1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IPv6 output functions 4 * Linux INET6 implementation 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Based on linux/net/ipv4/ip_output.c 10 * 11 * Changes: 12 * A.N.Kuznetsov : airthmetics in fragmentation. 13 * extension headers are implemented. 14 * route changes now work. 15 * ip6_forward does not confuse sniffers. 16 * etc. 17 * 18 * H. von Brand : Added missing #include <linux/string.h> 19 * Imran Patel : frag id should be in NBO 20 * Kazunori MIYAZAWA @USAGI 21 * : add ip6_append_data and related functions 22 * for datagram xmit 23 */ 24 25 #include <linux/errno.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/socket.h> 29 #include <linux/net.h> 30 #include <linux/netdevice.h> 31 #include <linux/if_arp.h> 32 #include <linux/in6.h> 33 #include <linux/tcp.h> 34 #include <linux/route.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 38 #include <linux/bpf-cgroup.h> 39 #include <linux/netfilter.h> 40 #include <linux/netfilter_ipv6.h> 41 42 #include <net/sock.h> 43 #include <net/snmp.h> 44 45 #include <net/gso.h> 46 #include <net/ipv6.h> 47 #include <net/ndisc.h> 48 #include <net/protocol.h> 49 #include <net/ip6_route.h> 50 #include <net/addrconf.h> 51 #include <net/rawv6.h> 52 #include <net/icmp.h> 53 #include <net/xfrm.h> 54 #include <net/checksum.h> 55 #include <linux/mroute6.h> 56 #include <net/l3mdev.h> 57 #include <net/lwtunnel.h> 58 #include <net/ip_tunnels.h> 59 60 static int ip6_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 61 { 62 struct dst_entry *dst = skb_dst(skb); 63 struct net_device *dev = dst->dev; 64 struct inet6_dev *idev = ip6_dst_idev(dst); 65 unsigned int hh_len = LL_RESERVED_SPACE(dev); 66 const struct in6_addr *daddr, *nexthop; 67 struct ipv6hdr *hdr; 68 struct neighbour *neigh; 69 int ret; 70 71 /* Be paranoid, rather than too clever. */ 72 if (unlikely(hh_len > skb_headroom(skb)) && dev->header_ops) { 73 /* Make sure idev stays alive */ 74 rcu_read_lock(); 75 skb = skb_expand_head(skb, hh_len); 76 if (!skb) { 77 IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); 78 rcu_read_unlock(); 79 return -ENOMEM; 80 } 81 rcu_read_unlock(); 82 } 83 84 hdr = ipv6_hdr(skb); 85 daddr = &hdr->daddr; 86 if (ipv6_addr_is_multicast(daddr)) { 87 if (!(dev->flags & IFF_LOOPBACK) && sk_mc_loop(sk) && 88 ((mroute6_is_socket(net, skb) && 89 !(IP6CB(skb)->flags & IP6SKB_FORWARDED)) || 90 ipv6_chk_mcast_addr(dev, daddr, &hdr->saddr))) { 91 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 92 93 /* Do not check for IFF_ALLMULTI; multicast routing 94 is not supported in any case. 95 */ 96 if (newskb) 97 NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, 98 net, sk, newskb, NULL, newskb->dev, 99 dev_loopback_xmit); 100 101 if (hdr->hop_limit == 0) { 102 IP6_INC_STATS(net, idev, 103 IPSTATS_MIB_OUTDISCARDS); 104 kfree_skb(skb); 105 return 0; 106 } 107 } 108 109 IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUTMCAST, skb->len); 110 if (IPV6_ADDR_MC_SCOPE(daddr) <= IPV6_ADDR_SCOPE_NODELOCAL && 111 !(dev->flags & IFF_LOOPBACK)) { 112 kfree_skb(skb); 113 return 0; 114 } 115 } 116 117 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 118 int res = lwtunnel_xmit(skb); 119 120 if (res != LWTUNNEL_XMIT_CONTINUE) 121 return res; 122 } 123 124 IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUT, skb->len); 125 126 rcu_read_lock(); 127 nexthop = rt6_nexthop(dst_rt6_info(dst), daddr); 128 neigh = __ipv6_neigh_lookup_noref(dev, nexthop); 129 130 if (IS_ERR_OR_NULL(neigh)) { 131 if (unlikely(!neigh)) 132 neigh = __neigh_create(&nd_tbl, nexthop, dev, false); 133 if (IS_ERR(neigh)) { 134 rcu_read_unlock(); 135 IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTNOROUTES); 136 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); 137 return -EINVAL; 138 } 139 } 140 sock_confirm_neigh(skb, neigh); 141 ret = neigh_output(neigh, skb, false); 142 rcu_read_unlock(); 143 return ret; 144 } 145 146 static int 147 ip6_finish_output_gso_slowpath_drop(struct net *net, struct sock *sk, 148 struct sk_buff *skb, unsigned int mtu) 149 { 150 struct sk_buff *segs, *nskb; 151 netdev_features_t features; 152 int ret = 0; 153 154 /* Please see corresponding comment in ip_finish_output_gso 155 * describing the cases where GSO segment length exceeds the 156 * egress MTU. 157 */ 158 features = netif_skb_features(skb); 159 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 160 if (IS_ERR_OR_NULL(segs)) { 161 kfree_skb(skb); 162 return -ENOMEM; 163 } 164 165 consume_skb(skb); 166 167 skb_list_walk_safe(segs, segs, nskb) { 168 int err; 169 170 skb_mark_not_on_list(segs); 171 /* Last GSO segment can be smaller than gso_size (and MTU). 172 * Adding a fragment header would produce an "atomic fragment", 173 * which is considered harmful (RFC-8021). Avoid that. 174 */ 175 err = segs->len > mtu ? 176 ip6_fragment(net, sk, segs, ip6_finish_output2) : 177 ip6_finish_output2(net, sk, segs); 178 if (err && ret == 0) 179 ret = err; 180 } 181 182 return ret; 183 } 184 185 static int ip6_finish_output_gso(struct net *net, struct sock *sk, 186 struct sk_buff *skb, unsigned int mtu) 187 { 188 if (!(IP6CB(skb)->flags & IP6SKB_FAKEJUMBO) && 189 !skb_gso_validate_network_len(skb, mtu)) 190 return ip6_finish_output_gso_slowpath_drop(net, sk, skb, mtu); 191 192 return ip6_finish_output2(net, sk, skb); 193 } 194 195 static int __ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 196 { 197 unsigned int mtu; 198 199 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 200 /* Policy lookup after SNAT yielded a new policy */ 201 if (skb_dst(skb)->xfrm) { 202 IP6CB(skb)->flags |= IP6SKB_REROUTED; 203 return dst_output(net, sk, skb); 204 } 205 #endif 206 207 mtu = ip6_skb_dst_mtu(skb); 208 if (skb_is_gso(skb)) 209 return ip6_finish_output_gso(net, sk, skb, mtu); 210 211 if (skb->len > mtu || 212 (IP6CB(skb)->frag_max_size && skb->len > IP6CB(skb)->frag_max_size)) 213 return ip6_fragment(net, sk, skb, ip6_finish_output2); 214 215 return ip6_finish_output2(net, sk, skb); 216 } 217 218 static int ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 219 { 220 int ret; 221 222 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 223 switch (ret) { 224 case NET_XMIT_SUCCESS: 225 case NET_XMIT_CN: 226 return __ip6_finish_output(net, sk, skb) ? : ret; 227 default: 228 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 229 return ret; 230 } 231 } 232 233 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb) 234 { 235 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 236 struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); 237 238 skb->protocol = htons(ETH_P_IPV6); 239 skb->dev = dev; 240 241 if (unlikely(!idev || READ_ONCE(idev->cnf.disable_ipv6))) { 242 IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); 243 kfree_skb_reason(skb, SKB_DROP_REASON_IPV6DISABLED); 244 return 0; 245 } 246 247 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 248 net, sk, skb, indev, dev, 249 ip6_finish_output, 250 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 251 } 252 EXPORT_SYMBOL(ip6_output); 253 254 bool ip6_autoflowlabel(struct net *net, const struct sock *sk) 255 { 256 if (!inet6_test_bit(AUTOFLOWLABEL_SET, sk)) 257 return ip6_default_np_autolabel(net); 258 return inet6_test_bit(AUTOFLOWLABEL, sk); 259 } 260 261 /* 262 * xmit an sk_buff (used by TCP, SCTP and DCCP) 263 * Note : socket lock is not held for SYNACK packets, but might be modified 264 * by calls to skb_set_owner_w() and ipv6_local_error(), 265 * which are using proper atomic operations or spinlocks. 266 */ 267 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, 268 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority) 269 { 270 struct net *net = sock_net(sk); 271 const struct ipv6_pinfo *np = inet6_sk(sk); 272 struct in6_addr *first_hop = &fl6->daddr; 273 struct dst_entry *dst = skb_dst(skb); 274 struct net_device *dev = dst->dev; 275 struct inet6_dev *idev = ip6_dst_idev(dst); 276 struct hop_jumbo_hdr *hop_jumbo; 277 int hoplen = sizeof(*hop_jumbo); 278 unsigned int head_room; 279 struct ipv6hdr *hdr; 280 u8 proto = fl6->flowi6_proto; 281 int seg_len = skb->len; 282 int hlimit = -1; 283 u32 mtu; 284 285 head_room = sizeof(struct ipv6hdr) + hoplen + LL_RESERVED_SPACE(dev); 286 if (opt) 287 head_room += opt->opt_nflen + opt->opt_flen; 288 289 if (unlikely(head_room > skb_headroom(skb))) { 290 /* Make sure idev stays alive */ 291 rcu_read_lock(); 292 skb = skb_expand_head(skb, head_room); 293 if (!skb) { 294 IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); 295 rcu_read_unlock(); 296 return -ENOBUFS; 297 } 298 rcu_read_unlock(); 299 } 300 301 if (opt) { 302 seg_len += opt->opt_nflen + opt->opt_flen; 303 304 if (opt->opt_flen) 305 ipv6_push_frag_opts(skb, opt, &proto); 306 307 if (opt->opt_nflen) 308 ipv6_push_nfrag_opts(skb, opt, &proto, &first_hop, 309 &fl6->saddr); 310 } 311 312 if (unlikely(seg_len > IPV6_MAXPLEN)) { 313 hop_jumbo = skb_push(skb, hoplen); 314 315 hop_jumbo->nexthdr = proto; 316 hop_jumbo->hdrlen = 0; 317 hop_jumbo->tlv_type = IPV6_TLV_JUMBO; 318 hop_jumbo->tlv_len = 4; 319 hop_jumbo->jumbo_payload_len = htonl(seg_len + hoplen); 320 321 proto = IPPROTO_HOPOPTS; 322 seg_len = 0; 323 IP6CB(skb)->flags |= IP6SKB_FAKEJUMBO; 324 } 325 326 skb_push(skb, sizeof(struct ipv6hdr)); 327 skb_reset_network_header(skb); 328 hdr = ipv6_hdr(skb); 329 330 /* 331 * Fill in the IPv6 header 332 */ 333 if (np) 334 hlimit = READ_ONCE(np->hop_limit); 335 if (hlimit < 0) 336 hlimit = ip6_dst_hoplimit(dst); 337 338 ip6_flow_hdr(hdr, tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, 339 ip6_autoflowlabel(net, sk), fl6)); 340 341 hdr->payload_len = htons(seg_len); 342 hdr->nexthdr = proto; 343 hdr->hop_limit = hlimit; 344 345 hdr->saddr = fl6->saddr; 346 hdr->daddr = *first_hop; 347 348 skb->protocol = htons(ETH_P_IPV6); 349 skb->priority = priority; 350 skb->mark = mark; 351 352 mtu = dst_mtu(dst); 353 if ((skb->len <= mtu) || skb->ignore_df || skb_is_gso(skb)) { 354 IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTREQUESTS); 355 356 /* if egress device is enslaved to an L3 master device pass the 357 * skb to its handler for processing 358 */ 359 skb = l3mdev_ip6_out((struct sock *)sk, skb); 360 if (unlikely(!skb)) 361 return 0; 362 363 /* hooks should never assume socket lock is held. 364 * we promote our socket to non const 365 */ 366 return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, 367 net, (struct sock *)sk, skb, NULL, dev, 368 dst_output); 369 } 370 371 skb->dev = dev; 372 /* ipv6_local_error() does not require socket lock, 373 * we promote our socket to non const 374 */ 375 ipv6_local_error((struct sock *)sk, EMSGSIZE, fl6, mtu); 376 377 IP6_INC_STATS(net, idev, IPSTATS_MIB_FRAGFAILS); 378 kfree_skb(skb); 379 return -EMSGSIZE; 380 } 381 EXPORT_SYMBOL(ip6_xmit); 382 383 static int ip6_call_ra_chain(struct sk_buff *skb, int sel) 384 { 385 struct ip6_ra_chain *ra; 386 struct sock *last = NULL; 387 388 read_lock(&ip6_ra_lock); 389 for (ra = ip6_ra_chain; ra; ra = ra->next) { 390 struct sock *sk = ra->sk; 391 if (sk && ra->sel == sel && 392 (!sk->sk_bound_dev_if || 393 sk->sk_bound_dev_if == skb->dev->ifindex)) { 394 395 if (inet6_test_bit(RTALERT_ISOLATE, sk) && 396 !net_eq(sock_net(sk), dev_net(skb->dev))) { 397 continue; 398 } 399 if (last) { 400 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 401 if (skb2) 402 rawv6_rcv(last, skb2); 403 } 404 last = sk; 405 } 406 } 407 408 if (last) { 409 rawv6_rcv(last, skb); 410 read_unlock(&ip6_ra_lock); 411 return 1; 412 } 413 read_unlock(&ip6_ra_lock); 414 return 0; 415 } 416 417 static int ip6_forward_proxy_check(struct sk_buff *skb) 418 { 419 struct ipv6hdr *hdr = ipv6_hdr(skb); 420 u8 nexthdr = hdr->nexthdr; 421 __be16 frag_off; 422 int offset; 423 424 if (ipv6_ext_hdr(nexthdr)) { 425 offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); 426 if (offset < 0) 427 return 0; 428 } else 429 offset = sizeof(struct ipv6hdr); 430 431 if (nexthdr == IPPROTO_ICMPV6) { 432 struct icmp6hdr *icmp6; 433 434 if (!pskb_may_pull(skb, (skb_network_header(skb) + 435 offset + 1 - skb->data))) 436 return 0; 437 438 icmp6 = (struct icmp6hdr *)(skb_network_header(skb) + offset); 439 440 switch (icmp6->icmp6_type) { 441 case NDISC_ROUTER_SOLICITATION: 442 case NDISC_ROUTER_ADVERTISEMENT: 443 case NDISC_NEIGHBOUR_SOLICITATION: 444 case NDISC_NEIGHBOUR_ADVERTISEMENT: 445 case NDISC_REDIRECT: 446 /* For reaction involving unicast neighbor discovery 447 * message destined to the proxied address, pass it to 448 * input function. 449 */ 450 return 1; 451 default: 452 break; 453 } 454 } 455 456 /* 457 * The proxying router can't forward traffic sent to a link-local 458 * address, so signal the sender and discard the packet. This 459 * behavior is clarified by the MIPv6 specification. 460 */ 461 if (ipv6_addr_type(&hdr->daddr) & IPV6_ADDR_LINKLOCAL) { 462 dst_link_failure(skb); 463 return -1; 464 } 465 466 return 0; 467 } 468 469 static inline int ip6_forward_finish(struct net *net, struct sock *sk, 470 struct sk_buff *skb) 471 { 472 #ifdef CONFIG_NET_SWITCHDEV 473 if (skb->offload_l3_fwd_mark) { 474 consume_skb(skb); 475 return 0; 476 } 477 #endif 478 479 skb_clear_tstamp(skb); 480 return dst_output(net, sk, skb); 481 } 482 483 static bool ip6_pkt_too_big(const struct sk_buff *skb, unsigned int mtu) 484 { 485 if (skb->len <= mtu) 486 return false; 487 488 /* ipv6 conntrack defrag sets max_frag_size + ignore_df */ 489 if (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu) 490 return true; 491 492 if (skb->ignore_df) 493 return false; 494 495 if (skb_is_gso(skb) && skb_gso_validate_network_len(skb, mtu)) 496 return false; 497 498 return true; 499 } 500 501 int ip6_forward(struct sk_buff *skb) 502 { 503 struct dst_entry *dst = skb_dst(skb); 504 struct ipv6hdr *hdr = ipv6_hdr(skb); 505 struct inet6_skb_parm *opt = IP6CB(skb); 506 struct net *net = dev_net(dst->dev); 507 struct inet6_dev *idev; 508 SKB_DR(reason); 509 u32 mtu; 510 511 idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); 512 if (READ_ONCE(net->ipv6.devconf_all->forwarding) == 0) 513 goto error; 514 515 if (skb->pkt_type != PACKET_HOST) 516 goto drop; 517 518 if (unlikely(skb->sk)) 519 goto drop; 520 521 if (skb_warn_if_lro(skb)) 522 goto drop; 523 524 if (!READ_ONCE(net->ipv6.devconf_all->disable_policy) && 525 (!idev || !READ_ONCE(idev->cnf.disable_policy)) && 526 !xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) { 527 __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); 528 goto drop; 529 } 530 531 skb_forward_csum(skb); 532 533 /* 534 * We DO NOT make any processing on 535 * RA packets, pushing them to user level AS IS 536 * without ane WARRANTY that application will be able 537 * to interpret them. The reason is that we 538 * cannot make anything clever here. 539 * 540 * We are not end-node, so that if packet contains 541 * AH/ESP, we cannot make anything. 542 * Defragmentation also would be mistake, RA packets 543 * cannot be fragmented, because there is no warranty 544 * that different fragments will go along one path. --ANK 545 */ 546 if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { 547 if (ip6_call_ra_chain(skb, ntohs(opt->ra))) 548 return 0; 549 } 550 551 /* 552 * check and decrement ttl 553 */ 554 if (hdr->hop_limit <= 1) { 555 icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0); 556 __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); 557 558 kfree_skb_reason(skb, SKB_DROP_REASON_IP_INHDR); 559 return -ETIMEDOUT; 560 } 561 562 /* XXX: idev->cnf.proxy_ndp? */ 563 if (READ_ONCE(net->ipv6.devconf_all->proxy_ndp) && 564 pneigh_lookup(&nd_tbl, net, &hdr->daddr, skb->dev, 0)) { 565 int proxied = ip6_forward_proxy_check(skb); 566 if (proxied > 0) { 567 /* It's tempting to decrease the hop limit 568 * here by 1, as we do at the end of the 569 * function too. 570 * 571 * But that would be incorrect, as proxying is 572 * not forwarding. The ip6_input function 573 * will handle this packet locally, and it 574 * depends on the hop limit being unchanged. 575 * 576 * One example is the NDP hop limit, that 577 * always has to stay 255, but other would be 578 * similar checks around RA packets, where the 579 * user can even change the desired limit. 580 */ 581 return ip6_input(skb); 582 } else if (proxied < 0) { 583 __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); 584 goto drop; 585 } 586 } 587 588 if (!xfrm6_route_forward(skb)) { 589 __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); 590 SKB_DR_SET(reason, XFRM_POLICY); 591 goto drop; 592 } 593 dst = skb_dst(skb); 594 595 /* IPv6 specs say nothing about it, but it is clear that we cannot 596 send redirects to source routed frames. 597 We don't send redirects to frames decapsulated from IPsec. 598 */ 599 if (IP6CB(skb)->iif == dst->dev->ifindex && 600 opt->srcrt == 0 && !skb_sec_path(skb)) { 601 struct in6_addr *target = NULL; 602 struct inet_peer *peer; 603 struct rt6_info *rt; 604 605 /* 606 * incoming and outgoing devices are the same 607 * send a redirect. 608 */ 609 610 rt = dst_rt6_info(dst); 611 if (rt->rt6i_flags & RTF_GATEWAY) 612 target = &rt->rt6i_gateway; 613 else 614 target = &hdr->daddr; 615 616 peer = inet_getpeer_v6(net->ipv6.peers, &hdr->daddr, 1); 617 618 /* Limit redirects both by destination (here) 619 and by source (inside ndisc_send_redirect) 620 */ 621 if (inet_peer_xrlim_allow(peer, 1*HZ)) 622 ndisc_send_redirect(skb, target); 623 if (peer) 624 inet_putpeer(peer); 625 } else { 626 int addrtype = ipv6_addr_type(&hdr->saddr); 627 628 /* This check is security critical. */ 629 if (addrtype == IPV6_ADDR_ANY || 630 addrtype & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LOOPBACK)) 631 goto error; 632 if (addrtype & IPV6_ADDR_LINKLOCAL) { 633 icmpv6_send(skb, ICMPV6_DEST_UNREACH, 634 ICMPV6_NOT_NEIGHBOUR, 0); 635 goto error; 636 } 637 } 638 639 __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS); 640 641 mtu = ip6_dst_mtu_maybe_forward(dst, true); 642 if (mtu < IPV6_MIN_MTU) 643 mtu = IPV6_MIN_MTU; 644 645 if (ip6_pkt_too_big(skb, mtu)) { 646 /* Again, force OUTPUT device used as source address */ 647 skb->dev = dst->dev; 648 icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); 649 __IP6_INC_STATS(net, idev, IPSTATS_MIB_INTOOBIGERRORS); 650 __IP6_INC_STATS(net, ip6_dst_idev(dst), 651 IPSTATS_MIB_FRAGFAILS); 652 kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG); 653 return -EMSGSIZE; 654 } 655 656 if (skb_cow(skb, dst->dev->hard_header_len)) { 657 __IP6_INC_STATS(net, ip6_dst_idev(dst), 658 IPSTATS_MIB_OUTDISCARDS); 659 goto drop; 660 } 661 662 hdr = ipv6_hdr(skb); 663 664 /* Mangling hops number delayed to point after skb COW */ 665 666 hdr->hop_limit--; 667 668 return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, 669 net, NULL, skb, skb->dev, dst->dev, 670 ip6_forward_finish); 671 672 error: 673 __IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); 674 SKB_DR_SET(reason, IP_INADDRERRORS); 675 drop: 676 kfree_skb_reason(skb, reason); 677 return -EINVAL; 678 } 679 680 static void ip6_copy_metadata(struct sk_buff *to, struct sk_buff *from) 681 { 682 to->pkt_type = from->pkt_type; 683 to->priority = from->priority; 684 to->protocol = from->protocol; 685 skb_dst_drop(to); 686 skb_dst_set(to, dst_clone(skb_dst(from))); 687 to->dev = from->dev; 688 to->mark = from->mark; 689 690 skb_copy_hash(to, from); 691 692 #ifdef CONFIG_NET_SCHED 693 to->tc_index = from->tc_index; 694 #endif 695 nf_copy(to, from); 696 skb_ext_copy(to, from); 697 skb_copy_secmark(to, from); 698 } 699 700 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, 701 u8 nexthdr, __be32 frag_id, 702 struct ip6_fraglist_iter *iter) 703 { 704 unsigned int first_len; 705 struct frag_hdr *fh; 706 707 /* BUILD HEADER */ 708 *prevhdr = NEXTHDR_FRAGMENT; 709 iter->tmp_hdr = kmemdup(skb_network_header(skb), hlen, GFP_ATOMIC); 710 if (!iter->tmp_hdr) 711 return -ENOMEM; 712 713 iter->frag = skb_shinfo(skb)->frag_list; 714 skb_frag_list_init(skb); 715 716 iter->offset = 0; 717 iter->hlen = hlen; 718 iter->frag_id = frag_id; 719 iter->nexthdr = nexthdr; 720 721 __skb_pull(skb, hlen); 722 fh = __skb_push(skb, sizeof(struct frag_hdr)); 723 __skb_push(skb, hlen); 724 skb_reset_network_header(skb); 725 memcpy(skb_network_header(skb), iter->tmp_hdr, hlen); 726 727 fh->nexthdr = nexthdr; 728 fh->reserved = 0; 729 fh->frag_off = htons(IP6_MF); 730 fh->identification = frag_id; 731 732 first_len = skb_pagelen(skb); 733 skb->data_len = first_len - skb_headlen(skb); 734 skb->len = first_len; 735 ipv6_hdr(skb)->payload_len = htons(first_len - sizeof(struct ipv6hdr)); 736 737 return 0; 738 } 739 EXPORT_SYMBOL(ip6_fraglist_init); 740 741 void ip6_fraglist_prepare(struct sk_buff *skb, 742 struct ip6_fraglist_iter *iter) 743 { 744 struct sk_buff *frag = iter->frag; 745 unsigned int hlen = iter->hlen; 746 struct frag_hdr *fh; 747 748 frag->ip_summed = CHECKSUM_NONE; 749 skb_reset_transport_header(frag); 750 fh = __skb_push(frag, sizeof(struct frag_hdr)); 751 __skb_push(frag, hlen); 752 skb_reset_network_header(frag); 753 memcpy(skb_network_header(frag), iter->tmp_hdr, hlen); 754 iter->offset += skb->len - hlen - sizeof(struct frag_hdr); 755 fh->nexthdr = iter->nexthdr; 756 fh->reserved = 0; 757 fh->frag_off = htons(iter->offset); 758 if (frag->next) 759 fh->frag_off |= htons(IP6_MF); 760 fh->identification = iter->frag_id; 761 ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); 762 ip6_copy_metadata(frag, skb); 763 } 764 EXPORT_SYMBOL(ip6_fraglist_prepare); 765 766 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, 767 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, 768 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state) 769 { 770 state->prevhdr = prevhdr; 771 state->nexthdr = nexthdr; 772 state->frag_id = frag_id; 773 774 state->hlen = hlen; 775 state->mtu = mtu; 776 777 state->left = skb->len - hlen; /* Space per frame */ 778 state->ptr = hlen; /* Where to start from */ 779 780 state->hroom = hdr_room; 781 state->troom = needed_tailroom; 782 783 state->offset = 0; 784 } 785 EXPORT_SYMBOL(ip6_frag_init); 786 787 struct sk_buff *ip6_frag_next(struct sk_buff *skb, struct ip6_frag_state *state) 788 { 789 u8 *prevhdr = state->prevhdr, *fragnexthdr_offset; 790 struct sk_buff *frag; 791 struct frag_hdr *fh; 792 unsigned int len; 793 794 len = state->left; 795 /* IF: it doesn't fit, use 'mtu' - the data space left */ 796 if (len > state->mtu) 797 len = state->mtu; 798 /* IF: we are not sending up to and including the packet end 799 then align the next start on an eight byte boundary */ 800 if (len < state->left) 801 len &= ~7; 802 803 /* Allocate buffer */ 804 frag = alloc_skb(len + state->hlen + sizeof(struct frag_hdr) + 805 state->hroom + state->troom, GFP_ATOMIC); 806 if (!frag) 807 return ERR_PTR(-ENOMEM); 808 809 /* 810 * Set up data on packet 811 */ 812 813 ip6_copy_metadata(frag, skb); 814 skb_reserve(frag, state->hroom); 815 skb_put(frag, len + state->hlen + sizeof(struct frag_hdr)); 816 skb_reset_network_header(frag); 817 fh = (struct frag_hdr *)(skb_network_header(frag) + state->hlen); 818 frag->transport_header = (frag->network_header + state->hlen + 819 sizeof(struct frag_hdr)); 820 821 /* 822 * Charge the memory for the fragment to any owner 823 * it might possess 824 */ 825 if (skb->sk) 826 skb_set_owner_w(frag, skb->sk); 827 828 /* 829 * Copy the packet header into the new buffer. 830 */ 831 skb_copy_from_linear_data(skb, skb_network_header(frag), state->hlen); 832 833 fragnexthdr_offset = skb_network_header(frag); 834 fragnexthdr_offset += prevhdr - skb_network_header(skb); 835 *fragnexthdr_offset = NEXTHDR_FRAGMENT; 836 837 /* 838 * Build fragment header. 839 */ 840 fh->nexthdr = state->nexthdr; 841 fh->reserved = 0; 842 fh->identification = state->frag_id; 843 844 /* 845 * Copy a block of the IP datagram. 846 */ 847 BUG_ON(skb_copy_bits(skb, state->ptr, skb_transport_header(frag), 848 len)); 849 state->left -= len; 850 851 fh->frag_off = htons(state->offset); 852 if (state->left > 0) 853 fh->frag_off |= htons(IP6_MF); 854 ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); 855 856 state->ptr += len; 857 state->offset += len; 858 859 return frag; 860 } 861 EXPORT_SYMBOL(ip6_frag_next); 862 863 int ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 864 int (*output)(struct net *, struct sock *, struct sk_buff *)) 865 { 866 struct sk_buff *frag; 867 struct rt6_info *rt = dst_rt6_info(skb_dst(skb)); 868 struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? 869 inet6_sk(skb->sk) : NULL; 870 u8 tstamp_type = skb->tstamp_type; 871 struct ip6_frag_state state; 872 unsigned int mtu, hlen, nexthdr_offset; 873 ktime_t tstamp = skb->tstamp; 874 int hroom, err = 0; 875 __be32 frag_id; 876 u8 *prevhdr, nexthdr = 0; 877 878 err = ip6_find_1stfragopt(skb, &prevhdr); 879 if (err < 0) 880 goto fail; 881 hlen = err; 882 nexthdr = *prevhdr; 883 nexthdr_offset = prevhdr - skb_network_header(skb); 884 885 mtu = ip6_skb_dst_mtu(skb); 886 887 /* We must not fragment if the socket is set to force MTU discovery 888 * or if the skb it not generated by a local socket. 889 */ 890 if (unlikely(!skb->ignore_df && skb->len > mtu)) 891 goto fail_toobig; 892 893 if (IP6CB(skb)->frag_max_size) { 894 if (IP6CB(skb)->frag_max_size > mtu) 895 goto fail_toobig; 896 897 /* don't send fragments larger than what we received */ 898 mtu = IP6CB(skb)->frag_max_size; 899 if (mtu < IPV6_MIN_MTU) 900 mtu = IPV6_MIN_MTU; 901 } 902 903 if (np) { 904 u32 frag_size = READ_ONCE(np->frag_size); 905 906 if (frag_size && frag_size < mtu) 907 mtu = frag_size; 908 } 909 if (mtu < hlen + sizeof(struct frag_hdr) + 8) 910 goto fail_toobig; 911 mtu -= hlen + sizeof(struct frag_hdr); 912 913 frag_id = ipv6_select_ident(net, &ipv6_hdr(skb)->daddr, 914 &ipv6_hdr(skb)->saddr); 915 916 if (skb->ip_summed == CHECKSUM_PARTIAL && 917 (err = skb_checksum_help(skb))) 918 goto fail; 919 920 prevhdr = skb_network_header(skb) + nexthdr_offset; 921 hroom = LL_RESERVED_SPACE(rt->dst.dev); 922 if (skb_has_frag_list(skb)) { 923 unsigned int first_len = skb_pagelen(skb); 924 struct ip6_fraglist_iter iter; 925 struct sk_buff *frag2; 926 927 if (first_len - hlen > mtu || 928 ((first_len - hlen) & 7) || 929 skb_cloned(skb) || 930 skb_headroom(skb) < (hroom + sizeof(struct frag_hdr))) 931 goto slow_path; 932 933 skb_walk_frags(skb, frag) { 934 /* Correct geometry. */ 935 if (frag->len > mtu || 936 ((frag->len & 7) && frag->next) || 937 skb_headroom(frag) < (hlen + hroom + sizeof(struct frag_hdr))) 938 goto slow_path_clean; 939 940 /* Partially cloned skb? */ 941 if (skb_shared(frag)) 942 goto slow_path_clean; 943 944 BUG_ON(frag->sk); 945 if (skb->sk) { 946 frag->sk = skb->sk; 947 frag->destructor = sock_wfree; 948 } 949 skb->truesize -= frag->truesize; 950 } 951 952 err = ip6_fraglist_init(skb, hlen, prevhdr, nexthdr, frag_id, 953 &iter); 954 if (err < 0) 955 goto fail; 956 957 /* We prevent @rt from being freed. */ 958 rcu_read_lock(); 959 960 for (;;) { 961 /* Prepare header of the next frame, 962 * before previous one went down. */ 963 if (iter.frag) 964 ip6_fraglist_prepare(skb, &iter); 965 966 skb_set_delivery_time(skb, tstamp, tstamp_type); 967 err = output(net, sk, skb); 968 if (!err) 969 IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), 970 IPSTATS_MIB_FRAGCREATES); 971 972 if (err || !iter.frag) 973 break; 974 975 skb = ip6_fraglist_next(&iter); 976 } 977 978 kfree(iter.tmp_hdr); 979 980 if (err == 0) { 981 IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), 982 IPSTATS_MIB_FRAGOKS); 983 rcu_read_unlock(); 984 return 0; 985 } 986 987 kfree_skb_list(iter.frag); 988 989 IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), 990 IPSTATS_MIB_FRAGFAILS); 991 rcu_read_unlock(); 992 return err; 993 994 slow_path_clean: 995 skb_walk_frags(skb, frag2) { 996 if (frag2 == frag) 997 break; 998 frag2->sk = NULL; 999 frag2->destructor = NULL; 1000 skb->truesize += frag2->truesize; 1001 } 1002 } 1003 1004 slow_path: 1005 /* 1006 * Fragment the datagram. 1007 */ 1008 1009 ip6_frag_init(skb, hlen, mtu, rt->dst.dev->needed_tailroom, 1010 LL_RESERVED_SPACE(rt->dst.dev), prevhdr, nexthdr, frag_id, 1011 &state); 1012 1013 /* 1014 * Keep copying data until we run out. 1015 */ 1016 1017 while (state.left > 0) { 1018 frag = ip6_frag_next(skb, &state); 1019 if (IS_ERR(frag)) { 1020 err = PTR_ERR(frag); 1021 goto fail; 1022 } 1023 1024 /* 1025 * Put this fragment into the sending queue. 1026 */ 1027 skb_set_delivery_time(frag, tstamp, tstamp_type); 1028 err = output(net, sk, frag); 1029 if (err) 1030 goto fail; 1031 1032 IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), 1033 IPSTATS_MIB_FRAGCREATES); 1034 } 1035 IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), 1036 IPSTATS_MIB_FRAGOKS); 1037 consume_skb(skb); 1038 return err; 1039 1040 fail_toobig: 1041 icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); 1042 err = -EMSGSIZE; 1043 1044 fail: 1045 IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), 1046 IPSTATS_MIB_FRAGFAILS); 1047 kfree_skb(skb); 1048 return err; 1049 } 1050 1051 static inline int ip6_rt_check(const struct rt6key *rt_key, 1052 const struct in6_addr *fl_addr, 1053 const struct in6_addr *addr_cache) 1054 { 1055 return (rt_key->plen != 128 || !ipv6_addr_equal(fl_addr, &rt_key->addr)) && 1056 (!addr_cache || !ipv6_addr_equal(fl_addr, addr_cache)); 1057 } 1058 1059 static struct dst_entry *ip6_sk_dst_check(struct sock *sk, 1060 struct dst_entry *dst, 1061 const struct flowi6 *fl6) 1062 { 1063 struct ipv6_pinfo *np = inet6_sk(sk); 1064 struct rt6_info *rt; 1065 1066 if (!dst) 1067 goto out; 1068 1069 if (dst->ops->family != AF_INET6) { 1070 dst_release(dst); 1071 return NULL; 1072 } 1073 1074 rt = dst_rt6_info(dst); 1075 /* Yes, checking route validity in not connected 1076 * case is not very simple. Take into account, 1077 * that we do not support routing by source, TOS, 1078 * and MSG_DONTROUTE --ANK (980726) 1079 * 1080 * 1. ip6_rt_check(): If route was host route, 1081 * check that cached destination is current. 1082 * If it is network route, we still may 1083 * check its validity using saved pointer 1084 * to the last used address: daddr_cache. 1085 * We do not want to save whole address now, 1086 * (because main consumer of this service 1087 * is tcp, which has not this problem), 1088 * so that the last trick works only on connected 1089 * sockets. 1090 * 2. oif also should be the same. 1091 */ 1092 if (ip6_rt_check(&rt->rt6i_dst, &fl6->daddr, np->daddr_cache) || 1093 #ifdef CONFIG_IPV6_SUBTREES 1094 ip6_rt_check(&rt->rt6i_src, &fl6->saddr, np->saddr_cache) || 1095 #endif 1096 (fl6->flowi6_oif && fl6->flowi6_oif != dst->dev->ifindex)) { 1097 dst_release(dst); 1098 dst = NULL; 1099 } 1100 1101 out: 1102 return dst; 1103 } 1104 1105 static int ip6_dst_lookup_tail(struct net *net, const struct sock *sk, 1106 struct dst_entry **dst, struct flowi6 *fl6) 1107 { 1108 #ifdef CONFIG_IPV6_OPTIMISTIC_DAD 1109 struct neighbour *n; 1110 struct rt6_info *rt; 1111 #endif 1112 int err; 1113 int flags = 0; 1114 1115 /* The correct way to handle this would be to do 1116 * ip6_route_get_saddr, and then ip6_route_output; however, 1117 * the route-specific preferred source forces the 1118 * ip6_route_output call _before_ ip6_route_get_saddr. 1119 * 1120 * In source specific routing (no src=any default route), 1121 * ip6_route_output will fail given src=any saddr, though, so 1122 * that's why we try it again later. 1123 */ 1124 if (ipv6_addr_any(&fl6->saddr)) { 1125 struct fib6_info *from; 1126 struct rt6_info *rt; 1127 1128 *dst = ip6_route_output(net, sk, fl6); 1129 rt = (*dst)->error ? NULL : dst_rt6_info(*dst); 1130 1131 rcu_read_lock(); 1132 from = rt ? rcu_dereference(rt->from) : NULL; 1133 err = ip6_route_get_saddr(net, from, &fl6->daddr, 1134 sk ? READ_ONCE(inet6_sk(sk)->srcprefs) : 0, 1135 fl6->flowi6_l3mdev, 1136 &fl6->saddr); 1137 rcu_read_unlock(); 1138 1139 if (err) 1140 goto out_err_release; 1141 1142 /* If we had an erroneous initial result, pretend it 1143 * never existed and let the SA-enabled version take 1144 * over. 1145 */ 1146 if ((*dst)->error) { 1147 dst_release(*dst); 1148 *dst = NULL; 1149 } 1150 1151 if (fl6->flowi6_oif) 1152 flags |= RT6_LOOKUP_F_IFACE; 1153 } 1154 1155 if (!*dst) 1156 *dst = ip6_route_output_flags(net, sk, fl6, flags); 1157 1158 err = (*dst)->error; 1159 if (err) 1160 goto out_err_release; 1161 1162 #ifdef CONFIG_IPV6_OPTIMISTIC_DAD 1163 /* 1164 * Here if the dst entry we've looked up 1165 * has a neighbour entry that is in the INCOMPLETE 1166 * state and the src address from the flow is 1167 * marked as OPTIMISTIC, we release the found 1168 * dst entry and replace it instead with the 1169 * dst entry of the nexthop router 1170 */ 1171 rt = dst_rt6_info(*dst); 1172 rcu_read_lock(); 1173 n = __ipv6_neigh_lookup_noref(rt->dst.dev, 1174 rt6_nexthop(rt, &fl6->daddr)); 1175 err = n && !(READ_ONCE(n->nud_state) & NUD_VALID) ? -EINVAL : 0; 1176 rcu_read_unlock(); 1177 1178 if (err) { 1179 struct inet6_ifaddr *ifp; 1180 struct flowi6 fl_gw6; 1181 int redirect; 1182 1183 ifp = ipv6_get_ifaddr(net, &fl6->saddr, 1184 (*dst)->dev, 1); 1185 1186 redirect = (ifp && ifp->flags & IFA_F_OPTIMISTIC); 1187 if (ifp) 1188 in6_ifa_put(ifp); 1189 1190 if (redirect) { 1191 /* 1192 * We need to get the dst entry for the 1193 * default router instead 1194 */ 1195 dst_release(*dst); 1196 memcpy(&fl_gw6, fl6, sizeof(struct flowi6)); 1197 memset(&fl_gw6.daddr, 0, sizeof(struct in6_addr)); 1198 *dst = ip6_route_output(net, sk, &fl_gw6); 1199 err = (*dst)->error; 1200 if (err) 1201 goto out_err_release; 1202 } 1203 } 1204 #endif 1205 if (ipv6_addr_v4mapped(&fl6->saddr) && 1206 !(ipv6_addr_v4mapped(&fl6->daddr) || ipv6_addr_any(&fl6->daddr))) { 1207 err = -EAFNOSUPPORT; 1208 goto out_err_release; 1209 } 1210 1211 return 0; 1212 1213 out_err_release: 1214 dst_release(*dst); 1215 *dst = NULL; 1216 1217 if (err == -ENETUNREACH) 1218 IP6_INC_STATS(net, NULL, IPSTATS_MIB_OUTNOROUTES); 1219 return err; 1220 } 1221 1222 /** 1223 * ip6_dst_lookup - perform route lookup on flow 1224 * @net: Network namespace to perform lookup in 1225 * @sk: socket which provides route info 1226 * @dst: pointer to dst_entry * for result 1227 * @fl6: flow to lookup 1228 * 1229 * This function performs a route lookup on the given flow. 1230 * 1231 * It returns zero on success, or a standard errno code on error. 1232 */ 1233 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, 1234 struct flowi6 *fl6) 1235 { 1236 *dst = NULL; 1237 return ip6_dst_lookup_tail(net, sk, dst, fl6); 1238 } 1239 EXPORT_SYMBOL_GPL(ip6_dst_lookup); 1240 1241 /** 1242 * ip6_dst_lookup_flow - perform route lookup on flow with ipsec 1243 * @net: Network namespace to perform lookup in 1244 * @sk: socket which provides route info 1245 * @fl6: flow to lookup 1246 * @final_dst: final destination address for ipsec lookup 1247 * 1248 * This function performs a route lookup on the given flow. 1249 * 1250 * It returns a valid dst pointer on success, or a pointer encoded 1251 * error code. 1252 */ 1253 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, 1254 const struct in6_addr *final_dst) 1255 { 1256 struct dst_entry *dst = NULL; 1257 int err; 1258 1259 err = ip6_dst_lookup_tail(net, sk, &dst, fl6); 1260 if (err) 1261 return ERR_PTR(err); 1262 if (final_dst) 1263 fl6->daddr = *final_dst; 1264 1265 return xfrm_lookup_route(net, dst, flowi6_to_flowi(fl6), sk, 0); 1266 } 1267 EXPORT_SYMBOL_GPL(ip6_dst_lookup_flow); 1268 1269 /** 1270 * ip6_sk_dst_lookup_flow - perform socket cached route lookup on flow 1271 * @sk: socket which provides the dst cache and route info 1272 * @fl6: flow to lookup 1273 * @final_dst: final destination address for ipsec lookup 1274 * @connected: whether @sk is connected or not 1275 * 1276 * This function performs a route lookup on the given flow with the 1277 * possibility of using the cached route in the socket if it is valid. 1278 * It will take the socket dst lock when operating on the dst cache. 1279 * As a result, this function can only be used in process context. 1280 * 1281 * In addition, for a connected socket, cache the dst in the socket 1282 * if the current cache is not valid. 1283 * 1284 * It returns a valid dst pointer on success, or a pointer encoded 1285 * error code. 1286 */ 1287 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, 1288 const struct in6_addr *final_dst, 1289 bool connected) 1290 { 1291 struct dst_entry *dst = sk_dst_check(sk, inet6_sk(sk)->dst_cookie); 1292 1293 dst = ip6_sk_dst_check(sk, dst, fl6); 1294 if (dst) 1295 return dst; 1296 1297 dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_dst); 1298 if (connected && !IS_ERR(dst)) 1299 ip6_sk_dst_store_flow(sk, dst_clone(dst), fl6); 1300 1301 return dst; 1302 } 1303 EXPORT_SYMBOL_GPL(ip6_sk_dst_lookup_flow); 1304 1305 static inline struct ipv6_opt_hdr *ip6_opt_dup(struct ipv6_opt_hdr *src, 1306 gfp_t gfp) 1307 { 1308 return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; 1309 } 1310 1311 static inline struct ipv6_rt_hdr *ip6_rthdr_dup(struct ipv6_rt_hdr *src, 1312 gfp_t gfp) 1313 { 1314 return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; 1315 } 1316 1317 static void ip6_append_data_mtu(unsigned int *mtu, 1318 int *maxfraglen, 1319 unsigned int fragheaderlen, 1320 struct sk_buff *skb, 1321 struct rt6_info *rt, 1322 unsigned int orig_mtu) 1323 { 1324 if (!(rt->dst.flags & DST_XFRM_TUNNEL)) { 1325 if (!skb) { 1326 /* first fragment, reserve header_len */ 1327 *mtu = orig_mtu - rt->dst.header_len; 1328 1329 } else { 1330 /* 1331 * this fragment is not first, the headers 1332 * space is regarded as data space. 1333 */ 1334 *mtu = orig_mtu; 1335 } 1336 *maxfraglen = ((*mtu - fragheaderlen) & ~7) 1337 + fragheaderlen - sizeof(struct frag_hdr); 1338 } 1339 } 1340 1341 static int ip6_setup_cork(struct sock *sk, struct inet_cork_full *cork, 1342 struct inet6_cork *v6_cork, struct ipcm6_cookie *ipc6, 1343 struct rt6_info *rt) 1344 { 1345 struct ipv6_pinfo *np = inet6_sk(sk); 1346 unsigned int mtu, frag_size; 1347 struct ipv6_txoptions *nopt, *opt = ipc6->opt; 1348 1349 /* callers pass dst together with a reference, set it first so 1350 * ip6_cork_release() can put it down even in case of an error. 1351 */ 1352 cork->base.dst = &rt->dst; 1353 1354 /* 1355 * setup for corking 1356 */ 1357 if (opt) { 1358 if (WARN_ON(v6_cork->opt)) 1359 return -EINVAL; 1360 1361 nopt = v6_cork->opt = kzalloc(sizeof(*opt), sk->sk_allocation); 1362 if (unlikely(!nopt)) 1363 return -ENOBUFS; 1364 1365 nopt->tot_len = sizeof(*opt); 1366 nopt->opt_flen = opt->opt_flen; 1367 nopt->opt_nflen = opt->opt_nflen; 1368 1369 nopt->dst0opt = ip6_opt_dup(opt->dst0opt, sk->sk_allocation); 1370 if (opt->dst0opt && !nopt->dst0opt) 1371 return -ENOBUFS; 1372 1373 nopt->dst1opt = ip6_opt_dup(opt->dst1opt, sk->sk_allocation); 1374 if (opt->dst1opt && !nopt->dst1opt) 1375 return -ENOBUFS; 1376 1377 nopt->hopopt = ip6_opt_dup(opt->hopopt, sk->sk_allocation); 1378 if (opt->hopopt && !nopt->hopopt) 1379 return -ENOBUFS; 1380 1381 nopt->srcrt = ip6_rthdr_dup(opt->srcrt, sk->sk_allocation); 1382 if (opt->srcrt && !nopt->srcrt) 1383 return -ENOBUFS; 1384 1385 /* need source address above miyazawa*/ 1386 } 1387 v6_cork->hop_limit = ipc6->hlimit; 1388 v6_cork->tclass = ipc6->tclass; 1389 if (rt->dst.flags & DST_XFRM_TUNNEL) 1390 mtu = READ_ONCE(np->pmtudisc) >= IPV6_PMTUDISC_PROBE ? 1391 READ_ONCE(rt->dst.dev->mtu) : dst_mtu(&rt->dst); 1392 else 1393 mtu = READ_ONCE(np->pmtudisc) >= IPV6_PMTUDISC_PROBE ? 1394 READ_ONCE(rt->dst.dev->mtu) : dst_mtu(xfrm_dst_path(&rt->dst)); 1395 1396 frag_size = READ_ONCE(np->frag_size); 1397 if (frag_size && frag_size < mtu) 1398 mtu = frag_size; 1399 1400 cork->base.fragsize = mtu; 1401 cork->base.gso_size = ipc6->gso_size; 1402 cork->base.tx_flags = 0; 1403 cork->base.mark = ipc6->sockc.mark; 1404 sock_tx_timestamp(sk, &ipc6->sockc, &cork->base.tx_flags); 1405 if (ipc6->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) { 1406 cork->base.flags |= IPCORK_TS_OPT_ID; 1407 cork->base.ts_opt_id = ipc6->sockc.ts_opt_id; 1408 } 1409 cork->base.length = 0; 1410 cork->base.transmit_time = ipc6->sockc.transmit_time; 1411 1412 return 0; 1413 } 1414 1415 static int __ip6_append_data(struct sock *sk, 1416 struct sk_buff_head *queue, 1417 struct inet_cork_full *cork_full, 1418 struct inet6_cork *v6_cork, 1419 struct page_frag *pfrag, 1420 int getfrag(void *from, char *to, int offset, 1421 int len, int odd, struct sk_buff *skb), 1422 void *from, size_t length, int transhdrlen, 1423 unsigned int flags, struct ipcm6_cookie *ipc6) 1424 { 1425 struct sk_buff *skb, *skb_prev = NULL; 1426 struct inet_cork *cork = &cork_full->base; 1427 struct flowi6 *fl6 = &cork_full->fl.u.ip6; 1428 unsigned int maxfraglen, fragheaderlen, mtu, orig_mtu, pmtu; 1429 struct ubuf_info *uarg = NULL; 1430 int exthdrlen = 0; 1431 int dst_exthdrlen = 0; 1432 int hh_len; 1433 int copy; 1434 int err; 1435 int offset = 0; 1436 bool zc = false; 1437 u32 tskey = 0; 1438 struct rt6_info *rt = dst_rt6_info(cork->dst); 1439 bool paged, hold_tskey = false, extra_uref = false; 1440 struct ipv6_txoptions *opt = v6_cork->opt; 1441 int csummode = CHECKSUM_NONE; 1442 unsigned int maxnonfragsize, headersize; 1443 unsigned int wmem_alloc_delta = 0; 1444 1445 skb = skb_peek_tail(queue); 1446 if (!skb) { 1447 exthdrlen = opt ? opt->opt_flen : 0; 1448 dst_exthdrlen = rt->dst.header_len - rt->rt6i_nfheader_len; 1449 } 1450 1451 paged = !!cork->gso_size; 1452 mtu = cork->gso_size ? IP6_MAX_MTU : cork->fragsize; 1453 orig_mtu = mtu; 1454 1455 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1456 1457 fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len + 1458 (opt ? opt->opt_nflen : 0); 1459 1460 headersize = sizeof(struct ipv6hdr) + 1461 (opt ? opt->opt_flen + opt->opt_nflen : 0) + 1462 rt->rt6i_nfheader_len; 1463 1464 if (mtu <= fragheaderlen || 1465 ((mtu - fragheaderlen) & ~7) + fragheaderlen <= sizeof(struct frag_hdr)) 1466 goto emsgsize; 1467 1468 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - 1469 sizeof(struct frag_hdr); 1470 1471 /* as per RFC 7112 section 5, the entire IPv6 Header Chain must fit 1472 * the first fragment 1473 */ 1474 if (headersize + transhdrlen > mtu) 1475 goto emsgsize; 1476 1477 if (cork->length + length > mtu - headersize && ipc6->dontfrag && 1478 (sk->sk_protocol == IPPROTO_UDP || 1479 sk->sk_protocol == IPPROTO_ICMPV6 || 1480 sk->sk_protocol == IPPROTO_RAW)) { 1481 ipv6_local_rxpmtu(sk, fl6, mtu - headersize + 1482 sizeof(struct ipv6hdr)); 1483 goto emsgsize; 1484 } 1485 1486 if (ip6_sk_ignore_df(sk)) 1487 maxnonfragsize = sizeof(struct ipv6hdr) + IPV6_MAXPLEN; 1488 else 1489 maxnonfragsize = mtu; 1490 1491 if (cork->length + length > maxnonfragsize - headersize) { 1492 emsgsize: 1493 pmtu = max_t(int, mtu - headersize + sizeof(struct ipv6hdr), 0); 1494 ipv6_local_error(sk, EMSGSIZE, fl6, pmtu); 1495 return -EMSGSIZE; 1496 } 1497 1498 /* CHECKSUM_PARTIAL only with no extension headers and when 1499 * we are not going to fragment 1500 */ 1501 if (transhdrlen && sk->sk_protocol == IPPROTO_UDP && 1502 headersize == sizeof(struct ipv6hdr) && 1503 length <= mtu - headersize && 1504 (!(flags & MSG_MORE) || cork->gso_size) && 1505 rt->dst.dev->features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 1506 csummode = CHECKSUM_PARTIAL; 1507 1508 if ((flags & MSG_ZEROCOPY) && length) { 1509 struct msghdr *msg = from; 1510 1511 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { 1512 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) 1513 return -EINVAL; 1514 1515 /* Leave uarg NULL if can't zerocopy, callers should 1516 * be able to handle it. 1517 */ 1518 if ((rt->dst.dev->features & NETIF_F_SG) && 1519 csummode == CHECKSUM_PARTIAL) { 1520 paged = true; 1521 zc = true; 1522 uarg = msg->msg_ubuf; 1523 } 1524 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1525 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1526 if (!uarg) 1527 return -ENOBUFS; 1528 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1529 if (rt->dst.dev->features & NETIF_F_SG && 1530 csummode == CHECKSUM_PARTIAL) { 1531 paged = true; 1532 zc = true; 1533 } else { 1534 uarg_to_msgzc(uarg)->zerocopy = 0; 1535 skb_zcopy_set(skb, uarg, &extra_uref); 1536 } 1537 } 1538 } else if ((flags & MSG_SPLICE_PAGES) && length) { 1539 if (inet_test_bit(HDRINCL, sk)) 1540 return -EPERM; 1541 if (rt->dst.dev->features & NETIF_F_SG && 1542 getfrag == ip_generic_getfrag) 1543 /* We need an empty buffer to attach stuff to */ 1544 paged = true; 1545 else 1546 flags &= ~MSG_SPLICE_PAGES; 1547 } 1548 1549 if (cork->tx_flags & SKBTX_ANY_TSTAMP && 1550 READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 1551 if (cork->flags & IPCORK_TS_OPT_ID) { 1552 tskey = cork->ts_opt_id; 1553 } else { 1554 tskey = atomic_inc_return(&sk->sk_tskey) - 1; 1555 hold_tskey = true; 1556 } 1557 } 1558 1559 /* 1560 * Let's try using as much space as possible. 1561 * Use MTU if total length of the message fits into the MTU. 1562 * Otherwise, we need to reserve fragment header and 1563 * fragment alignment (= 8-15 octects, in total). 1564 * 1565 * Note that we may need to "move" the data from the tail 1566 * of the buffer to the new fragment when we split 1567 * the message. 1568 * 1569 * FIXME: It may be fragmented into multiple chunks 1570 * at once if non-fragmentable extension headers 1571 * are too large. 1572 * --yoshfuji 1573 */ 1574 1575 cork->length += length; 1576 if (!skb) 1577 goto alloc_new_skb; 1578 1579 while (length > 0) { 1580 /* Check if the remaining data fits into current packet. */ 1581 copy = (cork->length <= mtu ? mtu : maxfraglen) - skb->len; 1582 if (copy < length) 1583 copy = maxfraglen - skb->len; 1584 1585 if (copy <= 0) { 1586 char *data; 1587 unsigned int datalen; 1588 unsigned int fraglen; 1589 unsigned int fraggap; 1590 unsigned int alloclen, alloc_extra; 1591 unsigned int pagedlen; 1592 alloc_new_skb: 1593 /* There's no room in the current skb */ 1594 if (skb) 1595 fraggap = skb->len - maxfraglen; 1596 else 1597 fraggap = 0; 1598 /* update mtu and maxfraglen if necessary */ 1599 if (!skb || !skb_prev) 1600 ip6_append_data_mtu(&mtu, &maxfraglen, 1601 fragheaderlen, skb, rt, 1602 orig_mtu); 1603 1604 skb_prev = skb; 1605 1606 /* 1607 * If remaining data exceeds the mtu, 1608 * we know we need more fragment(s). 1609 */ 1610 datalen = length + fraggap; 1611 1612 if (datalen > (cork->length <= mtu ? mtu : maxfraglen) - fragheaderlen) 1613 datalen = maxfraglen - fragheaderlen - rt->dst.trailer_len; 1614 fraglen = datalen + fragheaderlen; 1615 pagedlen = 0; 1616 1617 alloc_extra = hh_len; 1618 alloc_extra += dst_exthdrlen; 1619 alloc_extra += rt->dst.trailer_len; 1620 1621 /* We just reserve space for fragment header. 1622 * Note: this may be overallocation if the message 1623 * (without MSG_MORE) fits into the MTU. 1624 */ 1625 alloc_extra += sizeof(struct frag_hdr); 1626 1627 if ((flags & MSG_MORE) && 1628 !(rt->dst.dev->features&NETIF_F_SG)) 1629 alloclen = mtu; 1630 else if (!paged && 1631 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1632 !(rt->dst.dev->features & NETIF_F_SG))) 1633 alloclen = fraglen; 1634 else { 1635 alloclen = fragheaderlen + transhdrlen; 1636 pagedlen = datalen - transhdrlen; 1637 } 1638 alloclen += alloc_extra; 1639 1640 if (datalen != length + fraggap) { 1641 /* 1642 * this is not the last fragment, the trailer 1643 * space is regarded as data space. 1644 */ 1645 datalen += rt->dst.trailer_len; 1646 } 1647 1648 fraglen = datalen + fragheaderlen; 1649 1650 copy = datalen - transhdrlen - fraggap - pagedlen; 1651 /* [!] NOTE: copy may be negative if pagedlen>0 1652 * because then the equation may reduces to -fraggap. 1653 */ 1654 if (copy < 0 && !(flags & MSG_SPLICE_PAGES)) { 1655 err = -EINVAL; 1656 goto error; 1657 } 1658 if (transhdrlen) { 1659 skb = sock_alloc_send_skb(sk, alloclen, 1660 (flags & MSG_DONTWAIT), &err); 1661 } else { 1662 skb = NULL; 1663 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1664 2 * sk->sk_sndbuf) 1665 skb = alloc_skb(alloclen, 1666 sk->sk_allocation); 1667 if (unlikely(!skb)) 1668 err = -ENOBUFS; 1669 } 1670 if (!skb) 1671 goto error; 1672 /* 1673 * Fill in the control structures 1674 */ 1675 skb->protocol = htons(ETH_P_IPV6); 1676 skb->ip_summed = csummode; 1677 skb->csum = 0; 1678 /* reserve for fragmentation and ipsec header */ 1679 skb_reserve(skb, hh_len + sizeof(struct frag_hdr) + 1680 dst_exthdrlen); 1681 1682 /* 1683 * Find where to start putting bytes 1684 */ 1685 data = skb_put(skb, fraglen - pagedlen); 1686 skb_set_network_header(skb, exthdrlen); 1687 data += fragheaderlen; 1688 skb->transport_header = (skb->network_header + 1689 fragheaderlen); 1690 if (fraggap) { 1691 skb->csum = skb_copy_and_csum_bits( 1692 skb_prev, maxfraglen, 1693 data + transhdrlen, fraggap); 1694 skb_prev->csum = csum_sub(skb_prev->csum, 1695 skb->csum); 1696 data += fraggap; 1697 pskb_trim_unique(skb_prev, maxfraglen); 1698 } 1699 if (copy > 0 && 1700 getfrag(from, data + transhdrlen, offset, 1701 copy, fraggap, skb) < 0) { 1702 err = -EFAULT; 1703 kfree_skb(skb); 1704 goto error; 1705 } else if (flags & MSG_SPLICE_PAGES) { 1706 copy = 0; 1707 } 1708 1709 offset += copy; 1710 length -= copy + transhdrlen; 1711 transhdrlen = 0; 1712 exthdrlen = 0; 1713 dst_exthdrlen = 0; 1714 1715 /* Only the initial fragment is time stamped */ 1716 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1717 cork->tx_flags = 0; 1718 skb_shinfo(skb)->tskey = tskey; 1719 tskey = 0; 1720 skb_zcopy_set(skb, uarg, &extra_uref); 1721 1722 if ((flags & MSG_CONFIRM) && !skb_prev) 1723 skb_set_dst_pending_confirm(skb, 1); 1724 1725 /* 1726 * Put the packet on the pending queue 1727 */ 1728 if (!skb->destructor) { 1729 skb->destructor = sock_wfree; 1730 skb->sk = sk; 1731 wmem_alloc_delta += skb->truesize; 1732 } 1733 __skb_queue_tail(queue, skb); 1734 continue; 1735 } 1736 1737 if (copy > length) 1738 copy = length; 1739 1740 if (!(rt->dst.dev->features&NETIF_F_SG) && 1741 skb_tailroom(skb) >= copy) { 1742 unsigned int off; 1743 1744 off = skb->len; 1745 if (getfrag(from, skb_put(skb, copy), 1746 offset, copy, off, skb) < 0) { 1747 __skb_trim(skb, off); 1748 err = -EFAULT; 1749 goto error; 1750 } 1751 } else if (flags & MSG_SPLICE_PAGES) { 1752 struct msghdr *msg = from; 1753 1754 err = -EIO; 1755 if (WARN_ON_ONCE(copy > msg->msg_iter.count)) 1756 goto error; 1757 1758 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1759 sk->sk_allocation); 1760 if (err < 0) 1761 goto error; 1762 copy = err; 1763 wmem_alloc_delta += copy; 1764 } else if (!zc) { 1765 int i = skb_shinfo(skb)->nr_frags; 1766 1767 err = -ENOMEM; 1768 if (!sk_page_frag_refill(sk, pfrag)) 1769 goto error; 1770 1771 skb_zcopy_downgrade_managed(skb); 1772 if (!skb_can_coalesce(skb, i, pfrag->page, 1773 pfrag->offset)) { 1774 err = -EMSGSIZE; 1775 if (i == MAX_SKB_FRAGS) 1776 goto error; 1777 1778 __skb_fill_page_desc(skb, i, pfrag->page, 1779 pfrag->offset, 0); 1780 skb_shinfo(skb)->nr_frags = ++i; 1781 get_page(pfrag->page); 1782 } 1783 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1784 if (getfrag(from, 1785 page_address(pfrag->page) + pfrag->offset, 1786 offset, copy, skb->len, skb) < 0) 1787 goto error_efault; 1788 1789 pfrag->offset += copy; 1790 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1791 skb->len += copy; 1792 skb->data_len += copy; 1793 skb->truesize += copy; 1794 wmem_alloc_delta += copy; 1795 } else { 1796 err = skb_zerocopy_iter_dgram(skb, from, copy); 1797 if (err < 0) 1798 goto error; 1799 } 1800 offset += copy; 1801 length -= copy; 1802 } 1803 1804 if (wmem_alloc_delta) 1805 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1806 return 0; 1807 1808 error_efault: 1809 err = -EFAULT; 1810 error: 1811 net_zcopy_put_abort(uarg, extra_uref); 1812 cork->length -= length; 1813 IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); 1814 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1815 if (hold_tskey) 1816 atomic_dec(&sk->sk_tskey); 1817 return err; 1818 } 1819 1820 int ip6_append_data(struct sock *sk, 1821 int getfrag(void *from, char *to, int offset, int len, 1822 int odd, struct sk_buff *skb), 1823 void *from, size_t length, int transhdrlen, 1824 struct ipcm6_cookie *ipc6, struct flowi6 *fl6, 1825 struct rt6_info *rt, unsigned int flags) 1826 { 1827 struct inet_sock *inet = inet_sk(sk); 1828 struct ipv6_pinfo *np = inet6_sk(sk); 1829 int exthdrlen; 1830 int err; 1831 1832 if (flags&MSG_PROBE) 1833 return 0; 1834 if (skb_queue_empty(&sk->sk_write_queue)) { 1835 /* 1836 * setup for corking 1837 */ 1838 dst_hold(&rt->dst); 1839 err = ip6_setup_cork(sk, &inet->cork, &np->cork, 1840 ipc6, rt); 1841 if (err) 1842 return err; 1843 1844 inet->cork.fl.u.ip6 = *fl6; 1845 exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); 1846 length += exthdrlen; 1847 transhdrlen += exthdrlen; 1848 } else { 1849 transhdrlen = 0; 1850 } 1851 1852 return __ip6_append_data(sk, &sk->sk_write_queue, &inet->cork, 1853 &np->cork, sk_page_frag(sk), getfrag, 1854 from, length, transhdrlen, flags, ipc6); 1855 } 1856 EXPORT_SYMBOL_GPL(ip6_append_data); 1857 1858 static void ip6_cork_steal_dst(struct sk_buff *skb, struct inet_cork_full *cork) 1859 { 1860 struct dst_entry *dst = cork->base.dst; 1861 1862 cork->base.dst = NULL; 1863 skb_dst_set(skb, dst); 1864 } 1865 1866 static void ip6_cork_release(struct inet_cork_full *cork, 1867 struct inet6_cork *v6_cork) 1868 { 1869 if (v6_cork->opt) { 1870 struct ipv6_txoptions *opt = v6_cork->opt; 1871 1872 kfree(opt->dst0opt); 1873 kfree(opt->dst1opt); 1874 kfree(opt->hopopt); 1875 kfree(opt->srcrt); 1876 kfree(opt); 1877 v6_cork->opt = NULL; 1878 } 1879 1880 if (cork->base.dst) { 1881 dst_release(cork->base.dst); 1882 cork->base.dst = NULL; 1883 } 1884 } 1885 1886 struct sk_buff *__ip6_make_skb(struct sock *sk, 1887 struct sk_buff_head *queue, 1888 struct inet_cork_full *cork, 1889 struct inet6_cork *v6_cork) 1890 { 1891 struct sk_buff *skb, *tmp_skb; 1892 struct sk_buff **tail_skb; 1893 struct in6_addr *final_dst; 1894 struct net *net = sock_net(sk); 1895 struct ipv6hdr *hdr; 1896 struct ipv6_txoptions *opt = v6_cork->opt; 1897 struct rt6_info *rt = dst_rt6_info(cork->base.dst); 1898 struct flowi6 *fl6 = &cork->fl.u.ip6; 1899 unsigned char proto = fl6->flowi6_proto; 1900 1901 skb = __skb_dequeue(queue); 1902 if (!skb) 1903 goto out; 1904 tail_skb = &(skb_shinfo(skb)->frag_list); 1905 1906 /* move skb->data to ip header from ext header */ 1907 if (skb->data < skb_network_header(skb)) 1908 __skb_pull(skb, skb_network_offset(skb)); 1909 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1910 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1911 *tail_skb = tmp_skb; 1912 tail_skb = &(tmp_skb->next); 1913 skb->len += tmp_skb->len; 1914 skb->data_len += tmp_skb->len; 1915 skb->truesize += tmp_skb->truesize; 1916 tmp_skb->destructor = NULL; 1917 tmp_skb->sk = NULL; 1918 } 1919 1920 /* Allow local fragmentation. */ 1921 skb->ignore_df = ip6_sk_ignore_df(sk); 1922 __skb_pull(skb, skb_network_header_len(skb)); 1923 1924 final_dst = &fl6->daddr; 1925 if (opt && opt->opt_flen) 1926 ipv6_push_frag_opts(skb, opt, &proto); 1927 if (opt && opt->opt_nflen) 1928 ipv6_push_nfrag_opts(skb, opt, &proto, &final_dst, &fl6->saddr); 1929 1930 skb_push(skb, sizeof(struct ipv6hdr)); 1931 skb_reset_network_header(skb); 1932 hdr = ipv6_hdr(skb); 1933 1934 ip6_flow_hdr(hdr, v6_cork->tclass, 1935 ip6_make_flowlabel(net, skb, fl6->flowlabel, 1936 ip6_autoflowlabel(net, sk), fl6)); 1937 hdr->hop_limit = v6_cork->hop_limit; 1938 hdr->nexthdr = proto; 1939 hdr->saddr = fl6->saddr; 1940 hdr->daddr = *final_dst; 1941 1942 skb->priority = READ_ONCE(sk->sk_priority); 1943 skb->mark = cork->base.mark; 1944 if (sk_is_tcp(sk)) 1945 skb_set_delivery_time(skb, cork->base.transmit_time, SKB_CLOCK_MONOTONIC); 1946 else 1947 skb_set_delivery_type_by_clockid(skb, cork->base.transmit_time, sk->sk_clockid); 1948 1949 ip6_cork_steal_dst(skb, cork); 1950 IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTREQUESTS); 1951 if (proto == IPPROTO_ICMPV6) { 1952 struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); 1953 u8 icmp6_type; 1954 1955 if (sk->sk_socket->type == SOCK_RAW && 1956 !(fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH)) 1957 icmp6_type = fl6->fl6_icmp_type; 1958 else 1959 icmp6_type = icmp6_hdr(skb)->icmp6_type; 1960 ICMP6MSGOUT_INC_STATS(net, idev, icmp6_type); 1961 ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); 1962 } 1963 1964 ip6_cork_release(cork, v6_cork); 1965 out: 1966 return skb; 1967 } 1968 1969 int ip6_send_skb(struct sk_buff *skb) 1970 { 1971 struct net *net = sock_net(skb->sk); 1972 struct rt6_info *rt = dst_rt6_info(skb_dst(skb)); 1973 int err; 1974 1975 rcu_read_lock(); 1976 err = ip6_local_out(net, skb->sk, skb); 1977 if (err) { 1978 if (err > 0) 1979 err = net_xmit_errno(err); 1980 if (err) 1981 IP6_INC_STATS(net, rt->rt6i_idev, 1982 IPSTATS_MIB_OUTDISCARDS); 1983 } 1984 1985 rcu_read_unlock(); 1986 return err; 1987 } 1988 1989 int ip6_push_pending_frames(struct sock *sk) 1990 { 1991 struct sk_buff *skb; 1992 1993 skb = ip6_finish_skb(sk); 1994 if (!skb) 1995 return 0; 1996 1997 return ip6_send_skb(skb); 1998 } 1999 EXPORT_SYMBOL_GPL(ip6_push_pending_frames); 2000 2001 static void __ip6_flush_pending_frames(struct sock *sk, 2002 struct sk_buff_head *queue, 2003 struct inet_cork_full *cork, 2004 struct inet6_cork *v6_cork) 2005 { 2006 struct sk_buff *skb; 2007 2008 while ((skb = __skb_dequeue_tail(queue)) != NULL) { 2009 if (skb_dst(skb)) 2010 IP6_INC_STATS(sock_net(sk), ip6_dst_idev(skb_dst(skb)), 2011 IPSTATS_MIB_OUTDISCARDS); 2012 kfree_skb(skb); 2013 } 2014 2015 ip6_cork_release(cork, v6_cork); 2016 } 2017 2018 void ip6_flush_pending_frames(struct sock *sk) 2019 { 2020 __ip6_flush_pending_frames(sk, &sk->sk_write_queue, 2021 &inet_sk(sk)->cork, &inet6_sk(sk)->cork); 2022 } 2023 EXPORT_SYMBOL_GPL(ip6_flush_pending_frames); 2024 2025 struct sk_buff *ip6_make_skb(struct sock *sk, 2026 int getfrag(void *from, char *to, int offset, 2027 int len, int odd, struct sk_buff *skb), 2028 void *from, size_t length, int transhdrlen, 2029 struct ipcm6_cookie *ipc6, struct rt6_info *rt, 2030 unsigned int flags, struct inet_cork_full *cork) 2031 { 2032 struct inet6_cork v6_cork; 2033 struct sk_buff_head queue; 2034 int exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); 2035 int err; 2036 2037 if (flags & MSG_PROBE) { 2038 dst_release(&rt->dst); 2039 return NULL; 2040 } 2041 2042 __skb_queue_head_init(&queue); 2043 2044 cork->base.flags = 0; 2045 cork->base.addr = 0; 2046 cork->base.opt = NULL; 2047 v6_cork.opt = NULL; 2048 err = ip6_setup_cork(sk, cork, &v6_cork, ipc6, rt); 2049 if (err) { 2050 ip6_cork_release(cork, &v6_cork); 2051 return ERR_PTR(err); 2052 } 2053 if (ipc6->dontfrag < 0) 2054 ipc6->dontfrag = inet6_test_bit(DONTFRAG, sk); 2055 2056 err = __ip6_append_data(sk, &queue, cork, &v6_cork, 2057 ¤t->task_frag, getfrag, from, 2058 length + exthdrlen, transhdrlen + exthdrlen, 2059 flags, ipc6); 2060 if (err) { 2061 __ip6_flush_pending_frames(sk, &queue, cork, &v6_cork); 2062 return ERR_PTR(err); 2063 } 2064 2065 return __ip6_make_skb(sk, &queue, cork, &v6_cork); 2066 } 2067