1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * FIB front-end. 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 */ 9 10 /* Changes: 11 * 12 * YOSHIFUJI Hideaki @USAGI 13 * reworked default router selection. 14 * - respect outgoing interface 15 * - select from (probably) reachable routers (i.e. 16 * routers in REACHABLE, STALE, DELAY or PROBE states). 17 * - always select the same router if it is (probably) 18 * reachable. otherwise, round-robin the list. 19 * Ville Nuorvala 20 * Fixed routing subtrees. 21 */ 22 23 #define pr_fmt(fmt) "IPv6: " fmt 24 25 #include <linux/capability.h> 26 #include <linux/errno.h> 27 #include <linux/export.h> 28 #include <linux/types.h> 29 #include <linux/times.h> 30 #include <linux/socket.h> 31 #include <linux/sockios.h> 32 #include <linux/net.h> 33 #include <linux/route.h> 34 #include <linux/netdevice.h> 35 #include <linux/in6.h> 36 #include <linux/mroute6.h> 37 #include <linux/init.h> 38 #include <linux/if_arp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/nsproxy.h> 42 #include <linux/slab.h> 43 #include <linux/jhash.h> 44 #include <linux/siphash.h> 45 #include <net/net_namespace.h> 46 #include <net/snmp.h> 47 #include <net/ipv6.h> 48 #include <net/ip6_fib.h> 49 #include <net/ip6_route.h> 50 #include <net/ndisc.h> 51 #include <net/addrconf.h> 52 #include <net/tcp.h> 53 #include <linux/rtnetlink.h> 54 #include <net/dst.h> 55 #include <net/dst_metadata.h> 56 #include <net/xfrm.h> 57 #include <net/netevent.h> 58 #include <net/netlink.h> 59 #include <net/rtnh.h> 60 #include <net/lwtunnel.h> 61 #include <net/ip_tunnels.h> 62 #include <net/l3mdev.h> 63 #include <net/ip.h> 64 #include <linux/uaccess.h> 65 #include <linux/btf_ids.h> 66 67 #ifdef CONFIG_SYSCTL 68 #include <linux/sysctl.h> 69 #endif 70 71 static int ip6_rt_type_to_error(u8 fib6_type); 72 73 #define CREATE_TRACE_POINTS 74 #include <trace/events/fib6.h> 75 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 76 #undef CREATE_TRACE_POINTS 77 78 enum rt6_nud_state { 79 RT6_NUD_FAIL_HARD = -3, 80 RT6_NUD_FAIL_PROBE = -2, 81 RT6_NUD_FAIL_DO_RR = -1, 82 RT6_NUD_SUCCEED = 1 83 }; 84 85 INDIRECT_CALLABLE_SCOPE 86 struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 87 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 88 INDIRECT_CALLABLE_SCOPE 89 unsigned int ip6_mtu(const struct dst_entry *dst); 90 static void ip6_negative_advice(struct sock *sk, 91 struct dst_entry *dst); 92 static void ip6_dst_destroy(struct dst_entry *); 93 static void ip6_dst_ifdown(struct dst_entry *, 94 struct net_device *dev); 95 static void ip6_dst_gc(struct dst_ops *ops); 96 97 static int ip6_pkt_discard(struct sk_buff *skb); 98 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 99 static int ip6_pkt_prohibit(struct sk_buff *skb); 100 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 101 static void ip6_link_failure(struct sk_buff *skb); 102 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 103 struct sk_buff *skb, u32 mtu, 104 bool confirm_neigh); 105 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 106 struct sk_buff *skb); 107 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 108 int strict); 109 static size_t rt6_nlmsg_size(struct fib6_info *f6i); 110 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 111 struct fib6_info *rt, struct dst_entry *dst, 112 struct in6_addr *dest, struct in6_addr *src, 113 int iif, int type, u32 portid, u32 seq, 114 unsigned int flags); 115 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 116 const struct in6_addr *daddr, 117 const struct in6_addr *saddr); 118 119 #ifdef CONFIG_IPV6_ROUTE_INFO 120 static struct fib6_info *rt6_add_route_info(struct net *net, 121 const struct in6_addr *prefix, int prefixlen, 122 const struct in6_addr *gwaddr, 123 struct net_device *dev, 124 unsigned int pref); 125 static struct fib6_info *rt6_get_route_info(struct net *net, 126 const struct in6_addr *prefix, int prefixlen, 127 const struct in6_addr *gwaddr, 128 struct net_device *dev); 129 #endif 130 131 struct uncached_list { 132 spinlock_t lock; 133 struct list_head head; 134 }; 135 136 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 137 138 void rt6_uncached_list_add(struct rt6_info *rt) 139 { 140 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 141 142 rt->dst.rt_uncached_list = ul; 143 144 spin_lock_bh(&ul->lock); 145 list_add_tail(&rt->dst.rt_uncached, &ul->head); 146 spin_unlock_bh(&ul->lock); 147 } 148 149 void rt6_uncached_list_del(struct rt6_info *rt) 150 { 151 if (!list_empty(&rt->dst.rt_uncached)) { 152 struct uncached_list *ul = rt->dst.rt_uncached_list; 153 154 spin_lock_bh(&ul->lock); 155 list_del_init(&rt->dst.rt_uncached); 156 spin_unlock_bh(&ul->lock); 157 } 158 } 159 160 static void rt6_uncached_list_flush_dev(struct net_device *dev) 161 { 162 int cpu; 163 164 for_each_possible_cpu(cpu) { 165 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 166 struct rt6_info *rt, *safe; 167 168 if (list_empty(&ul->head)) 169 continue; 170 171 spin_lock_bh(&ul->lock); 172 list_for_each_entry_safe(rt, safe, &ul->head, dst.rt_uncached) { 173 struct inet6_dev *rt_idev = rt->rt6i_idev; 174 struct net_device *rt_dev = rt->dst.dev; 175 bool handled = false; 176 177 if (rt_idev && rt_idev->dev == dev) { 178 rt->rt6i_idev = in6_dev_get(blackhole_netdev); 179 in6_dev_put(rt_idev); 180 handled = true; 181 } 182 183 if (rt_dev == dev) { 184 rt->dst.dev = blackhole_netdev; 185 netdev_ref_replace(rt_dev, blackhole_netdev, 186 &rt->dst.dev_tracker, 187 GFP_ATOMIC); 188 handled = true; 189 } 190 if (handled) 191 list_del_init(&rt->dst.rt_uncached); 192 } 193 spin_unlock_bh(&ul->lock); 194 } 195 } 196 197 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 198 struct sk_buff *skb, 199 const void *daddr) 200 { 201 if (!ipv6_addr_any(p)) 202 return (const void *) p; 203 else if (skb) 204 return &ipv6_hdr(skb)->daddr; 205 return daddr; 206 } 207 208 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 209 struct net_device *dev, 210 struct sk_buff *skb, 211 const void *daddr) 212 { 213 struct neighbour *n; 214 215 daddr = choose_neigh_daddr(gw, skb, daddr); 216 n = __ipv6_neigh_lookup(dev, daddr); 217 if (n) 218 return n; 219 220 n = neigh_create(&nd_tbl, daddr, dev); 221 return IS_ERR(n) ? NULL : n; 222 } 223 224 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 225 struct sk_buff *skb, 226 const void *daddr) 227 { 228 const struct rt6_info *rt = dst_rt6_info(dst); 229 230 return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any), 231 dst_dev(dst), skb, daddr); 232 } 233 234 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 235 { 236 const struct rt6_info *rt = dst_rt6_info(dst); 237 struct net_device *dev = dst_dev(dst); 238 239 daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr); 240 if (!daddr) 241 return; 242 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 243 return; 244 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 245 return; 246 __ipv6_confirm_neigh(dev, daddr); 247 } 248 249 static struct dst_ops ip6_dst_ops_template = { 250 .family = AF_INET6, 251 .gc = ip6_dst_gc, 252 .gc_thresh = 1024, 253 .check = ip6_dst_check, 254 .default_advmss = ip6_default_advmss, 255 .mtu = ip6_mtu, 256 .cow_metrics = dst_cow_metrics_generic, 257 .destroy = ip6_dst_destroy, 258 .ifdown = ip6_dst_ifdown, 259 .negative_advice = ip6_negative_advice, 260 .link_failure = ip6_link_failure, 261 .update_pmtu = ip6_rt_update_pmtu, 262 .redirect = rt6_do_redirect, 263 .local_out = __ip6_local_out, 264 .neigh_lookup = ip6_dst_neigh_lookup, 265 .confirm_neigh = ip6_confirm_neigh, 266 }; 267 268 static struct dst_ops ip6_dst_blackhole_ops = { 269 .family = AF_INET6, 270 .default_advmss = ip6_default_advmss, 271 .neigh_lookup = ip6_dst_neigh_lookup, 272 .check = ip6_dst_check, 273 .destroy = ip6_dst_destroy, 274 .cow_metrics = dst_cow_metrics_generic, 275 .update_pmtu = dst_blackhole_update_pmtu, 276 .redirect = dst_blackhole_redirect, 277 .mtu = dst_blackhole_mtu, 278 }; 279 280 static const u32 ip6_template_metrics[RTAX_MAX] = { 281 [RTAX_HOPLIMIT - 1] = 0, 282 }; 283 284 static const struct fib6_info fib6_null_entry_template = { 285 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 286 .fib6_protocol = RTPROT_KERNEL, 287 .fib6_metric = ~(u32)0, 288 .fib6_ref = REFCOUNT_INIT(1), 289 .fib6_type = RTN_UNREACHABLE, 290 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 291 }; 292 293 static const struct rt6_info ip6_null_entry_template = { 294 .dst = { 295 .__rcuref = RCUREF_INIT(1), 296 .__use = 1, 297 .obsolete = DST_OBSOLETE_FORCE_CHK, 298 .error = -ENETUNREACH, 299 .input = ip6_pkt_discard, 300 .output = ip6_pkt_discard_out, 301 }, 302 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 303 }; 304 305 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 306 307 static const struct rt6_info ip6_prohibit_entry_template = { 308 .dst = { 309 .__rcuref = RCUREF_INIT(1), 310 .__use = 1, 311 .obsolete = DST_OBSOLETE_FORCE_CHK, 312 .error = -EACCES, 313 .input = ip6_pkt_prohibit, 314 .output = ip6_pkt_prohibit_out, 315 }, 316 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 317 }; 318 319 static const struct rt6_info ip6_blk_hole_entry_template = { 320 .dst = { 321 .__rcuref = RCUREF_INIT(1), 322 .__use = 1, 323 .obsolete = DST_OBSOLETE_FORCE_CHK, 324 .error = -EINVAL, 325 .input = dst_discard, 326 .output = dst_discard_out, 327 }, 328 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 329 }; 330 331 #endif 332 333 static void rt6_info_init(struct rt6_info *rt) 334 { 335 memset_after(rt, 0, dst); 336 } 337 338 /* allocate dst with ip6_dst_ops */ 339 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 340 int flags) 341 { 342 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 343 DST_OBSOLETE_FORCE_CHK, flags); 344 345 if (rt) { 346 rt6_info_init(rt); 347 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 348 } 349 350 return rt; 351 } 352 EXPORT_SYMBOL(ip6_dst_alloc); 353 354 static void ip6_dst_destroy(struct dst_entry *dst) 355 { 356 struct rt6_info *rt = dst_rt6_info(dst); 357 struct fib6_info *from; 358 struct inet6_dev *idev; 359 360 ip_dst_metrics_put(dst); 361 rt6_uncached_list_del(rt); 362 363 idev = rt->rt6i_idev; 364 if (idev) { 365 rt->rt6i_idev = NULL; 366 in6_dev_put(idev); 367 } 368 369 from = unrcu_pointer(xchg(&rt->from, NULL)); 370 fib6_info_release(from); 371 } 372 373 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev) 374 { 375 struct rt6_info *rt = dst_rt6_info(dst); 376 struct inet6_dev *idev = rt->rt6i_idev; 377 struct fib6_info *from; 378 379 if (idev && idev->dev != blackhole_netdev) { 380 struct inet6_dev *blackhole_idev = in6_dev_get(blackhole_netdev); 381 382 if (blackhole_idev) { 383 rt->rt6i_idev = blackhole_idev; 384 in6_dev_put(idev); 385 } 386 } 387 from = unrcu_pointer(xchg(&rt->from, NULL)); 388 fib6_info_release(from); 389 } 390 391 static bool __rt6_check_expired(const struct rt6_info *rt) 392 { 393 if (rt->rt6i_flags & RTF_EXPIRES) 394 return time_after(jiffies, READ_ONCE(rt->dst.expires)); 395 return false; 396 } 397 398 static bool rt6_check_expired(const struct rt6_info *rt) 399 { 400 struct fib6_info *from; 401 402 from = rcu_dereference(rt->from); 403 404 if (rt->rt6i_flags & RTF_EXPIRES) { 405 if (time_after(jiffies, READ_ONCE(rt->dst.expires))) 406 return true; 407 } else if (from) { 408 return READ_ONCE(rt->dst.obsolete) != DST_OBSOLETE_FORCE_CHK || 409 fib6_check_expired(from); 410 } 411 return false; 412 } 413 414 static struct fib6_info * 415 rt6_multipath_first_sibling_rcu(const struct fib6_info *rt) 416 { 417 struct fib6_info *iter; 418 struct fib6_node *fn; 419 420 fn = rcu_dereference(rt->fib6_node); 421 if (!fn) 422 goto out; 423 iter = rcu_dereference(fn->leaf); 424 if (!iter) 425 goto out; 426 427 while (iter) { 428 if (iter->fib6_metric == rt->fib6_metric && 429 rt6_qualify_for_ecmp(iter)) 430 return iter; 431 iter = rcu_dereference(iter->fib6_next); 432 } 433 434 out: 435 return NULL; 436 } 437 438 void fib6_select_path(const struct net *net, struct fib6_result *res, 439 struct flowi6 *fl6, int oif, bool have_oif_match, 440 const struct sk_buff *skb, int strict) 441 { 442 struct fib6_info *first, *match = res->f6i; 443 struct fib6_info *sibling; 444 int hash; 445 446 if (!match->nh && (!match->fib6_nsiblings || have_oif_match)) 447 goto out; 448 449 if (match->nh && have_oif_match && res->nh) 450 return; 451 452 if (skb) 453 IP6CB(skb)->flags |= IP6SKB_MULTIPATH; 454 455 /* We might have already computed the hash for ICMPv6 errors. In such 456 * case it will always be non-zero. Otherwise now is the time to do it. 457 */ 458 if (!fl6->mp_hash && 459 (!match->nh || nexthop_is_multipath(match->nh))) 460 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 461 462 if (unlikely(match->nh)) { 463 nexthop_path_fib6_result(res, fl6->mp_hash); 464 return; 465 } 466 467 first = rt6_multipath_first_sibling_rcu(match); 468 if (!first) 469 goto out; 470 471 hash = fl6->mp_hash; 472 if (hash <= atomic_read(&first->fib6_nh->fib_nh_upper_bound)) { 473 if (rt6_score_route(first->fib6_nh, first->fib6_flags, oif, 474 strict) >= 0) 475 match = first; 476 goto out; 477 } 478 479 list_for_each_entry_rcu(sibling, &first->fib6_siblings, 480 fib6_siblings) { 481 const struct fib6_nh *nh = sibling->fib6_nh; 482 int nh_upper_bound; 483 484 nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); 485 if (hash > nh_upper_bound) 486 continue; 487 if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) 488 break; 489 match = sibling; 490 break; 491 } 492 493 out: 494 res->f6i = match; 495 res->nh = match->fib6_nh; 496 } 497 498 /* 499 * Route lookup. rcu_read_lock() should be held. 500 */ 501 502 static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, 503 const struct in6_addr *saddr, int oif, int flags) 504 { 505 const struct net_device *dev; 506 507 if (nh->fib_nh_flags & RTNH_F_DEAD) 508 return false; 509 510 dev = nh->fib_nh_dev; 511 if (oif) { 512 if (dev->ifindex == oif) 513 return true; 514 } else { 515 if (ipv6_chk_addr(net, saddr, dev, 516 flags & RT6_LOOKUP_F_IFACE)) 517 return true; 518 } 519 520 return false; 521 } 522 523 struct fib6_nh_dm_arg { 524 struct net *net; 525 const struct in6_addr *saddr; 526 int oif; 527 int flags; 528 struct fib6_nh *nh; 529 }; 530 531 static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) 532 { 533 struct fib6_nh_dm_arg *arg = _arg; 534 535 arg->nh = nh; 536 return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, 537 arg->flags); 538 } 539 540 /* returns fib6_nh from nexthop or NULL */ 541 static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, 542 struct fib6_result *res, 543 const struct in6_addr *saddr, 544 int oif, int flags) 545 { 546 struct fib6_nh_dm_arg arg = { 547 .net = net, 548 .saddr = saddr, 549 .oif = oif, 550 .flags = flags, 551 }; 552 553 if (nexthop_is_blackhole(nh)) 554 return NULL; 555 556 if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) 557 return arg.nh; 558 559 return NULL; 560 } 561 562 static void rt6_device_match(struct net *net, struct fib6_result *res, 563 const struct in6_addr *saddr, int oif, int flags) 564 { 565 struct fib6_info *f6i = res->f6i; 566 struct fib6_info *spf6i; 567 struct fib6_nh *nh; 568 569 if (!oif && ipv6_addr_any(saddr)) { 570 if (unlikely(f6i->nh)) { 571 nh = nexthop_fib6_nh(f6i->nh); 572 if (nexthop_is_blackhole(f6i->nh)) 573 goto out_blackhole; 574 } else { 575 nh = f6i->fib6_nh; 576 } 577 if (!(nh->fib_nh_flags & RTNH_F_DEAD)) 578 goto out; 579 } 580 581 for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { 582 bool matched = false; 583 584 if (unlikely(spf6i->nh)) { 585 nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, 586 oif, flags); 587 if (nh) 588 matched = true; 589 } else { 590 nh = spf6i->fib6_nh; 591 if (__rt6_device_match(net, nh, saddr, oif, flags)) 592 matched = true; 593 } 594 if (matched) { 595 res->f6i = spf6i; 596 goto out; 597 } 598 } 599 600 if (oif && flags & RT6_LOOKUP_F_IFACE) { 601 res->f6i = net->ipv6.fib6_null_entry; 602 nh = res->f6i->fib6_nh; 603 goto out; 604 } 605 606 if (unlikely(f6i->nh)) { 607 nh = nexthop_fib6_nh(f6i->nh); 608 if (nexthop_is_blackhole(f6i->nh)) 609 goto out_blackhole; 610 } else { 611 nh = f6i->fib6_nh; 612 } 613 614 if (nh->fib_nh_flags & RTNH_F_DEAD) { 615 res->f6i = net->ipv6.fib6_null_entry; 616 nh = res->f6i->fib6_nh; 617 } 618 out: 619 res->nh = nh; 620 res->fib6_type = res->f6i->fib6_type; 621 res->fib6_flags = res->f6i->fib6_flags; 622 return; 623 624 out_blackhole: 625 res->fib6_flags |= RTF_REJECT; 626 res->fib6_type = RTN_BLACKHOLE; 627 res->nh = nh; 628 } 629 630 #ifdef CONFIG_IPV6_ROUTER_PREF 631 struct __rt6_probe_work { 632 struct work_struct work; 633 struct in6_addr target; 634 struct net_device *dev; 635 netdevice_tracker dev_tracker; 636 }; 637 638 static void rt6_probe_deferred(struct work_struct *w) 639 { 640 struct in6_addr mcaddr; 641 struct __rt6_probe_work *work = 642 container_of(w, struct __rt6_probe_work, work); 643 644 addrconf_addr_solict_mult(&work->target, &mcaddr); 645 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 646 netdev_put(work->dev, &work->dev_tracker); 647 kfree(work); 648 } 649 650 static void rt6_probe(struct fib6_nh *fib6_nh) 651 { 652 struct __rt6_probe_work *work = NULL; 653 const struct in6_addr *nh_gw; 654 unsigned long last_probe; 655 struct neighbour *neigh; 656 struct net_device *dev; 657 struct inet6_dev *idev; 658 659 /* 660 * Okay, this does not seem to be appropriate 661 * for now, however, we need to check if it 662 * is really so; aka Router Reachability Probing. 663 * 664 * Router Reachability Probe MUST be rate-limited 665 * to no more than one per minute. 666 */ 667 if (!fib6_nh->fib_nh_gw_family) 668 return; 669 670 nh_gw = &fib6_nh->fib_nh_gw6; 671 dev = fib6_nh->fib_nh_dev; 672 rcu_read_lock(); 673 last_probe = READ_ONCE(fib6_nh->last_probe); 674 idev = __in6_dev_get(dev); 675 if (!idev) 676 goto out; 677 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 678 if (neigh) { 679 if (READ_ONCE(neigh->nud_state) & NUD_VALID) 680 goto out; 681 682 write_lock_bh(&neigh->lock); 683 if (!(neigh->nud_state & NUD_VALID) && 684 time_after(jiffies, 685 neigh->updated + 686 READ_ONCE(idev->cnf.rtr_probe_interval))) { 687 work = kmalloc(sizeof(*work), GFP_ATOMIC); 688 if (work) 689 __neigh_set_probe_once(neigh); 690 } 691 write_unlock_bh(&neigh->lock); 692 } else if (time_after(jiffies, last_probe + 693 READ_ONCE(idev->cnf.rtr_probe_interval))) { 694 work = kmalloc(sizeof(*work), GFP_ATOMIC); 695 } 696 697 if (!work || cmpxchg(&fib6_nh->last_probe, 698 last_probe, jiffies) != last_probe) { 699 kfree(work); 700 } else { 701 INIT_WORK(&work->work, rt6_probe_deferred); 702 work->target = *nh_gw; 703 netdev_hold(dev, &work->dev_tracker, GFP_ATOMIC); 704 work->dev = dev; 705 schedule_work(&work->work); 706 } 707 708 out: 709 rcu_read_unlock(); 710 } 711 #else 712 static inline void rt6_probe(struct fib6_nh *fib6_nh) 713 { 714 } 715 #endif 716 717 /* 718 * Default Router Selection (RFC 2461 6.3.6) 719 */ 720 static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) 721 { 722 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 723 struct neighbour *neigh; 724 725 rcu_read_lock(); 726 neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, 727 &fib6_nh->fib_nh_gw6); 728 if (neigh) { 729 u8 nud_state = READ_ONCE(neigh->nud_state); 730 731 if (nud_state & NUD_VALID) 732 ret = RT6_NUD_SUCCEED; 733 #ifdef CONFIG_IPV6_ROUTER_PREF 734 else if (!(nud_state & NUD_FAILED)) 735 ret = RT6_NUD_SUCCEED; 736 else 737 ret = RT6_NUD_FAIL_PROBE; 738 #endif 739 } else { 740 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 741 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 742 } 743 rcu_read_unlock(); 744 745 return ret; 746 } 747 748 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 749 int strict) 750 { 751 int m = 0; 752 753 if (!oif || nh->fib_nh_dev->ifindex == oif) 754 m = 2; 755 756 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 757 return RT6_NUD_FAIL_HARD; 758 #ifdef CONFIG_IPV6_ROUTER_PREF 759 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; 760 #endif 761 if ((strict & RT6_LOOKUP_F_REACHABLE) && 762 !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { 763 int n = rt6_check_neigh(nh); 764 if (n < 0) 765 return n; 766 } 767 return m; 768 } 769 770 static bool find_match(struct fib6_nh *nh, u32 fib6_flags, 771 int oif, int strict, int *mpri, bool *do_rr) 772 { 773 bool match_do_rr = false; 774 bool rc = false; 775 int m; 776 777 if (nh->fib_nh_flags & RTNH_F_DEAD) 778 goto out; 779 780 if (ip6_ignore_linkdown(nh->fib_nh_dev) && 781 nh->fib_nh_flags & RTNH_F_LINKDOWN && 782 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 783 goto out; 784 785 m = rt6_score_route(nh, fib6_flags, oif, strict); 786 if (m == RT6_NUD_FAIL_DO_RR) { 787 match_do_rr = true; 788 m = 0; /* lowest valid score */ 789 } else if (m == RT6_NUD_FAIL_HARD) { 790 goto out; 791 } 792 793 if (strict & RT6_LOOKUP_F_REACHABLE) 794 rt6_probe(nh); 795 796 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 797 if (m > *mpri) { 798 *do_rr = match_do_rr; 799 *mpri = m; 800 rc = true; 801 } 802 out: 803 return rc; 804 } 805 806 struct fib6_nh_frl_arg { 807 u32 flags; 808 int oif; 809 int strict; 810 int *mpri; 811 bool *do_rr; 812 struct fib6_nh *nh; 813 }; 814 815 static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) 816 { 817 struct fib6_nh_frl_arg *arg = _arg; 818 819 arg->nh = nh; 820 return find_match(nh, arg->flags, arg->oif, arg->strict, 821 arg->mpri, arg->do_rr); 822 } 823 824 static void __find_rr_leaf(struct fib6_info *f6i_start, 825 struct fib6_info *nomatch, u32 metric, 826 struct fib6_result *res, struct fib6_info **cont, 827 int oif, int strict, bool *do_rr, int *mpri) 828 { 829 struct fib6_info *f6i; 830 831 for (f6i = f6i_start; 832 f6i && f6i != nomatch; 833 f6i = rcu_dereference(f6i->fib6_next)) { 834 bool matched = false; 835 struct fib6_nh *nh; 836 837 if (cont && f6i->fib6_metric != metric) { 838 *cont = f6i; 839 return; 840 } 841 842 if (fib6_check_expired(f6i)) 843 continue; 844 845 if (unlikely(f6i->nh)) { 846 struct fib6_nh_frl_arg arg = { 847 .flags = f6i->fib6_flags, 848 .oif = oif, 849 .strict = strict, 850 .mpri = mpri, 851 .do_rr = do_rr 852 }; 853 854 if (nexthop_is_blackhole(f6i->nh)) { 855 res->fib6_flags = RTF_REJECT; 856 res->fib6_type = RTN_BLACKHOLE; 857 res->f6i = f6i; 858 res->nh = nexthop_fib6_nh(f6i->nh); 859 return; 860 } 861 if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, 862 &arg)) { 863 matched = true; 864 nh = arg.nh; 865 } 866 } else { 867 nh = f6i->fib6_nh; 868 if (find_match(nh, f6i->fib6_flags, oif, strict, 869 mpri, do_rr)) 870 matched = true; 871 } 872 if (matched) { 873 res->f6i = f6i; 874 res->nh = nh; 875 res->fib6_flags = f6i->fib6_flags; 876 res->fib6_type = f6i->fib6_type; 877 } 878 } 879 } 880 881 static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, 882 struct fib6_info *rr_head, int oif, int strict, 883 bool *do_rr, struct fib6_result *res) 884 { 885 u32 metric = rr_head->fib6_metric; 886 struct fib6_info *cont = NULL; 887 int mpri = -1; 888 889 __find_rr_leaf(rr_head, NULL, metric, res, &cont, 890 oif, strict, do_rr, &mpri); 891 892 __find_rr_leaf(leaf, rr_head, metric, res, &cont, 893 oif, strict, do_rr, &mpri); 894 895 if (res->f6i || !cont) 896 return; 897 898 __find_rr_leaf(cont, NULL, metric, res, NULL, 899 oif, strict, do_rr, &mpri); 900 } 901 902 static void rt6_select(struct net *net, struct fib6_node *fn, int oif, 903 struct fib6_result *res, int strict) 904 { 905 struct fib6_info *leaf = rcu_dereference(fn->leaf); 906 struct fib6_info *rt0; 907 bool do_rr = false; 908 int key_plen; 909 910 /* make sure this function or its helpers sets f6i */ 911 res->f6i = NULL; 912 913 if (!leaf || leaf == net->ipv6.fib6_null_entry) 914 goto out; 915 916 rt0 = rcu_dereference(fn->rr_ptr); 917 if (!rt0) 918 rt0 = leaf; 919 920 /* Double check to make sure fn is not an intermediate node 921 * and fn->leaf does not points to its child's leaf 922 * (This might happen if all routes under fn are deleted from 923 * the tree and fib6_repair_tree() is called on the node.) 924 */ 925 key_plen = rt0->fib6_dst.plen; 926 #ifdef CONFIG_IPV6_SUBTREES 927 if (rt0->fib6_src.plen) 928 key_plen = rt0->fib6_src.plen; 929 #endif 930 if (fn->fn_bit != key_plen) 931 goto out; 932 933 find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); 934 if (do_rr) { 935 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 936 937 /* no entries matched; do round-robin */ 938 if (!next || next->fib6_metric != rt0->fib6_metric) 939 next = leaf; 940 941 if (next != rt0) { 942 spin_lock_bh(&leaf->fib6_table->tb6_lock); 943 /* make sure next is not being deleted from the tree */ 944 if (next->fib6_node) 945 rcu_assign_pointer(fn->rr_ptr, next); 946 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 947 } 948 } 949 950 out: 951 if (!res->f6i) { 952 res->f6i = net->ipv6.fib6_null_entry; 953 res->nh = res->f6i->fib6_nh; 954 res->fib6_flags = res->f6i->fib6_flags; 955 res->fib6_type = res->f6i->fib6_type; 956 } 957 } 958 959 static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) 960 { 961 return (res->f6i->fib6_flags & RTF_NONEXTHOP) || 962 res->nh->fib_nh_gw_family; 963 } 964 965 #ifdef CONFIG_IPV6_ROUTE_INFO 966 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 967 const struct in6_addr *gwaddr) 968 { 969 struct net *net = dev_net(dev); 970 struct route_info *rinfo = (struct route_info *) opt; 971 struct in6_addr prefix_buf, *prefix; 972 struct fib6_table *table; 973 unsigned int pref; 974 unsigned long lifetime; 975 struct fib6_info *rt; 976 977 if (len < sizeof(struct route_info)) { 978 return -EINVAL; 979 } 980 981 /* Sanity check for prefix_len and length */ 982 if (rinfo->length > 3) { 983 return -EINVAL; 984 } else if (rinfo->prefix_len > 128) { 985 return -EINVAL; 986 } else if (rinfo->prefix_len > 64) { 987 if (rinfo->length < 2) { 988 return -EINVAL; 989 } 990 } else if (rinfo->prefix_len > 0) { 991 if (rinfo->length < 1) { 992 return -EINVAL; 993 } 994 } 995 996 pref = rinfo->route_pref; 997 if (pref == ICMPV6_ROUTER_PREF_INVALID) 998 return -EINVAL; 999 1000 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 1001 1002 if (rinfo->length == 3) 1003 prefix = (struct in6_addr *)rinfo->prefix; 1004 else { 1005 /* this function is safe */ 1006 ipv6_addr_prefix(&prefix_buf, 1007 (struct in6_addr *)rinfo->prefix, 1008 rinfo->prefix_len); 1009 prefix = &prefix_buf; 1010 } 1011 1012 if (rinfo->prefix_len == 0) 1013 rt = rt6_get_dflt_router(net, gwaddr, dev); 1014 else 1015 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 1016 gwaddr, dev); 1017 1018 if (rt && !lifetime) { 1019 ip6_del_rt(net, rt, false); 1020 rt = NULL; 1021 } 1022 1023 if (!rt && lifetime) 1024 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 1025 dev, pref); 1026 else if (rt) 1027 rt->fib6_flags = RTF_ROUTEINFO | 1028 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 1029 1030 if (rt) { 1031 table = rt->fib6_table; 1032 spin_lock_bh(&table->tb6_lock); 1033 1034 if (!addrconf_finite_timeout(lifetime)) { 1035 fib6_clean_expires(rt); 1036 fib6_remove_gc_list(rt); 1037 } else { 1038 fib6_set_expires(rt, jiffies + HZ * lifetime); 1039 fib6_add_gc_list(rt); 1040 } 1041 1042 spin_unlock_bh(&table->tb6_lock); 1043 1044 fib6_info_release(rt); 1045 } 1046 return 0; 1047 } 1048 #endif 1049 1050 /* 1051 * Misc support functions 1052 */ 1053 1054 /* called with rcu_lock held */ 1055 static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) 1056 { 1057 struct net_device *dev = res->nh->fib_nh_dev; 1058 1059 if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 1060 /* for copies of local routes, dst->dev needs to be the 1061 * device if it is a master device, the master device if 1062 * device is enslaved, and the loopback as the default 1063 */ 1064 if (netif_is_l3_slave(dev) && 1065 !rt6_need_strict(&res->f6i->fib6_dst.addr)) 1066 dev = l3mdev_master_dev_rcu(dev); 1067 else if (!netif_is_l3_master(dev)) 1068 dev = dev_net(dev)->loopback_dev; 1069 /* last case is netif_is_l3_master(dev) is true in which 1070 * case we want dev returned to be dev 1071 */ 1072 } 1073 1074 return dev; 1075 } 1076 1077 static const int fib6_prop[RTN_MAX + 1] = { 1078 [RTN_UNSPEC] = 0, 1079 [RTN_UNICAST] = 0, 1080 [RTN_LOCAL] = 0, 1081 [RTN_BROADCAST] = 0, 1082 [RTN_ANYCAST] = 0, 1083 [RTN_MULTICAST] = 0, 1084 [RTN_BLACKHOLE] = -EINVAL, 1085 [RTN_UNREACHABLE] = -EHOSTUNREACH, 1086 [RTN_PROHIBIT] = -EACCES, 1087 [RTN_THROW] = -EAGAIN, 1088 [RTN_NAT] = -EINVAL, 1089 [RTN_XRESOLVE] = -EINVAL, 1090 }; 1091 1092 static int ip6_rt_type_to_error(u8 fib6_type) 1093 { 1094 return fib6_prop[fib6_type]; 1095 } 1096 1097 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 1098 { 1099 unsigned short flags = 0; 1100 1101 if (rt->dst_nocount) 1102 flags |= DST_NOCOUNT; 1103 if (rt->dst_nopolicy) 1104 flags |= DST_NOPOLICY; 1105 1106 return flags; 1107 } 1108 1109 static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) 1110 { 1111 rt->dst.error = ip6_rt_type_to_error(fib6_type); 1112 1113 switch (fib6_type) { 1114 case RTN_BLACKHOLE: 1115 rt->dst.output = dst_discard_out; 1116 rt->dst.input = dst_discard; 1117 break; 1118 case RTN_PROHIBIT: 1119 rt->dst.output = ip6_pkt_prohibit_out; 1120 rt->dst.input = ip6_pkt_prohibit; 1121 break; 1122 case RTN_THROW: 1123 case RTN_UNREACHABLE: 1124 default: 1125 rt->dst.output = ip6_pkt_discard_out; 1126 rt->dst.input = ip6_pkt_discard; 1127 break; 1128 } 1129 } 1130 1131 static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) 1132 { 1133 struct fib6_info *f6i = res->f6i; 1134 1135 if (res->fib6_flags & RTF_REJECT) { 1136 ip6_rt_init_dst_reject(rt, res->fib6_type); 1137 return; 1138 } 1139 1140 rt->dst.error = 0; 1141 rt->dst.output = ip6_output; 1142 1143 if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { 1144 rt->dst.input = ip6_input; 1145 } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 1146 rt->dst.input = ip6_mc_input; 1147 rt->dst.output = ip6_mr_output; 1148 } else { 1149 rt->dst.input = ip6_forward; 1150 } 1151 1152 if (res->nh->fib_nh_lws) { 1153 rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); 1154 lwtunnel_set_redirect(&rt->dst); 1155 } 1156 1157 rt->dst.lastuse = jiffies; 1158 } 1159 1160 /* Caller must already hold reference to @from */ 1161 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 1162 { 1163 rt->rt6i_flags &= ~RTF_EXPIRES; 1164 rcu_assign_pointer(rt->from, from); 1165 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 1166 } 1167 1168 /* Caller must already hold reference to f6i in result */ 1169 static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) 1170 { 1171 const struct fib6_nh *nh = res->nh; 1172 const struct net_device *dev = nh->fib_nh_dev; 1173 struct fib6_info *f6i = res->f6i; 1174 1175 ip6_rt_init_dst(rt, res); 1176 1177 rt->rt6i_dst = f6i->fib6_dst; 1178 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 1179 rt->rt6i_flags = res->fib6_flags; 1180 if (nh->fib_nh_gw_family) { 1181 rt->rt6i_gateway = nh->fib_nh_gw6; 1182 rt->rt6i_flags |= RTF_GATEWAY; 1183 } 1184 rt6_set_from(rt, f6i); 1185 #ifdef CONFIG_IPV6_SUBTREES 1186 rt->rt6i_src = f6i->fib6_src; 1187 #endif 1188 } 1189 1190 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1191 struct in6_addr *saddr) 1192 { 1193 struct fib6_node *pn, *sn; 1194 while (1) { 1195 if (fn->fn_flags & RTN_TL_ROOT) 1196 return NULL; 1197 pn = rcu_dereference(fn->parent); 1198 sn = FIB6_SUBTREE(pn); 1199 if (sn && sn != fn) 1200 fn = fib6_node_lookup(sn, NULL, saddr); 1201 else 1202 fn = pn; 1203 if (fn->fn_flags & RTN_RTINFO) 1204 return fn; 1205 } 1206 } 1207 1208 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) 1209 { 1210 struct rt6_info *rt = *prt; 1211 1212 if (dst_hold_safe(&rt->dst)) 1213 return true; 1214 if (net) { 1215 rt = net->ipv6.ip6_null_entry; 1216 dst_hold(&rt->dst); 1217 } else { 1218 rt = NULL; 1219 } 1220 *prt = rt; 1221 return false; 1222 } 1223 1224 /* called with rcu_lock held */ 1225 static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) 1226 { 1227 struct net_device *dev = res->nh->fib_nh_dev; 1228 struct fib6_info *f6i = res->f6i; 1229 unsigned short flags; 1230 struct rt6_info *nrt; 1231 1232 if (!fib6_info_hold_safe(f6i)) 1233 goto fallback; 1234 1235 flags = fib6_info_dst_flags(f6i); 1236 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1237 if (!nrt) { 1238 fib6_info_release(f6i); 1239 goto fallback; 1240 } 1241 1242 ip6_rt_copy_init(nrt, res); 1243 return nrt; 1244 1245 fallback: 1246 nrt = dev_net(dev)->ipv6.ip6_null_entry; 1247 dst_hold(&nrt->dst); 1248 return nrt; 1249 } 1250 1251 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net, 1252 struct fib6_table *table, 1253 struct flowi6 *fl6, 1254 const struct sk_buff *skb, 1255 int flags) 1256 { 1257 struct fib6_result res = {}; 1258 struct fib6_node *fn; 1259 struct rt6_info *rt; 1260 1261 rcu_read_lock(); 1262 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1263 restart: 1264 res.f6i = rcu_dereference(fn->leaf); 1265 if (!res.f6i) 1266 res.f6i = net->ipv6.fib6_null_entry; 1267 else 1268 rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, 1269 flags); 1270 1271 if (res.f6i == net->ipv6.fib6_null_entry) { 1272 fn = fib6_backtrack(fn, &fl6->saddr); 1273 if (fn) 1274 goto restart; 1275 1276 rt = net->ipv6.ip6_null_entry; 1277 dst_hold(&rt->dst); 1278 goto out; 1279 } else if (res.fib6_flags & RTF_REJECT) { 1280 goto do_create; 1281 } 1282 1283 fib6_select_path(net, &res, fl6, fl6->flowi6_oif, 1284 fl6->flowi6_oif != 0, skb, flags); 1285 1286 /* Search through exception table */ 1287 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 1288 if (rt) { 1289 if (ip6_hold_safe(net, &rt)) 1290 dst_use_noref(&rt->dst, jiffies); 1291 } else { 1292 do_create: 1293 rt = ip6_create_rt_rcu(&res); 1294 } 1295 1296 out: 1297 trace_fib6_table_lookup(net, &res, table, fl6); 1298 1299 rcu_read_unlock(); 1300 1301 return rt; 1302 } 1303 1304 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1305 const struct sk_buff *skb, int flags) 1306 { 1307 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1308 } 1309 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1310 1311 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1312 const struct in6_addr *saddr, int oif, 1313 const struct sk_buff *skb, int strict) 1314 { 1315 struct flowi6 fl6 = { 1316 .flowi6_oif = oif, 1317 .daddr = *daddr, 1318 }; 1319 struct dst_entry *dst; 1320 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1321 1322 if (saddr) { 1323 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1324 flags |= RT6_LOOKUP_F_HAS_SADDR; 1325 } 1326 1327 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1328 if (dst->error == 0) 1329 return dst_rt6_info(dst); 1330 1331 dst_release(dst); 1332 1333 return NULL; 1334 } 1335 EXPORT_SYMBOL(rt6_lookup); 1336 1337 /* ip6_ins_rt is called with FREE table->tb6_lock. 1338 * It takes new route entry, the addition fails by any reason the 1339 * route is released. 1340 * Caller must hold dst before calling it. 1341 */ 1342 1343 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1344 struct netlink_ext_ack *extack) 1345 { 1346 int err; 1347 struct fib6_table *table; 1348 1349 table = rt->fib6_table; 1350 spin_lock_bh(&table->tb6_lock); 1351 err = fib6_add(&table->tb6_root, rt, info, extack); 1352 spin_unlock_bh(&table->tb6_lock); 1353 1354 return err; 1355 } 1356 1357 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1358 { 1359 struct nl_info info = { .nl_net = net, }; 1360 1361 return __ip6_ins_rt(rt, &info, NULL); 1362 } 1363 1364 static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, 1365 const struct in6_addr *daddr, 1366 const struct in6_addr *saddr) 1367 { 1368 struct fib6_info *f6i = res->f6i; 1369 struct net_device *dev; 1370 struct rt6_info *rt; 1371 1372 /* 1373 * Clone the route. 1374 */ 1375 1376 if (!fib6_info_hold_safe(f6i)) 1377 return NULL; 1378 1379 dev = ip6_rt_get_dev_rcu(res); 1380 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1381 if (!rt) { 1382 fib6_info_release(f6i); 1383 return NULL; 1384 } 1385 1386 ip6_rt_copy_init(rt, res); 1387 rt->rt6i_flags |= RTF_CACHE; 1388 rt->rt6i_dst.addr = *daddr; 1389 rt->rt6i_dst.plen = 128; 1390 1391 if (!rt6_is_gw_or_nonexthop(res)) { 1392 if (f6i->fib6_dst.plen != 128 && 1393 ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) 1394 rt->rt6i_flags |= RTF_ANYCAST; 1395 #ifdef CONFIG_IPV6_SUBTREES 1396 if (rt->rt6i_src.plen && saddr) { 1397 rt->rt6i_src.addr = *saddr; 1398 rt->rt6i_src.plen = 128; 1399 } 1400 #endif 1401 } 1402 1403 return rt; 1404 } 1405 1406 static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) 1407 { 1408 struct fib6_info *f6i = res->f6i; 1409 unsigned short flags = fib6_info_dst_flags(f6i); 1410 struct net_device *dev; 1411 struct rt6_info *pcpu_rt; 1412 1413 if (!fib6_info_hold_safe(f6i)) 1414 return NULL; 1415 1416 rcu_read_lock(); 1417 dev = ip6_rt_get_dev_rcu(res); 1418 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT); 1419 rcu_read_unlock(); 1420 if (!pcpu_rt) { 1421 fib6_info_release(f6i); 1422 return NULL; 1423 } 1424 ip6_rt_copy_init(pcpu_rt, res); 1425 pcpu_rt->rt6i_flags |= RTF_PCPU; 1426 1427 if (f6i->nh) 1428 pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev)); 1429 1430 return pcpu_rt; 1431 } 1432 1433 static bool rt6_is_valid(const struct rt6_info *rt6) 1434 { 1435 return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev)); 1436 } 1437 1438 /* It should be called with rcu_read_lock() acquired */ 1439 static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) 1440 { 1441 struct rt6_info *pcpu_rt; 1442 1443 pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); 1444 1445 if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) { 1446 struct rt6_info *prev, **p; 1447 1448 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1449 /* Paired with READ_ONCE() in __fib6_drop_pcpu_from() */ 1450 prev = xchg(p, NULL); 1451 if (prev) { 1452 dst_dev_put(&prev->dst); 1453 dst_release(&prev->dst); 1454 } 1455 1456 pcpu_rt = NULL; 1457 } 1458 1459 return pcpu_rt; 1460 } 1461 1462 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1463 const struct fib6_result *res) 1464 { 1465 struct rt6_info *pcpu_rt, *prev, **p; 1466 1467 pcpu_rt = ip6_rt_pcpu_alloc(res); 1468 if (!pcpu_rt) 1469 return NULL; 1470 1471 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1472 prev = cmpxchg(p, NULL, pcpu_rt); 1473 BUG_ON(prev); 1474 1475 if (res->f6i->fib6_destroying) { 1476 struct fib6_info *from; 1477 1478 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL)); 1479 fib6_info_release(from); 1480 } 1481 1482 return pcpu_rt; 1483 } 1484 1485 /* exception hash table implementation 1486 */ 1487 static DEFINE_SPINLOCK(rt6_exception_lock); 1488 1489 /* Remove rt6_ex from hash table and free the memory 1490 * Caller must hold rt6_exception_lock 1491 */ 1492 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1493 struct rt6_exception *rt6_ex) 1494 { 1495 struct net *net; 1496 1497 if (!bucket || !rt6_ex) 1498 return; 1499 1500 net = dev_net(rt6_ex->rt6i->dst.dev); 1501 net->ipv6.rt6_stats->fib_rt_cache--; 1502 1503 /* purge completely the exception to allow releasing the held resources: 1504 * some [sk] cache may keep the dst around for unlimited time 1505 */ 1506 dst_dev_put(&rt6_ex->rt6i->dst); 1507 1508 hlist_del_rcu(&rt6_ex->hlist); 1509 dst_release(&rt6_ex->rt6i->dst); 1510 kfree_rcu(rt6_ex, rcu); 1511 WARN_ON_ONCE(!bucket->depth); 1512 bucket->depth--; 1513 } 1514 1515 /* Remove oldest rt6_ex in bucket and free the memory 1516 * Caller must hold rt6_exception_lock 1517 */ 1518 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1519 { 1520 struct rt6_exception *rt6_ex, *oldest = NULL; 1521 1522 if (!bucket) 1523 return; 1524 1525 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1526 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1527 oldest = rt6_ex; 1528 } 1529 rt6_remove_exception(bucket, oldest); 1530 } 1531 1532 static u32 rt6_exception_hash(const struct in6_addr *dst, 1533 const struct in6_addr *src) 1534 { 1535 static siphash_aligned_key_t rt6_exception_key; 1536 struct { 1537 struct in6_addr dst; 1538 struct in6_addr src; 1539 } __aligned(SIPHASH_ALIGNMENT) combined = { 1540 .dst = *dst, 1541 }; 1542 u64 val; 1543 1544 net_get_random_once(&rt6_exception_key, sizeof(rt6_exception_key)); 1545 1546 #ifdef CONFIG_IPV6_SUBTREES 1547 if (src) 1548 combined.src = *src; 1549 #endif 1550 val = siphash(&combined, sizeof(combined), &rt6_exception_key); 1551 1552 return hash_64(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1553 } 1554 1555 /* Helper function to find the cached rt in the hash table 1556 * and update bucket pointer to point to the bucket for this 1557 * (daddr, saddr) pair 1558 * Caller must hold rt6_exception_lock 1559 */ 1560 static struct rt6_exception * 1561 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1562 const struct in6_addr *daddr, 1563 const struct in6_addr *saddr) 1564 { 1565 struct rt6_exception *rt6_ex; 1566 u32 hval; 1567 1568 if (!(*bucket) || !daddr) 1569 return NULL; 1570 1571 hval = rt6_exception_hash(daddr, saddr); 1572 *bucket += hval; 1573 1574 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1575 struct rt6_info *rt6 = rt6_ex->rt6i; 1576 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1577 1578 #ifdef CONFIG_IPV6_SUBTREES 1579 if (matched && saddr) 1580 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1581 #endif 1582 if (matched) 1583 return rt6_ex; 1584 } 1585 return NULL; 1586 } 1587 1588 /* Helper function to find the cached rt in the hash table 1589 * and update bucket pointer to point to the bucket for this 1590 * (daddr, saddr) pair 1591 * Caller must hold rcu_read_lock() 1592 */ 1593 static struct rt6_exception * 1594 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1595 const struct in6_addr *daddr, 1596 const struct in6_addr *saddr) 1597 { 1598 struct rt6_exception *rt6_ex; 1599 u32 hval; 1600 1601 WARN_ON_ONCE(!rcu_read_lock_held()); 1602 1603 if (!(*bucket) || !daddr) 1604 return NULL; 1605 1606 hval = rt6_exception_hash(daddr, saddr); 1607 *bucket += hval; 1608 1609 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1610 struct rt6_info *rt6 = rt6_ex->rt6i; 1611 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1612 1613 #ifdef CONFIG_IPV6_SUBTREES 1614 if (matched && saddr) 1615 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1616 #endif 1617 if (matched) 1618 return rt6_ex; 1619 } 1620 return NULL; 1621 } 1622 1623 static unsigned int fib6_mtu(const struct fib6_result *res) 1624 { 1625 const struct fib6_nh *nh = res->nh; 1626 unsigned int mtu; 1627 1628 if (res->f6i->fib6_pmtu) { 1629 mtu = res->f6i->fib6_pmtu; 1630 } else { 1631 struct net_device *dev = nh->fib_nh_dev; 1632 struct inet6_dev *idev; 1633 1634 rcu_read_lock(); 1635 idev = __in6_dev_get(dev); 1636 mtu = READ_ONCE(idev->cnf.mtu6); 1637 rcu_read_unlock(); 1638 } 1639 1640 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1641 1642 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 1643 } 1644 1645 #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL 1646 1647 /* used when the flushed bit is not relevant, only access to the bucket 1648 * (ie., all bucket users except rt6_insert_exception); 1649 * 1650 * called under rcu lock; sometimes called with rt6_exception_lock held 1651 */ 1652 static 1653 struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, 1654 spinlock_t *lock) 1655 { 1656 struct rt6_exception_bucket *bucket; 1657 1658 if (lock) 1659 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1660 lockdep_is_held(lock)); 1661 else 1662 bucket = rcu_dereference(nh->rt6i_exception_bucket); 1663 1664 /* remove bucket flushed bit if set */ 1665 if (bucket) { 1666 unsigned long p = (unsigned long)bucket; 1667 1668 p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; 1669 bucket = (struct rt6_exception_bucket *)p; 1670 } 1671 1672 return bucket; 1673 } 1674 1675 static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) 1676 { 1677 unsigned long p = (unsigned long)bucket; 1678 1679 return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); 1680 } 1681 1682 /* called with rt6_exception_lock held */ 1683 static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, 1684 spinlock_t *lock) 1685 { 1686 struct rt6_exception_bucket *bucket; 1687 unsigned long p; 1688 1689 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1690 lockdep_is_held(lock)); 1691 1692 p = (unsigned long)bucket; 1693 p |= FIB6_EXCEPTION_BUCKET_FLUSHED; 1694 bucket = (struct rt6_exception_bucket *)p; 1695 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1696 } 1697 1698 static int rt6_insert_exception(struct rt6_info *nrt, 1699 const struct fib6_result *res) 1700 { 1701 struct net *net = dev_net(nrt->dst.dev); 1702 struct rt6_exception_bucket *bucket; 1703 struct fib6_info *f6i = res->f6i; 1704 struct in6_addr *src_key = NULL; 1705 struct rt6_exception *rt6_ex; 1706 struct fib6_nh *nh = res->nh; 1707 int max_depth; 1708 int err = 0; 1709 1710 spin_lock_bh(&rt6_exception_lock); 1711 1712 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1713 lockdep_is_held(&rt6_exception_lock)); 1714 if (!bucket) { 1715 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1716 GFP_ATOMIC); 1717 if (!bucket) { 1718 err = -ENOMEM; 1719 goto out; 1720 } 1721 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1722 } else if (fib6_nh_excptn_bucket_flushed(bucket)) { 1723 err = -EINVAL; 1724 goto out; 1725 } 1726 1727 #ifdef CONFIG_IPV6_SUBTREES 1728 /* fib6_src.plen != 0 indicates f6i is in subtree 1729 * and exception table is indexed by a hash of 1730 * both fib6_dst and fib6_src. 1731 * Otherwise, the exception table is indexed by 1732 * a hash of only fib6_dst. 1733 */ 1734 if (f6i->fib6_src.plen) 1735 src_key = &nrt->rt6i_src.addr; 1736 #endif 1737 /* rt6_mtu_change() might lower mtu on f6i. 1738 * Only insert this exception route if its mtu 1739 * is less than f6i's mtu value. 1740 */ 1741 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { 1742 err = -EINVAL; 1743 goto out; 1744 } 1745 1746 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1747 src_key); 1748 if (rt6_ex) 1749 rt6_remove_exception(bucket, rt6_ex); 1750 1751 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1752 if (!rt6_ex) { 1753 err = -ENOMEM; 1754 goto out; 1755 } 1756 rt6_ex->rt6i = nrt; 1757 rt6_ex->stamp = jiffies; 1758 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1759 bucket->depth++; 1760 net->ipv6.rt6_stats->fib_rt_cache++; 1761 1762 /* Randomize max depth to avoid some side channels attacks. */ 1763 max_depth = FIB6_MAX_DEPTH + get_random_u32_below(FIB6_MAX_DEPTH); 1764 while (bucket->depth > max_depth) 1765 rt6_exception_remove_oldest(bucket); 1766 1767 out: 1768 spin_unlock_bh(&rt6_exception_lock); 1769 1770 /* Update fn->fn_sernum to invalidate all cached dst */ 1771 if (!err) { 1772 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1773 fib6_update_sernum(net, f6i); 1774 fib6_add_gc_list(f6i); 1775 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1776 fib6_force_start_gc(net); 1777 } 1778 1779 return err; 1780 } 1781 1782 static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) 1783 { 1784 struct rt6_exception_bucket *bucket; 1785 struct rt6_exception *rt6_ex; 1786 struct hlist_node *tmp; 1787 int i; 1788 1789 spin_lock_bh(&rt6_exception_lock); 1790 1791 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1792 if (!bucket) 1793 goto out; 1794 1795 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1796 if (!from) 1797 fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); 1798 1799 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1800 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { 1801 if (!from || 1802 rcu_access_pointer(rt6_ex->rt6i->from) == from) 1803 rt6_remove_exception(bucket, rt6_ex); 1804 } 1805 WARN_ON_ONCE(!from && bucket->depth); 1806 bucket++; 1807 } 1808 out: 1809 spin_unlock_bh(&rt6_exception_lock); 1810 } 1811 1812 static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) 1813 { 1814 struct fib6_info *f6i = arg; 1815 1816 fib6_nh_flush_exceptions(nh, f6i); 1817 1818 return 0; 1819 } 1820 1821 void rt6_flush_exceptions(struct fib6_info *f6i) 1822 { 1823 if (f6i->nh) { 1824 rcu_read_lock(); 1825 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, f6i); 1826 rcu_read_unlock(); 1827 } else { 1828 fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); 1829 } 1830 } 1831 1832 /* Find cached rt in the hash table inside passed in rt 1833 * Caller has to hold rcu_read_lock() 1834 */ 1835 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 1836 const struct in6_addr *daddr, 1837 const struct in6_addr *saddr) 1838 { 1839 const struct in6_addr *src_key = NULL; 1840 struct rt6_exception_bucket *bucket; 1841 struct rt6_exception *rt6_ex; 1842 struct rt6_info *ret = NULL; 1843 1844 #ifdef CONFIG_IPV6_SUBTREES 1845 /* fib6i_src.plen != 0 indicates f6i is in subtree 1846 * and exception table is indexed by a hash of 1847 * both fib6_dst and fib6_src. 1848 * However, the src addr used to create the hash 1849 * might not be exactly the passed in saddr which 1850 * is a /128 addr from the flow. 1851 * So we need to use f6i->fib6_src to redo lookup 1852 * if the passed in saddr does not find anything. 1853 * (See the logic in ip6_rt_cache_alloc() on how 1854 * rt->rt6i_src is updated.) 1855 */ 1856 if (res->f6i->fib6_src.plen) 1857 src_key = saddr; 1858 find_ex: 1859 #endif 1860 bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); 1861 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1862 1863 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1864 ret = rt6_ex->rt6i; 1865 1866 #ifdef CONFIG_IPV6_SUBTREES 1867 /* Use fib6_src as src_key and redo lookup */ 1868 if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { 1869 src_key = &res->f6i->fib6_src.addr; 1870 goto find_ex; 1871 } 1872 #endif 1873 1874 return ret; 1875 } 1876 1877 /* Remove the passed in cached rt from the hash table that contains it */ 1878 static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, 1879 const struct rt6_info *rt) 1880 { 1881 const struct in6_addr *src_key = NULL; 1882 struct rt6_exception_bucket *bucket; 1883 struct rt6_exception *rt6_ex; 1884 int err; 1885 1886 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 1887 return -ENOENT; 1888 1889 spin_lock_bh(&rt6_exception_lock); 1890 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1891 1892 #ifdef CONFIG_IPV6_SUBTREES 1893 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1894 * and exception table is indexed by a hash of 1895 * both rt6i_dst and rt6i_src. 1896 * Otherwise, the exception table is indexed by 1897 * a hash of only rt6i_dst. 1898 */ 1899 if (plen) 1900 src_key = &rt->rt6i_src.addr; 1901 #endif 1902 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1903 &rt->rt6i_dst.addr, 1904 src_key); 1905 if (rt6_ex) { 1906 rt6_remove_exception(bucket, rt6_ex); 1907 err = 0; 1908 } else { 1909 err = -ENOENT; 1910 } 1911 1912 spin_unlock_bh(&rt6_exception_lock); 1913 return err; 1914 } 1915 1916 struct fib6_nh_excptn_arg { 1917 struct rt6_info *rt; 1918 int plen; 1919 }; 1920 1921 static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) 1922 { 1923 struct fib6_nh_excptn_arg *arg = _arg; 1924 int err; 1925 1926 err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); 1927 if (err == 0) 1928 return 1; 1929 1930 return 0; 1931 } 1932 1933 static int rt6_remove_exception_rt(struct rt6_info *rt) 1934 { 1935 struct fib6_info *from; 1936 1937 from = rcu_dereference(rt->from); 1938 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1939 return -EINVAL; 1940 1941 if (from->nh) { 1942 struct fib6_nh_excptn_arg arg = { 1943 .rt = rt, 1944 .plen = from->fib6_src.plen 1945 }; 1946 int rc; 1947 1948 /* rc = 1 means an entry was found */ 1949 rc = nexthop_for_each_fib6_nh(from->nh, 1950 rt6_nh_remove_exception_rt, 1951 &arg); 1952 return rc ? 0 : -ENOENT; 1953 } 1954 1955 return fib6_nh_remove_exception(from->fib6_nh, 1956 from->fib6_src.plen, rt); 1957 } 1958 1959 /* Find rt6_ex which contains the passed in rt cache and 1960 * refresh its stamp 1961 */ 1962 static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, 1963 const struct rt6_info *rt) 1964 { 1965 const struct in6_addr *src_key = NULL; 1966 struct rt6_exception_bucket *bucket; 1967 struct rt6_exception *rt6_ex; 1968 1969 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 1970 #ifdef CONFIG_IPV6_SUBTREES 1971 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1972 * and exception table is indexed by a hash of 1973 * both rt6i_dst and rt6i_src. 1974 * Otherwise, the exception table is indexed by 1975 * a hash of only rt6i_dst. 1976 */ 1977 if (plen) 1978 src_key = &rt->rt6i_src.addr; 1979 #endif 1980 rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); 1981 if (rt6_ex) 1982 rt6_ex->stamp = jiffies; 1983 } 1984 1985 struct fib6_nh_match_arg { 1986 const struct net_device *dev; 1987 const struct in6_addr *gw; 1988 struct fib6_nh *match; 1989 }; 1990 1991 /* determine if fib6_nh has given device and gateway */ 1992 static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) 1993 { 1994 struct fib6_nh_match_arg *arg = _arg; 1995 1996 if (arg->dev != nh->fib_nh_dev || 1997 (arg->gw && !nh->fib_nh_gw_family) || 1998 (!arg->gw && nh->fib_nh_gw_family) || 1999 (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) 2000 return 0; 2001 2002 arg->match = nh; 2003 2004 /* found a match, break the loop */ 2005 return 1; 2006 } 2007 2008 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 2009 { 2010 struct fib6_info *from; 2011 struct fib6_nh *fib6_nh; 2012 2013 rcu_read_lock(); 2014 2015 from = rcu_dereference(rt->from); 2016 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 2017 goto unlock; 2018 2019 if (from->nh) { 2020 struct fib6_nh_match_arg arg = { 2021 .dev = rt->dst.dev, 2022 .gw = &rt->rt6i_gateway, 2023 }; 2024 2025 nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); 2026 2027 if (!arg.match) 2028 goto unlock; 2029 fib6_nh = arg.match; 2030 } else { 2031 fib6_nh = from->fib6_nh; 2032 } 2033 fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); 2034 unlock: 2035 rcu_read_unlock(); 2036 } 2037 2038 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 2039 struct rt6_info *rt, int mtu) 2040 { 2041 /* If the new MTU is lower than the route PMTU, this new MTU will be the 2042 * lowest MTU in the path: always allow updating the route PMTU to 2043 * reflect PMTU decreases. 2044 * 2045 * If the new MTU is higher, and the route PMTU is equal to the local 2046 * MTU, this means the old MTU is the lowest in the path, so allow 2047 * updating it: if other nodes now have lower MTUs, PMTU discovery will 2048 * handle this. 2049 */ 2050 2051 if (dst_mtu(&rt->dst) >= mtu) 2052 return true; 2053 2054 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 2055 return true; 2056 2057 return false; 2058 } 2059 2060 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 2061 const struct fib6_nh *nh, int mtu) 2062 { 2063 struct rt6_exception_bucket *bucket; 2064 struct rt6_exception *rt6_ex; 2065 int i; 2066 2067 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2068 if (!bucket) 2069 return; 2070 2071 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2072 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 2073 struct rt6_info *entry = rt6_ex->rt6i; 2074 2075 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 2076 * route), the metrics of its rt->from have already 2077 * been updated. 2078 */ 2079 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 2080 rt6_mtu_change_route_allowed(idev, entry, mtu)) 2081 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 2082 } 2083 bucket++; 2084 } 2085 } 2086 2087 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 2088 2089 static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, 2090 const struct in6_addr *gateway) 2091 { 2092 struct rt6_exception_bucket *bucket; 2093 struct rt6_exception *rt6_ex; 2094 struct hlist_node *tmp; 2095 int i; 2096 2097 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2098 return; 2099 2100 spin_lock_bh(&rt6_exception_lock); 2101 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2102 if (bucket) { 2103 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2104 hlist_for_each_entry_safe(rt6_ex, tmp, 2105 &bucket->chain, hlist) { 2106 struct rt6_info *entry = rt6_ex->rt6i; 2107 2108 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 2109 RTF_CACHE_GATEWAY && 2110 ipv6_addr_equal(gateway, 2111 &entry->rt6i_gateway)) { 2112 rt6_remove_exception(bucket, rt6_ex); 2113 } 2114 } 2115 bucket++; 2116 } 2117 } 2118 2119 spin_unlock_bh(&rt6_exception_lock); 2120 } 2121 2122 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 2123 struct rt6_exception *rt6_ex, 2124 struct fib6_gc_args *gc_args, 2125 unsigned long now) 2126 { 2127 struct rt6_info *rt = rt6_ex->rt6i; 2128 2129 /* we are pruning and obsoleting aged-out and non gateway exceptions 2130 * even if others have still references to them, so that on next 2131 * dst_check() such references can be dropped. 2132 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 2133 * expired, independently from their aging, as per RFC 8201 section 4 2134 */ 2135 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 2136 if (time_after_eq(now, READ_ONCE(rt->dst.lastuse) + 2137 gc_args->timeout)) { 2138 pr_debug("aging clone %p\n", rt); 2139 rt6_remove_exception(bucket, rt6_ex); 2140 return; 2141 } 2142 } else if (time_after(jiffies, READ_ONCE(rt->dst.expires))) { 2143 pr_debug("purging expired route %p\n", rt); 2144 rt6_remove_exception(bucket, rt6_ex); 2145 return; 2146 } 2147 2148 if (rt->rt6i_flags & RTF_GATEWAY) { 2149 struct neighbour *neigh; 2150 2151 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 2152 2153 if (!(neigh && (neigh->flags & NTF_ROUTER))) { 2154 pr_debug("purging route %p via non-router but gateway\n", 2155 rt); 2156 rt6_remove_exception(bucket, rt6_ex); 2157 return; 2158 } 2159 } 2160 2161 gc_args->more++; 2162 } 2163 2164 static void fib6_nh_age_exceptions(const struct fib6_nh *nh, 2165 struct fib6_gc_args *gc_args, 2166 unsigned long now) 2167 { 2168 struct rt6_exception_bucket *bucket; 2169 struct rt6_exception *rt6_ex; 2170 struct hlist_node *tmp; 2171 int i; 2172 2173 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2174 return; 2175 2176 rcu_read_lock_bh(); 2177 spin_lock(&rt6_exception_lock); 2178 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2179 if (bucket) { 2180 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2181 hlist_for_each_entry_safe(rt6_ex, tmp, 2182 &bucket->chain, hlist) { 2183 rt6_age_examine_exception(bucket, rt6_ex, 2184 gc_args, now); 2185 } 2186 bucket++; 2187 } 2188 } 2189 spin_unlock(&rt6_exception_lock); 2190 rcu_read_unlock_bh(); 2191 } 2192 2193 struct fib6_nh_age_excptn_arg { 2194 struct fib6_gc_args *gc_args; 2195 unsigned long now; 2196 }; 2197 2198 static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) 2199 { 2200 struct fib6_nh_age_excptn_arg *arg = _arg; 2201 2202 fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); 2203 return 0; 2204 } 2205 2206 void rt6_age_exceptions(struct fib6_info *f6i, 2207 struct fib6_gc_args *gc_args, 2208 unsigned long now) 2209 { 2210 if (f6i->nh) { 2211 struct fib6_nh_age_excptn_arg arg = { 2212 .gc_args = gc_args, 2213 .now = now 2214 }; 2215 2216 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, 2217 &arg); 2218 } else { 2219 fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); 2220 } 2221 } 2222 2223 /* must be called with rcu lock held */ 2224 int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, 2225 struct flowi6 *fl6, struct fib6_result *res, int strict) 2226 { 2227 struct fib6_node *fn, *saved_fn; 2228 2229 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2230 saved_fn = fn; 2231 2232 redo_rt6_select: 2233 rt6_select(net, fn, oif, res, strict); 2234 if (res->f6i == net->ipv6.fib6_null_entry) { 2235 fn = fib6_backtrack(fn, &fl6->saddr); 2236 if (fn) 2237 goto redo_rt6_select; 2238 else if (strict & RT6_LOOKUP_F_REACHABLE) { 2239 /* also consider unreachable route */ 2240 strict &= ~RT6_LOOKUP_F_REACHABLE; 2241 fn = saved_fn; 2242 goto redo_rt6_select; 2243 } 2244 } 2245 2246 trace_fib6_table_lookup(net, res, table, fl6); 2247 2248 return 0; 2249 } 2250 2251 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 2252 int oif, struct flowi6 *fl6, 2253 const struct sk_buff *skb, int flags) 2254 { 2255 struct fib6_result res = {}; 2256 struct rt6_info *rt = NULL; 2257 int strict = 0; 2258 2259 WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && 2260 !rcu_read_lock_held()); 2261 2262 strict |= flags & RT6_LOOKUP_F_IFACE; 2263 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 2264 if (READ_ONCE(net->ipv6.devconf_all->forwarding) == 0) 2265 strict |= RT6_LOOKUP_F_REACHABLE; 2266 2267 rcu_read_lock(); 2268 2269 fib6_table_lookup(net, table, oif, fl6, &res, strict); 2270 if (res.f6i == net->ipv6.fib6_null_entry) 2271 goto out; 2272 2273 fib6_select_path(net, &res, fl6, oif, false, skb, strict); 2274 2275 /*Search through exception table */ 2276 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 2277 if (rt) { 2278 goto out; 2279 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 2280 !res.nh->fib_nh_gw_family)) { 2281 /* Create a RTF_CACHE clone which will not be 2282 * owned by the fib6 tree. It is for the special case where 2283 * the daddr in the skb during the neighbor look-up is different 2284 * from the fl6->daddr used to look-up route here. 2285 */ 2286 rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); 2287 2288 if (rt) { 2289 /* 1 refcnt is taken during ip6_rt_cache_alloc(). 2290 * As rt6_uncached_list_add() does not consume refcnt, 2291 * this refcnt is always returned to the caller even 2292 * if caller sets RT6_LOOKUP_F_DST_NOREF flag. 2293 */ 2294 rt6_uncached_list_add(rt); 2295 rcu_read_unlock(); 2296 2297 return rt; 2298 } 2299 } else { 2300 /* Get a percpu copy */ 2301 local_bh_disable(); 2302 rt = rt6_get_pcpu_route(&res); 2303 2304 if (!rt) 2305 rt = rt6_make_pcpu_route(net, &res); 2306 2307 local_bh_enable(); 2308 } 2309 out: 2310 if (!rt) 2311 rt = net->ipv6.ip6_null_entry; 2312 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 2313 ip6_hold_safe(net, &rt); 2314 rcu_read_unlock(); 2315 2316 return rt; 2317 } 2318 EXPORT_SYMBOL_GPL(ip6_pol_route); 2319 2320 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net, 2321 struct fib6_table *table, 2322 struct flowi6 *fl6, 2323 const struct sk_buff *skb, 2324 int flags) 2325 { 2326 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 2327 } 2328 2329 struct dst_entry *ip6_route_input_lookup(struct net *net, 2330 struct net_device *dev, 2331 struct flowi6 *fl6, 2332 const struct sk_buff *skb, 2333 int flags) 2334 { 2335 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 2336 flags |= RT6_LOOKUP_F_IFACE; 2337 2338 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 2339 } 2340 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 2341 2342 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 2343 struct flow_keys *keys, 2344 struct flow_keys *flkeys) 2345 { 2346 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 2347 const struct ipv6hdr *key_iph = outer_iph; 2348 struct flow_keys *_flkeys = flkeys; 2349 const struct ipv6hdr *inner_iph; 2350 const struct icmp6hdr *icmph; 2351 struct ipv6hdr _inner_iph; 2352 struct icmp6hdr _icmph; 2353 2354 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 2355 goto out; 2356 2357 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 2358 sizeof(_icmph), &_icmph); 2359 if (!icmph) 2360 goto out; 2361 2362 if (!icmpv6_is_err(icmph->icmp6_type)) 2363 goto out; 2364 2365 inner_iph = skb_header_pointer(skb, 2366 skb_transport_offset(skb) + sizeof(*icmph), 2367 sizeof(_inner_iph), &_inner_iph); 2368 if (!inner_iph) 2369 goto out; 2370 2371 key_iph = inner_iph; 2372 _flkeys = NULL; 2373 out: 2374 if (_flkeys) { 2375 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 2376 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 2377 keys->tags.flow_label = _flkeys->tags.flow_label; 2378 keys->basic.ip_proto = _flkeys->basic.ip_proto; 2379 } else { 2380 keys->addrs.v6addrs.src = key_iph->saddr; 2381 keys->addrs.v6addrs.dst = key_iph->daddr; 2382 keys->tags.flow_label = ip6_flowlabel(key_iph); 2383 keys->basic.ip_proto = key_iph->nexthdr; 2384 } 2385 } 2386 2387 static u32 rt6_multipath_custom_hash_outer(const struct net *net, 2388 const struct sk_buff *skb, 2389 bool *p_has_inner) 2390 { 2391 u32 hash_fields = ip6_multipath_hash_fields(net); 2392 struct flow_keys keys, hash_keys; 2393 2394 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) 2395 return 0; 2396 2397 memset(&hash_keys, 0, sizeof(hash_keys)); 2398 skb_flow_dissect_flow_keys(skb, &keys, FLOW_DISSECTOR_F_STOP_AT_ENCAP); 2399 2400 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2401 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) 2402 hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 2403 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) 2404 hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; 2405 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) 2406 hash_keys.basic.ip_proto = keys.basic.ip_proto; 2407 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) 2408 hash_keys.tags.flow_label = keys.tags.flow_label; 2409 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) 2410 hash_keys.ports.src = keys.ports.src; 2411 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) 2412 hash_keys.ports.dst = keys.ports.dst; 2413 2414 *p_has_inner = !!(keys.control.flags & FLOW_DIS_ENCAPSULATION); 2415 return fib_multipath_hash_from_keys(net, &hash_keys); 2416 } 2417 2418 static u32 rt6_multipath_custom_hash_inner(const struct net *net, 2419 const struct sk_buff *skb, 2420 bool has_inner) 2421 { 2422 u32 hash_fields = ip6_multipath_hash_fields(net); 2423 struct flow_keys keys, hash_keys; 2424 2425 /* We assume the packet carries an encapsulation, but if none was 2426 * encountered during dissection of the outer flow, then there is no 2427 * point in calling the flow dissector again. 2428 */ 2429 if (!has_inner) 2430 return 0; 2431 2432 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_MASK)) 2433 return 0; 2434 2435 memset(&hash_keys, 0, sizeof(hash_keys)); 2436 skb_flow_dissect_flow_keys(skb, &keys, 0); 2437 2438 if (!(keys.control.flags & FLOW_DIS_ENCAPSULATION)) 2439 return 0; 2440 2441 if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2442 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2443 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) 2444 hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; 2445 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) 2446 hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst; 2447 } else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2448 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2449 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) 2450 hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 2451 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) 2452 hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; 2453 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_FLOWLABEL) 2454 hash_keys.tags.flow_label = keys.tags.flow_label; 2455 } 2456 2457 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_IP_PROTO) 2458 hash_keys.basic.ip_proto = keys.basic.ip_proto; 2459 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_PORT) 2460 hash_keys.ports.src = keys.ports.src; 2461 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_PORT) 2462 hash_keys.ports.dst = keys.ports.dst; 2463 2464 return fib_multipath_hash_from_keys(net, &hash_keys); 2465 } 2466 2467 static u32 rt6_multipath_custom_hash_skb(const struct net *net, 2468 const struct sk_buff *skb) 2469 { 2470 u32 mhash, mhash_inner; 2471 bool has_inner = true; 2472 2473 mhash = rt6_multipath_custom_hash_outer(net, skb, &has_inner); 2474 mhash_inner = rt6_multipath_custom_hash_inner(net, skb, has_inner); 2475 2476 return jhash_2words(mhash, mhash_inner, 0); 2477 } 2478 2479 static u32 rt6_multipath_custom_hash_fl6(const struct net *net, 2480 const struct flowi6 *fl6) 2481 { 2482 u32 hash_fields = ip6_multipath_hash_fields(net); 2483 struct flow_keys hash_keys; 2484 2485 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) 2486 return 0; 2487 2488 memset(&hash_keys, 0, sizeof(hash_keys)); 2489 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2490 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) 2491 hash_keys.addrs.v6addrs.src = fl6->saddr; 2492 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) 2493 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2494 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) 2495 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2496 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) 2497 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2498 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) { 2499 if (fl6->flowi6_flags & FLOWI_FLAG_ANY_SPORT) 2500 hash_keys.ports.src = (__force __be16)get_random_u16(); 2501 else 2502 hash_keys.ports.src = fl6->fl6_sport; 2503 } 2504 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) 2505 hash_keys.ports.dst = fl6->fl6_dport; 2506 2507 return fib_multipath_hash_from_keys(net, &hash_keys); 2508 } 2509 2510 /* if skb is set it will be used and fl6 can be NULL */ 2511 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 2512 const struct sk_buff *skb, struct flow_keys *flkeys) 2513 { 2514 struct flow_keys hash_keys; 2515 u32 mhash = 0; 2516 2517 switch (ip6_multipath_hash_policy(net)) { 2518 case 0: 2519 memset(&hash_keys, 0, sizeof(hash_keys)); 2520 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2521 if (skb) { 2522 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2523 } else { 2524 hash_keys.addrs.v6addrs.src = fl6->saddr; 2525 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2526 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2527 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2528 } 2529 mhash = fib_multipath_hash_from_keys(net, &hash_keys); 2530 break; 2531 case 1: 2532 if (skb) { 2533 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 2534 struct flow_keys keys; 2535 2536 /* short-circuit if we already have L4 hash present */ 2537 if (skb->l4_hash) 2538 return skb_get_hash_raw(skb) >> 1; 2539 2540 memset(&hash_keys, 0, sizeof(hash_keys)); 2541 2542 if (!flkeys) { 2543 skb_flow_dissect_flow_keys(skb, &keys, flag); 2544 flkeys = &keys; 2545 } 2546 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2547 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2548 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2549 hash_keys.ports.src = flkeys->ports.src; 2550 hash_keys.ports.dst = flkeys->ports.dst; 2551 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2552 } else { 2553 memset(&hash_keys, 0, sizeof(hash_keys)); 2554 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2555 hash_keys.addrs.v6addrs.src = fl6->saddr; 2556 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2557 if (fl6->flowi6_flags & FLOWI_FLAG_ANY_SPORT) 2558 hash_keys.ports.src = (__force __be16)get_random_u16(); 2559 else 2560 hash_keys.ports.src = fl6->fl6_sport; 2561 hash_keys.ports.dst = fl6->fl6_dport; 2562 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2563 } 2564 mhash = fib_multipath_hash_from_keys(net, &hash_keys); 2565 break; 2566 case 2: 2567 memset(&hash_keys, 0, sizeof(hash_keys)); 2568 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2569 if (skb) { 2570 struct flow_keys keys; 2571 2572 if (!flkeys) { 2573 skb_flow_dissect_flow_keys(skb, &keys, 0); 2574 flkeys = &keys; 2575 } 2576 2577 /* Inner can be v4 or v6 */ 2578 if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2579 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2580 hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; 2581 hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; 2582 } else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2583 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2584 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2585 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2586 hash_keys.tags.flow_label = flkeys->tags.flow_label; 2587 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2588 } else { 2589 /* Same as case 0 */ 2590 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2591 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2592 } 2593 } else { 2594 /* Same as case 0 */ 2595 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2596 hash_keys.addrs.v6addrs.src = fl6->saddr; 2597 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2598 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2599 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2600 } 2601 mhash = fib_multipath_hash_from_keys(net, &hash_keys); 2602 break; 2603 case 3: 2604 if (skb) 2605 mhash = rt6_multipath_custom_hash_skb(net, skb); 2606 else 2607 mhash = rt6_multipath_custom_hash_fl6(net, fl6); 2608 break; 2609 } 2610 2611 return mhash >> 1; 2612 } 2613 2614 /* Called with rcu held */ 2615 void ip6_route_input(struct sk_buff *skb) 2616 { 2617 const struct ipv6hdr *iph = ipv6_hdr(skb); 2618 struct net *net = dev_net(skb->dev); 2619 int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; 2620 struct ip_tunnel_info *tun_info; 2621 struct flowi6 fl6 = { 2622 .flowi6_iif = skb->dev->ifindex, 2623 .daddr = iph->daddr, 2624 .saddr = iph->saddr, 2625 .flowlabel = ip6_flowinfo(iph), 2626 .flowi6_mark = skb->mark, 2627 .flowi6_proto = iph->nexthdr, 2628 }; 2629 struct flow_keys *flkeys = NULL, _flkeys; 2630 2631 tun_info = skb_tunnel_info(skb); 2632 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2633 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2634 2635 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2636 flkeys = &_flkeys; 2637 2638 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2639 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2640 skb_dst_drop(skb); 2641 skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, 2642 &fl6, skb, flags)); 2643 } 2644 2645 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net, 2646 struct fib6_table *table, 2647 struct flowi6 *fl6, 2648 const struct sk_buff *skb, 2649 int flags) 2650 { 2651 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2652 } 2653 2654 static struct dst_entry *ip6_route_output_flags_noref(struct net *net, 2655 const struct sock *sk, 2656 struct flowi6 *fl6, 2657 int flags) 2658 { 2659 bool any_src; 2660 2661 if (ipv6_addr_type(&fl6->daddr) & 2662 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2663 struct dst_entry *dst; 2664 2665 /* This function does not take refcnt on the dst */ 2666 dst = l3mdev_link_scope_lookup(net, fl6); 2667 if (dst) 2668 return dst; 2669 } 2670 2671 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2672 2673 flags |= RT6_LOOKUP_F_DST_NOREF; 2674 any_src = ipv6_addr_any(&fl6->saddr); 2675 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2676 (fl6->flowi6_oif && any_src)) 2677 flags |= RT6_LOOKUP_F_IFACE; 2678 2679 if (!any_src) 2680 flags |= RT6_LOOKUP_F_HAS_SADDR; 2681 else if (sk) 2682 flags |= rt6_srcprefs2flags(READ_ONCE(inet6_sk(sk)->srcprefs)); 2683 2684 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2685 } 2686 2687 struct dst_entry *ip6_route_output_flags(struct net *net, 2688 const struct sock *sk, 2689 struct flowi6 *fl6, 2690 int flags) 2691 { 2692 struct dst_entry *dst; 2693 struct rt6_info *rt6; 2694 2695 rcu_read_lock(); 2696 dst = ip6_route_output_flags_noref(net, sk, fl6, flags); 2697 rt6 = dst_rt6_info(dst); 2698 /* For dst cached in uncached_list, refcnt is already taken. */ 2699 if (list_empty(&rt6->dst.rt_uncached) && !dst_hold_safe(dst)) { 2700 dst = &net->ipv6.ip6_null_entry->dst; 2701 dst_hold(dst); 2702 } 2703 rcu_read_unlock(); 2704 2705 return dst; 2706 } 2707 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2708 2709 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2710 { 2711 struct rt6_info *rt, *ort = dst_rt6_info(dst_orig); 2712 struct net_device *loopback_dev = net->loopback_dev; 2713 struct dst_entry *new = NULL; 2714 2715 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 2716 DST_OBSOLETE_DEAD, 0); 2717 if (rt) { 2718 rt6_info_init(rt); 2719 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2720 2721 new = &rt->dst; 2722 new->__use = 1; 2723 new->input = dst_discard; 2724 new->output = dst_discard_out; 2725 2726 dst_copy_metrics(new, &ort->dst); 2727 2728 rt->rt6i_idev = in6_dev_get(loopback_dev); 2729 rt->rt6i_gateway = ort->rt6i_gateway; 2730 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2731 2732 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2733 #ifdef CONFIG_IPV6_SUBTREES 2734 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2735 #endif 2736 } 2737 2738 dst_release(dst_orig); 2739 return new ? new : ERR_PTR(-ENOMEM); 2740 } 2741 2742 /* 2743 * Destination cache support functions 2744 */ 2745 2746 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2747 { 2748 u32 rt_cookie = 0; 2749 2750 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2751 return false; 2752 2753 if (fib6_check_expired(f6i)) 2754 return false; 2755 2756 return true; 2757 } 2758 2759 static struct dst_entry *rt6_check(struct rt6_info *rt, 2760 struct fib6_info *from, 2761 u32 cookie) 2762 { 2763 u32 rt_cookie = 0; 2764 2765 if (!from || !fib6_get_cookie_safe(from, &rt_cookie) || 2766 rt_cookie != cookie) 2767 return NULL; 2768 2769 if (rt6_check_expired(rt)) 2770 return NULL; 2771 2772 return &rt->dst; 2773 } 2774 2775 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2776 struct fib6_info *from, 2777 u32 cookie) 2778 { 2779 if (!__rt6_check_expired(rt) && 2780 READ_ONCE(rt->dst.obsolete) == DST_OBSOLETE_FORCE_CHK && 2781 fib6_check(from, cookie)) 2782 return &rt->dst; 2783 return NULL; 2784 } 2785 2786 INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, 2787 u32 cookie) 2788 { 2789 struct dst_entry *dst_ret; 2790 struct fib6_info *from; 2791 struct rt6_info *rt; 2792 2793 rt = dst_rt6_info(dst); 2794 2795 if (rt->sernum) 2796 return rt6_is_valid(rt) ? dst : NULL; 2797 2798 rcu_read_lock(); 2799 2800 /* All IPV6 dsts are created with ->obsolete set to the value 2801 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2802 * into this function always. 2803 */ 2804 2805 from = rcu_dereference(rt->from); 2806 2807 if (from && (rt->rt6i_flags & RTF_PCPU || 2808 unlikely(!list_empty(&rt->dst.rt_uncached)))) 2809 dst_ret = rt6_dst_from_check(rt, from, cookie); 2810 else 2811 dst_ret = rt6_check(rt, from, cookie); 2812 2813 rcu_read_unlock(); 2814 2815 return dst_ret; 2816 } 2817 EXPORT_INDIRECT_CALLABLE(ip6_dst_check); 2818 2819 static void ip6_negative_advice(struct sock *sk, 2820 struct dst_entry *dst) 2821 { 2822 struct rt6_info *rt = dst_rt6_info(dst); 2823 2824 if (rt->rt6i_flags & RTF_CACHE) { 2825 rcu_read_lock(); 2826 if (rt6_check_expired(rt)) { 2827 /* rt/dst can not be destroyed yet, 2828 * because of rcu_read_lock() 2829 */ 2830 sk_dst_reset(sk); 2831 rt6_remove_exception_rt(rt); 2832 } 2833 rcu_read_unlock(); 2834 return; 2835 } 2836 sk_dst_reset(sk); 2837 } 2838 2839 static void ip6_link_failure(struct sk_buff *skb) 2840 { 2841 struct rt6_info *rt; 2842 2843 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2844 2845 rt = dst_rt6_info(skb_dst(skb)); 2846 if (rt) { 2847 rcu_read_lock(); 2848 if (rt->rt6i_flags & RTF_CACHE) { 2849 rt6_remove_exception_rt(rt); 2850 } else { 2851 struct fib6_info *from; 2852 struct fib6_node *fn; 2853 2854 from = rcu_dereference(rt->from); 2855 if (from) { 2856 fn = rcu_dereference(from->fib6_node); 2857 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2858 WRITE_ONCE(fn->fn_sernum, -1); 2859 } 2860 } 2861 rcu_read_unlock(); 2862 } 2863 } 2864 2865 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2866 { 2867 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2868 struct fib6_info *from; 2869 2870 rcu_read_lock(); 2871 from = rcu_dereference(rt0->from); 2872 if (from) 2873 WRITE_ONCE(rt0->dst.expires, from->expires); 2874 rcu_read_unlock(); 2875 } 2876 2877 dst_set_expires(&rt0->dst, timeout); 2878 rt0->rt6i_flags |= RTF_EXPIRES; 2879 } 2880 2881 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2882 { 2883 struct net *net = dev_net(rt->dst.dev); 2884 2885 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2886 rt->rt6i_flags |= RTF_MODIFIED; 2887 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2888 } 2889 2890 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2891 { 2892 return !(rt->rt6i_flags & RTF_CACHE) && 2893 (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); 2894 } 2895 2896 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2897 const struct ipv6hdr *iph, u32 mtu, 2898 bool confirm_neigh) 2899 { 2900 const struct in6_addr *daddr, *saddr; 2901 struct rt6_info *rt6 = dst_rt6_info(dst); 2902 2903 /* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU) 2904 * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it. 2905 * [see also comment in rt6_mtu_change_route()] 2906 */ 2907 2908 if (iph) { 2909 daddr = &iph->daddr; 2910 saddr = &iph->saddr; 2911 } else if (sk) { 2912 daddr = &sk->sk_v6_daddr; 2913 saddr = &inet6_sk(sk)->saddr; 2914 } else { 2915 daddr = NULL; 2916 saddr = NULL; 2917 } 2918 2919 if (confirm_neigh) 2920 dst_confirm_neigh(dst, daddr); 2921 2922 if (mtu < IPV6_MIN_MTU) 2923 return; 2924 if (mtu >= dst_mtu(dst)) 2925 return; 2926 2927 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2928 rt6_do_update_pmtu(rt6, mtu); 2929 /* update rt6_ex->stamp for cache */ 2930 if (rt6->rt6i_flags & RTF_CACHE) 2931 rt6_update_exception_stamp_rt(rt6); 2932 } else if (daddr) { 2933 struct fib6_result res = {}; 2934 struct rt6_info *nrt6; 2935 2936 rcu_read_lock(); 2937 res.f6i = rcu_dereference(rt6->from); 2938 if (!res.f6i) 2939 goto out_unlock; 2940 2941 res.fib6_flags = res.f6i->fib6_flags; 2942 res.fib6_type = res.f6i->fib6_type; 2943 2944 if (res.f6i->nh) { 2945 struct fib6_nh_match_arg arg = { 2946 .dev = dst_dev(dst), 2947 .gw = &rt6->rt6i_gateway, 2948 }; 2949 2950 nexthop_for_each_fib6_nh(res.f6i->nh, 2951 fib6_nh_find_match, &arg); 2952 2953 /* fib6_info uses a nexthop that does not have fib6_nh 2954 * using the dst->dev + gw. Should be impossible. 2955 */ 2956 if (!arg.match) 2957 goto out_unlock; 2958 2959 res.nh = arg.match; 2960 } else { 2961 res.nh = res.f6i->fib6_nh; 2962 } 2963 2964 nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); 2965 if (nrt6) { 2966 rt6_do_update_pmtu(nrt6, mtu); 2967 if (rt6_insert_exception(nrt6, &res)) 2968 dst_release_immediate(&nrt6->dst); 2969 } 2970 out_unlock: 2971 rcu_read_unlock(); 2972 } 2973 } 2974 2975 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2976 struct sk_buff *skb, u32 mtu, 2977 bool confirm_neigh) 2978 { 2979 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu, 2980 confirm_neigh); 2981 } 2982 2983 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2984 int oif, u32 mark, kuid_t uid) 2985 { 2986 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2987 struct dst_entry *dst; 2988 struct flowi6 fl6 = { 2989 .flowi6_oif = oif, 2990 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 2991 .daddr = iph->daddr, 2992 .saddr = iph->saddr, 2993 .flowlabel = ip6_flowinfo(iph), 2994 .flowi6_uid = uid, 2995 }; 2996 2997 dst = ip6_route_output(net, NULL, &fl6); 2998 if (!dst->error) 2999 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true); 3000 dst_release(dst); 3001 } 3002 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 3003 3004 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 3005 { 3006 int oif = sk->sk_bound_dev_if; 3007 struct dst_entry *dst; 3008 3009 if (!oif && skb->dev) 3010 oif = l3mdev_master_ifindex(skb->dev); 3011 3012 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, READ_ONCE(sk->sk_mark), 3013 sk_uid(sk)); 3014 3015 dst = __sk_dst_get(sk); 3016 if (!dst || !READ_ONCE(dst->obsolete) || 3017 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 3018 return; 3019 3020 bh_lock_sock(sk); 3021 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 3022 ip6_datagram_dst_update(sk, false); 3023 bh_unlock_sock(sk); 3024 } 3025 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 3026 3027 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 3028 const struct flowi6 *fl6) 3029 { 3030 #ifdef CONFIG_IPV6_SUBTREES 3031 struct ipv6_pinfo *np = inet6_sk(sk); 3032 #endif 3033 3034 ip6_dst_store(sk, dst, 3035 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 3036 &sk->sk_v6_daddr : NULL, 3037 #ifdef CONFIG_IPV6_SUBTREES 3038 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 3039 &np->saddr : 3040 #endif 3041 NULL); 3042 } 3043 3044 static bool ip6_redirect_nh_match(const struct fib6_result *res, 3045 struct flowi6 *fl6, 3046 const struct in6_addr *gw, 3047 struct rt6_info **ret) 3048 { 3049 const struct fib6_nh *nh = res->nh; 3050 3051 if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || 3052 fl6->flowi6_oif != nh->fib_nh_dev->ifindex) 3053 return false; 3054 3055 /* rt_cache's gateway might be different from its 'parent' 3056 * in the case of an ip redirect. 3057 * So we keep searching in the exception table if the gateway 3058 * is different. 3059 */ 3060 if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { 3061 struct rt6_info *rt_cache; 3062 3063 rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); 3064 if (rt_cache && 3065 ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { 3066 *ret = rt_cache; 3067 return true; 3068 } 3069 return false; 3070 } 3071 return true; 3072 } 3073 3074 struct fib6_nh_rd_arg { 3075 struct fib6_result *res; 3076 struct flowi6 *fl6; 3077 const struct in6_addr *gw; 3078 struct rt6_info **ret; 3079 }; 3080 3081 static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) 3082 { 3083 struct fib6_nh_rd_arg *arg = _arg; 3084 3085 arg->res->nh = nh; 3086 return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); 3087 } 3088 3089 /* Handle redirects */ 3090 struct ip6rd_flowi { 3091 struct flowi6 fl6; 3092 struct in6_addr gateway; 3093 }; 3094 3095 INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net, 3096 struct fib6_table *table, 3097 struct flowi6 *fl6, 3098 const struct sk_buff *skb, 3099 int flags) 3100 { 3101 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 3102 struct rt6_info *ret = NULL; 3103 struct fib6_result res = {}; 3104 struct fib6_nh_rd_arg arg = { 3105 .res = &res, 3106 .fl6 = fl6, 3107 .gw = &rdfl->gateway, 3108 .ret = &ret 3109 }; 3110 struct fib6_info *rt; 3111 struct fib6_node *fn; 3112 3113 /* Get the "current" route for this destination and 3114 * check if the redirect has come from appropriate router. 3115 * 3116 * RFC 4861 specifies that redirects should only be 3117 * accepted if they come from the nexthop to the target. 3118 * Due to the way the routes are chosen, this notion 3119 * is a bit fuzzy and one might need to check all possible 3120 * routes. 3121 */ 3122 3123 rcu_read_lock(); 3124 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 3125 restart: 3126 for_each_fib6_node_rt_rcu(fn) { 3127 res.f6i = rt; 3128 if (fib6_check_expired(rt)) 3129 continue; 3130 if (rt->fib6_flags & RTF_REJECT) 3131 break; 3132 if (unlikely(rt->nh)) { 3133 if (nexthop_is_blackhole(rt->nh)) 3134 continue; 3135 /* on match, res->nh is filled in and potentially ret */ 3136 if (nexthop_for_each_fib6_nh(rt->nh, 3137 fib6_nh_redirect_match, 3138 &arg)) 3139 goto out; 3140 } else { 3141 res.nh = rt->fib6_nh; 3142 if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, 3143 &ret)) 3144 goto out; 3145 } 3146 } 3147 3148 if (!rt) 3149 rt = net->ipv6.fib6_null_entry; 3150 else if (rt->fib6_flags & RTF_REJECT) { 3151 ret = net->ipv6.ip6_null_entry; 3152 goto out; 3153 } 3154 3155 if (rt == net->ipv6.fib6_null_entry) { 3156 fn = fib6_backtrack(fn, &fl6->saddr); 3157 if (fn) 3158 goto restart; 3159 } 3160 3161 res.f6i = rt; 3162 res.nh = rt->fib6_nh; 3163 out: 3164 if (ret) { 3165 ip6_hold_safe(net, &ret); 3166 } else { 3167 res.fib6_flags = res.f6i->fib6_flags; 3168 res.fib6_type = res.f6i->fib6_type; 3169 ret = ip6_create_rt_rcu(&res); 3170 } 3171 3172 rcu_read_unlock(); 3173 3174 trace_fib6_table_lookup(net, &res, table, fl6); 3175 return ret; 3176 }; 3177 3178 static struct dst_entry *ip6_route_redirect(struct net *net, 3179 const struct flowi6 *fl6, 3180 const struct sk_buff *skb, 3181 const struct in6_addr *gateway) 3182 { 3183 int flags = RT6_LOOKUP_F_HAS_SADDR; 3184 struct ip6rd_flowi rdfl; 3185 3186 rdfl.fl6 = *fl6; 3187 rdfl.gateway = *gateway; 3188 3189 return fib6_rule_lookup(net, &rdfl.fl6, skb, 3190 flags, __ip6_route_redirect); 3191 } 3192 3193 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 3194 kuid_t uid) 3195 { 3196 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 3197 struct dst_entry *dst; 3198 struct flowi6 fl6 = { 3199 .flowi6_iif = LOOPBACK_IFINDEX, 3200 .flowi6_oif = oif, 3201 .flowi6_mark = mark, 3202 .daddr = iph->daddr, 3203 .saddr = iph->saddr, 3204 .flowlabel = ip6_flowinfo(iph), 3205 .flowi6_uid = uid, 3206 }; 3207 3208 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 3209 rt6_do_redirect(dst, NULL, skb); 3210 dst_release(dst); 3211 } 3212 EXPORT_SYMBOL_GPL(ip6_redirect); 3213 3214 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 3215 { 3216 const struct ipv6hdr *iph = ipv6_hdr(skb); 3217 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 3218 struct dst_entry *dst; 3219 struct flowi6 fl6 = { 3220 .flowi6_iif = LOOPBACK_IFINDEX, 3221 .flowi6_oif = oif, 3222 .daddr = msg->dest, 3223 .saddr = iph->daddr, 3224 .flowi6_uid = sock_net_uid(net, NULL), 3225 }; 3226 3227 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 3228 rt6_do_redirect(dst, NULL, skb); 3229 dst_release(dst); 3230 } 3231 3232 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 3233 { 3234 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, 3235 READ_ONCE(sk->sk_mark), sk_uid(sk)); 3236 } 3237 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 3238 3239 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 3240 { 3241 struct net_device *dev = dst_dev(dst); 3242 unsigned int mtu = dst_mtu(dst); 3243 struct net *net; 3244 3245 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 3246 3247 rcu_read_lock(); 3248 3249 net = dev_net_rcu(dev); 3250 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 3251 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 3252 3253 rcu_read_unlock(); 3254 3255 /* 3256 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 3257 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 3258 * IPV6_MAXPLEN is also valid and means: "any MSS, 3259 * rely only on pmtu discovery" 3260 */ 3261 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 3262 mtu = IPV6_MAXPLEN; 3263 return mtu; 3264 } 3265 3266 INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst) 3267 { 3268 return ip6_dst_mtu_maybe_forward(dst, false); 3269 } 3270 EXPORT_INDIRECT_CALLABLE(ip6_mtu); 3271 3272 /* MTU selection: 3273 * 1. mtu on route is locked - use it 3274 * 2. mtu from nexthop exception 3275 * 3. mtu from egress device 3276 * 3277 * based on ip6_dst_mtu_forward and exception logic of 3278 * rt6_find_cached_rt; called with rcu_read_lock 3279 */ 3280 u32 ip6_mtu_from_fib6(const struct fib6_result *res, 3281 const struct in6_addr *daddr, 3282 const struct in6_addr *saddr) 3283 { 3284 const struct fib6_nh *nh = res->nh; 3285 struct fib6_info *f6i = res->f6i; 3286 struct inet6_dev *idev; 3287 struct rt6_info *rt; 3288 u32 mtu = 0; 3289 3290 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 3291 mtu = f6i->fib6_pmtu; 3292 if (mtu) 3293 goto out; 3294 } 3295 3296 rt = rt6_find_cached_rt(res, daddr, saddr); 3297 if (unlikely(rt)) { 3298 mtu = dst_metric_raw(&rt->dst, RTAX_MTU); 3299 } else { 3300 struct net_device *dev = nh->fib_nh_dev; 3301 3302 mtu = IPV6_MIN_MTU; 3303 idev = __in6_dev_get(dev); 3304 if (idev) 3305 mtu = max_t(u32, mtu, READ_ONCE(idev->cnf.mtu6)); 3306 } 3307 3308 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3309 out: 3310 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 3311 } 3312 3313 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 3314 struct flowi6 *fl6) 3315 { 3316 struct dst_entry *dst; 3317 struct rt6_info *rt; 3318 struct inet6_dev *idev = in6_dev_get(dev); 3319 struct net *net = dev_net(dev); 3320 3321 if (unlikely(!idev)) 3322 return ERR_PTR(-ENODEV); 3323 3324 rt = ip6_dst_alloc(net, dev, 0); 3325 if (unlikely(!rt)) { 3326 in6_dev_put(idev); 3327 dst = ERR_PTR(-ENOMEM); 3328 goto out; 3329 } 3330 3331 rt->dst.input = ip6_input; 3332 rt->dst.output = ip6_output; 3333 rt->rt6i_gateway = fl6->daddr; 3334 rt->rt6i_dst.addr = fl6->daddr; 3335 rt->rt6i_dst.plen = 128; 3336 rt->rt6i_idev = idev; 3337 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 3338 3339 /* Add this dst into uncached_list so that rt6_disable_ip() can 3340 * do proper release of the net_device 3341 */ 3342 rt6_uncached_list_add(rt); 3343 3344 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 3345 3346 out: 3347 return dst; 3348 } 3349 3350 static void ip6_dst_gc(struct dst_ops *ops) 3351 { 3352 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 3353 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 3354 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 3355 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 3356 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 3357 unsigned int val; 3358 int entries; 3359 3360 if (time_after(rt_last_gc + rt_min_interval, jiffies)) 3361 goto out; 3362 3363 fib6_run_gc(atomic_inc_return(&net->ipv6.ip6_rt_gc_expire), net, true); 3364 entries = dst_entries_get_slow(ops); 3365 if (entries < ops->gc_thresh) 3366 atomic_set(&net->ipv6.ip6_rt_gc_expire, rt_gc_timeout >> 1); 3367 out: 3368 val = atomic_read(&net->ipv6.ip6_rt_gc_expire); 3369 atomic_set(&net->ipv6.ip6_rt_gc_expire, val - (val >> rt_elasticity)); 3370 } 3371 3372 static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg, 3373 const struct in6_addr *gw_addr, u32 tbid, 3374 int flags, struct fib6_result *res) 3375 { 3376 struct flowi6 fl6 = { 3377 .flowi6_oif = cfg->fc_ifindex, 3378 .daddr = *gw_addr, 3379 .saddr = cfg->fc_prefsrc, 3380 }; 3381 struct fib6_table *table; 3382 int err; 3383 3384 table = fib6_get_table(net, tbid); 3385 if (!table) 3386 return -EINVAL; 3387 3388 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 3389 flags |= RT6_LOOKUP_F_HAS_SADDR; 3390 3391 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 3392 3393 err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags); 3394 if (!err && res->f6i != net->ipv6.fib6_null_entry) 3395 fib6_select_path(net, res, &fl6, cfg->fc_ifindex, 3396 cfg->fc_ifindex != 0, NULL, flags); 3397 3398 return err; 3399 } 3400 3401 static int ip6_route_check_nh_onlink(struct net *net, 3402 struct fib6_config *cfg, 3403 const struct net_device *dev, 3404 struct netlink_ext_ack *extack) 3405 { 3406 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 3407 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3408 struct fib6_result res = {}; 3409 int err; 3410 3411 err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res); 3412 if (!err && !(res.fib6_flags & RTF_REJECT) && 3413 /* ignore match if it is the default route */ 3414 !ipv6_addr_any(&res.f6i->fib6_dst.addr) && 3415 (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) { 3416 NL_SET_ERR_MSG(extack, 3417 "Nexthop has invalid gateway or device mismatch"); 3418 err = -EINVAL; 3419 } 3420 3421 return err; 3422 } 3423 3424 static int ip6_route_check_nh(struct net *net, 3425 struct fib6_config *cfg, 3426 struct net_device **_dev, 3427 netdevice_tracker *dev_tracker, 3428 struct inet6_dev **idev) 3429 { 3430 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3431 struct net_device *dev = _dev ? *_dev : NULL; 3432 int flags = RT6_LOOKUP_F_IFACE; 3433 struct fib6_result res = {}; 3434 int err = -EHOSTUNREACH; 3435 3436 if (cfg->fc_table) { 3437 err = ip6_nh_lookup_table(net, cfg, gw_addr, 3438 cfg->fc_table, flags, &res); 3439 /* gw_addr can not require a gateway or resolve to a reject 3440 * route. If a device is given, it must match the result. 3441 */ 3442 if (err || res.fib6_flags & RTF_REJECT || 3443 res.nh->fib_nh_gw_family || 3444 (dev && dev != res.nh->fib_nh_dev)) 3445 err = -EHOSTUNREACH; 3446 } 3447 3448 if (err < 0) { 3449 struct flowi6 fl6 = { 3450 .flowi6_oif = cfg->fc_ifindex, 3451 .daddr = *gw_addr, 3452 }; 3453 3454 err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags); 3455 if (err || res.fib6_flags & RTF_REJECT || 3456 res.nh->fib_nh_gw_family) 3457 err = -EHOSTUNREACH; 3458 3459 if (err) 3460 return err; 3461 3462 fib6_select_path(net, &res, &fl6, cfg->fc_ifindex, 3463 cfg->fc_ifindex != 0, NULL, flags); 3464 } 3465 3466 err = 0; 3467 if (dev) { 3468 if (dev != res.nh->fib_nh_dev) 3469 err = -EHOSTUNREACH; 3470 } else { 3471 *_dev = dev = res.nh->fib_nh_dev; 3472 netdev_hold(dev, dev_tracker, GFP_ATOMIC); 3473 *idev = in6_dev_get(dev); 3474 } 3475 3476 return err; 3477 } 3478 3479 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 3480 struct net_device **_dev, 3481 netdevice_tracker *dev_tracker, 3482 struct inet6_dev **idev, 3483 struct netlink_ext_ack *extack) 3484 { 3485 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3486 int gwa_type = ipv6_addr_type(gw_addr); 3487 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 3488 const struct net_device *dev = *_dev; 3489 bool need_addr_check = !dev; 3490 int err = -EINVAL; 3491 3492 /* if gw_addr is local we will fail to detect this in case 3493 * address is still TENTATIVE (DAD in progress). rt6_lookup() 3494 * will return already-added prefix route via interface that 3495 * prefix route was assigned to, which might be non-loopback. 3496 */ 3497 if (dev && 3498 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3499 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3500 goto out; 3501 } 3502 3503 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 3504 /* IPv6 strictly inhibits using not link-local 3505 * addresses as nexthop address. 3506 * Otherwise, router will not able to send redirects. 3507 * It is very good, but in some (rare!) circumstances 3508 * (SIT, PtP, NBMA NOARP links) it is handy to allow 3509 * some exceptions. --ANK 3510 * We allow IPv4-mapped nexthops to support RFC4798-type 3511 * addressing 3512 */ 3513 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 3514 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 3515 goto out; 3516 } 3517 3518 rcu_read_lock(); 3519 3520 if (cfg->fc_flags & RTNH_F_ONLINK) 3521 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 3522 else 3523 err = ip6_route_check_nh(net, cfg, _dev, dev_tracker, 3524 idev); 3525 3526 rcu_read_unlock(); 3527 3528 if (err) 3529 goto out; 3530 } 3531 3532 /* reload in case device was changed */ 3533 dev = *_dev; 3534 3535 err = -EINVAL; 3536 if (!dev) { 3537 NL_SET_ERR_MSG(extack, "Egress device not specified"); 3538 goto out; 3539 } else if (dev->flags & IFF_LOOPBACK) { 3540 NL_SET_ERR_MSG(extack, 3541 "Egress device can not be loopback device for this route"); 3542 goto out; 3543 } 3544 3545 /* if we did not check gw_addr above, do so now that the 3546 * egress device has been resolved. 3547 */ 3548 if (need_addr_check && 3549 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3550 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3551 goto out; 3552 } 3553 3554 err = 0; 3555 out: 3556 return err; 3557 } 3558 3559 static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) 3560 { 3561 if ((flags & RTF_REJECT) || 3562 (dev && (dev->flags & IFF_LOOPBACK) && 3563 !(addr_type & IPV6_ADDR_LOOPBACK) && 3564 !(flags & (RTF_ANYCAST | RTF_LOCAL)))) 3565 return true; 3566 3567 return false; 3568 } 3569 3570 int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, 3571 struct fib6_config *cfg, gfp_t gfp_flags, 3572 struct netlink_ext_ack *extack) 3573 { 3574 netdevice_tracker *dev_tracker = &fib6_nh->fib_nh_dev_tracker; 3575 struct net_device *dev = NULL; 3576 struct inet6_dev *idev = NULL; 3577 int addr_type; 3578 int err; 3579 3580 fib6_nh->fib_nh_family = AF_INET6; 3581 #ifdef CONFIG_IPV6_ROUTER_PREF 3582 fib6_nh->last_probe = jiffies; 3583 #endif 3584 if (cfg->fc_is_fdb) { 3585 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3586 fib6_nh->fib_nh_gw_family = AF_INET6; 3587 return 0; 3588 } 3589 3590 err = -ENODEV; 3591 if (cfg->fc_ifindex) { 3592 dev = netdev_get_by_index(net, cfg->fc_ifindex, 3593 dev_tracker, gfp_flags); 3594 if (!dev) 3595 goto out; 3596 idev = in6_dev_get(dev); 3597 if (!idev) 3598 goto out; 3599 } 3600 3601 if (cfg->fc_flags & RTNH_F_ONLINK) { 3602 if (!dev) { 3603 NL_SET_ERR_MSG(extack, 3604 "Nexthop device required for onlink"); 3605 goto out; 3606 } 3607 3608 if (!(dev->flags & IFF_UP)) { 3609 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3610 err = -ENETDOWN; 3611 goto out; 3612 } 3613 3614 fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; 3615 } 3616 3617 fib6_nh->fib_nh_weight = 1; 3618 3619 /* We cannot add true routes via loopback here, 3620 * they would result in kernel looping; promote them to reject routes 3621 */ 3622 addr_type = ipv6_addr_type(&cfg->fc_dst); 3623 if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { 3624 /* hold loopback dev/idev if we haven't done so. */ 3625 if (dev != net->loopback_dev) { 3626 if (dev) { 3627 netdev_put(dev, dev_tracker); 3628 in6_dev_put(idev); 3629 } 3630 dev = net->loopback_dev; 3631 netdev_hold(dev, dev_tracker, gfp_flags); 3632 idev = in6_dev_get(dev); 3633 if (!idev) { 3634 err = -ENODEV; 3635 goto out; 3636 } 3637 } 3638 goto pcpu_alloc; 3639 } 3640 3641 if (cfg->fc_flags & RTF_GATEWAY) { 3642 err = ip6_validate_gw(net, cfg, &dev, dev_tracker, 3643 &idev, extack); 3644 if (err) 3645 goto out; 3646 3647 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3648 fib6_nh->fib_nh_gw_family = AF_INET6; 3649 } 3650 3651 err = -ENODEV; 3652 if (!dev) 3653 goto out; 3654 3655 if (!idev || idev->cnf.disable_ipv6) { 3656 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3657 err = -EACCES; 3658 goto out; 3659 } 3660 3661 if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { 3662 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3663 err = -ENETDOWN; 3664 goto out; 3665 } 3666 3667 if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3668 !netif_carrier_ok(dev)) 3669 fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 3670 3671 err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap, 3672 cfg->fc_encap_type, cfg, gfp_flags, extack); 3673 if (err) 3674 goto out; 3675 3676 pcpu_alloc: 3677 fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); 3678 if (!fib6_nh->rt6i_pcpu) { 3679 err = -ENOMEM; 3680 goto out; 3681 } 3682 3683 fib6_nh->fib_nh_dev = dev; 3684 fib6_nh->fib_nh_oif = dev->ifindex; 3685 err = 0; 3686 out: 3687 if (idev) 3688 in6_dev_put(idev); 3689 3690 if (err) { 3691 fib_nh_common_release(&fib6_nh->nh_common); 3692 fib6_nh->nh_common.nhc_pcpu_rth_output = NULL; 3693 fib6_nh->fib_nh_lws = NULL; 3694 netdev_put(dev, dev_tracker); 3695 } 3696 3697 return err; 3698 } 3699 3700 void fib6_nh_release(struct fib6_nh *fib6_nh) 3701 { 3702 struct rt6_exception_bucket *bucket; 3703 3704 rcu_read_lock(); 3705 3706 fib6_nh_flush_exceptions(fib6_nh, NULL); 3707 bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); 3708 if (bucket) { 3709 rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); 3710 kfree(bucket); 3711 } 3712 3713 rcu_read_unlock(); 3714 3715 fib6_nh_release_dsts(fib6_nh); 3716 free_percpu(fib6_nh->rt6i_pcpu); 3717 3718 fib_nh_common_release(&fib6_nh->nh_common); 3719 } 3720 3721 void fib6_nh_release_dsts(struct fib6_nh *fib6_nh) 3722 { 3723 int cpu; 3724 3725 if (!fib6_nh->rt6i_pcpu) 3726 return; 3727 3728 for_each_possible_cpu(cpu) { 3729 struct rt6_info *pcpu_rt, **ppcpu_rt; 3730 3731 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 3732 pcpu_rt = xchg(ppcpu_rt, NULL); 3733 if (pcpu_rt) { 3734 dst_dev_put(&pcpu_rt->dst); 3735 dst_release(&pcpu_rt->dst); 3736 } 3737 } 3738 } 3739 3740 static int fib6_config_validate(struct fib6_config *cfg, 3741 struct netlink_ext_ack *extack) 3742 { 3743 /* RTF_PCPU is an internal flag; can not be set by userspace */ 3744 if (cfg->fc_flags & RTF_PCPU) { 3745 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 3746 goto errout; 3747 } 3748 3749 /* RTF_CACHE is an internal flag; can not be set by userspace */ 3750 if (cfg->fc_flags & RTF_CACHE) { 3751 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 3752 goto errout; 3753 } 3754 3755 if (cfg->fc_type > RTN_MAX) { 3756 NL_SET_ERR_MSG(extack, "Invalid route type"); 3757 goto errout; 3758 } 3759 3760 if (cfg->fc_dst_len > 128) { 3761 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 3762 goto errout; 3763 } 3764 3765 #ifdef CONFIG_IPV6_SUBTREES 3766 if (cfg->fc_src_len > 128) { 3767 NL_SET_ERR_MSG(extack, "Invalid source address length"); 3768 goto errout; 3769 } 3770 3771 if (cfg->fc_nh_id && cfg->fc_src_len) { 3772 NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); 3773 goto errout; 3774 } 3775 #else 3776 if (cfg->fc_src_len) { 3777 NL_SET_ERR_MSG(extack, 3778 "Specifying source address requires IPV6_SUBTREES to be enabled"); 3779 goto errout; 3780 } 3781 #endif 3782 return 0; 3783 errout: 3784 return -EINVAL; 3785 } 3786 3787 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 3788 gfp_t gfp_flags, 3789 struct netlink_ext_ack *extack) 3790 { 3791 struct net *net = cfg->fc_nlinfo.nl_net; 3792 struct fib6_table *table; 3793 struct fib6_info *rt; 3794 int err; 3795 3796 if (cfg->fc_nlinfo.nlh && 3797 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 3798 table = fib6_get_table(net, cfg->fc_table); 3799 if (!table) { 3800 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 3801 table = fib6_new_table(net, cfg->fc_table); 3802 } 3803 } else { 3804 table = fib6_new_table(net, cfg->fc_table); 3805 } 3806 if (!table) { 3807 err = -ENOBUFS; 3808 goto err; 3809 } 3810 3811 rt = fib6_info_alloc(gfp_flags, !cfg->fc_nh_id); 3812 if (!rt) { 3813 err = -ENOMEM; 3814 goto err; 3815 } 3816 3817 rt->fib6_metrics = ip_fib_metrics_init(cfg->fc_mx, cfg->fc_mx_len, 3818 extack); 3819 if (IS_ERR(rt->fib6_metrics)) { 3820 err = PTR_ERR(rt->fib6_metrics); 3821 goto free; 3822 } 3823 3824 if (cfg->fc_flags & RTF_ADDRCONF) 3825 rt->dst_nocount = true; 3826 3827 if (cfg->fc_flags & RTF_EXPIRES) 3828 fib6_set_expires(rt, jiffies + 3829 clock_t_to_jiffies(cfg->fc_expires)); 3830 3831 if (cfg->fc_protocol == RTPROT_UNSPEC) 3832 cfg->fc_protocol = RTPROT_BOOT; 3833 3834 rt->fib6_protocol = cfg->fc_protocol; 3835 rt->fib6_table = table; 3836 rt->fib6_metric = cfg->fc_metric; 3837 rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; 3838 rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; 3839 3840 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3841 rt->fib6_dst.plen = cfg->fc_dst_len; 3842 3843 #ifdef CONFIG_IPV6_SUBTREES 3844 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3845 rt->fib6_src.plen = cfg->fc_src_len; 3846 #endif 3847 return rt; 3848 free: 3849 kfree(rt); 3850 err: 3851 return ERR_PTR(err); 3852 } 3853 3854 static int ip6_route_info_create_nh(struct fib6_info *rt, 3855 struct fib6_config *cfg, 3856 gfp_t gfp_flags, 3857 struct netlink_ext_ack *extack) 3858 { 3859 struct net *net = cfg->fc_nlinfo.nl_net; 3860 struct fib6_nh *fib6_nh; 3861 int err; 3862 3863 if (cfg->fc_nh_id) { 3864 struct nexthop *nh; 3865 3866 rcu_read_lock(); 3867 3868 nh = nexthop_find_by_id(net, cfg->fc_nh_id); 3869 if (!nh) { 3870 err = -EINVAL; 3871 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 3872 goto out_free; 3873 } 3874 3875 err = fib6_check_nexthop(nh, cfg, extack); 3876 if (err) 3877 goto out_free; 3878 3879 if (!nexthop_get(nh)) { 3880 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 3881 err = -ENOENT; 3882 goto out_free; 3883 } 3884 3885 rt->nh = nh; 3886 fib6_nh = nexthop_fib6_nh(rt->nh); 3887 3888 rcu_read_unlock(); 3889 } else { 3890 int addr_type; 3891 3892 err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); 3893 if (err) 3894 goto out_release; 3895 3896 fib6_nh = rt->fib6_nh; 3897 3898 /* We cannot add true routes via loopback here, they would 3899 * result in kernel looping; promote them to reject routes 3900 */ 3901 addr_type = ipv6_addr_type(&cfg->fc_dst); 3902 if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, 3903 addr_type)) 3904 rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; 3905 } 3906 3907 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3908 struct net_device *dev = fib6_nh->fib_nh_dev; 3909 3910 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3911 NL_SET_ERR_MSG(extack, "Invalid source address"); 3912 err = -EINVAL; 3913 goto out_release; 3914 } 3915 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3916 rt->fib6_prefsrc.plen = 128; 3917 } 3918 3919 return 0; 3920 out_release: 3921 fib6_info_release(rt); 3922 return err; 3923 out_free: 3924 rcu_read_unlock(); 3925 ip_fib_metrics_put(rt->fib6_metrics); 3926 kfree(rt); 3927 return err; 3928 } 3929 3930 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3931 struct netlink_ext_ack *extack) 3932 { 3933 struct fib6_info *rt; 3934 int err; 3935 3936 err = fib6_config_validate(cfg, extack); 3937 if (err) 3938 return err; 3939 3940 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3941 if (IS_ERR(rt)) 3942 return PTR_ERR(rt); 3943 3944 err = ip6_route_info_create_nh(rt, cfg, gfp_flags, extack); 3945 if (err) 3946 return err; 3947 3948 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3949 fib6_info_release(rt); 3950 3951 return err; 3952 } 3953 3954 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3955 { 3956 struct net *net = info->nl_net; 3957 struct fib6_table *table; 3958 int err; 3959 3960 if (rt == net->ipv6.fib6_null_entry) { 3961 err = -ENOENT; 3962 goto out; 3963 } 3964 3965 table = rt->fib6_table; 3966 spin_lock_bh(&table->tb6_lock); 3967 err = fib6_del(rt, info); 3968 spin_unlock_bh(&table->tb6_lock); 3969 3970 out: 3971 fib6_info_release(rt); 3972 return err; 3973 } 3974 3975 int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) 3976 { 3977 struct nl_info info = { 3978 .nl_net = net, 3979 .skip_notify = skip_notify 3980 }; 3981 3982 return __ip6_del_rt(rt, &info); 3983 } 3984 3985 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3986 { 3987 struct nl_info *info = &cfg->fc_nlinfo; 3988 struct net *net = info->nl_net; 3989 struct sk_buff *skb = NULL; 3990 struct fib6_table *table; 3991 int err = -ENOENT; 3992 3993 if (rt == net->ipv6.fib6_null_entry) 3994 goto out_put; 3995 table = rt->fib6_table; 3996 spin_lock_bh(&table->tb6_lock); 3997 3998 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3999 struct fib6_info *sibling, *next_sibling; 4000 struct fib6_node *fn; 4001 4002 /* prefer to send a single notification with all hops */ 4003 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 4004 if (skb) { 4005 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 4006 4007 if (rt6_fill_node(net, skb, rt, NULL, 4008 NULL, NULL, 0, RTM_DELROUTE, 4009 info->portid, seq, 0) < 0) { 4010 kfree_skb(skb); 4011 skb = NULL; 4012 } else 4013 info->skip_notify = 1; 4014 } 4015 4016 /* 'rt' points to the first sibling route. If it is not the 4017 * leaf, then we do not need to send a notification. Otherwise, 4018 * we need to check if the last sibling has a next route or not 4019 * and emit a replace or delete notification, respectively. 4020 */ 4021 info->skip_notify_kernel = 1; 4022 fn = rcu_dereference_protected(rt->fib6_node, 4023 lockdep_is_held(&table->tb6_lock)); 4024 if (rcu_access_pointer(fn->leaf) == rt) { 4025 struct fib6_info *last_sibling, *replace_rt; 4026 4027 last_sibling = list_last_entry(&rt->fib6_siblings, 4028 struct fib6_info, 4029 fib6_siblings); 4030 replace_rt = rcu_dereference_protected( 4031 last_sibling->fib6_next, 4032 lockdep_is_held(&table->tb6_lock)); 4033 if (replace_rt) 4034 call_fib6_entry_notifiers_replace(net, 4035 replace_rt); 4036 else 4037 call_fib6_multipath_entry_notifiers(net, 4038 FIB_EVENT_ENTRY_DEL, 4039 rt, rt->fib6_nsiblings, 4040 NULL); 4041 } 4042 list_for_each_entry_safe(sibling, next_sibling, 4043 &rt->fib6_siblings, 4044 fib6_siblings) { 4045 err = fib6_del(sibling, info); 4046 if (err) 4047 goto out_unlock; 4048 } 4049 } 4050 4051 err = fib6_del(rt, info); 4052 out_unlock: 4053 spin_unlock_bh(&table->tb6_lock); 4054 out_put: 4055 fib6_info_release(rt); 4056 4057 if (skb) { 4058 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 4059 info->nlh, gfp_any()); 4060 } 4061 return err; 4062 } 4063 4064 static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 4065 { 4066 int rc = -ESRCH; 4067 4068 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 4069 goto out; 4070 4071 if (cfg->fc_flags & RTF_GATEWAY && 4072 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 4073 goto out; 4074 4075 rc = rt6_remove_exception_rt(rt); 4076 out: 4077 return rc; 4078 } 4079 4080 static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, 4081 struct fib6_nh *nh) 4082 { 4083 struct fib6_result res = { 4084 .f6i = rt, 4085 .nh = nh, 4086 }; 4087 struct rt6_info *rt_cache; 4088 4089 rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); 4090 if (rt_cache) 4091 return __ip6_del_cached_rt(rt_cache, cfg); 4092 4093 return 0; 4094 } 4095 4096 struct fib6_nh_del_cached_rt_arg { 4097 struct fib6_config *cfg; 4098 struct fib6_info *f6i; 4099 }; 4100 4101 static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) 4102 { 4103 struct fib6_nh_del_cached_rt_arg *arg = _arg; 4104 int rc; 4105 4106 rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); 4107 return rc != -ESRCH ? rc : 0; 4108 } 4109 4110 static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) 4111 { 4112 struct fib6_nh_del_cached_rt_arg arg = { 4113 .cfg = cfg, 4114 .f6i = f6i 4115 }; 4116 4117 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); 4118 } 4119 4120 static int ip6_route_del(struct fib6_config *cfg, 4121 struct netlink_ext_ack *extack) 4122 { 4123 struct fib6_table *table; 4124 struct fib6_info *rt; 4125 struct fib6_node *fn; 4126 int err = -ESRCH; 4127 4128 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 4129 if (!table) { 4130 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 4131 return err; 4132 } 4133 4134 rcu_read_lock(); 4135 4136 fn = fib6_locate(&table->tb6_root, 4137 &cfg->fc_dst, cfg->fc_dst_len, 4138 &cfg->fc_src, cfg->fc_src_len, 4139 !(cfg->fc_flags & RTF_CACHE)); 4140 4141 if (fn) { 4142 for_each_fib6_node_rt_rcu(fn) { 4143 struct fib6_nh *nh; 4144 4145 if (rt->nh && cfg->fc_nh_id && 4146 rt->nh->id != cfg->fc_nh_id) 4147 continue; 4148 4149 if (cfg->fc_flags & RTF_CACHE) { 4150 int rc = 0; 4151 4152 if (rt->nh) { 4153 rc = ip6_del_cached_rt_nh(cfg, rt); 4154 } else if (cfg->fc_nh_id) { 4155 continue; 4156 } else { 4157 nh = rt->fib6_nh; 4158 rc = ip6_del_cached_rt(cfg, rt, nh); 4159 } 4160 if (rc != -ESRCH) { 4161 rcu_read_unlock(); 4162 return rc; 4163 } 4164 continue; 4165 } 4166 4167 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 4168 continue; 4169 if (cfg->fc_protocol && 4170 cfg->fc_protocol != rt->fib6_protocol) 4171 continue; 4172 4173 if (rt->nh) { 4174 if (!fib6_info_hold_safe(rt)) 4175 continue; 4176 4177 err = __ip6_del_rt(rt, &cfg->fc_nlinfo); 4178 break; 4179 } 4180 if (cfg->fc_nh_id) 4181 continue; 4182 4183 nh = rt->fib6_nh; 4184 if (cfg->fc_ifindex && 4185 (!nh->fib_nh_dev || 4186 nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) 4187 continue; 4188 if (cfg->fc_flags & RTF_GATEWAY && 4189 !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) 4190 continue; 4191 if (!fib6_info_hold_safe(rt)) 4192 continue; 4193 4194 /* if gateway was specified only delete the one hop */ 4195 if (cfg->fc_flags & RTF_GATEWAY) 4196 err = __ip6_del_rt(rt, &cfg->fc_nlinfo); 4197 else 4198 err = __ip6_del_rt_siblings(rt, cfg); 4199 break; 4200 } 4201 } 4202 rcu_read_unlock(); 4203 4204 return err; 4205 } 4206 4207 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 4208 { 4209 struct netevent_redirect netevent; 4210 struct rt6_info *rt, *nrt = NULL; 4211 struct fib6_result res = {}; 4212 struct ndisc_options ndopts; 4213 struct inet6_dev *in6_dev; 4214 struct neighbour *neigh; 4215 struct rd_msg *msg; 4216 int optlen, on_link; 4217 u8 *lladdr; 4218 4219 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 4220 optlen -= sizeof(*msg); 4221 4222 if (optlen < 0) { 4223 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 4224 return; 4225 } 4226 4227 msg = (struct rd_msg *)icmp6_hdr(skb); 4228 4229 if (ipv6_addr_is_multicast(&msg->dest)) { 4230 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 4231 return; 4232 } 4233 4234 on_link = 0; 4235 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 4236 on_link = 1; 4237 } else if (ipv6_addr_type(&msg->target) != 4238 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 4239 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 4240 return; 4241 } 4242 4243 in6_dev = __in6_dev_get(skb->dev); 4244 if (!in6_dev) 4245 return; 4246 if (READ_ONCE(in6_dev->cnf.forwarding) || 4247 !READ_ONCE(in6_dev->cnf.accept_redirects)) 4248 return; 4249 4250 /* RFC2461 8.1: 4251 * The IP source address of the Redirect MUST be the same as the current 4252 * first-hop router for the specified ICMP Destination Address. 4253 */ 4254 4255 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 4256 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 4257 return; 4258 } 4259 4260 lladdr = NULL; 4261 if (ndopts.nd_opts_tgt_lladdr) { 4262 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 4263 skb->dev); 4264 if (!lladdr) { 4265 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 4266 return; 4267 } 4268 } 4269 4270 rt = dst_rt6_info(dst); 4271 if (rt->rt6i_flags & RTF_REJECT) { 4272 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 4273 return; 4274 } 4275 4276 /* Redirect received -> path was valid. 4277 * Look, redirects are sent only in response to data packets, 4278 * so that this nexthop apparently is reachable. --ANK 4279 */ 4280 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 4281 4282 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 4283 if (!neigh) 4284 return; 4285 4286 /* 4287 * We have finally decided to accept it. 4288 */ 4289 4290 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 4291 NEIGH_UPDATE_F_WEAK_OVERRIDE| 4292 NEIGH_UPDATE_F_OVERRIDE| 4293 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 4294 NEIGH_UPDATE_F_ISROUTER)), 4295 NDISC_REDIRECT, &ndopts); 4296 4297 rcu_read_lock(); 4298 res.f6i = rcu_dereference(rt->from); 4299 if (!res.f6i) 4300 goto out; 4301 4302 if (res.f6i->nh) { 4303 struct fib6_nh_match_arg arg = { 4304 .dev = dst_dev(dst), 4305 .gw = &rt->rt6i_gateway, 4306 }; 4307 4308 nexthop_for_each_fib6_nh(res.f6i->nh, 4309 fib6_nh_find_match, &arg); 4310 4311 /* fib6_info uses a nexthop that does not have fib6_nh 4312 * using the dst->dev. Should be impossible 4313 */ 4314 if (!arg.match) 4315 goto out; 4316 res.nh = arg.match; 4317 } else { 4318 res.nh = res.f6i->fib6_nh; 4319 } 4320 4321 res.fib6_flags = res.f6i->fib6_flags; 4322 res.fib6_type = res.f6i->fib6_type; 4323 nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); 4324 if (!nrt) 4325 goto out; 4326 4327 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 4328 if (on_link) 4329 nrt->rt6i_flags &= ~RTF_GATEWAY; 4330 4331 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 4332 4333 /* rt6_insert_exception() will take care of duplicated exceptions */ 4334 if (rt6_insert_exception(nrt, &res)) { 4335 dst_release_immediate(&nrt->dst); 4336 goto out; 4337 } 4338 4339 netevent.old = &rt->dst; 4340 netevent.new = &nrt->dst; 4341 netevent.daddr = &msg->dest; 4342 netevent.neigh = neigh; 4343 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 4344 4345 out: 4346 rcu_read_unlock(); 4347 neigh_release(neigh); 4348 } 4349 4350 #ifdef CONFIG_IPV6_ROUTE_INFO 4351 static struct fib6_info *rt6_get_route_info(struct net *net, 4352 const struct in6_addr *prefix, int prefixlen, 4353 const struct in6_addr *gwaddr, 4354 struct net_device *dev) 4355 { 4356 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4357 int ifindex = dev->ifindex; 4358 struct fib6_node *fn; 4359 struct fib6_info *rt = NULL; 4360 struct fib6_table *table; 4361 4362 table = fib6_get_table(net, tb_id); 4363 if (!table) 4364 return NULL; 4365 4366 rcu_read_lock(); 4367 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 4368 if (!fn) 4369 goto out; 4370 4371 for_each_fib6_node_rt_rcu(fn) { 4372 /* these routes do not use nexthops */ 4373 if (rt->nh) 4374 continue; 4375 if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) 4376 continue; 4377 if (!(rt->fib6_flags & RTF_ROUTEINFO) || 4378 !rt->fib6_nh->fib_nh_gw_family) 4379 continue; 4380 if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) 4381 continue; 4382 if (!fib6_info_hold_safe(rt)) 4383 continue; 4384 break; 4385 } 4386 out: 4387 rcu_read_unlock(); 4388 return rt; 4389 } 4390 4391 static struct fib6_info *rt6_add_route_info(struct net *net, 4392 const struct in6_addr *prefix, int prefixlen, 4393 const struct in6_addr *gwaddr, 4394 struct net_device *dev, 4395 unsigned int pref) 4396 { 4397 struct fib6_config cfg = { 4398 .fc_metric = IP6_RT_PRIO_USER, 4399 .fc_ifindex = dev->ifindex, 4400 .fc_dst_len = prefixlen, 4401 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 4402 RTF_UP | RTF_PREF(pref), 4403 .fc_protocol = RTPROT_RA, 4404 .fc_type = RTN_UNICAST, 4405 .fc_nlinfo.portid = 0, 4406 .fc_nlinfo.nlh = NULL, 4407 .fc_nlinfo.nl_net = net, 4408 }; 4409 4410 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4411 cfg.fc_dst = *prefix; 4412 cfg.fc_gateway = *gwaddr; 4413 4414 /* We should treat it as a default route if prefix length is 0. */ 4415 if (!prefixlen) 4416 cfg.fc_flags |= RTF_DEFAULT; 4417 4418 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 4419 4420 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 4421 } 4422 #endif 4423 4424 struct fib6_info *rt6_get_dflt_router(struct net *net, 4425 const struct in6_addr *addr, 4426 struct net_device *dev) 4427 { 4428 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 4429 struct fib6_info *rt; 4430 struct fib6_table *table; 4431 4432 table = fib6_get_table(net, tb_id); 4433 if (!table) 4434 return NULL; 4435 4436 rcu_read_lock(); 4437 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4438 struct fib6_nh *nh; 4439 4440 /* RA routes do not use nexthops */ 4441 if (rt->nh) 4442 continue; 4443 4444 nh = rt->fib6_nh; 4445 if (dev == nh->fib_nh_dev && 4446 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 4447 ipv6_addr_equal(&nh->fib_nh_gw6, addr)) 4448 break; 4449 } 4450 if (rt && !fib6_info_hold_safe(rt)) 4451 rt = NULL; 4452 rcu_read_unlock(); 4453 return rt; 4454 } 4455 4456 struct fib6_info *rt6_add_dflt_router(struct net *net, 4457 const struct in6_addr *gwaddr, 4458 struct net_device *dev, 4459 unsigned int pref, 4460 u32 defrtr_usr_metric, 4461 int lifetime) 4462 { 4463 struct fib6_config cfg = { 4464 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 4465 .fc_metric = defrtr_usr_metric, 4466 .fc_ifindex = dev->ifindex, 4467 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 4468 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 4469 .fc_protocol = RTPROT_RA, 4470 .fc_type = RTN_UNICAST, 4471 .fc_nlinfo.portid = 0, 4472 .fc_nlinfo.nlh = NULL, 4473 .fc_nlinfo.nl_net = net, 4474 .fc_expires = jiffies_to_clock_t(lifetime * HZ), 4475 }; 4476 4477 cfg.fc_gateway = *gwaddr; 4478 4479 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 4480 struct fib6_table *table; 4481 4482 table = fib6_get_table(dev_net(dev), cfg.fc_table); 4483 if (table) 4484 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 4485 } 4486 4487 return rt6_get_dflt_router(net, gwaddr, dev); 4488 } 4489 4490 static void __rt6_purge_dflt_routers(struct net *net, 4491 struct fib6_table *table) 4492 { 4493 struct fib6_info *rt; 4494 4495 restart: 4496 rcu_read_lock(); 4497 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4498 struct net_device *dev = fib6_info_nh_dev(rt); 4499 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 4500 4501 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 4502 (!idev || idev->cnf.accept_ra != 2) && 4503 fib6_info_hold_safe(rt)) { 4504 rcu_read_unlock(); 4505 ip6_del_rt(net, rt, false); 4506 goto restart; 4507 } 4508 } 4509 rcu_read_unlock(); 4510 4511 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 4512 } 4513 4514 void rt6_purge_dflt_routers(struct net *net) 4515 { 4516 struct fib6_table *table; 4517 struct hlist_head *head; 4518 unsigned int h; 4519 4520 rcu_read_lock(); 4521 4522 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 4523 head = &net->ipv6.fib_table_hash[h]; 4524 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 4525 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 4526 __rt6_purge_dflt_routers(net, table); 4527 } 4528 } 4529 4530 rcu_read_unlock(); 4531 } 4532 4533 static void rtmsg_to_fib6_config(struct net *net, 4534 struct in6_rtmsg *rtmsg, 4535 struct fib6_config *cfg) 4536 { 4537 *cfg = (struct fib6_config){ 4538 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 4539 : RT6_TABLE_MAIN, 4540 .fc_ifindex = rtmsg->rtmsg_ifindex, 4541 .fc_metric = rtmsg->rtmsg_metric, 4542 .fc_expires = rtmsg->rtmsg_info, 4543 .fc_dst_len = rtmsg->rtmsg_dst_len, 4544 .fc_src_len = rtmsg->rtmsg_src_len, 4545 .fc_flags = rtmsg->rtmsg_flags, 4546 .fc_type = rtmsg->rtmsg_type, 4547 4548 .fc_nlinfo.nl_net = net, 4549 4550 .fc_dst = rtmsg->rtmsg_dst, 4551 .fc_src = rtmsg->rtmsg_src, 4552 .fc_gateway = rtmsg->rtmsg_gateway, 4553 }; 4554 } 4555 4556 int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg) 4557 { 4558 struct fib6_config cfg; 4559 int err; 4560 4561 if (cmd != SIOCADDRT && cmd != SIOCDELRT) 4562 return -EINVAL; 4563 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 4564 return -EPERM; 4565 4566 rtmsg_to_fib6_config(net, rtmsg, &cfg); 4567 4568 switch (cmd) { 4569 case SIOCADDRT: 4570 /* Only do the default setting of fc_metric in route adding */ 4571 if (cfg.fc_metric == 0) 4572 cfg.fc_metric = IP6_RT_PRIO_USER; 4573 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 4574 break; 4575 case SIOCDELRT: 4576 err = ip6_route_del(&cfg, NULL); 4577 break; 4578 } 4579 4580 return err; 4581 } 4582 4583 /* 4584 * Drop the packet on the floor 4585 */ 4586 4587 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 4588 { 4589 struct dst_entry *dst = skb_dst(skb); 4590 struct net_device *dev = dst_dev(dst); 4591 struct net *net = dev_net(dev); 4592 struct inet6_dev *idev; 4593 SKB_DR(reason); 4594 int type; 4595 4596 if (netif_is_l3_master(skb->dev) || 4597 dev == net->loopback_dev) 4598 idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); 4599 else 4600 idev = ip6_dst_idev(dst); 4601 4602 switch (ipstats_mib_noroutes) { 4603 case IPSTATS_MIB_INNOROUTES: 4604 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 4605 if (type == IPV6_ADDR_ANY) { 4606 SKB_DR_SET(reason, IP_INADDRERRORS); 4607 IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); 4608 break; 4609 } 4610 SKB_DR_SET(reason, IP_INNOROUTES); 4611 fallthrough; 4612 case IPSTATS_MIB_OUTNOROUTES: 4613 SKB_DR_OR(reason, IP_OUTNOROUTES); 4614 IP6_INC_STATS(net, idev, ipstats_mib_noroutes); 4615 break; 4616 } 4617 4618 /* Start over by dropping the dst for l3mdev case */ 4619 if (netif_is_l3_master(skb->dev)) 4620 skb_dst_drop(skb); 4621 4622 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 4623 kfree_skb_reason(skb, reason); 4624 return 0; 4625 } 4626 4627 static int ip6_pkt_discard(struct sk_buff *skb) 4628 { 4629 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 4630 } 4631 4632 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4633 { 4634 skb->dev = skb_dst_dev(skb); 4635 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 4636 } 4637 4638 static int ip6_pkt_prohibit(struct sk_buff *skb) 4639 { 4640 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 4641 } 4642 4643 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4644 { 4645 skb->dev = skb_dst_dev(skb); 4646 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 4647 } 4648 4649 /* 4650 * Allocate a dst for local (unicast / anycast) address. 4651 */ 4652 4653 struct fib6_info *addrconf_f6i_alloc(struct net *net, 4654 struct inet6_dev *idev, 4655 const struct in6_addr *addr, 4656 bool anycast, gfp_t gfp_flags, 4657 struct netlink_ext_ack *extack) 4658 { 4659 struct fib6_config cfg = { 4660 .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, 4661 .fc_ifindex = idev->dev->ifindex, 4662 .fc_flags = RTF_UP | RTF_NONEXTHOP, 4663 .fc_dst = *addr, 4664 .fc_dst_len = 128, 4665 .fc_protocol = RTPROT_KERNEL, 4666 .fc_nlinfo.nl_net = net, 4667 .fc_ignore_dev_down = true, 4668 }; 4669 struct fib6_info *f6i; 4670 int err; 4671 4672 if (anycast) { 4673 cfg.fc_type = RTN_ANYCAST; 4674 cfg.fc_flags |= RTF_ANYCAST; 4675 } else { 4676 cfg.fc_type = RTN_LOCAL; 4677 cfg.fc_flags |= RTF_LOCAL; 4678 } 4679 4680 f6i = ip6_route_info_create(&cfg, gfp_flags, extack); 4681 if (IS_ERR(f6i)) 4682 return f6i; 4683 4684 err = ip6_route_info_create_nh(f6i, &cfg, gfp_flags, extack); 4685 if (err) 4686 return ERR_PTR(err); 4687 4688 f6i->dst_nocount = true; 4689 4690 if (!anycast && 4691 (READ_ONCE(net->ipv6.devconf_all->disable_policy) || 4692 READ_ONCE(idev->cnf.disable_policy))) 4693 f6i->dst_nopolicy = true; 4694 4695 return f6i; 4696 } 4697 4698 /* remove deleted ip from prefsrc entries */ 4699 struct arg_dev_net_ip { 4700 struct net *net; 4701 struct in6_addr *addr; 4702 }; 4703 4704 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 4705 { 4706 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 4707 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 4708 4709 if (!rt->nh && 4710 rt != net->ipv6.fib6_null_entry && 4711 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr) && 4712 !ipv6_chk_addr(net, addr, rt->fib6_nh->fib_nh_dev, 0)) { 4713 spin_lock_bh(&rt6_exception_lock); 4714 /* remove prefsrc entry */ 4715 rt->fib6_prefsrc.plen = 0; 4716 spin_unlock_bh(&rt6_exception_lock); 4717 } 4718 return 0; 4719 } 4720 4721 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 4722 { 4723 struct net *net = dev_net(ifp->idev->dev); 4724 struct arg_dev_net_ip adni = { 4725 .net = net, 4726 .addr = &ifp->addr, 4727 }; 4728 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 4729 } 4730 4731 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) 4732 4733 /* Remove routers and update dst entries when gateway turn into host. */ 4734 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 4735 { 4736 struct in6_addr *gateway = (struct in6_addr *)arg; 4737 struct fib6_nh *nh; 4738 4739 /* RA routes do not use nexthops */ 4740 if (rt->nh) 4741 return 0; 4742 4743 nh = rt->fib6_nh; 4744 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 4745 nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) 4746 return -1; 4747 4748 /* Further clean up cached routes in exception table. 4749 * This is needed because cached route may have a different 4750 * gateway than its 'parent' in the case of an ip redirect. 4751 */ 4752 fib6_nh_exceptions_clean_tohost(nh, gateway); 4753 4754 return 0; 4755 } 4756 4757 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 4758 { 4759 fib6_clean_all(net, fib6_clean_tohost, gateway); 4760 } 4761 4762 struct arg_netdev_event { 4763 const struct net_device *dev; 4764 union { 4765 unsigned char nh_flags; 4766 unsigned long event; 4767 }; 4768 }; 4769 4770 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 4771 { 4772 struct fib6_info *iter; 4773 struct fib6_node *fn; 4774 4775 fn = rcu_dereference_protected(rt->fib6_node, 4776 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4777 iter = rcu_dereference_protected(fn->leaf, 4778 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4779 while (iter) { 4780 if (iter->fib6_metric == rt->fib6_metric && 4781 rt6_qualify_for_ecmp(iter)) 4782 return iter; 4783 iter = rcu_dereference_protected(iter->fib6_next, 4784 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4785 } 4786 4787 return NULL; 4788 } 4789 4790 /* only called for fib entries with builtin fib6_nh */ 4791 static bool rt6_is_dead(const struct fib6_info *rt) 4792 { 4793 if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || 4794 (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && 4795 ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) 4796 return true; 4797 4798 return false; 4799 } 4800 4801 static int rt6_multipath_total_weight(const struct fib6_info *rt) 4802 { 4803 struct fib6_info *iter; 4804 int total = 0; 4805 4806 if (!rt6_is_dead(rt)) 4807 total += rt->fib6_nh->fib_nh_weight; 4808 4809 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 4810 if (!rt6_is_dead(iter)) 4811 total += iter->fib6_nh->fib_nh_weight; 4812 } 4813 4814 return total; 4815 } 4816 4817 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 4818 { 4819 int upper_bound = -1; 4820 4821 if (!rt6_is_dead(rt)) { 4822 *weight += rt->fib6_nh->fib_nh_weight; 4823 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 4824 total) - 1; 4825 } 4826 atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); 4827 } 4828 4829 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 4830 { 4831 struct fib6_info *iter; 4832 int weight = 0; 4833 4834 rt6_upper_bound_set(rt, &weight, total); 4835 4836 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4837 rt6_upper_bound_set(iter, &weight, total); 4838 } 4839 4840 void rt6_multipath_rebalance(struct fib6_info *rt) 4841 { 4842 struct fib6_info *first; 4843 int total; 4844 4845 /* In case the entire multipath route was marked for flushing, 4846 * then there is no need to rebalance upon the removal of every 4847 * sibling route. 4848 */ 4849 if (!rt->fib6_nsiblings || rt->should_flush) 4850 return; 4851 4852 /* During lookup routes are evaluated in order, so we need to 4853 * make sure upper bounds are assigned from the first sibling 4854 * onwards. 4855 */ 4856 first = rt6_multipath_first_sibling(rt); 4857 if (WARN_ON_ONCE(!first)) 4858 return; 4859 4860 total = rt6_multipath_total_weight(first); 4861 rt6_multipath_upper_bound_set(first, total); 4862 } 4863 4864 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 4865 { 4866 const struct arg_netdev_event *arg = p_arg; 4867 struct net *net = dev_net(arg->dev); 4868 4869 if (rt != net->ipv6.fib6_null_entry && !rt->nh && 4870 rt->fib6_nh->fib_nh_dev == arg->dev) { 4871 rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; 4872 fib6_update_sernum_upto_root(net, rt); 4873 rt6_multipath_rebalance(rt); 4874 } 4875 4876 return 0; 4877 } 4878 4879 void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) 4880 { 4881 struct arg_netdev_event arg = { 4882 .dev = dev, 4883 { 4884 .nh_flags = nh_flags, 4885 }, 4886 }; 4887 4888 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 4889 arg.nh_flags |= RTNH_F_LINKDOWN; 4890 4891 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 4892 } 4893 4894 /* only called for fib entries with inline fib6_nh */ 4895 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 4896 const struct net_device *dev) 4897 { 4898 struct fib6_info *iter; 4899 4900 if (rt->fib6_nh->fib_nh_dev == dev) 4901 return true; 4902 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4903 if (iter->fib6_nh->fib_nh_dev == dev) 4904 return true; 4905 4906 return false; 4907 } 4908 4909 static void rt6_multipath_flush(struct fib6_info *rt) 4910 { 4911 struct fib6_info *iter; 4912 4913 rt->should_flush = 1; 4914 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4915 iter->should_flush = 1; 4916 } 4917 4918 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 4919 const struct net_device *down_dev) 4920 { 4921 struct fib6_info *iter; 4922 unsigned int dead = 0; 4923 4924 if (rt->fib6_nh->fib_nh_dev == down_dev || 4925 rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4926 dead++; 4927 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4928 if (iter->fib6_nh->fib_nh_dev == down_dev || 4929 iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4930 dead++; 4931 4932 return dead; 4933 } 4934 4935 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 4936 const struct net_device *dev, 4937 unsigned char nh_flags) 4938 { 4939 struct fib6_info *iter; 4940 4941 if (rt->fib6_nh->fib_nh_dev == dev) 4942 rt->fib6_nh->fib_nh_flags |= nh_flags; 4943 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4944 if (iter->fib6_nh->fib_nh_dev == dev) 4945 iter->fib6_nh->fib_nh_flags |= nh_flags; 4946 } 4947 4948 /* called with write lock held for table with rt */ 4949 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 4950 { 4951 const struct arg_netdev_event *arg = p_arg; 4952 const struct net_device *dev = arg->dev; 4953 struct net *net = dev_net(dev); 4954 4955 if (rt == net->ipv6.fib6_null_entry || rt->nh) 4956 return 0; 4957 4958 switch (arg->event) { 4959 case NETDEV_UNREGISTER: 4960 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4961 case NETDEV_DOWN: 4962 if (rt->should_flush) 4963 return -1; 4964 if (!rt->fib6_nsiblings) 4965 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4966 if (rt6_multipath_uses_dev(rt, dev)) { 4967 unsigned int count; 4968 4969 count = rt6_multipath_dead_count(rt, dev); 4970 if (rt->fib6_nsiblings + 1 == count) { 4971 rt6_multipath_flush(rt); 4972 return -1; 4973 } 4974 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4975 RTNH_F_LINKDOWN); 4976 fib6_update_sernum(net, rt); 4977 rt6_multipath_rebalance(rt); 4978 } 4979 return -2; 4980 case NETDEV_CHANGE: 4981 if (rt->fib6_nh->fib_nh_dev != dev || 4982 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4983 break; 4984 rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 4985 rt6_multipath_rebalance(rt); 4986 break; 4987 } 4988 4989 return 0; 4990 } 4991 4992 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4993 { 4994 struct arg_netdev_event arg = { 4995 .dev = dev, 4996 { 4997 .event = event, 4998 }, 4999 }; 5000 struct net *net = dev_net(dev); 5001 5002 if (net->ipv6.sysctl.skip_notify_on_dev_down) 5003 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 5004 else 5005 fib6_clean_all(net, fib6_ifdown, &arg); 5006 } 5007 5008 void rt6_disable_ip(struct net_device *dev, unsigned long event) 5009 { 5010 rt6_sync_down_dev(dev, event); 5011 rt6_uncached_list_flush_dev(dev); 5012 neigh_ifdown(&nd_tbl, dev); 5013 } 5014 5015 struct rt6_mtu_change_arg { 5016 struct net_device *dev; 5017 unsigned int mtu; 5018 struct fib6_info *f6i; 5019 }; 5020 5021 static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) 5022 { 5023 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; 5024 struct fib6_info *f6i = arg->f6i; 5025 5026 /* For administrative MTU increase, there is no way to discover 5027 * IPv6 PMTU increase, so PMTU increase should be updated here. 5028 * Since RFC 1981 doesn't include administrative MTU increase 5029 * update PMTU increase is a MUST. (i.e. jumbo frame) 5030 */ 5031 if (nh->fib_nh_dev == arg->dev) { 5032 struct inet6_dev *idev = __in6_dev_get(arg->dev); 5033 u32 mtu = f6i->fib6_pmtu; 5034 5035 if (mtu >= arg->mtu || 5036 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 5037 fib6_metric_set(f6i, RTAX_MTU, arg->mtu); 5038 5039 spin_lock_bh(&rt6_exception_lock); 5040 rt6_exceptions_update_pmtu(idev, nh, arg->mtu); 5041 spin_unlock_bh(&rt6_exception_lock); 5042 } 5043 5044 return 0; 5045 } 5046 5047 static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) 5048 { 5049 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 5050 struct inet6_dev *idev; 5051 5052 /* In IPv6 pmtu discovery is not optional, 5053 so that RTAX_MTU lock cannot disable it. 5054 We still use this lock to block changes 5055 caused by addrconf/ndisc. 5056 */ 5057 5058 idev = __in6_dev_get(arg->dev); 5059 if (!idev) 5060 return 0; 5061 5062 if (fib6_metric_locked(f6i, RTAX_MTU)) 5063 return 0; 5064 5065 arg->f6i = f6i; 5066 if (f6i->nh) { 5067 /* fib6_nh_mtu_change only returns 0, so this is safe */ 5068 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, 5069 arg); 5070 } 5071 5072 return fib6_nh_mtu_change(f6i->fib6_nh, arg); 5073 } 5074 5075 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 5076 { 5077 struct rt6_mtu_change_arg arg = { 5078 .dev = dev, 5079 .mtu = mtu, 5080 }; 5081 5082 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 5083 } 5084 5085 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 5086 [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, 5087 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 5088 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 5089 [RTA_OIF] = { .type = NLA_U32 }, 5090 [RTA_IIF] = { .type = NLA_U32 }, 5091 [RTA_PRIORITY] = { .type = NLA_U32 }, 5092 [RTA_METRICS] = { .type = NLA_NESTED }, 5093 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 5094 [RTA_PREF] = { .type = NLA_U8 }, 5095 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 5096 [RTA_ENCAP] = { .type = NLA_NESTED }, 5097 [RTA_EXPIRES] = { .type = NLA_U32 }, 5098 [RTA_UID] = { .type = NLA_U32 }, 5099 [RTA_MARK] = { .type = NLA_U32 }, 5100 [RTA_TABLE] = { .type = NLA_U32 }, 5101 [RTA_IP_PROTO] = { .type = NLA_U8 }, 5102 [RTA_SPORT] = { .type = NLA_U16 }, 5103 [RTA_DPORT] = { .type = NLA_U16 }, 5104 [RTA_NH_ID] = { .type = NLA_U32 }, 5105 [RTA_FLOWLABEL] = { .type = NLA_BE32 }, 5106 }; 5107 5108 static int rtm_to_fib6_multipath_config(struct fib6_config *cfg, 5109 struct netlink_ext_ack *extack, 5110 bool newroute) 5111 { 5112 struct rtnexthop *rtnh; 5113 int remaining; 5114 5115 remaining = cfg->fc_mp_len; 5116 rtnh = (struct rtnexthop *)cfg->fc_mp; 5117 5118 if (!rtnh_ok(rtnh, remaining)) { 5119 NL_SET_ERR_MSG(extack, "Invalid nexthop configuration - no valid nexthops"); 5120 return -EINVAL; 5121 } 5122 5123 do { 5124 bool has_gateway = cfg->fc_flags & RTF_GATEWAY; 5125 int attrlen = rtnh_attrlen(rtnh); 5126 5127 if (attrlen > 0) { 5128 struct nlattr *nla, *attrs; 5129 5130 attrs = rtnh_attrs(rtnh); 5131 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5132 if (nla) { 5133 if (nla_len(nla) < sizeof(cfg->fc_gateway)) { 5134 NL_SET_ERR_MSG(extack, 5135 "Invalid IPv6 address in RTA_GATEWAY"); 5136 return -EINVAL; 5137 } 5138 5139 has_gateway = true; 5140 } 5141 } 5142 5143 if (newroute && (cfg->fc_nh_id || !has_gateway)) { 5144 NL_SET_ERR_MSG(extack, 5145 "Device only routes can not be added for IPv6 using the multipath API."); 5146 return -EINVAL; 5147 } 5148 5149 rtnh = rtnh_next(rtnh, &remaining); 5150 } while (rtnh_ok(rtnh, remaining)); 5151 5152 return lwtunnel_valid_encap_type_attr(cfg->fc_mp, cfg->fc_mp_len, extack); 5153 } 5154 5155 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 5156 struct fib6_config *cfg, 5157 struct netlink_ext_ack *extack) 5158 { 5159 bool newroute = nlh->nlmsg_type == RTM_NEWROUTE; 5160 struct nlattr *tb[RTA_MAX+1]; 5161 struct rtmsg *rtm; 5162 unsigned int pref; 5163 int err; 5164 5165 err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 5166 rtm_ipv6_policy, extack); 5167 if (err < 0) 5168 goto errout; 5169 5170 err = -EINVAL; 5171 rtm = nlmsg_data(nlh); 5172 5173 if (rtm->rtm_tos) { 5174 NL_SET_ERR_MSG(extack, 5175 "Invalid dsfield (tos): option not available for IPv6"); 5176 goto errout; 5177 } 5178 5179 if (tb[RTA_FLOWLABEL]) { 5180 NL_SET_ERR_MSG_ATTR(extack, tb[RTA_FLOWLABEL], 5181 "Flow label cannot be specified for this operation"); 5182 goto errout; 5183 } 5184 5185 *cfg = (struct fib6_config){ 5186 .fc_table = rtm->rtm_table, 5187 .fc_dst_len = rtm->rtm_dst_len, 5188 .fc_src_len = rtm->rtm_src_len, 5189 .fc_flags = RTF_UP, 5190 .fc_protocol = rtm->rtm_protocol, 5191 .fc_type = rtm->rtm_type, 5192 5193 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 5194 .fc_nlinfo.nlh = nlh, 5195 .fc_nlinfo.nl_net = sock_net(skb->sk), 5196 }; 5197 5198 if (rtm->rtm_type == RTN_UNREACHABLE || 5199 rtm->rtm_type == RTN_BLACKHOLE || 5200 rtm->rtm_type == RTN_PROHIBIT || 5201 rtm->rtm_type == RTN_THROW) 5202 cfg->fc_flags |= RTF_REJECT; 5203 5204 if (rtm->rtm_type == RTN_LOCAL) 5205 cfg->fc_flags |= RTF_LOCAL; 5206 5207 if (rtm->rtm_flags & RTM_F_CLONED) 5208 cfg->fc_flags |= RTF_CACHE; 5209 5210 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 5211 5212 if (tb[RTA_NH_ID]) { 5213 if (tb[RTA_GATEWAY] || tb[RTA_OIF] || 5214 tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { 5215 NL_SET_ERR_MSG(extack, 5216 "Nexthop specification and nexthop id are mutually exclusive"); 5217 goto errout; 5218 } 5219 cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); 5220 } 5221 5222 if (tb[RTA_GATEWAY]) { 5223 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 5224 cfg->fc_flags |= RTF_GATEWAY; 5225 } 5226 if (tb[RTA_VIA]) { 5227 NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); 5228 goto errout; 5229 } 5230 5231 if (tb[RTA_DST]) { 5232 int plen = (rtm->rtm_dst_len + 7) >> 3; 5233 5234 if (nla_len(tb[RTA_DST]) < plen) 5235 goto errout; 5236 5237 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 5238 } 5239 5240 if (tb[RTA_SRC]) { 5241 int plen = (rtm->rtm_src_len + 7) >> 3; 5242 5243 if (nla_len(tb[RTA_SRC]) < plen) 5244 goto errout; 5245 5246 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 5247 } 5248 5249 if (tb[RTA_PREFSRC]) 5250 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 5251 5252 if (tb[RTA_OIF]) 5253 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 5254 5255 if (tb[RTA_PRIORITY]) 5256 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 5257 5258 if (tb[RTA_METRICS]) { 5259 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 5260 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 5261 } 5262 5263 if (tb[RTA_TABLE]) 5264 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 5265 5266 if (tb[RTA_MULTIPATH]) { 5267 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 5268 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 5269 5270 err = rtm_to_fib6_multipath_config(cfg, extack, newroute); 5271 if (err < 0) 5272 goto errout; 5273 } 5274 5275 if (tb[RTA_PREF]) { 5276 pref = nla_get_u8(tb[RTA_PREF]); 5277 if (pref != ICMPV6_ROUTER_PREF_LOW && 5278 pref != ICMPV6_ROUTER_PREF_HIGH) 5279 pref = ICMPV6_ROUTER_PREF_MEDIUM; 5280 cfg->fc_flags |= RTF_PREF(pref); 5281 } 5282 5283 if (tb[RTA_ENCAP]) 5284 cfg->fc_encap = tb[RTA_ENCAP]; 5285 5286 if (tb[RTA_ENCAP_TYPE]) { 5287 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 5288 5289 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 5290 if (err < 0) 5291 goto errout; 5292 } 5293 5294 if (tb[RTA_EXPIRES]) { 5295 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 5296 5297 if (addrconf_finite_timeout(timeout)) { 5298 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 5299 cfg->fc_flags |= RTF_EXPIRES; 5300 } 5301 } 5302 5303 err = 0; 5304 errout: 5305 return err; 5306 } 5307 5308 struct rt6_nh { 5309 struct fib6_info *fib6_info; 5310 struct fib6_config r_cfg; 5311 struct list_head list; 5312 }; 5313 5314 static int ip6_route_info_append(struct list_head *rt6_nh_list, 5315 struct fib6_info *rt, 5316 struct fib6_config *r_cfg) 5317 { 5318 struct rt6_nh *nh; 5319 5320 list_for_each_entry(nh, rt6_nh_list, list) { 5321 /* check if fib6_info already exists */ 5322 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 5323 return -EEXIST; 5324 } 5325 5326 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 5327 if (!nh) 5328 return -ENOMEM; 5329 5330 nh->fib6_info = rt; 5331 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 5332 list_add_tail(&nh->list, rt6_nh_list); 5333 5334 return 0; 5335 } 5336 5337 static void ip6_route_mpath_notify(struct fib6_info *rt, 5338 struct fib6_info *rt_last, 5339 struct nl_info *info, 5340 __u16 nlflags) 5341 { 5342 /* if this is an APPEND route, then rt points to the first route 5343 * inserted and rt_last points to last route inserted. Userspace 5344 * wants a consistent dump of the route which starts at the first 5345 * nexthop. Since sibling routes are always added at the end of 5346 * the list, find the first sibling of the last route appended 5347 */ 5348 rcu_read_lock(); 5349 5350 if ((nlflags & NLM_F_APPEND) && rt_last && 5351 READ_ONCE(rt_last->fib6_nsiblings)) { 5352 rt = list_first_or_null_rcu(&rt_last->fib6_siblings, 5353 struct fib6_info, 5354 fib6_siblings); 5355 } 5356 5357 if (rt) 5358 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 5359 5360 rcu_read_unlock(); 5361 } 5362 5363 static bool ip6_route_mpath_should_notify(const struct fib6_info *rt) 5364 { 5365 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 5366 bool should_notify = false; 5367 struct fib6_info *leaf; 5368 struct fib6_node *fn; 5369 5370 rcu_read_lock(); 5371 fn = rcu_dereference(rt->fib6_node); 5372 if (!fn) 5373 goto out; 5374 5375 leaf = rcu_dereference(fn->leaf); 5376 if (!leaf) 5377 goto out; 5378 5379 if (rt == leaf || 5380 (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric && 5381 rt6_qualify_for_ecmp(leaf))) 5382 should_notify = true; 5383 out: 5384 rcu_read_unlock(); 5385 5386 return should_notify; 5387 } 5388 5389 static int ip6_route_multipath_add(struct fib6_config *cfg, 5390 struct netlink_ext_ack *extack) 5391 { 5392 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 5393 struct nl_info *info = &cfg->fc_nlinfo; 5394 struct rt6_nh *nh, *nh_safe; 5395 struct fib6_config r_cfg; 5396 struct rtnexthop *rtnh; 5397 LIST_HEAD(rt6_nh_list); 5398 struct rt6_nh *err_nh; 5399 struct fib6_info *rt; 5400 __u16 nlflags; 5401 int remaining; 5402 int attrlen; 5403 int replace; 5404 int nhn = 0; 5405 int err; 5406 5407 err = fib6_config_validate(cfg, extack); 5408 if (err) 5409 return err; 5410 5411 replace = (cfg->fc_nlinfo.nlh && 5412 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 5413 5414 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 5415 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 5416 nlflags |= NLM_F_APPEND; 5417 5418 remaining = cfg->fc_mp_len; 5419 rtnh = (struct rtnexthop *)cfg->fc_mp; 5420 5421 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 5422 * fib6_info structs per nexthop 5423 */ 5424 while (rtnh_ok(rtnh, remaining)) { 5425 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5426 if (rtnh->rtnh_ifindex) 5427 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5428 5429 attrlen = rtnh_attrlen(rtnh); 5430 if (attrlen > 0) { 5431 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5432 5433 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5434 if (nla) { 5435 r_cfg.fc_gateway = nla_get_in6_addr(nla); 5436 r_cfg.fc_flags |= RTF_GATEWAY; 5437 } 5438 5439 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 5440 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 5441 if (nla) 5442 r_cfg.fc_encap_type = nla_get_u16(nla); 5443 } 5444 5445 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 5446 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 5447 if (IS_ERR(rt)) { 5448 err = PTR_ERR(rt); 5449 rt = NULL; 5450 goto cleanup; 5451 } 5452 5453 err = ip6_route_info_create_nh(rt, &r_cfg, GFP_KERNEL, extack); 5454 if (err) { 5455 rt = NULL; 5456 goto cleanup; 5457 } 5458 5459 rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; 5460 5461 err = ip6_route_info_append(&rt6_nh_list, rt, &r_cfg); 5462 if (err) { 5463 fib6_info_release(rt); 5464 goto cleanup; 5465 } 5466 5467 rtnh = rtnh_next(rtnh, &remaining); 5468 } 5469 5470 /* for add and replace send one notification with all nexthops. 5471 * Skip the notification in fib6_add_rt2node and send one with 5472 * the full route when done 5473 */ 5474 info->skip_notify = 1; 5475 5476 /* For add and replace, send one notification with all nexthops. For 5477 * append, send one notification with all appended nexthops. 5478 */ 5479 info->skip_notify_kernel = 1; 5480 5481 err_nh = NULL; 5482 list_for_each_entry(nh, &rt6_nh_list, list) { 5483 err = __ip6_ins_rt(nh->fib6_info, info, extack); 5484 5485 if (err) { 5486 if (replace && nhn) 5487 NL_SET_ERR_MSG_MOD(extack, 5488 "multipath route replace failed (check consistency of installed routes)"); 5489 err_nh = nh; 5490 goto add_errout; 5491 } 5492 /* save reference to last route successfully inserted */ 5493 rt_last = nh->fib6_info; 5494 5495 /* save reference to first route for notification */ 5496 if (!rt_notif) 5497 rt_notif = nh->fib6_info; 5498 5499 /* Because each route is added like a single route we remove 5500 * these flags after the first nexthop: if there is a collision, 5501 * we have already failed to add the first nexthop: 5502 * fib6_add_rt2node() has rejected it; when replacing, old 5503 * nexthops have been replaced by first new, the rest should 5504 * be added to it. 5505 */ 5506 if (cfg->fc_nlinfo.nlh) { 5507 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 5508 NLM_F_REPLACE); 5509 cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE; 5510 } 5511 nhn++; 5512 } 5513 5514 /* An in-kernel notification should only be sent in case the new 5515 * multipath route is added as the first route in the node, or if 5516 * it was appended to it. We pass 'rt_notif' since it is the first 5517 * sibling and might allow us to skip some checks in the replace case. 5518 */ 5519 if (ip6_route_mpath_should_notify(rt_notif)) { 5520 enum fib_event_type fib_event; 5521 5522 if (rt_notif->fib6_nsiblings != nhn - 1) 5523 fib_event = FIB_EVENT_ENTRY_APPEND; 5524 else 5525 fib_event = FIB_EVENT_ENTRY_REPLACE; 5526 5527 err = call_fib6_multipath_entry_notifiers(info->nl_net, 5528 fib_event, rt_notif, 5529 nhn - 1, extack); 5530 if (err) { 5531 /* Delete all the siblings that were just added */ 5532 err_nh = NULL; 5533 goto add_errout; 5534 } 5535 } 5536 5537 /* success ... tell user about new route */ 5538 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5539 goto cleanup; 5540 5541 add_errout: 5542 /* send notification for routes that were added so that 5543 * the delete notifications sent by ip6_route_del are 5544 * coherent 5545 */ 5546 if (rt_notif) 5547 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5548 5549 /* Delete routes that were already added */ 5550 list_for_each_entry(nh, &rt6_nh_list, list) { 5551 if (err_nh == nh) 5552 break; 5553 ip6_route_del(&nh->r_cfg, extack); 5554 } 5555 5556 cleanup: 5557 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, list) { 5558 fib6_info_release(nh->fib6_info); 5559 list_del(&nh->list); 5560 kfree(nh); 5561 } 5562 5563 return err; 5564 } 5565 5566 static int ip6_route_multipath_del(struct fib6_config *cfg, 5567 struct netlink_ext_ack *extack) 5568 { 5569 struct fib6_config r_cfg; 5570 struct rtnexthop *rtnh; 5571 int last_err = 0; 5572 int remaining; 5573 int attrlen; 5574 int err; 5575 5576 remaining = cfg->fc_mp_len; 5577 rtnh = (struct rtnexthop *)cfg->fc_mp; 5578 5579 /* Parse a Multipath Entry */ 5580 while (rtnh_ok(rtnh, remaining)) { 5581 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5582 if (rtnh->rtnh_ifindex) 5583 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5584 5585 attrlen = rtnh_attrlen(rtnh); 5586 if (attrlen > 0) { 5587 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5588 5589 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5590 if (nla) { 5591 r_cfg.fc_gateway = nla_get_in6_addr(nla); 5592 r_cfg.fc_flags |= RTF_GATEWAY; 5593 } 5594 } 5595 5596 err = ip6_route_del(&r_cfg, extack); 5597 if (err) 5598 last_err = err; 5599 5600 rtnh = rtnh_next(rtnh, &remaining); 5601 } 5602 5603 return last_err; 5604 } 5605 5606 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5607 struct netlink_ext_ack *extack) 5608 { 5609 struct fib6_config cfg; 5610 int err; 5611 5612 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5613 if (err < 0) 5614 return err; 5615 5616 if (cfg.fc_nh_id) { 5617 rcu_read_lock(); 5618 err = !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id); 5619 rcu_read_unlock(); 5620 5621 if (err) { 5622 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 5623 return -EINVAL; 5624 } 5625 } 5626 5627 if (cfg.fc_mp) { 5628 return ip6_route_multipath_del(&cfg, extack); 5629 } else { 5630 cfg.fc_delete_all_nh = 1; 5631 return ip6_route_del(&cfg, extack); 5632 } 5633 } 5634 5635 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5636 struct netlink_ext_ack *extack) 5637 { 5638 struct fib6_config cfg; 5639 int err; 5640 5641 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5642 if (err < 0) 5643 return err; 5644 5645 if (cfg.fc_metric == 0) 5646 cfg.fc_metric = IP6_RT_PRIO_USER; 5647 5648 if (cfg.fc_mp) 5649 return ip6_route_multipath_add(&cfg, extack); 5650 else 5651 return ip6_route_add(&cfg, GFP_KERNEL, extack); 5652 } 5653 5654 /* add the overhead of this fib6_nh to nexthop_len */ 5655 static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) 5656 { 5657 int *nexthop_len = arg; 5658 5659 *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ 5660 + NLA_ALIGN(sizeof(struct rtnexthop)) 5661 + nla_total_size(16); /* RTA_GATEWAY */ 5662 5663 if (nh->fib_nh_lws) { 5664 /* RTA_ENCAP_TYPE */ 5665 *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5666 /* RTA_ENCAP */ 5667 *nexthop_len += nla_total_size(2); 5668 } 5669 5670 return 0; 5671 } 5672 5673 static size_t rt6_nlmsg_size(struct fib6_info *f6i) 5674 { 5675 struct fib6_info *sibling; 5676 struct fib6_nh *nh; 5677 int nexthop_len; 5678 5679 if (f6i->nh) { 5680 nexthop_len = nla_total_size(4); /* RTA_NH_ID */ 5681 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, 5682 &nexthop_len); 5683 goto common; 5684 } 5685 5686 rcu_read_lock(); 5687 retry: 5688 nh = f6i->fib6_nh; 5689 nexthop_len = 0; 5690 if (READ_ONCE(f6i->fib6_nsiblings)) { 5691 rt6_nh_nlmsg_size(nh, &nexthop_len); 5692 5693 list_for_each_entry_rcu(sibling, &f6i->fib6_siblings, 5694 fib6_siblings) { 5695 rt6_nh_nlmsg_size(sibling->fib6_nh, &nexthop_len); 5696 if (!READ_ONCE(f6i->fib6_nsiblings)) 5697 goto retry; 5698 } 5699 } 5700 rcu_read_unlock(); 5701 nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5702 common: 5703 return NLMSG_ALIGN(sizeof(struct rtmsg)) 5704 + nla_total_size(16) /* RTA_SRC */ 5705 + nla_total_size(16) /* RTA_DST */ 5706 + nla_total_size(16) /* RTA_GATEWAY */ 5707 + nla_total_size(16) /* RTA_PREFSRC */ 5708 + nla_total_size(4) /* RTA_TABLE */ 5709 + nla_total_size(4) /* RTA_IIF */ 5710 + nla_total_size(4) /* RTA_OIF */ 5711 + nla_total_size(4) /* RTA_PRIORITY */ 5712 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 5713 + nla_total_size(sizeof(struct rta_cacheinfo)) 5714 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 5715 + nla_total_size(1) /* RTA_PREF */ 5716 + nexthop_len; 5717 } 5718 5719 static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, 5720 unsigned char *flags) 5721 { 5722 if (nexthop_is_multipath(nh)) { 5723 struct nlattr *mp; 5724 5725 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5726 if (!mp) 5727 goto nla_put_failure; 5728 5729 if (nexthop_mpath_fill_node(skb, nh, AF_INET6)) 5730 goto nla_put_failure; 5731 5732 nla_nest_end(skb, mp); 5733 } else { 5734 struct fib6_nh *fib6_nh; 5735 5736 fib6_nh = nexthop_fib6_nh(nh); 5737 if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6, 5738 flags, false) < 0) 5739 goto nla_put_failure; 5740 } 5741 5742 return 0; 5743 5744 nla_put_failure: 5745 return -EMSGSIZE; 5746 } 5747 5748 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 5749 struct fib6_info *rt, struct dst_entry *dst, 5750 struct in6_addr *dest, struct in6_addr *src, 5751 int iif, int type, u32 portid, u32 seq, 5752 unsigned int flags) 5753 { 5754 struct rt6_info *rt6 = dst_rt6_info(dst); 5755 struct rt6key *rt6_dst, *rt6_src; 5756 u32 *pmetrics, table, rt6_flags; 5757 unsigned char nh_flags = 0; 5758 struct nlmsghdr *nlh; 5759 struct rtmsg *rtm; 5760 long expires = 0; 5761 5762 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 5763 if (!nlh) 5764 return -EMSGSIZE; 5765 5766 if (rt6) { 5767 rt6_dst = &rt6->rt6i_dst; 5768 rt6_src = &rt6->rt6i_src; 5769 rt6_flags = rt6->rt6i_flags; 5770 } else { 5771 rt6_dst = &rt->fib6_dst; 5772 rt6_src = &rt->fib6_src; 5773 rt6_flags = rt->fib6_flags; 5774 } 5775 5776 rtm = nlmsg_data(nlh); 5777 rtm->rtm_family = AF_INET6; 5778 rtm->rtm_dst_len = rt6_dst->plen; 5779 rtm->rtm_src_len = rt6_src->plen; 5780 rtm->rtm_tos = 0; 5781 if (rt->fib6_table) 5782 table = rt->fib6_table->tb6_id; 5783 else 5784 table = RT6_TABLE_UNSPEC; 5785 rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; 5786 if (nla_put_u32(skb, RTA_TABLE, table)) 5787 goto nla_put_failure; 5788 5789 rtm->rtm_type = rt->fib6_type; 5790 rtm->rtm_flags = 0; 5791 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 5792 rtm->rtm_protocol = rt->fib6_protocol; 5793 5794 if (rt6_flags & RTF_CACHE) 5795 rtm->rtm_flags |= RTM_F_CLONED; 5796 5797 if (dest) { 5798 if (nla_put_in6_addr(skb, RTA_DST, dest)) 5799 goto nla_put_failure; 5800 rtm->rtm_dst_len = 128; 5801 } else if (rtm->rtm_dst_len) 5802 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 5803 goto nla_put_failure; 5804 #ifdef CONFIG_IPV6_SUBTREES 5805 if (src) { 5806 if (nla_put_in6_addr(skb, RTA_SRC, src)) 5807 goto nla_put_failure; 5808 rtm->rtm_src_len = 128; 5809 } else if (rtm->rtm_src_len && 5810 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 5811 goto nla_put_failure; 5812 #endif 5813 if (iif) { 5814 #ifdef CONFIG_IPV6_MROUTE 5815 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 5816 int err = ip6mr_get_route(net, skb, rtm, portid); 5817 5818 if (err == 0) 5819 return 0; 5820 if (err < 0) 5821 goto nla_put_failure; 5822 } else 5823 #endif 5824 if (nla_put_u32(skb, RTA_IIF, iif)) 5825 goto nla_put_failure; 5826 } else if (dest) { 5827 struct in6_addr saddr_buf; 5828 if (ip6_route_get_saddr(net, rt, dest, 0, 0, &saddr_buf) == 0 && 5829 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5830 goto nla_put_failure; 5831 } 5832 5833 if (rt->fib6_prefsrc.plen) { 5834 struct in6_addr saddr_buf; 5835 saddr_buf = rt->fib6_prefsrc.addr; 5836 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5837 goto nla_put_failure; 5838 } 5839 5840 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 5841 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 5842 goto nla_put_failure; 5843 5844 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 5845 goto nla_put_failure; 5846 5847 /* For multipath routes, walk the siblings list and add 5848 * each as a nexthop within RTA_MULTIPATH. 5849 */ 5850 if (rt6) { 5851 struct net_device *dev; 5852 5853 if (rt6_flags & RTF_GATEWAY && 5854 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 5855 goto nla_put_failure; 5856 5857 dev = dst_dev(dst); 5858 if (dev && nla_put_u32(skb, RTA_OIF, dev->ifindex)) 5859 goto nla_put_failure; 5860 5861 if (lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0) 5862 goto nla_put_failure; 5863 } else if (READ_ONCE(rt->fib6_nsiblings)) { 5864 struct fib6_info *sibling; 5865 struct nlattr *mp; 5866 5867 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5868 if (!mp) 5869 goto nla_put_failure; 5870 5871 if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, 5872 rt->fib6_nh->fib_nh_weight, AF_INET6, 5873 0) < 0) 5874 goto nla_put_failure; 5875 5876 rcu_read_lock(); 5877 5878 list_for_each_entry_rcu(sibling, &rt->fib6_siblings, 5879 fib6_siblings) { 5880 if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, 5881 sibling->fib6_nh->fib_nh_weight, 5882 AF_INET6, 0) < 0) { 5883 rcu_read_unlock(); 5884 5885 goto nla_put_failure; 5886 } 5887 } 5888 5889 rcu_read_unlock(); 5890 5891 nla_nest_end(skb, mp); 5892 } else if (rt->nh) { 5893 if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) 5894 goto nla_put_failure; 5895 5896 if (nexthop_is_blackhole(rt->nh)) 5897 rtm->rtm_type = RTN_BLACKHOLE; 5898 5899 if (READ_ONCE(net->ipv4.sysctl_nexthop_compat_mode) && 5900 rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) 5901 goto nla_put_failure; 5902 5903 rtm->rtm_flags |= nh_flags; 5904 } else { 5905 if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6, 5906 &nh_flags, false) < 0) 5907 goto nla_put_failure; 5908 5909 rtm->rtm_flags |= nh_flags; 5910 } 5911 5912 if (rt6_flags & RTF_EXPIRES) { 5913 expires = dst ? READ_ONCE(dst->expires) : rt->expires; 5914 expires -= jiffies; 5915 } 5916 5917 if (!dst) { 5918 if (READ_ONCE(rt->offload)) 5919 rtm->rtm_flags |= RTM_F_OFFLOAD; 5920 if (READ_ONCE(rt->trap)) 5921 rtm->rtm_flags |= RTM_F_TRAP; 5922 if (READ_ONCE(rt->offload_failed)) 5923 rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED; 5924 } 5925 5926 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 5927 goto nla_put_failure; 5928 5929 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 5930 goto nla_put_failure; 5931 5932 5933 nlmsg_end(skb, nlh); 5934 return 0; 5935 5936 nla_put_failure: 5937 nlmsg_cancel(skb, nlh); 5938 return -EMSGSIZE; 5939 } 5940 5941 static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) 5942 { 5943 const struct net_device *dev = arg; 5944 5945 if (nh->fib_nh_dev == dev) 5946 return 1; 5947 5948 return 0; 5949 } 5950 5951 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 5952 const struct net_device *dev) 5953 { 5954 if (f6i->nh) { 5955 struct net_device *_dev = (struct net_device *)dev; 5956 5957 return !!nexthop_for_each_fib6_nh(f6i->nh, 5958 fib6_info_nh_uses_dev, 5959 _dev); 5960 } 5961 5962 if (f6i->fib6_nh->fib_nh_dev == dev) 5963 return true; 5964 5965 if (READ_ONCE(f6i->fib6_nsiblings)) { 5966 const struct fib6_info *sibling; 5967 5968 rcu_read_lock(); 5969 list_for_each_entry_rcu(sibling, &f6i->fib6_siblings, 5970 fib6_siblings) { 5971 if (sibling->fib6_nh->fib_nh_dev == dev) { 5972 rcu_read_unlock(); 5973 return true; 5974 } 5975 if (!READ_ONCE(f6i->fib6_nsiblings)) 5976 break; 5977 } 5978 rcu_read_unlock(); 5979 } 5980 return false; 5981 } 5982 5983 struct fib6_nh_exception_dump_walker { 5984 struct rt6_rtnl_dump_arg *dump; 5985 struct fib6_info *rt; 5986 unsigned int flags; 5987 unsigned int skip; 5988 unsigned int count; 5989 }; 5990 5991 static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg) 5992 { 5993 struct fib6_nh_exception_dump_walker *w = arg; 5994 struct rt6_rtnl_dump_arg *dump = w->dump; 5995 struct rt6_exception_bucket *bucket; 5996 struct rt6_exception *rt6_ex; 5997 int i, err; 5998 5999 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 6000 if (!bucket) 6001 return 0; 6002 6003 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 6004 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 6005 if (w->skip) { 6006 w->skip--; 6007 continue; 6008 } 6009 6010 /* Expiration of entries doesn't bump sernum, insertion 6011 * does. Removal is triggered by insertion, so we can 6012 * rely on the fact that if entries change between two 6013 * partial dumps, this node is scanned again completely, 6014 * see rt6_insert_exception() and fib6_dump_table(). 6015 * 6016 * Count expired entries we go through as handled 6017 * entries that we'll skip next time, in case of partial 6018 * node dump. Otherwise, if entries expire meanwhile, 6019 * we'll skip the wrong amount. 6020 */ 6021 if (rt6_check_expired(rt6_ex->rt6i)) { 6022 w->count++; 6023 continue; 6024 } 6025 6026 err = rt6_fill_node(dump->net, dump->skb, w->rt, 6027 &rt6_ex->rt6i->dst, NULL, NULL, 0, 6028 RTM_NEWROUTE, 6029 NETLINK_CB(dump->cb->skb).portid, 6030 dump->cb->nlh->nlmsg_seq, w->flags); 6031 if (err) 6032 return err; 6033 6034 w->count++; 6035 } 6036 bucket++; 6037 } 6038 6039 return 0; 6040 } 6041 6042 /* Return -1 if done with node, number of handled routes on partial dump */ 6043 int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip) 6044 { 6045 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 6046 struct fib_dump_filter *filter = &arg->filter; 6047 unsigned int flags = NLM_F_MULTI; 6048 struct net *net = arg->net; 6049 int count = 0; 6050 6051 if (rt == net->ipv6.fib6_null_entry) 6052 return -1; 6053 6054 if ((filter->flags & RTM_F_PREFIX) && 6055 !(rt->fib6_flags & RTF_PREFIX_RT)) { 6056 /* success since this is not a prefix route */ 6057 return -1; 6058 } 6059 if (filter->filter_set && 6060 ((filter->rt_type && rt->fib6_type != filter->rt_type) || 6061 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 6062 (filter->protocol && rt->fib6_protocol != filter->protocol))) { 6063 return -1; 6064 } 6065 6066 if (filter->filter_set || 6067 !filter->dump_routes || !filter->dump_exceptions) { 6068 flags |= NLM_F_DUMP_FILTERED; 6069 } 6070 6071 if (filter->dump_routes) { 6072 if (skip) { 6073 skip--; 6074 } else { 6075 if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 6076 0, RTM_NEWROUTE, 6077 NETLINK_CB(arg->cb->skb).portid, 6078 arg->cb->nlh->nlmsg_seq, flags)) { 6079 return 0; 6080 } 6081 count++; 6082 } 6083 } 6084 6085 if (filter->dump_exceptions) { 6086 struct fib6_nh_exception_dump_walker w = { .dump = arg, 6087 .rt = rt, 6088 .flags = flags, 6089 .skip = skip, 6090 .count = 0 }; 6091 int err; 6092 6093 rcu_read_lock(); 6094 if (rt->nh) { 6095 err = nexthop_for_each_fib6_nh(rt->nh, 6096 rt6_nh_dump_exceptions, 6097 &w); 6098 } else { 6099 err = rt6_nh_dump_exceptions(rt->fib6_nh, &w); 6100 } 6101 rcu_read_unlock(); 6102 6103 if (err) 6104 return count + w.count; 6105 } 6106 6107 return -1; 6108 } 6109 6110 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, 6111 const struct nlmsghdr *nlh, 6112 struct nlattr **tb, 6113 struct netlink_ext_ack *extack) 6114 { 6115 struct rtmsg *rtm; 6116 int i, err; 6117 6118 rtm = nlmsg_payload(nlh, sizeof(*rtm)); 6119 if (!rtm) { 6120 NL_SET_ERR_MSG_MOD(extack, 6121 "Invalid header for get route request"); 6122 return -EINVAL; 6123 } 6124 6125 if (!netlink_strict_get_check(skb)) 6126 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 6127 rtm_ipv6_policy, extack); 6128 6129 if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || 6130 (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || 6131 rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || 6132 rtm->rtm_type) { 6133 NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); 6134 return -EINVAL; 6135 } 6136 if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { 6137 NL_SET_ERR_MSG_MOD(extack, 6138 "Invalid flags for get route request"); 6139 return -EINVAL; 6140 } 6141 6142 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 6143 rtm_ipv6_policy, extack); 6144 if (err) 6145 return err; 6146 6147 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 6148 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 6149 NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); 6150 return -EINVAL; 6151 } 6152 6153 if (tb[RTA_FLOWLABEL] && 6154 (nla_get_be32(tb[RTA_FLOWLABEL]) & ~IPV6_FLOWLABEL_MASK)) { 6155 NL_SET_ERR_MSG_ATTR(extack, tb[RTA_FLOWLABEL], 6156 "Invalid flow label"); 6157 return -EINVAL; 6158 } 6159 6160 for (i = 0; i <= RTA_MAX; i++) { 6161 if (!tb[i]) 6162 continue; 6163 6164 switch (i) { 6165 case RTA_SRC: 6166 case RTA_DST: 6167 case RTA_IIF: 6168 case RTA_OIF: 6169 case RTA_MARK: 6170 case RTA_UID: 6171 case RTA_SPORT: 6172 case RTA_DPORT: 6173 case RTA_IP_PROTO: 6174 case RTA_FLOWLABEL: 6175 break; 6176 default: 6177 NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); 6178 return -EINVAL; 6179 } 6180 } 6181 6182 return 0; 6183 } 6184 6185 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 6186 struct netlink_ext_ack *extack) 6187 { 6188 struct net *net = sock_net(in_skb->sk); 6189 struct nlattr *tb[RTA_MAX+1]; 6190 int err, iif = 0, oif = 0; 6191 struct fib6_info *from; 6192 struct dst_entry *dst; 6193 struct rt6_info *rt; 6194 struct sk_buff *skb; 6195 struct rtmsg *rtm; 6196 struct flowi6 fl6 = {}; 6197 __be32 flowlabel; 6198 bool fibmatch; 6199 6200 err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 6201 if (err < 0) 6202 goto errout; 6203 6204 err = -EINVAL; 6205 rtm = nlmsg_data(nlh); 6206 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 6207 6208 if (tb[RTA_SRC]) { 6209 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 6210 goto errout; 6211 6212 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 6213 } 6214 6215 if (tb[RTA_DST]) { 6216 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 6217 goto errout; 6218 6219 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 6220 } 6221 6222 if (tb[RTA_IIF]) 6223 iif = nla_get_u32(tb[RTA_IIF]); 6224 6225 if (tb[RTA_OIF]) 6226 oif = nla_get_u32(tb[RTA_OIF]); 6227 6228 if (tb[RTA_MARK]) 6229 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 6230 6231 if (tb[RTA_UID]) 6232 fl6.flowi6_uid = make_kuid(current_user_ns(), 6233 nla_get_u32(tb[RTA_UID])); 6234 else 6235 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 6236 6237 if (tb[RTA_SPORT]) 6238 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 6239 6240 if (tb[RTA_DPORT]) 6241 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 6242 6243 if (tb[RTA_IP_PROTO]) { 6244 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 6245 &fl6.flowi6_proto, AF_INET6, 6246 extack); 6247 if (err) 6248 goto errout; 6249 } 6250 6251 flowlabel = nla_get_be32_default(tb[RTA_FLOWLABEL], 0); 6252 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, flowlabel); 6253 6254 if (iif) { 6255 struct net_device *dev; 6256 int flags = 0; 6257 6258 rcu_read_lock(); 6259 6260 dev = dev_get_by_index_rcu(net, iif); 6261 if (!dev) { 6262 rcu_read_unlock(); 6263 err = -ENODEV; 6264 goto errout; 6265 } 6266 6267 fl6.flowi6_iif = iif; 6268 6269 if (!ipv6_addr_any(&fl6.saddr)) 6270 flags |= RT6_LOOKUP_F_HAS_SADDR; 6271 6272 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 6273 6274 rcu_read_unlock(); 6275 } else { 6276 fl6.flowi6_oif = oif; 6277 6278 dst = ip6_route_output(net, NULL, &fl6); 6279 } 6280 6281 6282 rt = dst_rt6_info(dst); 6283 if (rt->dst.error) { 6284 err = rt->dst.error; 6285 ip6_rt_put(rt); 6286 goto errout; 6287 } 6288 6289 if (rt == net->ipv6.ip6_null_entry) { 6290 err = rt->dst.error; 6291 ip6_rt_put(rt); 6292 goto errout; 6293 } 6294 6295 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 6296 if (!skb) { 6297 ip6_rt_put(rt); 6298 err = -ENOBUFS; 6299 goto errout; 6300 } 6301 6302 skb_dst_set(skb, &rt->dst); 6303 6304 rcu_read_lock(); 6305 from = rcu_dereference(rt->from); 6306 if (from) { 6307 if (fibmatch) 6308 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, 6309 iif, RTM_NEWROUTE, 6310 NETLINK_CB(in_skb).portid, 6311 nlh->nlmsg_seq, 0); 6312 else 6313 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 6314 &fl6.saddr, iif, RTM_NEWROUTE, 6315 NETLINK_CB(in_skb).portid, 6316 nlh->nlmsg_seq, 0); 6317 } else { 6318 err = -ENETUNREACH; 6319 } 6320 rcu_read_unlock(); 6321 6322 if (err < 0) { 6323 kfree_skb(skb); 6324 goto errout; 6325 } 6326 6327 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 6328 errout: 6329 return err; 6330 } 6331 6332 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 6333 unsigned int nlm_flags) 6334 { 6335 struct net *net = info->nl_net; 6336 struct sk_buff *skb; 6337 size_t sz; 6338 u32 seq; 6339 int err; 6340 6341 err = -ENOBUFS; 6342 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6343 6344 rcu_read_lock(); 6345 sz = rt6_nlmsg_size(rt); 6346 retry: 6347 skb = nlmsg_new(sz, GFP_ATOMIC); 6348 if (!skb) 6349 goto errout; 6350 6351 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6352 event, info->portid, seq, nlm_flags); 6353 if (err < 0) { 6354 kfree_skb(skb); 6355 /* -EMSGSIZE implies needed space grew under us. */ 6356 if (err == -EMSGSIZE) { 6357 sz = max(rt6_nlmsg_size(rt), sz << 1); 6358 goto retry; 6359 } 6360 goto errout; 6361 } 6362 6363 rcu_read_unlock(); 6364 6365 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6366 info->nlh, GFP_ATOMIC); 6367 return; 6368 errout: 6369 rcu_read_unlock(); 6370 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6371 } 6372 6373 void fib6_rt_update(struct net *net, struct fib6_info *rt, 6374 struct nl_info *info) 6375 { 6376 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6377 struct sk_buff *skb; 6378 int err = -ENOBUFS; 6379 6380 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6381 if (!skb) 6382 goto errout; 6383 6384 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6385 RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); 6386 if (err < 0) { 6387 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6388 WARN_ON(err == -EMSGSIZE); 6389 kfree_skb(skb); 6390 goto errout; 6391 } 6392 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6393 info->nlh, gfp_any()); 6394 return; 6395 errout: 6396 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6397 } 6398 6399 void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, 6400 bool offload, bool trap, bool offload_failed) 6401 { 6402 struct sk_buff *skb; 6403 int err; 6404 6405 if (READ_ONCE(f6i->offload) == offload && 6406 READ_ONCE(f6i->trap) == trap && 6407 READ_ONCE(f6i->offload_failed) == offload_failed) 6408 return; 6409 6410 WRITE_ONCE(f6i->offload, offload); 6411 WRITE_ONCE(f6i->trap, trap); 6412 6413 /* 2 means send notifications only if offload_failed was changed. */ 6414 if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 && 6415 READ_ONCE(f6i->offload_failed) == offload_failed) 6416 return; 6417 6418 WRITE_ONCE(f6i->offload_failed, offload_failed); 6419 6420 if (!rcu_access_pointer(f6i->fib6_node)) 6421 /* The route was removed from the tree, do not send 6422 * notification. 6423 */ 6424 return; 6425 6426 if (!net->ipv6.sysctl.fib_notify_on_flag_change) 6427 return; 6428 6429 skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL); 6430 if (!skb) { 6431 err = -ENOBUFS; 6432 goto errout; 6433 } 6434 6435 err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0, 6436 0, 0); 6437 if (err < 0) { 6438 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6439 WARN_ON(err == -EMSGSIZE); 6440 kfree_skb(skb); 6441 goto errout; 6442 } 6443 6444 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL); 6445 return; 6446 6447 errout: 6448 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6449 } 6450 EXPORT_SYMBOL(fib6_info_hw_flags_set); 6451 6452 static int ip6_route_dev_notify(struct notifier_block *this, 6453 unsigned long event, void *ptr) 6454 { 6455 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6456 struct net *net = dev_net(dev); 6457 6458 if (!(dev->flags & IFF_LOOPBACK)) 6459 return NOTIFY_OK; 6460 6461 if (event == NETDEV_REGISTER) { 6462 net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; 6463 net->ipv6.ip6_null_entry->dst.dev = dev; 6464 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 6465 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6466 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 6467 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 6468 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 6469 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 6470 #endif 6471 } else if (event == NETDEV_UNREGISTER && 6472 dev->reg_state != NETREG_UNREGISTERED) { 6473 /* NETDEV_UNREGISTER could be fired for multiple times by 6474 * netdev_wait_allrefs(). Make sure we only call this once. 6475 */ 6476 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 6477 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6478 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 6479 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 6480 #endif 6481 } 6482 6483 return NOTIFY_OK; 6484 } 6485 6486 /* 6487 * /proc 6488 */ 6489 6490 #ifdef CONFIG_PROC_FS 6491 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 6492 { 6493 struct net *net = (struct net *)seq->private; 6494 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 6495 net->ipv6.rt6_stats->fib_nodes, 6496 net->ipv6.rt6_stats->fib_route_nodes, 6497 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 6498 net->ipv6.rt6_stats->fib_rt_entries, 6499 net->ipv6.rt6_stats->fib_rt_cache, 6500 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 6501 net->ipv6.rt6_stats->fib_discarded_routes); 6502 6503 return 0; 6504 } 6505 #endif /* CONFIG_PROC_FS */ 6506 6507 #ifdef CONFIG_SYSCTL 6508 6509 static int ipv6_sysctl_rtcache_flush(const struct ctl_table *ctl, int write, 6510 void *buffer, size_t *lenp, loff_t *ppos) 6511 { 6512 struct net *net; 6513 int delay; 6514 int ret; 6515 if (!write) 6516 return -EINVAL; 6517 6518 ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 6519 if (ret) 6520 return ret; 6521 6522 net = (struct net *)ctl->extra1; 6523 delay = net->ipv6.sysctl.flush_delay; 6524 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 6525 return 0; 6526 } 6527 6528 static struct ctl_table ipv6_route_table_template[] = { 6529 { 6530 .procname = "max_size", 6531 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 6532 .maxlen = sizeof(int), 6533 .mode = 0644, 6534 .proc_handler = proc_dointvec, 6535 }, 6536 { 6537 .procname = "gc_thresh", 6538 .data = &ip6_dst_ops_template.gc_thresh, 6539 .maxlen = sizeof(int), 6540 .mode = 0644, 6541 .proc_handler = proc_dointvec, 6542 }, 6543 { 6544 .procname = "flush", 6545 .data = &init_net.ipv6.sysctl.flush_delay, 6546 .maxlen = sizeof(int), 6547 .mode = 0200, 6548 .proc_handler = ipv6_sysctl_rtcache_flush 6549 }, 6550 { 6551 .procname = "gc_min_interval", 6552 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6553 .maxlen = sizeof(int), 6554 .mode = 0644, 6555 .proc_handler = proc_dointvec_jiffies, 6556 }, 6557 { 6558 .procname = "gc_timeout", 6559 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 6560 .maxlen = sizeof(int), 6561 .mode = 0644, 6562 .proc_handler = proc_dointvec_jiffies, 6563 }, 6564 { 6565 .procname = "gc_interval", 6566 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 6567 .maxlen = sizeof(int), 6568 .mode = 0644, 6569 .proc_handler = proc_dointvec_jiffies, 6570 }, 6571 { 6572 .procname = "gc_elasticity", 6573 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 6574 .maxlen = sizeof(int), 6575 .mode = 0644, 6576 .proc_handler = proc_dointvec, 6577 }, 6578 { 6579 .procname = "mtu_expires", 6580 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 6581 .maxlen = sizeof(int), 6582 .mode = 0644, 6583 .proc_handler = proc_dointvec_jiffies, 6584 }, 6585 { 6586 .procname = "min_adv_mss", 6587 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 6588 .maxlen = sizeof(int), 6589 .mode = 0644, 6590 .proc_handler = proc_dointvec, 6591 }, 6592 { 6593 .procname = "gc_min_interval_ms", 6594 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6595 .maxlen = sizeof(int), 6596 .mode = 0644, 6597 .proc_handler = proc_dointvec_ms_jiffies, 6598 }, 6599 { 6600 .procname = "skip_notify_on_dev_down", 6601 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 6602 .maxlen = sizeof(u8), 6603 .mode = 0644, 6604 .proc_handler = proc_dou8vec_minmax, 6605 .extra1 = SYSCTL_ZERO, 6606 .extra2 = SYSCTL_ONE, 6607 }, 6608 }; 6609 6610 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 6611 { 6612 struct ctl_table *table; 6613 6614 table = kmemdup(ipv6_route_table_template, 6615 sizeof(ipv6_route_table_template), 6616 GFP_KERNEL); 6617 6618 if (table) { 6619 table[0].data = &net->ipv6.sysctl.ip6_rt_max_size; 6620 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 6621 table[2].data = &net->ipv6.sysctl.flush_delay; 6622 table[2].extra1 = net; 6623 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6624 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 6625 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 6626 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 6627 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 6628 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 6629 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6630 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 6631 } 6632 6633 return table; 6634 } 6635 6636 size_t ipv6_route_sysctl_table_size(struct net *net) 6637 { 6638 /* Don't export sysctls to unprivileged users */ 6639 if (net->user_ns != &init_user_ns) 6640 return 1; 6641 6642 return ARRAY_SIZE(ipv6_route_table_template); 6643 } 6644 #endif 6645 6646 static int __net_init ip6_route_net_init(struct net *net) 6647 { 6648 int ret = -ENOMEM; 6649 6650 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 6651 sizeof(net->ipv6.ip6_dst_ops)); 6652 6653 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 6654 goto out_ip6_dst_ops; 6655 6656 net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); 6657 if (!net->ipv6.fib6_null_entry) 6658 goto out_ip6_dst_entries; 6659 memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, 6660 sizeof(*net->ipv6.fib6_null_entry)); 6661 6662 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 6663 sizeof(*net->ipv6.ip6_null_entry), 6664 GFP_KERNEL); 6665 if (!net->ipv6.ip6_null_entry) 6666 goto out_fib6_null_entry; 6667 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6668 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 6669 ip6_template_metrics, true); 6670 INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->dst.rt_uncached); 6671 6672 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6673 net->ipv6.fib6_has_custom_rules = false; 6674 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 6675 sizeof(*net->ipv6.ip6_prohibit_entry), 6676 GFP_KERNEL); 6677 if (!net->ipv6.ip6_prohibit_entry) 6678 goto out_ip6_null_entry; 6679 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6680 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 6681 ip6_template_metrics, true); 6682 INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->dst.rt_uncached); 6683 6684 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 6685 sizeof(*net->ipv6.ip6_blk_hole_entry), 6686 GFP_KERNEL); 6687 if (!net->ipv6.ip6_blk_hole_entry) 6688 goto out_ip6_prohibit_entry; 6689 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6690 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 6691 ip6_template_metrics, true); 6692 INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->dst.rt_uncached); 6693 #ifdef CONFIG_IPV6_SUBTREES 6694 net->ipv6.fib6_routes_require_src = 0; 6695 #endif 6696 #endif 6697 6698 net->ipv6.sysctl.flush_delay = 0; 6699 net->ipv6.sysctl.ip6_rt_max_size = INT_MAX; 6700 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 6701 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 6702 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 6703 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 6704 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 6705 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 6706 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 6707 6708 atomic_set(&net->ipv6.ip6_rt_gc_expire, 30*HZ); 6709 6710 ret = 0; 6711 out: 6712 return ret; 6713 6714 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6715 out_ip6_prohibit_entry: 6716 kfree(net->ipv6.ip6_prohibit_entry); 6717 out_ip6_null_entry: 6718 kfree(net->ipv6.ip6_null_entry); 6719 #endif 6720 out_fib6_null_entry: 6721 kfree(net->ipv6.fib6_null_entry); 6722 out_ip6_dst_entries: 6723 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6724 out_ip6_dst_ops: 6725 goto out; 6726 } 6727 6728 static void __net_exit ip6_route_net_exit(struct net *net) 6729 { 6730 kfree(net->ipv6.fib6_null_entry); 6731 kfree(net->ipv6.ip6_null_entry); 6732 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6733 kfree(net->ipv6.ip6_prohibit_entry); 6734 kfree(net->ipv6.ip6_blk_hole_entry); 6735 #endif 6736 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6737 } 6738 6739 static int __net_init ip6_route_net_init_late(struct net *net) 6740 { 6741 #ifdef CONFIG_PROC_FS 6742 if (!proc_create_net("ipv6_route", 0, net->proc_net, 6743 &ipv6_route_seq_ops, 6744 sizeof(struct ipv6_route_iter))) 6745 return -ENOMEM; 6746 6747 if (!proc_create_net_single("rt6_stats", 0444, net->proc_net, 6748 rt6_stats_seq_show, NULL)) { 6749 remove_proc_entry("ipv6_route", net->proc_net); 6750 return -ENOMEM; 6751 } 6752 #endif 6753 return 0; 6754 } 6755 6756 static void __net_exit ip6_route_net_exit_late(struct net *net) 6757 { 6758 #ifdef CONFIG_PROC_FS 6759 remove_proc_entry("ipv6_route", net->proc_net); 6760 remove_proc_entry("rt6_stats", net->proc_net); 6761 #endif 6762 } 6763 6764 static struct pernet_operations ip6_route_net_ops = { 6765 .init = ip6_route_net_init, 6766 .exit = ip6_route_net_exit, 6767 }; 6768 6769 static int __net_init ipv6_inetpeer_init(struct net *net) 6770 { 6771 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 6772 6773 if (!bp) 6774 return -ENOMEM; 6775 inet_peer_base_init(bp); 6776 net->ipv6.peers = bp; 6777 return 0; 6778 } 6779 6780 static void __net_exit ipv6_inetpeer_exit(struct net *net) 6781 { 6782 struct inet_peer_base *bp = net->ipv6.peers; 6783 6784 net->ipv6.peers = NULL; 6785 inetpeer_invalidate_tree(bp); 6786 kfree(bp); 6787 } 6788 6789 static struct pernet_operations ipv6_inetpeer_ops = { 6790 .init = ipv6_inetpeer_init, 6791 .exit = ipv6_inetpeer_exit, 6792 }; 6793 6794 static struct pernet_operations ip6_route_net_late_ops = { 6795 .init = ip6_route_net_init_late, 6796 .exit = ip6_route_net_exit_late, 6797 }; 6798 6799 static struct notifier_block ip6_route_dev_notifier = { 6800 .notifier_call = ip6_route_dev_notify, 6801 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 6802 }; 6803 6804 void __init ip6_route_init_special_entries(void) 6805 { 6806 /* Registering of the loopback is done before this portion of code, 6807 * the loopback reference in rt6_info will not be taken, do it 6808 * manually for init_net */ 6809 init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; 6810 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 6811 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6812 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6813 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 6814 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6815 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 6816 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6817 #endif 6818 } 6819 6820 #if IS_BUILTIN(CONFIG_IPV6) 6821 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6822 DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt) 6823 6824 BTF_ID_LIST_SINGLE(btf_fib6_info_id, struct, fib6_info) 6825 6826 static const struct bpf_iter_seq_info ipv6_route_seq_info = { 6827 .seq_ops = &ipv6_route_seq_ops, 6828 .init_seq_private = bpf_iter_init_seq_net, 6829 .fini_seq_private = bpf_iter_fini_seq_net, 6830 .seq_priv_size = sizeof(struct ipv6_route_iter), 6831 }; 6832 6833 static struct bpf_iter_reg ipv6_route_reg_info = { 6834 .target = "ipv6_route", 6835 .ctx_arg_info_size = 1, 6836 .ctx_arg_info = { 6837 { offsetof(struct bpf_iter__ipv6_route, rt), 6838 PTR_TO_BTF_ID_OR_NULL }, 6839 }, 6840 .seq_info = &ipv6_route_seq_info, 6841 }; 6842 6843 static int __init bpf_iter_register(void) 6844 { 6845 ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id; 6846 return bpf_iter_reg_target(&ipv6_route_reg_info); 6847 } 6848 6849 static void bpf_iter_unregister(void) 6850 { 6851 bpf_iter_unreg_target(&ipv6_route_reg_info); 6852 } 6853 #endif 6854 #endif 6855 6856 static const struct rtnl_msg_handler ip6_route_rtnl_msg_handlers[] __initconst_or_module = { 6857 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_NEWROUTE, 6858 .doit = inet6_rtm_newroute, .flags = RTNL_FLAG_DOIT_UNLOCKED}, 6859 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_DELROUTE, 6860 .doit = inet6_rtm_delroute, .flags = RTNL_FLAG_DOIT_UNLOCKED}, 6861 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE, 6862 .doit = inet6_rtm_getroute, .flags = RTNL_FLAG_DOIT_UNLOCKED}, 6863 }; 6864 6865 int __init ip6_route_init(void) 6866 { 6867 int ret; 6868 int cpu; 6869 6870 ret = -ENOMEM; 6871 ip6_dst_ops_template.kmem_cachep = 6872 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 6873 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); 6874 if (!ip6_dst_ops_template.kmem_cachep) 6875 goto out; 6876 6877 ret = dst_entries_init(&ip6_dst_blackhole_ops); 6878 if (ret) 6879 goto out_kmem_cache; 6880 6881 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 6882 if (ret) 6883 goto out_dst_entries; 6884 6885 ret = register_pernet_subsys(&ip6_route_net_ops); 6886 if (ret) 6887 goto out_register_inetpeer; 6888 6889 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 6890 6891 ret = fib6_init(); 6892 if (ret) 6893 goto out_register_subsys; 6894 6895 ret = xfrm6_init(); 6896 if (ret) 6897 goto out_fib6_init; 6898 6899 ret = fib6_rules_init(); 6900 if (ret) 6901 goto xfrm6_init; 6902 6903 ret = register_pernet_subsys(&ip6_route_net_late_ops); 6904 if (ret) 6905 goto fib6_rules_init; 6906 6907 ret = rtnl_register_many(ip6_route_rtnl_msg_handlers); 6908 if (ret < 0) 6909 goto out_register_late_subsys; 6910 6911 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 6912 if (ret) 6913 goto out_register_late_subsys; 6914 6915 #if IS_BUILTIN(CONFIG_IPV6) 6916 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6917 ret = bpf_iter_register(); 6918 if (ret) 6919 goto out_register_late_subsys; 6920 #endif 6921 #endif 6922 6923 for_each_possible_cpu(cpu) { 6924 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 6925 6926 INIT_LIST_HEAD(&ul->head); 6927 spin_lock_init(&ul->lock); 6928 } 6929 6930 out: 6931 return ret; 6932 6933 out_register_late_subsys: 6934 rtnl_unregister_all(PF_INET6); 6935 unregister_pernet_subsys(&ip6_route_net_late_ops); 6936 fib6_rules_init: 6937 fib6_rules_cleanup(); 6938 xfrm6_init: 6939 xfrm6_fini(); 6940 out_fib6_init: 6941 fib6_gc_cleanup(); 6942 out_register_subsys: 6943 unregister_pernet_subsys(&ip6_route_net_ops); 6944 out_register_inetpeer: 6945 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6946 out_dst_entries: 6947 dst_entries_destroy(&ip6_dst_blackhole_ops); 6948 out_kmem_cache: 6949 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6950 goto out; 6951 } 6952 6953 void ip6_route_cleanup(void) 6954 { 6955 #if IS_BUILTIN(CONFIG_IPV6) 6956 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6957 bpf_iter_unregister(); 6958 #endif 6959 #endif 6960 unregister_netdevice_notifier(&ip6_route_dev_notifier); 6961 unregister_pernet_subsys(&ip6_route_net_late_ops); 6962 fib6_rules_cleanup(); 6963 xfrm6_fini(); 6964 fib6_gc_cleanup(); 6965 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6966 unregister_pernet_subsys(&ip6_route_net_ops); 6967 dst_entries_destroy(&ip6_dst_blackhole_ops); 6968 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6969 } 6970