xref: /linux/net/ipv6/ip6_fib.c (revision f72aa1b276281b4e4f75261af8425bc99d903f3e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old = atomic_read(&net->ipv6.fib6_sernum);
95 
96 	do {
97 		new = old < INT_MAX ? old + 1 : 1;
98 	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99 
100 	return new;
101 }
102 
103 enum {
104 	FIB6_NO_SERNUM_CHANGE = 0,
105 };
106 
107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 	struct fib6_node *fn;
110 
111 	fn = rcu_dereference_protected(f6i->fib6_node,
112 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 	if (fn)
114 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 	struct fib6_info *f6i;
150 	size_t sz = sizeof(*f6i);
151 
152 	if (with_fib6_nh)
153 		sz += sizeof(struct fib6_nh);
154 
155 	f6i = kzalloc(sz, gfp_flags);
156 	if (!f6i)
157 		return NULL;
158 
159 	/* fib6_siblings is a union with nh_list, so this initializes both */
160 	INIT_LIST_HEAD(&f6i->fib6_siblings);
161 	refcount_set(&f6i->fib6_ref, 1);
162 
163 	INIT_HLIST_NODE(&f6i->gc_link);
164 
165 	return f6i;
166 }
167 
168 void fib6_info_destroy_rcu(struct rcu_head *head)
169 {
170 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171 
172 	WARN_ON(f6i->fib6_node);
173 
174 	if (f6i->nh)
175 		nexthop_put(f6i->nh);
176 	else
177 		fib6_nh_release(f6i->fib6_nh);
178 
179 	ip_fib_metrics_put(f6i->fib6_metrics);
180 	kfree(f6i);
181 }
182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183 
184 static struct fib6_node *node_alloc(struct net *net)
185 {
186 	struct fib6_node *fn;
187 
188 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 	if (fn)
190 		net->ipv6.rt6_stats->fib_nodes++;
191 
192 	return fn;
193 }
194 
195 static void node_free_immediate(struct net *net, struct fib6_node *fn)
196 {
197 	kmem_cache_free(fib6_node_kmem, fn);
198 	net->ipv6.rt6_stats->fib_nodes--;
199 }
200 
201 static void node_free(struct net *net, struct fib6_node *fn)
202 {
203 	kfree_rcu(fn, rcu);
204 	net->ipv6.rt6_stats->fib_nodes--;
205 }
206 
207 static void fib6_free_table(struct fib6_table *table)
208 {
209 	inetpeer_invalidate_tree(&table->tb6_peers);
210 	kfree(table);
211 }
212 
213 static void fib6_link_table(struct net *net, struct fib6_table *tb)
214 {
215 	unsigned int h;
216 
217 	/*
218 	 * Initialize table lock at a single place to give lockdep a key,
219 	 * tables aren't visible prior to being linked to the list.
220 	 */
221 	spin_lock_init(&tb->tb6_lock);
222 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
223 
224 	/*
225 	 * No protection necessary, this is the only list mutatation
226 	 * operation, tables never disappear once they exist.
227 	 */
228 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
229 }
230 
231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
232 
233 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
234 {
235 	struct fib6_table *table;
236 
237 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
238 	if (table) {
239 		table->tb6_id = id;
240 		rcu_assign_pointer(table->tb6_root.leaf,
241 				   net->ipv6.fib6_null_entry);
242 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
243 		inet_peer_base_init(&table->tb6_peers);
244 		INIT_HLIST_HEAD(&table->tb6_gc_hlist);
245 	}
246 
247 	return table;
248 }
249 
250 struct fib6_table *fib6_new_table(struct net *net, u32 id)
251 {
252 	struct fib6_table *tb;
253 
254 	if (id == 0)
255 		id = RT6_TABLE_MAIN;
256 	tb = fib6_get_table(net, id);
257 	if (tb)
258 		return tb;
259 
260 	tb = fib6_alloc_table(net, id);
261 	if (tb)
262 		fib6_link_table(net, tb);
263 
264 	return tb;
265 }
266 EXPORT_SYMBOL_GPL(fib6_new_table);
267 
268 struct fib6_table *fib6_get_table(struct net *net, u32 id)
269 {
270 	struct fib6_table *tb;
271 	struct hlist_head *head;
272 	unsigned int h;
273 
274 	if (id == 0)
275 		id = RT6_TABLE_MAIN;
276 	h = id & (FIB6_TABLE_HASHSZ - 1);
277 	rcu_read_lock();
278 	head = &net->ipv6.fib_table_hash[h];
279 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
280 		if (tb->tb6_id == id) {
281 			rcu_read_unlock();
282 			return tb;
283 		}
284 	}
285 	rcu_read_unlock();
286 
287 	return NULL;
288 }
289 EXPORT_SYMBOL_GPL(fib6_get_table);
290 
291 static void __net_init fib6_tables_init(struct net *net)
292 {
293 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
294 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
295 }
296 #else
297 
298 struct fib6_table *fib6_new_table(struct net *net, u32 id)
299 {
300 	return fib6_get_table(net, id);
301 }
302 
303 struct fib6_table *fib6_get_table(struct net *net, u32 id)
304 {
305 	  return net->ipv6.fib6_main_tbl;
306 }
307 
308 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
309 				   const struct sk_buff *skb,
310 				   int flags, pol_lookup_t lookup)
311 {
312 	struct rt6_info *rt;
313 
314 	rt = pol_lookup_func(lookup,
315 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
316 	if (rt->dst.error == -EAGAIN) {
317 		ip6_rt_put_flags(rt, flags);
318 		rt = net->ipv6.ip6_null_entry;
319 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
320 			dst_hold(&rt->dst);
321 	}
322 
323 	return &rt->dst;
324 }
325 
326 /* called with rcu lock held; no reference taken on fib6_info */
327 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
328 		struct fib6_result *res, int flags)
329 {
330 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
331 				 res, flags);
332 }
333 
334 static void __net_init fib6_tables_init(struct net *net)
335 {
336 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
337 }
338 
339 #endif
340 
341 unsigned int fib6_tables_seq_read(const struct net *net)
342 {
343 	unsigned int h, fib_seq = 0;
344 
345 	rcu_read_lock();
346 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
347 		const struct hlist_head *head = &net->ipv6.fib_table_hash[h];
348 		const struct fib6_table *tb;
349 
350 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
351 			fib_seq += READ_ONCE(tb->fib_seq);
352 	}
353 	rcu_read_unlock();
354 
355 	return fib_seq;
356 }
357 
358 static int call_fib6_entry_notifier(struct notifier_block *nb,
359 				    enum fib_event_type event_type,
360 				    struct fib6_info *rt,
361 				    struct netlink_ext_ack *extack)
362 {
363 	struct fib6_entry_notifier_info info = {
364 		.info.extack = extack,
365 		.rt = rt,
366 	};
367 
368 	return call_fib6_notifier(nb, event_type, &info.info);
369 }
370 
371 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
372 					      enum fib_event_type event_type,
373 					      struct fib6_info *rt,
374 					      unsigned int nsiblings,
375 					      struct netlink_ext_ack *extack)
376 {
377 	struct fib6_entry_notifier_info info = {
378 		.info.extack = extack,
379 		.rt = rt,
380 		.nsiblings = nsiblings,
381 	};
382 
383 	return call_fib6_notifier(nb, event_type, &info.info);
384 }
385 
386 int call_fib6_entry_notifiers(struct net *net,
387 			      enum fib_event_type event_type,
388 			      struct fib6_info *rt,
389 			      struct netlink_ext_ack *extack)
390 {
391 	struct fib6_entry_notifier_info info = {
392 		.info.extack = extack,
393 		.rt = rt,
394 	};
395 
396 	WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
397 	return call_fib6_notifiers(net, event_type, &info.info);
398 }
399 
400 int call_fib6_multipath_entry_notifiers(struct net *net,
401 					enum fib_event_type event_type,
402 					struct fib6_info *rt,
403 					unsigned int nsiblings,
404 					struct netlink_ext_ack *extack)
405 {
406 	struct fib6_entry_notifier_info info = {
407 		.info.extack = extack,
408 		.rt = rt,
409 		.nsiblings = nsiblings,
410 	};
411 
412 	WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
413 	return call_fib6_notifiers(net, event_type, &info.info);
414 }
415 
416 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
417 {
418 	struct fib6_entry_notifier_info info = {
419 		.rt = rt,
420 		.nsiblings = rt->fib6_nsiblings,
421 	};
422 
423 	WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
424 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
425 }
426 
427 struct fib6_dump_arg {
428 	struct net *net;
429 	struct notifier_block *nb;
430 	struct netlink_ext_ack *extack;
431 };
432 
433 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
434 {
435 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
436 	int err;
437 
438 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
439 		return 0;
440 
441 	if (rt->fib6_nsiblings)
442 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
443 							 rt,
444 							 rt->fib6_nsiblings,
445 							 arg->extack);
446 	else
447 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
448 					       arg->extack);
449 
450 	return err;
451 }
452 
453 static int fib6_node_dump(struct fib6_walker *w)
454 {
455 	int err;
456 
457 	err = fib6_rt_dump(w->leaf, w->args);
458 	w->leaf = NULL;
459 	return err;
460 }
461 
462 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
463 			   struct fib6_walker *w)
464 {
465 	int err;
466 
467 	w->root = &tb->tb6_root;
468 	spin_lock_bh(&tb->tb6_lock);
469 	err = fib6_walk(net, w);
470 	spin_unlock_bh(&tb->tb6_lock);
471 	return err;
472 }
473 
474 /* Called with rcu_read_lock() */
475 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
476 		     struct netlink_ext_ack *extack)
477 {
478 	struct fib6_dump_arg arg;
479 	struct fib6_walker *w;
480 	unsigned int h;
481 	int err = 0;
482 
483 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
484 	if (!w)
485 		return -ENOMEM;
486 
487 	w->func = fib6_node_dump;
488 	arg.net = net;
489 	arg.nb = nb;
490 	arg.extack = extack;
491 	w->args = &arg;
492 
493 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
494 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
495 		struct fib6_table *tb;
496 
497 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
498 			err = fib6_table_dump(net, tb, w);
499 			if (err)
500 				goto out;
501 		}
502 	}
503 
504 out:
505 	kfree(w);
506 
507 	/* The tree traversal function should never return a positive value. */
508 	return err > 0 ? -EINVAL : err;
509 }
510 
511 static int fib6_dump_node(struct fib6_walker *w)
512 {
513 	int res;
514 	struct fib6_info *rt;
515 
516 	for_each_fib6_walker_rt(w) {
517 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
518 		if (res >= 0) {
519 			/* Frame is full, suspend walking */
520 			w->leaf = rt;
521 
522 			/* We'll restart from this node, so if some routes were
523 			 * already dumped, skip them next time.
524 			 */
525 			w->skip_in_node += res;
526 
527 			return 1;
528 		}
529 		w->skip_in_node = 0;
530 
531 		/* Multipath routes are dumped in one route with the
532 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
533 		 * last sibling of this route (no need to dump the
534 		 * sibling routes again)
535 		 */
536 		if (rt->fib6_nsiblings)
537 			rt = list_last_entry(&rt->fib6_siblings,
538 					     struct fib6_info,
539 					     fib6_siblings);
540 	}
541 	w->leaf = NULL;
542 	return 0;
543 }
544 
545 static void fib6_dump_end(struct netlink_callback *cb)
546 {
547 	struct net *net = sock_net(cb->skb->sk);
548 	struct fib6_walker *w = (void *)cb->args[2];
549 
550 	if (w) {
551 		if (cb->args[4]) {
552 			cb->args[4] = 0;
553 			fib6_walker_unlink(net, w);
554 		}
555 		cb->args[2] = 0;
556 		kfree(w);
557 	}
558 	cb->done = (void *)cb->args[3];
559 	cb->args[1] = 3;
560 }
561 
562 static int fib6_dump_done(struct netlink_callback *cb)
563 {
564 	fib6_dump_end(cb);
565 	return cb->done ? cb->done(cb) : 0;
566 }
567 
568 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
569 			   struct netlink_callback *cb)
570 {
571 	struct net *net = sock_net(skb->sk);
572 	struct fib6_walker *w;
573 	int res;
574 
575 	w = (void *)cb->args[2];
576 	w->root = &table->tb6_root;
577 
578 	if (cb->args[4] == 0) {
579 		w->count = 0;
580 		w->skip = 0;
581 		w->skip_in_node = 0;
582 
583 		spin_lock_bh(&table->tb6_lock);
584 		res = fib6_walk(net, w);
585 		spin_unlock_bh(&table->tb6_lock);
586 		if (res > 0) {
587 			cb->args[4] = 1;
588 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
589 		}
590 	} else {
591 		int sernum = READ_ONCE(w->root->fn_sernum);
592 		if (cb->args[5] != sernum) {
593 			/* Begin at the root if the tree changed */
594 			cb->args[5] = sernum;
595 			w->state = FWS_INIT;
596 			w->node = w->root;
597 			w->skip = w->count;
598 			w->skip_in_node = 0;
599 		} else
600 			w->skip = 0;
601 
602 		spin_lock_bh(&table->tb6_lock);
603 		res = fib6_walk_continue(w);
604 		spin_unlock_bh(&table->tb6_lock);
605 		if (res <= 0) {
606 			fib6_walker_unlink(net, w);
607 			cb->args[4] = 0;
608 		}
609 	}
610 
611 	return res;
612 }
613 
614 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
615 {
616 	struct rt6_rtnl_dump_arg arg = {
617 		.filter.dump_exceptions = true,
618 		.filter.dump_routes = true,
619 		.filter.rtnl_held = false,
620 	};
621 	const struct nlmsghdr *nlh = cb->nlh;
622 	struct net *net = sock_net(skb->sk);
623 	unsigned int e = 0, s_e;
624 	struct hlist_head *head;
625 	struct fib6_walker *w;
626 	struct fib6_table *tb;
627 	unsigned int h, s_h;
628 	int err = 0;
629 
630 	rcu_read_lock();
631 	if (cb->strict_check) {
632 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
633 		if (err < 0)
634 			goto unlock;
635 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
636 		struct rtmsg *rtm = nlmsg_data(nlh);
637 
638 		if (rtm->rtm_flags & RTM_F_PREFIX)
639 			arg.filter.flags = RTM_F_PREFIX;
640 	}
641 
642 	w = (void *)cb->args[2];
643 	if (!w) {
644 		/* New dump:
645 		 *
646 		 * 1. allocate and initialize walker.
647 		 */
648 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
649 		if (!w) {
650 			err = -ENOMEM;
651 			goto unlock;
652 		}
653 		w->func = fib6_dump_node;
654 		cb->args[2] = (long)w;
655 
656 		/* 2. hook callback destructor.
657 		 */
658 		cb->args[3] = (long)cb->done;
659 		cb->done = fib6_dump_done;
660 
661 	}
662 
663 	arg.skb = skb;
664 	arg.cb = cb;
665 	arg.net = net;
666 	w->args = &arg;
667 
668 	if (arg.filter.table_id) {
669 		tb = fib6_get_table(net, arg.filter.table_id);
670 		if (!tb) {
671 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
672 				goto unlock;
673 
674 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
675 			err = -ENOENT;
676 			goto unlock;
677 		}
678 
679 		if (!cb->args[0]) {
680 			err = fib6_dump_table(tb, skb, cb);
681 			if (!err)
682 				cb->args[0] = 1;
683 		}
684 		goto unlock;
685 	}
686 
687 	s_h = cb->args[0];
688 	s_e = cb->args[1];
689 
690 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
691 		e = 0;
692 		head = &net->ipv6.fib_table_hash[h];
693 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
694 			if (e < s_e)
695 				goto next;
696 			err = fib6_dump_table(tb, skb, cb);
697 			if (err != 0)
698 				goto out;
699 next:
700 			e++;
701 		}
702 	}
703 out:
704 	cb->args[1] = e;
705 	cb->args[0] = h;
706 
707 unlock:
708 	rcu_read_unlock();
709 	if (err <= 0)
710 		fib6_dump_end(cb);
711 	return err;
712 }
713 
714 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
715 {
716 	if (!f6i)
717 		return;
718 
719 	if (f6i->fib6_metrics == &dst_default_metrics) {
720 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
721 
722 		if (!p)
723 			return;
724 
725 		refcount_set(&p->refcnt, 1);
726 		f6i->fib6_metrics = p;
727 	}
728 
729 	f6i->fib6_metrics->metrics[metric - 1] = val;
730 }
731 
732 /*
733  *	Routing Table
734  *
735  *	return the appropriate node for a routing tree "add" operation
736  *	by either creating and inserting or by returning an existing
737  *	node.
738  */
739 
740 static struct fib6_node *fib6_add_1(struct net *net,
741 				    struct fib6_table *table,
742 				    struct fib6_node *root,
743 				    struct in6_addr *addr, int plen,
744 				    int offset, int allow_create,
745 				    int replace_required,
746 				    struct netlink_ext_ack *extack)
747 {
748 	struct fib6_node *fn, *in, *ln;
749 	struct fib6_node *pn = NULL;
750 	struct rt6key *key;
751 	int	bit;
752 	__be32	dir = 0;
753 
754 	/* insert node in tree */
755 
756 	fn = root;
757 
758 	do {
759 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
760 					    lockdep_is_held(&table->tb6_lock));
761 		key = (struct rt6key *)((u8 *)leaf + offset);
762 
763 		/*
764 		 *	Prefix match
765 		 */
766 		if (plen < fn->fn_bit ||
767 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
768 			if (!allow_create) {
769 				if (replace_required) {
770 					NL_SET_ERR_MSG(extack,
771 						       "Can not replace route - no match found");
772 					pr_warn("Can't replace route, no match found\n");
773 					return ERR_PTR(-ENOENT);
774 				}
775 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
776 			}
777 			goto insert_above;
778 		}
779 
780 		/*
781 		 *	Exact match ?
782 		 */
783 
784 		if (plen == fn->fn_bit) {
785 			/* clean up an intermediate node */
786 			if (!(fn->fn_flags & RTN_RTINFO)) {
787 				RCU_INIT_POINTER(fn->leaf, NULL);
788 				fib6_info_release(leaf);
789 			/* remove null_entry in the root node */
790 			} else if (fn->fn_flags & RTN_TL_ROOT &&
791 				   rcu_access_pointer(fn->leaf) ==
792 				   net->ipv6.fib6_null_entry) {
793 				RCU_INIT_POINTER(fn->leaf, NULL);
794 			}
795 
796 			return fn;
797 		}
798 
799 		/*
800 		 *	We have more bits to go
801 		 */
802 
803 		/* Try to walk down on tree. */
804 		dir = addr_bit_set(addr, fn->fn_bit);
805 		pn = fn;
806 		fn = dir ?
807 		     rcu_dereference_protected(fn->right,
808 					lockdep_is_held(&table->tb6_lock)) :
809 		     rcu_dereference_protected(fn->left,
810 					lockdep_is_held(&table->tb6_lock));
811 	} while (fn);
812 
813 	if (!allow_create) {
814 		/* We should not create new node because
815 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
816 		 * I assume it is safe to require NLM_F_CREATE when
817 		 * REPLACE flag is used! Later we may want to remove the
818 		 * check for replace_required, because according
819 		 * to netlink specification, NLM_F_CREATE
820 		 * MUST be specified if new route is created.
821 		 * That would keep IPv6 consistent with IPv4
822 		 */
823 		if (replace_required) {
824 			NL_SET_ERR_MSG(extack,
825 				       "Can not replace route - no match found");
826 			pr_warn("Can't replace route, no match found\n");
827 			return ERR_PTR(-ENOENT);
828 		}
829 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
830 	}
831 	/*
832 	 *	We walked to the bottom of tree.
833 	 *	Create new leaf node without children.
834 	 */
835 
836 	ln = node_alloc(net);
837 
838 	if (!ln)
839 		return ERR_PTR(-ENOMEM);
840 	ln->fn_bit = plen;
841 	RCU_INIT_POINTER(ln->parent, pn);
842 
843 	if (dir)
844 		rcu_assign_pointer(pn->right, ln);
845 	else
846 		rcu_assign_pointer(pn->left, ln);
847 
848 	return ln;
849 
850 
851 insert_above:
852 	/*
853 	 * split since we don't have a common prefix anymore or
854 	 * we have a less significant route.
855 	 * we've to insert an intermediate node on the list
856 	 * this new node will point to the one we need to create
857 	 * and the current
858 	 */
859 
860 	pn = rcu_dereference_protected(fn->parent,
861 				       lockdep_is_held(&table->tb6_lock));
862 
863 	/* find 1st bit in difference between the 2 addrs.
864 
865 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
866 	   but if it is >= plen, the value is ignored in any case.
867 	 */
868 
869 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
870 
871 	/*
872 	 *		(intermediate)[in]
873 	 *	          /	   \
874 	 *	(new leaf node)[ln] (old node)[fn]
875 	 */
876 	if (plen > bit) {
877 		in = node_alloc(net);
878 		ln = node_alloc(net);
879 
880 		if (!in || !ln) {
881 			if (in)
882 				node_free_immediate(net, in);
883 			if (ln)
884 				node_free_immediate(net, ln);
885 			return ERR_PTR(-ENOMEM);
886 		}
887 
888 		/*
889 		 * new intermediate node.
890 		 * RTN_RTINFO will
891 		 * be off since that an address that chooses one of
892 		 * the branches would not match less specific routes
893 		 * in the other branch
894 		 */
895 
896 		in->fn_bit = bit;
897 
898 		RCU_INIT_POINTER(in->parent, pn);
899 		in->leaf = fn->leaf;
900 		fib6_info_hold(rcu_dereference_protected(in->leaf,
901 				lockdep_is_held(&table->tb6_lock)));
902 
903 		/* update parent pointer */
904 		if (dir)
905 			rcu_assign_pointer(pn->right, in);
906 		else
907 			rcu_assign_pointer(pn->left, in);
908 
909 		ln->fn_bit = plen;
910 
911 		RCU_INIT_POINTER(ln->parent, in);
912 		rcu_assign_pointer(fn->parent, in);
913 
914 		if (addr_bit_set(addr, bit)) {
915 			rcu_assign_pointer(in->right, ln);
916 			rcu_assign_pointer(in->left, fn);
917 		} else {
918 			rcu_assign_pointer(in->left, ln);
919 			rcu_assign_pointer(in->right, fn);
920 		}
921 	} else { /* plen <= bit */
922 
923 		/*
924 		 *		(new leaf node)[ln]
925 		 *	          /	   \
926 		 *	     (old node)[fn] NULL
927 		 */
928 
929 		ln = node_alloc(net);
930 
931 		if (!ln)
932 			return ERR_PTR(-ENOMEM);
933 
934 		ln->fn_bit = plen;
935 
936 		RCU_INIT_POINTER(ln->parent, pn);
937 
938 		if (addr_bit_set(&key->addr, plen))
939 			RCU_INIT_POINTER(ln->right, fn);
940 		else
941 			RCU_INIT_POINTER(ln->left, fn);
942 
943 		rcu_assign_pointer(fn->parent, ln);
944 
945 		if (dir)
946 			rcu_assign_pointer(pn->right, ln);
947 		else
948 			rcu_assign_pointer(pn->left, ln);
949 	}
950 	return ln;
951 }
952 
953 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
954 				  const struct fib6_info *match,
955 				  const struct fib6_table *table)
956 {
957 	int cpu;
958 
959 	if (!fib6_nh->rt6i_pcpu)
960 		return;
961 
962 	rcu_read_lock();
963 	/* release the reference to this fib entry from
964 	 * all of its cached pcpu routes
965 	 */
966 	for_each_possible_cpu(cpu) {
967 		struct rt6_info **ppcpu_rt;
968 		struct rt6_info *pcpu_rt;
969 
970 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
971 
972 		/* Paired with xchg() in rt6_get_pcpu_route() */
973 		pcpu_rt = READ_ONCE(*ppcpu_rt);
974 
975 		/* only dropping the 'from' reference if the cached route
976 		 * is using 'match'. The cached pcpu_rt->from only changes
977 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
978 		 * change from one fib6_info reference to another
979 		 */
980 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
981 			struct fib6_info *from;
982 
983 			from = unrcu_pointer(xchg(&pcpu_rt->from, NULL));
984 			fib6_info_release(from);
985 		}
986 	}
987 	rcu_read_unlock();
988 }
989 
990 struct fib6_nh_pcpu_arg {
991 	struct fib6_info	*from;
992 	const struct fib6_table *table;
993 };
994 
995 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
996 {
997 	struct fib6_nh_pcpu_arg *arg = _arg;
998 
999 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
1000 	return 0;
1001 }
1002 
1003 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1004 				const struct fib6_table *table)
1005 {
1006 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1007 	 * while we are cleaning them here.
1008 	 */
1009 	f6i->fib6_destroying = 1;
1010 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1011 
1012 	if (f6i->nh) {
1013 		struct fib6_nh_pcpu_arg arg = {
1014 			.from = f6i,
1015 			.table = table
1016 		};
1017 
1018 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1019 					 &arg);
1020 	} else {
1021 		struct fib6_nh *fib6_nh;
1022 
1023 		fib6_nh = f6i->fib6_nh;
1024 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1025 	}
1026 }
1027 
1028 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1029 			  struct net *net)
1030 {
1031 	struct fib6_table *table = rt->fib6_table;
1032 
1033 	/* Flush all cached dst in exception table */
1034 	rt6_flush_exceptions(rt);
1035 	fib6_drop_pcpu_from(rt, table);
1036 
1037 	if (rt->nh && !list_empty(&rt->nh_list))
1038 		list_del_init(&rt->nh_list);
1039 
1040 	if (refcount_read(&rt->fib6_ref) != 1) {
1041 		/* This route is used as dummy address holder in some split
1042 		 * nodes. It is not leaked, but it still holds other resources,
1043 		 * which must be released in time. So, scan ascendant nodes
1044 		 * and replace dummy references to this route with references
1045 		 * to still alive ones.
1046 		 */
1047 		while (fn) {
1048 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1049 					    lockdep_is_held(&table->tb6_lock));
1050 			struct fib6_info *new_leaf;
1051 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1052 				new_leaf = fib6_find_prefix(net, table, fn);
1053 				fib6_info_hold(new_leaf);
1054 
1055 				rcu_assign_pointer(fn->leaf, new_leaf);
1056 				fib6_info_release(rt);
1057 			}
1058 			fn = rcu_dereference_protected(fn->parent,
1059 				    lockdep_is_held(&table->tb6_lock));
1060 		}
1061 	}
1062 
1063 	fib6_clean_expires(rt);
1064 	fib6_remove_gc_list(rt);
1065 }
1066 
1067 /*
1068  *	Insert routing information in a node.
1069  */
1070 
1071 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1072 			    struct nl_info *info,
1073 			    struct netlink_ext_ack *extack)
1074 {
1075 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1076 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1077 	struct fib6_info *iter = NULL;
1078 	struct fib6_info __rcu **ins;
1079 	struct fib6_info __rcu **fallback_ins = NULL;
1080 	int replace = (info->nlh &&
1081 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1082 	int add = (!info->nlh ||
1083 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1084 	int found = 0;
1085 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1086 	bool notify_sibling_rt = false;
1087 	u16 nlflags = NLM_F_EXCL;
1088 	int err;
1089 
1090 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1091 		nlflags |= NLM_F_APPEND;
1092 
1093 	ins = &fn->leaf;
1094 
1095 	for (iter = leaf; iter;
1096 	     iter = rcu_dereference_protected(iter->fib6_next,
1097 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1098 		/*
1099 		 *	Search for duplicates
1100 		 */
1101 
1102 		if (iter->fib6_metric == rt->fib6_metric) {
1103 			/*
1104 			 *	Same priority level
1105 			 */
1106 			if (info->nlh &&
1107 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1108 				return -EEXIST;
1109 
1110 			nlflags &= ~NLM_F_EXCL;
1111 			if (replace) {
1112 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1113 					found++;
1114 					break;
1115 				}
1116 				fallback_ins = fallback_ins ?: ins;
1117 				goto next_iter;
1118 			}
1119 
1120 			if (rt6_duplicate_nexthop(iter, rt)) {
1121 				if (rt->fib6_nsiblings)
1122 					rt->fib6_nsiblings = 0;
1123 				if (!(iter->fib6_flags & RTF_EXPIRES))
1124 					return -EEXIST;
1125 				if (!(rt->fib6_flags & RTF_EXPIRES)) {
1126 					fib6_clean_expires(iter);
1127 					fib6_remove_gc_list(iter);
1128 				} else {
1129 					fib6_set_expires(iter, rt->expires);
1130 					fib6_add_gc_list(iter);
1131 				}
1132 
1133 				if (rt->fib6_pmtu)
1134 					fib6_metric_set(iter, RTAX_MTU,
1135 							rt->fib6_pmtu);
1136 				return -EEXIST;
1137 			}
1138 			/* If we have the same destination and the same metric,
1139 			 * but not the same gateway, then the route we try to
1140 			 * add is sibling to this route, increment our counter
1141 			 * of siblings, and later we will add our route to the
1142 			 * list.
1143 			 * Only static routes (which don't have flag
1144 			 * RTF_EXPIRES) are used for ECMPv6.
1145 			 *
1146 			 * To avoid long list, we only had siblings if the
1147 			 * route have a gateway.
1148 			 */
1149 			if (rt_can_ecmp &&
1150 			    rt6_qualify_for_ecmp(iter))
1151 				rt->fib6_nsiblings++;
1152 		}
1153 
1154 		if (iter->fib6_metric > rt->fib6_metric)
1155 			break;
1156 
1157 next_iter:
1158 		ins = &iter->fib6_next;
1159 	}
1160 
1161 	if (fallback_ins && !found) {
1162 		/* No matching route with same ecmp-able-ness found, replace
1163 		 * first matching route
1164 		 */
1165 		ins = fallback_ins;
1166 		iter = rcu_dereference_protected(*ins,
1167 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1168 		found++;
1169 	}
1170 
1171 	/* Reset round-robin state, if necessary */
1172 	if (ins == &fn->leaf)
1173 		fn->rr_ptr = NULL;
1174 
1175 	/* Link this route to others same route. */
1176 	if (rt->fib6_nsiblings) {
1177 		unsigned int fib6_nsiblings;
1178 		struct fib6_info *sibling, *temp_sibling;
1179 
1180 		/* Find the first route that have the same metric */
1181 		sibling = leaf;
1182 		notify_sibling_rt = true;
1183 		while (sibling) {
1184 			if (sibling->fib6_metric == rt->fib6_metric &&
1185 			    rt6_qualify_for_ecmp(sibling)) {
1186 				list_add_tail(&rt->fib6_siblings,
1187 					      &sibling->fib6_siblings);
1188 				break;
1189 			}
1190 			sibling = rcu_dereference_protected(sibling->fib6_next,
1191 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1192 			notify_sibling_rt = false;
1193 		}
1194 		/* For each sibling in the list, increment the counter of
1195 		 * siblings. BUG() if counters does not match, list of siblings
1196 		 * is broken!
1197 		 */
1198 		fib6_nsiblings = 0;
1199 		list_for_each_entry_safe(sibling, temp_sibling,
1200 					 &rt->fib6_siblings, fib6_siblings) {
1201 			sibling->fib6_nsiblings++;
1202 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1203 			fib6_nsiblings++;
1204 		}
1205 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1206 		rt6_multipath_rebalance(temp_sibling);
1207 	}
1208 
1209 	/*
1210 	 *	insert node
1211 	 */
1212 	if (!replace) {
1213 		if (!add)
1214 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1215 
1216 add:
1217 		nlflags |= NLM_F_CREATE;
1218 
1219 		/* The route should only be notified if it is the first
1220 		 * route in the node or if it is added as a sibling
1221 		 * route to the first route in the node.
1222 		 */
1223 		if (!info->skip_notify_kernel &&
1224 		    (notify_sibling_rt || ins == &fn->leaf)) {
1225 			enum fib_event_type fib_event;
1226 
1227 			if (notify_sibling_rt)
1228 				fib_event = FIB_EVENT_ENTRY_APPEND;
1229 			else
1230 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1231 			err = call_fib6_entry_notifiers(info->nl_net,
1232 							fib_event, rt,
1233 							extack);
1234 			if (err) {
1235 				struct fib6_info *sibling, *next_sibling;
1236 
1237 				/* If the route has siblings, then it first
1238 				 * needs to be unlinked from them.
1239 				 */
1240 				if (!rt->fib6_nsiblings)
1241 					return err;
1242 
1243 				list_for_each_entry_safe(sibling, next_sibling,
1244 							 &rt->fib6_siblings,
1245 							 fib6_siblings)
1246 					sibling->fib6_nsiblings--;
1247 				rt->fib6_nsiblings = 0;
1248 				list_del_init(&rt->fib6_siblings);
1249 				rt6_multipath_rebalance(next_sibling);
1250 				return err;
1251 			}
1252 		}
1253 
1254 		rcu_assign_pointer(rt->fib6_next, iter);
1255 		fib6_info_hold(rt);
1256 		rcu_assign_pointer(rt->fib6_node, fn);
1257 		rcu_assign_pointer(*ins, rt);
1258 		if (!info->skip_notify)
1259 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1260 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1261 
1262 		if (!(fn->fn_flags & RTN_RTINFO)) {
1263 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1264 			fn->fn_flags |= RTN_RTINFO;
1265 		}
1266 
1267 	} else {
1268 		int nsiblings;
1269 
1270 		if (!found) {
1271 			if (add)
1272 				goto add;
1273 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1274 			return -ENOENT;
1275 		}
1276 
1277 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1278 			err = call_fib6_entry_notifiers(info->nl_net,
1279 							FIB_EVENT_ENTRY_REPLACE,
1280 							rt, extack);
1281 			if (err)
1282 				return err;
1283 		}
1284 
1285 		fib6_info_hold(rt);
1286 		rcu_assign_pointer(rt->fib6_node, fn);
1287 		rt->fib6_next = iter->fib6_next;
1288 		rcu_assign_pointer(*ins, rt);
1289 		if (!info->skip_notify)
1290 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1291 		if (!(fn->fn_flags & RTN_RTINFO)) {
1292 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1293 			fn->fn_flags |= RTN_RTINFO;
1294 		}
1295 		nsiblings = iter->fib6_nsiblings;
1296 		iter->fib6_node = NULL;
1297 		fib6_purge_rt(iter, fn, info->nl_net);
1298 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1299 			fn->rr_ptr = NULL;
1300 		fib6_info_release(iter);
1301 
1302 		if (nsiblings) {
1303 			/* Replacing an ECMP route, remove all siblings */
1304 			ins = &rt->fib6_next;
1305 			iter = rcu_dereference_protected(*ins,
1306 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1307 			while (iter) {
1308 				if (iter->fib6_metric > rt->fib6_metric)
1309 					break;
1310 				if (rt6_qualify_for_ecmp(iter)) {
1311 					*ins = iter->fib6_next;
1312 					iter->fib6_node = NULL;
1313 					fib6_purge_rt(iter, fn, info->nl_net);
1314 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1315 						fn->rr_ptr = NULL;
1316 					fib6_info_release(iter);
1317 					nsiblings--;
1318 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1319 				} else {
1320 					ins = &iter->fib6_next;
1321 				}
1322 				iter = rcu_dereference_protected(*ins,
1323 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1324 			}
1325 			WARN_ON(nsiblings != 0);
1326 		}
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1333 {
1334 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1335 	    (rt->fib6_flags & RTF_EXPIRES))
1336 		mod_timer(&net->ipv6.ip6_fib_timer,
1337 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1338 }
1339 
1340 void fib6_force_start_gc(struct net *net)
1341 {
1342 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1343 		mod_timer(&net->ipv6.ip6_fib_timer,
1344 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1345 }
1346 
1347 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1348 					   int sernum)
1349 {
1350 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1351 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1352 
1353 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1354 	smp_wmb();
1355 	while (fn) {
1356 		WRITE_ONCE(fn->fn_sernum, sernum);
1357 		fn = rcu_dereference_protected(fn->parent,
1358 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1359 	}
1360 }
1361 
1362 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1363 {
1364 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1365 }
1366 
1367 /* allow ipv4 to update sernum via ipv6_stub */
1368 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1369 {
1370 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1371 	fib6_update_sernum_upto_root(net, f6i);
1372 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1373 }
1374 
1375 /*
1376  *	Add routing information to the routing tree.
1377  *	<destination addr>/<source addr>
1378  *	with source addr info in sub-trees
1379  *	Need to own table->tb6_lock
1380  */
1381 
1382 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1383 	     struct nl_info *info, struct netlink_ext_ack *extack)
1384 {
1385 	struct fib6_table *table = rt->fib6_table;
1386 	struct fib6_node *fn;
1387 #ifdef CONFIG_IPV6_SUBTREES
1388 	struct fib6_node *pn = NULL;
1389 #endif
1390 	int err = -ENOMEM;
1391 	int allow_create = 1;
1392 	int replace_required = 0;
1393 
1394 	if (info->nlh) {
1395 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1396 			allow_create = 0;
1397 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1398 			replace_required = 1;
1399 	}
1400 	if (!allow_create && !replace_required)
1401 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1402 
1403 	fn = fib6_add_1(info->nl_net, table, root,
1404 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1405 			offsetof(struct fib6_info, fib6_dst), allow_create,
1406 			replace_required, extack);
1407 	if (IS_ERR(fn)) {
1408 		err = PTR_ERR(fn);
1409 		fn = NULL;
1410 		goto out;
1411 	}
1412 
1413 #ifdef CONFIG_IPV6_SUBTREES
1414 	pn = fn;
1415 
1416 	if (rt->fib6_src.plen) {
1417 		struct fib6_node *sn;
1418 
1419 		if (!rcu_access_pointer(fn->subtree)) {
1420 			struct fib6_node *sfn;
1421 
1422 			/*
1423 			 * Create subtree.
1424 			 *
1425 			 *		fn[main tree]
1426 			 *		|
1427 			 *		sfn[subtree root]
1428 			 *		   \
1429 			 *		    sn[new leaf node]
1430 			 */
1431 
1432 			/* Create subtree root node */
1433 			sfn = node_alloc(info->nl_net);
1434 			if (!sfn)
1435 				goto failure;
1436 
1437 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1438 			rcu_assign_pointer(sfn->leaf,
1439 					   info->nl_net->ipv6.fib6_null_entry);
1440 			sfn->fn_flags = RTN_ROOT;
1441 
1442 			/* Now add the first leaf node to new subtree */
1443 
1444 			sn = fib6_add_1(info->nl_net, table, sfn,
1445 					&rt->fib6_src.addr, rt->fib6_src.plen,
1446 					offsetof(struct fib6_info, fib6_src),
1447 					allow_create, replace_required, extack);
1448 
1449 			if (IS_ERR(sn)) {
1450 				/* If it is failed, discard just allocated
1451 				   root, and then (in failure) stale node
1452 				   in main tree.
1453 				 */
1454 				node_free_immediate(info->nl_net, sfn);
1455 				err = PTR_ERR(sn);
1456 				goto failure;
1457 			}
1458 
1459 			/* Now link new subtree to main tree */
1460 			rcu_assign_pointer(sfn->parent, fn);
1461 			rcu_assign_pointer(fn->subtree, sfn);
1462 		} else {
1463 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1464 					&rt->fib6_src.addr, rt->fib6_src.plen,
1465 					offsetof(struct fib6_info, fib6_src),
1466 					allow_create, replace_required, extack);
1467 
1468 			if (IS_ERR(sn)) {
1469 				err = PTR_ERR(sn);
1470 				goto failure;
1471 			}
1472 		}
1473 
1474 		if (!rcu_access_pointer(fn->leaf)) {
1475 			if (fn->fn_flags & RTN_TL_ROOT) {
1476 				/* put back null_entry for root node */
1477 				rcu_assign_pointer(fn->leaf,
1478 					    info->nl_net->ipv6.fib6_null_entry);
1479 			} else {
1480 				fib6_info_hold(rt);
1481 				rcu_assign_pointer(fn->leaf, rt);
1482 			}
1483 		}
1484 		fn = sn;
1485 	}
1486 #endif
1487 
1488 	err = fib6_add_rt2node(fn, rt, info, extack);
1489 	if (!err) {
1490 		if (rt->nh)
1491 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1492 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1493 
1494 		if (rt->fib6_flags & RTF_EXPIRES)
1495 			fib6_add_gc_list(rt);
1496 
1497 		fib6_start_gc(info->nl_net, rt);
1498 	}
1499 
1500 out:
1501 	if (err) {
1502 #ifdef CONFIG_IPV6_SUBTREES
1503 		/*
1504 		 * If fib6_add_1 has cleared the old leaf pointer in the
1505 		 * super-tree leaf node we have to find a new one for it.
1506 		 */
1507 		if (pn != fn) {
1508 			struct fib6_info *pn_leaf =
1509 				rcu_dereference_protected(pn->leaf,
1510 				    lockdep_is_held(&table->tb6_lock));
1511 			if (pn_leaf == rt) {
1512 				pn_leaf = NULL;
1513 				RCU_INIT_POINTER(pn->leaf, NULL);
1514 				fib6_info_release(rt);
1515 			}
1516 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1517 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1518 							   pn);
1519 				if (!pn_leaf)
1520 					pn_leaf =
1521 					    info->nl_net->ipv6.fib6_null_entry;
1522 				fib6_info_hold(pn_leaf);
1523 				rcu_assign_pointer(pn->leaf, pn_leaf);
1524 			}
1525 		}
1526 #endif
1527 		goto failure;
1528 	} else if (fib6_requires_src(rt)) {
1529 		fib6_routes_require_src_inc(info->nl_net);
1530 	}
1531 	return err;
1532 
1533 failure:
1534 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1535 	 * 1. fn is an intermediate node and we failed to add the new
1536 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1537 	 * failure case.
1538 	 * 2. fn is the root node in the table and we fail to add the first
1539 	 * default route to it.
1540 	 */
1541 	if (fn &&
1542 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1543 	     (fn->fn_flags & RTN_TL_ROOT &&
1544 	      !rcu_access_pointer(fn->leaf))))
1545 		fib6_repair_tree(info->nl_net, table, fn);
1546 	return err;
1547 }
1548 
1549 /*
1550  *	Routing tree lookup
1551  *
1552  */
1553 
1554 struct lookup_args {
1555 	int			offset;		/* key offset on fib6_info */
1556 	const struct in6_addr	*addr;		/* search key			*/
1557 };
1558 
1559 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1560 					    struct lookup_args *args)
1561 {
1562 	struct fib6_node *fn;
1563 	__be32 dir;
1564 
1565 	if (unlikely(args->offset == 0))
1566 		return NULL;
1567 
1568 	/*
1569 	 *	Descend on a tree
1570 	 */
1571 
1572 	fn = root;
1573 
1574 	for (;;) {
1575 		struct fib6_node *next;
1576 
1577 		dir = addr_bit_set(args->addr, fn->fn_bit);
1578 
1579 		next = dir ? rcu_dereference(fn->right) :
1580 			     rcu_dereference(fn->left);
1581 
1582 		if (next) {
1583 			fn = next;
1584 			continue;
1585 		}
1586 		break;
1587 	}
1588 
1589 	while (fn) {
1590 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1591 
1592 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1593 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1594 			struct rt6key *key;
1595 
1596 			if (!leaf)
1597 				goto backtrack;
1598 
1599 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1600 
1601 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1602 #ifdef CONFIG_IPV6_SUBTREES
1603 				if (subtree) {
1604 					struct fib6_node *sfn;
1605 					sfn = fib6_node_lookup_1(subtree,
1606 								 args + 1);
1607 					if (!sfn)
1608 						goto backtrack;
1609 					fn = sfn;
1610 				}
1611 #endif
1612 				if (fn->fn_flags & RTN_RTINFO)
1613 					return fn;
1614 			}
1615 		}
1616 backtrack:
1617 		if (fn->fn_flags & RTN_ROOT)
1618 			break;
1619 
1620 		fn = rcu_dereference(fn->parent);
1621 	}
1622 
1623 	return NULL;
1624 }
1625 
1626 /* called with rcu_read_lock() held
1627  */
1628 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1629 				   const struct in6_addr *daddr,
1630 				   const struct in6_addr *saddr)
1631 {
1632 	struct fib6_node *fn;
1633 	struct lookup_args args[] = {
1634 		{
1635 			.offset = offsetof(struct fib6_info, fib6_dst),
1636 			.addr = daddr,
1637 		},
1638 #ifdef CONFIG_IPV6_SUBTREES
1639 		{
1640 			.offset = offsetof(struct fib6_info, fib6_src),
1641 			.addr = saddr,
1642 		},
1643 #endif
1644 		{
1645 			.offset = 0,	/* sentinel */
1646 		}
1647 	};
1648 
1649 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1650 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1651 		fn = root;
1652 
1653 	return fn;
1654 }
1655 
1656 /*
1657  *	Get node with specified destination prefix (and source prefix,
1658  *	if subtrees are used)
1659  *	exact_match == true means we try to find fn with exact match of
1660  *	the passed in prefix addr
1661  *	exact_match == false means we try to find fn with longest prefix
1662  *	match of the passed in prefix addr. This is useful for finding fn
1663  *	for cached route as it will be stored in the exception table under
1664  *	the node with longest prefix length.
1665  */
1666 
1667 
1668 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1669 				       const struct in6_addr *addr,
1670 				       int plen, int offset,
1671 				       bool exact_match)
1672 {
1673 	struct fib6_node *fn, *prev = NULL;
1674 
1675 	for (fn = root; fn ; ) {
1676 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1677 		struct rt6key *key;
1678 
1679 		/* This node is being deleted */
1680 		if (!leaf) {
1681 			if (plen <= fn->fn_bit)
1682 				goto out;
1683 			else
1684 				goto next;
1685 		}
1686 
1687 		key = (struct rt6key *)((u8 *)leaf + offset);
1688 
1689 		/*
1690 		 *	Prefix match
1691 		 */
1692 		if (plen < fn->fn_bit ||
1693 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1694 			goto out;
1695 
1696 		if (plen == fn->fn_bit)
1697 			return fn;
1698 
1699 		if (fn->fn_flags & RTN_RTINFO)
1700 			prev = fn;
1701 
1702 next:
1703 		/*
1704 		 *	We have more bits to go
1705 		 */
1706 		if (addr_bit_set(addr, fn->fn_bit))
1707 			fn = rcu_dereference(fn->right);
1708 		else
1709 			fn = rcu_dereference(fn->left);
1710 	}
1711 out:
1712 	if (exact_match)
1713 		return NULL;
1714 	else
1715 		return prev;
1716 }
1717 
1718 struct fib6_node *fib6_locate(struct fib6_node *root,
1719 			      const struct in6_addr *daddr, int dst_len,
1720 			      const struct in6_addr *saddr, int src_len,
1721 			      bool exact_match)
1722 {
1723 	struct fib6_node *fn;
1724 
1725 	fn = fib6_locate_1(root, daddr, dst_len,
1726 			   offsetof(struct fib6_info, fib6_dst),
1727 			   exact_match);
1728 
1729 #ifdef CONFIG_IPV6_SUBTREES
1730 	if (src_len) {
1731 		WARN_ON(saddr == NULL);
1732 		if (fn) {
1733 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1734 
1735 			if (subtree) {
1736 				fn = fib6_locate_1(subtree, saddr, src_len,
1737 					   offsetof(struct fib6_info, fib6_src),
1738 					   exact_match);
1739 			}
1740 		}
1741 	}
1742 #endif
1743 
1744 	if (fn && fn->fn_flags & RTN_RTINFO)
1745 		return fn;
1746 
1747 	return NULL;
1748 }
1749 
1750 
1751 /*
1752  *	Deletion
1753  *
1754  */
1755 
1756 static struct fib6_info *fib6_find_prefix(struct net *net,
1757 					 struct fib6_table *table,
1758 					 struct fib6_node *fn)
1759 {
1760 	struct fib6_node *child_left, *child_right;
1761 
1762 	if (fn->fn_flags & RTN_ROOT)
1763 		return net->ipv6.fib6_null_entry;
1764 
1765 	while (fn) {
1766 		child_left = rcu_dereference_protected(fn->left,
1767 				    lockdep_is_held(&table->tb6_lock));
1768 		child_right = rcu_dereference_protected(fn->right,
1769 				    lockdep_is_held(&table->tb6_lock));
1770 		if (child_left)
1771 			return rcu_dereference_protected(child_left->leaf,
1772 					lockdep_is_held(&table->tb6_lock));
1773 		if (child_right)
1774 			return rcu_dereference_protected(child_right->leaf,
1775 					lockdep_is_held(&table->tb6_lock));
1776 
1777 		fn = FIB6_SUBTREE(fn);
1778 	}
1779 	return NULL;
1780 }
1781 
1782 /*
1783  *	Called to trim the tree of intermediate nodes when possible. "fn"
1784  *	is the node we want to try and remove.
1785  *	Need to own table->tb6_lock
1786  */
1787 
1788 static struct fib6_node *fib6_repair_tree(struct net *net,
1789 					  struct fib6_table *table,
1790 					  struct fib6_node *fn)
1791 {
1792 	int children;
1793 	int nstate;
1794 	struct fib6_node *child;
1795 	struct fib6_walker *w;
1796 	int iter = 0;
1797 
1798 	/* Set fn->leaf to null_entry for root node. */
1799 	if (fn->fn_flags & RTN_TL_ROOT) {
1800 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1801 		return fn;
1802 	}
1803 
1804 	for (;;) {
1805 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1806 					    lockdep_is_held(&table->tb6_lock));
1807 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1808 					    lockdep_is_held(&table->tb6_lock));
1809 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1810 					    lockdep_is_held(&table->tb6_lock));
1811 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1812 					    lockdep_is_held(&table->tb6_lock));
1813 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1814 					    lockdep_is_held(&table->tb6_lock));
1815 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1816 					    lockdep_is_held(&table->tb6_lock));
1817 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1818 					    lockdep_is_held(&table->tb6_lock));
1819 		struct fib6_info *new_fn_leaf;
1820 
1821 		pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1822 		iter++;
1823 
1824 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1825 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1826 		WARN_ON(fn_leaf);
1827 
1828 		children = 0;
1829 		child = NULL;
1830 		if (fn_r) {
1831 			child = fn_r;
1832 			children |= 1;
1833 		}
1834 		if (fn_l) {
1835 			child = fn_l;
1836 			children |= 2;
1837 		}
1838 
1839 		if (children == 3 || FIB6_SUBTREE(fn)
1840 #ifdef CONFIG_IPV6_SUBTREES
1841 		    /* Subtree root (i.e. fn) may have one child */
1842 		    || (children && fn->fn_flags & RTN_ROOT)
1843 #endif
1844 		    ) {
1845 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1846 #if RT6_DEBUG >= 2
1847 			if (!new_fn_leaf) {
1848 				WARN_ON(!new_fn_leaf);
1849 				new_fn_leaf = net->ipv6.fib6_null_entry;
1850 			}
1851 #endif
1852 			fib6_info_hold(new_fn_leaf);
1853 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1854 			return pn;
1855 		}
1856 
1857 #ifdef CONFIG_IPV6_SUBTREES
1858 		if (FIB6_SUBTREE(pn) == fn) {
1859 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1860 			RCU_INIT_POINTER(pn->subtree, NULL);
1861 			nstate = FWS_L;
1862 		} else {
1863 			WARN_ON(fn->fn_flags & RTN_ROOT);
1864 #endif
1865 			if (pn_r == fn)
1866 				rcu_assign_pointer(pn->right, child);
1867 			else if (pn_l == fn)
1868 				rcu_assign_pointer(pn->left, child);
1869 #if RT6_DEBUG >= 2
1870 			else
1871 				WARN_ON(1);
1872 #endif
1873 			if (child)
1874 				rcu_assign_pointer(child->parent, pn);
1875 			nstate = FWS_R;
1876 #ifdef CONFIG_IPV6_SUBTREES
1877 		}
1878 #endif
1879 
1880 		read_lock(&net->ipv6.fib6_walker_lock);
1881 		FOR_WALKERS(net, w) {
1882 			if (!child) {
1883 				if (w->node == fn) {
1884 					pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1885 						 w, w->state, nstate);
1886 					w->node = pn;
1887 					w->state = nstate;
1888 				}
1889 			} else {
1890 				if (w->node == fn) {
1891 					w->node = child;
1892 					if (children&2) {
1893 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1894 							 w, w->state);
1895 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1896 					} else {
1897 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1898 							 w, w->state);
1899 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1900 					}
1901 				}
1902 			}
1903 		}
1904 		read_unlock(&net->ipv6.fib6_walker_lock);
1905 
1906 		node_free(net, fn);
1907 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1908 			return pn;
1909 
1910 		RCU_INIT_POINTER(pn->leaf, NULL);
1911 		fib6_info_release(pn_leaf);
1912 		fn = pn;
1913 	}
1914 }
1915 
1916 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1917 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1918 {
1919 	struct fib6_info *leaf, *replace_rt = NULL;
1920 	struct fib6_walker *w;
1921 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1922 				    lockdep_is_held(&table->tb6_lock));
1923 	struct net *net = info->nl_net;
1924 	bool notify_del = false;
1925 
1926 	/* If the deleted route is the first in the node and it is not part of
1927 	 * a multipath route, then we need to replace it with the next route
1928 	 * in the node, if exists.
1929 	 */
1930 	leaf = rcu_dereference_protected(fn->leaf,
1931 					 lockdep_is_held(&table->tb6_lock));
1932 	if (leaf == rt && !rt->fib6_nsiblings) {
1933 		if (rcu_access_pointer(rt->fib6_next))
1934 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1935 					    lockdep_is_held(&table->tb6_lock));
1936 		else
1937 			notify_del = true;
1938 	}
1939 
1940 	/* Unlink it */
1941 	*rtp = rt->fib6_next;
1942 	rt->fib6_node = NULL;
1943 	net->ipv6.rt6_stats->fib_rt_entries--;
1944 	net->ipv6.rt6_stats->fib_discarded_routes++;
1945 
1946 	/* Reset round-robin state, if necessary */
1947 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1948 		fn->rr_ptr = NULL;
1949 
1950 	/* Remove this entry from other siblings */
1951 	if (rt->fib6_nsiblings) {
1952 		struct fib6_info *sibling, *next_sibling;
1953 
1954 		/* The route is deleted from a multipath route. If this
1955 		 * multipath route is the first route in the node, then we need
1956 		 * to emit a delete notification. Otherwise, we need to skip
1957 		 * the notification.
1958 		 */
1959 		if (rt->fib6_metric == leaf->fib6_metric &&
1960 		    rt6_qualify_for_ecmp(leaf))
1961 			notify_del = true;
1962 		list_for_each_entry_safe(sibling, next_sibling,
1963 					 &rt->fib6_siblings, fib6_siblings)
1964 			sibling->fib6_nsiblings--;
1965 		rt->fib6_nsiblings = 0;
1966 		list_del_init(&rt->fib6_siblings);
1967 		rt6_multipath_rebalance(next_sibling);
1968 	}
1969 
1970 	/* Adjust walkers */
1971 	read_lock(&net->ipv6.fib6_walker_lock);
1972 	FOR_WALKERS(net, w) {
1973 		if (w->state == FWS_C && w->leaf == rt) {
1974 			pr_debug("walker %p adjusted by delroute\n", w);
1975 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1976 					    lockdep_is_held(&table->tb6_lock));
1977 			if (!w->leaf)
1978 				w->state = FWS_U;
1979 		}
1980 	}
1981 	read_unlock(&net->ipv6.fib6_walker_lock);
1982 
1983 	/* If it was last route, call fib6_repair_tree() to:
1984 	 * 1. For root node, put back null_entry as how the table was created.
1985 	 * 2. For other nodes, expunge its radix tree node.
1986 	 */
1987 	if (!rcu_access_pointer(fn->leaf)) {
1988 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1989 			fn->fn_flags &= ~RTN_RTINFO;
1990 			net->ipv6.rt6_stats->fib_route_nodes--;
1991 		}
1992 		fn = fib6_repair_tree(net, table, fn);
1993 	}
1994 
1995 	fib6_purge_rt(rt, fn, net);
1996 
1997 	if (!info->skip_notify_kernel) {
1998 		if (notify_del)
1999 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2000 						  rt, NULL);
2001 		else if (replace_rt)
2002 			call_fib6_entry_notifiers_replace(net, replace_rt);
2003 	}
2004 	if (!info->skip_notify)
2005 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2006 
2007 	fib6_info_release(rt);
2008 }
2009 
2010 /* Need to own table->tb6_lock */
2011 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2012 {
2013 	struct net *net = info->nl_net;
2014 	struct fib6_info __rcu **rtp;
2015 	struct fib6_info __rcu **rtp_next;
2016 	struct fib6_table *table;
2017 	struct fib6_node *fn;
2018 
2019 	if (rt == net->ipv6.fib6_null_entry)
2020 		return -ENOENT;
2021 
2022 	table = rt->fib6_table;
2023 	fn = rcu_dereference_protected(rt->fib6_node,
2024 				       lockdep_is_held(&table->tb6_lock));
2025 	if (!fn)
2026 		return -ENOENT;
2027 
2028 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2029 
2030 	/*
2031 	 *	Walk the leaf entries looking for ourself
2032 	 */
2033 
2034 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2035 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2036 					lockdep_is_held(&table->tb6_lock));
2037 		if (rt == cur) {
2038 			if (fib6_requires_src(cur))
2039 				fib6_routes_require_src_dec(info->nl_net);
2040 			fib6_del_route(table, fn, rtp, info);
2041 			return 0;
2042 		}
2043 		rtp_next = &cur->fib6_next;
2044 	}
2045 	return -ENOENT;
2046 }
2047 
2048 /*
2049  *	Tree traversal function.
2050  *
2051  *	Certainly, it is not interrupt safe.
2052  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2053  *	It means, that we can modify tree during walking
2054  *	and use this function for garbage collection, clone pruning,
2055  *	cleaning tree when a device goes down etc. etc.
2056  *
2057  *	It guarantees that every node will be traversed,
2058  *	and that it will be traversed only once.
2059  *
2060  *	Callback function w->func may return:
2061  *	0 -> continue walking.
2062  *	positive value -> walking is suspended (used by tree dumps,
2063  *	and probably by gc, if it will be split to several slices)
2064  *	negative value -> terminate walking.
2065  *
2066  *	The function itself returns:
2067  *	0   -> walk is complete.
2068  *	>0  -> walk is incomplete (i.e. suspended)
2069  *	<0  -> walk is terminated by an error.
2070  *
2071  *	This function is called with tb6_lock held.
2072  */
2073 
2074 static int fib6_walk_continue(struct fib6_walker *w)
2075 {
2076 	struct fib6_node *fn, *pn, *left, *right;
2077 
2078 	/* w->root should always be table->tb6_root */
2079 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2080 
2081 	for (;;) {
2082 		fn = w->node;
2083 		if (!fn)
2084 			return 0;
2085 
2086 		switch (w->state) {
2087 #ifdef CONFIG_IPV6_SUBTREES
2088 		case FWS_S:
2089 			if (FIB6_SUBTREE(fn)) {
2090 				w->node = FIB6_SUBTREE(fn);
2091 				continue;
2092 			}
2093 			w->state = FWS_L;
2094 			fallthrough;
2095 #endif
2096 		case FWS_L:
2097 			left = rcu_dereference_protected(fn->left, 1);
2098 			if (left) {
2099 				w->node = left;
2100 				w->state = FWS_INIT;
2101 				continue;
2102 			}
2103 			w->state = FWS_R;
2104 			fallthrough;
2105 		case FWS_R:
2106 			right = rcu_dereference_protected(fn->right, 1);
2107 			if (right) {
2108 				w->node = right;
2109 				w->state = FWS_INIT;
2110 				continue;
2111 			}
2112 			w->state = FWS_C;
2113 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2114 			fallthrough;
2115 		case FWS_C:
2116 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2117 				int err;
2118 
2119 				if (w->skip) {
2120 					w->skip--;
2121 					goto skip;
2122 				}
2123 
2124 				err = w->func(w);
2125 				if (err)
2126 					return err;
2127 
2128 				w->count++;
2129 				continue;
2130 			}
2131 skip:
2132 			w->state = FWS_U;
2133 			fallthrough;
2134 		case FWS_U:
2135 			if (fn == w->root)
2136 				return 0;
2137 			pn = rcu_dereference_protected(fn->parent, 1);
2138 			left = rcu_dereference_protected(pn->left, 1);
2139 			right = rcu_dereference_protected(pn->right, 1);
2140 			w->node = pn;
2141 #ifdef CONFIG_IPV6_SUBTREES
2142 			if (FIB6_SUBTREE(pn) == fn) {
2143 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2144 				w->state = FWS_L;
2145 				continue;
2146 			}
2147 #endif
2148 			if (left == fn) {
2149 				w->state = FWS_R;
2150 				continue;
2151 			}
2152 			if (right == fn) {
2153 				w->state = FWS_C;
2154 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2155 				continue;
2156 			}
2157 #if RT6_DEBUG >= 2
2158 			WARN_ON(1);
2159 #endif
2160 		}
2161 	}
2162 }
2163 
2164 static int fib6_walk(struct net *net, struct fib6_walker *w)
2165 {
2166 	int res;
2167 
2168 	w->state = FWS_INIT;
2169 	w->node = w->root;
2170 
2171 	fib6_walker_link(net, w);
2172 	res = fib6_walk_continue(w);
2173 	if (res <= 0)
2174 		fib6_walker_unlink(net, w);
2175 	return res;
2176 }
2177 
2178 static int fib6_clean_node(struct fib6_walker *w)
2179 {
2180 	int res;
2181 	struct fib6_info *rt;
2182 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2183 	struct nl_info info = {
2184 		.nl_net = c->net,
2185 		.skip_notify = c->skip_notify,
2186 	};
2187 
2188 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2189 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2190 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2191 
2192 	if (!c->func) {
2193 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2194 		w->leaf = NULL;
2195 		return 0;
2196 	}
2197 
2198 	for_each_fib6_walker_rt(w) {
2199 		res = c->func(rt, c->arg);
2200 		if (res == -1) {
2201 			w->leaf = rt;
2202 			res = fib6_del(rt, &info);
2203 			if (res) {
2204 #if RT6_DEBUG >= 2
2205 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2206 					 __func__, rt,
2207 					 rcu_access_pointer(rt->fib6_node),
2208 					 res);
2209 #endif
2210 				continue;
2211 			}
2212 			return 0;
2213 		} else if (res == -2) {
2214 			if (WARN_ON(!rt->fib6_nsiblings))
2215 				continue;
2216 			rt = list_last_entry(&rt->fib6_siblings,
2217 					     struct fib6_info, fib6_siblings);
2218 			continue;
2219 		}
2220 		WARN_ON(res != 0);
2221 	}
2222 	w->leaf = rt;
2223 	return 0;
2224 }
2225 
2226 /*
2227  *	Convenient frontend to tree walker.
2228  *
2229  *	func is called on each route.
2230  *		It may return -2 -> skip multipath route.
2231  *			      -1 -> delete this route.
2232  *		              0  -> continue walking
2233  */
2234 
2235 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2236 			    int (*func)(struct fib6_info *, void *arg),
2237 			    int sernum, void *arg, bool skip_notify)
2238 {
2239 	struct fib6_cleaner c;
2240 
2241 	c.w.root = root;
2242 	c.w.func = fib6_clean_node;
2243 	c.w.count = 0;
2244 	c.w.skip = 0;
2245 	c.w.skip_in_node = 0;
2246 	c.func = func;
2247 	c.sernum = sernum;
2248 	c.arg = arg;
2249 	c.net = net;
2250 	c.skip_notify = skip_notify;
2251 
2252 	fib6_walk(net, &c.w);
2253 }
2254 
2255 static void __fib6_clean_all(struct net *net,
2256 			     int (*func)(struct fib6_info *, void *),
2257 			     int sernum, void *arg, bool skip_notify)
2258 {
2259 	struct fib6_table *table;
2260 	struct hlist_head *head;
2261 	unsigned int h;
2262 
2263 	rcu_read_lock();
2264 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2265 		head = &net->ipv6.fib_table_hash[h];
2266 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2267 			spin_lock_bh(&table->tb6_lock);
2268 			fib6_clean_tree(net, &table->tb6_root,
2269 					func, sernum, arg, skip_notify);
2270 			spin_unlock_bh(&table->tb6_lock);
2271 		}
2272 	}
2273 	rcu_read_unlock();
2274 }
2275 
2276 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2277 		    void *arg)
2278 {
2279 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2280 }
2281 
2282 void fib6_clean_all_skip_notify(struct net *net,
2283 				int (*func)(struct fib6_info *, void *),
2284 				void *arg)
2285 {
2286 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2287 }
2288 
2289 static void fib6_flush_trees(struct net *net)
2290 {
2291 	int new_sernum = fib6_new_sernum(net);
2292 
2293 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2294 }
2295 
2296 /*
2297  *	Garbage collection
2298  */
2299 
2300 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2301 {
2302 	unsigned long now = jiffies;
2303 
2304 	/*
2305 	 *	check addrconf expiration here.
2306 	 *	Routes are expired even if they are in use.
2307 	 */
2308 
2309 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2310 		if (time_after(now, rt->expires)) {
2311 			pr_debug("expiring %p\n", rt);
2312 			return -1;
2313 		}
2314 		gc_args->more++;
2315 	}
2316 
2317 	/*	Also age clones in the exception table.
2318 	 *	Note, that clones are aged out
2319 	 *	only if they are not in use now.
2320 	 */
2321 	rt6_age_exceptions(rt, gc_args, now);
2322 
2323 	return 0;
2324 }
2325 
2326 static void fib6_gc_table(struct net *net,
2327 			  struct fib6_table *tb6,
2328 			  struct fib6_gc_args *gc_args)
2329 {
2330 	struct fib6_info *rt;
2331 	struct hlist_node *n;
2332 	struct nl_info info = {
2333 		.nl_net = net,
2334 		.skip_notify = false,
2335 	};
2336 
2337 	hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2338 		if (fib6_age(rt, gc_args) == -1)
2339 			fib6_del(rt, &info);
2340 }
2341 
2342 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2343 {
2344 	struct fib6_table *table;
2345 	struct hlist_head *head;
2346 	unsigned int h;
2347 
2348 	rcu_read_lock();
2349 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2350 		head = &net->ipv6.fib_table_hash[h];
2351 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2352 			spin_lock_bh(&table->tb6_lock);
2353 
2354 			fib6_gc_table(net, table, gc_args);
2355 
2356 			spin_unlock_bh(&table->tb6_lock);
2357 		}
2358 	}
2359 	rcu_read_unlock();
2360 }
2361 
2362 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2363 {
2364 	struct fib6_gc_args gc_args;
2365 	unsigned long now;
2366 
2367 	if (force) {
2368 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2369 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2370 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2371 		return;
2372 	}
2373 	gc_args.timeout = expires ? (int)expires :
2374 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2375 	gc_args.more = 0;
2376 
2377 	fib6_gc_all(net, &gc_args);
2378 	now = jiffies;
2379 	net->ipv6.ip6_rt_last_gc = now;
2380 
2381 	if (gc_args.more)
2382 		mod_timer(&net->ipv6.ip6_fib_timer,
2383 			  round_jiffies(now
2384 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2385 	else
2386 		del_timer(&net->ipv6.ip6_fib_timer);
2387 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2388 }
2389 
2390 static void fib6_gc_timer_cb(struct timer_list *t)
2391 {
2392 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2393 
2394 	fib6_run_gc(0, arg, true);
2395 }
2396 
2397 static int __net_init fib6_net_init(struct net *net)
2398 {
2399 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2400 	int err;
2401 
2402 	err = fib6_notifier_init(net);
2403 	if (err)
2404 		return err;
2405 
2406 	/* Default to 3-tuple */
2407 	net->ipv6.sysctl.multipath_hash_fields =
2408 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2409 
2410 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2411 	rwlock_init(&net->ipv6.fib6_walker_lock);
2412 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2413 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2414 
2415 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2416 	if (!net->ipv6.rt6_stats)
2417 		goto out_notifier;
2418 
2419 	/* Avoid false sharing : Use at least a full cache line */
2420 	size = max_t(size_t, size, L1_CACHE_BYTES);
2421 
2422 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2423 	if (!net->ipv6.fib_table_hash)
2424 		goto out_rt6_stats;
2425 
2426 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2427 					  GFP_KERNEL);
2428 	if (!net->ipv6.fib6_main_tbl)
2429 		goto out_fib_table_hash;
2430 
2431 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2432 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2433 			   net->ipv6.fib6_null_entry);
2434 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2435 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2436 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2437 	INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2438 
2439 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2440 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2441 					   GFP_KERNEL);
2442 	if (!net->ipv6.fib6_local_tbl)
2443 		goto out_fib6_main_tbl;
2444 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2445 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2446 			   net->ipv6.fib6_null_entry);
2447 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2448 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2449 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2450 	INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2451 #endif
2452 	fib6_tables_init(net);
2453 
2454 	return 0;
2455 
2456 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2457 out_fib6_main_tbl:
2458 	kfree(net->ipv6.fib6_main_tbl);
2459 #endif
2460 out_fib_table_hash:
2461 	kfree(net->ipv6.fib_table_hash);
2462 out_rt6_stats:
2463 	kfree(net->ipv6.rt6_stats);
2464 out_notifier:
2465 	fib6_notifier_exit(net);
2466 	return -ENOMEM;
2467 }
2468 
2469 static void fib6_net_exit(struct net *net)
2470 {
2471 	unsigned int i;
2472 
2473 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2474 
2475 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2476 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2477 		struct hlist_node *tmp;
2478 		struct fib6_table *tb;
2479 
2480 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2481 			hlist_del(&tb->tb6_hlist);
2482 			fib6_free_table(tb);
2483 		}
2484 	}
2485 
2486 	kfree(net->ipv6.fib_table_hash);
2487 	kfree(net->ipv6.rt6_stats);
2488 	fib6_notifier_exit(net);
2489 }
2490 
2491 static struct pernet_operations fib6_net_ops = {
2492 	.init = fib6_net_init,
2493 	.exit = fib6_net_exit,
2494 };
2495 
2496 static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = {
2497 	{.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE,
2498 	 .dumpit = inet6_dump_fib,
2499 	 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE},
2500 };
2501 
2502 int __init fib6_init(void)
2503 {
2504 	int ret = -ENOMEM;
2505 
2506 	fib6_node_kmem = KMEM_CACHE(fib6_node,
2507 				    SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2508 	if (!fib6_node_kmem)
2509 		goto out;
2510 
2511 	ret = register_pernet_subsys(&fib6_net_ops);
2512 	if (ret)
2513 		goto out_kmem_cache_create;
2514 
2515 	ret = rtnl_register_many(fib6_rtnl_msg_handlers);
2516 	if (ret)
2517 		goto out_unregister_subsys;
2518 
2519 	__fib6_flush_trees = fib6_flush_trees;
2520 out:
2521 	return ret;
2522 
2523 out_unregister_subsys:
2524 	unregister_pernet_subsys(&fib6_net_ops);
2525 out_kmem_cache_create:
2526 	kmem_cache_destroy(fib6_node_kmem);
2527 	goto out;
2528 }
2529 
2530 void fib6_gc_cleanup(void)
2531 {
2532 	unregister_pernet_subsys(&fib6_net_ops);
2533 	kmem_cache_destroy(fib6_node_kmem);
2534 }
2535 
2536 #ifdef CONFIG_PROC_FS
2537 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2538 {
2539 	struct fib6_info *rt = v;
2540 	struct ipv6_route_iter *iter = seq->private;
2541 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2542 	unsigned int flags = rt->fib6_flags;
2543 	const struct net_device *dev;
2544 
2545 	if (rt->nh)
2546 		fib6_nh = nexthop_fib6_nh(rt->nh);
2547 
2548 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2549 
2550 #ifdef CONFIG_IPV6_SUBTREES
2551 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2552 #else
2553 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2554 #endif
2555 	if (fib6_nh->fib_nh_gw_family) {
2556 		flags |= RTF_GATEWAY;
2557 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2558 	} else {
2559 		seq_puts(seq, "00000000000000000000000000000000");
2560 	}
2561 
2562 	dev = fib6_nh->fib_nh_dev;
2563 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2564 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2565 		   flags, dev ? dev->name : "");
2566 	iter->w.leaf = NULL;
2567 	return 0;
2568 }
2569 
2570 static int ipv6_route_yield(struct fib6_walker *w)
2571 {
2572 	struct ipv6_route_iter *iter = w->args;
2573 
2574 	if (!iter->skip)
2575 		return 1;
2576 
2577 	do {
2578 		iter->w.leaf = rcu_dereference_protected(
2579 				iter->w.leaf->fib6_next,
2580 				lockdep_is_held(&iter->tbl->tb6_lock));
2581 		iter->skip--;
2582 		if (!iter->skip && iter->w.leaf)
2583 			return 1;
2584 	} while (iter->w.leaf);
2585 
2586 	return 0;
2587 }
2588 
2589 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2590 				      struct net *net)
2591 {
2592 	memset(&iter->w, 0, sizeof(iter->w));
2593 	iter->w.func = ipv6_route_yield;
2594 	iter->w.root = &iter->tbl->tb6_root;
2595 	iter->w.state = FWS_INIT;
2596 	iter->w.node = iter->w.root;
2597 	iter->w.args = iter;
2598 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2599 	INIT_LIST_HEAD(&iter->w.lh);
2600 	fib6_walker_link(net, &iter->w);
2601 }
2602 
2603 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2604 						    struct net *net)
2605 {
2606 	unsigned int h;
2607 	struct hlist_node *node;
2608 
2609 	if (tbl) {
2610 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2611 		node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2612 	} else {
2613 		h = 0;
2614 		node = NULL;
2615 	}
2616 
2617 	while (!node && h < FIB6_TABLE_HASHSZ) {
2618 		node = rcu_dereference(
2619 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2620 	}
2621 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2622 }
2623 
2624 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2625 {
2626 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2627 
2628 	if (iter->sernum != sernum) {
2629 		iter->sernum = sernum;
2630 		iter->w.state = FWS_INIT;
2631 		iter->w.node = iter->w.root;
2632 		WARN_ON(iter->w.skip);
2633 		iter->w.skip = iter->w.count;
2634 	}
2635 }
2636 
2637 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2638 {
2639 	int r;
2640 	struct fib6_info *n;
2641 	struct net *net = seq_file_net(seq);
2642 	struct ipv6_route_iter *iter = seq->private;
2643 
2644 	++(*pos);
2645 	if (!v)
2646 		goto iter_table;
2647 
2648 	n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2649 	if (n)
2650 		return n;
2651 
2652 iter_table:
2653 	ipv6_route_check_sernum(iter);
2654 	spin_lock_bh(&iter->tbl->tb6_lock);
2655 	r = fib6_walk_continue(&iter->w);
2656 	spin_unlock_bh(&iter->tbl->tb6_lock);
2657 	if (r > 0) {
2658 		return iter->w.leaf;
2659 	} else if (r < 0) {
2660 		fib6_walker_unlink(net, &iter->w);
2661 		return NULL;
2662 	}
2663 	fib6_walker_unlink(net, &iter->w);
2664 
2665 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2666 	if (!iter->tbl)
2667 		return NULL;
2668 
2669 	ipv6_route_seq_setup_walk(iter, net);
2670 	goto iter_table;
2671 }
2672 
2673 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2674 	__acquires(RCU)
2675 {
2676 	struct net *net = seq_file_net(seq);
2677 	struct ipv6_route_iter *iter = seq->private;
2678 
2679 	rcu_read_lock();
2680 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2681 	iter->skip = *pos;
2682 
2683 	if (iter->tbl) {
2684 		loff_t p = 0;
2685 
2686 		ipv6_route_seq_setup_walk(iter, net);
2687 		return ipv6_route_seq_next(seq, NULL, &p);
2688 	} else {
2689 		return NULL;
2690 	}
2691 }
2692 
2693 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2694 {
2695 	struct fib6_walker *w = &iter->w;
2696 	return w->node && !(w->state == FWS_U && w->node == w->root);
2697 }
2698 
2699 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2700 	__releases(RCU)
2701 {
2702 	struct net *net = seq_file_net(seq);
2703 	struct ipv6_route_iter *iter = seq->private;
2704 
2705 	if (ipv6_route_iter_active(iter))
2706 		fib6_walker_unlink(net, &iter->w);
2707 
2708 	rcu_read_unlock();
2709 }
2710 
2711 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2712 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2713 				    struct bpf_iter_meta *meta,
2714 				    void *v)
2715 {
2716 	struct bpf_iter__ipv6_route ctx;
2717 
2718 	ctx.meta = meta;
2719 	ctx.rt = v;
2720 	return bpf_iter_run_prog(prog, &ctx);
2721 }
2722 
2723 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2724 {
2725 	struct ipv6_route_iter *iter = seq->private;
2726 	struct bpf_iter_meta meta;
2727 	struct bpf_prog *prog;
2728 	int ret;
2729 
2730 	meta.seq = seq;
2731 	prog = bpf_iter_get_info(&meta, false);
2732 	if (!prog)
2733 		return ipv6_route_native_seq_show(seq, v);
2734 
2735 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2736 	iter->w.leaf = NULL;
2737 
2738 	return ret;
2739 }
2740 
2741 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2742 {
2743 	struct bpf_iter_meta meta;
2744 	struct bpf_prog *prog;
2745 
2746 	if (!v) {
2747 		meta.seq = seq;
2748 		prog = bpf_iter_get_info(&meta, true);
2749 		if (prog)
2750 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2751 	}
2752 
2753 	ipv6_route_native_seq_stop(seq, v);
2754 }
2755 #else
2756 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2757 {
2758 	return ipv6_route_native_seq_show(seq, v);
2759 }
2760 
2761 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2762 {
2763 	ipv6_route_native_seq_stop(seq, v);
2764 }
2765 #endif
2766 
2767 const struct seq_operations ipv6_route_seq_ops = {
2768 	.start	= ipv6_route_seq_start,
2769 	.next	= ipv6_route_seq_next,
2770 	.stop	= ipv6_route_seq_stop,
2771 	.show	= ipv6_route_seq_show
2772 };
2773 #endif /* CONFIG_PROC_FS */
2774