xref: /linux/net/ipv6/ip6_fib.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 static DEFINE_RWLOCK(fib6_walker_lock);
59 
60 #ifdef CONFIG_IPV6_SUBTREES
61 #define FWS_INIT FWS_S
62 #else
63 #define FWS_INIT FWS_L
64 #endif
65 
66 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
67 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
68 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
69 static int fib6_walk(struct fib6_walker *w);
70 static int fib6_walk_continue(struct fib6_walker *w);
71 
72 /*
73  *	A routing update causes an increase of the serial number on the
74  *	affected subtree. This allows for cached routes to be asynchronously
75  *	tested when modifications are made to the destination cache as a
76  *	result of redirects, path MTU changes, etc.
77  */
78 
79 static void fib6_gc_timer_cb(unsigned long arg);
80 
81 static LIST_HEAD(fib6_walkers);
82 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
83 
84 static void fib6_walker_link(struct fib6_walker *w)
85 {
86 	write_lock_bh(&fib6_walker_lock);
87 	list_add(&w->lh, &fib6_walkers);
88 	write_unlock_bh(&fib6_walker_lock);
89 }
90 
91 static void fib6_walker_unlink(struct fib6_walker *w)
92 {
93 	write_lock_bh(&fib6_walker_lock);
94 	list_del(&w->lh);
95 	write_unlock_bh(&fib6_walker_lock);
96 }
97 
98 static int fib6_new_sernum(struct net *net)
99 {
100 	int new, old;
101 
102 	do {
103 		old = atomic_read(&net->ipv6.fib6_sernum);
104 		new = old < INT_MAX ? old + 1 : 1;
105 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
106 				old, new) != old);
107 	return new;
108 }
109 
110 enum {
111 	FIB6_NO_SERNUM_CHANGE = 0,
112 };
113 
114 /*
115  *	Auxiliary address test functions for the radix tree.
116  *
117  *	These assume a 32bit processor (although it will work on
118  *	64bit processors)
119  */
120 
121 /*
122  *	test bit
123  */
124 #if defined(__LITTLE_ENDIAN)
125 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
126 #else
127 # define BITOP_BE32_SWIZZLE	0
128 #endif
129 
130 static __be32 addr_bit_set(const void *token, int fn_bit)
131 {
132 	const __be32 *addr = token;
133 	/*
134 	 * Here,
135 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
136 	 * is optimized version of
137 	 *	htonl(1 << ((~fn_bit)&0x1F))
138 	 * See include/asm-generic/bitops/le.h.
139 	 */
140 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
141 	       addr[fn_bit >> 5];
142 }
143 
144 static struct fib6_node *node_alloc(void)
145 {
146 	struct fib6_node *fn;
147 
148 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
149 
150 	return fn;
151 }
152 
153 static void node_free(struct fib6_node *fn)
154 {
155 	kmem_cache_free(fib6_node_kmem, fn);
156 }
157 
158 static void rt6_rcu_free(struct rt6_info *rt)
159 {
160 	call_rcu(&rt->dst.rcu_head, dst_rcu_free);
161 }
162 
163 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
164 {
165 	int cpu;
166 
167 	if (!non_pcpu_rt->rt6i_pcpu)
168 		return;
169 
170 	for_each_possible_cpu(cpu) {
171 		struct rt6_info **ppcpu_rt;
172 		struct rt6_info *pcpu_rt;
173 
174 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
175 		pcpu_rt = *ppcpu_rt;
176 		if (pcpu_rt) {
177 			rt6_rcu_free(pcpu_rt);
178 			*ppcpu_rt = NULL;
179 		}
180 	}
181 
182 	non_pcpu_rt->rt6i_pcpu = NULL;
183 }
184 
185 static void rt6_release(struct rt6_info *rt)
186 {
187 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
188 		rt6_free_pcpu(rt);
189 		rt6_rcu_free(rt);
190 	}
191 }
192 
193 static void fib6_link_table(struct net *net, struct fib6_table *tb)
194 {
195 	unsigned int h;
196 
197 	/*
198 	 * Initialize table lock at a single place to give lockdep a key,
199 	 * tables aren't visible prior to being linked to the list.
200 	 */
201 	rwlock_init(&tb->tb6_lock);
202 
203 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
204 
205 	/*
206 	 * No protection necessary, this is the only list mutatation
207 	 * operation, tables never disappear once they exist.
208 	 */
209 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
210 }
211 
212 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
213 
214 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
215 {
216 	struct fib6_table *table;
217 
218 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
219 	if (table) {
220 		table->tb6_id = id;
221 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
222 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
223 		inet_peer_base_init(&table->tb6_peers);
224 	}
225 
226 	return table;
227 }
228 
229 struct fib6_table *fib6_new_table(struct net *net, u32 id)
230 {
231 	struct fib6_table *tb;
232 
233 	if (id == 0)
234 		id = RT6_TABLE_MAIN;
235 	tb = fib6_get_table(net, id);
236 	if (tb)
237 		return tb;
238 
239 	tb = fib6_alloc_table(net, id);
240 	if (tb)
241 		fib6_link_table(net, tb);
242 
243 	return tb;
244 }
245 
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 	struct hlist_head *head;
250 	unsigned int h;
251 
252 	if (id == 0)
253 		id = RT6_TABLE_MAIN;
254 	h = id & (FIB6_TABLE_HASHSZ - 1);
255 	rcu_read_lock();
256 	head = &net->ipv6.fib_table_hash[h];
257 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 		if (tb->tb6_id == id) {
259 			rcu_read_unlock();
260 			return tb;
261 		}
262 	}
263 	rcu_read_unlock();
264 
265 	return NULL;
266 }
267 
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
272 }
273 #else
274 
275 struct fib6_table *fib6_new_table(struct net *net, u32 id)
276 {
277 	return fib6_get_table(net, id);
278 }
279 
280 struct fib6_table *fib6_get_table(struct net *net, u32 id)
281 {
282 	  return net->ipv6.fib6_main_tbl;
283 }
284 
285 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
286 				   int flags, pol_lookup_t lookup)
287 {
288 	struct rt6_info *rt;
289 
290 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
291 	if (rt->rt6i_flags & RTF_REJECT &&
292 	    rt->dst.error == -EAGAIN) {
293 		ip6_rt_put(rt);
294 		rt = net->ipv6.ip6_null_entry;
295 		dst_hold(&rt->dst);
296 	}
297 
298 	return &rt->dst;
299 }
300 
301 static void __net_init fib6_tables_init(struct net *net)
302 {
303 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
304 }
305 
306 #endif
307 
308 static int fib6_dump_node(struct fib6_walker *w)
309 {
310 	int res;
311 	struct rt6_info *rt;
312 
313 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
314 		res = rt6_dump_route(rt, w->args);
315 		if (res < 0) {
316 			/* Frame is full, suspend walking */
317 			w->leaf = rt;
318 			return 1;
319 		}
320 	}
321 	w->leaf = NULL;
322 	return 0;
323 }
324 
325 static void fib6_dump_end(struct netlink_callback *cb)
326 {
327 	struct fib6_walker *w = (void *)cb->args[2];
328 
329 	if (w) {
330 		if (cb->args[4]) {
331 			cb->args[4] = 0;
332 			fib6_walker_unlink(w);
333 		}
334 		cb->args[2] = 0;
335 		kfree(w);
336 	}
337 	cb->done = (void *)cb->args[3];
338 	cb->args[1] = 3;
339 }
340 
341 static int fib6_dump_done(struct netlink_callback *cb)
342 {
343 	fib6_dump_end(cb);
344 	return cb->done ? cb->done(cb) : 0;
345 }
346 
347 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
348 			   struct netlink_callback *cb)
349 {
350 	struct fib6_walker *w;
351 	int res;
352 
353 	w = (void *)cb->args[2];
354 	w->root = &table->tb6_root;
355 
356 	if (cb->args[4] == 0) {
357 		w->count = 0;
358 		w->skip = 0;
359 
360 		read_lock_bh(&table->tb6_lock);
361 		res = fib6_walk(w);
362 		read_unlock_bh(&table->tb6_lock);
363 		if (res > 0) {
364 			cb->args[4] = 1;
365 			cb->args[5] = w->root->fn_sernum;
366 		}
367 	} else {
368 		if (cb->args[5] != w->root->fn_sernum) {
369 			/* Begin at the root if the tree changed */
370 			cb->args[5] = w->root->fn_sernum;
371 			w->state = FWS_INIT;
372 			w->node = w->root;
373 			w->skip = w->count;
374 		} else
375 			w->skip = 0;
376 
377 		read_lock_bh(&table->tb6_lock);
378 		res = fib6_walk_continue(w);
379 		read_unlock_bh(&table->tb6_lock);
380 		if (res <= 0) {
381 			fib6_walker_unlink(w);
382 			cb->args[4] = 0;
383 		}
384 	}
385 
386 	return res;
387 }
388 
389 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
390 {
391 	struct net *net = sock_net(skb->sk);
392 	unsigned int h, s_h;
393 	unsigned int e = 0, s_e;
394 	struct rt6_rtnl_dump_arg arg;
395 	struct fib6_walker *w;
396 	struct fib6_table *tb;
397 	struct hlist_head *head;
398 	int res = 0;
399 
400 	s_h = cb->args[0];
401 	s_e = cb->args[1];
402 
403 	w = (void *)cb->args[2];
404 	if (!w) {
405 		/* New dump:
406 		 *
407 		 * 1. hook callback destructor.
408 		 */
409 		cb->args[3] = (long)cb->done;
410 		cb->done = fib6_dump_done;
411 
412 		/*
413 		 * 2. allocate and initialize walker.
414 		 */
415 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
416 		if (!w)
417 			return -ENOMEM;
418 		w->func = fib6_dump_node;
419 		cb->args[2] = (long)w;
420 	}
421 
422 	arg.skb = skb;
423 	arg.cb = cb;
424 	arg.net = net;
425 	w->args = &arg;
426 
427 	rcu_read_lock();
428 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
429 		e = 0;
430 		head = &net->ipv6.fib_table_hash[h];
431 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
432 			if (e < s_e)
433 				goto next;
434 			res = fib6_dump_table(tb, skb, cb);
435 			if (res != 0)
436 				goto out;
437 next:
438 			e++;
439 		}
440 	}
441 out:
442 	rcu_read_unlock();
443 	cb->args[1] = e;
444 	cb->args[0] = h;
445 
446 	res = res < 0 ? res : skb->len;
447 	if (res <= 0)
448 		fib6_dump_end(cb);
449 	return res;
450 }
451 
452 /*
453  *	Routing Table
454  *
455  *	return the appropriate node for a routing tree "add" operation
456  *	by either creating and inserting or by returning an existing
457  *	node.
458  */
459 
460 static struct fib6_node *fib6_add_1(struct fib6_node *root,
461 				     struct in6_addr *addr, int plen,
462 				     int offset, int allow_create,
463 				     int replace_required, int sernum)
464 {
465 	struct fib6_node *fn, *in, *ln;
466 	struct fib6_node *pn = NULL;
467 	struct rt6key *key;
468 	int	bit;
469 	__be32	dir = 0;
470 
471 	RT6_TRACE("fib6_add_1\n");
472 
473 	/* insert node in tree */
474 
475 	fn = root;
476 
477 	do {
478 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
479 
480 		/*
481 		 *	Prefix match
482 		 */
483 		if (plen < fn->fn_bit ||
484 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
485 			if (!allow_create) {
486 				if (replace_required) {
487 					pr_warn("Can't replace route, no match found\n");
488 					return ERR_PTR(-ENOENT);
489 				}
490 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
491 			}
492 			goto insert_above;
493 		}
494 
495 		/*
496 		 *	Exact match ?
497 		 */
498 
499 		if (plen == fn->fn_bit) {
500 			/* clean up an intermediate node */
501 			if (!(fn->fn_flags & RTN_RTINFO)) {
502 				rt6_release(fn->leaf);
503 				fn->leaf = NULL;
504 			}
505 
506 			fn->fn_sernum = sernum;
507 
508 			return fn;
509 		}
510 
511 		/*
512 		 *	We have more bits to go
513 		 */
514 
515 		/* Try to walk down on tree. */
516 		fn->fn_sernum = sernum;
517 		dir = addr_bit_set(addr, fn->fn_bit);
518 		pn = fn;
519 		fn = dir ? fn->right : fn->left;
520 	} while (fn);
521 
522 	if (!allow_create) {
523 		/* We should not create new node because
524 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
525 		 * I assume it is safe to require NLM_F_CREATE when
526 		 * REPLACE flag is used! Later we may want to remove the
527 		 * check for replace_required, because according
528 		 * to netlink specification, NLM_F_CREATE
529 		 * MUST be specified if new route is created.
530 		 * That would keep IPv6 consistent with IPv4
531 		 */
532 		if (replace_required) {
533 			pr_warn("Can't replace route, no match found\n");
534 			return ERR_PTR(-ENOENT);
535 		}
536 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
537 	}
538 	/*
539 	 *	We walked to the bottom of tree.
540 	 *	Create new leaf node without children.
541 	 */
542 
543 	ln = node_alloc();
544 
545 	if (!ln)
546 		return ERR_PTR(-ENOMEM);
547 	ln->fn_bit = plen;
548 
549 	ln->parent = pn;
550 	ln->fn_sernum = sernum;
551 
552 	if (dir)
553 		pn->right = ln;
554 	else
555 		pn->left  = ln;
556 
557 	return ln;
558 
559 
560 insert_above:
561 	/*
562 	 * split since we don't have a common prefix anymore or
563 	 * we have a less significant route.
564 	 * we've to insert an intermediate node on the list
565 	 * this new node will point to the one we need to create
566 	 * and the current
567 	 */
568 
569 	pn = fn->parent;
570 
571 	/* find 1st bit in difference between the 2 addrs.
572 
573 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
574 	   but if it is >= plen, the value is ignored in any case.
575 	 */
576 
577 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
578 
579 	/*
580 	 *		(intermediate)[in]
581 	 *	          /	   \
582 	 *	(new leaf node)[ln] (old node)[fn]
583 	 */
584 	if (plen > bit) {
585 		in = node_alloc();
586 		ln = node_alloc();
587 
588 		if (!in || !ln) {
589 			if (in)
590 				node_free(in);
591 			if (ln)
592 				node_free(ln);
593 			return ERR_PTR(-ENOMEM);
594 		}
595 
596 		/*
597 		 * new intermediate node.
598 		 * RTN_RTINFO will
599 		 * be off since that an address that chooses one of
600 		 * the branches would not match less specific routes
601 		 * in the other branch
602 		 */
603 
604 		in->fn_bit = bit;
605 
606 		in->parent = pn;
607 		in->leaf = fn->leaf;
608 		atomic_inc(&in->leaf->rt6i_ref);
609 
610 		in->fn_sernum = sernum;
611 
612 		/* update parent pointer */
613 		if (dir)
614 			pn->right = in;
615 		else
616 			pn->left  = in;
617 
618 		ln->fn_bit = plen;
619 
620 		ln->parent = in;
621 		fn->parent = in;
622 
623 		ln->fn_sernum = sernum;
624 
625 		if (addr_bit_set(addr, bit)) {
626 			in->right = ln;
627 			in->left  = fn;
628 		} else {
629 			in->left  = ln;
630 			in->right = fn;
631 		}
632 	} else { /* plen <= bit */
633 
634 		/*
635 		 *		(new leaf node)[ln]
636 		 *	          /	   \
637 		 *	     (old node)[fn] NULL
638 		 */
639 
640 		ln = node_alloc();
641 
642 		if (!ln)
643 			return ERR_PTR(-ENOMEM);
644 
645 		ln->fn_bit = plen;
646 
647 		ln->parent = pn;
648 
649 		ln->fn_sernum = sernum;
650 
651 		if (dir)
652 			pn->right = ln;
653 		else
654 			pn->left  = ln;
655 
656 		if (addr_bit_set(&key->addr, plen))
657 			ln->right = fn;
658 		else
659 			ln->left  = fn;
660 
661 		fn->parent = ln;
662 	}
663 	return ln;
664 }
665 
666 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
667 {
668 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
669 	       RTF_GATEWAY;
670 }
671 
672 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
673 {
674 	int i;
675 
676 	for (i = 0; i < RTAX_MAX; i++) {
677 		if (test_bit(i, mxc->mx_valid))
678 			mp[i] = mxc->mx[i];
679 	}
680 }
681 
682 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
683 {
684 	if (!mxc->mx)
685 		return 0;
686 
687 	if (dst->flags & DST_HOST) {
688 		u32 *mp = dst_metrics_write_ptr(dst);
689 
690 		if (unlikely(!mp))
691 			return -ENOMEM;
692 
693 		fib6_copy_metrics(mp, mxc);
694 	} else {
695 		dst_init_metrics(dst, mxc->mx, false);
696 
697 		/* We've stolen mx now. */
698 		mxc->mx = NULL;
699 	}
700 
701 	return 0;
702 }
703 
704 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
705 			  struct net *net)
706 {
707 	if (atomic_read(&rt->rt6i_ref) != 1) {
708 		/* This route is used as dummy address holder in some split
709 		 * nodes. It is not leaked, but it still holds other resources,
710 		 * which must be released in time. So, scan ascendant nodes
711 		 * and replace dummy references to this route with references
712 		 * to still alive ones.
713 		 */
714 		while (fn) {
715 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
716 				fn->leaf = fib6_find_prefix(net, fn);
717 				atomic_inc(&fn->leaf->rt6i_ref);
718 				rt6_release(rt);
719 			}
720 			fn = fn->parent;
721 		}
722 		/* No more references are possible at this point. */
723 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
724 	}
725 }
726 
727 /*
728  *	Insert routing information in a node.
729  */
730 
731 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
732 			    struct nl_info *info, struct mx6_config *mxc)
733 {
734 	struct rt6_info *iter = NULL;
735 	struct rt6_info **ins;
736 	struct rt6_info **fallback_ins = NULL;
737 	int replace = (info->nlh &&
738 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
739 	int add = (!info->nlh ||
740 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
741 	int found = 0;
742 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
743 	int err;
744 
745 	ins = &fn->leaf;
746 
747 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
748 		/*
749 		 *	Search for duplicates
750 		 */
751 
752 		if (iter->rt6i_metric == rt->rt6i_metric) {
753 			/*
754 			 *	Same priority level
755 			 */
756 			if (info->nlh &&
757 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
758 				return -EEXIST;
759 			if (replace) {
760 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
761 					found++;
762 					break;
763 				}
764 				if (rt_can_ecmp)
765 					fallback_ins = fallback_ins ?: ins;
766 				goto next_iter;
767 			}
768 
769 			if (iter->dst.dev == rt->dst.dev &&
770 			    iter->rt6i_idev == rt->rt6i_idev &&
771 			    ipv6_addr_equal(&iter->rt6i_gateway,
772 					    &rt->rt6i_gateway)) {
773 				if (rt->rt6i_nsiblings)
774 					rt->rt6i_nsiblings = 0;
775 				if (!(iter->rt6i_flags & RTF_EXPIRES))
776 					return -EEXIST;
777 				if (!(rt->rt6i_flags & RTF_EXPIRES))
778 					rt6_clean_expires(iter);
779 				else
780 					rt6_set_expires(iter, rt->dst.expires);
781 				iter->rt6i_pmtu = rt->rt6i_pmtu;
782 				return -EEXIST;
783 			}
784 			/* If we have the same destination and the same metric,
785 			 * but not the same gateway, then the route we try to
786 			 * add is sibling to this route, increment our counter
787 			 * of siblings, and later we will add our route to the
788 			 * list.
789 			 * Only static routes (which don't have flag
790 			 * RTF_EXPIRES) are used for ECMPv6.
791 			 *
792 			 * To avoid long list, we only had siblings if the
793 			 * route have a gateway.
794 			 */
795 			if (rt_can_ecmp &&
796 			    rt6_qualify_for_ecmp(iter))
797 				rt->rt6i_nsiblings++;
798 		}
799 
800 		if (iter->rt6i_metric > rt->rt6i_metric)
801 			break;
802 
803 next_iter:
804 		ins = &iter->dst.rt6_next;
805 	}
806 
807 	if (fallback_ins && !found) {
808 		/* No ECMP-able route found, replace first non-ECMP one */
809 		ins = fallback_ins;
810 		iter = *ins;
811 		found++;
812 	}
813 
814 	/* Reset round-robin state, if necessary */
815 	if (ins == &fn->leaf)
816 		fn->rr_ptr = NULL;
817 
818 	/* Link this route to others same route. */
819 	if (rt->rt6i_nsiblings) {
820 		unsigned int rt6i_nsiblings;
821 		struct rt6_info *sibling, *temp_sibling;
822 
823 		/* Find the first route that have the same metric */
824 		sibling = fn->leaf;
825 		while (sibling) {
826 			if (sibling->rt6i_metric == rt->rt6i_metric &&
827 			    rt6_qualify_for_ecmp(sibling)) {
828 				list_add_tail(&rt->rt6i_siblings,
829 					      &sibling->rt6i_siblings);
830 				break;
831 			}
832 			sibling = sibling->dst.rt6_next;
833 		}
834 		/* For each sibling in the list, increment the counter of
835 		 * siblings. BUG() if counters does not match, list of siblings
836 		 * is broken!
837 		 */
838 		rt6i_nsiblings = 0;
839 		list_for_each_entry_safe(sibling, temp_sibling,
840 					 &rt->rt6i_siblings, rt6i_siblings) {
841 			sibling->rt6i_nsiblings++;
842 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
843 			rt6i_nsiblings++;
844 		}
845 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
846 	}
847 
848 	/*
849 	 *	insert node
850 	 */
851 	if (!replace) {
852 		if (!add)
853 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
854 
855 add:
856 		err = fib6_commit_metrics(&rt->dst, mxc);
857 		if (err)
858 			return err;
859 
860 		rt->dst.rt6_next = iter;
861 		*ins = rt;
862 		rt->rt6i_node = fn;
863 		atomic_inc(&rt->rt6i_ref);
864 		inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
865 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
866 
867 		if (!(fn->fn_flags & RTN_RTINFO)) {
868 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
869 			fn->fn_flags |= RTN_RTINFO;
870 		}
871 
872 	} else {
873 		int nsiblings;
874 
875 		if (!found) {
876 			if (add)
877 				goto add;
878 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
879 			return -ENOENT;
880 		}
881 
882 		err = fib6_commit_metrics(&rt->dst, mxc);
883 		if (err)
884 			return err;
885 
886 		*ins = rt;
887 		rt->rt6i_node = fn;
888 		rt->dst.rt6_next = iter->dst.rt6_next;
889 		atomic_inc(&rt->rt6i_ref);
890 		inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
891 		if (!(fn->fn_flags & RTN_RTINFO)) {
892 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
893 			fn->fn_flags |= RTN_RTINFO;
894 		}
895 		nsiblings = iter->rt6i_nsiblings;
896 		fib6_purge_rt(iter, fn, info->nl_net);
897 		rt6_release(iter);
898 
899 		if (nsiblings) {
900 			/* Replacing an ECMP route, remove all siblings */
901 			ins = &rt->dst.rt6_next;
902 			iter = *ins;
903 			while (iter) {
904 				if (rt6_qualify_for_ecmp(iter)) {
905 					*ins = iter->dst.rt6_next;
906 					fib6_purge_rt(iter, fn, info->nl_net);
907 					rt6_release(iter);
908 					nsiblings--;
909 				} else {
910 					ins = &iter->dst.rt6_next;
911 				}
912 				iter = *ins;
913 			}
914 			WARN_ON(nsiblings != 0);
915 		}
916 	}
917 
918 	return 0;
919 }
920 
921 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
922 {
923 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
924 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
925 		mod_timer(&net->ipv6.ip6_fib_timer,
926 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
927 }
928 
929 void fib6_force_start_gc(struct net *net)
930 {
931 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
932 		mod_timer(&net->ipv6.ip6_fib_timer,
933 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
934 }
935 
936 /*
937  *	Add routing information to the routing tree.
938  *	<destination addr>/<source addr>
939  *	with source addr info in sub-trees
940  */
941 
942 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
943 	     struct nl_info *info, struct mx6_config *mxc)
944 {
945 	struct fib6_node *fn, *pn = NULL;
946 	int err = -ENOMEM;
947 	int allow_create = 1;
948 	int replace_required = 0;
949 	int sernum = fib6_new_sernum(info->nl_net);
950 
951 	if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
952 			 !atomic_read(&rt->dst.__refcnt)))
953 		return -EINVAL;
954 
955 	if (info->nlh) {
956 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
957 			allow_create = 0;
958 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
959 			replace_required = 1;
960 	}
961 	if (!allow_create && !replace_required)
962 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
963 
964 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
965 			offsetof(struct rt6_info, rt6i_dst), allow_create,
966 			replace_required, sernum);
967 	if (IS_ERR(fn)) {
968 		err = PTR_ERR(fn);
969 		fn = NULL;
970 		goto out;
971 	}
972 
973 	pn = fn;
974 
975 #ifdef CONFIG_IPV6_SUBTREES
976 	if (rt->rt6i_src.plen) {
977 		struct fib6_node *sn;
978 
979 		if (!fn->subtree) {
980 			struct fib6_node *sfn;
981 
982 			/*
983 			 * Create subtree.
984 			 *
985 			 *		fn[main tree]
986 			 *		|
987 			 *		sfn[subtree root]
988 			 *		   \
989 			 *		    sn[new leaf node]
990 			 */
991 
992 			/* Create subtree root node */
993 			sfn = node_alloc();
994 			if (!sfn)
995 				goto st_failure;
996 
997 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
998 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
999 			sfn->fn_flags = RTN_ROOT;
1000 			sfn->fn_sernum = sernum;
1001 
1002 			/* Now add the first leaf node to new subtree */
1003 
1004 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1005 					rt->rt6i_src.plen,
1006 					offsetof(struct rt6_info, rt6i_src),
1007 					allow_create, replace_required, sernum);
1008 
1009 			if (IS_ERR(sn)) {
1010 				/* If it is failed, discard just allocated
1011 				   root, and then (in st_failure) stale node
1012 				   in main tree.
1013 				 */
1014 				node_free(sfn);
1015 				err = PTR_ERR(sn);
1016 				goto st_failure;
1017 			}
1018 
1019 			/* Now link new subtree to main tree */
1020 			sfn->parent = fn;
1021 			fn->subtree = sfn;
1022 		} else {
1023 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1024 					rt->rt6i_src.plen,
1025 					offsetof(struct rt6_info, rt6i_src),
1026 					allow_create, replace_required, sernum);
1027 
1028 			if (IS_ERR(sn)) {
1029 				err = PTR_ERR(sn);
1030 				goto st_failure;
1031 			}
1032 		}
1033 
1034 		if (!fn->leaf) {
1035 			fn->leaf = rt;
1036 			atomic_inc(&rt->rt6i_ref);
1037 		}
1038 		fn = sn;
1039 	}
1040 #endif
1041 
1042 	err = fib6_add_rt2node(fn, rt, info, mxc);
1043 	if (!err) {
1044 		fib6_start_gc(info->nl_net, rt);
1045 		if (!(rt->rt6i_flags & RTF_CACHE))
1046 			fib6_prune_clones(info->nl_net, pn);
1047 		rt->dst.flags &= ~DST_NOCACHE;
1048 	}
1049 
1050 out:
1051 	if (err) {
1052 #ifdef CONFIG_IPV6_SUBTREES
1053 		/*
1054 		 * If fib6_add_1 has cleared the old leaf pointer in the
1055 		 * super-tree leaf node we have to find a new one for it.
1056 		 */
1057 		if (pn != fn && pn->leaf == rt) {
1058 			pn->leaf = NULL;
1059 			atomic_dec(&rt->rt6i_ref);
1060 		}
1061 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1062 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1063 #if RT6_DEBUG >= 2
1064 			if (!pn->leaf) {
1065 				WARN_ON(pn->leaf == NULL);
1066 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1067 			}
1068 #endif
1069 			atomic_inc(&pn->leaf->rt6i_ref);
1070 		}
1071 #endif
1072 		if (!(rt->dst.flags & DST_NOCACHE))
1073 			dst_free(&rt->dst);
1074 	}
1075 	return err;
1076 
1077 #ifdef CONFIG_IPV6_SUBTREES
1078 	/* Subtree creation failed, probably main tree node
1079 	   is orphan. If it is, shoot it.
1080 	 */
1081 st_failure:
1082 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1083 		fib6_repair_tree(info->nl_net, fn);
1084 	if (!(rt->dst.flags & DST_NOCACHE))
1085 		dst_free(&rt->dst);
1086 	return err;
1087 #endif
1088 }
1089 
1090 /*
1091  *	Routing tree lookup
1092  *
1093  */
1094 
1095 struct lookup_args {
1096 	int			offset;		/* key offset on rt6_info	*/
1097 	const struct in6_addr	*addr;		/* search key			*/
1098 };
1099 
1100 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1101 				       struct lookup_args *args)
1102 {
1103 	struct fib6_node *fn;
1104 	__be32 dir;
1105 
1106 	if (unlikely(args->offset == 0))
1107 		return NULL;
1108 
1109 	/*
1110 	 *	Descend on a tree
1111 	 */
1112 
1113 	fn = root;
1114 
1115 	for (;;) {
1116 		struct fib6_node *next;
1117 
1118 		dir = addr_bit_set(args->addr, fn->fn_bit);
1119 
1120 		next = dir ? fn->right : fn->left;
1121 
1122 		if (next) {
1123 			fn = next;
1124 			continue;
1125 		}
1126 		break;
1127 	}
1128 
1129 	while (fn) {
1130 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1131 			struct rt6key *key;
1132 
1133 			key = (struct rt6key *) ((u8 *) fn->leaf +
1134 						 args->offset);
1135 
1136 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1137 #ifdef CONFIG_IPV6_SUBTREES
1138 				if (fn->subtree) {
1139 					struct fib6_node *sfn;
1140 					sfn = fib6_lookup_1(fn->subtree,
1141 							    args + 1);
1142 					if (!sfn)
1143 						goto backtrack;
1144 					fn = sfn;
1145 				}
1146 #endif
1147 				if (fn->fn_flags & RTN_RTINFO)
1148 					return fn;
1149 			}
1150 		}
1151 #ifdef CONFIG_IPV6_SUBTREES
1152 backtrack:
1153 #endif
1154 		if (fn->fn_flags & RTN_ROOT)
1155 			break;
1156 
1157 		fn = fn->parent;
1158 	}
1159 
1160 	return NULL;
1161 }
1162 
1163 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1164 			      const struct in6_addr *saddr)
1165 {
1166 	struct fib6_node *fn;
1167 	struct lookup_args args[] = {
1168 		{
1169 			.offset = offsetof(struct rt6_info, rt6i_dst),
1170 			.addr = daddr,
1171 		},
1172 #ifdef CONFIG_IPV6_SUBTREES
1173 		{
1174 			.offset = offsetof(struct rt6_info, rt6i_src),
1175 			.addr = saddr,
1176 		},
1177 #endif
1178 		{
1179 			.offset = 0,	/* sentinel */
1180 		}
1181 	};
1182 
1183 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1184 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1185 		fn = root;
1186 
1187 	return fn;
1188 }
1189 
1190 /*
1191  *	Get node with specified destination prefix (and source prefix,
1192  *	if subtrees are used)
1193  */
1194 
1195 
1196 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1197 				       const struct in6_addr *addr,
1198 				       int plen, int offset)
1199 {
1200 	struct fib6_node *fn;
1201 
1202 	for (fn = root; fn ; ) {
1203 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1204 
1205 		/*
1206 		 *	Prefix match
1207 		 */
1208 		if (plen < fn->fn_bit ||
1209 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1210 			return NULL;
1211 
1212 		if (plen == fn->fn_bit)
1213 			return fn;
1214 
1215 		/*
1216 		 *	We have more bits to go
1217 		 */
1218 		if (addr_bit_set(addr, fn->fn_bit))
1219 			fn = fn->right;
1220 		else
1221 			fn = fn->left;
1222 	}
1223 	return NULL;
1224 }
1225 
1226 struct fib6_node *fib6_locate(struct fib6_node *root,
1227 			      const struct in6_addr *daddr, int dst_len,
1228 			      const struct in6_addr *saddr, int src_len)
1229 {
1230 	struct fib6_node *fn;
1231 
1232 	fn = fib6_locate_1(root, daddr, dst_len,
1233 			   offsetof(struct rt6_info, rt6i_dst));
1234 
1235 #ifdef CONFIG_IPV6_SUBTREES
1236 	if (src_len) {
1237 		WARN_ON(saddr == NULL);
1238 		if (fn && fn->subtree)
1239 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1240 					   offsetof(struct rt6_info, rt6i_src));
1241 	}
1242 #endif
1243 
1244 	if (fn && fn->fn_flags & RTN_RTINFO)
1245 		return fn;
1246 
1247 	return NULL;
1248 }
1249 
1250 
1251 /*
1252  *	Deletion
1253  *
1254  */
1255 
1256 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1257 {
1258 	if (fn->fn_flags & RTN_ROOT)
1259 		return net->ipv6.ip6_null_entry;
1260 
1261 	while (fn) {
1262 		if (fn->left)
1263 			return fn->left->leaf;
1264 		if (fn->right)
1265 			return fn->right->leaf;
1266 
1267 		fn = FIB6_SUBTREE(fn);
1268 	}
1269 	return NULL;
1270 }
1271 
1272 /*
1273  *	Called to trim the tree of intermediate nodes when possible. "fn"
1274  *	is the node we want to try and remove.
1275  */
1276 
1277 static struct fib6_node *fib6_repair_tree(struct net *net,
1278 					   struct fib6_node *fn)
1279 {
1280 	int children;
1281 	int nstate;
1282 	struct fib6_node *child, *pn;
1283 	struct fib6_walker *w;
1284 	int iter = 0;
1285 
1286 	for (;;) {
1287 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1288 		iter++;
1289 
1290 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1291 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1292 		WARN_ON(fn->leaf);
1293 
1294 		children = 0;
1295 		child = NULL;
1296 		if (fn->right)
1297 			child = fn->right, children |= 1;
1298 		if (fn->left)
1299 			child = fn->left, children |= 2;
1300 
1301 		if (children == 3 || FIB6_SUBTREE(fn)
1302 #ifdef CONFIG_IPV6_SUBTREES
1303 		    /* Subtree root (i.e. fn) may have one child */
1304 		    || (children && fn->fn_flags & RTN_ROOT)
1305 #endif
1306 		    ) {
1307 			fn->leaf = fib6_find_prefix(net, fn);
1308 #if RT6_DEBUG >= 2
1309 			if (!fn->leaf) {
1310 				WARN_ON(!fn->leaf);
1311 				fn->leaf = net->ipv6.ip6_null_entry;
1312 			}
1313 #endif
1314 			atomic_inc(&fn->leaf->rt6i_ref);
1315 			return fn->parent;
1316 		}
1317 
1318 		pn = fn->parent;
1319 #ifdef CONFIG_IPV6_SUBTREES
1320 		if (FIB6_SUBTREE(pn) == fn) {
1321 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1322 			FIB6_SUBTREE(pn) = NULL;
1323 			nstate = FWS_L;
1324 		} else {
1325 			WARN_ON(fn->fn_flags & RTN_ROOT);
1326 #endif
1327 			if (pn->right == fn)
1328 				pn->right = child;
1329 			else if (pn->left == fn)
1330 				pn->left = child;
1331 #if RT6_DEBUG >= 2
1332 			else
1333 				WARN_ON(1);
1334 #endif
1335 			if (child)
1336 				child->parent = pn;
1337 			nstate = FWS_R;
1338 #ifdef CONFIG_IPV6_SUBTREES
1339 		}
1340 #endif
1341 
1342 		read_lock(&fib6_walker_lock);
1343 		FOR_WALKERS(w) {
1344 			if (!child) {
1345 				if (w->root == fn) {
1346 					w->root = w->node = NULL;
1347 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1348 				} else if (w->node == fn) {
1349 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1350 					w->node = pn;
1351 					w->state = nstate;
1352 				}
1353 			} else {
1354 				if (w->root == fn) {
1355 					w->root = child;
1356 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1357 				}
1358 				if (w->node == fn) {
1359 					w->node = child;
1360 					if (children&2) {
1361 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1362 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1363 					} else {
1364 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1365 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1366 					}
1367 				}
1368 			}
1369 		}
1370 		read_unlock(&fib6_walker_lock);
1371 
1372 		node_free(fn);
1373 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1374 			return pn;
1375 
1376 		rt6_release(pn->leaf);
1377 		pn->leaf = NULL;
1378 		fn = pn;
1379 	}
1380 }
1381 
1382 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1383 			   struct nl_info *info)
1384 {
1385 	struct fib6_walker *w;
1386 	struct rt6_info *rt = *rtp;
1387 	struct net *net = info->nl_net;
1388 
1389 	RT6_TRACE("fib6_del_route\n");
1390 
1391 	/* Unlink it */
1392 	*rtp = rt->dst.rt6_next;
1393 	rt->rt6i_node = NULL;
1394 	net->ipv6.rt6_stats->fib_rt_entries--;
1395 	net->ipv6.rt6_stats->fib_discarded_routes++;
1396 
1397 	/* Reset round-robin state, if necessary */
1398 	if (fn->rr_ptr == rt)
1399 		fn->rr_ptr = NULL;
1400 
1401 	/* Remove this entry from other siblings */
1402 	if (rt->rt6i_nsiblings) {
1403 		struct rt6_info *sibling, *next_sibling;
1404 
1405 		list_for_each_entry_safe(sibling, next_sibling,
1406 					 &rt->rt6i_siblings, rt6i_siblings)
1407 			sibling->rt6i_nsiblings--;
1408 		rt->rt6i_nsiblings = 0;
1409 		list_del_init(&rt->rt6i_siblings);
1410 	}
1411 
1412 	/* Adjust walkers */
1413 	read_lock(&fib6_walker_lock);
1414 	FOR_WALKERS(w) {
1415 		if (w->state == FWS_C && w->leaf == rt) {
1416 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1417 			w->leaf = rt->dst.rt6_next;
1418 			if (!w->leaf)
1419 				w->state = FWS_U;
1420 		}
1421 	}
1422 	read_unlock(&fib6_walker_lock);
1423 
1424 	rt->dst.rt6_next = NULL;
1425 
1426 	/* If it was last route, expunge its radix tree node */
1427 	if (!fn->leaf) {
1428 		fn->fn_flags &= ~RTN_RTINFO;
1429 		net->ipv6.rt6_stats->fib_route_nodes--;
1430 		fn = fib6_repair_tree(net, fn);
1431 	}
1432 
1433 	fib6_purge_rt(rt, fn, net);
1434 
1435 	inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1436 	rt6_release(rt);
1437 }
1438 
1439 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1440 {
1441 	struct net *net = info->nl_net;
1442 	struct fib6_node *fn = rt->rt6i_node;
1443 	struct rt6_info **rtp;
1444 
1445 #if RT6_DEBUG >= 2
1446 	if (rt->dst.obsolete > 0) {
1447 		WARN_ON(fn);
1448 		return -ENOENT;
1449 	}
1450 #endif
1451 	if (!fn || rt == net->ipv6.ip6_null_entry)
1452 		return -ENOENT;
1453 
1454 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1455 
1456 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1457 		struct fib6_node *pn = fn;
1458 #ifdef CONFIG_IPV6_SUBTREES
1459 		/* clones of this route might be in another subtree */
1460 		if (rt->rt6i_src.plen) {
1461 			while (!(pn->fn_flags & RTN_ROOT))
1462 				pn = pn->parent;
1463 			pn = pn->parent;
1464 		}
1465 #endif
1466 		fib6_prune_clones(info->nl_net, pn);
1467 	}
1468 
1469 	/*
1470 	 *	Walk the leaf entries looking for ourself
1471 	 */
1472 
1473 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1474 		if (*rtp == rt) {
1475 			fib6_del_route(fn, rtp, info);
1476 			return 0;
1477 		}
1478 	}
1479 	return -ENOENT;
1480 }
1481 
1482 /*
1483  *	Tree traversal function.
1484  *
1485  *	Certainly, it is not interrupt safe.
1486  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1487  *	It means, that we can modify tree during walking
1488  *	and use this function for garbage collection, clone pruning,
1489  *	cleaning tree when a device goes down etc. etc.
1490  *
1491  *	It guarantees that every node will be traversed,
1492  *	and that it will be traversed only once.
1493  *
1494  *	Callback function w->func may return:
1495  *	0 -> continue walking.
1496  *	positive value -> walking is suspended (used by tree dumps,
1497  *	and probably by gc, if it will be split to several slices)
1498  *	negative value -> terminate walking.
1499  *
1500  *	The function itself returns:
1501  *	0   -> walk is complete.
1502  *	>0  -> walk is incomplete (i.e. suspended)
1503  *	<0  -> walk is terminated by an error.
1504  */
1505 
1506 static int fib6_walk_continue(struct fib6_walker *w)
1507 {
1508 	struct fib6_node *fn, *pn;
1509 
1510 	for (;;) {
1511 		fn = w->node;
1512 		if (!fn)
1513 			return 0;
1514 
1515 		if (w->prune && fn != w->root &&
1516 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1517 			w->state = FWS_C;
1518 			w->leaf = fn->leaf;
1519 		}
1520 		switch (w->state) {
1521 #ifdef CONFIG_IPV6_SUBTREES
1522 		case FWS_S:
1523 			if (FIB6_SUBTREE(fn)) {
1524 				w->node = FIB6_SUBTREE(fn);
1525 				continue;
1526 			}
1527 			w->state = FWS_L;
1528 #endif
1529 		case FWS_L:
1530 			if (fn->left) {
1531 				w->node = fn->left;
1532 				w->state = FWS_INIT;
1533 				continue;
1534 			}
1535 			w->state = FWS_R;
1536 		case FWS_R:
1537 			if (fn->right) {
1538 				w->node = fn->right;
1539 				w->state = FWS_INIT;
1540 				continue;
1541 			}
1542 			w->state = FWS_C;
1543 			w->leaf = fn->leaf;
1544 		case FWS_C:
1545 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1546 				int err;
1547 
1548 				if (w->skip) {
1549 					w->skip--;
1550 					goto skip;
1551 				}
1552 
1553 				err = w->func(w);
1554 				if (err)
1555 					return err;
1556 
1557 				w->count++;
1558 				continue;
1559 			}
1560 skip:
1561 			w->state = FWS_U;
1562 		case FWS_U:
1563 			if (fn == w->root)
1564 				return 0;
1565 			pn = fn->parent;
1566 			w->node = pn;
1567 #ifdef CONFIG_IPV6_SUBTREES
1568 			if (FIB6_SUBTREE(pn) == fn) {
1569 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1570 				w->state = FWS_L;
1571 				continue;
1572 			}
1573 #endif
1574 			if (pn->left == fn) {
1575 				w->state = FWS_R;
1576 				continue;
1577 			}
1578 			if (pn->right == fn) {
1579 				w->state = FWS_C;
1580 				w->leaf = w->node->leaf;
1581 				continue;
1582 			}
1583 #if RT6_DEBUG >= 2
1584 			WARN_ON(1);
1585 #endif
1586 		}
1587 	}
1588 }
1589 
1590 static int fib6_walk(struct fib6_walker *w)
1591 {
1592 	int res;
1593 
1594 	w->state = FWS_INIT;
1595 	w->node = w->root;
1596 
1597 	fib6_walker_link(w);
1598 	res = fib6_walk_continue(w);
1599 	if (res <= 0)
1600 		fib6_walker_unlink(w);
1601 	return res;
1602 }
1603 
1604 static int fib6_clean_node(struct fib6_walker *w)
1605 {
1606 	int res;
1607 	struct rt6_info *rt;
1608 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1609 	struct nl_info info = {
1610 		.nl_net = c->net,
1611 	};
1612 
1613 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1614 	    w->node->fn_sernum != c->sernum)
1615 		w->node->fn_sernum = c->sernum;
1616 
1617 	if (!c->func) {
1618 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1619 		w->leaf = NULL;
1620 		return 0;
1621 	}
1622 
1623 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1624 		res = c->func(rt, c->arg);
1625 		if (res < 0) {
1626 			w->leaf = rt;
1627 			res = fib6_del(rt, &info);
1628 			if (res) {
1629 #if RT6_DEBUG >= 2
1630 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1631 					 __func__, rt, rt->rt6i_node, res);
1632 #endif
1633 				continue;
1634 			}
1635 			return 0;
1636 		}
1637 		WARN_ON(res != 0);
1638 	}
1639 	w->leaf = rt;
1640 	return 0;
1641 }
1642 
1643 /*
1644  *	Convenient frontend to tree walker.
1645  *
1646  *	func is called on each route.
1647  *		It may return -1 -> delete this route.
1648  *		              0  -> continue walking
1649  *
1650  *	prune==1 -> only immediate children of node (certainly,
1651  *	ignoring pure split nodes) will be scanned.
1652  */
1653 
1654 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1655 			    int (*func)(struct rt6_info *, void *arg),
1656 			    bool prune, int sernum, void *arg)
1657 {
1658 	struct fib6_cleaner c;
1659 
1660 	c.w.root = root;
1661 	c.w.func = fib6_clean_node;
1662 	c.w.prune = prune;
1663 	c.w.count = 0;
1664 	c.w.skip = 0;
1665 	c.func = func;
1666 	c.sernum = sernum;
1667 	c.arg = arg;
1668 	c.net = net;
1669 
1670 	fib6_walk(&c.w);
1671 }
1672 
1673 static void __fib6_clean_all(struct net *net,
1674 			     int (*func)(struct rt6_info *, void *),
1675 			     int sernum, void *arg)
1676 {
1677 	struct fib6_table *table;
1678 	struct hlist_head *head;
1679 	unsigned int h;
1680 
1681 	rcu_read_lock();
1682 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1683 		head = &net->ipv6.fib_table_hash[h];
1684 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1685 			write_lock_bh(&table->tb6_lock);
1686 			fib6_clean_tree(net, &table->tb6_root,
1687 					func, false, sernum, arg);
1688 			write_unlock_bh(&table->tb6_lock);
1689 		}
1690 	}
1691 	rcu_read_unlock();
1692 }
1693 
1694 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1695 		    void *arg)
1696 {
1697 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1698 }
1699 
1700 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1701 {
1702 	if (rt->rt6i_flags & RTF_CACHE) {
1703 		RT6_TRACE("pruning clone %p\n", rt);
1704 		return -1;
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1711 {
1712 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1713 			FIB6_NO_SERNUM_CHANGE, NULL);
1714 }
1715 
1716 static void fib6_flush_trees(struct net *net)
1717 {
1718 	int new_sernum = fib6_new_sernum(net);
1719 
1720 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1721 }
1722 
1723 /*
1724  *	Garbage collection
1725  */
1726 
1727 static struct fib6_gc_args
1728 {
1729 	int			timeout;
1730 	int			more;
1731 } gc_args;
1732 
1733 static int fib6_age(struct rt6_info *rt, void *arg)
1734 {
1735 	unsigned long now = jiffies;
1736 
1737 	/*
1738 	 *	check addrconf expiration here.
1739 	 *	Routes are expired even if they are in use.
1740 	 *
1741 	 *	Also age clones. Note, that clones are aged out
1742 	 *	only if they are not in use now.
1743 	 */
1744 
1745 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1746 		if (time_after(now, rt->dst.expires)) {
1747 			RT6_TRACE("expiring %p\n", rt);
1748 			return -1;
1749 		}
1750 		gc_args.more++;
1751 	} else if (rt->rt6i_flags & RTF_CACHE) {
1752 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1753 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1754 			RT6_TRACE("aging clone %p\n", rt);
1755 			return -1;
1756 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1757 			struct neighbour *neigh;
1758 			__u8 neigh_flags = 0;
1759 
1760 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1761 			if (neigh) {
1762 				neigh_flags = neigh->flags;
1763 				neigh_release(neigh);
1764 			}
1765 			if (!(neigh_flags & NTF_ROUTER)) {
1766 				RT6_TRACE("purging route %p via non-router but gateway\n",
1767 					  rt);
1768 				return -1;
1769 			}
1770 		}
1771 		gc_args.more++;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static DEFINE_SPINLOCK(fib6_gc_lock);
1778 
1779 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1780 {
1781 	unsigned long now;
1782 
1783 	if (force) {
1784 		spin_lock_bh(&fib6_gc_lock);
1785 	} else if (!spin_trylock_bh(&fib6_gc_lock)) {
1786 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1787 		return;
1788 	}
1789 	gc_args.timeout = expires ? (int)expires :
1790 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1791 
1792 	gc_args.more = icmp6_dst_gc();
1793 
1794 	fib6_clean_all(net, fib6_age, NULL);
1795 	now = jiffies;
1796 	net->ipv6.ip6_rt_last_gc = now;
1797 
1798 	if (gc_args.more)
1799 		mod_timer(&net->ipv6.ip6_fib_timer,
1800 			  round_jiffies(now
1801 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1802 	else
1803 		del_timer(&net->ipv6.ip6_fib_timer);
1804 	spin_unlock_bh(&fib6_gc_lock);
1805 }
1806 
1807 static void fib6_gc_timer_cb(unsigned long arg)
1808 {
1809 	fib6_run_gc(0, (struct net *)arg, true);
1810 }
1811 
1812 static int __net_init fib6_net_init(struct net *net)
1813 {
1814 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1815 
1816 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1817 
1818 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1819 	if (!net->ipv6.rt6_stats)
1820 		goto out_timer;
1821 
1822 	/* Avoid false sharing : Use at least a full cache line */
1823 	size = max_t(size_t, size, L1_CACHE_BYTES);
1824 
1825 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1826 	if (!net->ipv6.fib_table_hash)
1827 		goto out_rt6_stats;
1828 
1829 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1830 					  GFP_KERNEL);
1831 	if (!net->ipv6.fib6_main_tbl)
1832 		goto out_fib_table_hash;
1833 
1834 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1835 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1836 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1837 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1838 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1839 
1840 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1841 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1842 					   GFP_KERNEL);
1843 	if (!net->ipv6.fib6_local_tbl)
1844 		goto out_fib6_main_tbl;
1845 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1846 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1847 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1848 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1849 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1850 #endif
1851 	fib6_tables_init(net);
1852 
1853 	return 0;
1854 
1855 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1856 out_fib6_main_tbl:
1857 	kfree(net->ipv6.fib6_main_tbl);
1858 #endif
1859 out_fib_table_hash:
1860 	kfree(net->ipv6.fib_table_hash);
1861 out_rt6_stats:
1862 	kfree(net->ipv6.rt6_stats);
1863 out_timer:
1864 	return -ENOMEM;
1865 }
1866 
1867 static void fib6_net_exit(struct net *net)
1868 {
1869 	rt6_ifdown(net, NULL);
1870 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1871 
1872 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1873 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1874 	kfree(net->ipv6.fib6_local_tbl);
1875 #endif
1876 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1877 	kfree(net->ipv6.fib6_main_tbl);
1878 	kfree(net->ipv6.fib_table_hash);
1879 	kfree(net->ipv6.rt6_stats);
1880 }
1881 
1882 static struct pernet_operations fib6_net_ops = {
1883 	.init = fib6_net_init,
1884 	.exit = fib6_net_exit,
1885 };
1886 
1887 int __init fib6_init(void)
1888 {
1889 	int ret = -ENOMEM;
1890 
1891 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1892 					   sizeof(struct fib6_node),
1893 					   0, SLAB_HWCACHE_ALIGN,
1894 					   NULL);
1895 	if (!fib6_node_kmem)
1896 		goto out;
1897 
1898 	ret = register_pernet_subsys(&fib6_net_ops);
1899 	if (ret)
1900 		goto out_kmem_cache_create;
1901 
1902 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1903 			      NULL);
1904 	if (ret)
1905 		goto out_unregister_subsys;
1906 
1907 	__fib6_flush_trees = fib6_flush_trees;
1908 out:
1909 	return ret;
1910 
1911 out_unregister_subsys:
1912 	unregister_pernet_subsys(&fib6_net_ops);
1913 out_kmem_cache_create:
1914 	kmem_cache_destroy(fib6_node_kmem);
1915 	goto out;
1916 }
1917 
1918 void fib6_gc_cleanup(void)
1919 {
1920 	unregister_pernet_subsys(&fib6_net_ops);
1921 	kmem_cache_destroy(fib6_node_kmem);
1922 }
1923 
1924 #ifdef CONFIG_PROC_FS
1925 
1926 struct ipv6_route_iter {
1927 	struct seq_net_private p;
1928 	struct fib6_walker w;
1929 	loff_t skip;
1930 	struct fib6_table *tbl;
1931 	int sernum;
1932 };
1933 
1934 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1935 {
1936 	struct rt6_info *rt = v;
1937 	struct ipv6_route_iter *iter = seq->private;
1938 
1939 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1940 
1941 #ifdef CONFIG_IPV6_SUBTREES
1942 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1943 #else
1944 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1945 #endif
1946 	if (rt->rt6i_flags & RTF_GATEWAY)
1947 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1948 	else
1949 		seq_puts(seq, "00000000000000000000000000000000");
1950 
1951 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1952 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1953 		   rt->dst.__use, rt->rt6i_flags,
1954 		   rt->dst.dev ? rt->dst.dev->name : "");
1955 	iter->w.leaf = NULL;
1956 	return 0;
1957 }
1958 
1959 static int ipv6_route_yield(struct fib6_walker *w)
1960 {
1961 	struct ipv6_route_iter *iter = w->args;
1962 
1963 	if (!iter->skip)
1964 		return 1;
1965 
1966 	do {
1967 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1968 		iter->skip--;
1969 		if (!iter->skip && iter->w.leaf)
1970 			return 1;
1971 	} while (iter->w.leaf);
1972 
1973 	return 0;
1974 }
1975 
1976 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1977 {
1978 	memset(&iter->w, 0, sizeof(iter->w));
1979 	iter->w.func = ipv6_route_yield;
1980 	iter->w.root = &iter->tbl->tb6_root;
1981 	iter->w.state = FWS_INIT;
1982 	iter->w.node = iter->w.root;
1983 	iter->w.args = iter;
1984 	iter->sernum = iter->w.root->fn_sernum;
1985 	INIT_LIST_HEAD(&iter->w.lh);
1986 	fib6_walker_link(&iter->w);
1987 }
1988 
1989 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1990 						    struct net *net)
1991 {
1992 	unsigned int h;
1993 	struct hlist_node *node;
1994 
1995 	if (tbl) {
1996 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1997 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1998 	} else {
1999 		h = 0;
2000 		node = NULL;
2001 	}
2002 
2003 	while (!node && h < FIB6_TABLE_HASHSZ) {
2004 		node = rcu_dereference_bh(
2005 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2006 	}
2007 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2008 }
2009 
2010 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2011 {
2012 	if (iter->sernum != iter->w.root->fn_sernum) {
2013 		iter->sernum = iter->w.root->fn_sernum;
2014 		iter->w.state = FWS_INIT;
2015 		iter->w.node = iter->w.root;
2016 		WARN_ON(iter->w.skip);
2017 		iter->w.skip = iter->w.count;
2018 	}
2019 }
2020 
2021 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2022 {
2023 	int r;
2024 	struct rt6_info *n;
2025 	struct net *net = seq_file_net(seq);
2026 	struct ipv6_route_iter *iter = seq->private;
2027 
2028 	if (!v)
2029 		goto iter_table;
2030 
2031 	n = ((struct rt6_info *)v)->dst.rt6_next;
2032 	if (n) {
2033 		++*pos;
2034 		return n;
2035 	}
2036 
2037 iter_table:
2038 	ipv6_route_check_sernum(iter);
2039 	read_lock(&iter->tbl->tb6_lock);
2040 	r = fib6_walk_continue(&iter->w);
2041 	read_unlock(&iter->tbl->tb6_lock);
2042 	if (r > 0) {
2043 		if (v)
2044 			++*pos;
2045 		return iter->w.leaf;
2046 	} else if (r < 0) {
2047 		fib6_walker_unlink(&iter->w);
2048 		return NULL;
2049 	}
2050 	fib6_walker_unlink(&iter->w);
2051 
2052 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2053 	if (!iter->tbl)
2054 		return NULL;
2055 
2056 	ipv6_route_seq_setup_walk(iter);
2057 	goto iter_table;
2058 }
2059 
2060 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2061 	__acquires(RCU_BH)
2062 {
2063 	struct net *net = seq_file_net(seq);
2064 	struct ipv6_route_iter *iter = seq->private;
2065 
2066 	rcu_read_lock_bh();
2067 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2068 	iter->skip = *pos;
2069 
2070 	if (iter->tbl) {
2071 		ipv6_route_seq_setup_walk(iter);
2072 		return ipv6_route_seq_next(seq, NULL, pos);
2073 	} else {
2074 		return NULL;
2075 	}
2076 }
2077 
2078 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2079 {
2080 	struct fib6_walker *w = &iter->w;
2081 	return w->node && !(w->state == FWS_U && w->node == w->root);
2082 }
2083 
2084 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2085 	__releases(RCU_BH)
2086 {
2087 	struct ipv6_route_iter *iter = seq->private;
2088 
2089 	if (ipv6_route_iter_active(iter))
2090 		fib6_walker_unlink(&iter->w);
2091 
2092 	rcu_read_unlock_bh();
2093 }
2094 
2095 static const struct seq_operations ipv6_route_seq_ops = {
2096 	.start	= ipv6_route_seq_start,
2097 	.next	= ipv6_route_seq_next,
2098 	.stop	= ipv6_route_seq_stop,
2099 	.show	= ipv6_route_seq_show
2100 };
2101 
2102 int ipv6_route_open(struct inode *inode, struct file *file)
2103 {
2104 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2105 			    sizeof(struct ipv6_route_iter));
2106 }
2107 
2108 #endif /* CONFIG_PROC_FS */
2109