) 4145 return; 4146 4147 /* RFC2461 8.1: 4148 * The IP source address of the Redirect MUST be the same as the current 4149 * first-hop router for the specified ICMP Destination Address. 4150 */ 4151 4152 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 4153 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 4154 return; 4155 } 4156 4157 lladdr = NULL; 4158 if (ndopts.nd_opts_tgt_lladdr) { 4159 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 4160 skb->dev); 4161 if (!lladdr) { 4162 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 4163 return; 4164 } 4165 } 4166 4167 rt = (struct rt6_info *) dst; 4168 if (rt->rt6i_flags & RTF_REJECT) { 4169 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 4170 return; 4171 } 4172 4173 /* Redirect received -> path was valid. 4174 * Look, redirects are sent only in response to data packets, 4175 * so that this nexthop apparently is reachable. --ANK 4176 */ 4177 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 4178 4179 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 4180 if (!neigh) 4181 return; 4182 4183 /* 4184 * We have finally decided to accept it. 4185 */ 4186 4187 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 4188 NEIGH_UPDATE_F_WEAK_OVERRIDE| 4189 NEIGH_UPDATE_F_OVERRIDE| 4190 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 4191 NEIGH_UPDATE_F_ISROUTER)), 4192 NDISC_REDIRECT, &ndopts); 4193 4194 rcu_read_lock(); 4195 res.f6i = rcu_dereference(rt->from); 4196 if (!res.f6i) 4197 goto out; 4198 4199 if (res.f6i->nh) { 4200 struct fib6_nh_match_arg arg = { 4201 .dev = dst->dev, 4202 .gw = &rt->rt6i_gateway, 4203 }; 4204 4205 nexthop_for_each_fib6_nh(res.f6i->nh, 4206 fib6_nh_find_match, &arg); 4207 4208 /* fib6_info uses a nexthop that does not have fib6_nh 4209 * using the dst->dev. Should be impossible 4210 */ 4211 if (!arg.match) 4212 goto out; 4213 res.nh = arg.match; 4214 } else { 4215 res.nh = res.f6i->fib6_nh; 4216 } 4217 4218 res.fib6_flags = res.f6i->fib6_flags; 4219 res.fib6_type = res.f6i->fib6_type; 4220 nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); 4221 if (!nrt) 4222 goto out; 4223 4224 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 4225 if (on_link) 4226 nrt->rt6i_flags &= ~RTF_GATEWAY; 4227 4228 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 4229 4230 /* rt6_insert_exception() will take care of duplicated exceptions */ 4231 if (rt6_insert_exception(nrt, &res)) { 4232 dst_release_immediate(&nrt->dst); 4233 goto out; 4234 } 4235 4236 netevent.old = &rt->dst; 4237 netevent.new = &nrt->dst; 4238 netevent.daddr = &msg->dest; 4239 netevent.neigh = neigh; 4240 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 4241 4242 out: 4243 rcu_read_unlock(); 4244 neigh_release(neigh); 4245 } 4246 4247 #ifdef CONFIG_IPV6_ROUTE_INFO 4248 static struct fib6_info *rt6_get_route_info(struct net *net, 4249 const struct in6_addr *prefix, int prefixlen, 4250 const struct in6_addr *gwaddr, 4251 struct net_device *dev) 4252 { 4253 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4254 int ifindex = dev->ifindex; 4255 struct fib6_node *fn; 4256 struct fib6_info *rt = NULL; 4257 struct fib6_table *table; 4258 4259 table = fib6_get_table(net, tb_id); 4260 if (!table) 4261 return NULL; 4262 4263 rcu_read_lock(); 4264 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 4265 if (!fn) 4266 goto out; 4267 4268 for_each_fib6_node_rt_rcu(fn) { 4269 /* these routes do not use nexthops */ 4270 if (rt->nh) 4271 continue; 4272 if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) 4273 continue; 4274 if (!(rt->fib6_flags & RTF_ROUTEINFO) || 4275 !rt->fib6_nh->fib_nh_gw_family) 4276 continue; 4277 if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) 4278 continue; 4279 if (!fib6_info_hold_safe(rt)) 4280 continue; 4281 break; 4282 } 4283 out: 4284 rcu_read_unlock(); 4285 return rt; 4286 } 4287 4288 static struct fib6_info *rt6_add_route_info(struct net *net, 4289 const struct in6_addr *prefix, int prefixlen, 4290 const struct in6_addr *gwaddr, 4291 struct net_device *dev, 4292 unsigned int pref) 4293 { 4294 struct fib6_config cfg = { 4295 .fc_metric = IP6_RT_PRIO_USER, 4296 .fc_ifindex = dev->ifindex, 4297 .fc_dst_len = prefixlen, 4298 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 4299 RTF_UP | RTF_PREF(pref), 4300 .fc_protocol = RTPROT_RA, 4301 .fc_type = RTN_UNICAST, 4302 .fc_nlinfo.portid = 0, 4303 .fc_nlinfo.nlh = NULL, 4304 .fc_nlinfo.nl_net = net, 4305 }; 4306 4307 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4308 cfg.fc_dst = *prefix; 4309 cfg.fc_gateway = *gwaddr; 4310 4311 /* We should treat it as a default route if prefix length is 0. */ 4312 if (!prefixlen) 4313 cfg.fc_flags |= RTF_DEFAULT; 4314 4315 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 4316 4317 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 4318 } 4319 #endif 4320 4321 struct fib6_info *rt6_get_dflt_router(struct net *net, 4322 const struct in6_addr *addr, 4323 struct net_device *dev) 4324 { 4325 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 4326 struct fib6_info *rt; 4327 struct fib6_table *table; 4328 4329 table = fib6_get_table(net, tb_id); 4330 if (!table) 4331 return NULL; 4332 4333 rcu_read_lock(); 4334 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4335 struct fib6_nh *nh; 4336 4337 /* RA routes do not use nexthops */ 4338 if (rt->nh) 4339 continue; 4340 4341 nh = rt->fib6_nh; 4342 if (dev == nh->fib_nh_dev && 4343 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 4344 ipv6_addr_equal(&nh->fib_nh_gw6, addr)) 4345 break; 4346 } 4347 if (rt && !fib6_info_hold_safe(rt)) 4348 rt = NULL; 4349 rcu_read_unlock(); 4350 return rt; 4351 } 4352 4353 struct fib6_info *rt6_add_dflt_router(struct net *net, 4354 const struct in6_addr *gwaddr, 4355 struct net_device *dev, 4356 unsigned int pref, 4357 u32 defrtr_usr_metric) 4358 { 4359 struct fib6_config cfg = { 4360 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 4361 .fc_metric = defrtr_usr_metric, 4362 .fc_ifindex = dev->ifindex, 4363 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 4364 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 4365 .fc_protocol = RTPROT_RA, 4366 .fc_type = RTN_UNICAST, 4367 .fc_nlinfo.portid = 0, 4368 .fc_nlinfo.nlh = NULL, 4369 .fc_nlinfo.nl_net = net, 4370 }; 4371 4372 cfg.fc_gateway = *gwaddr; 4373 4374 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 4375 struct fib6_table *table; 4376 4377 table = fib6_get_table(dev_net(dev), cfg.fc_table); 4378 if (table) 4379 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 4380 } 4381 4382 return rt6_get_dflt_router(net, gwaddr, dev); 4383 } 4384 4385 static void __rt6_purge_dflt_routers(struct net *net, 4386 struct fib6_table *table) 4387 { 4388 struct fib6_info *rt; 4389 4390 restart: 4391 rcu_read_lock(); 4392 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4393 struct net_device *dev = fib6_info_nh_dev(rt); 4394 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 4395 4396 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 4397 (!idev || idev->cnf.accept_ra != 2) && 4398 fib6_info_hold_safe(rt)) { 4399 rcu_read_unlock(); 4400 ip6_del_rt(net, rt, false); 4401 goto restart; 4402 } 4403 } 4404 rcu_read_unlock(); 4405 4406 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 4407 } 4408 4409 void rt6_purge_dflt_routers(struct net *net) 4410 { 4411 struct fib6_table *table; 4412 struct hlist_head *head; 4413 unsigned int h; 4414 4415 rcu_read_lock(); 4416 4417 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 4418 head = &net->ipv6.fib_table_hash[h]; 4419 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 4420 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 4421 __rt6_purge_dflt_routers(net, table); 4422 } 4423 } 4424 4425 rcu_read_unlock(); 4426 } 4427 4428 static void rtmsg_to_fib6_config(struct net *net, 4429 struct in6_rtmsg *rtmsg, 4430 struct fib6_config *cfg) 4431 { 4432 *cfg = (struct fib6_config){ 4433 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 4434 : RT6_TABLE_MAIN, 4435 .fc_ifindex = rtmsg->rtmsg_ifindex, 4436 .fc_metric = rtmsg->rtmsg_metric ? : IP6_RT_PRIO_USER, 4437 .fc_expires = rtmsg->rtmsg_info, 4438 .fc_dst_len = rtmsg->rtmsg_dst_len, 4439 .fc_src_len = rtmsg->rtmsg_src_len, 4440 .fc_flags = rtmsg->rtmsg_flags, 4441 .fc_type = rtmsg->rtmsg_type, 4442 4443 .fc_nlinfo.nl_net = net, 4444 4445 .fc_dst = rtmsg->rtmsg_dst, 4446 .fc_src = rtmsg->rtmsg_src, 4447 .fc_gateway = rtmsg->rtmsg_gateway, 4448 }; 4449 } 4450 4451 int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg) 4452 { 4453 struct fib6_config cfg; 4454 int err; 4455 4456 if (cmd != SIOCADDRT && cmd != SIOCDELRT) 4457 return -EINVAL; 4458 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 4459 return -EPERM; 4460 4461 rtmsg_to_fib6_config(net, rtmsg, &cfg); 4462 4463 rtnl_lock(); 4464 switch (cmd) { 4465 case SIOCADDRT: 4466 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 4467 break; 4468 case SIOCDELRT: 4469 err = ip6_route_del(&cfg, NULL); 4470 break; 4471 } 4472 rtnl_unlock(); 4473 return err; 4474 } 4475 4476 /* 4477 * Drop the packet on the floor 4478 */ 4479 4480 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 4481 { 4482 struct dst_entry *dst = skb_dst(skb); 4483 struct net *net = dev_net(dst->dev); 4484 struct inet6_dev *idev; 4485 int type; 4486 4487 if (netif_is_l3_master(skb->dev) && 4488 dst->dev == net->loopback_dev) 4489 idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); 4490 else 4491 idev = ip6_dst_idev(dst); 4492 4493 switch (ipstats_mib_noroutes) { 4494 case IPSTATS_MIB_INNOROUTES: 4495 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 4496 if (type == IPV6_ADDR_ANY) { 4497 IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); 4498 break; 4499 } 4500 fallthrough; 4501 case IPSTATS_MIB_OUTNOROUTES: 4502 IP6_INC_STATS(net, idev, ipstats_mib_noroutes); 4503 break; 4504 } 4505 4506 /* Start over by dropping the dst for l3mdev case */ 4507 if (netif_is_l3_master(skb->dev)) 4508 skb_dst_drop(skb); 4509 4510 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 4511 kfree_skb(skb); 4512 return 0; 4513 } 4514 4515 static int ip6_pkt_discard(struct sk_buff *skb) 4516 { 4517 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 4518 } 4519 4520 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4521 { 4522 skb->dev = skb_dst(skb)->dev; 4523 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 4524 } 4525 4526 static int ip6_pkt_prohibit(struct sk_buff *skb) 4527 { 4528 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 4529 } 4530 4531 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4532 { 4533 skb->dev = skb_dst(skb)->dev; 4534 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 4535 } 4536 4537 /* 4538 * Allocate a dst for local (unicast / anycast) address. 4539 */ 4540 4541 struct fib6_info *addrconf_f6i_alloc(struct net *net, 4542 struct inet6_dev *idev, 4543 const struct in6_addr *addr, 4544 bool anycast, gfp_t gfp_flags) 4545 { 4546 struct fib6_config cfg = { 4547 .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, 4548 .fc_ifindex = idev->dev->ifindex, 4549 .fc_flags = RTF_UP | RTF_NONEXTHOP, 4550 .fc_dst = *addr, 4551 .fc_dst_len = 128, 4552 .fc_protocol = RTPROT_KERNEL, 4553 .fc_nlinfo.nl_net = net, 4554 .fc_ignore_dev_down = true, 4555 }; 4556 struct fib6_info *f6i; 4557 4558 if (anycast) { 4559 cfg.fc_type = RTN_ANYCAST; 4560 cfg.fc_flags |= RTF_ANYCAST; 4561 } else { 4562 cfg.fc_type = RTN_LOCAL; 4563 cfg.fc_flags |= RTF_LOCAL; 4564 } 4565 4566 f6i = ip6_route_info_create(&cfg, gfp_flags, NULL); 4567 if (!IS_ERR(f6i)) 4568 f6i->dst_nocount = true; 4569 return f6i; 4570 } 4571 4572 /* remove deleted ip from prefsrc entries */ 4573 struct arg_dev_net_ip { 4574 struct net_device *dev; 4575 struct net *net; 4576 struct in6_addr *addr; 4577 }; 4578 4579 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 4580 { 4581 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 4582 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 4583 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 4584 4585 if (!rt->nh && 4586 ((void *)rt->fib6_nh->fib_nh_dev == dev || !dev) && 4587 rt != net->ipv6.fib6_null_entry && 4588 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) { 4589 spin_lock_bh(&rt6_exception_lock); 4590 /* remove prefsrc entry */ 4591 rt->fib6_prefsrc.plen = 0; 4592 spin_unlock_bh(&rt6_exception_lock); 4593 } 4594 return 0; 4595 } 4596 4597 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 4598 { 4599 struct net *net = dev_net(ifp->idev->dev); 4600 struct arg_dev_net_ip adni = { 4601 .dev = ifp->idev->dev, 4602 .net = net, 4603 .addr = &ifp->addr, 4604 }; 4605 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 4606 } 4607 4608 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) 4609 4610 /* Remove routers and update dst entries when gateway turn into host. */ 4611 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 4612 { 4613 struct in6_addr *gateway = (struct in6_addr *)arg; 4614 struct fib6_nh *nh; 4615 4616 /* RA routes do not use nexthops */ 4617 if (rt->nh) 4618 return 0; 4619 4620 nh = rt->fib6_nh; 4621 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 4622 nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) 4623 return -1; 4624 4625 /* Further clean up cached routes in exception table. 4626 * This is needed because cached route may have a different 4627 * gateway than its 'parent' in the case of an ip redirect. 4628 */ 4629 fib6_nh_exceptions_clean_tohost(nh, gateway); 4630 4631 return 0; 4632 } 4633 4634 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 4635 { 4636 fib6_clean_all(net, fib6_clean_tohost, gateway); 4637 } 4638 4639 struct arg_netdev_event { 4640 const struct net_device *dev; 4641 union { 4642 unsigned char nh_flags; 4643 unsigned long event; 4644 }; 4645 }; 4646 4647 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 4648 { 4649 struct fib6_info *iter; 4650 struct fib6_node *fn; 4651 4652 fn = rcu_dereference_protected(rt->fib6_node, 4653 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4654 iter = rcu_dereference_protected(fn->leaf, 4655 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4656 while (iter) { 4657 if (iter->fib6_metric == rt->fib6_metric && 4658 rt6_qualify_for_ecmp(iter)) 4659 return iter; 4660 iter = rcu_dereference_protected(iter->fib6_next, 4661 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4662 } 4663 4664 return NULL; 4665 } 4666 4667 /* only called for fib entries with builtin fib6_nh */ 4668 static bool rt6_is_dead(const struct fib6_info *rt) 4669 { 4670 if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || 4671 (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && 4672 ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) 4673 return true; 4674 4675 return false; 4676 } 4677 4678 static int rt6_multipath_total_weight(const struct fib6_info *rt) 4679 { 4680 struct fib6_info *iter; 4681 int total = 0; 4682 4683 if (!rt6_is_dead(rt)) 4684 total += rt->fib6_nh->fib_nh_weight; 4685 4686 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 4687 if (!rt6_is_dead(iter)) 4688 total += iter->fib6_nh->fib_nh_weight; 4689 } 4690 4691 return total; 4692 } 4693 4694 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 4695 { 4696 int upper_bound = -1; 4697 4698 if (!rt6_is_dead(rt)) { 4699 *weight += rt->fib6_nh->fib_nh_weight; 4700 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 4701 total) - 1; 4702 } 4703 atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); 4704 } 4705 4706 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 4707 { 4708 struct fib6_info *iter; 4709 int weight = 0; 4710 4711 rt6_upper_bound_set(rt, &weight, total); 4712 4713 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4714 rt6_upper_bound_set(iter, &weight, total); 4715 } 4716 4717 void rt6_multipath_rebalance(struct fib6_info *rt) 4718 { 4719 struct fib6_info *first; 4720 int total; 4721 4722 /* In case the entire multipath route was marked for flushing, 4723 * then there is no need to rebalance upon the removal of every 4724 * sibling route. 4725 */ 4726 if (!rt->fib6_nsiblings || rt->should_flush) 4727 return; 4728 4729 /* During lookup routes are evaluated in order, so we need to 4730 * make sure upper bounds are assigned from the first sibling 4731 * onwards. 4732 */ 4733 first = rt6_multipath_first_sibling(rt); 4734 if (WARN_ON_ONCE(!first)) 4735 return; 4736 4737 total = rt6_multipath_total_weight(first); 4738 rt6_multipath_upper_bound_set(first, total); 4739 } 4740 4741 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 4742 { 4743 const struct arg_netdev_event *arg = p_arg; 4744 struct net *net = dev_net(arg->dev); 4745 4746 if (rt != net->ipv6.fib6_null_entry && !rt->nh && 4747 rt->fib6_nh->fib_nh_dev == arg->dev) { 4748 rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; 4749 fib6_update_sernum_upto_root(net, rt); 4750 rt6_multipath_rebalance(rt); 4751 } 4752 4753 return 0; 4754 } 4755 4756 void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) 4757 { 4758 struct arg_netdev_event arg = { 4759 .dev = dev, 4760 { 4761 .nh_flags = nh_flags, 4762 }, 4763 }; 4764 4765 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 4766 arg.nh_flags |= RTNH_F_LINKDOWN; 4767 4768 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 4769 } 4770 4771 /* only called for fib entries with inline fib6_nh */ 4772 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 4773 const struct net_device *dev) 4774 { 4775 struct fib6_info *iter; 4776 4777 if (rt->fib6_nh->fib_nh_dev == dev) 4778 return true; 4779 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4780 if (iter->fib6_nh->fib_nh_dev == dev) 4781 return true; 4782 4783 return false; 4784 } 4785 4786 static void rt6_multipath_flush(struct fib6_info *rt) 4787 { 4788 struct fib6_info *iter; 4789 4790 rt->should_flush = 1; 4791 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4792 iter->should_flush = 1; 4793 } 4794 4795 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 4796 const struct net_device *down_dev) 4797 { 4798 struct fib6_info *iter; 4799 unsigned int dead = 0; 4800 4801 if (rt->fib6_nh->fib_nh_dev == down_dev || 4802 rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4803 dead++; 4804 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4805 if (iter->fib6_nh->fib_nh_dev == down_dev || 4806 iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4807 dead++; 4808 4809 return dead; 4810 } 4811 4812 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 4813 const struct net_device *dev, 4814 unsigned char nh_flags) 4815 { 4816 struct fib6_info *iter; 4817 4818 if (rt->fib6_nh->fib_nh_dev == dev) 4819 rt->fib6_nh->fib_nh_flags |= nh_flags; 4820 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4821 if (iter->fib6_nh->fib_nh_dev == dev) 4822 iter->fib6_nh->fib_nh_flags |= nh_flags; 4823 } 4824 4825 /* called with write lock held for table with rt */ 4826 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 4827 { 4828 const struct arg_netdev_event *arg = p_arg; 4829 const struct net_device *dev = arg->dev; 4830 struct net *net = dev_net(dev); 4831 4832 if (rt == net->ipv6.fib6_null_entry || rt->nh) 4833 return 0; 4834 4835 switch (arg->event) { 4836 case NETDEV_UNREGISTER: 4837 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4838 case NETDEV_DOWN: 4839 if (rt->should_flush) 4840 return -1; 4841 if (!rt->fib6_nsiblings) 4842 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4843 if (rt6_multipath_uses_dev(rt, dev)) { 4844 unsigned int count; 4845 4846 count = rt6_multipath_dead_count(rt, dev); 4847 if (rt->fib6_nsiblings + 1 == count) { 4848 rt6_multipath_flush(rt); 4849 return -1; 4850 } 4851 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4852 RTNH_F_LINKDOWN); 4853 fib6_update_sernum(net, rt); 4854 rt6_multipath_rebalance(rt); 4855 } 4856 return -2; 4857 case NETDEV_CHANGE: 4858 if (rt->fib6_nh->fib_nh_dev != dev || 4859 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4860 break; 4861 rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 4862 rt6_multipath_rebalance(rt); 4863 break; 4864 } 4865 4866 return 0; 4867 } 4868 4869 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4870 { 4871 struct arg_netdev_event arg = { 4872 .dev = dev, 4873 { 4874 .event = event, 4875 }, 4876 }; 4877 struct net *net = dev_net(dev); 4878 4879 if (net->ipv6.sysctl.skip_notify_on_dev_down) 4880 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 4881 else 4882 fib6_clean_all(net, fib6_ifdown, &arg); 4883 } 4884 4885 void rt6_disable_ip(struct net_device *dev, unsigned long event) 4886 { 4887 rt6_sync_down_dev(dev, event); 4888 rt6_uncached_list_flush_dev(dev); 4889 neigh_ifdown(&nd_tbl, dev); 4890 } 4891 4892 struct rt6_mtu_change_arg { 4893 struct net_device *dev; 4894 unsigned int mtu; 4895 struct fib6_info *f6i; 4896 }; 4897 4898 static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) 4899 { 4900 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; 4901 struct fib6_info *f6i = arg->f6i; 4902 4903 /* For administrative MTU increase, there is no way to discover 4904 * IPv6 PMTU increase, so PMTU increase should be updated here. 4905 * Since RFC 1981 doesn't include administrative MTU increase 4906 * update PMTU increase is a MUST. (i.e. jumbo frame) 4907 */ 4908 if (nh->fib_nh_dev == arg->dev) { 4909 struct inet6_dev *idev = __in6_dev_get(arg->dev); 4910 u32 mtu = f6i->fib6_pmtu; 4911 4912 if (mtu >= arg->mtu || 4913 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 4914 fib6_metric_set(f6i, RTAX_MTU, arg->mtu); 4915 4916 spin_lock_bh(&rt6_exception_lock); 4917 rt6_exceptions_update_pmtu(idev, nh, arg->mtu); 4918 spin_unlock_bh(&rt6_exception_lock); 4919 } 4920 4921 return 0; 4922 } 4923 4924 static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) 4925 { 4926 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 4927 struct inet6_dev *idev; 4928 4929 /* In IPv6 pmtu discovery is not optional, 4930 so that RTAX_MTU lock cannot disable it. 4931 We still use this lock to block changes 4932 caused by addrconf/ndisc. 4933 */ 4934 4935 idev = __in6_dev_get(arg->dev); 4936 if (!idev) 4937 return 0; 4938 4939 if (fib6_metric_locked(f6i, RTAX_MTU)) 4940 return 0; 4941 4942 arg->f6i = f6i; 4943 if (f6i->nh) { 4944 /* fib6_nh_mtu_change only returns 0, so this is safe */ 4945 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, 4946 arg); 4947 } 4948 4949 return fib6_nh_mtu_change(f6i->fib6_nh, arg); 4950 } 4951 4952 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 4953 { 4954 struct rt6_mtu_change_arg arg = { 4955 .dev = dev, 4956 .mtu = mtu, 4957 }; 4958 4959 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 4960 } 4961 4962 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 4963 [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, 4964 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 4965 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 4966 [RTA_OIF] = { .type = NLA_U32 }, 4967 [RTA_IIF] = { .type = NLA_U32 }, 4968 [RTA_PRIORITY] = { .type = NLA_U32 }, 4969 [RTA_METRICS] = { .type = NLA_NESTED }, 4970 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 4971 [RTA_PREF] = { .type = NLA_U8 }, 4972 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 4973 [RTA_ENCAP] = { .type = NLA_NESTED }, 4974 [RTA_EXPIRES] = { .type = NLA_U32 }, 4975 [RTA_UID] = { .type = NLA_U32 }, 4976 [RTA_MARK] = { .type = NLA_U32 }, 4977 [RTA_TABLE] = { .type = NLA_U32 }, 4978 [RTA_IP_PROTO] = { .type = NLA_U8 }, 4979 [RTA_SPORT] = { .type = NLA_U16 }, 4980 [RTA_DPORT] = { .type = NLA_U16 }, 4981 [RTA_NH_ID] = { .type = NLA_U32 }, 4982 }; 4983 4984 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 4985 struct fib6_config *cfg, 4986 struct netlink_ext_ack *extack) 4987 { 4988 struct rtmsg *rtm; 4989 struct nlattr *tb[RTA_MAX+1]; 4990 unsigned int pref; 4991 int err; 4992 4993 err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 4994 rtm_ipv6_policy, extack); 4995 if (err < 0) 4996 goto errout; 4997 4998 err = -EINVAL; 4999 rtm = nlmsg_data(nlh); 5000 5001 if (rtm->rtm_tos) { 5002 NL_SET_ERR_MSG(extack, 5003 "Invalid dsfield (tos): option not available for IPv6"); 5004 goto errout; 5005 } 5006 5007 *cfg = (struct fib6_config){ 5008 .fc_table = rtm->rtm_table, 5009 .fc_dst_len = rtm->rtm_dst_len, 5010 .fc_src_len = rtm->rtm_src_len, 5011 .fc_flags = RTF_UP, 5012 .fc_protocol = rtm->rtm_protocol, 5013 .fc_type = rtm->rtm_type, 5014 5015 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 5016 .fc_nlinfo.nlh = nlh, 5017 .fc_nlinfo.nl_net = sock_net(skb->sk), 5018 }; 5019 5020 if (rtm->rtm_type == RTN_UNREACHABLE || 5021 rtm->rtm_type == RTN_BLACKHOLE || 5022 rtm->rtm_type == RTN_PROHIBIT || 5023 rtm->rtm_type == RTN_THROW) 5024 cfg->fc_flags |= RTF_REJECT; 5025 5026 if (rtm->rtm_type == RTN_LOCAL) 5027 cfg->fc_flags |= RTF_LOCAL; 5028 5029 if (rtm->rtm_flags & RTM_F_CLONED) 5030 cfg->fc_flags |= RTF_CACHE; 5031 5032 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 5033 5034 if (tb[RTA_NH_ID]) { 5035 if (tb[RTA_GATEWAY] || tb[RTA_OIF] || 5036 tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { 5037 NL_SET_ERR_MSG(extack, 5038 "Nexthop specification and nexthop id are mutually exclusive"); 5039 goto errout; 5040 } 5041 cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); 5042 } 5043 5044 if (tb[RTA_GATEWAY]) { 5045 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 5046 cfg->fc_flags |= RTF_GATEWAY; 5047 } 5048 if (tb[RTA_VIA]) { 5049 NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); 5050 goto errout; 5051 } 5052 5053 if (tb[RTA_DST]) { 5054 int plen = (rtm->rtm_dst_len + 7) >> 3; 5055 5056 if (nla_len(tb[RTA_DST]) < plen) 5057 goto errout; 5058 5059 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 5060 } 5061 5062 if (tb[RTA_SRC]) { 5063 int plen = (rtm->rtm_src_len + 7) >> 3; 5064 5065 if (nla_len(tb[RTA_SRC]) < plen) 5066 goto errout; 5067 5068 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 5069 } 5070 5071 if (tb[RTA_PREFSRC]) 5072 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 5073 5074 if (tb[RTA_OIF]) 5075 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 5076 5077 if (tb[RTA_PRIORITY]) 5078 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 5079 5080 if (tb[RTA_METRICS]) { 5081 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 5082 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 5083 } 5084 5085 if (tb[RTA_TABLE]) 5086 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 5087 5088 if (tb[RTA_MULTIPATH]) { 5089 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 5090 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 5091 5092 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, 5093 cfg->fc_mp_len, extack); 5094 if (err < 0) 5095 goto errout; 5096 } 5097 5098 if (tb[RTA_PREF]) { 5099 pref = nla_get_u8(tb[RTA_PREF]); 5100 if (pref != ICMPV6_ROUTER_PREF_LOW && 5101 pref != ICMPV6_ROUTER_PREF_HIGH) 5102 pref = ICMPV6_ROUTER_PREF_MEDIUM; 5103 cfg->fc_flags |= RTF_PREF(pref); 5104 } 5105 5106 if (tb[RTA_ENCAP]) 5107 cfg->fc_encap = tb[RTA_ENCAP]; 5108 5109 if (tb[RTA_ENCAP_TYPE]) { 5110 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 5111 5112 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 5113 if (err < 0) 5114 goto errout; 5115 } 5116 5117 if (tb[RTA_EXPIRES]) { 5118 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 5119 5120 if (addrconf_finite_timeout(timeout)) { 5121 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 5122 cfg->fc_flags |= RTF_EXPIRES; 5123 } 5124 } 5125 5126 err = 0; 5127 errout: 5128 return err; 5129 } 5130 5131 struct rt6_nh { 5132 struct fib6_info *fib6_info; 5133 struct fib6_config r_cfg; 5134 struct list_head next; 5135 }; 5136 5137 static int ip6_route_info_append(struct net *net, 5138 struct list_head *rt6_nh_list, 5139 struct fib6_info *rt, 5140 struct fib6_config *r_cfg) 5141 { 5142 struct rt6_nh *nh; 5143 int err = -EEXIST; 5144 5145 list_for_each_entry(nh, rt6_nh_list, next) { 5146 /* check if fib6_info already exists */ 5147 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 5148 return err; 5149 } 5150 5151 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 5152 if (!nh) 5153 return -ENOMEM; 5154 nh->fib6_info = rt; 5155 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 5156 list_add_tail(&nh->next, rt6_nh_list); 5157 5158 return 0; 5159 } 5160 5161 static void ip6_route_mpath_notify(struct fib6_info *rt, 5162 struct fib6_info *rt_last, 5163 struct nl_info *info, 5164 __u16 nlflags) 5165 { 5166 /* if this is an APPEND route, then rt points to the first route 5167 * inserted and rt_last points to last route inserted. Userspace 5168 * wants a consistent dump of the route which starts at the first 5169 * nexthop. Since sibling routes are always added at the end of 5170 * the list, find the first sibling of the last route appended 5171 */ 5172 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { 5173 rt = list_first_entry(&rt_last->fib6_siblings, 5174 struct fib6_info, 5175 fib6_siblings); 5176 } 5177 5178 if (rt) 5179 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 5180 } 5181 5182 static bool ip6_route_mpath_should_notify(const struct fib6_info *rt) 5183 { 5184 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 5185 bool should_notify = false; 5186 struct fib6_info *leaf; 5187 struct fib6_node *fn; 5188 5189 rcu_read_lock(); 5190 fn = rcu_dereference(rt->fib6_node); 5191 if (!fn) 5192 goto out; 5193 5194 leaf = rcu_dereference(fn->leaf); 5195 if (!leaf) 5196 goto out; 5197 5198 if (rt == leaf || 5199 (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric && 5200 rt6_qualify_for_ecmp(leaf))) 5201 should_notify = true; 5202 out: 5203 rcu_read_unlock(); 5204 5205 return should_notify; 5206 } 5207 5208 static int fib6_gw_from_attr(struct in6_addr *gw, struct nlattr *nla, 5209 struct netlink_ext_ack *extack) 5210 { 5211 if (nla_len(nla) < sizeof(*gw)) { 5212 NL_SET_ERR_MSG(extack, "Invalid IPv6 address in RTA_GATEWAY"); 5213 return -EINVAL; 5214 } 5215 5216 *gw = nla_get_in6_addr(nla); 5217 5218 return 0; 5219 } 5220 5221 static int ip6_route_multipath_add(struct fib6_config *cfg, 5222 struct netlink_ext_ack *extack) 5223 { 5224 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 5225 struct nl_info *info = &cfg->fc_nlinfo; 5226 struct fib6_config r_cfg; 5227 struct rtnexthop *rtnh; 5228 struct fib6_info *rt; 5229 struct rt6_nh *err_nh; 5230 struct rt6_nh *nh, *nh_safe; 5231 __u16 nlflags; 5232 int remaining; 5233 int attrlen; 5234 int err = 1; 5235 int nhn = 0; 5236 int replace = (cfg->fc_nlinfo.nlh && 5237 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 5238 LIST_HEAD(rt6_nh_list); 5239 5240 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 5241 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 5242 nlflags |= NLM_F_APPEND; 5243 5244 remaining = cfg->fc_mp_len; 5245 rtnh = (struct rtnexthop *)cfg->fc_mp; 5246 5247 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 5248 * fib6_info structs per nexthop 5249 */ 5250 while (rtnh_ok(rtnh, remaining)) { 5251 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5252 if (rtnh->rtnh_ifindex) 5253 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5254 5255 attrlen = rtnh_attrlen(rtnh); 5256 if (attrlen > 0) { 5257 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5258 5259 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5260 if (nla) { 5261 err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla, 5262 extack); 5263 if (err) 5264 goto cleanup; 5265 5266 r_cfg.fc_flags |= RTF_GATEWAY; 5267 } 5268 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 5269 5270 /* RTA_ENCAP_TYPE length checked in 5271 * lwtunnel_valid_encap_type_attr 5272 */ 5273 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 5274 if (nla) 5275 r_cfg.fc_encap_type = nla_get_u16(nla); 5276 } 5277 5278 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 5279 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 5280 if (IS_ERR(rt)) { 5281 err = PTR_ERR(rt); 5282 rt = NULL; 5283 goto cleanup; 5284 } 5285 if (!rt6_qualify_for_ecmp(rt)) { 5286 err = -EINVAL; 5287 NL_SET_ERR_MSG(extack, 5288 "Device only routes can not be added for IPv6 using the multipath API."); 5289 fib6_info_release(rt); 5290 goto cleanup; 5291 } 5292 5293 rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; 5294 5295 err = ip6_route_info_append(info->nl_net, &rt6_nh_list, 5296 rt, &r_cfg); 5297 if (err) { 5298 fib6_info_release(rt); 5299 goto cleanup; 5300 } 5301 5302 rtnh = rtnh_next(rtnh, &remaining); 5303 } 5304 5305 if (list_empty(&rt6_nh_list)) { 5306 NL_SET_ERR_MSG(extack, 5307 "Invalid nexthop configuration - no valid nexthops"); 5308 return -EINVAL; 5309 } 5310 5311 /* for add and replace send one notification with all nexthops. 5312 * Skip the notification in fib6_add_rt2node and send one with 5313 * the full route when done 5314 */ 5315 info->skip_notify = 1; 5316 5317 /* For add and replace, send one notification with all nexthops. For 5318 * append, send one notification with all appended nexthops. 5319 */ 5320 info->skip_notify_kernel = 1; 5321 5322 err_nh = NULL; 5323 list_for_each_entry(nh, &rt6_nh_list, next) { 5324 err = __ip6_ins_rt(nh->fib6_info, info, extack); 5325 fib6_info_release(nh->fib6_info); 5326 5327 if (!err) { 5328 /* save reference to last route successfully inserted */ 5329 rt_last = nh->fib6_info; 5330 5331 /* save reference to first route for notification */ 5332 if (!rt_notif) 5333 rt_notif = nh->fib6_info; 5334 } 5335 5336 /* nh->fib6_info is used or freed at this point, reset to NULL*/ 5337 nh->fib6_info = NULL; 5338 if (err) { 5339 if (replace && nhn) 5340 NL_SET_ERR_MSG_MOD(extack, 5341 "multipath route replace failed (check consistency of installed routes)"); 5342 err_nh = nh; 5343 goto add_errout; 5344 } 5345 5346 /* Because each route is added like a single route we remove 5347 * these flags after the first nexthop: if there is a collision, 5348 * we have already failed to add the first nexthop: 5349 * fib6_add_rt2node() has rejected it; when replacing, old 5350 * nexthops have been replaced by first new, the rest should 5351 * be added to it. 5352 */ 5353 if (cfg->fc_nlinfo.nlh) { 5354 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 5355 NLM_F_REPLACE); 5356 cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE; 5357 } 5358 nhn++; 5359 } 5360 5361 /* An in-kernel notification should only be sent in case the new 5362 * multipath route is added as the first route in the node, or if 5363 * it was appended to it. We pass 'rt_notif' since it is the first 5364 * sibling and might allow us to skip some checks in the replace case. 5365 */ 5366 if (ip6_route_mpath_should_notify(rt_notif)) { 5367 enum fib_event_type fib_event; 5368 5369 if (rt_notif->fib6_nsiblings != nhn - 1) 5370 fib_event = FIB_EVENT_ENTRY_APPEND; 5371 else 5372 fib_event = FIB_EVENT_ENTRY_REPLACE; 5373 5374 err = call_fib6_multipath_entry_notifiers(info->nl_net, 5375 fib_event, rt_notif, 5376 nhn - 1, extack); 5377 if (err) { 5378 /* Delete all the siblings that were just added */ 5379 err_nh = NULL; 5380 goto add_errout; 5381 } 5382 } 5383 5384 /* success ... tell user about new route */ 5385 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5386 goto cleanup; 5387 5388 add_errout: 5389 /* send notification for routes that were added so that 5390 * the delete notifications sent by ip6_route_del are 5391 * coherent 5392 */ 5393 if (rt_notif) 5394 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5395 5396 /* Delete routes that were already added */ 5397 list_for_each_entry(nh, &rt6_nh_list, next) { 5398 if (err_nh == nh) 5399 break; 5400 ip6_route_del(&nh->r_cfg, extack); 5401 } 5402 5403 cleanup: 5404 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { 5405 if (nh->fib6_info) 5406 fib6_info_release(nh->fib6_info); 5407 list_del(&nh->next); 5408 kfree(nh); 5409 } 5410 5411 return err; 5412 } 5413 5414 static int ip6_route_multipath_del(struct fib6_config *cfg, 5415 struct netlink_ext_ack *extack) 5416 { 5417 struct fib6_config r_cfg; 5418 struct rtnexthop *rtnh; 5419 int last_err = 0; 5420 int remaining; 5421 int attrlen; 5422 int err; 5423 5424 remaining = cfg->fc_mp_len; 5425 rtnh = (struct rtnexthop *)cfg->fc_mp; 5426 5427 /* Parse a Multipath Entry */ 5428 while (rtnh_ok(rtnh, remaining)) { 5429 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5430 if (rtnh->rtnh_ifindex) 5431 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5432 5433 attrlen = rtnh_attrlen(rtnh); 5434 if (attrlen > 0) { 5435 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5436 5437 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5438 if (nla) { 5439 err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla, 5440 extack); 5441 if (err) { 5442 last_err = err; 5443 goto next_rtnh; 5444 } 5445 5446 r_cfg.fc_flags |= RTF_GATEWAY; 5447 } 5448 } 5449 err = ip6_route_del(&r_cfg, extack); 5450 if (err) 5451 last_err = err; 5452 5453 next_rtnh: 5454 rtnh = rtnh_next(rtnh, &remaining); 5455 } 5456 5457 return last_err; 5458 } 5459 5460 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5461 struct netlink_ext_ack *extack) 5462 { 5463 struct fib6_config cfg; 5464 int err; 5465 5466 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5467 if (err < 0) 5468 return err; 5469 5470 if (cfg.fc_nh_id && 5471 !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) { 5472 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 5473 return -EINVAL; 5474 } 5475 5476 if (cfg.fc_mp) 5477 return ip6_route_multipath_del(&cfg, extack); 5478 else { 5479 cfg.fc_delete_all_nh = 1; 5480 return ip6_route_del(&cfg, extack); 5481 } 5482 } 5483 5484 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5485 struct netlink_ext_ack *extack) 5486 { 5487 struct fib6_config cfg; 5488 int err; 5489 5490 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5491 if (err < 0) 5492 return err; 5493 5494 if (cfg.fc_metric == 0) 5495 cfg.fc_metric = IP6_RT_PRIO_USER; 5496 5497 if (cfg.fc_mp) 5498 return ip6_route_multipath_add(&cfg, extack); 5499 else 5500 return ip6_route_add(&cfg, GFP_KERNEL, extack); 5501 } 5502 5503 /* add the overhead of this fib6_nh to nexthop_len */ 5504 static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) 5505 { 5506 int *nexthop_len = arg; 5507 5508 *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ 5509 + NLA_ALIGN(sizeof(struct rtnexthop)) 5510 + nla_total_size(16); /* RTA_GATEWAY */ 5511 5512 if (nh->fib_nh_lws) { 5513 /* RTA_ENCAP_TYPE */ 5514 *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5515 /* RTA_ENCAP */ 5516 *nexthop_len += nla_total_size(2); 5517 } 5518 5519 return 0; 5520 } 5521 5522 static size_t rt6_nlmsg_size(struct fib6_info *f6i) 5523 { 5524 int nexthop_len; 5525 5526 if (f6i->nh) { 5527 nexthop_len = nla_total_size(4); /* RTA_NH_ID */ 5528 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, 5529 &nexthop_len); 5530 } else { 5531 struct fib6_nh *nh = f6i->fib6_nh; 5532 5533 nexthop_len = 0; 5534 if (f6i->fib6_nsiblings) { 5535 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */ 5536 + NLA_ALIGN(sizeof(struct rtnexthop)) 5537 + nla_total_size(16) /* RTA_GATEWAY */ 5538 + lwtunnel_get_encap_size(nh->fib_nh_lws); 5539 5540 nexthop_len *= f6i->fib6_nsiblings; 5541 } 5542 nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5543 } 5544 5545 return NLMSG_ALIGN(sizeof(struct rtmsg)) 5546 + nla_total_size(16) /* RTA_SRC */ 5547 + nla_total_size(16) /* RTA_DST */ 5548 + nla_total_size(16) /* RTA_GATEWAY */ 5549 + nla_total_size(16) /* RTA_PREFSRC */ 5550 + nla_total_size(4) /* RTA_TABLE */ 5551 + nla_total_size(4) /* RTA_IIF */ 5552 + nla_total_size(4) /* RTA_OIF */ 5553 + nla_total_size(4) /* RTA_PRIORITY */ 5554 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 5555 + nla_total_size(sizeof(struct rta_cacheinfo)) 5556 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 5557 + nla_total_size(1) /* RTA_PREF */ 5558 + nexthop_len; 5559 } 5560 5561 static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, 5562 unsigned char *flags) 5563 { 5564 if (nexthop_is_multipath(nh)) { 5565 struct nlattr *mp; 5566 5567 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5568 if (!mp) 5569 goto nla_put_failure; 5570 5571 if (nexthop_mpath_fill_node(skb, nh, AF_INET6)) 5572 goto nla_put_failure; 5573 5574 nla_nest_end(skb, mp); 5575 } else { 5576 struct fib6_nh *fib6_nh; 5577 5578 fib6_nh = nexthop_fib6_nh(nh); 5579 if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6, 5580 flags, false) < 0) 5581 goto nla_put_failure; 5582 } 5583 5584 return 0; 5585 5586 nla_put_failure: 5587 return -EMSGSIZE; 5588 } 5589 5590 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 5591 struct fib6_info *rt, struct dst_entry *dst, 5592 struct in6_addr *dest, struct in6_addr *src, 5593 int iif, int type, u32 portid, u32 seq, 5594 unsigned int flags) 5595 { 5596 struct rt6_info *rt6 = (struct rt6_info *)dst; 5597 struct rt6key *rt6_dst, *rt6_src; 5598 u32 *pmetrics, table, rt6_flags; 5599 unsigned char nh_flags = 0; 5600 struct nlmsghdr *nlh; 5601 struct rtmsg *rtm; 5602 long expires = 0; 5603 5604 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 5605 if (!nlh) 5606 return -EMSGSIZE; 5607 5608 if (rt6) { 5609 rt6_dst = &rt6->rt6i_dst; 5610 rt6_src = &rt6->rt6i_src; 5611 rt6_flags = rt6->rt6i_flags; 5612 } else { 5613 rt6_dst = &rt->fib6_dst; 5614 rt6_src = &rt->fib6_src; 5615 rt6_flags = rt->fib6_flags; 5616 } 5617 5618 rtm = nlmsg_data(nlh); 5619 rtm->rtm_family = AF_INET6; 5620 rtm->rtm_dst_len = rt6_dst->plen; 5621 rtm->rtm_src_len = rt6_src->plen; 5622 rtm->rtm_tos = 0; 5623 if (rt->fib6_table) 5624 table = rt->fib6_table->tb6_id; 5625 else 5626 table = RT6_TABLE_UNSPEC; 5627 rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; 5628 if (nla_put_u32(skb, RTA_TABLE, table)) 5629 goto nla_put_failure; 5630 5631 rtm->rtm_type = rt->fib6_type; 5632 rtm->rtm_flags = 0; 5633 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 5634 rtm->rtm_protocol = rt->fib6_protocol; 5635 5636 if (rt6_flags & RTF_CACHE) 5637 rtm->rtm_flags |= RTM_F_CLONED; 5638 5639 if (dest) { 5640 if (nla_put_in6_addr(skb, RTA_DST, dest)) 5641 goto nla_put_failure; 5642 rtm->rtm_dst_len = 128; 5643 } else if (rtm->rtm_dst_len) 5644 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 5645 goto nla_put_failure; 5646 #ifdef CONFIG_IPV6_SUBTREES 5647 if (src) { 5648 if (nla_put_in6_addr(skb, RTA_SRC, src)) 5649 goto nla_put_failure; 5650 rtm->rtm_src_len = 128; 5651 } else if (rtm->rtm_src_len && 5652 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 5653 goto nla_put_failure; 5654 #endif 5655 if (iif) { 5656 #ifdef CONFIG_IPV6_MROUTE 5657 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 5658 int err = ip6mr_get_route(net, skb, rtm, portid); 5659 5660 if (err == 0) 5661 return 0; 5662 if (err < 0) 5663 goto nla_put_failure; 5664 } else 5665 #endif 5666 if (nla_put_u32(skb, RTA_IIF, iif)) 5667 goto nla_put_failure; 5668 } else if (dest) { 5669 struct in6_addr saddr_buf; 5670 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && 5671 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5672 goto nla_put_failure; 5673 } 5674 5675 if (rt->fib6_prefsrc.plen) { 5676 struct in6_addr saddr_buf; 5677 saddr_buf = rt->fib6_prefsrc.addr; 5678 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5679 goto nla_put_failure; 5680 } 5681 5682 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 5683 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 5684 goto nla_put_failure; 5685 5686 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 5687 goto nla_put_failure; 5688 5689 /* For multipath routes, walk the siblings list and add 5690 * each as a nexthop within RTA_MULTIPATH. 5691 */ 5692 if (rt6) { 5693 if (rt6_flags & RTF_GATEWAY && 5694 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 5695 goto nla_put_failure; 5696 5697 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) 5698 goto nla_put_failure; 5699 5700 if (dst->lwtstate && 5701 lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0) 5702 goto nla_put_failure; 5703 } else if (rt->fib6_nsiblings) { 5704 struct fib6_info *sibling, *next_sibling; 5705 struct nlattr *mp; 5706 5707 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5708 if (!mp) 5709 goto nla_put_failure; 5710 5711 if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, 5712 rt->fib6_nh->fib_nh_weight, AF_INET6, 5713 0) < 0) 5714 goto nla_put_failure; 5715 5716 list_for_each_entry_safe(sibling, next_sibling, 5717 &rt->fib6_siblings, fib6_siblings) { 5718 if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, 5719 sibling->fib6_nh->fib_nh_weight, 5720 AF_INET6, 0) < 0) 5721 goto nla_put_failure; 5722 } 5723 5724 nla_nest_end(skb, mp); 5725 } else if (rt->nh) { 5726 if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) 5727 goto nla_put_failure; 5728 5729 if (nexthop_is_blackhole(rt->nh)) 5730 rtm->rtm_type = RTN_BLACKHOLE; 5731 5732 if (net->ipv4.sysctl_nexthop_compat_mode && 5733 rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) 5734 goto nla_put_failure; 5735 5736 rtm->rtm_flags |= nh_flags; 5737 } else { 5738 if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6, 5739 &nh_flags, false) < 0) 5740 goto nla_put_failure; 5741 5742 rtm->rtm_flags |= nh_flags; 5743 } 5744 5745 if (rt6_flags & RTF_EXPIRES) { 5746 expires = dst ? dst->expires : rt->expires; 5747 expires -= jiffies; 5748 } 5749 5750 if (!dst) { 5751 if (READ_ONCE(rt->offload)) 5752 rtm->rtm_flags |= RTM_F_OFFLOAD; 5753 if (READ_ONCE(rt->trap)) 5754 rtm->rtm_flags |= RTM_F_TRAP; 5755 if (READ_ONCE(rt->offload_failed)) 5756 rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED; 5757 } 5758 5759 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 5760 goto nla_put_failure; 5761 5762 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 5763 goto nla_put_failure; 5764 5765 5766 nlmsg_end(skb, nlh); 5767 return 0; 5768 5769 nla_put_failure: 5770 nlmsg_cancel(skb, nlh); 5771 return -EMSGSIZE; 5772 } 5773 5774 static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) 5775 { 5776 const struct net_device *dev = arg; 5777 5778 if (nh->fib_nh_dev == dev) 5779 return 1; 5780 5781 return 0; 5782 } 5783 5784 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 5785 const struct net_device *dev) 5786 { 5787 if (f6i->nh) { 5788 struct net_device *_dev = (struct net_device *)dev; 5789 5790 return !!nexthop_for_each_fib6_nh(f6i->nh, 5791 fib6_info_nh_uses_dev, 5792 _dev); 5793 } 5794 5795 if (f6i->fib6_nh->fib_nh_dev == dev) 5796 return true; 5797 5798 if (f6i->fib6_nsiblings) { 5799 struct fib6_info *sibling, *next_sibling; 5800 5801 list_for_each_entry_safe(sibling, next_sibling, 5802 &f6i->fib6_siblings, fib6_siblings) { 5803 if (sibling->fib6_nh->fib_nh_dev == dev) 5804 return true; 5805 } 5806 } 5807 5808 return false; 5809 } 5810 5811 struct fib6_nh_exception_dump_walker { 5812 struct rt6_rtnl_dump_arg *dump; 5813 struct fib6_info *rt; 5814 unsigned int flags; 5815 unsigned int skip; 5816 unsigned int count; 5817 }; 5818 5819 static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg) 5820 { 5821 struct fib6_nh_exception_dump_walker *w = arg; 5822 struct rt6_rtnl_dump_arg *dump = w->dump; 5823 struct rt6_exception_bucket *bucket; 5824 struct rt6_exception *rt6_ex; 5825 int i, err; 5826 5827 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 5828 if (!bucket) 5829 return 0; 5830 5831 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 5832 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 5833 if (w->skip) { 5834 w->skip--; 5835 continue; 5836 } 5837 5838 /* Expiration of entries doesn't bump sernum, insertion 5839 * does. Removal is triggered by insertion, so we can 5840 * rely on the fact that if entries change between two 5841 * partial dumps, this node is scanned again completely, 5842 * see rt6_insert_exception() and fib6_dump_table(). 5843 * 5844 * Count expired entries we go through as handled 5845 * entries that we'll skip next time, in case of partial 5846 * node dump. Otherwise, if entries expire meanwhile, 5847 * we'll skip the wrong amount. 5848 */ 5849 if (rt6_check_expired(rt6_ex->rt6i)) { 5850 w->count++; 5851 continue; 5852 } 5853 5854 err = rt6_fill_node(dump->net, dump->skb, w->rt, 5855 &rt6_ex->rt6i->dst, NULL, NULL, 0, 5856 RTM_NEWROUTE, 5857 NETLINK_CB(dump->cb->skb).portid, 5858 dump->cb->nlh->nlmsg_seq, w->flags); 5859 if (err) 5860 return err; 5861 5862 w->count++; 5863 } 5864 bucket++; 5865 } 5866 5867 return 0; 5868 } 5869 5870 /* Return -1 if done with node, number of handled routes on partial dump */ 5871 int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip) 5872 { 5873 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 5874 struct fib_dump_filter *filter = &arg->filter; 5875 unsigned int flags = NLM_F_MULTI; 5876 struct net *net = arg->net; 5877 int count = 0; 5878 5879 if (rt == net->ipv6.fib6_null_entry) 5880 return -1; 5881 5882 if ((filter->flags & RTM_F_PREFIX) && 5883 !(rt->fib6_flags & RTF_PREFIX_RT)) { 5884 /* success since this is not a prefix route */ 5885 return -1; 5886 } 5887 if (filter->filter_set && 5888 ((filter->rt_type && rt->fib6_type != filter->rt_type) || 5889 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 5890 (filter->protocol && rt->fib6_protocol != filter->protocol))) { 5891 return -1; 5892 } 5893 5894 if (filter->filter_set || 5895 !filter->dump_routes || !filter->dump_exceptions) { 5896 flags |= NLM_F_DUMP_FILTERED; 5897 } 5898 5899 if (filter->dump_routes) { 5900 if (skip) { 5901 skip--; 5902 } else { 5903 if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 5904 0, RTM_NEWROUTE, 5905 NETLINK_CB(arg->cb->skb).portid, 5906 arg->cb->nlh->nlmsg_seq, flags)) { 5907 return 0; 5908 } 5909 count++; 5910 } 5911 } 5912 5913 if (filter->dump_exceptions) { 5914 struct fib6_nh_exception_dump_walker w = { .dump = arg, 5915 .rt = rt, 5916 .flags = flags, 5917 .skip = skip, 5918 .count = 0 }; 5919 int err; 5920 5921 rcu_read_lock(); 5922 if (rt->nh) { 5923 err = nexthop_for_each_fib6_nh(rt->nh, 5924 rt6_nh_dump_exceptions, 5925 &w); 5926 } else { 5927 err = rt6_nh_dump_exceptions(rt->fib6_nh, &w); 5928 } 5929 rcu_read_unlock(); 5930 5931 if (err) 5932 return count += w.count; 5933 } 5934 5935 return -1; 5936 } 5937 5938 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, 5939 const struct nlmsghdr *nlh, 5940 struct nlattr **tb, 5941 struct netlink_ext_ack *extack) 5942 { 5943 struct rtmsg *rtm; 5944 int i, err; 5945 5946 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 5947 NL_SET_ERR_MSG_MOD(extack, 5948 "Invalid header for get route request"); 5949 return -EINVAL; 5950 } 5951 5952 if (!netlink_strict_get_check(skb)) 5953 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 5954 rtm_ipv6_policy, extack); 5955 5956 rtm = nlmsg_data(nlh); 5957 if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || 5958 (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || 5959 rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || 5960 rtm->rtm_type) { 5961 NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); 5962 return -EINVAL; 5963 } 5964 if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { 5965 NL_SET_ERR_MSG_MOD(extack, 5966 "Invalid flags for get route request"); 5967 return -EINVAL; 5968 } 5969 5970 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 5971 rtm_ipv6_policy, extack); 5972 if (err) 5973 return err; 5974 5975 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 5976 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 5977 NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); 5978 return -EINVAL; 5979 } 5980 5981 for (i = 0; i <= RTA_MAX; i++) { 5982 if (!tb[i]) 5983 continue; 5984 5985 switch (i) { 5986 case RTA_SRC: 5987 case RTA_DST: 5988 case RTA_IIF: 5989 case RTA_OIF: 5990 case RTA_MARK: 5991 case RTA_UID: 5992 case RTA_SPORT: 5993 case RTA_DPORT: 5994 case RTA_IP_PROTO: 5995 break; 5996 default: 5997 NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); 5998 return -EINVAL; 5999 } 6000 } 6001 6002 return 0; 6003 } 6004 6005 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 6006 struct netlink_ext_ack *extack) 6007 { 6008 struct net *net = sock_net(in_skb->sk); 6009 struct nlattr *tb[RTA_MAX+1]; 6010 int err, iif = 0, oif = 0; 6011 struct fib6_info *from; 6012 struct dst_entry *dst; 6013 struct rt6_info *rt; 6014 struct sk_buff *skb; 6015 struct rtmsg *rtm; 6016 struct flowi6 fl6 = {}; 6017 bool fibmatch; 6018 6019 err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 6020 if (err < 0) 6021 goto errout; 6022 6023 err = -EINVAL; 6024 rtm = nlmsg_data(nlh); 6025 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); 6026 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 6027 6028 if (tb[RTA_SRC]) { 6029 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 6030 goto errout; 6031 6032 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 6033 } 6034 6035 if (tb[RTA_DST]) { 6036 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 6037 goto errout; 6038 6039 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 6040 } 6041 6042 if (tb[RTA_IIF]) 6043 iif = nla_get_u32(tb[RTA_IIF]); 6044 6045 if (tb[RTA_OIF]) 6046 oif = nla_get_u32(tb[RTA_OIF]); 6047 6048 if (tb[RTA_MARK]) 6049 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 6050 6051 if (tb[RTA_UID]) 6052 fl6.flowi6_uid = make_kuid(current_user_ns(), 6053 nla_get_u32(tb[RTA_UID])); 6054 else 6055 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 6056 6057 if (tb[RTA_SPORT]) 6058 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 6059 6060 if (tb[RTA_DPORT]) 6061 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 6062 6063 if (tb[RTA_IP_PROTO]) { 6064 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 6065 &fl6.flowi6_proto, AF_INET6, 6066 extack); 6067 if (err) 6068 goto errout; 6069 } 6070 6071 if (iif) { 6072 struct net_device *dev; 6073 int flags = 0; 6074 6075 rcu_read_lock(); 6076 6077 dev = dev_get_by_index_rcu(net, iif); 6078 if (!dev) { 6079 rcu_read_unlock(); 6080 err = -ENODEV; 6081 goto errout; 6082 } 6083 6084 fl6.flowi6_iif = iif; 6085 6086 if (!ipv6_addr_any(&fl6.saddr)) 6087 flags |= RT6_LOOKUP_F_HAS_SADDR; 6088 6089 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 6090 6091 rcu_read_unlock(); 6092 } else { 6093 fl6.flowi6_oif = oif; 6094 6095 dst = ip6_route_output(net, NULL, &fl6); 6096 } 6097 6098 6099 rt = container_of(dst, struct rt6_info, dst); 6100 if (rt->dst.error) { 6101 err = rt->dst.error; 6102 ip6_rt_put(rt); 6103 goto errout; 6104 } 6105 6106 if (rt == net->ipv6.ip6_null_entry) { 6107 err = rt->dst.error; 6108 ip6_rt_put(rt); 6109 goto errout; 6110 } 6111 6112 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 6113 if (!skb) { 6114 ip6_rt_put(rt); 6115 err = -ENOBUFS; 6116 goto errout; 6117 } 6118 6119 skb_dst_set(skb, &rt->dst); 6120 6121 rcu_read_lock(); 6122 from = rcu_dereference(rt->from); 6123 if (from) { 6124 if (fibmatch) 6125 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, 6126 iif, RTM_NEWROUTE, 6127 NETLINK_CB(in_skb).portid, 6128 nlh->nlmsg_seq, 0); 6129 else 6130 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 6131 &fl6.saddr, iif, RTM_NEWROUTE, 6132 NETLINK_CB(in_skb).portid, 6133 nlh->nlmsg_seq, 0); 6134 } else { 6135 err = -ENETUNREACH; 6136 } 6137 rcu_read_unlock(); 6138 6139 if (err < 0) { 6140 kfree_skb(skb); 6141 goto errout; 6142 } 6143 6144 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 6145 errout: 6146 return err; 6147 } 6148 6149 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 6150 unsigned int nlm_flags) 6151 { 6152 struct sk_buff *skb; 6153 struct net *net = info->nl_net; 6154 u32 seq; 6155 int err; 6156 6157 err = -ENOBUFS; 6158 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6159 6160 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6161 if (!skb) 6162 goto errout; 6163 6164 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6165 event, info->portid, seq, nlm_flags); 6166 if (err < 0) { 6167 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6168 WARN_ON(err == -EMSGSIZE); 6169 kfree_skb(skb); 6170 goto errout; 6171 } 6172 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6173 info->nlh, gfp_any()); 6174 return; 6175 errout: 6176 if (err < 0) 6177 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6178 } 6179 6180 void fib6_rt_update(struct net *net, struct fib6_info *rt, 6181 struct nl_info *info) 6182 { 6183 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6184 struct sk_buff *skb; 6185 int err = -ENOBUFS; 6186 6187 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6188 if (!skb) 6189 goto errout; 6190 6191 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6192 RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); 6193 if (err < 0) { 6194 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6195 WARN_ON(err == -EMSGSIZE); 6196 kfree_skb(skb); 6197 goto errout; 6198 } 6199 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6200 info->nlh, gfp_any()); 6201 return; 6202 errout: 6203 if (err < 0) 6204 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6205 } 6206 6207 void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, 6208 bool offload, bool trap, bool offload_failed) 6209 { 6210 struct sk_buff *skb; 6211 int err; 6212 6213 if (READ_ONCE(f6i->offload) == offload && 6214 READ_ONCE(f6i->trap) == trap && 6215 READ_ONCE(f6i->offload_failed) == offload_failed) 6216 return; 6217 6218 WRITE_ONCE(f6i->offload, offload); 6219 WRITE_ONCE(f6i->trap, trap); 6220 6221 /* 2 means send notifications only if offload_failed was changed. */ 6222 if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 && 6223 READ_ONCE(f6i->offload_failed) == offload_failed) 6224 return; 6225 6226 WRITE_ONCE(f6i->offload_failed, offload_failed); 6227 6228 if (!rcu_access_pointer(f6i->fib6_node)) 6229 /* The route was removed from the tree, do not send 6230 * notification. 6231 */ 6232 return; 6233 6234 if (!net->ipv6.sysctl.fib_notify_on_flag_change) 6235 return; 6236 6237 skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL); 6238 if (!skb) { 6239 err = -ENOBUFS; 6240 goto errout; 6241 } 6242 6243 err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0, 6244 0, 0); 6245 if (err < 0) { 6246 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6247 WARN_ON(err == -EMSGSIZE); 6248 kfree_skb(skb); 6249 goto errout; 6250 } 6251 6252 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL); 6253 return; 6254 6255 errout: 6256 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6257 } 6258 EXPORT_SYMBOL(fib6_info_hw_flags_set); 6259 6260 static int ip6_route_dev_notify(struct notifier_block *this, 6261 unsigned long event, void *ptr) 6262 { 6263 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6264 struct net *net = dev_net(dev); 6265 6266 if (!(dev->flags & IFF_LOOPBACK)) 6267 return NOTIFY_OK; 6268 6269 if (event == NETDEV_REGISTER) { 6270 net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; 6271 net->ipv6.ip6_null_entry->dst.dev = dev; 6272 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 6273 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6274 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 6275 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 6276 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 6277 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 6278 #endif 6279 } else if (event == NETDEV_UNREGISTER && 6280 dev->reg_state != NETREG_UNREGISTERED) { 6281 /* NETDEV_UNREGISTER could be fired for multiple times by 6282 * netdev_wait_allrefs(). Make sure we only call this once. 6283 */ 6284 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 6285 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6286 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 6287 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 6288 #endif 6289 } 6290 6291 return NOTIFY_OK; 6292 } 6293 6294 /* 6295 * /proc 6296 */ 6297 6298 #ifdef CONFIG_PROC_FS 6299 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 6300 { 6301 struct net *net = (struct net *)seq->private; 6302 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 6303 net->ipv6.rt6_stats->fib_nodes, 6304 net->ipv6.rt6_stats->fib_route_nodes, 6305 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 6306 net->ipv6.rt6_stats->fib_rt_entries, 6307 net->ipv6.rt6_stats->fib_rt_cache, 6308 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 6309 net->ipv6.rt6_stats->fib_discarded_routes); 6310 6311 return 0; 6312 } 6313 #endif /* CONFIG_PROC_FS */ 6314 6315 #ifdef CONFIG_SYSCTL 6316 6317 static int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, 6318 void *buffer, size_t *lenp, loff_t *ppos) 6319 { 6320 struct net *net; 6321 int delay; 6322 int ret; 6323 if (!write) 6324 return -EINVAL; 6325 6326 net = (struct net *)ctl->extra1; 6327 delay = net->ipv6.sysctl.flush_delay; 6328 ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 6329 if (ret) 6330 return ret; 6331 6332 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 6333 return 0; 6334 } 6335 6336 static struct ctl_table ipv6_route_table_template[] = { 6337 { 6338 .procname = "max_size", 6339 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 6340 .maxlen = sizeof(int), 6341 .mode = 0644, 6342 .proc_handler = proc_dointvec, 6343 }, 6344 { 6345 .procname = "gc_thresh", 6346 .data = &ip6_dst_ops_template.gc_thresh, 6347 .maxlen = sizeof(int), 6348 .mode = 0644, 6349 .proc_handler = proc_dointvec, 6350 }, 6351 { 6352 .procname = "flush", 6353 .data = &init_net.ipv6.sysctl.flush_delay, 6354 .maxlen = sizeof(int), 6355 .mode = 0200, 6356 .proc_handler = ipv6_sysctl_rtcache_flush 6357 }, 6358 { 6359 .procname = "gc_min_interval", 6360 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6361 .maxlen = sizeof(int), 6362 .mode = 0644, 6363 .proc_handler = proc_dointvec_jiffies, 6364 }, 6365 { 6366 .procname = "gc_timeout", 6367 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 6368 .maxlen = sizeof(int), 6369 .mode = 0644, 6370 .proc_handler = proc_dointvec_jiffies, 6371 }, 6372 { 6373 .procname = "gc_interval", 6374 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 6375 .maxlen = sizeof(int), 6376 .mode = 0644, 6377 .proc_handler = proc_dointvec_jiffies, 6378 }, 6379 { 6380 .procname = "gc_elasticity", 6381 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 6382 .maxlen = sizeof(int), 6383 .mode = 0644, 6384 .proc_handler = proc_dointvec, 6385 }, 6386 { 6387 .procname = "mtu_expires", 6388 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 6389 .maxlen = sizeof(int), 6390 .mode = 0644, 6391 .proc_handler = proc_dointvec_jiffies, 6392 }, 6393 { 6394 .procname = "min_adv_mss", 6395 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 6396 .maxlen = sizeof(int), 6397 .mode = 0644, 6398 .proc_handler = proc_dointvec, 6399 }, 6400 { 6401 .procname = "gc_min_interval_ms", 6402 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6403 .maxlen = sizeof(int), 6404 .mode = 0644, 6405 .proc_handler = proc_dointvec_ms_jiffies, 6406 }, 6407 { 6408 .procname = "skip_notify_on_dev_down", 6409 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 6410 .maxlen = sizeof(int), 6411 .mode = 0644, 6412 .proc_handler = proc_dointvec_minmax, 6413 .extra1 = SYSCTL_ZERO, 6414 .extra2 = SYSCTL_ONE, 6415 }, 6416 { } 6417 }; 6418 6419 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 6420 { 6421 struct ctl_table *table; 6422 6423 table = kmemdup(ipv6_route_table_template, 6424 sizeof(ipv6_route_table_template), 6425 GFP_KERNEL); 6426 6427 if (table) { 6428 table[0].data = &net->ipv6.sysctl.ip6_rt_max_size; 6429 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 6430 table[2].data = &net->ipv6.sysctl.flush_delay; 6431 table[2].extra1 = net; 6432 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6433 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 6434 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 6435 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 6436 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 6437 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 6438 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6439 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 6440 6441 /* Don't export sysctls to unprivileged users */ 6442 if (net->user_ns != &init_user_ns) 6443 table[1].procname = NULL; 6444 } 6445 6446 return table; 6447 } 6448 #endif 6449 6450 static int __net_init ip6_route_net_init(struct net *net) 6451 { 6452 int ret = -ENOMEM; 6453 6454 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 6455 sizeof(net->ipv6.ip6_dst_ops)); 6456 6457 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 6458 goto out_ip6_dst_ops; 6459 6460 net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); 6461 if (!net->ipv6.fib6_null_entry) 6462 goto out_ip6_dst_entries; 6463 memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, 6464 sizeof(*net->ipv6.fib6_null_entry)); 6465 6466 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 6467 sizeof(*net->ipv6.ip6_null_entry), 6468 GFP_KERNEL); 6469 if (!net->ipv6.ip6_null_entry) 6470 goto out_fib6_null_entry; 6471 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6472 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 6473 ip6_template_metrics, true); 6474 INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->rt6i_uncached); 6475 6476 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6477 net->ipv6.fib6_has_custom_rules = false; 6478 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 6479 sizeof(*net->ipv6.ip6_prohibit_entry), 6480 GFP_KERNEL); 6481 if (!net->ipv6.ip6_prohibit_entry) 6482 goto out_ip6_null_entry; 6483 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6484 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 6485 ip6_template_metrics, true); 6486 INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->rt6i_uncached); 6487 6488 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 6489 sizeof(*net->ipv6.ip6_blk_hole_entry), 6490 GFP_KERNEL); 6491 if (!net->ipv6.ip6_blk_hole_entry) 6492 goto out_ip6_prohibit_entry; 6493 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6494 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 6495 ip6_template_metrics, true); 6496 INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->rt6i_uncached); 6497 #ifdef CONFIG_IPV6_SUBTREES 6498 net->ipv6.fib6_routes_require_src = 0; 6499 #endif 6500 #endif 6501 6502 net->ipv6.sysctl.flush_delay = 0; 6503 net->ipv6.sysctl.ip6_rt_max_size = 4096; 6504 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 6505 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 6506 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 6507 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 6508 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 6509 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 6510 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 6511 6512 net->ipv6.ip6_rt_gc_expire = 30*HZ; 6513 6514 ret = 0; 6515 out: 6516 return ret; 6517 6518 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6519 out_ip6_prohibit_entry: 6520 kfree(net->ipv6.ip6_prohibit_entry); 6521 out_ip6_null_entry: 6522 kfree(net->ipv6.ip6_null_entry); 6523 #endif 6524 out_fib6_null_entry: 6525 kfree(net->ipv6.fib6_null_entry); 6526 out_ip6_dst_entries: 6527 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6528 out_ip6_dst_ops: 6529 goto out; 6530 } 6531 6532 static void __net_exit ip6_route_net_exit(struct net *net) 6533 { 6534 kfree(net->ipv6.fib6_null_entry); 6535 kfree(net->ipv6.ip6_null_entry); 6536 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6537 kfree(net->ipv6.ip6_prohibit_entry); 6538 kfree(net->ipv6.ip6_blk_hole_entry); 6539 #endif 6540 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6541 } 6542 6543 static int __net_init ip6_route_net_init_late(struct net *net) 6544 { 6545 #ifdef CONFIG_PROC_FS 6546 proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops, 6547 sizeof(struct ipv6_route_iter)); 6548 proc_create_net_single("rt6_stats", 0444, net->proc_net, 6549 rt6_stats_seq_show, NULL); 6550 #endif 6551 return 0; 6552 } 6553 6554 static void __net_exit ip6_route_net_exit_late(struct net *net) 6555 { 6556 #ifdef CONFIG_PROC_FS 6557 remove_proc_entry("ipv6_route", net->proc_net); 6558 remove_proc_entry("rt6_stats", net->proc_net); 6559 #endif 6560 } 6561 6562 static struct pernet_operations ip6_route_net_ops = { 6563 .init = ip6_route_net_init, 6564 .exit = ip6_route_net_exit, 6565 }; 6566 6567 static int __net_init ipv6_inetpeer_init(struct net *net) 6568 { 6569 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 6570 6571 if (!bp) 6572 return -ENOMEM; 6573 inet_peer_base_init(bp); 6574 net->ipv6.peers = bp; 6575 return 0; 6576 } 6577 6578 static void __net_exit ipv6_inetpeer_exit(struct net *net) 6579 { 6580 struct inet_peer_base *bp = net->ipv6.peers; 6581 6582 net->ipv6.peers = NULL; 6583 inetpeer_invalidate_tree(bp); 6584 kfree(bp); 6585 } 6586 6587 static struct pernet_operations ipv6_inetpeer_ops = { 6588 .init = ipv6_inetpeer_init, 6589 .exit = ipv6_inetpeer_exit, 6590 }; 6591 6592 static struct pernet_operations ip6_route_net_late_ops = { 6593 .init = ip6_route_net_init_late, 6594 .exit = ip6_route_net_exit_late, 6595 }; 6596 6597 static struct notifier_block ip6_route_dev_notifier = { 6598 .notifier_call = ip6_route_dev_notify, 6599 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 6600 }; 6601 6602 void __init ip6_route_init_special_entries(void) 6603 { 6604 /* Registering of the loopback is done before this portion of code, 6605 * the loopback reference in rt6_info will not be taken, do it 6606 * manually for init_net */ 6607 init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; 6608 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 6609 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6610 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6611 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 6612 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6613 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 6614 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6615 #endif 6616 } 6617 6618 #if IS_BUILTIN(CONFIG_IPV6) 6619 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6620 DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt) 6621 6622 BTF_ID_LIST(btf_fib6_info_id) 6623 BTF_ID(struct, fib6_info) 6624 6625 static const struct bpf_iter_seq_info ipv6_route_seq_info = { 6626 .seq_ops = &ipv6_route_seq_ops, 6627 .init_seq_private = bpf_iter_init_seq_net, 6628 .fini_seq_private = bpf_iter_fini_seq_net, 6629 .seq_priv_size = sizeof(struct ipv6_route_iter), 6630 }; 6631 6632 static struct bpf_iter_reg ipv6_route_reg_info = { 6633 .target = "ipv6_route", 6634 .ctx_arg_info_size = 1, 6635 .ctx_arg_info = { 6636 { offsetof(struct bpf_iter__ipv6_route, rt), 6637 PTR_TO_BTF_ID_OR_NULL }, 6638 }, 6639 .seq_info = &ipv6_route_seq_info, 6640 }; 6641 6642 static int __init bpf_iter_register(void) 6643 { 6644 ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id; 6645 return bpf_iter_reg_target(&ipv6_route_reg_info); 6646 } 6647 6648 static void bpf_iter_unregister(void) 6649 { 6650 bpf_iter_unreg_target(&ipv6_route_reg_info); 6651 } 6652 #endif 6653 #endif 6654 6655 int __init ip6_route_init(void) 6656 { 6657 int ret; 6658 int cpu; 6659 6660 ret = -ENOMEM; 6661 ip6_dst_ops_template.kmem_cachep = 6662 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 6663 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); 6664 if (!ip6_dst_ops_template.kmem_cachep) 6665 goto out; 6666 6667 ret = dst_entries_init(&ip6_dst_blackhole_ops); 6668 if (ret) 6669 goto out_kmem_cache; 6670 6671 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 6672 if (ret) 6673 goto out_dst_entries; 6674 6675 ret = register_pernet_subsys(&ip6_route_net_ops); 6676 if (ret) 6677 goto out_register_inetpeer; 6678 6679 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 6680 6681 ret = fib6_init(); 6682 if (ret) 6683 goto out_register_subsys; 6684 6685 ret = xfrm6_init(); 6686 if (ret) 6687 goto out_fib6_init; 6688 6689 ret = fib6_rules_init(); 6690 if (ret) 6691 goto xfrm6_init; 6692 6693 ret = register_pernet_subsys(&ip6_route_net_late_ops); 6694 if (ret) 6695 goto fib6_rules_init; 6696 6697 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, 6698 inet6_rtm_newroute, NULL, 0); 6699 if (ret < 0) 6700 goto out_register_late_subsys; 6701 6702 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, 6703 inet6_rtm_delroute, NULL, 0); 6704 if (ret < 0) 6705 goto out_register_late_subsys; 6706 6707 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, 6708 inet6_rtm_getroute, NULL, 6709 RTNL_FLAG_DOIT_UNLOCKED); 6710 if (ret < 0) 6711 goto out_register_late_subsys; 6712 6713 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 6714 if (ret) 6715 goto out_register_late_subsys; 6716 6717 #if IS_BUILTIN(CONFIG_IPV6) 6718 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6719 ret = bpf_iter_register(); 6720 if (ret) 6721 goto out_register_late_subsys; 6722 #endif 6723 #endif 6724 6725 for_each_possible_cpu(cpu) { 6726 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 6727 6728 INIT_LIST_HEAD(&ul->head); 6729 INIT_LIST_HEAD(&ul->quarantine); 6730 spin_lock_init(&ul->lock); 6731 } 6732 6733 out: 6734 return ret; 6735 6736 out_register_late_subsys: 6737 rtnl_unregister_all(PF_INET6); 6738 unregister_pernet_subsys(&ip6_route_net_late_ops); 6739 fib6_rules_init: 6740 fib6_rules_cleanup(); 6741 xfrm6_init: 6742 xfrm6_fini(); 6743 out_fib6_init: 6744 fib6_gc_cleanup(); 6745 out_register_subsys: 6746 unregister_pernet_subsys(&ip6_route_net_ops); 6747 out_register_inetpeer: 6748 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6749 out_dst_entries: 6750 dst_entries_destroy(&ip6_dst_blackhole_ops); 6751 out_kmem_cache: 6752 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6753 goto out; 6754 } 6755 6756 void ip6_route_cleanup(void) 6757 { 6758 #if IS_BUILTIN(CONFIG_IPV6) 6759 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6760 bpf_iter_unregister(); 6761 #endif 6762 #endif 6763 unregister_netdevice_notifier(&ip6_route_dev_notifier); 6764 unregister_pernet_subsys(&ip6_route_net_late_ops); 6765 fib6_rules_cleanup(); 6766 xfrm6_fini(); 6767 fib6_gc_cleanup(); 6768 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6769 unregister_pernet_subsys(&ip6_route_net_ops); 6770 dst_entries_destroy(&ip6_dst_blackhole_ops); 6771 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6772 } 6773