1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 return f6i; 164 } 165 166 void fib6_info_destroy_rcu(struct rcu_head *head) 167 { 168 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 169 170 WARN_ON(f6i->fib6_node); 171 172 if (f6i->nh) 173 nexthop_put(f6i->nh); 174 else 175 fib6_nh_release(f6i->fib6_nh); 176 177 ip_fib_metrics_put(f6i->fib6_metrics); 178 kfree(f6i); 179 } 180 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 181 182 static struct fib6_node *node_alloc(struct net *net) 183 { 184 struct fib6_node *fn; 185 186 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 187 if (fn) 188 net->ipv6.rt6_stats->fib_nodes++; 189 190 return fn; 191 } 192 193 static void node_free_immediate(struct net *net, struct fib6_node *fn) 194 { 195 kmem_cache_free(fib6_node_kmem, fn); 196 net->ipv6.rt6_stats->fib_nodes--; 197 } 198 199 static void node_free_rcu(struct rcu_head *head) 200 { 201 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 202 203 kmem_cache_free(fib6_node_kmem, fn); 204 } 205 206 static void node_free(struct net *net, struct fib6_node *fn) 207 { 208 call_rcu(&fn->rcu, node_free_rcu); 209 net->ipv6.rt6_stats->fib_nodes--; 210 } 211 212 static void fib6_free_table(struct fib6_table *table) 213 { 214 inetpeer_invalidate_tree(&table->tb6_peers); 215 kfree(table); 216 } 217 218 static void fib6_link_table(struct net *net, struct fib6_table *tb) 219 { 220 unsigned int h; 221 222 /* 223 * Initialize table lock at a single place to give lockdep a key, 224 * tables aren't visible prior to being linked to the list. 225 */ 226 spin_lock_init(&tb->tb6_lock); 227 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 228 229 /* 230 * No protection necessary, this is the only list mutatation 231 * operation, tables never disappear once they exist. 232 */ 233 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 234 } 235 236 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 237 238 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 239 { 240 struct fib6_table *table; 241 242 table = kzalloc(sizeof(*table), GFP_ATOMIC); 243 if (table) { 244 table->tb6_id = id; 245 rcu_assign_pointer(table->tb6_root.leaf, 246 net->ipv6.fib6_null_entry); 247 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 248 inet_peer_base_init(&table->tb6_peers); 249 } 250 251 return table; 252 } 253 254 struct fib6_table *fib6_new_table(struct net *net, u32 id) 255 { 256 struct fib6_table *tb; 257 258 if (id == 0) 259 id = RT6_TABLE_MAIN; 260 tb = fib6_get_table(net, id); 261 if (tb) 262 return tb; 263 264 tb = fib6_alloc_table(net, id); 265 if (tb) 266 fib6_link_table(net, tb); 267 268 return tb; 269 } 270 EXPORT_SYMBOL_GPL(fib6_new_table); 271 272 struct fib6_table *fib6_get_table(struct net *net, u32 id) 273 { 274 struct fib6_table *tb; 275 struct hlist_head *head; 276 unsigned int h; 277 278 if (id == 0) 279 id = RT6_TABLE_MAIN; 280 h = id & (FIB6_TABLE_HASHSZ - 1); 281 rcu_read_lock(); 282 head = &net->ipv6.fib_table_hash[h]; 283 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 284 if (tb->tb6_id == id) { 285 rcu_read_unlock(); 286 return tb; 287 } 288 } 289 rcu_read_unlock(); 290 291 return NULL; 292 } 293 EXPORT_SYMBOL_GPL(fib6_get_table); 294 295 static void __net_init fib6_tables_init(struct net *net) 296 { 297 fib6_link_table(net, net->ipv6.fib6_main_tbl); 298 fib6_link_table(net, net->ipv6.fib6_local_tbl); 299 } 300 #else 301 302 struct fib6_table *fib6_new_table(struct net *net, u32 id) 303 { 304 return fib6_get_table(net, id); 305 } 306 307 struct fib6_table *fib6_get_table(struct net *net, u32 id) 308 { 309 return net->ipv6.fib6_main_tbl; 310 } 311 312 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 313 const struct sk_buff *skb, 314 int flags, pol_lookup_t lookup) 315 { 316 struct rt6_info *rt; 317 318 rt = pol_lookup_func(lookup, 319 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 320 if (rt->dst.error == -EAGAIN) { 321 ip6_rt_put_flags(rt, flags); 322 rt = net->ipv6.ip6_null_entry; 323 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 324 dst_hold(&rt->dst); 325 } 326 327 return &rt->dst; 328 } 329 330 /* called with rcu lock held; no reference taken on fib6_info */ 331 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 332 struct fib6_result *res, int flags) 333 { 334 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 335 res, flags); 336 } 337 338 static void __net_init fib6_tables_init(struct net *net) 339 { 340 fib6_link_table(net, net->ipv6.fib6_main_tbl); 341 } 342 343 #endif 344 345 unsigned int fib6_tables_seq_read(struct net *net) 346 { 347 unsigned int h, fib_seq = 0; 348 349 rcu_read_lock(); 350 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 351 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 352 struct fib6_table *tb; 353 354 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 355 fib_seq += tb->fib_seq; 356 } 357 rcu_read_unlock(); 358 359 return fib_seq; 360 } 361 362 static int call_fib6_entry_notifier(struct notifier_block *nb, 363 enum fib_event_type event_type, 364 struct fib6_info *rt, 365 struct netlink_ext_ack *extack) 366 { 367 struct fib6_entry_notifier_info info = { 368 .info.extack = extack, 369 .rt = rt, 370 }; 371 372 return call_fib6_notifier(nb, event_type, &info.info); 373 } 374 375 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 376 enum fib_event_type event_type, 377 struct fib6_info *rt, 378 unsigned int nsiblings, 379 struct netlink_ext_ack *extack) 380 { 381 struct fib6_entry_notifier_info info = { 382 .info.extack = extack, 383 .rt = rt, 384 .nsiblings = nsiblings, 385 }; 386 387 return call_fib6_notifier(nb, event_type, &info.info); 388 } 389 390 int call_fib6_entry_notifiers(struct net *net, 391 enum fib_event_type event_type, 392 struct fib6_info *rt, 393 struct netlink_ext_ack *extack) 394 { 395 struct fib6_entry_notifier_info info = { 396 .info.extack = extack, 397 .rt = rt, 398 }; 399 400 rt->fib6_table->fib_seq++; 401 return call_fib6_notifiers(net, event_type, &info.info); 402 } 403 404 int call_fib6_multipath_entry_notifiers(struct net *net, 405 enum fib_event_type event_type, 406 struct fib6_info *rt, 407 unsigned int nsiblings, 408 struct netlink_ext_ack *extack) 409 { 410 struct fib6_entry_notifier_info info = { 411 .info.extack = extack, 412 .rt = rt, 413 .nsiblings = nsiblings, 414 }; 415 416 rt->fib6_table->fib_seq++; 417 return call_fib6_notifiers(net, event_type, &info.info); 418 } 419 420 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 421 { 422 struct fib6_entry_notifier_info info = { 423 .rt = rt, 424 .nsiblings = rt->fib6_nsiblings, 425 }; 426 427 rt->fib6_table->fib_seq++; 428 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 429 } 430 431 struct fib6_dump_arg { 432 struct net *net; 433 struct notifier_block *nb; 434 struct netlink_ext_ack *extack; 435 }; 436 437 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 438 { 439 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 440 int err; 441 442 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 443 return 0; 444 445 if (rt->fib6_nsiblings) 446 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 447 rt, 448 rt->fib6_nsiblings, 449 arg->extack); 450 else 451 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 452 arg->extack); 453 454 return err; 455 } 456 457 static int fib6_node_dump(struct fib6_walker *w) 458 { 459 int err; 460 461 err = fib6_rt_dump(w->leaf, w->args); 462 w->leaf = NULL; 463 return err; 464 } 465 466 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 467 struct fib6_walker *w) 468 { 469 int err; 470 471 w->root = &tb->tb6_root; 472 spin_lock_bh(&tb->tb6_lock); 473 err = fib6_walk(net, w); 474 spin_unlock_bh(&tb->tb6_lock); 475 return err; 476 } 477 478 /* Called with rcu_read_lock() */ 479 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 480 struct netlink_ext_ack *extack) 481 { 482 struct fib6_dump_arg arg; 483 struct fib6_walker *w; 484 unsigned int h; 485 int err = 0; 486 487 w = kzalloc(sizeof(*w), GFP_ATOMIC); 488 if (!w) 489 return -ENOMEM; 490 491 w->func = fib6_node_dump; 492 arg.net = net; 493 arg.nb = nb; 494 arg.extack = extack; 495 w->args = &arg; 496 497 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 498 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 499 struct fib6_table *tb; 500 501 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 502 err = fib6_table_dump(net, tb, w); 503 if (err) 504 goto out; 505 } 506 } 507 508 out: 509 kfree(w); 510 511 /* The tree traversal function should never return a positive value. */ 512 return err > 0 ? -EINVAL : err; 513 } 514 515 static int fib6_dump_node(struct fib6_walker *w) 516 { 517 int res; 518 struct fib6_info *rt; 519 520 for_each_fib6_walker_rt(w) { 521 res = rt6_dump_route(rt, w->args, w->skip_in_node); 522 if (res >= 0) { 523 /* Frame is full, suspend walking */ 524 w->leaf = rt; 525 526 /* We'll restart from this node, so if some routes were 527 * already dumped, skip them next time. 528 */ 529 w->skip_in_node += res; 530 531 return 1; 532 } 533 w->skip_in_node = 0; 534 535 /* Multipath routes are dumped in one route with the 536 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 537 * last sibling of this route (no need to dump the 538 * sibling routes again) 539 */ 540 if (rt->fib6_nsiblings) 541 rt = list_last_entry(&rt->fib6_siblings, 542 struct fib6_info, 543 fib6_siblings); 544 } 545 w->leaf = NULL; 546 return 0; 547 } 548 549 static void fib6_dump_end(struct netlink_callback *cb) 550 { 551 struct net *net = sock_net(cb->skb->sk); 552 struct fib6_walker *w = (void *)cb->args[2]; 553 554 if (w) { 555 if (cb->args[4]) { 556 cb->args[4] = 0; 557 fib6_walker_unlink(net, w); 558 } 559 cb->args[2] = 0; 560 kfree(w); 561 } 562 cb->done = (void *)cb->args[3]; 563 cb->args[1] = 3; 564 } 565 566 static int fib6_dump_done(struct netlink_callback *cb) 567 { 568 fib6_dump_end(cb); 569 return cb->done ? cb->done(cb) : 0; 570 } 571 572 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 573 struct netlink_callback *cb) 574 { 575 struct net *net = sock_net(skb->sk); 576 struct fib6_walker *w; 577 int res; 578 579 w = (void *)cb->args[2]; 580 w->root = &table->tb6_root; 581 582 if (cb->args[4] == 0) { 583 w->count = 0; 584 w->skip = 0; 585 w->skip_in_node = 0; 586 587 spin_lock_bh(&table->tb6_lock); 588 res = fib6_walk(net, w); 589 spin_unlock_bh(&table->tb6_lock); 590 if (res > 0) { 591 cb->args[4] = 1; 592 cb->args[5] = READ_ONCE(w->root->fn_sernum); 593 } 594 } else { 595 int sernum = READ_ONCE(w->root->fn_sernum); 596 if (cb->args[5] != sernum) { 597 /* Begin at the root if the tree changed */ 598 cb->args[5] = sernum; 599 w->state = FWS_INIT; 600 w->node = w->root; 601 w->skip = w->count; 602 w->skip_in_node = 0; 603 } else 604 w->skip = 0; 605 606 spin_lock_bh(&table->tb6_lock); 607 res = fib6_walk_continue(w); 608 spin_unlock_bh(&table->tb6_lock); 609 if (res <= 0) { 610 fib6_walker_unlink(net, w); 611 cb->args[4] = 0; 612 } 613 } 614 615 return res; 616 } 617 618 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 619 { 620 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true, 621 .filter.dump_routes = true }; 622 const struct nlmsghdr *nlh = cb->nlh; 623 struct net *net = sock_net(skb->sk); 624 unsigned int h, s_h; 625 unsigned int e = 0, s_e; 626 struct fib6_walker *w; 627 struct fib6_table *tb; 628 struct hlist_head *head; 629 int res = 0; 630 631 if (cb->strict_check) { 632 int err; 633 634 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 635 if (err < 0) 636 return err; 637 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 638 struct rtmsg *rtm = nlmsg_data(nlh); 639 640 if (rtm->rtm_flags & RTM_F_PREFIX) 641 arg.filter.flags = RTM_F_PREFIX; 642 } 643 644 w = (void *)cb->args[2]; 645 if (!w) { 646 /* New dump: 647 * 648 * 1. hook callback destructor. 649 */ 650 cb->args[3] = (long)cb->done; 651 cb->done = fib6_dump_done; 652 653 /* 654 * 2. allocate and initialize walker. 655 */ 656 w = kzalloc(sizeof(*w), GFP_ATOMIC); 657 if (!w) 658 return -ENOMEM; 659 w->func = fib6_dump_node; 660 cb->args[2] = (long)w; 661 } 662 663 arg.skb = skb; 664 arg.cb = cb; 665 arg.net = net; 666 w->args = &arg; 667 668 if (arg.filter.table_id) { 669 tb = fib6_get_table(net, arg.filter.table_id); 670 if (!tb) { 671 if (rtnl_msg_family(cb->nlh) != PF_INET6) 672 goto out; 673 674 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 675 return -ENOENT; 676 } 677 678 if (!cb->args[0]) { 679 res = fib6_dump_table(tb, skb, cb); 680 if (!res) 681 cb->args[0] = 1; 682 } 683 goto out; 684 } 685 686 s_h = cb->args[0]; 687 s_e = cb->args[1]; 688 689 rcu_read_lock(); 690 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 691 e = 0; 692 head = &net->ipv6.fib_table_hash[h]; 693 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 694 if (e < s_e) 695 goto next; 696 res = fib6_dump_table(tb, skb, cb); 697 if (res != 0) 698 goto out_unlock; 699 next: 700 e++; 701 } 702 } 703 out_unlock: 704 rcu_read_unlock(); 705 cb->args[1] = e; 706 cb->args[0] = h; 707 out: 708 res = res < 0 ? res : skb->len; 709 if (res <= 0) 710 fib6_dump_end(cb); 711 return res; 712 } 713 714 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 715 { 716 if (!f6i) 717 return; 718 719 if (f6i->fib6_metrics == &dst_default_metrics) { 720 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 721 722 if (!p) 723 return; 724 725 refcount_set(&p->refcnt, 1); 726 f6i->fib6_metrics = p; 727 } 728 729 f6i->fib6_metrics->metrics[metric - 1] = val; 730 } 731 732 /* 733 * Routing Table 734 * 735 * return the appropriate node for a routing tree "add" operation 736 * by either creating and inserting or by returning an existing 737 * node. 738 */ 739 740 static struct fib6_node *fib6_add_1(struct net *net, 741 struct fib6_table *table, 742 struct fib6_node *root, 743 struct in6_addr *addr, int plen, 744 int offset, int allow_create, 745 int replace_required, 746 struct netlink_ext_ack *extack) 747 { 748 struct fib6_node *fn, *in, *ln; 749 struct fib6_node *pn = NULL; 750 struct rt6key *key; 751 int bit; 752 __be32 dir = 0; 753 754 /* insert node in tree */ 755 756 fn = root; 757 758 do { 759 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 760 lockdep_is_held(&table->tb6_lock)); 761 key = (struct rt6key *)((u8 *)leaf + offset); 762 763 /* 764 * Prefix match 765 */ 766 if (plen < fn->fn_bit || 767 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 768 if (!allow_create) { 769 if (replace_required) { 770 NL_SET_ERR_MSG(extack, 771 "Can not replace route - no match found"); 772 pr_warn("Can't replace route, no match found\n"); 773 return ERR_PTR(-ENOENT); 774 } 775 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 776 } 777 goto insert_above; 778 } 779 780 /* 781 * Exact match ? 782 */ 783 784 if (plen == fn->fn_bit) { 785 /* clean up an intermediate node */ 786 if (!(fn->fn_flags & RTN_RTINFO)) { 787 RCU_INIT_POINTER(fn->leaf, NULL); 788 fib6_info_release(leaf); 789 /* remove null_entry in the root node */ 790 } else if (fn->fn_flags & RTN_TL_ROOT && 791 rcu_access_pointer(fn->leaf) == 792 net->ipv6.fib6_null_entry) { 793 RCU_INIT_POINTER(fn->leaf, NULL); 794 } 795 796 return fn; 797 } 798 799 /* 800 * We have more bits to go 801 */ 802 803 /* Try to walk down on tree. */ 804 dir = addr_bit_set(addr, fn->fn_bit); 805 pn = fn; 806 fn = dir ? 807 rcu_dereference_protected(fn->right, 808 lockdep_is_held(&table->tb6_lock)) : 809 rcu_dereference_protected(fn->left, 810 lockdep_is_held(&table->tb6_lock)); 811 } while (fn); 812 813 if (!allow_create) { 814 /* We should not create new node because 815 * NLM_F_REPLACE was specified without NLM_F_CREATE 816 * I assume it is safe to require NLM_F_CREATE when 817 * REPLACE flag is used! Later we may want to remove the 818 * check for replace_required, because according 819 * to netlink specification, NLM_F_CREATE 820 * MUST be specified if new route is created. 821 * That would keep IPv6 consistent with IPv4 822 */ 823 if (replace_required) { 824 NL_SET_ERR_MSG(extack, 825 "Can not replace route - no match found"); 826 pr_warn("Can't replace route, no match found\n"); 827 return ERR_PTR(-ENOENT); 828 } 829 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 830 } 831 /* 832 * We walked to the bottom of tree. 833 * Create new leaf node without children. 834 */ 835 836 ln = node_alloc(net); 837 838 if (!ln) 839 return ERR_PTR(-ENOMEM); 840 ln->fn_bit = plen; 841 RCU_INIT_POINTER(ln->parent, pn); 842 843 if (dir) 844 rcu_assign_pointer(pn->right, ln); 845 else 846 rcu_assign_pointer(pn->left, ln); 847 848 return ln; 849 850 851 insert_above: 852 /* 853 * split since we don't have a common prefix anymore or 854 * we have a less significant route. 855 * we've to insert an intermediate node on the list 856 * this new node will point to the one we need to create 857 * and the current 858 */ 859 860 pn = rcu_dereference_protected(fn->parent, 861 lockdep_is_held(&table->tb6_lock)); 862 863 /* find 1st bit in difference between the 2 addrs. 864 865 See comment in __ipv6_addr_diff: bit may be an invalid value, 866 but if it is >= plen, the value is ignored in any case. 867 */ 868 869 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 870 871 /* 872 * (intermediate)[in] 873 * / \ 874 * (new leaf node)[ln] (old node)[fn] 875 */ 876 if (plen > bit) { 877 in = node_alloc(net); 878 ln = node_alloc(net); 879 880 if (!in || !ln) { 881 if (in) 882 node_free_immediate(net, in); 883 if (ln) 884 node_free_immediate(net, ln); 885 return ERR_PTR(-ENOMEM); 886 } 887 888 /* 889 * new intermediate node. 890 * RTN_RTINFO will 891 * be off since that an address that chooses one of 892 * the branches would not match less specific routes 893 * in the other branch 894 */ 895 896 in->fn_bit = bit; 897 898 RCU_INIT_POINTER(in->parent, pn); 899 in->leaf = fn->leaf; 900 fib6_info_hold(rcu_dereference_protected(in->leaf, 901 lockdep_is_held(&table->tb6_lock))); 902 903 /* update parent pointer */ 904 if (dir) 905 rcu_assign_pointer(pn->right, in); 906 else 907 rcu_assign_pointer(pn->left, in); 908 909 ln->fn_bit = plen; 910 911 RCU_INIT_POINTER(ln->parent, in); 912 rcu_assign_pointer(fn->parent, in); 913 914 if (addr_bit_set(addr, bit)) { 915 rcu_assign_pointer(in->right, ln); 916 rcu_assign_pointer(in->left, fn); 917 } else { 918 rcu_assign_pointer(in->left, ln); 919 rcu_assign_pointer(in->right, fn); 920 } 921 } else { /* plen <= bit */ 922 923 /* 924 * (new leaf node)[ln] 925 * / \ 926 * (old node)[fn] NULL 927 */ 928 929 ln = node_alloc(net); 930 931 if (!ln) 932 return ERR_PTR(-ENOMEM); 933 934 ln->fn_bit = plen; 935 936 RCU_INIT_POINTER(ln->parent, pn); 937 938 if (addr_bit_set(&key->addr, plen)) 939 RCU_INIT_POINTER(ln->right, fn); 940 else 941 RCU_INIT_POINTER(ln->left, fn); 942 943 rcu_assign_pointer(fn->parent, ln); 944 945 if (dir) 946 rcu_assign_pointer(pn->right, ln); 947 else 948 rcu_assign_pointer(pn->left, ln); 949 } 950 return ln; 951 } 952 953 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 954 const struct fib6_info *match, 955 const struct fib6_table *table) 956 { 957 int cpu; 958 959 if (!fib6_nh->rt6i_pcpu) 960 return; 961 962 /* release the reference to this fib entry from 963 * all of its cached pcpu routes 964 */ 965 for_each_possible_cpu(cpu) { 966 struct rt6_info **ppcpu_rt; 967 struct rt6_info *pcpu_rt; 968 969 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 970 pcpu_rt = *ppcpu_rt; 971 972 /* only dropping the 'from' reference if the cached route 973 * is using 'match'. The cached pcpu_rt->from only changes 974 * from a fib6_info to NULL (ip6_dst_destroy); it can never 975 * change from one fib6_info reference to another 976 */ 977 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 978 struct fib6_info *from; 979 980 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 981 fib6_info_release(from); 982 } 983 } 984 } 985 986 struct fib6_nh_pcpu_arg { 987 struct fib6_info *from; 988 const struct fib6_table *table; 989 }; 990 991 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 992 { 993 struct fib6_nh_pcpu_arg *arg = _arg; 994 995 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 996 return 0; 997 } 998 999 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1000 const struct fib6_table *table) 1001 { 1002 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1003 * while we are cleaning them here. 1004 */ 1005 f6i->fib6_destroying = 1; 1006 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1007 1008 if (f6i->nh) { 1009 struct fib6_nh_pcpu_arg arg = { 1010 .from = f6i, 1011 .table = table 1012 }; 1013 1014 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1015 &arg); 1016 } else { 1017 struct fib6_nh *fib6_nh; 1018 1019 fib6_nh = f6i->fib6_nh; 1020 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1021 } 1022 } 1023 1024 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1025 struct net *net) 1026 { 1027 struct fib6_table *table = rt->fib6_table; 1028 1029 /* Flush all cached dst in exception table */ 1030 rt6_flush_exceptions(rt); 1031 fib6_drop_pcpu_from(rt, table); 1032 1033 if (rt->nh && !list_empty(&rt->nh_list)) 1034 list_del_init(&rt->nh_list); 1035 1036 if (refcount_read(&rt->fib6_ref) != 1) { 1037 /* This route is used as dummy address holder in some split 1038 * nodes. It is not leaked, but it still holds other resources, 1039 * which must be released in time. So, scan ascendant nodes 1040 * and replace dummy references to this route with references 1041 * to still alive ones. 1042 */ 1043 while (fn) { 1044 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1045 lockdep_is_held(&table->tb6_lock)); 1046 struct fib6_info *new_leaf; 1047 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1048 new_leaf = fib6_find_prefix(net, table, fn); 1049 fib6_info_hold(new_leaf); 1050 1051 rcu_assign_pointer(fn->leaf, new_leaf); 1052 fib6_info_release(rt); 1053 } 1054 fn = rcu_dereference_protected(fn->parent, 1055 lockdep_is_held(&table->tb6_lock)); 1056 } 1057 } 1058 } 1059 1060 /* 1061 * Insert routing information in a node. 1062 */ 1063 1064 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1065 struct nl_info *info, 1066 struct netlink_ext_ack *extack) 1067 { 1068 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1069 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1070 struct fib6_info *iter = NULL; 1071 struct fib6_info __rcu **ins; 1072 struct fib6_info __rcu **fallback_ins = NULL; 1073 int replace = (info->nlh && 1074 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1075 int add = (!info->nlh || 1076 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1077 int found = 0; 1078 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1079 bool notify_sibling_rt = false; 1080 u16 nlflags = NLM_F_EXCL; 1081 int err; 1082 1083 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1084 nlflags |= NLM_F_APPEND; 1085 1086 ins = &fn->leaf; 1087 1088 for (iter = leaf; iter; 1089 iter = rcu_dereference_protected(iter->fib6_next, 1090 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1091 /* 1092 * Search for duplicates 1093 */ 1094 1095 if (iter->fib6_metric == rt->fib6_metric) { 1096 /* 1097 * Same priority level 1098 */ 1099 if (info->nlh && 1100 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1101 return -EEXIST; 1102 1103 nlflags &= ~NLM_F_EXCL; 1104 if (replace) { 1105 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1106 found++; 1107 break; 1108 } 1109 fallback_ins = fallback_ins ?: ins; 1110 goto next_iter; 1111 } 1112 1113 if (rt6_duplicate_nexthop(iter, rt)) { 1114 if (rt->fib6_nsiblings) 1115 rt->fib6_nsiblings = 0; 1116 if (!(iter->fib6_flags & RTF_EXPIRES)) 1117 return -EEXIST; 1118 if (!(rt->fib6_flags & RTF_EXPIRES)) 1119 fib6_clean_expires(iter); 1120 else 1121 fib6_set_expires(iter, rt->expires); 1122 1123 if (rt->fib6_pmtu) 1124 fib6_metric_set(iter, RTAX_MTU, 1125 rt->fib6_pmtu); 1126 return -EEXIST; 1127 } 1128 /* If we have the same destination and the same metric, 1129 * but not the same gateway, then the route we try to 1130 * add is sibling to this route, increment our counter 1131 * of siblings, and later we will add our route to the 1132 * list. 1133 * Only static routes (which don't have flag 1134 * RTF_EXPIRES) are used for ECMPv6. 1135 * 1136 * To avoid long list, we only had siblings if the 1137 * route have a gateway. 1138 */ 1139 if (rt_can_ecmp && 1140 rt6_qualify_for_ecmp(iter)) 1141 rt->fib6_nsiblings++; 1142 } 1143 1144 if (iter->fib6_metric > rt->fib6_metric) 1145 break; 1146 1147 next_iter: 1148 ins = &iter->fib6_next; 1149 } 1150 1151 if (fallback_ins && !found) { 1152 /* No matching route with same ecmp-able-ness found, replace 1153 * first matching route 1154 */ 1155 ins = fallback_ins; 1156 iter = rcu_dereference_protected(*ins, 1157 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1158 found++; 1159 } 1160 1161 /* Reset round-robin state, if necessary */ 1162 if (ins == &fn->leaf) 1163 fn->rr_ptr = NULL; 1164 1165 /* Link this route to others same route. */ 1166 if (rt->fib6_nsiblings) { 1167 unsigned int fib6_nsiblings; 1168 struct fib6_info *sibling, *temp_sibling; 1169 1170 /* Find the first route that have the same metric */ 1171 sibling = leaf; 1172 notify_sibling_rt = true; 1173 while (sibling) { 1174 if (sibling->fib6_metric == rt->fib6_metric && 1175 rt6_qualify_for_ecmp(sibling)) { 1176 list_add_tail(&rt->fib6_siblings, 1177 &sibling->fib6_siblings); 1178 break; 1179 } 1180 sibling = rcu_dereference_protected(sibling->fib6_next, 1181 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1182 notify_sibling_rt = false; 1183 } 1184 /* For each sibling in the list, increment the counter of 1185 * siblings. BUG() if counters does not match, list of siblings 1186 * is broken! 1187 */ 1188 fib6_nsiblings = 0; 1189 list_for_each_entry_safe(sibling, temp_sibling, 1190 &rt->fib6_siblings, fib6_siblings) { 1191 sibling->fib6_nsiblings++; 1192 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1193 fib6_nsiblings++; 1194 } 1195 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1196 rt6_multipath_rebalance(temp_sibling); 1197 } 1198 1199 /* 1200 * insert node 1201 */ 1202 if (!replace) { 1203 if (!add) 1204 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1205 1206 add: 1207 nlflags |= NLM_F_CREATE; 1208 1209 /* The route should only be notified if it is the first 1210 * route in the node or if it is added as a sibling 1211 * route to the first route in the node. 1212 */ 1213 if (!info->skip_notify_kernel && 1214 (notify_sibling_rt || ins == &fn->leaf)) { 1215 enum fib_event_type fib_event; 1216 1217 if (notify_sibling_rt) 1218 fib_event = FIB_EVENT_ENTRY_APPEND; 1219 else 1220 fib_event = FIB_EVENT_ENTRY_REPLACE; 1221 err = call_fib6_entry_notifiers(info->nl_net, 1222 fib_event, rt, 1223 extack); 1224 if (err) { 1225 struct fib6_info *sibling, *next_sibling; 1226 1227 /* If the route has siblings, then it first 1228 * needs to be unlinked from them. 1229 */ 1230 if (!rt->fib6_nsiblings) 1231 return err; 1232 1233 list_for_each_entry_safe(sibling, next_sibling, 1234 &rt->fib6_siblings, 1235 fib6_siblings) 1236 sibling->fib6_nsiblings--; 1237 rt->fib6_nsiblings = 0; 1238 list_del_init(&rt->fib6_siblings); 1239 rt6_multipath_rebalance(next_sibling); 1240 return err; 1241 } 1242 } 1243 1244 rcu_assign_pointer(rt->fib6_next, iter); 1245 fib6_info_hold(rt); 1246 rcu_assign_pointer(rt->fib6_node, fn); 1247 rcu_assign_pointer(*ins, rt); 1248 if (!info->skip_notify) 1249 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1250 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1251 1252 if (!(fn->fn_flags & RTN_RTINFO)) { 1253 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1254 fn->fn_flags |= RTN_RTINFO; 1255 } 1256 1257 } else { 1258 int nsiblings; 1259 1260 if (!found) { 1261 if (add) 1262 goto add; 1263 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1264 return -ENOENT; 1265 } 1266 1267 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1268 err = call_fib6_entry_notifiers(info->nl_net, 1269 FIB_EVENT_ENTRY_REPLACE, 1270 rt, extack); 1271 if (err) 1272 return err; 1273 } 1274 1275 fib6_info_hold(rt); 1276 rcu_assign_pointer(rt->fib6_node, fn); 1277 rt->fib6_next = iter->fib6_next; 1278 rcu_assign_pointer(*ins, rt); 1279 if (!info->skip_notify) 1280 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1281 if (!(fn->fn_flags & RTN_RTINFO)) { 1282 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1283 fn->fn_flags |= RTN_RTINFO; 1284 } 1285 nsiblings = iter->fib6_nsiblings; 1286 iter->fib6_node = NULL; 1287 fib6_purge_rt(iter, fn, info->nl_net); 1288 if (rcu_access_pointer(fn->rr_ptr) == iter) 1289 fn->rr_ptr = NULL; 1290 fib6_info_release(iter); 1291 1292 if (nsiblings) { 1293 /* Replacing an ECMP route, remove all siblings */ 1294 ins = &rt->fib6_next; 1295 iter = rcu_dereference_protected(*ins, 1296 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1297 while (iter) { 1298 if (iter->fib6_metric > rt->fib6_metric) 1299 break; 1300 if (rt6_qualify_for_ecmp(iter)) { 1301 *ins = iter->fib6_next; 1302 iter->fib6_node = NULL; 1303 fib6_purge_rt(iter, fn, info->nl_net); 1304 if (rcu_access_pointer(fn->rr_ptr) == iter) 1305 fn->rr_ptr = NULL; 1306 fib6_info_release(iter); 1307 nsiblings--; 1308 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1309 } else { 1310 ins = &iter->fib6_next; 1311 } 1312 iter = rcu_dereference_protected(*ins, 1313 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1314 } 1315 WARN_ON(nsiblings != 0); 1316 } 1317 } 1318 1319 return 0; 1320 } 1321 1322 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1323 { 1324 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1325 (rt->fib6_flags & RTF_EXPIRES)) 1326 mod_timer(&net->ipv6.ip6_fib_timer, 1327 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1328 } 1329 1330 void fib6_force_start_gc(struct net *net) 1331 { 1332 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1333 mod_timer(&net->ipv6.ip6_fib_timer, 1334 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1335 } 1336 1337 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1338 int sernum) 1339 { 1340 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1341 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1342 1343 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1344 smp_wmb(); 1345 while (fn) { 1346 WRITE_ONCE(fn->fn_sernum, sernum); 1347 fn = rcu_dereference_protected(fn->parent, 1348 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1349 } 1350 } 1351 1352 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1353 { 1354 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1355 } 1356 1357 /* allow ipv4 to update sernum via ipv6_stub */ 1358 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1359 { 1360 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1361 fib6_update_sernum_upto_root(net, f6i); 1362 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1363 } 1364 1365 /* 1366 * Add routing information to the routing tree. 1367 * <destination addr>/<source addr> 1368 * with source addr info in sub-trees 1369 * Need to own table->tb6_lock 1370 */ 1371 1372 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1373 struct nl_info *info, struct netlink_ext_ack *extack) 1374 { 1375 struct fib6_table *table = rt->fib6_table; 1376 struct fib6_node *fn, *pn = NULL; 1377 int err = -ENOMEM; 1378 int allow_create = 1; 1379 int replace_required = 0; 1380 1381 if (info->nlh) { 1382 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1383 allow_create = 0; 1384 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1385 replace_required = 1; 1386 } 1387 if (!allow_create && !replace_required) 1388 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1389 1390 fn = fib6_add_1(info->nl_net, table, root, 1391 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1392 offsetof(struct fib6_info, fib6_dst), allow_create, 1393 replace_required, extack); 1394 if (IS_ERR(fn)) { 1395 err = PTR_ERR(fn); 1396 fn = NULL; 1397 goto out; 1398 } 1399 1400 pn = fn; 1401 1402 #ifdef CONFIG_IPV6_SUBTREES 1403 if (rt->fib6_src.plen) { 1404 struct fib6_node *sn; 1405 1406 if (!rcu_access_pointer(fn->subtree)) { 1407 struct fib6_node *sfn; 1408 1409 /* 1410 * Create subtree. 1411 * 1412 * fn[main tree] 1413 * | 1414 * sfn[subtree root] 1415 * \ 1416 * sn[new leaf node] 1417 */ 1418 1419 /* Create subtree root node */ 1420 sfn = node_alloc(info->nl_net); 1421 if (!sfn) 1422 goto failure; 1423 1424 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1425 rcu_assign_pointer(sfn->leaf, 1426 info->nl_net->ipv6.fib6_null_entry); 1427 sfn->fn_flags = RTN_ROOT; 1428 1429 /* Now add the first leaf node to new subtree */ 1430 1431 sn = fib6_add_1(info->nl_net, table, sfn, 1432 &rt->fib6_src.addr, rt->fib6_src.plen, 1433 offsetof(struct fib6_info, fib6_src), 1434 allow_create, replace_required, extack); 1435 1436 if (IS_ERR(sn)) { 1437 /* If it is failed, discard just allocated 1438 root, and then (in failure) stale node 1439 in main tree. 1440 */ 1441 node_free_immediate(info->nl_net, sfn); 1442 err = PTR_ERR(sn); 1443 goto failure; 1444 } 1445 1446 /* Now link new subtree to main tree */ 1447 rcu_assign_pointer(sfn->parent, fn); 1448 rcu_assign_pointer(fn->subtree, sfn); 1449 } else { 1450 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1451 &rt->fib6_src.addr, rt->fib6_src.plen, 1452 offsetof(struct fib6_info, fib6_src), 1453 allow_create, replace_required, extack); 1454 1455 if (IS_ERR(sn)) { 1456 err = PTR_ERR(sn); 1457 goto failure; 1458 } 1459 } 1460 1461 if (!rcu_access_pointer(fn->leaf)) { 1462 if (fn->fn_flags & RTN_TL_ROOT) { 1463 /* put back null_entry for root node */ 1464 rcu_assign_pointer(fn->leaf, 1465 info->nl_net->ipv6.fib6_null_entry); 1466 } else { 1467 fib6_info_hold(rt); 1468 rcu_assign_pointer(fn->leaf, rt); 1469 } 1470 } 1471 fn = sn; 1472 } 1473 #endif 1474 1475 err = fib6_add_rt2node(fn, rt, info, extack); 1476 if (!err) { 1477 if (rt->nh) 1478 list_add(&rt->nh_list, &rt->nh->f6i_list); 1479 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1480 fib6_start_gc(info->nl_net, rt); 1481 } 1482 1483 out: 1484 if (err) { 1485 #ifdef CONFIG_IPV6_SUBTREES 1486 /* 1487 * If fib6_add_1 has cleared the old leaf pointer in the 1488 * super-tree leaf node we have to find a new one for it. 1489 */ 1490 if (pn != fn) { 1491 struct fib6_info *pn_leaf = 1492 rcu_dereference_protected(pn->leaf, 1493 lockdep_is_held(&table->tb6_lock)); 1494 if (pn_leaf == rt) { 1495 pn_leaf = NULL; 1496 RCU_INIT_POINTER(pn->leaf, NULL); 1497 fib6_info_release(rt); 1498 } 1499 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1500 pn_leaf = fib6_find_prefix(info->nl_net, table, 1501 pn); 1502 if (!pn_leaf) 1503 pn_leaf = 1504 info->nl_net->ipv6.fib6_null_entry; 1505 fib6_info_hold(pn_leaf); 1506 rcu_assign_pointer(pn->leaf, pn_leaf); 1507 } 1508 } 1509 #endif 1510 goto failure; 1511 } else if (fib6_requires_src(rt)) { 1512 fib6_routes_require_src_inc(info->nl_net); 1513 } 1514 return err; 1515 1516 failure: 1517 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1518 * 1. fn is an intermediate node and we failed to add the new 1519 * route to it in both subtree creation failure and fib6_add_rt2node() 1520 * failure case. 1521 * 2. fn is the root node in the table and we fail to add the first 1522 * default route to it. 1523 */ 1524 if (fn && 1525 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1526 (fn->fn_flags & RTN_TL_ROOT && 1527 !rcu_access_pointer(fn->leaf)))) 1528 fib6_repair_tree(info->nl_net, table, fn); 1529 return err; 1530 } 1531 1532 /* 1533 * Routing tree lookup 1534 * 1535 */ 1536 1537 struct lookup_args { 1538 int offset; /* key offset on fib6_info */ 1539 const struct in6_addr *addr; /* search key */ 1540 }; 1541 1542 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1543 struct lookup_args *args) 1544 { 1545 struct fib6_node *fn; 1546 __be32 dir; 1547 1548 if (unlikely(args->offset == 0)) 1549 return NULL; 1550 1551 /* 1552 * Descend on a tree 1553 */ 1554 1555 fn = root; 1556 1557 for (;;) { 1558 struct fib6_node *next; 1559 1560 dir = addr_bit_set(args->addr, fn->fn_bit); 1561 1562 next = dir ? rcu_dereference(fn->right) : 1563 rcu_dereference(fn->left); 1564 1565 if (next) { 1566 fn = next; 1567 continue; 1568 } 1569 break; 1570 } 1571 1572 while (fn) { 1573 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1574 1575 if (subtree || fn->fn_flags & RTN_RTINFO) { 1576 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1577 struct rt6key *key; 1578 1579 if (!leaf) 1580 goto backtrack; 1581 1582 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1583 1584 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1585 #ifdef CONFIG_IPV6_SUBTREES 1586 if (subtree) { 1587 struct fib6_node *sfn; 1588 sfn = fib6_node_lookup_1(subtree, 1589 args + 1); 1590 if (!sfn) 1591 goto backtrack; 1592 fn = sfn; 1593 } 1594 #endif 1595 if (fn->fn_flags & RTN_RTINFO) 1596 return fn; 1597 } 1598 } 1599 backtrack: 1600 if (fn->fn_flags & RTN_ROOT) 1601 break; 1602 1603 fn = rcu_dereference(fn->parent); 1604 } 1605 1606 return NULL; 1607 } 1608 1609 /* called with rcu_read_lock() held 1610 */ 1611 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1612 const struct in6_addr *daddr, 1613 const struct in6_addr *saddr) 1614 { 1615 struct fib6_node *fn; 1616 struct lookup_args args[] = { 1617 { 1618 .offset = offsetof(struct fib6_info, fib6_dst), 1619 .addr = daddr, 1620 }, 1621 #ifdef CONFIG_IPV6_SUBTREES 1622 { 1623 .offset = offsetof(struct fib6_info, fib6_src), 1624 .addr = saddr, 1625 }, 1626 #endif 1627 { 1628 .offset = 0, /* sentinel */ 1629 } 1630 }; 1631 1632 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1633 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1634 fn = root; 1635 1636 return fn; 1637 } 1638 1639 /* 1640 * Get node with specified destination prefix (and source prefix, 1641 * if subtrees are used) 1642 * exact_match == true means we try to find fn with exact match of 1643 * the passed in prefix addr 1644 * exact_match == false means we try to find fn with longest prefix 1645 * match of the passed in prefix addr. This is useful for finding fn 1646 * for cached route as it will be stored in the exception table under 1647 * the node with longest prefix length. 1648 */ 1649 1650 1651 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1652 const struct in6_addr *addr, 1653 int plen, int offset, 1654 bool exact_match) 1655 { 1656 struct fib6_node *fn, *prev = NULL; 1657 1658 for (fn = root; fn ; ) { 1659 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1660 struct rt6key *key; 1661 1662 /* This node is being deleted */ 1663 if (!leaf) { 1664 if (plen <= fn->fn_bit) 1665 goto out; 1666 else 1667 goto next; 1668 } 1669 1670 key = (struct rt6key *)((u8 *)leaf + offset); 1671 1672 /* 1673 * Prefix match 1674 */ 1675 if (plen < fn->fn_bit || 1676 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1677 goto out; 1678 1679 if (plen == fn->fn_bit) 1680 return fn; 1681 1682 if (fn->fn_flags & RTN_RTINFO) 1683 prev = fn; 1684 1685 next: 1686 /* 1687 * We have more bits to go 1688 */ 1689 if (addr_bit_set(addr, fn->fn_bit)) 1690 fn = rcu_dereference(fn->right); 1691 else 1692 fn = rcu_dereference(fn->left); 1693 } 1694 out: 1695 if (exact_match) 1696 return NULL; 1697 else 1698 return prev; 1699 } 1700 1701 struct fib6_node *fib6_locate(struct fib6_node *root, 1702 const struct in6_addr *daddr, int dst_len, 1703 const struct in6_addr *saddr, int src_len, 1704 bool exact_match) 1705 { 1706 struct fib6_node *fn; 1707 1708 fn = fib6_locate_1(root, daddr, dst_len, 1709 offsetof(struct fib6_info, fib6_dst), 1710 exact_match); 1711 1712 #ifdef CONFIG_IPV6_SUBTREES 1713 if (src_len) { 1714 WARN_ON(saddr == NULL); 1715 if (fn) { 1716 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1717 1718 if (subtree) { 1719 fn = fib6_locate_1(subtree, saddr, src_len, 1720 offsetof(struct fib6_info, fib6_src), 1721 exact_match); 1722 } 1723 } 1724 } 1725 #endif 1726 1727 if (fn && fn->fn_flags & RTN_RTINFO) 1728 return fn; 1729 1730 return NULL; 1731 } 1732 1733 1734 /* 1735 * Deletion 1736 * 1737 */ 1738 1739 static struct fib6_info *fib6_find_prefix(struct net *net, 1740 struct fib6_table *table, 1741 struct fib6_node *fn) 1742 { 1743 struct fib6_node *child_left, *child_right; 1744 1745 if (fn->fn_flags & RTN_ROOT) 1746 return net->ipv6.fib6_null_entry; 1747 1748 while (fn) { 1749 child_left = rcu_dereference_protected(fn->left, 1750 lockdep_is_held(&table->tb6_lock)); 1751 child_right = rcu_dereference_protected(fn->right, 1752 lockdep_is_held(&table->tb6_lock)); 1753 if (child_left) 1754 return rcu_dereference_protected(child_left->leaf, 1755 lockdep_is_held(&table->tb6_lock)); 1756 if (child_right) 1757 return rcu_dereference_protected(child_right->leaf, 1758 lockdep_is_held(&table->tb6_lock)); 1759 1760 fn = FIB6_SUBTREE(fn); 1761 } 1762 return NULL; 1763 } 1764 1765 /* 1766 * Called to trim the tree of intermediate nodes when possible. "fn" 1767 * is the node we want to try and remove. 1768 * Need to own table->tb6_lock 1769 */ 1770 1771 static struct fib6_node *fib6_repair_tree(struct net *net, 1772 struct fib6_table *table, 1773 struct fib6_node *fn) 1774 { 1775 int children; 1776 int nstate; 1777 struct fib6_node *child; 1778 struct fib6_walker *w; 1779 int iter = 0; 1780 1781 /* Set fn->leaf to null_entry for root node. */ 1782 if (fn->fn_flags & RTN_TL_ROOT) { 1783 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1784 return fn; 1785 } 1786 1787 for (;;) { 1788 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1789 lockdep_is_held(&table->tb6_lock)); 1790 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1791 lockdep_is_held(&table->tb6_lock)); 1792 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1793 lockdep_is_held(&table->tb6_lock)); 1794 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1795 lockdep_is_held(&table->tb6_lock)); 1796 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1797 lockdep_is_held(&table->tb6_lock)); 1798 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1799 lockdep_is_held(&table->tb6_lock)); 1800 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1801 lockdep_is_held(&table->tb6_lock)); 1802 struct fib6_info *new_fn_leaf; 1803 1804 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1805 iter++; 1806 1807 WARN_ON(fn->fn_flags & RTN_RTINFO); 1808 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1809 WARN_ON(fn_leaf); 1810 1811 children = 0; 1812 child = NULL; 1813 if (fn_r) { 1814 child = fn_r; 1815 children |= 1; 1816 } 1817 if (fn_l) { 1818 child = fn_l; 1819 children |= 2; 1820 } 1821 1822 if (children == 3 || FIB6_SUBTREE(fn) 1823 #ifdef CONFIG_IPV6_SUBTREES 1824 /* Subtree root (i.e. fn) may have one child */ 1825 || (children && fn->fn_flags & RTN_ROOT) 1826 #endif 1827 ) { 1828 new_fn_leaf = fib6_find_prefix(net, table, fn); 1829 #if RT6_DEBUG >= 2 1830 if (!new_fn_leaf) { 1831 WARN_ON(!new_fn_leaf); 1832 new_fn_leaf = net->ipv6.fib6_null_entry; 1833 } 1834 #endif 1835 fib6_info_hold(new_fn_leaf); 1836 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1837 return pn; 1838 } 1839 1840 #ifdef CONFIG_IPV6_SUBTREES 1841 if (FIB6_SUBTREE(pn) == fn) { 1842 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1843 RCU_INIT_POINTER(pn->subtree, NULL); 1844 nstate = FWS_L; 1845 } else { 1846 WARN_ON(fn->fn_flags & RTN_ROOT); 1847 #endif 1848 if (pn_r == fn) 1849 rcu_assign_pointer(pn->right, child); 1850 else if (pn_l == fn) 1851 rcu_assign_pointer(pn->left, child); 1852 #if RT6_DEBUG >= 2 1853 else 1854 WARN_ON(1); 1855 #endif 1856 if (child) 1857 rcu_assign_pointer(child->parent, pn); 1858 nstate = FWS_R; 1859 #ifdef CONFIG_IPV6_SUBTREES 1860 } 1861 #endif 1862 1863 read_lock(&net->ipv6.fib6_walker_lock); 1864 FOR_WALKERS(net, w) { 1865 if (!child) { 1866 if (w->node == fn) { 1867 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1868 w, w->state, nstate); 1869 w->node = pn; 1870 w->state = nstate; 1871 } 1872 } else { 1873 if (w->node == fn) { 1874 w->node = child; 1875 if (children&2) { 1876 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1877 w, w->state); 1878 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1879 } else { 1880 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1881 w, w->state); 1882 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1883 } 1884 } 1885 } 1886 } 1887 read_unlock(&net->ipv6.fib6_walker_lock); 1888 1889 node_free(net, fn); 1890 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1891 return pn; 1892 1893 RCU_INIT_POINTER(pn->leaf, NULL); 1894 fib6_info_release(pn_leaf); 1895 fn = pn; 1896 } 1897 } 1898 1899 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1900 struct fib6_info __rcu **rtp, struct nl_info *info) 1901 { 1902 struct fib6_info *leaf, *replace_rt = NULL; 1903 struct fib6_walker *w; 1904 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1905 lockdep_is_held(&table->tb6_lock)); 1906 struct net *net = info->nl_net; 1907 bool notify_del = false; 1908 1909 /* If the deleted route is the first in the node and it is not part of 1910 * a multipath route, then we need to replace it with the next route 1911 * in the node, if exists. 1912 */ 1913 leaf = rcu_dereference_protected(fn->leaf, 1914 lockdep_is_held(&table->tb6_lock)); 1915 if (leaf == rt && !rt->fib6_nsiblings) { 1916 if (rcu_access_pointer(rt->fib6_next)) 1917 replace_rt = rcu_dereference_protected(rt->fib6_next, 1918 lockdep_is_held(&table->tb6_lock)); 1919 else 1920 notify_del = true; 1921 } 1922 1923 /* Unlink it */ 1924 *rtp = rt->fib6_next; 1925 rt->fib6_node = NULL; 1926 net->ipv6.rt6_stats->fib_rt_entries--; 1927 net->ipv6.rt6_stats->fib_discarded_routes++; 1928 1929 /* Reset round-robin state, if necessary */ 1930 if (rcu_access_pointer(fn->rr_ptr) == rt) 1931 fn->rr_ptr = NULL; 1932 1933 /* Remove this entry from other siblings */ 1934 if (rt->fib6_nsiblings) { 1935 struct fib6_info *sibling, *next_sibling; 1936 1937 /* The route is deleted from a multipath route. If this 1938 * multipath route is the first route in the node, then we need 1939 * to emit a delete notification. Otherwise, we need to skip 1940 * the notification. 1941 */ 1942 if (rt->fib6_metric == leaf->fib6_metric && 1943 rt6_qualify_for_ecmp(leaf)) 1944 notify_del = true; 1945 list_for_each_entry_safe(sibling, next_sibling, 1946 &rt->fib6_siblings, fib6_siblings) 1947 sibling->fib6_nsiblings--; 1948 rt->fib6_nsiblings = 0; 1949 list_del_init(&rt->fib6_siblings); 1950 rt6_multipath_rebalance(next_sibling); 1951 } 1952 1953 /* Adjust walkers */ 1954 read_lock(&net->ipv6.fib6_walker_lock); 1955 FOR_WALKERS(net, w) { 1956 if (w->state == FWS_C && w->leaf == rt) { 1957 pr_debug("walker %p adjusted by delroute\n", w); 1958 w->leaf = rcu_dereference_protected(rt->fib6_next, 1959 lockdep_is_held(&table->tb6_lock)); 1960 if (!w->leaf) 1961 w->state = FWS_U; 1962 } 1963 } 1964 read_unlock(&net->ipv6.fib6_walker_lock); 1965 1966 /* If it was last route, call fib6_repair_tree() to: 1967 * 1. For root node, put back null_entry as how the table was created. 1968 * 2. For other nodes, expunge its radix tree node. 1969 */ 1970 if (!rcu_access_pointer(fn->leaf)) { 1971 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1972 fn->fn_flags &= ~RTN_RTINFO; 1973 net->ipv6.rt6_stats->fib_route_nodes--; 1974 } 1975 fn = fib6_repair_tree(net, table, fn); 1976 } 1977 1978 fib6_purge_rt(rt, fn, net); 1979 1980 if (!info->skip_notify_kernel) { 1981 if (notify_del) 1982 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1983 rt, NULL); 1984 else if (replace_rt) 1985 call_fib6_entry_notifiers_replace(net, replace_rt); 1986 } 1987 if (!info->skip_notify) 1988 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1989 1990 fib6_info_release(rt); 1991 } 1992 1993 /* Need to own table->tb6_lock */ 1994 int fib6_del(struct fib6_info *rt, struct nl_info *info) 1995 { 1996 struct net *net = info->nl_net; 1997 struct fib6_info __rcu **rtp; 1998 struct fib6_info __rcu **rtp_next; 1999 struct fib6_table *table; 2000 struct fib6_node *fn; 2001 2002 if (rt == net->ipv6.fib6_null_entry) 2003 return -ENOENT; 2004 2005 table = rt->fib6_table; 2006 fn = rcu_dereference_protected(rt->fib6_node, 2007 lockdep_is_held(&table->tb6_lock)); 2008 if (!fn) 2009 return -ENOENT; 2010 2011 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2012 2013 /* 2014 * Walk the leaf entries looking for ourself 2015 */ 2016 2017 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2018 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2019 lockdep_is_held(&table->tb6_lock)); 2020 if (rt == cur) { 2021 if (fib6_requires_src(cur)) 2022 fib6_routes_require_src_dec(info->nl_net); 2023 fib6_del_route(table, fn, rtp, info); 2024 return 0; 2025 } 2026 rtp_next = &cur->fib6_next; 2027 } 2028 return -ENOENT; 2029 } 2030 2031 /* 2032 * Tree traversal function. 2033 * 2034 * Certainly, it is not interrupt safe. 2035 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2036 * It means, that we can modify tree during walking 2037 * and use this function for garbage collection, clone pruning, 2038 * cleaning tree when a device goes down etc. etc. 2039 * 2040 * It guarantees that every node will be traversed, 2041 * and that it will be traversed only once. 2042 * 2043 * Callback function w->func may return: 2044 * 0 -> continue walking. 2045 * positive value -> walking is suspended (used by tree dumps, 2046 * and probably by gc, if it will be split to several slices) 2047 * negative value -> terminate walking. 2048 * 2049 * The function itself returns: 2050 * 0 -> walk is complete. 2051 * >0 -> walk is incomplete (i.e. suspended) 2052 * <0 -> walk is terminated by an error. 2053 * 2054 * This function is called with tb6_lock held. 2055 */ 2056 2057 static int fib6_walk_continue(struct fib6_walker *w) 2058 { 2059 struct fib6_node *fn, *pn, *left, *right; 2060 2061 /* w->root should always be table->tb6_root */ 2062 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2063 2064 for (;;) { 2065 fn = w->node; 2066 if (!fn) 2067 return 0; 2068 2069 switch (w->state) { 2070 #ifdef CONFIG_IPV6_SUBTREES 2071 case FWS_S: 2072 if (FIB6_SUBTREE(fn)) { 2073 w->node = FIB6_SUBTREE(fn); 2074 continue; 2075 } 2076 w->state = FWS_L; 2077 fallthrough; 2078 #endif 2079 case FWS_L: 2080 left = rcu_dereference_protected(fn->left, 1); 2081 if (left) { 2082 w->node = left; 2083 w->state = FWS_INIT; 2084 continue; 2085 } 2086 w->state = FWS_R; 2087 fallthrough; 2088 case FWS_R: 2089 right = rcu_dereference_protected(fn->right, 1); 2090 if (right) { 2091 w->node = right; 2092 w->state = FWS_INIT; 2093 continue; 2094 } 2095 w->state = FWS_C; 2096 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2097 fallthrough; 2098 case FWS_C: 2099 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2100 int err; 2101 2102 if (w->skip) { 2103 w->skip--; 2104 goto skip; 2105 } 2106 2107 err = w->func(w); 2108 if (err) 2109 return err; 2110 2111 w->count++; 2112 continue; 2113 } 2114 skip: 2115 w->state = FWS_U; 2116 fallthrough; 2117 case FWS_U: 2118 if (fn == w->root) 2119 return 0; 2120 pn = rcu_dereference_protected(fn->parent, 1); 2121 left = rcu_dereference_protected(pn->left, 1); 2122 right = rcu_dereference_protected(pn->right, 1); 2123 w->node = pn; 2124 #ifdef CONFIG_IPV6_SUBTREES 2125 if (FIB6_SUBTREE(pn) == fn) { 2126 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2127 w->state = FWS_L; 2128 continue; 2129 } 2130 #endif 2131 if (left == fn) { 2132 w->state = FWS_R; 2133 continue; 2134 } 2135 if (right == fn) { 2136 w->state = FWS_C; 2137 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2138 continue; 2139 } 2140 #if RT6_DEBUG >= 2 2141 WARN_ON(1); 2142 #endif 2143 } 2144 } 2145 } 2146 2147 static int fib6_walk(struct net *net, struct fib6_walker *w) 2148 { 2149 int res; 2150 2151 w->state = FWS_INIT; 2152 w->node = w->root; 2153 2154 fib6_walker_link(net, w); 2155 res = fib6_walk_continue(w); 2156 if (res <= 0) 2157 fib6_walker_unlink(net, w); 2158 return res; 2159 } 2160 2161 static int fib6_clean_node(struct fib6_walker *w) 2162 { 2163 int res; 2164 struct fib6_info *rt; 2165 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2166 struct nl_info info = { 2167 .nl_net = c->net, 2168 .skip_notify = c->skip_notify, 2169 }; 2170 2171 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2172 READ_ONCE(w->node->fn_sernum) != c->sernum) 2173 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2174 2175 if (!c->func) { 2176 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2177 w->leaf = NULL; 2178 return 0; 2179 } 2180 2181 for_each_fib6_walker_rt(w) { 2182 res = c->func(rt, c->arg); 2183 if (res == -1) { 2184 w->leaf = rt; 2185 res = fib6_del(rt, &info); 2186 if (res) { 2187 #if RT6_DEBUG >= 2 2188 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2189 __func__, rt, 2190 rcu_access_pointer(rt->fib6_node), 2191 res); 2192 #endif 2193 continue; 2194 } 2195 return 0; 2196 } else if (res == -2) { 2197 if (WARN_ON(!rt->fib6_nsiblings)) 2198 continue; 2199 rt = list_last_entry(&rt->fib6_siblings, 2200 struct fib6_info, fib6_siblings); 2201 continue; 2202 } 2203 WARN_ON(res != 0); 2204 } 2205 w->leaf = rt; 2206 return 0; 2207 } 2208 2209 /* 2210 * Convenient frontend to tree walker. 2211 * 2212 * func is called on each route. 2213 * It may return -2 -> skip multipath route. 2214 * -1 -> delete this route. 2215 * 0 -> continue walking 2216 */ 2217 2218 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2219 int (*func)(struct fib6_info *, void *arg), 2220 int sernum, void *arg, bool skip_notify) 2221 { 2222 struct fib6_cleaner c; 2223 2224 c.w.root = root; 2225 c.w.func = fib6_clean_node; 2226 c.w.count = 0; 2227 c.w.skip = 0; 2228 c.w.skip_in_node = 0; 2229 c.func = func; 2230 c.sernum = sernum; 2231 c.arg = arg; 2232 c.net = net; 2233 c.skip_notify = skip_notify; 2234 2235 fib6_walk(net, &c.w); 2236 } 2237 2238 static void __fib6_clean_all(struct net *net, 2239 int (*func)(struct fib6_info *, void *), 2240 int sernum, void *arg, bool skip_notify) 2241 { 2242 struct fib6_table *table; 2243 struct hlist_head *head; 2244 unsigned int h; 2245 2246 rcu_read_lock(); 2247 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2248 head = &net->ipv6.fib_table_hash[h]; 2249 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2250 spin_lock_bh(&table->tb6_lock); 2251 fib6_clean_tree(net, &table->tb6_root, 2252 func, sernum, arg, skip_notify); 2253 spin_unlock_bh(&table->tb6_lock); 2254 } 2255 } 2256 rcu_read_unlock(); 2257 } 2258 2259 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2260 void *arg) 2261 { 2262 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2263 } 2264 2265 void fib6_clean_all_skip_notify(struct net *net, 2266 int (*func)(struct fib6_info *, void *), 2267 void *arg) 2268 { 2269 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2270 } 2271 2272 static void fib6_flush_trees(struct net *net) 2273 { 2274 int new_sernum = fib6_new_sernum(net); 2275 2276 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2277 } 2278 2279 /* 2280 * Garbage collection 2281 */ 2282 2283 static int fib6_age(struct fib6_info *rt, void *arg) 2284 { 2285 struct fib6_gc_args *gc_args = arg; 2286 unsigned long now = jiffies; 2287 2288 /* 2289 * check addrconf expiration here. 2290 * Routes are expired even if they are in use. 2291 */ 2292 2293 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2294 if (time_after(now, rt->expires)) { 2295 pr_debug("expiring %p\n", rt); 2296 return -1; 2297 } 2298 gc_args->more++; 2299 } 2300 2301 /* Also age clones in the exception table. 2302 * Note, that clones are aged out 2303 * only if they are not in use now. 2304 */ 2305 rt6_age_exceptions(rt, gc_args, now); 2306 2307 return 0; 2308 } 2309 2310 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2311 { 2312 struct fib6_gc_args gc_args; 2313 unsigned long now; 2314 2315 if (force) { 2316 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2317 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2318 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2319 return; 2320 } 2321 gc_args.timeout = expires ? (int)expires : 2322 net->ipv6.sysctl.ip6_rt_gc_interval; 2323 gc_args.more = 0; 2324 2325 fib6_clean_all(net, fib6_age, &gc_args); 2326 now = jiffies; 2327 net->ipv6.ip6_rt_last_gc = now; 2328 2329 if (gc_args.more) 2330 mod_timer(&net->ipv6.ip6_fib_timer, 2331 round_jiffies(now 2332 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2333 else 2334 del_timer(&net->ipv6.ip6_fib_timer); 2335 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2336 } 2337 2338 static void fib6_gc_timer_cb(struct timer_list *t) 2339 { 2340 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2341 2342 fib6_run_gc(0, arg, true); 2343 } 2344 2345 static int __net_init fib6_net_init(struct net *net) 2346 { 2347 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2348 int err; 2349 2350 err = fib6_notifier_init(net); 2351 if (err) 2352 return err; 2353 2354 /* Default to 3-tuple */ 2355 net->ipv6.sysctl.multipath_hash_fields = 2356 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2357 2358 spin_lock_init(&net->ipv6.fib6_gc_lock); 2359 rwlock_init(&net->ipv6.fib6_walker_lock); 2360 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2361 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2362 2363 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2364 if (!net->ipv6.rt6_stats) 2365 goto out_notifier; 2366 2367 /* Avoid false sharing : Use at least a full cache line */ 2368 size = max_t(size_t, size, L1_CACHE_BYTES); 2369 2370 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2371 if (!net->ipv6.fib_table_hash) 2372 goto out_rt6_stats; 2373 2374 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2375 GFP_KERNEL); 2376 if (!net->ipv6.fib6_main_tbl) 2377 goto out_fib_table_hash; 2378 2379 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2380 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2381 net->ipv6.fib6_null_entry); 2382 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2383 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2384 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2385 2386 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2387 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2388 GFP_KERNEL); 2389 if (!net->ipv6.fib6_local_tbl) 2390 goto out_fib6_main_tbl; 2391 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2392 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2393 net->ipv6.fib6_null_entry); 2394 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2395 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2396 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2397 #endif 2398 fib6_tables_init(net); 2399 2400 return 0; 2401 2402 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2403 out_fib6_main_tbl: 2404 kfree(net->ipv6.fib6_main_tbl); 2405 #endif 2406 out_fib_table_hash: 2407 kfree(net->ipv6.fib_table_hash); 2408 out_rt6_stats: 2409 kfree(net->ipv6.rt6_stats); 2410 out_notifier: 2411 fib6_notifier_exit(net); 2412 return -ENOMEM; 2413 } 2414 2415 static void fib6_net_exit(struct net *net) 2416 { 2417 unsigned int i; 2418 2419 del_timer_sync(&net->ipv6.ip6_fib_timer); 2420 2421 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2422 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2423 struct hlist_node *tmp; 2424 struct fib6_table *tb; 2425 2426 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2427 hlist_del(&tb->tb6_hlist); 2428 fib6_free_table(tb); 2429 } 2430 } 2431 2432 kfree(net->ipv6.fib_table_hash); 2433 kfree(net->ipv6.rt6_stats); 2434 fib6_notifier_exit(net); 2435 } 2436 2437 static struct pernet_operations fib6_net_ops = { 2438 .init = fib6_net_init, 2439 .exit = fib6_net_exit, 2440 }; 2441 2442 int __init fib6_init(void) 2443 { 2444 int ret = -ENOMEM; 2445 2446 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2447 sizeof(struct fib6_node), 0, 2448 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 2449 NULL); 2450 if (!fib6_node_kmem) 2451 goto out; 2452 2453 ret = register_pernet_subsys(&fib6_net_ops); 2454 if (ret) 2455 goto out_kmem_cache_create; 2456 2457 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2458 inet6_dump_fib, 0); 2459 if (ret) 2460 goto out_unregister_subsys; 2461 2462 __fib6_flush_trees = fib6_flush_trees; 2463 out: 2464 return ret; 2465 2466 out_unregister_subsys: 2467 unregister_pernet_subsys(&fib6_net_ops); 2468 out_kmem_cache_create: 2469 kmem_cache_destroy(fib6_node_kmem); 2470 goto out; 2471 } 2472 2473 void fib6_gc_cleanup(void) 2474 { 2475 unregister_pernet_subsys(&fib6_net_ops); 2476 kmem_cache_destroy(fib6_node_kmem); 2477 } 2478 2479 #ifdef CONFIG_PROC_FS 2480 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2481 { 2482 struct fib6_info *rt = v; 2483 struct ipv6_route_iter *iter = seq->private; 2484 struct fib6_nh *fib6_nh = rt->fib6_nh; 2485 unsigned int flags = rt->fib6_flags; 2486 const struct net_device *dev; 2487 2488 if (rt->nh) 2489 fib6_nh = nexthop_fib6_nh(rt->nh); 2490 2491 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2492 2493 #ifdef CONFIG_IPV6_SUBTREES 2494 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2495 #else 2496 seq_puts(seq, "00000000000000000000000000000000 00 "); 2497 #endif 2498 if (fib6_nh->fib_nh_gw_family) { 2499 flags |= RTF_GATEWAY; 2500 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2501 } else { 2502 seq_puts(seq, "00000000000000000000000000000000"); 2503 } 2504 2505 dev = fib6_nh->fib_nh_dev; 2506 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2507 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2508 flags, dev ? dev->name : ""); 2509 iter->w.leaf = NULL; 2510 return 0; 2511 } 2512 2513 static int ipv6_route_yield(struct fib6_walker *w) 2514 { 2515 struct ipv6_route_iter *iter = w->args; 2516 2517 if (!iter->skip) 2518 return 1; 2519 2520 do { 2521 iter->w.leaf = rcu_dereference_protected( 2522 iter->w.leaf->fib6_next, 2523 lockdep_is_held(&iter->tbl->tb6_lock)); 2524 iter->skip--; 2525 if (!iter->skip && iter->w.leaf) 2526 return 1; 2527 } while (iter->w.leaf); 2528 2529 return 0; 2530 } 2531 2532 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2533 struct net *net) 2534 { 2535 memset(&iter->w, 0, sizeof(iter->w)); 2536 iter->w.func = ipv6_route_yield; 2537 iter->w.root = &iter->tbl->tb6_root; 2538 iter->w.state = FWS_INIT; 2539 iter->w.node = iter->w.root; 2540 iter->w.args = iter; 2541 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2542 INIT_LIST_HEAD(&iter->w.lh); 2543 fib6_walker_link(net, &iter->w); 2544 } 2545 2546 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2547 struct net *net) 2548 { 2549 unsigned int h; 2550 struct hlist_node *node; 2551 2552 if (tbl) { 2553 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2554 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2555 } else { 2556 h = 0; 2557 node = NULL; 2558 } 2559 2560 while (!node && h < FIB6_TABLE_HASHSZ) { 2561 node = rcu_dereference( 2562 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2563 } 2564 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2565 } 2566 2567 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2568 { 2569 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2570 2571 if (iter->sernum != sernum) { 2572 iter->sernum = sernum; 2573 iter->w.state = FWS_INIT; 2574 iter->w.node = iter->w.root; 2575 WARN_ON(iter->w.skip); 2576 iter->w.skip = iter->w.count; 2577 } 2578 } 2579 2580 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2581 { 2582 int r; 2583 struct fib6_info *n; 2584 struct net *net = seq_file_net(seq); 2585 struct ipv6_route_iter *iter = seq->private; 2586 2587 ++(*pos); 2588 if (!v) 2589 goto iter_table; 2590 2591 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2592 if (n) 2593 return n; 2594 2595 iter_table: 2596 ipv6_route_check_sernum(iter); 2597 spin_lock_bh(&iter->tbl->tb6_lock); 2598 r = fib6_walk_continue(&iter->w); 2599 spin_unlock_bh(&iter->tbl->tb6_lock); 2600 if (r > 0) { 2601 return iter->w.leaf; 2602 } else if (r < 0) { 2603 fib6_walker_unlink(net, &iter->w); 2604 return NULL; 2605 } 2606 fib6_walker_unlink(net, &iter->w); 2607 2608 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2609 if (!iter->tbl) 2610 return NULL; 2611 2612 ipv6_route_seq_setup_walk(iter, net); 2613 goto iter_table; 2614 } 2615 2616 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2617 __acquires(RCU) 2618 { 2619 struct net *net = seq_file_net(seq); 2620 struct ipv6_route_iter *iter = seq->private; 2621 2622 rcu_read_lock(); 2623 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2624 iter->skip = *pos; 2625 2626 if (iter->tbl) { 2627 loff_t p = 0; 2628 2629 ipv6_route_seq_setup_walk(iter, net); 2630 return ipv6_route_seq_next(seq, NULL, &p); 2631 } else { 2632 return NULL; 2633 } 2634 } 2635 2636 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2637 { 2638 struct fib6_walker *w = &iter->w; 2639 return w->node && !(w->state == FWS_U && w->node == w->root); 2640 } 2641 2642 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2643 __releases(RCU) 2644 { 2645 struct net *net = seq_file_net(seq); 2646 struct ipv6_route_iter *iter = seq->private; 2647 2648 if (ipv6_route_iter_active(iter)) 2649 fib6_walker_unlink(net, &iter->w); 2650 2651 rcu_read_unlock(); 2652 } 2653 2654 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2655 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2656 struct bpf_iter_meta *meta, 2657 void *v) 2658 { 2659 struct bpf_iter__ipv6_route ctx; 2660 2661 ctx.meta = meta; 2662 ctx.rt = v; 2663 return bpf_iter_run_prog(prog, &ctx); 2664 } 2665 2666 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2667 { 2668 struct ipv6_route_iter *iter = seq->private; 2669 struct bpf_iter_meta meta; 2670 struct bpf_prog *prog; 2671 int ret; 2672 2673 meta.seq = seq; 2674 prog = bpf_iter_get_info(&meta, false); 2675 if (!prog) 2676 return ipv6_route_native_seq_show(seq, v); 2677 2678 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2679 iter->w.leaf = NULL; 2680 2681 return ret; 2682 } 2683 2684 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2685 { 2686 struct bpf_iter_meta meta; 2687 struct bpf_prog *prog; 2688 2689 if (!v) { 2690 meta.seq = seq; 2691 prog = bpf_iter_get_info(&meta, true); 2692 if (prog) 2693 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2694 } 2695 2696 ipv6_route_native_seq_stop(seq, v); 2697 } 2698 #else 2699 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2700 { 2701 return ipv6_route_native_seq_show(seq, v); 2702 } 2703 2704 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2705 { 2706 ipv6_route_native_seq_stop(seq, v); 2707 } 2708 #endif 2709 2710 const struct seq_operations ipv6_route_seq_ops = { 2711 .start = ipv6_route_seq_start, 2712 .next = ipv6_route_seq_next, 2713 .stop = ipv6_route_seq_stop, 2714 .show = ipv6_route_seq_show 2715 }; 2716 #endif /* CONFIG_PROC_FS */ 2717