xref: /linux/net/ipv6/ip6_fib.c (revision f7543209ce5dc09e3f5a27a7d4ee53e226283719)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old = atomic_read(&net->ipv6.fib6_sernum);
95 
96 	do {
97 		new = old < INT_MAX ? old + 1 : 1;
98 	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99 
100 	return new;
101 }
102 
103 enum {
104 	FIB6_NO_SERNUM_CHANGE = 0,
105 };
106 
107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 	struct fib6_node *fn;
110 
111 	fn = rcu_dereference_protected(f6i->fib6_node,
112 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 	if (fn)
114 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 	struct fib6_info *f6i;
150 	size_t sz = sizeof(*f6i);
151 
152 	if (with_fib6_nh)
153 		sz += sizeof(struct fib6_nh);
154 
155 	f6i = kzalloc(sz, gfp_flags);
156 	if (!f6i)
157 		return NULL;
158 
159 	/* fib6_siblings is a union with nh_list, so this initializes both */
160 	INIT_LIST_HEAD(&f6i->fib6_siblings);
161 	refcount_set(&f6i->fib6_ref, 1);
162 
163 	INIT_HLIST_NODE(&f6i->gc_link);
164 
165 	return f6i;
166 }
167 
168 void fib6_info_destroy_rcu(struct rcu_head *head)
169 {
170 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171 
172 	WARN_ON(f6i->fib6_node);
173 
174 	if (f6i->nh)
175 		nexthop_put(f6i->nh);
176 	else
177 		fib6_nh_release(f6i->fib6_nh);
178 
179 	ip_fib_metrics_put(f6i->fib6_metrics);
180 	kfree(f6i);
181 }
182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183 
184 static struct fib6_node *node_alloc(struct net *net)
185 {
186 	struct fib6_node *fn;
187 
188 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 	if (fn)
190 		net->ipv6.rt6_stats->fib_nodes++;
191 
192 	return fn;
193 }
194 
195 static void node_free_immediate(struct net *net, struct fib6_node *fn)
196 {
197 	kmem_cache_free(fib6_node_kmem, fn);
198 	net->ipv6.rt6_stats->fib_nodes--;
199 }
200 
201 static void node_free_rcu(struct rcu_head *head)
202 {
203 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
204 
205 	kmem_cache_free(fib6_node_kmem, fn);
206 }
207 
208 static void node_free(struct net *net, struct fib6_node *fn)
209 {
210 	call_rcu(&fn->rcu, node_free_rcu);
211 	net->ipv6.rt6_stats->fib_nodes--;
212 }
213 
214 static void fib6_free_table(struct fib6_table *table)
215 {
216 	inetpeer_invalidate_tree(&table->tb6_peers);
217 	kfree(table);
218 }
219 
220 static void fib6_link_table(struct net *net, struct fib6_table *tb)
221 {
222 	unsigned int h;
223 
224 	/*
225 	 * Initialize table lock at a single place to give lockdep a key,
226 	 * tables aren't visible prior to being linked to the list.
227 	 */
228 	spin_lock_init(&tb->tb6_lock);
229 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
230 
231 	/*
232 	 * No protection necessary, this is the only list mutatation
233 	 * operation, tables never disappear once they exist.
234 	 */
235 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
236 }
237 
238 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
239 
240 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
241 {
242 	struct fib6_table *table;
243 
244 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
245 	if (table) {
246 		table->tb6_id = id;
247 		rcu_assign_pointer(table->tb6_root.leaf,
248 				   net->ipv6.fib6_null_entry);
249 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
250 		inet_peer_base_init(&table->tb6_peers);
251 		INIT_HLIST_HEAD(&table->tb6_gc_hlist);
252 	}
253 
254 	return table;
255 }
256 
257 struct fib6_table *fib6_new_table(struct net *net, u32 id)
258 {
259 	struct fib6_table *tb;
260 
261 	if (id == 0)
262 		id = RT6_TABLE_MAIN;
263 	tb = fib6_get_table(net, id);
264 	if (tb)
265 		return tb;
266 
267 	tb = fib6_alloc_table(net, id);
268 	if (tb)
269 		fib6_link_table(net, tb);
270 
271 	return tb;
272 }
273 EXPORT_SYMBOL_GPL(fib6_new_table);
274 
275 struct fib6_table *fib6_get_table(struct net *net, u32 id)
276 {
277 	struct fib6_table *tb;
278 	struct hlist_head *head;
279 	unsigned int h;
280 
281 	if (id == 0)
282 		id = RT6_TABLE_MAIN;
283 	h = id & (FIB6_TABLE_HASHSZ - 1);
284 	rcu_read_lock();
285 	head = &net->ipv6.fib_table_hash[h];
286 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
287 		if (tb->tb6_id == id) {
288 			rcu_read_unlock();
289 			return tb;
290 		}
291 	}
292 	rcu_read_unlock();
293 
294 	return NULL;
295 }
296 EXPORT_SYMBOL_GPL(fib6_get_table);
297 
298 static void __net_init fib6_tables_init(struct net *net)
299 {
300 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
302 }
303 #else
304 
305 struct fib6_table *fib6_new_table(struct net *net, u32 id)
306 {
307 	return fib6_get_table(net, id);
308 }
309 
310 struct fib6_table *fib6_get_table(struct net *net, u32 id)
311 {
312 	  return net->ipv6.fib6_main_tbl;
313 }
314 
315 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
316 				   const struct sk_buff *skb,
317 				   int flags, pol_lookup_t lookup)
318 {
319 	struct rt6_info *rt;
320 
321 	rt = pol_lookup_func(lookup,
322 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
323 	if (rt->dst.error == -EAGAIN) {
324 		ip6_rt_put_flags(rt, flags);
325 		rt = net->ipv6.ip6_null_entry;
326 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
327 			dst_hold(&rt->dst);
328 	}
329 
330 	return &rt->dst;
331 }
332 
333 /* called with rcu lock held; no reference taken on fib6_info */
334 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
335 		struct fib6_result *res, int flags)
336 {
337 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
338 				 res, flags);
339 }
340 
341 static void __net_init fib6_tables_init(struct net *net)
342 {
343 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
344 }
345 
346 #endif
347 
348 unsigned int fib6_tables_seq_read(struct net *net)
349 {
350 	unsigned int h, fib_seq = 0;
351 
352 	rcu_read_lock();
353 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
354 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
355 		struct fib6_table *tb;
356 
357 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
358 			fib_seq += tb->fib_seq;
359 	}
360 	rcu_read_unlock();
361 
362 	return fib_seq;
363 }
364 
365 static int call_fib6_entry_notifier(struct notifier_block *nb,
366 				    enum fib_event_type event_type,
367 				    struct fib6_info *rt,
368 				    struct netlink_ext_ack *extack)
369 {
370 	struct fib6_entry_notifier_info info = {
371 		.info.extack = extack,
372 		.rt = rt,
373 	};
374 
375 	return call_fib6_notifier(nb, event_type, &info.info);
376 }
377 
378 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
379 					      enum fib_event_type event_type,
380 					      struct fib6_info *rt,
381 					      unsigned int nsiblings,
382 					      struct netlink_ext_ack *extack)
383 {
384 	struct fib6_entry_notifier_info info = {
385 		.info.extack = extack,
386 		.rt = rt,
387 		.nsiblings = nsiblings,
388 	};
389 
390 	return call_fib6_notifier(nb, event_type, &info.info);
391 }
392 
393 int call_fib6_entry_notifiers(struct net *net,
394 			      enum fib_event_type event_type,
395 			      struct fib6_info *rt,
396 			      struct netlink_ext_ack *extack)
397 {
398 	struct fib6_entry_notifier_info info = {
399 		.info.extack = extack,
400 		.rt = rt,
401 	};
402 
403 	rt->fib6_table->fib_seq++;
404 	return call_fib6_notifiers(net, event_type, &info.info);
405 }
406 
407 int call_fib6_multipath_entry_notifiers(struct net *net,
408 					enum fib_event_type event_type,
409 					struct fib6_info *rt,
410 					unsigned int nsiblings,
411 					struct netlink_ext_ack *extack)
412 {
413 	struct fib6_entry_notifier_info info = {
414 		.info.extack = extack,
415 		.rt = rt,
416 		.nsiblings = nsiblings,
417 	};
418 
419 	rt->fib6_table->fib_seq++;
420 	return call_fib6_notifiers(net, event_type, &info.info);
421 }
422 
423 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
424 {
425 	struct fib6_entry_notifier_info info = {
426 		.rt = rt,
427 		.nsiblings = rt->fib6_nsiblings,
428 	};
429 
430 	rt->fib6_table->fib_seq++;
431 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
432 }
433 
434 struct fib6_dump_arg {
435 	struct net *net;
436 	struct notifier_block *nb;
437 	struct netlink_ext_ack *extack;
438 };
439 
440 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
441 {
442 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
443 	int err;
444 
445 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
446 		return 0;
447 
448 	if (rt->fib6_nsiblings)
449 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
450 							 rt,
451 							 rt->fib6_nsiblings,
452 							 arg->extack);
453 	else
454 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
455 					       arg->extack);
456 
457 	return err;
458 }
459 
460 static int fib6_node_dump(struct fib6_walker *w)
461 {
462 	int err;
463 
464 	err = fib6_rt_dump(w->leaf, w->args);
465 	w->leaf = NULL;
466 	return err;
467 }
468 
469 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
470 			   struct fib6_walker *w)
471 {
472 	int err;
473 
474 	w->root = &tb->tb6_root;
475 	spin_lock_bh(&tb->tb6_lock);
476 	err = fib6_walk(net, w);
477 	spin_unlock_bh(&tb->tb6_lock);
478 	return err;
479 }
480 
481 /* Called with rcu_read_lock() */
482 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
483 		     struct netlink_ext_ack *extack)
484 {
485 	struct fib6_dump_arg arg;
486 	struct fib6_walker *w;
487 	unsigned int h;
488 	int err = 0;
489 
490 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
491 	if (!w)
492 		return -ENOMEM;
493 
494 	w->func = fib6_node_dump;
495 	arg.net = net;
496 	arg.nb = nb;
497 	arg.extack = extack;
498 	w->args = &arg;
499 
500 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
501 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
502 		struct fib6_table *tb;
503 
504 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
505 			err = fib6_table_dump(net, tb, w);
506 			if (err)
507 				goto out;
508 		}
509 	}
510 
511 out:
512 	kfree(w);
513 
514 	/* The tree traversal function should never return a positive value. */
515 	return err > 0 ? -EINVAL : err;
516 }
517 
518 static int fib6_dump_node(struct fib6_walker *w)
519 {
520 	int res;
521 	struct fib6_info *rt;
522 
523 	for_each_fib6_walker_rt(w) {
524 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
525 		if (res >= 0) {
526 			/* Frame is full, suspend walking */
527 			w->leaf = rt;
528 
529 			/* We'll restart from this node, so if some routes were
530 			 * already dumped, skip them next time.
531 			 */
532 			w->skip_in_node += res;
533 
534 			return 1;
535 		}
536 		w->skip_in_node = 0;
537 
538 		/* Multipath routes are dumped in one route with the
539 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
540 		 * last sibling of this route (no need to dump the
541 		 * sibling routes again)
542 		 */
543 		if (rt->fib6_nsiblings)
544 			rt = list_last_entry(&rt->fib6_siblings,
545 					     struct fib6_info,
546 					     fib6_siblings);
547 	}
548 	w->leaf = NULL;
549 	return 0;
550 }
551 
552 static void fib6_dump_end(struct netlink_callback *cb)
553 {
554 	struct net *net = sock_net(cb->skb->sk);
555 	struct fib6_walker *w = (void *)cb->args[2];
556 
557 	if (w) {
558 		if (cb->args[4]) {
559 			cb->args[4] = 0;
560 			fib6_walker_unlink(net, w);
561 		}
562 		cb->args[2] = 0;
563 		kfree(w);
564 	}
565 	cb->done = (void *)cb->args[3];
566 	cb->args[1] = 3;
567 }
568 
569 static int fib6_dump_done(struct netlink_callback *cb)
570 {
571 	fib6_dump_end(cb);
572 	return cb->done ? cb->done(cb) : 0;
573 }
574 
575 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
576 			   struct netlink_callback *cb)
577 {
578 	struct net *net = sock_net(skb->sk);
579 	struct fib6_walker *w;
580 	int res;
581 
582 	w = (void *)cb->args[2];
583 	w->root = &table->tb6_root;
584 
585 	if (cb->args[4] == 0) {
586 		w->count = 0;
587 		w->skip = 0;
588 		w->skip_in_node = 0;
589 
590 		spin_lock_bh(&table->tb6_lock);
591 		res = fib6_walk(net, w);
592 		spin_unlock_bh(&table->tb6_lock);
593 		if (res > 0) {
594 			cb->args[4] = 1;
595 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
596 		}
597 	} else {
598 		int sernum = READ_ONCE(w->root->fn_sernum);
599 		if (cb->args[5] != sernum) {
600 			/* Begin at the root if the tree changed */
601 			cb->args[5] = sernum;
602 			w->state = FWS_INIT;
603 			w->node = w->root;
604 			w->skip = w->count;
605 			w->skip_in_node = 0;
606 		} else
607 			w->skip = 0;
608 
609 		spin_lock_bh(&table->tb6_lock);
610 		res = fib6_walk_continue(w);
611 		spin_unlock_bh(&table->tb6_lock);
612 		if (res <= 0) {
613 			fib6_walker_unlink(net, w);
614 			cb->args[4] = 0;
615 		}
616 	}
617 
618 	return res;
619 }
620 
621 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
622 {
623 	struct rt6_rtnl_dump_arg arg = {
624 		.filter.dump_exceptions = true,
625 		.filter.dump_routes = true,
626 		.filter.rtnl_held = false,
627 	};
628 	const struct nlmsghdr *nlh = cb->nlh;
629 	struct net *net = sock_net(skb->sk);
630 	unsigned int e = 0, s_e;
631 	struct hlist_head *head;
632 	struct fib6_walker *w;
633 	struct fib6_table *tb;
634 	unsigned int h, s_h;
635 	int err = 0;
636 
637 	rcu_read_lock();
638 	if (cb->strict_check) {
639 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
640 		if (err < 0)
641 			goto unlock;
642 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
643 		struct rtmsg *rtm = nlmsg_data(nlh);
644 
645 		if (rtm->rtm_flags & RTM_F_PREFIX)
646 			arg.filter.flags = RTM_F_PREFIX;
647 	}
648 
649 	w = (void *)cb->args[2];
650 	if (!w) {
651 		/* New dump:
652 		 *
653 		 * 1. allocate and initialize walker.
654 		 */
655 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
656 		if (!w) {
657 			err = -ENOMEM;
658 			goto unlock;
659 		}
660 		w->func = fib6_dump_node;
661 		cb->args[2] = (long)w;
662 
663 		/* 2. hook callback destructor.
664 		 */
665 		cb->args[3] = (long)cb->done;
666 		cb->done = fib6_dump_done;
667 
668 	}
669 
670 	arg.skb = skb;
671 	arg.cb = cb;
672 	arg.net = net;
673 	w->args = &arg;
674 
675 	if (arg.filter.table_id) {
676 		tb = fib6_get_table(net, arg.filter.table_id);
677 		if (!tb) {
678 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
679 				goto unlock;
680 
681 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
682 			err = -ENOENT;
683 			goto unlock;
684 		}
685 
686 		if (!cb->args[0]) {
687 			err = fib6_dump_table(tb, skb, cb);
688 			if (!err)
689 				cb->args[0] = 1;
690 		}
691 		goto unlock;
692 	}
693 
694 	s_h = cb->args[0];
695 	s_e = cb->args[1];
696 
697 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
698 		e = 0;
699 		head = &net->ipv6.fib_table_hash[h];
700 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
701 			if (e < s_e)
702 				goto next;
703 			err = fib6_dump_table(tb, skb, cb);
704 			if (err != 0)
705 				goto out;
706 next:
707 			e++;
708 		}
709 	}
710 out:
711 	cb->args[1] = e;
712 	cb->args[0] = h;
713 
714 unlock:
715 	rcu_read_unlock();
716 	if (err <= 0)
717 		fib6_dump_end(cb);
718 	return err;
719 }
720 
721 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
722 {
723 	if (!f6i)
724 		return;
725 
726 	if (f6i->fib6_metrics == &dst_default_metrics) {
727 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
728 
729 		if (!p)
730 			return;
731 
732 		refcount_set(&p->refcnt, 1);
733 		f6i->fib6_metrics = p;
734 	}
735 
736 	f6i->fib6_metrics->metrics[metric - 1] = val;
737 }
738 
739 /*
740  *	Routing Table
741  *
742  *	return the appropriate node for a routing tree "add" operation
743  *	by either creating and inserting or by returning an existing
744  *	node.
745  */
746 
747 static struct fib6_node *fib6_add_1(struct net *net,
748 				    struct fib6_table *table,
749 				    struct fib6_node *root,
750 				    struct in6_addr *addr, int plen,
751 				    int offset, int allow_create,
752 				    int replace_required,
753 				    struct netlink_ext_ack *extack)
754 {
755 	struct fib6_node *fn, *in, *ln;
756 	struct fib6_node *pn = NULL;
757 	struct rt6key *key;
758 	int	bit;
759 	__be32	dir = 0;
760 
761 	/* insert node in tree */
762 
763 	fn = root;
764 
765 	do {
766 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
767 					    lockdep_is_held(&table->tb6_lock));
768 		key = (struct rt6key *)((u8 *)leaf + offset);
769 
770 		/*
771 		 *	Prefix match
772 		 */
773 		if (plen < fn->fn_bit ||
774 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
775 			if (!allow_create) {
776 				if (replace_required) {
777 					NL_SET_ERR_MSG(extack,
778 						       "Can not replace route - no match found");
779 					pr_warn("Can't replace route, no match found\n");
780 					return ERR_PTR(-ENOENT);
781 				}
782 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
783 			}
784 			goto insert_above;
785 		}
786 
787 		/*
788 		 *	Exact match ?
789 		 */
790 
791 		if (plen == fn->fn_bit) {
792 			/* clean up an intermediate node */
793 			if (!(fn->fn_flags & RTN_RTINFO)) {
794 				RCU_INIT_POINTER(fn->leaf, NULL);
795 				fib6_info_release(leaf);
796 			/* remove null_entry in the root node */
797 			} else if (fn->fn_flags & RTN_TL_ROOT &&
798 				   rcu_access_pointer(fn->leaf) ==
799 				   net->ipv6.fib6_null_entry) {
800 				RCU_INIT_POINTER(fn->leaf, NULL);
801 			}
802 
803 			return fn;
804 		}
805 
806 		/*
807 		 *	We have more bits to go
808 		 */
809 
810 		/* Try to walk down on tree. */
811 		dir = addr_bit_set(addr, fn->fn_bit);
812 		pn = fn;
813 		fn = dir ?
814 		     rcu_dereference_protected(fn->right,
815 					lockdep_is_held(&table->tb6_lock)) :
816 		     rcu_dereference_protected(fn->left,
817 					lockdep_is_held(&table->tb6_lock));
818 	} while (fn);
819 
820 	if (!allow_create) {
821 		/* We should not create new node because
822 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
823 		 * I assume it is safe to require NLM_F_CREATE when
824 		 * REPLACE flag is used! Later we may want to remove the
825 		 * check for replace_required, because according
826 		 * to netlink specification, NLM_F_CREATE
827 		 * MUST be specified if new route is created.
828 		 * That would keep IPv6 consistent with IPv4
829 		 */
830 		if (replace_required) {
831 			NL_SET_ERR_MSG(extack,
832 				       "Can not replace route - no match found");
833 			pr_warn("Can't replace route, no match found\n");
834 			return ERR_PTR(-ENOENT);
835 		}
836 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
837 	}
838 	/*
839 	 *	We walked to the bottom of tree.
840 	 *	Create new leaf node without children.
841 	 */
842 
843 	ln = node_alloc(net);
844 
845 	if (!ln)
846 		return ERR_PTR(-ENOMEM);
847 	ln->fn_bit = plen;
848 	RCU_INIT_POINTER(ln->parent, pn);
849 
850 	if (dir)
851 		rcu_assign_pointer(pn->right, ln);
852 	else
853 		rcu_assign_pointer(pn->left, ln);
854 
855 	return ln;
856 
857 
858 insert_above:
859 	/*
860 	 * split since we don't have a common prefix anymore or
861 	 * we have a less significant route.
862 	 * we've to insert an intermediate node on the list
863 	 * this new node will point to the one we need to create
864 	 * and the current
865 	 */
866 
867 	pn = rcu_dereference_protected(fn->parent,
868 				       lockdep_is_held(&table->tb6_lock));
869 
870 	/* find 1st bit in difference between the 2 addrs.
871 
872 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
873 	   but if it is >= plen, the value is ignored in any case.
874 	 */
875 
876 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
877 
878 	/*
879 	 *		(intermediate)[in]
880 	 *	          /	   \
881 	 *	(new leaf node)[ln] (old node)[fn]
882 	 */
883 	if (plen > bit) {
884 		in = node_alloc(net);
885 		ln = node_alloc(net);
886 
887 		if (!in || !ln) {
888 			if (in)
889 				node_free_immediate(net, in);
890 			if (ln)
891 				node_free_immediate(net, ln);
892 			return ERR_PTR(-ENOMEM);
893 		}
894 
895 		/*
896 		 * new intermediate node.
897 		 * RTN_RTINFO will
898 		 * be off since that an address that chooses one of
899 		 * the branches would not match less specific routes
900 		 * in the other branch
901 		 */
902 
903 		in->fn_bit = bit;
904 
905 		RCU_INIT_POINTER(in->parent, pn);
906 		in->leaf = fn->leaf;
907 		fib6_info_hold(rcu_dereference_protected(in->leaf,
908 				lockdep_is_held(&table->tb6_lock)));
909 
910 		/* update parent pointer */
911 		if (dir)
912 			rcu_assign_pointer(pn->right, in);
913 		else
914 			rcu_assign_pointer(pn->left, in);
915 
916 		ln->fn_bit = plen;
917 
918 		RCU_INIT_POINTER(ln->parent, in);
919 		rcu_assign_pointer(fn->parent, in);
920 
921 		if (addr_bit_set(addr, bit)) {
922 			rcu_assign_pointer(in->right, ln);
923 			rcu_assign_pointer(in->left, fn);
924 		} else {
925 			rcu_assign_pointer(in->left, ln);
926 			rcu_assign_pointer(in->right, fn);
927 		}
928 	} else { /* plen <= bit */
929 
930 		/*
931 		 *		(new leaf node)[ln]
932 		 *	          /	   \
933 		 *	     (old node)[fn] NULL
934 		 */
935 
936 		ln = node_alloc(net);
937 
938 		if (!ln)
939 			return ERR_PTR(-ENOMEM);
940 
941 		ln->fn_bit = plen;
942 
943 		RCU_INIT_POINTER(ln->parent, pn);
944 
945 		if (addr_bit_set(&key->addr, plen))
946 			RCU_INIT_POINTER(ln->right, fn);
947 		else
948 			RCU_INIT_POINTER(ln->left, fn);
949 
950 		rcu_assign_pointer(fn->parent, ln);
951 
952 		if (dir)
953 			rcu_assign_pointer(pn->right, ln);
954 		else
955 			rcu_assign_pointer(pn->left, ln);
956 	}
957 	return ln;
958 }
959 
960 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
961 				  const struct fib6_info *match,
962 				  const struct fib6_table *table)
963 {
964 	int cpu;
965 
966 	if (!fib6_nh->rt6i_pcpu)
967 		return;
968 
969 	rcu_read_lock();
970 	/* release the reference to this fib entry from
971 	 * all of its cached pcpu routes
972 	 */
973 	for_each_possible_cpu(cpu) {
974 		struct rt6_info **ppcpu_rt;
975 		struct rt6_info *pcpu_rt;
976 
977 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
978 
979 		/* Paired with xchg() in rt6_get_pcpu_route() */
980 		pcpu_rt = READ_ONCE(*ppcpu_rt);
981 
982 		/* only dropping the 'from' reference if the cached route
983 		 * is using 'match'. The cached pcpu_rt->from only changes
984 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
985 		 * change from one fib6_info reference to another
986 		 */
987 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
988 			struct fib6_info *from;
989 
990 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
991 			fib6_info_release(from);
992 		}
993 	}
994 	rcu_read_unlock();
995 }
996 
997 struct fib6_nh_pcpu_arg {
998 	struct fib6_info	*from;
999 	const struct fib6_table *table;
1000 };
1001 
1002 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
1003 {
1004 	struct fib6_nh_pcpu_arg *arg = _arg;
1005 
1006 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
1007 	return 0;
1008 }
1009 
1010 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1011 				const struct fib6_table *table)
1012 {
1013 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1014 	 * while we are cleaning them here.
1015 	 */
1016 	f6i->fib6_destroying = 1;
1017 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1018 
1019 	if (f6i->nh) {
1020 		struct fib6_nh_pcpu_arg arg = {
1021 			.from = f6i,
1022 			.table = table
1023 		};
1024 
1025 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1026 					 &arg);
1027 	} else {
1028 		struct fib6_nh *fib6_nh;
1029 
1030 		fib6_nh = f6i->fib6_nh;
1031 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1032 	}
1033 }
1034 
1035 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1036 			  struct net *net)
1037 {
1038 	struct fib6_table *table = rt->fib6_table;
1039 
1040 	/* Flush all cached dst in exception table */
1041 	rt6_flush_exceptions(rt);
1042 	fib6_drop_pcpu_from(rt, table);
1043 
1044 	if (rt->nh && !list_empty(&rt->nh_list))
1045 		list_del_init(&rt->nh_list);
1046 
1047 	if (refcount_read(&rt->fib6_ref) != 1) {
1048 		/* This route is used as dummy address holder in some split
1049 		 * nodes. It is not leaked, but it still holds other resources,
1050 		 * which must be released in time. So, scan ascendant nodes
1051 		 * and replace dummy references to this route with references
1052 		 * to still alive ones.
1053 		 */
1054 		while (fn) {
1055 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1056 					    lockdep_is_held(&table->tb6_lock));
1057 			struct fib6_info *new_leaf;
1058 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1059 				new_leaf = fib6_find_prefix(net, table, fn);
1060 				fib6_info_hold(new_leaf);
1061 
1062 				rcu_assign_pointer(fn->leaf, new_leaf);
1063 				fib6_info_release(rt);
1064 			}
1065 			fn = rcu_dereference_protected(fn->parent,
1066 				    lockdep_is_held(&table->tb6_lock));
1067 		}
1068 	}
1069 
1070 	fib6_clean_expires(rt);
1071 	fib6_remove_gc_list(rt);
1072 }
1073 
1074 /*
1075  *	Insert routing information in a node.
1076  */
1077 
1078 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1079 			    struct nl_info *info,
1080 			    struct netlink_ext_ack *extack)
1081 {
1082 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1083 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1084 	struct fib6_info *iter = NULL;
1085 	struct fib6_info __rcu **ins;
1086 	struct fib6_info __rcu **fallback_ins = NULL;
1087 	int replace = (info->nlh &&
1088 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1089 	int add = (!info->nlh ||
1090 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1091 	int found = 0;
1092 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1093 	bool notify_sibling_rt = false;
1094 	u16 nlflags = NLM_F_EXCL;
1095 	int err;
1096 
1097 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1098 		nlflags |= NLM_F_APPEND;
1099 
1100 	ins = &fn->leaf;
1101 
1102 	for (iter = leaf; iter;
1103 	     iter = rcu_dereference_protected(iter->fib6_next,
1104 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1105 		/*
1106 		 *	Search for duplicates
1107 		 */
1108 
1109 		if (iter->fib6_metric == rt->fib6_metric) {
1110 			/*
1111 			 *	Same priority level
1112 			 */
1113 			if (info->nlh &&
1114 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1115 				return -EEXIST;
1116 
1117 			nlflags &= ~NLM_F_EXCL;
1118 			if (replace) {
1119 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1120 					found++;
1121 					break;
1122 				}
1123 				fallback_ins = fallback_ins ?: ins;
1124 				goto next_iter;
1125 			}
1126 
1127 			if (rt6_duplicate_nexthop(iter, rt)) {
1128 				if (rt->fib6_nsiblings)
1129 					rt->fib6_nsiblings = 0;
1130 				if (!(iter->fib6_flags & RTF_EXPIRES))
1131 					return -EEXIST;
1132 				if (!(rt->fib6_flags & RTF_EXPIRES)) {
1133 					fib6_clean_expires(iter);
1134 					fib6_remove_gc_list(iter);
1135 				} else {
1136 					fib6_set_expires(iter, rt->expires);
1137 					fib6_add_gc_list(iter);
1138 				}
1139 
1140 				if (rt->fib6_pmtu)
1141 					fib6_metric_set(iter, RTAX_MTU,
1142 							rt->fib6_pmtu);
1143 				return -EEXIST;
1144 			}
1145 			/* If we have the same destination and the same metric,
1146 			 * but not the same gateway, then the route we try to
1147 			 * add is sibling to this route, increment our counter
1148 			 * of siblings, and later we will add our route to the
1149 			 * list.
1150 			 * Only static routes (which don't have flag
1151 			 * RTF_EXPIRES) are used for ECMPv6.
1152 			 *
1153 			 * To avoid long list, we only had siblings if the
1154 			 * route have a gateway.
1155 			 */
1156 			if (rt_can_ecmp &&
1157 			    rt6_qualify_for_ecmp(iter))
1158 				rt->fib6_nsiblings++;
1159 		}
1160 
1161 		if (iter->fib6_metric > rt->fib6_metric)
1162 			break;
1163 
1164 next_iter:
1165 		ins = &iter->fib6_next;
1166 	}
1167 
1168 	if (fallback_ins && !found) {
1169 		/* No matching route with same ecmp-able-ness found, replace
1170 		 * first matching route
1171 		 */
1172 		ins = fallback_ins;
1173 		iter = rcu_dereference_protected(*ins,
1174 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1175 		found++;
1176 	}
1177 
1178 	/* Reset round-robin state, if necessary */
1179 	if (ins == &fn->leaf)
1180 		fn->rr_ptr = NULL;
1181 
1182 	/* Link this route to others same route. */
1183 	if (rt->fib6_nsiblings) {
1184 		unsigned int fib6_nsiblings;
1185 		struct fib6_info *sibling, *temp_sibling;
1186 
1187 		/* Find the first route that have the same metric */
1188 		sibling = leaf;
1189 		notify_sibling_rt = true;
1190 		while (sibling) {
1191 			if (sibling->fib6_metric == rt->fib6_metric &&
1192 			    rt6_qualify_for_ecmp(sibling)) {
1193 				list_add_tail(&rt->fib6_siblings,
1194 					      &sibling->fib6_siblings);
1195 				break;
1196 			}
1197 			sibling = rcu_dereference_protected(sibling->fib6_next,
1198 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1199 			notify_sibling_rt = false;
1200 		}
1201 		/* For each sibling in the list, increment the counter of
1202 		 * siblings. BUG() if counters does not match, list of siblings
1203 		 * is broken!
1204 		 */
1205 		fib6_nsiblings = 0;
1206 		list_for_each_entry_safe(sibling, temp_sibling,
1207 					 &rt->fib6_siblings, fib6_siblings) {
1208 			sibling->fib6_nsiblings++;
1209 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1210 			fib6_nsiblings++;
1211 		}
1212 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1213 		rt6_multipath_rebalance(temp_sibling);
1214 	}
1215 
1216 	/*
1217 	 *	insert node
1218 	 */
1219 	if (!replace) {
1220 		if (!add)
1221 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1222 
1223 add:
1224 		nlflags |= NLM_F_CREATE;
1225 
1226 		/* The route should only be notified if it is the first
1227 		 * route in the node or if it is added as a sibling
1228 		 * route to the first route in the node.
1229 		 */
1230 		if (!info->skip_notify_kernel &&
1231 		    (notify_sibling_rt || ins == &fn->leaf)) {
1232 			enum fib_event_type fib_event;
1233 
1234 			if (notify_sibling_rt)
1235 				fib_event = FIB_EVENT_ENTRY_APPEND;
1236 			else
1237 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1238 			err = call_fib6_entry_notifiers(info->nl_net,
1239 							fib_event, rt,
1240 							extack);
1241 			if (err) {
1242 				struct fib6_info *sibling, *next_sibling;
1243 
1244 				/* If the route has siblings, then it first
1245 				 * needs to be unlinked from them.
1246 				 */
1247 				if (!rt->fib6_nsiblings)
1248 					return err;
1249 
1250 				list_for_each_entry_safe(sibling, next_sibling,
1251 							 &rt->fib6_siblings,
1252 							 fib6_siblings)
1253 					sibling->fib6_nsiblings--;
1254 				rt->fib6_nsiblings = 0;
1255 				list_del_init(&rt->fib6_siblings);
1256 				rt6_multipath_rebalance(next_sibling);
1257 				return err;
1258 			}
1259 		}
1260 
1261 		rcu_assign_pointer(rt->fib6_next, iter);
1262 		fib6_info_hold(rt);
1263 		rcu_assign_pointer(rt->fib6_node, fn);
1264 		rcu_assign_pointer(*ins, rt);
1265 		if (!info->skip_notify)
1266 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1267 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1268 
1269 		if (!(fn->fn_flags & RTN_RTINFO)) {
1270 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1271 			fn->fn_flags |= RTN_RTINFO;
1272 		}
1273 
1274 	} else {
1275 		int nsiblings;
1276 
1277 		if (!found) {
1278 			if (add)
1279 				goto add;
1280 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1281 			return -ENOENT;
1282 		}
1283 
1284 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1285 			err = call_fib6_entry_notifiers(info->nl_net,
1286 							FIB_EVENT_ENTRY_REPLACE,
1287 							rt, extack);
1288 			if (err)
1289 				return err;
1290 		}
1291 
1292 		fib6_info_hold(rt);
1293 		rcu_assign_pointer(rt->fib6_node, fn);
1294 		rt->fib6_next = iter->fib6_next;
1295 		rcu_assign_pointer(*ins, rt);
1296 		if (!info->skip_notify)
1297 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1298 		if (!(fn->fn_flags & RTN_RTINFO)) {
1299 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1300 			fn->fn_flags |= RTN_RTINFO;
1301 		}
1302 		nsiblings = iter->fib6_nsiblings;
1303 		iter->fib6_node = NULL;
1304 		fib6_purge_rt(iter, fn, info->nl_net);
1305 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1306 			fn->rr_ptr = NULL;
1307 		fib6_info_release(iter);
1308 
1309 		if (nsiblings) {
1310 			/* Replacing an ECMP route, remove all siblings */
1311 			ins = &rt->fib6_next;
1312 			iter = rcu_dereference_protected(*ins,
1313 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1314 			while (iter) {
1315 				if (iter->fib6_metric > rt->fib6_metric)
1316 					break;
1317 				if (rt6_qualify_for_ecmp(iter)) {
1318 					*ins = iter->fib6_next;
1319 					iter->fib6_node = NULL;
1320 					fib6_purge_rt(iter, fn, info->nl_net);
1321 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1322 						fn->rr_ptr = NULL;
1323 					fib6_info_release(iter);
1324 					nsiblings--;
1325 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1326 				} else {
1327 					ins = &iter->fib6_next;
1328 				}
1329 				iter = rcu_dereference_protected(*ins,
1330 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1331 			}
1332 			WARN_ON(nsiblings != 0);
1333 		}
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1340 {
1341 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1342 	    (rt->fib6_flags & RTF_EXPIRES))
1343 		mod_timer(&net->ipv6.ip6_fib_timer,
1344 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1345 }
1346 
1347 void fib6_force_start_gc(struct net *net)
1348 {
1349 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1350 		mod_timer(&net->ipv6.ip6_fib_timer,
1351 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1352 }
1353 
1354 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1355 					   int sernum)
1356 {
1357 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1358 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1359 
1360 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1361 	smp_wmb();
1362 	while (fn) {
1363 		WRITE_ONCE(fn->fn_sernum, sernum);
1364 		fn = rcu_dereference_protected(fn->parent,
1365 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1366 	}
1367 }
1368 
1369 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1370 {
1371 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1372 }
1373 
1374 /* allow ipv4 to update sernum via ipv6_stub */
1375 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1376 {
1377 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1378 	fib6_update_sernum_upto_root(net, f6i);
1379 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1380 }
1381 
1382 /*
1383  *	Add routing information to the routing tree.
1384  *	<destination addr>/<source addr>
1385  *	with source addr info in sub-trees
1386  *	Need to own table->tb6_lock
1387  */
1388 
1389 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1390 	     struct nl_info *info, struct netlink_ext_ack *extack)
1391 {
1392 	struct fib6_table *table = rt->fib6_table;
1393 	struct fib6_node *fn;
1394 #ifdef CONFIG_IPV6_SUBTREES
1395 	struct fib6_node *pn = NULL;
1396 #endif
1397 	int err = -ENOMEM;
1398 	int allow_create = 1;
1399 	int replace_required = 0;
1400 
1401 	if (info->nlh) {
1402 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1403 			allow_create = 0;
1404 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1405 			replace_required = 1;
1406 	}
1407 	if (!allow_create && !replace_required)
1408 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1409 
1410 	fn = fib6_add_1(info->nl_net, table, root,
1411 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1412 			offsetof(struct fib6_info, fib6_dst), allow_create,
1413 			replace_required, extack);
1414 	if (IS_ERR(fn)) {
1415 		err = PTR_ERR(fn);
1416 		fn = NULL;
1417 		goto out;
1418 	}
1419 
1420 #ifdef CONFIG_IPV6_SUBTREES
1421 	pn = fn;
1422 
1423 	if (rt->fib6_src.plen) {
1424 		struct fib6_node *sn;
1425 
1426 		if (!rcu_access_pointer(fn->subtree)) {
1427 			struct fib6_node *sfn;
1428 
1429 			/*
1430 			 * Create subtree.
1431 			 *
1432 			 *		fn[main tree]
1433 			 *		|
1434 			 *		sfn[subtree root]
1435 			 *		   \
1436 			 *		    sn[new leaf node]
1437 			 */
1438 
1439 			/* Create subtree root node */
1440 			sfn = node_alloc(info->nl_net);
1441 			if (!sfn)
1442 				goto failure;
1443 
1444 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1445 			rcu_assign_pointer(sfn->leaf,
1446 					   info->nl_net->ipv6.fib6_null_entry);
1447 			sfn->fn_flags = RTN_ROOT;
1448 
1449 			/* Now add the first leaf node to new subtree */
1450 
1451 			sn = fib6_add_1(info->nl_net, table, sfn,
1452 					&rt->fib6_src.addr, rt->fib6_src.plen,
1453 					offsetof(struct fib6_info, fib6_src),
1454 					allow_create, replace_required, extack);
1455 
1456 			if (IS_ERR(sn)) {
1457 				/* If it is failed, discard just allocated
1458 				   root, and then (in failure) stale node
1459 				   in main tree.
1460 				 */
1461 				node_free_immediate(info->nl_net, sfn);
1462 				err = PTR_ERR(sn);
1463 				goto failure;
1464 			}
1465 
1466 			/* Now link new subtree to main tree */
1467 			rcu_assign_pointer(sfn->parent, fn);
1468 			rcu_assign_pointer(fn->subtree, sfn);
1469 		} else {
1470 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1471 					&rt->fib6_src.addr, rt->fib6_src.plen,
1472 					offsetof(struct fib6_info, fib6_src),
1473 					allow_create, replace_required, extack);
1474 
1475 			if (IS_ERR(sn)) {
1476 				err = PTR_ERR(sn);
1477 				goto failure;
1478 			}
1479 		}
1480 
1481 		if (!rcu_access_pointer(fn->leaf)) {
1482 			if (fn->fn_flags & RTN_TL_ROOT) {
1483 				/* put back null_entry for root node */
1484 				rcu_assign_pointer(fn->leaf,
1485 					    info->nl_net->ipv6.fib6_null_entry);
1486 			} else {
1487 				fib6_info_hold(rt);
1488 				rcu_assign_pointer(fn->leaf, rt);
1489 			}
1490 		}
1491 		fn = sn;
1492 	}
1493 #endif
1494 
1495 	err = fib6_add_rt2node(fn, rt, info, extack);
1496 	if (!err) {
1497 		if (rt->nh)
1498 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1499 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1500 
1501 		if (rt->fib6_flags & RTF_EXPIRES)
1502 			fib6_add_gc_list(rt);
1503 
1504 		fib6_start_gc(info->nl_net, rt);
1505 	}
1506 
1507 out:
1508 	if (err) {
1509 #ifdef CONFIG_IPV6_SUBTREES
1510 		/*
1511 		 * If fib6_add_1 has cleared the old leaf pointer in the
1512 		 * super-tree leaf node we have to find a new one for it.
1513 		 */
1514 		if (pn != fn) {
1515 			struct fib6_info *pn_leaf =
1516 				rcu_dereference_protected(pn->leaf,
1517 				    lockdep_is_held(&table->tb6_lock));
1518 			if (pn_leaf == rt) {
1519 				pn_leaf = NULL;
1520 				RCU_INIT_POINTER(pn->leaf, NULL);
1521 				fib6_info_release(rt);
1522 			}
1523 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1524 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1525 							   pn);
1526 				if (!pn_leaf)
1527 					pn_leaf =
1528 					    info->nl_net->ipv6.fib6_null_entry;
1529 				fib6_info_hold(pn_leaf);
1530 				rcu_assign_pointer(pn->leaf, pn_leaf);
1531 			}
1532 		}
1533 #endif
1534 		goto failure;
1535 	} else if (fib6_requires_src(rt)) {
1536 		fib6_routes_require_src_inc(info->nl_net);
1537 	}
1538 	return err;
1539 
1540 failure:
1541 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1542 	 * 1. fn is an intermediate node and we failed to add the new
1543 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1544 	 * failure case.
1545 	 * 2. fn is the root node in the table and we fail to add the first
1546 	 * default route to it.
1547 	 */
1548 	if (fn &&
1549 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1550 	     (fn->fn_flags & RTN_TL_ROOT &&
1551 	      !rcu_access_pointer(fn->leaf))))
1552 		fib6_repair_tree(info->nl_net, table, fn);
1553 	return err;
1554 }
1555 
1556 /*
1557  *	Routing tree lookup
1558  *
1559  */
1560 
1561 struct lookup_args {
1562 	int			offset;		/* key offset on fib6_info */
1563 	const struct in6_addr	*addr;		/* search key			*/
1564 };
1565 
1566 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1567 					    struct lookup_args *args)
1568 {
1569 	struct fib6_node *fn;
1570 	__be32 dir;
1571 
1572 	if (unlikely(args->offset == 0))
1573 		return NULL;
1574 
1575 	/*
1576 	 *	Descend on a tree
1577 	 */
1578 
1579 	fn = root;
1580 
1581 	for (;;) {
1582 		struct fib6_node *next;
1583 
1584 		dir = addr_bit_set(args->addr, fn->fn_bit);
1585 
1586 		next = dir ? rcu_dereference(fn->right) :
1587 			     rcu_dereference(fn->left);
1588 
1589 		if (next) {
1590 			fn = next;
1591 			continue;
1592 		}
1593 		break;
1594 	}
1595 
1596 	while (fn) {
1597 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1598 
1599 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1600 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1601 			struct rt6key *key;
1602 
1603 			if (!leaf)
1604 				goto backtrack;
1605 
1606 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1607 
1608 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1609 #ifdef CONFIG_IPV6_SUBTREES
1610 				if (subtree) {
1611 					struct fib6_node *sfn;
1612 					sfn = fib6_node_lookup_1(subtree,
1613 								 args + 1);
1614 					if (!sfn)
1615 						goto backtrack;
1616 					fn = sfn;
1617 				}
1618 #endif
1619 				if (fn->fn_flags & RTN_RTINFO)
1620 					return fn;
1621 			}
1622 		}
1623 backtrack:
1624 		if (fn->fn_flags & RTN_ROOT)
1625 			break;
1626 
1627 		fn = rcu_dereference(fn->parent);
1628 	}
1629 
1630 	return NULL;
1631 }
1632 
1633 /* called with rcu_read_lock() held
1634  */
1635 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1636 				   const struct in6_addr *daddr,
1637 				   const struct in6_addr *saddr)
1638 {
1639 	struct fib6_node *fn;
1640 	struct lookup_args args[] = {
1641 		{
1642 			.offset = offsetof(struct fib6_info, fib6_dst),
1643 			.addr = daddr,
1644 		},
1645 #ifdef CONFIG_IPV6_SUBTREES
1646 		{
1647 			.offset = offsetof(struct fib6_info, fib6_src),
1648 			.addr = saddr,
1649 		},
1650 #endif
1651 		{
1652 			.offset = 0,	/* sentinel */
1653 		}
1654 	};
1655 
1656 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1657 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1658 		fn = root;
1659 
1660 	return fn;
1661 }
1662 
1663 /*
1664  *	Get node with specified destination prefix (and source prefix,
1665  *	if subtrees are used)
1666  *	exact_match == true means we try to find fn with exact match of
1667  *	the passed in prefix addr
1668  *	exact_match == false means we try to find fn with longest prefix
1669  *	match of the passed in prefix addr. This is useful for finding fn
1670  *	for cached route as it will be stored in the exception table under
1671  *	the node with longest prefix length.
1672  */
1673 
1674 
1675 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1676 				       const struct in6_addr *addr,
1677 				       int plen, int offset,
1678 				       bool exact_match)
1679 {
1680 	struct fib6_node *fn, *prev = NULL;
1681 
1682 	for (fn = root; fn ; ) {
1683 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1684 		struct rt6key *key;
1685 
1686 		/* This node is being deleted */
1687 		if (!leaf) {
1688 			if (plen <= fn->fn_bit)
1689 				goto out;
1690 			else
1691 				goto next;
1692 		}
1693 
1694 		key = (struct rt6key *)((u8 *)leaf + offset);
1695 
1696 		/*
1697 		 *	Prefix match
1698 		 */
1699 		if (plen < fn->fn_bit ||
1700 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1701 			goto out;
1702 
1703 		if (plen == fn->fn_bit)
1704 			return fn;
1705 
1706 		if (fn->fn_flags & RTN_RTINFO)
1707 			prev = fn;
1708 
1709 next:
1710 		/*
1711 		 *	We have more bits to go
1712 		 */
1713 		if (addr_bit_set(addr, fn->fn_bit))
1714 			fn = rcu_dereference(fn->right);
1715 		else
1716 			fn = rcu_dereference(fn->left);
1717 	}
1718 out:
1719 	if (exact_match)
1720 		return NULL;
1721 	else
1722 		return prev;
1723 }
1724 
1725 struct fib6_node *fib6_locate(struct fib6_node *root,
1726 			      const struct in6_addr *daddr, int dst_len,
1727 			      const struct in6_addr *saddr, int src_len,
1728 			      bool exact_match)
1729 {
1730 	struct fib6_node *fn;
1731 
1732 	fn = fib6_locate_1(root, daddr, dst_len,
1733 			   offsetof(struct fib6_info, fib6_dst),
1734 			   exact_match);
1735 
1736 #ifdef CONFIG_IPV6_SUBTREES
1737 	if (src_len) {
1738 		WARN_ON(saddr == NULL);
1739 		if (fn) {
1740 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1741 
1742 			if (subtree) {
1743 				fn = fib6_locate_1(subtree, saddr, src_len,
1744 					   offsetof(struct fib6_info, fib6_src),
1745 					   exact_match);
1746 			}
1747 		}
1748 	}
1749 #endif
1750 
1751 	if (fn && fn->fn_flags & RTN_RTINFO)
1752 		return fn;
1753 
1754 	return NULL;
1755 }
1756 
1757 
1758 /*
1759  *	Deletion
1760  *
1761  */
1762 
1763 static struct fib6_info *fib6_find_prefix(struct net *net,
1764 					 struct fib6_table *table,
1765 					 struct fib6_node *fn)
1766 {
1767 	struct fib6_node *child_left, *child_right;
1768 
1769 	if (fn->fn_flags & RTN_ROOT)
1770 		return net->ipv6.fib6_null_entry;
1771 
1772 	while (fn) {
1773 		child_left = rcu_dereference_protected(fn->left,
1774 				    lockdep_is_held(&table->tb6_lock));
1775 		child_right = rcu_dereference_protected(fn->right,
1776 				    lockdep_is_held(&table->tb6_lock));
1777 		if (child_left)
1778 			return rcu_dereference_protected(child_left->leaf,
1779 					lockdep_is_held(&table->tb6_lock));
1780 		if (child_right)
1781 			return rcu_dereference_protected(child_right->leaf,
1782 					lockdep_is_held(&table->tb6_lock));
1783 
1784 		fn = FIB6_SUBTREE(fn);
1785 	}
1786 	return NULL;
1787 }
1788 
1789 /*
1790  *	Called to trim the tree of intermediate nodes when possible. "fn"
1791  *	is the node we want to try and remove.
1792  *	Need to own table->tb6_lock
1793  */
1794 
1795 static struct fib6_node *fib6_repair_tree(struct net *net,
1796 					  struct fib6_table *table,
1797 					  struct fib6_node *fn)
1798 {
1799 	int children;
1800 	int nstate;
1801 	struct fib6_node *child;
1802 	struct fib6_walker *w;
1803 	int iter = 0;
1804 
1805 	/* Set fn->leaf to null_entry for root node. */
1806 	if (fn->fn_flags & RTN_TL_ROOT) {
1807 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1808 		return fn;
1809 	}
1810 
1811 	for (;;) {
1812 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1813 					    lockdep_is_held(&table->tb6_lock));
1814 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1815 					    lockdep_is_held(&table->tb6_lock));
1816 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1817 					    lockdep_is_held(&table->tb6_lock));
1818 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1819 					    lockdep_is_held(&table->tb6_lock));
1820 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1821 					    lockdep_is_held(&table->tb6_lock));
1822 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1823 					    lockdep_is_held(&table->tb6_lock));
1824 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1825 					    lockdep_is_held(&table->tb6_lock));
1826 		struct fib6_info *new_fn_leaf;
1827 
1828 		pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1829 		iter++;
1830 
1831 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1832 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1833 		WARN_ON(fn_leaf);
1834 
1835 		children = 0;
1836 		child = NULL;
1837 		if (fn_r) {
1838 			child = fn_r;
1839 			children |= 1;
1840 		}
1841 		if (fn_l) {
1842 			child = fn_l;
1843 			children |= 2;
1844 		}
1845 
1846 		if (children == 3 || FIB6_SUBTREE(fn)
1847 #ifdef CONFIG_IPV6_SUBTREES
1848 		    /* Subtree root (i.e. fn) may have one child */
1849 		    || (children && fn->fn_flags & RTN_ROOT)
1850 #endif
1851 		    ) {
1852 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1853 #if RT6_DEBUG >= 2
1854 			if (!new_fn_leaf) {
1855 				WARN_ON(!new_fn_leaf);
1856 				new_fn_leaf = net->ipv6.fib6_null_entry;
1857 			}
1858 #endif
1859 			fib6_info_hold(new_fn_leaf);
1860 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1861 			return pn;
1862 		}
1863 
1864 #ifdef CONFIG_IPV6_SUBTREES
1865 		if (FIB6_SUBTREE(pn) == fn) {
1866 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1867 			RCU_INIT_POINTER(pn->subtree, NULL);
1868 			nstate = FWS_L;
1869 		} else {
1870 			WARN_ON(fn->fn_flags & RTN_ROOT);
1871 #endif
1872 			if (pn_r == fn)
1873 				rcu_assign_pointer(pn->right, child);
1874 			else if (pn_l == fn)
1875 				rcu_assign_pointer(pn->left, child);
1876 #if RT6_DEBUG >= 2
1877 			else
1878 				WARN_ON(1);
1879 #endif
1880 			if (child)
1881 				rcu_assign_pointer(child->parent, pn);
1882 			nstate = FWS_R;
1883 #ifdef CONFIG_IPV6_SUBTREES
1884 		}
1885 #endif
1886 
1887 		read_lock(&net->ipv6.fib6_walker_lock);
1888 		FOR_WALKERS(net, w) {
1889 			if (!child) {
1890 				if (w->node == fn) {
1891 					pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1892 						 w, w->state, nstate);
1893 					w->node = pn;
1894 					w->state = nstate;
1895 				}
1896 			} else {
1897 				if (w->node == fn) {
1898 					w->node = child;
1899 					if (children&2) {
1900 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1901 							 w, w->state);
1902 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1903 					} else {
1904 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1905 							 w, w->state);
1906 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1907 					}
1908 				}
1909 			}
1910 		}
1911 		read_unlock(&net->ipv6.fib6_walker_lock);
1912 
1913 		node_free(net, fn);
1914 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1915 			return pn;
1916 
1917 		RCU_INIT_POINTER(pn->leaf, NULL);
1918 		fib6_info_release(pn_leaf);
1919 		fn = pn;
1920 	}
1921 }
1922 
1923 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1924 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1925 {
1926 	struct fib6_info *leaf, *replace_rt = NULL;
1927 	struct fib6_walker *w;
1928 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1929 				    lockdep_is_held(&table->tb6_lock));
1930 	struct net *net = info->nl_net;
1931 	bool notify_del = false;
1932 
1933 	/* If the deleted route is the first in the node and it is not part of
1934 	 * a multipath route, then we need to replace it with the next route
1935 	 * in the node, if exists.
1936 	 */
1937 	leaf = rcu_dereference_protected(fn->leaf,
1938 					 lockdep_is_held(&table->tb6_lock));
1939 	if (leaf == rt && !rt->fib6_nsiblings) {
1940 		if (rcu_access_pointer(rt->fib6_next))
1941 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1942 					    lockdep_is_held(&table->tb6_lock));
1943 		else
1944 			notify_del = true;
1945 	}
1946 
1947 	/* Unlink it */
1948 	*rtp = rt->fib6_next;
1949 	rt->fib6_node = NULL;
1950 	net->ipv6.rt6_stats->fib_rt_entries--;
1951 	net->ipv6.rt6_stats->fib_discarded_routes++;
1952 
1953 	/* Reset round-robin state, if necessary */
1954 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1955 		fn->rr_ptr = NULL;
1956 
1957 	/* Remove this entry from other siblings */
1958 	if (rt->fib6_nsiblings) {
1959 		struct fib6_info *sibling, *next_sibling;
1960 
1961 		/* The route is deleted from a multipath route. If this
1962 		 * multipath route is the first route in the node, then we need
1963 		 * to emit a delete notification. Otherwise, we need to skip
1964 		 * the notification.
1965 		 */
1966 		if (rt->fib6_metric == leaf->fib6_metric &&
1967 		    rt6_qualify_for_ecmp(leaf))
1968 			notify_del = true;
1969 		list_for_each_entry_safe(sibling, next_sibling,
1970 					 &rt->fib6_siblings, fib6_siblings)
1971 			sibling->fib6_nsiblings--;
1972 		rt->fib6_nsiblings = 0;
1973 		list_del_init(&rt->fib6_siblings);
1974 		rt6_multipath_rebalance(next_sibling);
1975 	}
1976 
1977 	/* Adjust walkers */
1978 	read_lock(&net->ipv6.fib6_walker_lock);
1979 	FOR_WALKERS(net, w) {
1980 		if (w->state == FWS_C && w->leaf == rt) {
1981 			pr_debug("walker %p adjusted by delroute\n", w);
1982 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1983 					    lockdep_is_held(&table->tb6_lock));
1984 			if (!w->leaf)
1985 				w->state = FWS_U;
1986 		}
1987 	}
1988 	read_unlock(&net->ipv6.fib6_walker_lock);
1989 
1990 	/* If it was last route, call fib6_repair_tree() to:
1991 	 * 1. For root node, put back null_entry as how the table was created.
1992 	 * 2. For other nodes, expunge its radix tree node.
1993 	 */
1994 	if (!rcu_access_pointer(fn->leaf)) {
1995 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1996 			fn->fn_flags &= ~RTN_RTINFO;
1997 			net->ipv6.rt6_stats->fib_route_nodes--;
1998 		}
1999 		fn = fib6_repair_tree(net, table, fn);
2000 	}
2001 
2002 	fib6_purge_rt(rt, fn, net);
2003 
2004 	if (!info->skip_notify_kernel) {
2005 		if (notify_del)
2006 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2007 						  rt, NULL);
2008 		else if (replace_rt)
2009 			call_fib6_entry_notifiers_replace(net, replace_rt);
2010 	}
2011 	if (!info->skip_notify)
2012 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2013 
2014 	fib6_info_release(rt);
2015 }
2016 
2017 /* Need to own table->tb6_lock */
2018 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2019 {
2020 	struct net *net = info->nl_net;
2021 	struct fib6_info __rcu **rtp;
2022 	struct fib6_info __rcu **rtp_next;
2023 	struct fib6_table *table;
2024 	struct fib6_node *fn;
2025 
2026 	if (rt == net->ipv6.fib6_null_entry)
2027 		return -ENOENT;
2028 
2029 	table = rt->fib6_table;
2030 	fn = rcu_dereference_protected(rt->fib6_node,
2031 				       lockdep_is_held(&table->tb6_lock));
2032 	if (!fn)
2033 		return -ENOENT;
2034 
2035 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2036 
2037 	/*
2038 	 *	Walk the leaf entries looking for ourself
2039 	 */
2040 
2041 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2042 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2043 					lockdep_is_held(&table->tb6_lock));
2044 		if (rt == cur) {
2045 			if (fib6_requires_src(cur))
2046 				fib6_routes_require_src_dec(info->nl_net);
2047 			fib6_del_route(table, fn, rtp, info);
2048 			return 0;
2049 		}
2050 		rtp_next = &cur->fib6_next;
2051 	}
2052 	return -ENOENT;
2053 }
2054 
2055 /*
2056  *	Tree traversal function.
2057  *
2058  *	Certainly, it is not interrupt safe.
2059  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2060  *	It means, that we can modify tree during walking
2061  *	and use this function for garbage collection, clone pruning,
2062  *	cleaning tree when a device goes down etc. etc.
2063  *
2064  *	It guarantees that every node will be traversed,
2065  *	and that it will be traversed only once.
2066  *
2067  *	Callback function w->func may return:
2068  *	0 -> continue walking.
2069  *	positive value -> walking is suspended (used by tree dumps,
2070  *	and probably by gc, if it will be split to several slices)
2071  *	negative value -> terminate walking.
2072  *
2073  *	The function itself returns:
2074  *	0   -> walk is complete.
2075  *	>0  -> walk is incomplete (i.e. suspended)
2076  *	<0  -> walk is terminated by an error.
2077  *
2078  *	This function is called with tb6_lock held.
2079  */
2080 
2081 static int fib6_walk_continue(struct fib6_walker *w)
2082 {
2083 	struct fib6_node *fn, *pn, *left, *right;
2084 
2085 	/* w->root should always be table->tb6_root */
2086 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2087 
2088 	for (;;) {
2089 		fn = w->node;
2090 		if (!fn)
2091 			return 0;
2092 
2093 		switch (w->state) {
2094 #ifdef CONFIG_IPV6_SUBTREES
2095 		case FWS_S:
2096 			if (FIB6_SUBTREE(fn)) {
2097 				w->node = FIB6_SUBTREE(fn);
2098 				continue;
2099 			}
2100 			w->state = FWS_L;
2101 			fallthrough;
2102 #endif
2103 		case FWS_L:
2104 			left = rcu_dereference_protected(fn->left, 1);
2105 			if (left) {
2106 				w->node = left;
2107 				w->state = FWS_INIT;
2108 				continue;
2109 			}
2110 			w->state = FWS_R;
2111 			fallthrough;
2112 		case FWS_R:
2113 			right = rcu_dereference_protected(fn->right, 1);
2114 			if (right) {
2115 				w->node = right;
2116 				w->state = FWS_INIT;
2117 				continue;
2118 			}
2119 			w->state = FWS_C;
2120 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2121 			fallthrough;
2122 		case FWS_C:
2123 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2124 				int err;
2125 
2126 				if (w->skip) {
2127 					w->skip--;
2128 					goto skip;
2129 				}
2130 
2131 				err = w->func(w);
2132 				if (err)
2133 					return err;
2134 
2135 				w->count++;
2136 				continue;
2137 			}
2138 skip:
2139 			w->state = FWS_U;
2140 			fallthrough;
2141 		case FWS_U:
2142 			if (fn == w->root)
2143 				return 0;
2144 			pn = rcu_dereference_protected(fn->parent, 1);
2145 			left = rcu_dereference_protected(pn->left, 1);
2146 			right = rcu_dereference_protected(pn->right, 1);
2147 			w->node = pn;
2148 #ifdef CONFIG_IPV6_SUBTREES
2149 			if (FIB6_SUBTREE(pn) == fn) {
2150 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2151 				w->state = FWS_L;
2152 				continue;
2153 			}
2154 #endif
2155 			if (left == fn) {
2156 				w->state = FWS_R;
2157 				continue;
2158 			}
2159 			if (right == fn) {
2160 				w->state = FWS_C;
2161 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2162 				continue;
2163 			}
2164 #if RT6_DEBUG >= 2
2165 			WARN_ON(1);
2166 #endif
2167 		}
2168 	}
2169 }
2170 
2171 static int fib6_walk(struct net *net, struct fib6_walker *w)
2172 {
2173 	int res;
2174 
2175 	w->state = FWS_INIT;
2176 	w->node = w->root;
2177 
2178 	fib6_walker_link(net, w);
2179 	res = fib6_walk_continue(w);
2180 	if (res <= 0)
2181 		fib6_walker_unlink(net, w);
2182 	return res;
2183 }
2184 
2185 static int fib6_clean_node(struct fib6_walker *w)
2186 {
2187 	int res;
2188 	struct fib6_info *rt;
2189 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2190 	struct nl_info info = {
2191 		.nl_net = c->net,
2192 		.skip_notify = c->skip_notify,
2193 	};
2194 
2195 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2196 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2197 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2198 
2199 	if (!c->func) {
2200 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2201 		w->leaf = NULL;
2202 		return 0;
2203 	}
2204 
2205 	for_each_fib6_walker_rt(w) {
2206 		res = c->func(rt, c->arg);
2207 		if (res == -1) {
2208 			w->leaf = rt;
2209 			res = fib6_del(rt, &info);
2210 			if (res) {
2211 #if RT6_DEBUG >= 2
2212 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2213 					 __func__, rt,
2214 					 rcu_access_pointer(rt->fib6_node),
2215 					 res);
2216 #endif
2217 				continue;
2218 			}
2219 			return 0;
2220 		} else if (res == -2) {
2221 			if (WARN_ON(!rt->fib6_nsiblings))
2222 				continue;
2223 			rt = list_last_entry(&rt->fib6_siblings,
2224 					     struct fib6_info, fib6_siblings);
2225 			continue;
2226 		}
2227 		WARN_ON(res != 0);
2228 	}
2229 	w->leaf = rt;
2230 	return 0;
2231 }
2232 
2233 /*
2234  *	Convenient frontend to tree walker.
2235  *
2236  *	func is called on each route.
2237  *		It may return -2 -> skip multipath route.
2238  *			      -1 -> delete this route.
2239  *		              0  -> continue walking
2240  */
2241 
2242 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2243 			    int (*func)(struct fib6_info *, void *arg),
2244 			    int sernum, void *arg, bool skip_notify)
2245 {
2246 	struct fib6_cleaner c;
2247 
2248 	c.w.root = root;
2249 	c.w.func = fib6_clean_node;
2250 	c.w.count = 0;
2251 	c.w.skip = 0;
2252 	c.w.skip_in_node = 0;
2253 	c.func = func;
2254 	c.sernum = sernum;
2255 	c.arg = arg;
2256 	c.net = net;
2257 	c.skip_notify = skip_notify;
2258 
2259 	fib6_walk(net, &c.w);
2260 }
2261 
2262 static void __fib6_clean_all(struct net *net,
2263 			     int (*func)(struct fib6_info *, void *),
2264 			     int sernum, void *arg, bool skip_notify)
2265 {
2266 	struct fib6_table *table;
2267 	struct hlist_head *head;
2268 	unsigned int h;
2269 
2270 	rcu_read_lock();
2271 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2272 		head = &net->ipv6.fib_table_hash[h];
2273 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2274 			spin_lock_bh(&table->tb6_lock);
2275 			fib6_clean_tree(net, &table->tb6_root,
2276 					func, sernum, arg, skip_notify);
2277 			spin_unlock_bh(&table->tb6_lock);
2278 		}
2279 	}
2280 	rcu_read_unlock();
2281 }
2282 
2283 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2284 		    void *arg)
2285 {
2286 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2287 }
2288 
2289 void fib6_clean_all_skip_notify(struct net *net,
2290 				int (*func)(struct fib6_info *, void *),
2291 				void *arg)
2292 {
2293 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2294 }
2295 
2296 static void fib6_flush_trees(struct net *net)
2297 {
2298 	int new_sernum = fib6_new_sernum(net);
2299 
2300 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2301 }
2302 
2303 /*
2304  *	Garbage collection
2305  */
2306 
2307 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2308 {
2309 	unsigned long now = jiffies;
2310 
2311 	/*
2312 	 *	check addrconf expiration here.
2313 	 *	Routes are expired even if they are in use.
2314 	 */
2315 
2316 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2317 		if (time_after(now, rt->expires)) {
2318 			pr_debug("expiring %p\n", rt);
2319 			return -1;
2320 		}
2321 		gc_args->more++;
2322 	}
2323 
2324 	/*	Also age clones in the exception table.
2325 	 *	Note, that clones are aged out
2326 	 *	only if they are not in use now.
2327 	 */
2328 	rt6_age_exceptions(rt, gc_args, now);
2329 
2330 	return 0;
2331 }
2332 
2333 static void fib6_gc_table(struct net *net,
2334 			  struct fib6_table *tb6,
2335 			  struct fib6_gc_args *gc_args)
2336 {
2337 	struct fib6_info *rt;
2338 	struct hlist_node *n;
2339 	struct nl_info info = {
2340 		.nl_net = net,
2341 		.skip_notify = false,
2342 	};
2343 
2344 	hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2345 		if (fib6_age(rt, gc_args) == -1)
2346 			fib6_del(rt, &info);
2347 }
2348 
2349 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2350 {
2351 	struct fib6_table *table;
2352 	struct hlist_head *head;
2353 	unsigned int h;
2354 
2355 	rcu_read_lock();
2356 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2357 		head = &net->ipv6.fib_table_hash[h];
2358 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2359 			spin_lock_bh(&table->tb6_lock);
2360 
2361 			fib6_gc_table(net, table, gc_args);
2362 
2363 			spin_unlock_bh(&table->tb6_lock);
2364 		}
2365 	}
2366 	rcu_read_unlock();
2367 }
2368 
2369 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2370 {
2371 	struct fib6_gc_args gc_args;
2372 	unsigned long now;
2373 
2374 	if (force) {
2375 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2376 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2377 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2378 		return;
2379 	}
2380 	gc_args.timeout = expires ? (int)expires :
2381 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2382 	gc_args.more = 0;
2383 
2384 	fib6_gc_all(net, &gc_args);
2385 	now = jiffies;
2386 	net->ipv6.ip6_rt_last_gc = now;
2387 
2388 	if (gc_args.more)
2389 		mod_timer(&net->ipv6.ip6_fib_timer,
2390 			  round_jiffies(now
2391 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2392 	else
2393 		del_timer(&net->ipv6.ip6_fib_timer);
2394 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2395 }
2396 
2397 static void fib6_gc_timer_cb(struct timer_list *t)
2398 {
2399 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2400 
2401 	fib6_run_gc(0, arg, true);
2402 }
2403 
2404 static int __net_init fib6_net_init(struct net *net)
2405 {
2406 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2407 	int err;
2408 
2409 	err = fib6_notifier_init(net);
2410 	if (err)
2411 		return err;
2412 
2413 	/* Default to 3-tuple */
2414 	net->ipv6.sysctl.multipath_hash_fields =
2415 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2416 
2417 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2418 	rwlock_init(&net->ipv6.fib6_walker_lock);
2419 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2420 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2421 
2422 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2423 	if (!net->ipv6.rt6_stats)
2424 		goto out_notifier;
2425 
2426 	/* Avoid false sharing : Use at least a full cache line */
2427 	size = max_t(size_t, size, L1_CACHE_BYTES);
2428 
2429 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2430 	if (!net->ipv6.fib_table_hash)
2431 		goto out_rt6_stats;
2432 
2433 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2434 					  GFP_KERNEL);
2435 	if (!net->ipv6.fib6_main_tbl)
2436 		goto out_fib_table_hash;
2437 
2438 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2439 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2440 			   net->ipv6.fib6_null_entry);
2441 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2442 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2443 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2444 	INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2445 
2446 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2447 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2448 					   GFP_KERNEL);
2449 	if (!net->ipv6.fib6_local_tbl)
2450 		goto out_fib6_main_tbl;
2451 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2452 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2453 			   net->ipv6.fib6_null_entry);
2454 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2455 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2456 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2457 	INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2458 #endif
2459 	fib6_tables_init(net);
2460 
2461 	return 0;
2462 
2463 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2464 out_fib6_main_tbl:
2465 	kfree(net->ipv6.fib6_main_tbl);
2466 #endif
2467 out_fib_table_hash:
2468 	kfree(net->ipv6.fib_table_hash);
2469 out_rt6_stats:
2470 	kfree(net->ipv6.rt6_stats);
2471 out_notifier:
2472 	fib6_notifier_exit(net);
2473 	return -ENOMEM;
2474 }
2475 
2476 static void fib6_net_exit(struct net *net)
2477 {
2478 	unsigned int i;
2479 
2480 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2481 
2482 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2483 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2484 		struct hlist_node *tmp;
2485 		struct fib6_table *tb;
2486 
2487 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2488 			hlist_del(&tb->tb6_hlist);
2489 			fib6_free_table(tb);
2490 		}
2491 	}
2492 
2493 	kfree(net->ipv6.fib_table_hash);
2494 	kfree(net->ipv6.rt6_stats);
2495 	fib6_notifier_exit(net);
2496 }
2497 
2498 static struct pernet_operations fib6_net_ops = {
2499 	.init = fib6_net_init,
2500 	.exit = fib6_net_exit,
2501 };
2502 
2503 int __init fib6_init(void)
2504 {
2505 	int ret = -ENOMEM;
2506 
2507 	fib6_node_kmem = KMEM_CACHE(fib6_node,
2508 				    SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2509 	if (!fib6_node_kmem)
2510 		goto out;
2511 
2512 	ret = register_pernet_subsys(&fib6_net_ops);
2513 	if (ret)
2514 		goto out_kmem_cache_create;
2515 
2516 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2517 				   inet6_dump_fib, RTNL_FLAG_DUMP_UNLOCKED |
2518 				   RTNL_FLAG_DUMP_SPLIT_NLM_DONE);
2519 	if (ret)
2520 		goto out_unregister_subsys;
2521 
2522 	__fib6_flush_trees = fib6_flush_trees;
2523 out:
2524 	return ret;
2525 
2526 out_unregister_subsys:
2527 	unregister_pernet_subsys(&fib6_net_ops);
2528 out_kmem_cache_create:
2529 	kmem_cache_destroy(fib6_node_kmem);
2530 	goto out;
2531 }
2532 
2533 void fib6_gc_cleanup(void)
2534 {
2535 	unregister_pernet_subsys(&fib6_net_ops);
2536 	kmem_cache_destroy(fib6_node_kmem);
2537 }
2538 
2539 #ifdef CONFIG_PROC_FS
2540 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2541 {
2542 	struct fib6_info *rt = v;
2543 	struct ipv6_route_iter *iter = seq->private;
2544 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2545 	unsigned int flags = rt->fib6_flags;
2546 	const struct net_device *dev;
2547 
2548 	if (rt->nh)
2549 		fib6_nh = nexthop_fib6_nh(rt->nh);
2550 
2551 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2552 
2553 #ifdef CONFIG_IPV6_SUBTREES
2554 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2555 #else
2556 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2557 #endif
2558 	if (fib6_nh->fib_nh_gw_family) {
2559 		flags |= RTF_GATEWAY;
2560 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2561 	} else {
2562 		seq_puts(seq, "00000000000000000000000000000000");
2563 	}
2564 
2565 	dev = fib6_nh->fib_nh_dev;
2566 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2567 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2568 		   flags, dev ? dev->name : "");
2569 	iter->w.leaf = NULL;
2570 	return 0;
2571 }
2572 
2573 static int ipv6_route_yield(struct fib6_walker *w)
2574 {
2575 	struct ipv6_route_iter *iter = w->args;
2576 
2577 	if (!iter->skip)
2578 		return 1;
2579 
2580 	do {
2581 		iter->w.leaf = rcu_dereference_protected(
2582 				iter->w.leaf->fib6_next,
2583 				lockdep_is_held(&iter->tbl->tb6_lock));
2584 		iter->skip--;
2585 		if (!iter->skip && iter->w.leaf)
2586 			return 1;
2587 	} while (iter->w.leaf);
2588 
2589 	return 0;
2590 }
2591 
2592 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2593 				      struct net *net)
2594 {
2595 	memset(&iter->w, 0, sizeof(iter->w));
2596 	iter->w.func = ipv6_route_yield;
2597 	iter->w.root = &iter->tbl->tb6_root;
2598 	iter->w.state = FWS_INIT;
2599 	iter->w.node = iter->w.root;
2600 	iter->w.args = iter;
2601 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2602 	INIT_LIST_HEAD(&iter->w.lh);
2603 	fib6_walker_link(net, &iter->w);
2604 }
2605 
2606 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2607 						    struct net *net)
2608 {
2609 	unsigned int h;
2610 	struct hlist_node *node;
2611 
2612 	if (tbl) {
2613 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2614 		node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2615 	} else {
2616 		h = 0;
2617 		node = NULL;
2618 	}
2619 
2620 	while (!node && h < FIB6_TABLE_HASHSZ) {
2621 		node = rcu_dereference(
2622 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2623 	}
2624 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2625 }
2626 
2627 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2628 {
2629 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2630 
2631 	if (iter->sernum != sernum) {
2632 		iter->sernum = sernum;
2633 		iter->w.state = FWS_INIT;
2634 		iter->w.node = iter->w.root;
2635 		WARN_ON(iter->w.skip);
2636 		iter->w.skip = iter->w.count;
2637 	}
2638 }
2639 
2640 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2641 {
2642 	int r;
2643 	struct fib6_info *n;
2644 	struct net *net = seq_file_net(seq);
2645 	struct ipv6_route_iter *iter = seq->private;
2646 
2647 	++(*pos);
2648 	if (!v)
2649 		goto iter_table;
2650 
2651 	n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2652 	if (n)
2653 		return n;
2654 
2655 iter_table:
2656 	ipv6_route_check_sernum(iter);
2657 	spin_lock_bh(&iter->tbl->tb6_lock);
2658 	r = fib6_walk_continue(&iter->w);
2659 	spin_unlock_bh(&iter->tbl->tb6_lock);
2660 	if (r > 0) {
2661 		return iter->w.leaf;
2662 	} else if (r < 0) {
2663 		fib6_walker_unlink(net, &iter->w);
2664 		return NULL;
2665 	}
2666 	fib6_walker_unlink(net, &iter->w);
2667 
2668 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2669 	if (!iter->tbl)
2670 		return NULL;
2671 
2672 	ipv6_route_seq_setup_walk(iter, net);
2673 	goto iter_table;
2674 }
2675 
2676 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2677 	__acquires(RCU)
2678 {
2679 	struct net *net = seq_file_net(seq);
2680 	struct ipv6_route_iter *iter = seq->private;
2681 
2682 	rcu_read_lock();
2683 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2684 	iter->skip = *pos;
2685 
2686 	if (iter->tbl) {
2687 		loff_t p = 0;
2688 
2689 		ipv6_route_seq_setup_walk(iter, net);
2690 		return ipv6_route_seq_next(seq, NULL, &p);
2691 	} else {
2692 		return NULL;
2693 	}
2694 }
2695 
2696 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2697 {
2698 	struct fib6_walker *w = &iter->w;
2699 	return w->node && !(w->state == FWS_U && w->node == w->root);
2700 }
2701 
2702 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2703 	__releases(RCU)
2704 {
2705 	struct net *net = seq_file_net(seq);
2706 	struct ipv6_route_iter *iter = seq->private;
2707 
2708 	if (ipv6_route_iter_active(iter))
2709 		fib6_walker_unlink(net, &iter->w);
2710 
2711 	rcu_read_unlock();
2712 }
2713 
2714 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2715 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2716 				    struct bpf_iter_meta *meta,
2717 				    void *v)
2718 {
2719 	struct bpf_iter__ipv6_route ctx;
2720 
2721 	ctx.meta = meta;
2722 	ctx.rt = v;
2723 	return bpf_iter_run_prog(prog, &ctx);
2724 }
2725 
2726 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2727 {
2728 	struct ipv6_route_iter *iter = seq->private;
2729 	struct bpf_iter_meta meta;
2730 	struct bpf_prog *prog;
2731 	int ret;
2732 
2733 	meta.seq = seq;
2734 	prog = bpf_iter_get_info(&meta, false);
2735 	if (!prog)
2736 		return ipv6_route_native_seq_show(seq, v);
2737 
2738 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2739 	iter->w.leaf = NULL;
2740 
2741 	return ret;
2742 }
2743 
2744 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2745 {
2746 	struct bpf_iter_meta meta;
2747 	struct bpf_prog *prog;
2748 
2749 	if (!v) {
2750 		meta.seq = seq;
2751 		prog = bpf_iter_get_info(&meta, true);
2752 		if (prog)
2753 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2754 	}
2755 
2756 	ipv6_route_native_seq_stop(seq, v);
2757 }
2758 #else
2759 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2760 {
2761 	return ipv6_route_native_seq_show(seq, v);
2762 }
2763 
2764 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2765 {
2766 	ipv6_route_native_seq_stop(seq, v);
2767 }
2768 #endif
2769 
2770 const struct seq_operations ipv6_route_seq_ops = {
2771 	.start	= ipv6_route_seq_start,
2772 	.next	= ipv6_route_seq_next,
2773 	.stop	= ipv6_route_seq_stop,
2774 	.show	= ipv6_route_seq_show
2775 };
2776 #endif /* CONFIG_PROC_FS */
2777