1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/errno.h> 19 #include <linux/types.h> 20 #include <linux/net.h> 21 #include <linux/route.h> 22 #include <linux/netdevice.h> 23 #include <linux/in6.h> 24 #include <linux/init.h> 25 #include <linux/list.h> 26 #include <linux/slab.h> 27 28 #include <net/ip.h> 29 #include <net/ipv6.h> 30 #include <net/ndisc.h> 31 #include <net/addrconf.h> 32 #include <net/lwtunnel.h> 33 #include <net/fib_notifier.h> 34 35 #include <net/ip6_fib.h> 36 #include <net/ip6_route.h> 37 38 static struct kmem_cache *fib6_node_kmem __read_mostly; 39 40 struct fib6_cleaner { 41 struct fib6_walker w; 42 struct net *net; 43 int (*func)(struct fib6_info *, void *arg); 44 int sernum; 45 void *arg; 46 bool skip_notify; 47 }; 48 49 #ifdef CONFIG_IPV6_SUBTREES 50 #define FWS_INIT FWS_S 51 #else 52 #define FWS_INIT FWS_L 53 #endif 54 55 static struct fib6_info *fib6_find_prefix(struct net *net, 56 struct fib6_table *table, 57 struct fib6_node *fn); 58 static struct fib6_node *fib6_repair_tree(struct net *net, 59 struct fib6_table *table, 60 struct fib6_node *fn); 61 static int fib6_walk(struct net *net, struct fib6_walker *w); 62 static int fib6_walk_continue(struct fib6_walker *w); 63 64 /* 65 * A routing update causes an increase of the serial number on the 66 * affected subtree. This allows for cached routes to be asynchronously 67 * tested when modifications are made to the destination cache as a 68 * result of redirects, path MTU changes, etc. 69 */ 70 71 static void fib6_gc_timer_cb(struct timer_list *t); 72 73 #define FOR_WALKERS(net, w) \ 74 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 75 76 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 77 { 78 write_lock_bh(&net->ipv6.fib6_walker_lock); 79 list_add(&w->lh, &net->ipv6.fib6_walkers); 80 write_unlock_bh(&net->ipv6.fib6_walker_lock); 81 } 82 83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 84 { 85 write_lock_bh(&net->ipv6.fib6_walker_lock); 86 list_del(&w->lh); 87 write_unlock_bh(&net->ipv6.fib6_walker_lock); 88 } 89 90 static int fib6_new_sernum(struct net *net) 91 { 92 int new, old; 93 94 do { 95 old = atomic_read(&net->ipv6.fib6_sernum); 96 new = old < INT_MAX ? old + 1 : 1; 97 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 98 old, new) != old); 99 return new; 100 } 101 102 enum { 103 FIB6_NO_SERNUM_CHANGE = 0, 104 }; 105 106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 107 { 108 struct fib6_node *fn; 109 110 fn = rcu_dereference_protected(f6i->fib6_node, 111 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 112 if (fn) 113 fn->fn_sernum = fib6_new_sernum(net); 114 } 115 116 /* 117 * Auxiliary address test functions for the radix tree. 118 * 119 * These assume a 32bit processor (although it will work on 120 * 64bit processors) 121 */ 122 123 /* 124 * test bit 125 */ 126 #if defined(__LITTLE_ENDIAN) 127 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 128 #else 129 # define BITOP_BE32_SWIZZLE 0 130 #endif 131 132 static __be32 addr_bit_set(const void *token, int fn_bit) 133 { 134 const __be32 *addr = token; 135 /* 136 * Here, 137 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 138 * is optimized version of 139 * htonl(1 << ((~fn_bit)&0x1F)) 140 * See include/asm-generic/bitops/le.h. 141 */ 142 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 143 addr[fn_bit >> 5]; 144 } 145 146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 147 { 148 struct fib6_info *f6i; 149 size_t sz = sizeof(*f6i); 150 151 if (with_fib6_nh) 152 sz += sizeof(struct fib6_nh); 153 154 f6i = kzalloc(sz, gfp_flags); 155 if (!f6i) 156 return NULL; 157 158 /* fib6_siblings is a union with nh_list, so this initializes both */ 159 INIT_LIST_HEAD(&f6i->fib6_siblings); 160 refcount_set(&f6i->fib6_ref, 1); 161 162 return f6i; 163 } 164 165 void fib6_info_destroy_rcu(struct rcu_head *head) 166 { 167 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 168 169 WARN_ON(f6i->fib6_node); 170 171 if (f6i->nh) 172 nexthop_put(f6i->nh); 173 else 174 fib6_nh_release(f6i->fib6_nh); 175 176 ip_fib_metrics_put(f6i->fib6_metrics); 177 kfree(f6i); 178 } 179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 180 181 static struct fib6_node *node_alloc(struct net *net) 182 { 183 struct fib6_node *fn; 184 185 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 186 if (fn) 187 net->ipv6.rt6_stats->fib_nodes++; 188 189 return fn; 190 } 191 192 static void node_free_immediate(struct net *net, struct fib6_node *fn) 193 { 194 kmem_cache_free(fib6_node_kmem, fn); 195 net->ipv6.rt6_stats->fib_nodes--; 196 } 197 198 static void node_free_rcu(struct rcu_head *head) 199 { 200 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 201 202 kmem_cache_free(fib6_node_kmem, fn); 203 } 204 205 static void node_free(struct net *net, struct fib6_node *fn) 206 { 207 call_rcu(&fn->rcu, node_free_rcu); 208 net->ipv6.rt6_stats->fib_nodes--; 209 } 210 211 static void fib6_free_table(struct fib6_table *table) 212 { 213 inetpeer_invalidate_tree(&table->tb6_peers); 214 kfree(table); 215 } 216 217 static void fib6_link_table(struct net *net, struct fib6_table *tb) 218 { 219 unsigned int h; 220 221 /* 222 * Initialize table lock at a single place to give lockdep a key, 223 * tables aren't visible prior to being linked to the list. 224 */ 225 spin_lock_init(&tb->tb6_lock); 226 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 227 228 /* 229 * No protection necessary, this is the only list mutatation 230 * operation, tables never disappear once they exist. 231 */ 232 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 233 } 234 235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 236 237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 238 { 239 struct fib6_table *table; 240 241 table = kzalloc(sizeof(*table), GFP_ATOMIC); 242 if (table) { 243 table->tb6_id = id; 244 rcu_assign_pointer(table->tb6_root.leaf, 245 net->ipv6.fib6_null_entry); 246 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 247 inet_peer_base_init(&table->tb6_peers); 248 } 249 250 return table; 251 } 252 253 struct fib6_table *fib6_new_table(struct net *net, u32 id) 254 { 255 struct fib6_table *tb; 256 257 if (id == 0) 258 id = RT6_TABLE_MAIN; 259 tb = fib6_get_table(net, id); 260 if (tb) 261 return tb; 262 263 tb = fib6_alloc_table(net, id); 264 if (tb) 265 fib6_link_table(net, tb); 266 267 return tb; 268 } 269 EXPORT_SYMBOL_GPL(fib6_new_table); 270 271 struct fib6_table *fib6_get_table(struct net *net, u32 id) 272 { 273 struct fib6_table *tb; 274 struct hlist_head *head; 275 unsigned int h; 276 277 if (id == 0) 278 id = RT6_TABLE_MAIN; 279 h = id & (FIB6_TABLE_HASHSZ - 1); 280 rcu_read_lock(); 281 head = &net->ipv6.fib_table_hash[h]; 282 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 283 if (tb->tb6_id == id) { 284 rcu_read_unlock(); 285 return tb; 286 } 287 } 288 rcu_read_unlock(); 289 290 return NULL; 291 } 292 EXPORT_SYMBOL_GPL(fib6_get_table); 293 294 static void __net_init fib6_tables_init(struct net *net) 295 { 296 fib6_link_table(net, net->ipv6.fib6_main_tbl); 297 fib6_link_table(net, net->ipv6.fib6_local_tbl); 298 } 299 #else 300 301 struct fib6_table *fib6_new_table(struct net *net, u32 id) 302 { 303 return fib6_get_table(net, id); 304 } 305 306 struct fib6_table *fib6_get_table(struct net *net, u32 id) 307 { 308 return net->ipv6.fib6_main_tbl; 309 } 310 311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 312 const struct sk_buff *skb, 313 int flags, pol_lookup_t lookup) 314 { 315 struct rt6_info *rt; 316 317 rt = pol_lookup_func(lookup, 318 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 319 if (rt->dst.error == -EAGAIN) { 320 ip6_rt_put_flags(rt, flags); 321 rt = net->ipv6.ip6_null_entry; 322 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 323 dst_hold(&rt->dst); 324 } 325 326 return &rt->dst; 327 } 328 329 /* called with rcu lock held; no reference taken on fib6_info */ 330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 331 struct fib6_result *res, int flags) 332 { 333 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 334 res, flags); 335 } 336 337 static void __net_init fib6_tables_init(struct net *net) 338 { 339 fib6_link_table(net, net->ipv6.fib6_main_tbl); 340 } 341 342 #endif 343 344 unsigned int fib6_tables_seq_read(struct net *net) 345 { 346 unsigned int h, fib_seq = 0; 347 348 rcu_read_lock(); 349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 350 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 351 struct fib6_table *tb; 352 353 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 354 fib_seq += tb->fib_seq; 355 } 356 rcu_read_unlock(); 357 358 return fib_seq; 359 } 360 361 static int call_fib6_entry_notifier(struct notifier_block *nb, 362 enum fib_event_type event_type, 363 struct fib6_info *rt, 364 struct netlink_ext_ack *extack) 365 { 366 struct fib6_entry_notifier_info info = { 367 .info.extack = extack, 368 .rt = rt, 369 }; 370 371 return call_fib6_notifier(nb, event_type, &info.info); 372 } 373 374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 375 enum fib_event_type event_type, 376 struct fib6_info *rt, 377 unsigned int nsiblings, 378 struct netlink_ext_ack *extack) 379 { 380 struct fib6_entry_notifier_info info = { 381 .info.extack = extack, 382 .rt = rt, 383 .nsiblings = nsiblings, 384 }; 385 386 return call_fib6_notifier(nb, event_type, &info.info); 387 } 388 389 int call_fib6_entry_notifiers(struct net *net, 390 enum fib_event_type event_type, 391 struct fib6_info *rt, 392 struct netlink_ext_ack *extack) 393 { 394 struct fib6_entry_notifier_info info = { 395 .info.extack = extack, 396 .rt = rt, 397 }; 398 399 rt->fib6_table->fib_seq++; 400 return call_fib6_notifiers(net, event_type, &info.info); 401 } 402 403 int call_fib6_multipath_entry_notifiers(struct net *net, 404 enum fib_event_type event_type, 405 struct fib6_info *rt, 406 unsigned int nsiblings, 407 struct netlink_ext_ack *extack) 408 { 409 struct fib6_entry_notifier_info info = { 410 .info.extack = extack, 411 .rt = rt, 412 .nsiblings = nsiblings, 413 }; 414 415 rt->fib6_table->fib_seq++; 416 return call_fib6_notifiers(net, event_type, &info.info); 417 } 418 419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 420 { 421 struct fib6_entry_notifier_info info = { 422 .rt = rt, 423 .nsiblings = rt->fib6_nsiblings, 424 }; 425 426 rt->fib6_table->fib_seq++; 427 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 428 } 429 430 struct fib6_dump_arg { 431 struct net *net; 432 struct notifier_block *nb; 433 struct netlink_ext_ack *extack; 434 }; 435 436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 437 { 438 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 439 int err; 440 441 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 442 return 0; 443 444 if (rt->fib6_nsiblings) 445 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 446 rt, 447 rt->fib6_nsiblings, 448 arg->extack); 449 else 450 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 451 arg->extack); 452 453 return err; 454 } 455 456 static int fib6_node_dump(struct fib6_walker *w) 457 { 458 int err; 459 460 err = fib6_rt_dump(w->leaf, w->args); 461 w->leaf = NULL; 462 return err; 463 } 464 465 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 466 struct fib6_walker *w) 467 { 468 int err; 469 470 w->root = &tb->tb6_root; 471 spin_lock_bh(&tb->tb6_lock); 472 err = fib6_walk(net, w); 473 spin_unlock_bh(&tb->tb6_lock); 474 return err; 475 } 476 477 /* Called with rcu_read_lock() */ 478 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 479 struct netlink_ext_ack *extack) 480 { 481 struct fib6_dump_arg arg; 482 struct fib6_walker *w; 483 unsigned int h; 484 int err = 0; 485 486 w = kzalloc(sizeof(*w), GFP_ATOMIC); 487 if (!w) 488 return -ENOMEM; 489 490 w->func = fib6_node_dump; 491 arg.net = net; 492 arg.nb = nb; 493 arg.extack = extack; 494 w->args = &arg; 495 496 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 497 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 498 struct fib6_table *tb; 499 500 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 501 err = fib6_table_dump(net, tb, w); 502 if (err) 503 goto out; 504 } 505 } 506 507 out: 508 kfree(w); 509 510 /* The tree traversal function should never return a positive value. */ 511 return err > 0 ? -EINVAL : err; 512 } 513 514 static int fib6_dump_node(struct fib6_walker *w) 515 { 516 int res; 517 struct fib6_info *rt; 518 519 for_each_fib6_walker_rt(w) { 520 res = rt6_dump_route(rt, w->args, w->skip_in_node); 521 if (res >= 0) { 522 /* Frame is full, suspend walking */ 523 w->leaf = rt; 524 525 /* We'll restart from this node, so if some routes were 526 * already dumped, skip them next time. 527 */ 528 w->skip_in_node += res; 529 530 return 1; 531 } 532 w->skip_in_node = 0; 533 534 /* Multipath routes are dumped in one route with the 535 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 536 * last sibling of this route (no need to dump the 537 * sibling routes again) 538 */ 539 if (rt->fib6_nsiblings) 540 rt = list_last_entry(&rt->fib6_siblings, 541 struct fib6_info, 542 fib6_siblings); 543 } 544 w->leaf = NULL; 545 return 0; 546 } 547 548 static void fib6_dump_end(struct netlink_callback *cb) 549 { 550 struct net *net = sock_net(cb->skb->sk); 551 struct fib6_walker *w = (void *)cb->args[2]; 552 553 if (w) { 554 if (cb->args[4]) { 555 cb->args[4] = 0; 556 fib6_walker_unlink(net, w); 557 } 558 cb->args[2] = 0; 559 kfree(w); 560 } 561 cb->done = (void *)cb->args[3]; 562 cb->args[1] = 3; 563 } 564 565 static int fib6_dump_done(struct netlink_callback *cb) 566 { 567 fib6_dump_end(cb); 568 return cb->done ? cb->done(cb) : 0; 569 } 570 571 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 572 struct netlink_callback *cb) 573 { 574 struct net *net = sock_net(skb->sk); 575 struct fib6_walker *w; 576 int res; 577 578 w = (void *)cb->args[2]; 579 w->root = &table->tb6_root; 580 581 if (cb->args[4] == 0) { 582 w->count = 0; 583 w->skip = 0; 584 w->skip_in_node = 0; 585 586 spin_lock_bh(&table->tb6_lock); 587 res = fib6_walk(net, w); 588 spin_unlock_bh(&table->tb6_lock); 589 if (res > 0) { 590 cb->args[4] = 1; 591 cb->args[5] = w->root->fn_sernum; 592 } 593 } else { 594 if (cb->args[5] != w->root->fn_sernum) { 595 /* Begin at the root if the tree changed */ 596 cb->args[5] = w->root->fn_sernum; 597 w->state = FWS_INIT; 598 w->node = w->root; 599 w->skip = w->count; 600 w->skip_in_node = 0; 601 } else 602 w->skip = 0; 603 604 spin_lock_bh(&table->tb6_lock); 605 res = fib6_walk_continue(w); 606 spin_unlock_bh(&table->tb6_lock); 607 if (res <= 0) { 608 fib6_walker_unlink(net, w); 609 cb->args[4] = 0; 610 } 611 } 612 613 return res; 614 } 615 616 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 617 { 618 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true, 619 .filter.dump_routes = true }; 620 const struct nlmsghdr *nlh = cb->nlh; 621 struct net *net = sock_net(skb->sk); 622 unsigned int h, s_h; 623 unsigned int e = 0, s_e; 624 struct fib6_walker *w; 625 struct fib6_table *tb; 626 struct hlist_head *head; 627 int res = 0; 628 629 if (cb->strict_check) { 630 int err; 631 632 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 633 if (err < 0) 634 return err; 635 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 636 struct rtmsg *rtm = nlmsg_data(nlh); 637 638 if (rtm->rtm_flags & RTM_F_PREFIX) 639 arg.filter.flags = RTM_F_PREFIX; 640 } 641 642 w = (void *)cb->args[2]; 643 if (!w) { 644 /* New dump: 645 * 646 * 1. hook callback destructor. 647 */ 648 cb->args[3] = (long)cb->done; 649 cb->done = fib6_dump_done; 650 651 /* 652 * 2. allocate and initialize walker. 653 */ 654 w = kzalloc(sizeof(*w), GFP_ATOMIC); 655 if (!w) 656 return -ENOMEM; 657 w->func = fib6_dump_node; 658 cb->args[2] = (long)w; 659 } 660 661 arg.skb = skb; 662 arg.cb = cb; 663 arg.net = net; 664 w->args = &arg; 665 666 if (arg.filter.table_id) { 667 tb = fib6_get_table(net, arg.filter.table_id); 668 if (!tb) { 669 if (rtnl_msg_family(cb->nlh) != PF_INET6) 670 goto out; 671 672 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 673 return -ENOENT; 674 } 675 676 if (!cb->args[0]) { 677 res = fib6_dump_table(tb, skb, cb); 678 if (!res) 679 cb->args[0] = 1; 680 } 681 goto out; 682 } 683 684 s_h = cb->args[0]; 685 s_e = cb->args[1]; 686 687 rcu_read_lock(); 688 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 689 e = 0; 690 head = &net->ipv6.fib_table_hash[h]; 691 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 692 if (e < s_e) 693 goto next; 694 res = fib6_dump_table(tb, skb, cb); 695 if (res != 0) 696 goto out_unlock; 697 next: 698 e++; 699 } 700 } 701 out_unlock: 702 rcu_read_unlock(); 703 cb->args[1] = e; 704 cb->args[0] = h; 705 out: 706 res = res < 0 ? res : skb->len; 707 if (res <= 0) 708 fib6_dump_end(cb); 709 return res; 710 } 711 712 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 713 { 714 if (!f6i) 715 return; 716 717 if (f6i->fib6_metrics == &dst_default_metrics) { 718 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 719 720 if (!p) 721 return; 722 723 refcount_set(&p->refcnt, 1); 724 f6i->fib6_metrics = p; 725 } 726 727 f6i->fib6_metrics->metrics[metric - 1] = val; 728 } 729 730 /* 731 * Routing Table 732 * 733 * return the appropriate node for a routing tree "add" operation 734 * by either creating and inserting or by returning an existing 735 * node. 736 */ 737 738 static struct fib6_node *fib6_add_1(struct net *net, 739 struct fib6_table *table, 740 struct fib6_node *root, 741 struct in6_addr *addr, int plen, 742 int offset, int allow_create, 743 int replace_required, 744 struct netlink_ext_ack *extack) 745 { 746 struct fib6_node *fn, *in, *ln; 747 struct fib6_node *pn = NULL; 748 struct rt6key *key; 749 int bit; 750 __be32 dir = 0; 751 752 RT6_TRACE("fib6_add_1\n"); 753 754 /* insert node in tree */ 755 756 fn = root; 757 758 do { 759 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 760 lockdep_is_held(&table->tb6_lock)); 761 key = (struct rt6key *)((u8 *)leaf + offset); 762 763 /* 764 * Prefix match 765 */ 766 if (plen < fn->fn_bit || 767 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 768 if (!allow_create) { 769 if (replace_required) { 770 NL_SET_ERR_MSG(extack, 771 "Can not replace route - no match found"); 772 pr_warn("Can't replace route, no match found\n"); 773 return ERR_PTR(-ENOENT); 774 } 775 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 776 } 777 goto insert_above; 778 } 779 780 /* 781 * Exact match ? 782 */ 783 784 if (plen == fn->fn_bit) { 785 /* clean up an intermediate node */ 786 if (!(fn->fn_flags & RTN_RTINFO)) { 787 RCU_INIT_POINTER(fn->leaf, NULL); 788 fib6_info_release(leaf); 789 /* remove null_entry in the root node */ 790 } else if (fn->fn_flags & RTN_TL_ROOT && 791 rcu_access_pointer(fn->leaf) == 792 net->ipv6.fib6_null_entry) { 793 RCU_INIT_POINTER(fn->leaf, NULL); 794 } 795 796 return fn; 797 } 798 799 /* 800 * We have more bits to go 801 */ 802 803 /* Try to walk down on tree. */ 804 dir = addr_bit_set(addr, fn->fn_bit); 805 pn = fn; 806 fn = dir ? 807 rcu_dereference_protected(fn->right, 808 lockdep_is_held(&table->tb6_lock)) : 809 rcu_dereference_protected(fn->left, 810 lockdep_is_held(&table->tb6_lock)); 811 } while (fn); 812 813 if (!allow_create) { 814 /* We should not create new node because 815 * NLM_F_REPLACE was specified without NLM_F_CREATE 816 * I assume it is safe to require NLM_F_CREATE when 817 * REPLACE flag is used! Later we may want to remove the 818 * check for replace_required, because according 819 * to netlink specification, NLM_F_CREATE 820 * MUST be specified if new route is created. 821 * That would keep IPv6 consistent with IPv4 822 */ 823 if (replace_required) { 824 NL_SET_ERR_MSG(extack, 825 "Can not replace route - no match found"); 826 pr_warn("Can't replace route, no match found\n"); 827 return ERR_PTR(-ENOENT); 828 } 829 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 830 } 831 /* 832 * We walked to the bottom of tree. 833 * Create new leaf node without children. 834 */ 835 836 ln = node_alloc(net); 837 838 if (!ln) 839 return ERR_PTR(-ENOMEM); 840 ln->fn_bit = plen; 841 RCU_INIT_POINTER(ln->parent, pn); 842 843 if (dir) 844 rcu_assign_pointer(pn->right, ln); 845 else 846 rcu_assign_pointer(pn->left, ln); 847 848 return ln; 849 850 851 insert_above: 852 /* 853 * split since we don't have a common prefix anymore or 854 * we have a less significant route. 855 * we've to insert an intermediate node on the list 856 * this new node will point to the one we need to create 857 * and the current 858 */ 859 860 pn = rcu_dereference_protected(fn->parent, 861 lockdep_is_held(&table->tb6_lock)); 862 863 /* find 1st bit in difference between the 2 addrs. 864 865 See comment in __ipv6_addr_diff: bit may be an invalid value, 866 but if it is >= plen, the value is ignored in any case. 867 */ 868 869 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 870 871 /* 872 * (intermediate)[in] 873 * / \ 874 * (new leaf node)[ln] (old node)[fn] 875 */ 876 if (plen > bit) { 877 in = node_alloc(net); 878 ln = node_alloc(net); 879 880 if (!in || !ln) { 881 if (in) 882 node_free_immediate(net, in); 883 if (ln) 884 node_free_immediate(net, ln); 885 return ERR_PTR(-ENOMEM); 886 } 887 888 /* 889 * new intermediate node. 890 * RTN_RTINFO will 891 * be off since that an address that chooses one of 892 * the branches would not match less specific routes 893 * in the other branch 894 */ 895 896 in->fn_bit = bit; 897 898 RCU_INIT_POINTER(in->parent, pn); 899 in->leaf = fn->leaf; 900 fib6_info_hold(rcu_dereference_protected(in->leaf, 901 lockdep_is_held(&table->tb6_lock))); 902 903 /* update parent pointer */ 904 if (dir) 905 rcu_assign_pointer(pn->right, in); 906 else 907 rcu_assign_pointer(pn->left, in); 908 909 ln->fn_bit = plen; 910 911 RCU_INIT_POINTER(ln->parent, in); 912 rcu_assign_pointer(fn->parent, in); 913 914 if (addr_bit_set(addr, bit)) { 915 rcu_assign_pointer(in->right, ln); 916 rcu_assign_pointer(in->left, fn); 917 } else { 918 rcu_assign_pointer(in->left, ln); 919 rcu_assign_pointer(in->right, fn); 920 } 921 } else { /* plen <= bit */ 922 923 /* 924 * (new leaf node)[ln] 925 * / \ 926 * (old node)[fn] NULL 927 */ 928 929 ln = node_alloc(net); 930 931 if (!ln) 932 return ERR_PTR(-ENOMEM); 933 934 ln->fn_bit = plen; 935 936 RCU_INIT_POINTER(ln->parent, pn); 937 938 if (addr_bit_set(&key->addr, plen)) 939 RCU_INIT_POINTER(ln->right, fn); 940 else 941 RCU_INIT_POINTER(ln->left, fn); 942 943 rcu_assign_pointer(fn->parent, ln); 944 945 if (dir) 946 rcu_assign_pointer(pn->right, ln); 947 else 948 rcu_assign_pointer(pn->left, ln); 949 } 950 return ln; 951 } 952 953 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 954 const struct fib6_info *match, 955 const struct fib6_table *table) 956 { 957 int cpu; 958 959 if (!fib6_nh->rt6i_pcpu) 960 return; 961 962 /* release the reference to this fib entry from 963 * all of its cached pcpu routes 964 */ 965 for_each_possible_cpu(cpu) { 966 struct rt6_info **ppcpu_rt; 967 struct rt6_info *pcpu_rt; 968 969 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 970 pcpu_rt = *ppcpu_rt; 971 972 /* only dropping the 'from' reference if the cached route 973 * is using 'match'. The cached pcpu_rt->from only changes 974 * from a fib6_info to NULL (ip6_dst_destroy); it can never 975 * change from one fib6_info reference to another 976 */ 977 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 978 struct fib6_info *from; 979 980 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 981 fib6_info_release(from); 982 } 983 } 984 } 985 986 struct fib6_nh_pcpu_arg { 987 struct fib6_info *from; 988 const struct fib6_table *table; 989 }; 990 991 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 992 { 993 struct fib6_nh_pcpu_arg *arg = _arg; 994 995 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 996 return 0; 997 } 998 999 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1000 const struct fib6_table *table) 1001 { 1002 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1003 * while we are cleaning them here. 1004 */ 1005 f6i->fib6_destroying = 1; 1006 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1007 1008 if (f6i->nh) { 1009 struct fib6_nh_pcpu_arg arg = { 1010 .from = f6i, 1011 .table = table 1012 }; 1013 1014 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1015 &arg); 1016 } else { 1017 struct fib6_nh *fib6_nh; 1018 1019 fib6_nh = f6i->fib6_nh; 1020 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1021 } 1022 } 1023 1024 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1025 struct net *net) 1026 { 1027 struct fib6_table *table = rt->fib6_table; 1028 1029 /* Flush all cached dst in exception table */ 1030 rt6_flush_exceptions(rt); 1031 fib6_drop_pcpu_from(rt, table); 1032 1033 if (rt->nh && !list_empty(&rt->nh_list)) 1034 list_del_init(&rt->nh_list); 1035 1036 if (refcount_read(&rt->fib6_ref) != 1) { 1037 /* This route is used as dummy address holder in some split 1038 * nodes. It is not leaked, but it still holds other resources, 1039 * which must be released in time. So, scan ascendant nodes 1040 * and replace dummy references to this route with references 1041 * to still alive ones. 1042 */ 1043 while (fn) { 1044 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1045 lockdep_is_held(&table->tb6_lock)); 1046 struct fib6_info *new_leaf; 1047 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1048 new_leaf = fib6_find_prefix(net, table, fn); 1049 fib6_info_hold(new_leaf); 1050 1051 rcu_assign_pointer(fn->leaf, new_leaf); 1052 fib6_info_release(rt); 1053 } 1054 fn = rcu_dereference_protected(fn->parent, 1055 lockdep_is_held(&table->tb6_lock)); 1056 } 1057 } 1058 } 1059 1060 /* 1061 * Insert routing information in a node. 1062 */ 1063 1064 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1065 struct nl_info *info, 1066 struct netlink_ext_ack *extack) 1067 { 1068 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1069 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1070 struct fib6_info *iter = NULL; 1071 struct fib6_info __rcu **ins; 1072 struct fib6_info __rcu **fallback_ins = NULL; 1073 int replace = (info->nlh && 1074 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1075 int add = (!info->nlh || 1076 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1077 int found = 0; 1078 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1079 bool notify_sibling_rt = false; 1080 u16 nlflags = NLM_F_EXCL; 1081 int err; 1082 1083 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1084 nlflags |= NLM_F_APPEND; 1085 1086 ins = &fn->leaf; 1087 1088 for (iter = leaf; iter; 1089 iter = rcu_dereference_protected(iter->fib6_next, 1090 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1091 /* 1092 * Search for duplicates 1093 */ 1094 1095 if (iter->fib6_metric == rt->fib6_metric) { 1096 /* 1097 * Same priority level 1098 */ 1099 if (info->nlh && 1100 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1101 return -EEXIST; 1102 1103 nlflags &= ~NLM_F_EXCL; 1104 if (replace) { 1105 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1106 found++; 1107 break; 1108 } 1109 fallback_ins = fallback_ins ?: ins; 1110 goto next_iter; 1111 } 1112 1113 if (rt6_duplicate_nexthop(iter, rt)) { 1114 if (rt->fib6_nsiblings) 1115 rt->fib6_nsiblings = 0; 1116 if (!(iter->fib6_flags & RTF_EXPIRES)) 1117 return -EEXIST; 1118 if (!(rt->fib6_flags & RTF_EXPIRES)) 1119 fib6_clean_expires(iter); 1120 else 1121 fib6_set_expires(iter, rt->expires); 1122 1123 if (rt->fib6_pmtu) 1124 fib6_metric_set(iter, RTAX_MTU, 1125 rt->fib6_pmtu); 1126 return -EEXIST; 1127 } 1128 /* If we have the same destination and the same metric, 1129 * but not the same gateway, then the route we try to 1130 * add is sibling to this route, increment our counter 1131 * of siblings, and later we will add our route to the 1132 * list. 1133 * Only static routes (which don't have flag 1134 * RTF_EXPIRES) are used for ECMPv6. 1135 * 1136 * To avoid long list, we only had siblings if the 1137 * route have a gateway. 1138 */ 1139 if (rt_can_ecmp && 1140 rt6_qualify_for_ecmp(iter)) 1141 rt->fib6_nsiblings++; 1142 } 1143 1144 if (iter->fib6_metric > rt->fib6_metric) 1145 break; 1146 1147 next_iter: 1148 ins = &iter->fib6_next; 1149 } 1150 1151 if (fallback_ins && !found) { 1152 /* No matching route with same ecmp-able-ness found, replace 1153 * first matching route 1154 */ 1155 ins = fallback_ins; 1156 iter = rcu_dereference_protected(*ins, 1157 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1158 found++; 1159 } 1160 1161 /* Reset round-robin state, if necessary */ 1162 if (ins == &fn->leaf) 1163 fn->rr_ptr = NULL; 1164 1165 /* Link this route to others same route. */ 1166 if (rt->fib6_nsiblings) { 1167 unsigned int fib6_nsiblings; 1168 struct fib6_info *sibling, *temp_sibling; 1169 1170 /* Find the first route that have the same metric */ 1171 sibling = leaf; 1172 notify_sibling_rt = true; 1173 while (sibling) { 1174 if (sibling->fib6_metric == rt->fib6_metric && 1175 rt6_qualify_for_ecmp(sibling)) { 1176 list_add_tail(&rt->fib6_siblings, 1177 &sibling->fib6_siblings); 1178 break; 1179 } 1180 sibling = rcu_dereference_protected(sibling->fib6_next, 1181 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1182 notify_sibling_rt = false; 1183 } 1184 /* For each sibling in the list, increment the counter of 1185 * siblings. BUG() if counters does not match, list of siblings 1186 * is broken! 1187 */ 1188 fib6_nsiblings = 0; 1189 list_for_each_entry_safe(sibling, temp_sibling, 1190 &rt->fib6_siblings, fib6_siblings) { 1191 sibling->fib6_nsiblings++; 1192 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1193 fib6_nsiblings++; 1194 } 1195 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1196 rt6_multipath_rebalance(temp_sibling); 1197 } 1198 1199 /* 1200 * insert node 1201 */ 1202 if (!replace) { 1203 if (!add) 1204 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1205 1206 add: 1207 nlflags |= NLM_F_CREATE; 1208 1209 /* The route should only be notified if it is the first 1210 * route in the node or if it is added as a sibling 1211 * route to the first route in the node. 1212 */ 1213 if (!info->skip_notify_kernel && 1214 (notify_sibling_rt || ins == &fn->leaf)) { 1215 enum fib_event_type fib_event; 1216 1217 if (notify_sibling_rt) 1218 fib_event = FIB_EVENT_ENTRY_APPEND; 1219 else 1220 fib_event = FIB_EVENT_ENTRY_REPLACE; 1221 err = call_fib6_entry_notifiers(info->nl_net, 1222 fib_event, rt, 1223 extack); 1224 if (err) { 1225 struct fib6_info *sibling, *next_sibling; 1226 1227 /* If the route has siblings, then it first 1228 * needs to be unlinked from them. 1229 */ 1230 if (!rt->fib6_nsiblings) 1231 return err; 1232 1233 list_for_each_entry_safe(sibling, next_sibling, 1234 &rt->fib6_siblings, 1235 fib6_siblings) 1236 sibling->fib6_nsiblings--; 1237 rt->fib6_nsiblings = 0; 1238 list_del_init(&rt->fib6_siblings); 1239 rt6_multipath_rebalance(next_sibling); 1240 return err; 1241 } 1242 } 1243 1244 rcu_assign_pointer(rt->fib6_next, iter); 1245 fib6_info_hold(rt); 1246 rcu_assign_pointer(rt->fib6_node, fn); 1247 rcu_assign_pointer(*ins, rt); 1248 if (!info->skip_notify) 1249 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1250 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1251 1252 if (!(fn->fn_flags & RTN_RTINFO)) { 1253 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1254 fn->fn_flags |= RTN_RTINFO; 1255 } 1256 1257 } else { 1258 int nsiblings; 1259 1260 if (!found) { 1261 if (add) 1262 goto add; 1263 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1264 return -ENOENT; 1265 } 1266 1267 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1268 err = call_fib6_entry_notifiers(info->nl_net, 1269 FIB_EVENT_ENTRY_REPLACE, 1270 rt, extack); 1271 if (err) 1272 return err; 1273 } 1274 1275 fib6_info_hold(rt); 1276 rcu_assign_pointer(rt->fib6_node, fn); 1277 rt->fib6_next = iter->fib6_next; 1278 rcu_assign_pointer(*ins, rt); 1279 if (!info->skip_notify) 1280 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1281 if (!(fn->fn_flags & RTN_RTINFO)) { 1282 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1283 fn->fn_flags |= RTN_RTINFO; 1284 } 1285 nsiblings = iter->fib6_nsiblings; 1286 iter->fib6_node = NULL; 1287 fib6_purge_rt(iter, fn, info->nl_net); 1288 if (rcu_access_pointer(fn->rr_ptr) == iter) 1289 fn->rr_ptr = NULL; 1290 fib6_info_release(iter); 1291 1292 if (nsiblings) { 1293 /* Replacing an ECMP route, remove all siblings */ 1294 ins = &rt->fib6_next; 1295 iter = rcu_dereference_protected(*ins, 1296 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1297 while (iter) { 1298 if (iter->fib6_metric > rt->fib6_metric) 1299 break; 1300 if (rt6_qualify_for_ecmp(iter)) { 1301 *ins = iter->fib6_next; 1302 iter->fib6_node = NULL; 1303 fib6_purge_rt(iter, fn, info->nl_net); 1304 if (rcu_access_pointer(fn->rr_ptr) == iter) 1305 fn->rr_ptr = NULL; 1306 fib6_info_release(iter); 1307 nsiblings--; 1308 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1309 } else { 1310 ins = &iter->fib6_next; 1311 } 1312 iter = rcu_dereference_protected(*ins, 1313 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1314 } 1315 WARN_ON(nsiblings != 0); 1316 } 1317 } 1318 1319 return 0; 1320 } 1321 1322 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1323 { 1324 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1325 (rt->fib6_flags & RTF_EXPIRES)) 1326 mod_timer(&net->ipv6.ip6_fib_timer, 1327 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1328 } 1329 1330 void fib6_force_start_gc(struct net *net) 1331 { 1332 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1333 mod_timer(&net->ipv6.ip6_fib_timer, 1334 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1335 } 1336 1337 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1338 int sernum) 1339 { 1340 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1341 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1342 1343 /* paired with smp_rmb() in rt6_get_cookie_safe() */ 1344 smp_wmb(); 1345 while (fn) { 1346 fn->fn_sernum = sernum; 1347 fn = rcu_dereference_protected(fn->parent, 1348 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1349 } 1350 } 1351 1352 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1353 { 1354 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1355 } 1356 1357 /* allow ipv4 to update sernum via ipv6_stub */ 1358 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1359 { 1360 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1361 fib6_update_sernum_upto_root(net, f6i); 1362 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1363 } 1364 1365 /* 1366 * Add routing information to the routing tree. 1367 * <destination addr>/<source addr> 1368 * with source addr info in sub-trees 1369 * Need to own table->tb6_lock 1370 */ 1371 1372 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1373 struct nl_info *info, struct netlink_ext_ack *extack) 1374 { 1375 struct fib6_table *table = rt->fib6_table; 1376 struct fib6_node *fn, *pn = NULL; 1377 int err = -ENOMEM; 1378 int allow_create = 1; 1379 int replace_required = 0; 1380 int sernum = fib6_new_sernum(info->nl_net); 1381 1382 if (info->nlh) { 1383 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1384 allow_create = 0; 1385 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1386 replace_required = 1; 1387 } 1388 if (!allow_create && !replace_required) 1389 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1390 1391 fn = fib6_add_1(info->nl_net, table, root, 1392 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1393 offsetof(struct fib6_info, fib6_dst), allow_create, 1394 replace_required, extack); 1395 if (IS_ERR(fn)) { 1396 err = PTR_ERR(fn); 1397 fn = NULL; 1398 goto out; 1399 } 1400 1401 pn = fn; 1402 1403 #ifdef CONFIG_IPV6_SUBTREES 1404 if (rt->fib6_src.plen) { 1405 struct fib6_node *sn; 1406 1407 if (!rcu_access_pointer(fn->subtree)) { 1408 struct fib6_node *sfn; 1409 1410 /* 1411 * Create subtree. 1412 * 1413 * fn[main tree] 1414 * | 1415 * sfn[subtree root] 1416 * \ 1417 * sn[new leaf node] 1418 */ 1419 1420 /* Create subtree root node */ 1421 sfn = node_alloc(info->nl_net); 1422 if (!sfn) 1423 goto failure; 1424 1425 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1426 rcu_assign_pointer(sfn->leaf, 1427 info->nl_net->ipv6.fib6_null_entry); 1428 sfn->fn_flags = RTN_ROOT; 1429 1430 /* Now add the first leaf node to new subtree */ 1431 1432 sn = fib6_add_1(info->nl_net, table, sfn, 1433 &rt->fib6_src.addr, rt->fib6_src.plen, 1434 offsetof(struct fib6_info, fib6_src), 1435 allow_create, replace_required, extack); 1436 1437 if (IS_ERR(sn)) { 1438 /* If it is failed, discard just allocated 1439 root, and then (in failure) stale node 1440 in main tree. 1441 */ 1442 node_free_immediate(info->nl_net, sfn); 1443 err = PTR_ERR(sn); 1444 goto failure; 1445 } 1446 1447 /* Now link new subtree to main tree */ 1448 rcu_assign_pointer(sfn->parent, fn); 1449 rcu_assign_pointer(fn->subtree, sfn); 1450 } else { 1451 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1452 &rt->fib6_src.addr, rt->fib6_src.plen, 1453 offsetof(struct fib6_info, fib6_src), 1454 allow_create, replace_required, extack); 1455 1456 if (IS_ERR(sn)) { 1457 err = PTR_ERR(sn); 1458 goto failure; 1459 } 1460 } 1461 1462 if (!rcu_access_pointer(fn->leaf)) { 1463 if (fn->fn_flags & RTN_TL_ROOT) { 1464 /* put back null_entry for root node */ 1465 rcu_assign_pointer(fn->leaf, 1466 info->nl_net->ipv6.fib6_null_entry); 1467 } else { 1468 fib6_info_hold(rt); 1469 rcu_assign_pointer(fn->leaf, rt); 1470 } 1471 } 1472 fn = sn; 1473 } 1474 #endif 1475 1476 err = fib6_add_rt2node(fn, rt, info, extack); 1477 if (!err) { 1478 if (rt->nh) 1479 list_add(&rt->nh_list, &rt->nh->f6i_list); 1480 __fib6_update_sernum_upto_root(rt, sernum); 1481 fib6_start_gc(info->nl_net, rt); 1482 } 1483 1484 out: 1485 if (err) { 1486 #ifdef CONFIG_IPV6_SUBTREES 1487 /* 1488 * If fib6_add_1 has cleared the old leaf pointer in the 1489 * super-tree leaf node we have to find a new one for it. 1490 */ 1491 if (pn != fn) { 1492 struct fib6_info *pn_leaf = 1493 rcu_dereference_protected(pn->leaf, 1494 lockdep_is_held(&table->tb6_lock)); 1495 if (pn_leaf == rt) { 1496 pn_leaf = NULL; 1497 RCU_INIT_POINTER(pn->leaf, NULL); 1498 fib6_info_release(rt); 1499 } 1500 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1501 pn_leaf = fib6_find_prefix(info->nl_net, table, 1502 pn); 1503 #if RT6_DEBUG >= 2 1504 if (!pn_leaf) { 1505 WARN_ON(!pn_leaf); 1506 pn_leaf = 1507 info->nl_net->ipv6.fib6_null_entry; 1508 } 1509 #endif 1510 fib6_info_hold(pn_leaf); 1511 rcu_assign_pointer(pn->leaf, pn_leaf); 1512 } 1513 } 1514 #endif 1515 goto failure; 1516 } else if (fib6_requires_src(rt)) { 1517 fib6_routes_require_src_inc(info->nl_net); 1518 } 1519 return err; 1520 1521 failure: 1522 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1523 * 1. fn is an intermediate node and we failed to add the new 1524 * route to it in both subtree creation failure and fib6_add_rt2node() 1525 * failure case. 1526 * 2. fn is the root node in the table and we fail to add the first 1527 * default route to it. 1528 */ 1529 if (fn && 1530 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1531 (fn->fn_flags & RTN_TL_ROOT && 1532 !rcu_access_pointer(fn->leaf)))) 1533 fib6_repair_tree(info->nl_net, table, fn); 1534 return err; 1535 } 1536 1537 /* 1538 * Routing tree lookup 1539 * 1540 */ 1541 1542 struct lookup_args { 1543 int offset; /* key offset on fib6_info */ 1544 const struct in6_addr *addr; /* search key */ 1545 }; 1546 1547 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1548 struct lookup_args *args) 1549 { 1550 struct fib6_node *fn; 1551 __be32 dir; 1552 1553 if (unlikely(args->offset == 0)) 1554 return NULL; 1555 1556 /* 1557 * Descend on a tree 1558 */ 1559 1560 fn = root; 1561 1562 for (;;) { 1563 struct fib6_node *next; 1564 1565 dir = addr_bit_set(args->addr, fn->fn_bit); 1566 1567 next = dir ? rcu_dereference(fn->right) : 1568 rcu_dereference(fn->left); 1569 1570 if (next) { 1571 fn = next; 1572 continue; 1573 } 1574 break; 1575 } 1576 1577 while (fn) { 1578 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1579 1580 if (subtree || fn->fn_flags & RTN_RTINFO) { 1581 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1582 struct rt6key *key; 1583 1584 if (!leaf) 1585 goto backtrack; 1586 1587 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1588 1589 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1590 #ifdef CONFIG_IPV6_SUBTREES 1591 if (subtree) { 1592 struct fib6_node *sfn; 1593 sfn = fib6_node_lookup_1(subtree, 1594 args + 1); 1595 if (!sfn) 1596 goto backtrack; 1597 fn = sfn; 1598 } 1599 #endif 1600 if (fn->fn_flags & RTN_RTINFO) 1601 return fn; 1602 } 1603 } 1604 backtrack: 1605 if (fn->fn_flags & RTN_ROOT) 1606 break; 1607 1608 fn = rcu_dereference(fn->parent); 1609 } 1610 1611 return NULL; 1612 } 1613 1614 /* called with rcu_read_lock() held 1615 */ 1616 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1617 const struct in6_addr *daddr, 1618 const struct in6_addr *saddr) 1619 { 1620 struct fib6_node *fn; 1621 struct lookup_args args[] = { 1622 { 1623 .offset = offsetof(struct fib6_info, fib6_dst), 1624 .addr = daddr, 1625 }, 1626 #ifdef CONFIG_IPV6_SUBTREES 1627 { 1628 .offset = offsetof(struct fib6_info, fib6_src), 1629 .addr = saddr, 1630 }, 1631 #endif 1632 { 1633 .offset = 0, /* sentinel */ 1634 } 1635 }; 1636 1637 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1638 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1639 fn = root; 1640 1641 return fn; 1642 } 1643 1644 /* 1645 * Get node with specified destination prefix (and source prefix, 1646 * if subtrees are used) 1647 * exact_match == true means we try to find fn with exact match of 1648 * the passed in prefix addr 1649 * exact_match == false means we try to find fn with longest prefix 1650 * match of the passed in prefix addr. This is useful for finding fn 1651 * for cached route as it will be stored in the exception table under 1652 * the node with longest prefix length. 1653 */ 1654 1655 1656 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1657 const struct in6_addr *addr, 1658 int plen, int offset, 1659 bool exact_match) 1660 { 1661 struct fib6_node *fn, *prev = NULL; 1662 1663 for (fn = root; fn ; ) { 1664 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1665 struct rt6key *key; 1666 1667 /* This node is being deleted */ 1668 if (!leaf) { 1669 if (plen <= fn->fn_bit) 1670 goto out; 1671 else 1672 goto next; 1673 } 1674 1675 key = (struct rt6key *)((u8 *)leaf + offset); 1676 1677 /* 1678 * Prefix match 1679 */ 1680 if (plen < fn->fn_bit || 1681 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1682 goto out; 1683 1684 if (plen == fn->fn_bit) 1685 return fn; 1686 1687 if (fn->fn_flags & RTN_RTINFO) 1688 prev = fn; 1689 1690 next: 1691 /* 1692 * We have more bits to go 1693 */ 1694 if (addr_bit_set(addr, fn->fn_bit)) 1695 fn = rcu_dereference(fn->right); 1696 else 1697 fn = rcu_dereference(fn->left); 1698 } 1699 out: 1700 if (exact_match) 1701 return NULL; 1702 else 1703 return prev; 1704 } 1705 1706 struct fib6_node *fib6_locate(struct fib6_node *root, 1707 const struct in6_addr *daddr, int dst_len, 1708 const struct in6_addr *saddr, int src_len, 1709 bool exact_match) 1710 { 1711 struct fib6_node *fn; 1712 1713 fn = fib6_locate_1(root, daddr, dst_len, 1714 offsetof(struct fib6_info, fib6_dst), 1715 exact_match); 1716 1717 #ifdef CONFIG_IPV6_SUBTREES 1718 if (src_len) { 1719 WARN_ON(saddr == NULL); 1720 if (fn) { 1721 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1722 1723 if (subtree) { 1724 fn = fib6_locate_1(subtree, saddr, src_len, 1725 offsetof(struct fib6_info, fib6_src), 1726 exact_match); 1727 } 1728 } 1729 } 1730 #endif 1731 1732 if (fn && fn->fn_flags & RTN_RTINFO) 1733 return fn; 1734 1735 return NULL; 1736 } 1737 1738 1739 /* 1740 * Deletion 1741 * 1742 */ 1743 1744 static struct fib6_info *fib6_find_prefix(struct net *net, 1745 struct fib6_table *table, 1746 struct fib6_node *fn) 1747 { 1748 struct fib6_node *child_left, *child_right; 1749 1750 if (fn->fn_flags & RTN_ROOT) 1751 return net->ipv6.fib6_null_entry; 1752 1753 while (fn) { 1754 child_left = rcu_dereference_protected(fn->left, 1755 lockdep_is_held(&table->tb6_lock)); 1756 child_right = rcu_dereference_protected(fn->right, 1757 lockdep_is_held(&table->tb6_lock)); 1758 if (child_left) 1759 return rcu_dereference_protected(child_left->leaf, 1760 lockdep_is_held(&table->tb6_lock)); 1761 if (child_right) 1762 return rcu_dereference_protected(child_right->leaf, 1763 lockdep_is_held(&table->tb6_lock)); 1764 1765 fn = FIB6_SUBTREE(fn); 1766 } 1767 return NULL; 1768 } 1769 1770 /* 1771 * Called to trim the tree of intermediate nodes when possible. "fn" 1772 * is the node we want to try and remove. 1773 * Need to own table->tb6_lock 1774 */ 1775 1776 static struct fib6_node *fib6_repair_tree(struct net *net, 1777 struct fib6_table *table, 1778 struct fib6_node *fn) 1779 { 1780 int children; 1781 int nstate; 1782 struct fib6_node *child; 1783 struct fib6_walker *w; 1784 int iter = 0; 1785 1786 /* Set fn->leaf to null_entry for root node. */ 1787 if (fn->fn_flags & RTN_TL_ROOT) { 1788 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1789 return fn; 1790 } 1791 1792 for (;;) { 1793 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1794 lockdep_is_held(&table->tb6_lock)); 1795 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1796 lockdep_is_held(&table->tb6_lock)); 1797 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1798 lockdep_is_held(&table->tb6_lock)); 1799 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1800 lockdep_is_held(&table->tb6_lock)); 1801 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1802 lockdep_is_held(&table->tb6_lock)); 1803 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1804 lockdep_is_held(&table->tb6_lock)); 1805 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1806 lockdep_is_held(&table->tb6_lock)); 1807 struct fib6_info *new_fn_leaf; 1808 1809 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1810 iter++; 1811 1812 WARN_ON(fn->fn_flags & RTN_RTINFO); 1813 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1814 WARN_ON(fn_leaf); 1815 1816 children = 0; 1817 child = NULL; 1818 if (fn_r) { 1819 child = fn_r; 1820 children |= 1; 1821 } 1822 if (fn_l) { 1823 child = fn_l; 1824 children |= 2; 1825 } 1826 1827 if (children == 3 || FIB6_SUBTREE(fn) 1828 #ifdef CONFIG_IPV6_SUBTREES 1829 /* Subtree root (i.e. fn) may have one child */ 1830 || (children && fn->fn_flags & RTN_ROOT) 1831 #endif 1832 ) { 1833 new_fn_leaf = fib6_find_prefix(net, table, fn); 1834 #if RT6_DEBUG >= 2 1835 if (!new_fn_leaf) { 1836 WARN_ON(!new_fn_leaf); 1837 new_fn_leaf = net->ipv6.fib6_null_entry; 1838 } 1839 #endif 1840 fib6_info_hold(new_fn_leaf); 1841 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1842 return pn; 1843 } 1844 1845 #ifdef CONFIG_IPV6_SUBTREES 1846 if (FIB6_SUBTREE(pn) == fn) { 1847 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1848 RCU_INIT_POINTER(pn->subtree, NULL); 1849 nstate = FWS_L; 1850 } else { 1851 WARN_ON(fn->fn_flags & RTN_ROOT); 1852 #endif 1853 if (pn_r == fn) 1854 rcu_assign_pointer(pn->right, child); 1855 else if (pn_l == fn) 1856 rcu_assign_pointer(pn->left, child); 1857 #if RT6_DEBUG >= 2 1858 else 1859 WARN_ON(1); 1860 #endif 1861 if (child) 1862 rcu_assign_pointer(child->parent, pn); 1863 nstate = FWS_R; 1864 #ifdef CONFIG_IPV6_SUBTREES 1865 } 1866 #endif 1867 1868 read_lock(&net->ipv6.fib6_walker_lock); 1869 FOR_WALKERS(net, w) { 1870 if (!child) { 1871 if (w->node == fn) { 1872 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1873 w->node = pn; 1874 w->state = nstate; 1875 } 1876 } else { 1877 if (w->node == fn) { 1878 w->node = child; 1879 if (children&2) { 1880 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1881 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1882 } else { 1883 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1884 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1885 } 1886 } 1887 } 1888 } 1889 read_unlock(&net->ipv6.fib6_walker_lock); 1890 1891 node_free(net, fn); 1892 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1893 return pn; 1894 1895 RCU_INIT_POINTER(pn->leaf, NULL); 1896 fib6_info_release(pn_leaf); 1897 fn = pn; 1898 } 1899 } 1900 1901 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1902 struct fib6_info __rcu **rtp, struct nl_info *info) 1903 { 1904 struct fib6_info *leaf, *replace_rt = NULL; 1905 struct fib6_walker *w; 1906 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1907 lockdep_is_held(&table->tb6_lock)); 1908 struct net *net = info->nl_net; 1909 bool notify_del = false; 1910 1911 RT6_TRACE("fib6_del_route\n"); 1912 1913 /* If the deleted route is the first in the node and it is not part of 1914 * a multipath route, then we need to replace it with the next route 1915 * in the node, if exists. 1916 */ 1917 leaf = rcu_dereference_protected(fn->leaf, 1918 lockdep_is_held(&table->tb6_lock)); 1919 if (leaf == rt && !rt->fib6_nsiblings) { 1920 if (rcu_access_pointer(rt->fib6_next)) 1921 replace_rt = rcu_dereference_protected(rt->fib6_next, 1922 lockdep_is_held(&table->tb6_lock)); 1923 else 1924 notify_del = true; 1925 } 1926 1927 /* Unlink it */ 1928 *rtp = rt->fib6_next; 1929 rt->fib6_node = NULL; 1930 net->ipv6.rt6_stats->fib_rt_entries--; 1931 net->ipv6.rt6_stats->fib_discarded_routes++; 1932 1933 /* Reset round-robin state, if necessary */ 1934 if (rcu_access_pointer(fn->rr_ptr) == rt) 1935 fn->rr_ptr = NULL; 1936 1937 /* Remove this entry from other siblings */ 1938 if (rt->fib6_nsiblings) { 1939 struct fib6_info *sibling, *next_sibling; 1940 1941 /* The route is deleted from a multipath route. If this 1942 * multipath route is the first route in the node, then we need 1943 * to emit a delete notification. Otherwise, we need to skip 1944 * the notification. 1945 */ 1946 if (rt->fib6_metric == leaf->fib6_metric && 1947 rt6_qualify_for_ecmp(leaf)) 1948 notify_del = true; 1949 list_for_each_entry_safe(sibling, next_sibling, 1950 &rt->fib6_siblings, fib6_siblings) 1951 sibling->fib6_nsiblings--; 1952 rt->fib6_nsiblings = 0; 1953 list_del_init(&rt->fib6_siblings); 1954 rt6_multipath_rebalance(next_sibling); 1955 } 1956 1957 /* Adjust walkers */ 1958 read_lock(&net->ipv6.fib6_walker_lock); 1959 FOR_WALKERS(net, w) { 1960 if (w->state == FWS_C && w->leaf == rt) { 1961 RT6_TRACE("walker %p adjusted by delroute\n", w); 1962 w->leaf = rcu_dereference_protected(rt->fib6_next, 1963 lockdep_is_held(&table->tb6_lock)); 1964 if (!w->leaf) 1965 w->state = FWS_U; 1966 } 1967 } 1968 read_unlock(&net->ipv6.fib6_walker_lock); 1969 1970 /* If it was last route, call fib6_repair_tree() to: 1971 * 1. For root node, put back null_entry as how the table was created. 1972 * 2. For other nodes, expunge its radix tree node. 1973 */ 1974 if (!rcu_access_pointer(fn->leaf)) { 1975 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1976 fn->fn_flags &= ~RTN_RTINFO; 1977 net->ipv6.rt6_stats->fib_route_nodes--; 1978 } 1979 fn = fib6_repair_tree(net, table, fn); 1980 } 1981 1982 fib6_purge_rt(rt, fn, net); 1983 1984 if (!info->skip_notify_kernel) { 1985 if (notify_del) 1986 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1987 rt, NULL); 1988 else if (replace_rt) 1989 call_fib6_entry_notifiers_replace(net, replace_rt); 1990 } 1991 if (!info->skip_notify) 1992 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1993 1994 fib6_info_release(rt); 1995 } 1996 1997 /* Need to own table->tb6_lock */ 1998 int fib6_del(struct fib6_info *rt, struct nl_info *info) 1999 { 2000 struct net *net = info->nl_net; 2001 struct fib6_info __rcu **rtp; 2002 struct fib6_info __rcu **rtp_next; 2003 struct fib6_table *table; 2004 struct fib6_node *fn; 2005 2006 if (rt == net->ipv6.fib6_null_entry) 2007 return -ENOENT; 2008 2009 table = rt->fib6_table; 2010 fn = rcu_dereference_protected(rt->fib6_node, 2011 lockdep_is_held(&table->tb6_lock)); 2012 if (!fn) 2013 return -ENOENT; 2014 2015 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2016 2017 /* 2018 * Walk the leaf entries looking for ourself 2019 */ 2020 2021 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2022 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2023 lockdep_is_held(&table->tb6_lock)); 2024 if (rt == cur) { 2025 if (fib6_requires_src(cur)) 2026 fib6_routes_require_src_dec(info->nl_net); 2027 fib6_del_route(table, fn, rtp, info); 2028 return 0; 2029 } 2030 rtp_next = &cur->fib6_next; 2031 } 2032 return -ENOENT; 2033 } 2034 2035 /* 2036 * Tree traversal function. 2037 * 2038 * Certainly, it is not interrupt safe. 2039 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2040 * It means, that we can modify tree during walking 2041 * and use this function for garbage collection, clone pruning, 2042 * cleaning tree when a device goes down etc. etc. 2043 * 2044 * It guarantees that every node will be traversed, 2045 * and that it will be traversed only once. 2046 * 2047 * Callback function w->func may return: 2048 * 0 -> continue walking. 2049 * positive value -> walking is suspended (used by tree dumps, 2050 * and probably by gc, if it will be split to several slices) 2051 * negative value -> terminate walking. 2052 * 2053 * The function itself returns: 2054 * 0 -> walk is complete. 2055 * >0 -> walk is incomplete (i.e. suspended) 2056 * <0 -> walk is terminated by an error. 2057 * 2058 * This function is called with tb6_lock held. 2059 */ 2060 2061 static int fib6_walk_continue(struct fib6_walker *w) 2062 { 2063 struct fib6_node *fn, *pn, *left, *right; 2064 2065 /* w->root should always be table->tb6_root */ 2066 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2067 2068 for (;;) { 2069 fn = w->node; 2070 if (!fn) 2071 return 0; 2072 2073 switch (w->state) { 2074 #ifdef CONFIG_IPV6_SUBTREES 2075 case FWS_S: 2076 if (FIB6_SUBTREE(fn)) { 2077 w->node = FIB6_SUBTREE(fn); 2078 continue; 2079 } 2080 w->state = FWS_L; 2081 fallthrough; 2082 #endif 2083 case FWS_L: 2084 left = rcu_dereference_protected(fn->left, 1); 2085 if (left) { 2086 w->node = left; 2087 w->state = FWS_INIT; 2088 continue; 2089 } 2090 w->state = FWS_R; 2091 fallthrough; 2092 case FWS_R: 2093 right = rcu_dereference_protected(fn->right, 1); 2094 if (right) { 2095 w->node = right; 2096 w->state = FWS_INIT; 2097 continue; 2098 } 2099 w->state = FWS_C; 2100 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2101 fallthrough; 2102 case FWS_C: 2103 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2104 int err; 2105 2106 if (w->skip) { 2107 w->skip--; 2108 goto skip; 2109 } 2110 2111 err = w->func(w); 2112 if (err) 2113 return err; 2114 2115 w->count++; 2116 continue; 2117 } 2118 skip: 2119 w->state = FWS_U; 2120 fallthrough; 2121 case FWS_U: 2122 if (fn == w->root) 2123 return 0; 2124 pn = rcu_dereference_protected(fn->parent, 1); 2125 left = rcu_dereference_protected(pn->left, 1); 2126 right = rcu_dereference_protected(pn->right, 1); 2127 w->node = pn; 2128 #ifdef CONFIG_IPV6_SUBTREES 2129 if (FIB6_SUBTREE(pn) == fn) { 2130 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2131 w->state = FWS_L; 2132 continue; 2133 } 2134 #endif 2135 if (left == fn) { 2136 w->state = FWS_R; 2137 continue; 2138 } 2139 if (right == fn) { 2140 w->state = FWS_C; 2141 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2142 continue; 2143 } 2144 #if RT6_DEBUG >= 2 2145 WARN_ON(1); 2146 #endif 2147 } 2148 } 2149 } 2150 2151 static int fib6_walk(struct net *net, struct fib6_walker *w) 2152 { 2153 int res; 2154 2155 w->state = FWS_INIT; 2156 w->node = w->root; 2157 2158 fib6_walker_link(net, w); 2159 res = fib6_walk_continue(w); 2160 if (res <= 0) 2161 fib6_walker_unlink(net, w); 2162 return res; 2163 } 2164 2165 static int fib6_clean_node(struct fib6_walker *w) 2166 { 2167 int res; 2168 struct fib6_info *rt; 2169 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2170 struct nl_info info = { 2171 .nl_net = c->net, 2172 .skip_notify = c->skip_notify, 2173 }; 2174 2175 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2176 w->node->fn_sernum != c->sernum) 2177 w->node->fn_sernum = c->sernum; 2178 2179 if (!c->func) { 2180 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2181 w->leaf = NULL; 2182 return 0; 2183 } 2184 2185 for_each_fib6_walker_rt(w) { 2186 res = c->func(rt, c->arg); 2187 if (res == -1) { 2188 w->leaf = rt; 2189 res = fib6_del(rt, &info); 2190 if (res) { 2191 #if RT6_DEBUG >= 2 2192 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2193 __func__, rt, 2194 rcu_access_pointer(rt->fib6_node), 2195 res); 2196 #endif 2197 continue; 2198 } 2199 return 0; 2200 } else if (res == -2) { 2201 if (WARN_ON(!rt->fib6_nsiblings)) 2202 continue; 2203 rt = list_last_entry(&rt->fib6_siblings, 2204 struct fib6_info, fib6_siblings); 2205 continue; 2206 } 2207 WARN_ON(res != 0); 2208 } 2209 w->leaf = rt; 2210 return 0; 2211 } 2212 2213 /* 2214 * Convenient frontend to tree walker. 2215 * 2216 * func is called on each route. 2217 * It may return -2 -> skip multipath route. 2218 * -1 -> delete this route. 2219 * 0 -> continue walking 2220 */ 2221 2222 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2223 int (*func)(struct fib6_info *, void *arg), 2224 int sernum, void *arg, bool skip_notify) 2225 { 2226 struct fib6_cleaner c; 2227 2228 c.w.root = root; 2229 c.w.func = fib6_clean_node; 2230 c.w.count = 0; 2231 c.w.skip = 0; 2232 c.w.skip_in_node = 0; 2233 c.func = func; 2234 c.sernum = sernum; 2235 c.arg = arg; 2236 c.net = net; 2237 c.skip_notify = skip_notify; 2238 2239 fib6_walk(net, &c.w); 2240 } 2241 2242 static void __fib6_clean_all(struct net *net, 2243 int (*func)(struct fib6_info *, void *), 2244 int sernum, void *arg, bool skip_notify) 2245 { 2246 struct fib6_table *table; 2247 struct hlist_head *head; 2248 unsigned int h; 2249 2250 rcu_read_lock(); 2251 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2252 head = &net->ipv6.fib_table_hash[h]; 2253 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2254 spin_lock_bh(&table->tb6_lock); 2255 fib6_clean_tree(net, &table->tb6_root, 2256 func, sernum, arg, skip_notify); 2257 spin_unlock_bh(&table->tb6_lock); 2258 } 2259 } 2260 rcu_read_unlock(); 2261 } 2262 2263 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2264 void *arg) 2265 { 2266 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2267 } 2268 2269 void fib6_clean_all_skip_notify(struct net *net, 2270 int (*func)(struct fib6_info *, void *), 2271 void *arg) 2272 { 2273 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2274 } 2275 2276 static void fib6_flush_trees(struct net *net) 2277 { 2278 int new_sernum = fib6_new_sernum(net); 2279 2280 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2281 } 2282 2283 /* 2284 * Garbage collection 2285 */ 2286 2287 static int fib6_age(struct fib6_info *rt, void *arg) 2288 { 2289 struct fib6_gc_args *gc_args = arg; 2290 unsigned long now = jiffies; 2291 2292 /* 2293 * check addrconf expiration here. 2294 * Routes are expired even if they are in use. 2295 */ 2296 2297 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2298 if (time_after(now, rt->expires)) { 2299 RT6_TRACE("expiring %p\n", rt); 2300 return -1; 2301 } 2302 gc_args->more++; 2303 } 2304 2305 /* Also age clones in the exception table. 2306 * Note, that clones are aged out 2307 * only if they are not in use now. 2308 */ 2309 rt6_age_exceptions(rt, gc_args, now); 2310 2311 return 0; 2312 } 2313 2314 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2315 { 2316 struct fib6_gc_args gc_args; 2317 unsigned long now; 2318 2319 if (force) { 2320 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2321 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2322 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2323 return; 2324 } 2325 gc_args.timeout = expires ? (int)expires : 2326 net->ipv6.sysctl.ip6_rt_gc_interval; 2327 gc_args.more = 0; 2328 2329 fib6_clean_all(net, fib6_age, &gc_args); 2330 now = jiffies; 2331 net->ipv6.ip6_rt_last_gc = now; 2332 2333 if (gc_args.more) 2334 mod_timer(&net->ipv6.ip6_fib_timer, 2335 round_jiffies(now 2336 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2337 else 2338 del_timer(&net->ipv6.ip6_fib_timer); 2339 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2340 } 2341 2342 static void fib6_gc_timer_cb(struct timer_list *t) 2343 { 2344 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2345 2346 fib6_run_gc(0, arg, true); 2347 } 2348 2349 static int __net_init fib6_net_init(struct net *net) 2350 { 2351 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2352 int err; 2353 2354 err = fib6_notifier_init(net); 2355 if (err) 2356 return err; 2357 2358 spin_lock_init(&net->ipv6.fib6_gc_lock); 2359 rwlock_init(&net->ipv6.fib6_walker_lock); 2360 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2361 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2362 2363 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2364 if (!net->ipv6.rt6_stats) 2365 goto out_timer; 2366 2367 /* Avoid false sharing : Use at least a full cache line */ 2368 size = max_t(size_t, size, L1_CACHE_BYTES); 2369 2370 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2371 if (!net->ipv6.fib_table_hash) 2372 goto out_rt6_stats; 2373 2374 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2375 GFP_KERNEL); 2376 if (!net->ipv6.fib6_main_tbl) 2377 goto out_fib_table_hash; 2378 2379 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2380 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2381 net->ipv6.fib6_null_entry); 2382 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2383 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2384 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2385 2386 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2387 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2388 GFP_KERNEL); 2389 if (!net->ipv6.fib6_local_tbl) 2390 goto out_fib6_main_tbl; 2391 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2392 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2393 net->ipv6.fib6_null_entry); 2394 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2395 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2396 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2397 #endif 2398 fib6_tables_init(net); 2399 2400 return 0; 2401 2402 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2403 out_fib6_main_tbl: 2404 kfree(net->ipv6.fib6_main_tbl); 2405 #endif 2406 out_fib_table_hash: 2407 kfree(net->ipv6.fib_table_hash); 2408 out_rt6_stats: 2409 kfree(net->ipv6.rt6_stats); 2410 out_timer: 2411 fib6_notifier_exit(net); 2412 return -ENOMEM; 2413 } 2414 2415 static void fib6_net_exit(struct net *net) 2416 { 2417 unsigned int i; 2418 2419 del_timer_sync(&net->ipv6.ip6_fib_timer); 2420 2421 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2422 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2423 struct hlist_node *tmp; 2424 struct fib6_table *tb; 2425 2426 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2427 hlist_del(&tb->tb6_hlist); 2428 fib6_free_table(tb); 2429 } 2430 } 2431 2432 kfree(net->ipv6.fib_table_hash); 2433 kfree(net->ipv6.rt6_stats); 2434 fib6_notifier_exit(net); 2435 } 2436 2437 static struct pernet_operations fib6_net_ops = { 2438 .init = fib6_net_init, 2439 .exit = fib6_net_exit, 2440 }; 2441 2442 int __init fib6_init(void) 2443 { 2444 int ret = -ENOMEM; 2445 2446 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2447 sizeof(struct fib6_node), 2448 0, SLAB_HWCACHE_ALIGN, 2449 NULL); 2450 if (!fib6_node_kmem) 2451 goto out; 2452 2453 ret = register_pernet_subsys(&fib6_net_ops); 2454 if (ret) 2455 goto out_kmem_cache_create; 2456 2457 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2458 inet6_dump_fib, 0); 2459 if (ret) 2460 goto out_unregister_subsys; 2461 2462 __fib6_flush_trees = fib6_flush_trees; 2463 out: 2464 return ret; 2465 2466 out_unregister_subsys: 2467 unregister_pernet_subsys(&fib6_net_ops); 2468 out_kmem_cache_create: 2469 kmem_cache_destroy(fib6_node_kmem); 2470 goto out; 2471 } 2472 2473 void fib6_gc_cleanup(void) 2474 { 2475 unregister_pernet_subsys(&fib6_net_ops); 2476 kmem_cache_destroy(fib6_node_kmem); 2477 } 2478 2479 #ifdef CONFIG_PROC_FS 2480 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2481 { 2482 struct fib6_info *rt = v; 2483 struct ipv6_route_iter *iter = seq->private; 2484 struct fib6_nh *fib6_nh = rt->fib6_nh; 2485 unsigned int flags = rt->fib6_flags; 2486 const struct net_device *dev; 2487 2488 if (rt->nh) 2489 fib6_nh = nexthop_fib6_nh_bh(rt->nh); 2490 2491 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2492 2493 #ifdef CONFIG_IPV6_SUBTREES 2494 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2495 #else 2496 seq_puts(seq, "00000000000000000000000000000000 00 "); 2497 #endif 2498 if (fib6_nh->fib_nh_gw_family) { 2499 flags |= RTF_GATEWAY; 2500 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2501 } else { 2502 seq_puts(seq, "00000000000000000000000000000000"); 2503 } 2504 2505 dev = fib6_nh->fib_nh_dev; 2506 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2507 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2508 flags, dev ? dev->name : ""); 2509 iter->w.leaf = NULL; 2510 return 0; 2511 } 2512 2513 static int ipv6_route_yield(struct fib6_walker *w) 2514 { 2515 struct ipv6_route_iter *iter = w->args; 2516 2517 if (!iter->skip) 2518 return 1; 2519 2520 do { 2521 iter->w.leaf = rcu_dereference_protected( 2522 iter->w.leaf->fib6_next, 2523 lockdep_is_held(&iter->tbl->tb6_lock)); 2524 iter->skip--; 2525 if (!iter->skip && iter->w.leaf) 2526 return 1; 2527 } while (iter->w.leaf); 2528 2529 return 0; 2530 } 2531 2532 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2533 struct net *net) 2534 { 2535 memset(&iter->w, 0, sizeof(iter->w)); 2536 iter->w.func = ipv6_route_yield; 2537 iter->w.root = &iter->tbl->tb6_root; 2538 iter->w.state = FWS_INIT; 2539 iter->w.node = iter->w.root; 2540 iter->w.args = iter; 2541 iter->sernum = iter->w.root->fn_sernum; 2542 INIT_LIST_HEAD(&iter->w.lh); 2543 fib6_walker_link(net, &iter->w); 2544 } 2545 2546 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2547 struct net *net) 2548 { 2549 unsigned int h; 2550 struct hlist_node *node; 2551 2552 if (tbl) { 2553 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2554 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2555 } else { 2556 h = 0; 2557 node = NULL; 2558 } 2559 2560 while (!node && h < FIB6_TABLE_HASHSZ) { 2561 node = rcu_dereference_bh( 2562 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2563 } 2564 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2565 } 2566 2567 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2568 { 2569 if (iter->sernum != iter->w.root->fn_sernum) { 2570 iter->sernum = iter->w.root->fn_sernum; 2571 iter->w.state = FWS_INIT; 2572 iter->w.node = iter->w.root; 2573 WARN_ON(iter->w.skip); 2574 iter->w.skip = iter->w.count; 2575 } 2576 } 2577 2578 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2579 { 2580 int r; 2581 struct fib6_info *n; 2582 struct net *net = seq_file_net(seq); 2583 struct ipv6_route_iter *iter = seq->private; 2584 2585 ++(*pos); 2586 if (!v) 2587 goto iter_table; 2588 2589 n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next); 2590 if (n) 2591 return n; 2592 2593 iter_table: 2594 ipv6_route_check_sernum(iter); 2595 spin_lock_bh(&iter->tbl->tb6_lock); 2596 r = fib6_walk_continue(&iter->w); 2597 spin_unlock_bh(&iter->tbl->tb6_lock); 2598 if (r > 0) { 2599 return iter->w.leaf; 2600 } else if (r < 0) { 2601 fib6_walker_unlink(net, &iter->w); 2602 return NULL; 2603 } 2604 fib6_walker_unlink(net, &iter->w); 2605 2606 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2607 if (!iter->tbl) 2608 return NULL; 2609 2610 ipv6_route_seq_setup_walk(iter, net); 2611 goto iter_table; 2612 } 2613 2614 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2615 __acquires(RCU_BH) 2616 { 2617 struct net *net = seq_file_net(seq); 2618 struct ipv6_route_iter *iter = seq->private; 2619 2620 rcu_read_lock_bh(); 2621 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2622 iter->skip = *pos; 2623 2624 if (iter->tbl) { 2625 loff_t p = 0; 2626 2627 ipv6_route_seq_setup_walk(iter, net); 2628 return ipv6_route_seq_next(seq, NULL, &p); 2629 } else { 2630 return NULL; 2631 } 2632 } 2633 2634 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2635 { 2636 struct fib6_walker *w = &iter->w; 2637 return w->node && !(w->state == FWS_U && w->node == w->root); 2638 } 2639 2640 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2641 __releases(RCU_BH) 2642 { 2643 struct net *net = seq_file_net(seq); 2644 struct ipv6_route_iter *iter = seq->private; 2645 2646 if (ipv6_route_iter_active(iter)) 2647 fib6_walker_unlink(net, &iter->w); 2648 2649 rcu_read_unlock_bh(); 2650 } 2651 2652 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2653 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2654 struct bpf_iter_meta *meta, 2655 void *v) 2656 { 2657 struct bpf_iter__ipv6_route ctx; 2658 2659 ctx.meta = meta; 2660 ctx.rt = v; 2661 return bpf_iter_run_prog(prog, &ctx); 2662 } 2663 2664 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2665 { 2666 struct ipv6_route_iter *iter = seq->private; 2667 struct bpf_iter_meta meta; 2668 struct bpf_prog *prog; 2669 int ret; 2670 2671 meta.seq = seq; 2672 prog = bpf_iter_get_info(&meta, false); 2673 if (!prog) 2674 return ipv6_route_native_seq_show(seq, v); 2675 2676 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2677 iter->w.leaf = NULL; 2678 2679 return ret; 2680 } 2681 2682 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2683 { 2684 struct bpf_iter_meta meta; 2685 struct bpf_prog *prog; 2686 2687 if (!v) { 2688 meta.seq = seq; 2689 prog = bpf_iter_get_info(&meta, true); 2690 if (prog) 2691 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2692 } 2693 2694 ipv6_route_native_seq_stop(seq, v); 2695 } 2696 #else 2697 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2698 { 2699 return ipv6_route_native_seq_show(seq, v); 2700 } 2701 2702 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2703 { 2704 ipv6_route_native_seq_stop(seq, v); 2705 } 2706 #endif 2707 2708 const struct seq_operations ipv6_route_seq_ops = { 2709 .start = ipv6_route_seq_start, 2710 .next = ipv6_route_seq_next, 2711 .stop = ipv6_route_seq_stop, 2712 .show = ipv6_route_seq_show 2713 }; 2714 #endif /* CONFIG_PROC_FS */ 2715