1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 INIT_HLIST_NODE(&f6i->gc_link); 164 165 return f6i; 166 } 167 168 void fib6_info_destroy_rcu(struct rcu_head *head) 169 { 170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 171 172 WARN_ON(f6i->fib6_node); 173 174 if (f6i->nh) 175 nexthop_put(f6i->nh); 176 else 177 fib6_nh_release(f6i->fib6_nh); 178 179 ip_fib_metrics_put(f6i->fib6_metrics); 180 kfree(f6i); 181 } 182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 183 184 static struct fib6_node *node_alloc(struct net *net) 185 { 186 struct fib6_node *fn; 187 188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 189 if (fn) 190 net->ipv6.rt6_stats->fib_nodes++; 191 192 return fn; 193 } 194 195 static void node_free_immediate(struct net *net, struct fib6_node *fn) 196 { 197 kmem_cache_free(fib6_node_kmem, fn); 198 net->ipv6.rt6_stats->fib_nodes--; 199 } 200 201 static void node_free(struct net *net, struct fib6_node *fn) 202 { 203 kfree_rcu(fn, rcu); 204 net->ipv6.rt6_stats->fib_nodes--; 205 } 206 207 static void fib6_free_table(struct fib6_table *table) 208 { 209 inetpeer_invalidate_tree(&table->tb6_peers); 210 kfree(table); 211 } 212 213 static void fib6_link_table(struct net *net, struct fib6_table *tb) 214 { 215 unsigned int h; 216 217 /* 218 * Initialize table lock at a single place to give lockdep a key, 219 * tables aren't visible prior to being linked to the list. 220 */ 221 spin_lock_init(&tb->tb6_lock); 222 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 223 224 /* 225 * No protection necessary, this is the only list mutatation 226 * operation, tables never disappear once they exist. 227 */ 228 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 229 } 230 231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 232 233 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 234 { 235 struct fib6_table *table; 236 237 table = kzalloc(sizeof(*table), GFP_ATOMIC); 238 if (table) { 239 table->tb6_id = id; 240 rcu_assign_pointer(table->tb6_root.leaf, 241 net->ipv6.fib6_null_entry); 242 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 243 inet_peer_base_init(&table->tb6_peers); 244 INIT_HLIST_HEAD(&table->tb6_gc_hlist); 245 } 246 247 return table; 248 } 249 250 struct fib6_table *fib6_new_table(struct net *net, u32 id) 251 { 252 struct fib6_table *tb, *new_tb; 253 254 if (id == 0) 255 id = RT6_TABLE_MAIN; 256 257 tb = fib6_get_table(net, id); 258 if (tb) 259 return tb; 260 261 new_tb = fib6_alloc_table(net, id); 262 if (!new_tb) 263 return NULL; 264 265 spin_lock_bh(&net->ipv6.fib_table_hash_lock); 266 267 tb = fib6_get_table(net, id); 268 if (unlikely(tb)) { 269 spin_unlock_bh(&net->ipv6.fib_table_hash_lock); 270 kfree(new_tb); 271 return tb; 272 } 273 274 fib6_link_table(net, new_tb); 275 276 spin_unlock_bh(&net->ipv6.fib_table_hash_lock); 277 278 return new_tb; 279 } 280 EXPORT_SYMBOL_GPL(fib6_new_table); 281 282 struct fib6_table *fib6_get_table(struct net *net, u32 id) 283 { 284 struct hlist_head *head; 285 struct fib6_table *tb; 286 287 if (!id) 288 id = RT6_TABLE_MAIN; 289 290 head = &net->ipv6.fib_table_hash[id & (FIB6_TABLE_HASHSZ - 1)]; 291 292 /* See comment in fib6_link_table(). RCU is not required, 293 * but rcu_dereference_raw() is used to avoid data-race. 294 */ 295 hlist_for_each_entry_rcu(tb, head, tb6_hlist, true) 296 if (tb->tb6_id == id) 297 return tb; 298 299 return NULL; 300 } 301 EXPORT_SYMBOL_GPL(fib6_get_table); 302 303 static void __net_init fib6_tables_init(struct net *net) 304 { 305 fib6_link_table(net, net->ipv6.fib6_main_tbl); 306 fib6_link_table(net, net->ipv6.fib6_local_tbl); 307 } 308 #else 309 310 struct fib6_table *fib6_new_table(struct net *net, u32 id) 311 { 312 return fib6_get_table(net, id); 313 } 314 315 struct fib6_table *fib6_get_table(struct net *net, u32 id) 316 { 317 return net->ipv6.fib6_main_tbl; 318 } 319 320 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 321 const struct sk_buff *skb, 322 int flags, pol_lookup_t lookup) 323 { 324 struct rt6_info *rt; 325 326 rt = pol_lookup_func(lookup, 327 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 328 if (rt->dst.error == -EAGAIN) { 329 ip6_rt_put_flags(rt, flags); 330 rt = net->ipv6.ip6_null_entry; 331 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 332 dst_hold(&rt->dst); 333 } 334 335 return &rt->dst; 336 } 337 338 /* called with rcu lock held; no reference taken on fib6_info */ 339 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 340 struct fib6_result *res, int flags) 341 { 342 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 343 res, flags); 344 } 345 346 static void __net_init fib6_tables_init(struct net *net) 347 { 348 fib6_link_table(net, net->ipv6.fib6_main_tbl); 349 } 350 351 #endif 352 353 unsigned int fib6_tables_seq_read(const struct net *net) 354 { 355 unsigned int h, fib_seq = 0; 356 357 rcu_read_lock(); 358 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 359 const struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 360 const struct fib6_table *tb; 361 362 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 363 fib_seq += READ_ONCE(tb->fib_seq); 364 } 365 rcu_read_unlock(); 366 367 return fib_seq; 368 } 369 370 static int call_fib6_entry_notifier(struct notifier_block *nb, 371 enum fib_event_type event_type, 372 struct fib6_info *rt, 373 struct netlink_ext_ack *extack) 374 { 375 struct fib6_entry_notifier_info info = { 376 .info.extack = extack, 377 .rt = rt, 378 }; 379 380 return call_fib6_notifier(nb, event_type, &info.info); 381 } 382 383 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 384 enum fib_event_type event_type, 385 struct fib6_info *rt, 386 unsigned int nsiblings, 387 struct netlink_ext_ack *extack) 388 { 389 struct fib6_entry_notifier_info info = { 390 .info.extack = extack, 391 .rt = rt, 392 .nsiblings = nsiblings, 393 }; 394 395 return call_fib6_notifier(nb, event_type, &info.info); 396 } 397 398 int call_fib6_entry_notifiers(struct net *net, 399 enum fib_event_type event_type, 400 struct fib6_info *rt, 401 struct netlink_ext_ack *extack) 402 { 403 struct fib6_entry_notifier_info info = { 404 .info.extack = extack, 405 .rt = rt, 406 }; 407 408 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 409 return call_fib6_notifiers(net, event_type, &info.info); 410 } 411 412 int call_fib6_multipath_entry_notifiers(struct net *net, 413 enum fib_event_type event_type, 414 struct fib6_info *rt, 415 unsigned int nsiblings, 416 struct netlink_ext_ack *extack) 417 { 418 struct fib6_entry_notifier_info info = { 419 .info.extack = extack, 420 .rt = rt, 421 .nsiblings = nsiblings, 422 }; 423 424 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 425 return call_fib6_notifiers(net, event_type, &info.info); 426 } 427 428 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 429 { 430 struct fib6_entry_notifier_info info = { 431 .rt = rt, 432 .nsiblings = rt->fib6_nsiblings, 433 }; 434 435 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 436 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 437 } 438 439 struct fib6_dump_arg { 440 struct net *net; 441 struct notifier_block *nb; 442 struct netlink_ext_ack *extack; 443 }; 444 445 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 446 { 447 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 448 unsigned int nsiblings; 449 int err; 450 451 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 452 return 0; 453 454 nsiblings = READ_ONCE(rt->fib6_nsiblings); 455 if (nsiblings) 456 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 457 rt, 458 nsiblings, 459 arg->extack); 460 else 461 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 462 arg->extack); 463 464 return err; 465 } 466 467 static int fib6_node_dump(struct fib6_walker *w) 468 { 469 int err; 470 471 err = fib6_rt_dump(w->leaf, w->args); 472 w->leaf = NULL; 473 return err; 474 } 475 476 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 477 struct fib6_walker *w) 478 { 479 int err; 480 481 w->root = &tb->tb6_root; 482 spin_lock_bh(&tb->tb6_lock); 483 err = fib6_walk(net, w); 484 spin_unlock_bh(&tb->tb6_lock); 485 return err; 486 } 487 488 /* Called with rcu_read_lock() */ 489 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 490 struct netlink_ext_ack *extack) 491 { 492 struct fib6_dump_arg arg; 493 struct fib6_walker *w; 494 unsigned int h; 495 int err = 0; 496 497 w = kzalloc(sizeof(*w), GFP_ATOMIC); 498 if (!w) 499 return -ENOMEM; 500 501 w->func = fib6_node_dump; 502 arg.net = net; 503 arg.nb = nb; 504 arg.extack = extack; 505 w->args = &arg; 506 507 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 508 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 509 struct fib6_table *tb; 510 511 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 512 err = fib6_table_dump(net, tb, w); 513 if (err) 514 goto out; 515 } 516 } 517 518 out: 519 kfree(w); 520 521 /* The tree traversal function should never return a positive value. */ 522 return err > 0 ? -EINVAL : err; 523 } 524 525 static int fib6_dump_node(struct fib6_walker *w) 526 { 527 int res; 528 struct fib6_info *rt; 529 530 for_each_fib6_walker_rt(w) { 531 res = rt6_dump_route(rt, w->args, w->skip_in_node); 532 if (res >= 0) { 533 /* Frame is full, suspend walking */ 534 w->leaf = rt; 535 536 /* We'll restart from this node, so if some routes were 537 * already dumped, skip them next time. 538 */ 539 w->skip_in_node += res; 540 541 return 1; 542 } 543 w->skip_in_node = 0; 544 545 /* Multipath routes are dumped in one route with the 546 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 547 * last sibling of this route (no need to dump the 548 * sibling routes again) 549 */ 550 if (rt->fib6_nsiblings) 551 rt = list_last_entry(&rt->fib6_siblings, 552 struct fib6_info, 553 fib6_siblings); 554 } 555 w->leaf = NULL; 556 return 0; 557 } 558 559 static void fib6_dump_end(struct netlink_callback *cb) 560 { 561 struct net *net = sock_net(cb->skb->sk); 562 struct fib6_walker *w = (void *)cb->args[2]; 563 564 if (w) { 565 if (cb->args[4]) { 566 cb->args[4] = 0; 567 fib6_walker_unlink(net, w); 568 } 569 cb->args[2] = 0; 570 kfree(w); 571 } 572 cb->done = (void *)cb->args[3]; 573 cb->args[1] = 3; 574 } 575 576 static int fib6_dump_done(struct netlink_callback *cb) 577 { 578 fib6_dump_end(cb); 579 return cb->done ? cb->done(cb) : 0; 580 } 581 582 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 583 struct netlink_callback *cb) 584 { 585 struct net *net = sock_net(skb->sk); 586 struct fib6_walker *w; 587 int res; 588 589 w = (void *)cb->args[2]; 590 w->root = &table->tb6_root; 591 592 if (cb->args[4] == 0) { 593 w->count = 0; 594 w->skip = 0; 595 w->skip_in_node = 0; 596 597 spin_lock_bh(&table->tb6_lock); 598 res = fib6_walk(net, w); 599 spin_unlock_bh(&table->tb6_lock); 600 if (res > 0) { 601 cb->args[4] = 1; 602 cb->args[5] = READ_ONCE(w->root->fn_sernum); 603 } 604 } else { 605 int sernum = READ_ONCE(w->root->fn_sernum); 606 if (cb->args[5] != sernum) { 607 /* Begin at the root if the tree changed */ 608 cb->args[5] = sernum; 609 w->state = FWS_INIT; 610 w->node = w->root; 611 w->skip = w->count; 612 w->skip_in_node = 0; 613 } else 614 w->skip = 0; 615 616 spin_lock_bh(&table->tb6_lock); 617 res = fib6_walk_continue(w); 618 spin_unlock_bh(&table->tb6_lock); 619 if (res <= 0) { 620 fib6_walker_unlink(net, w); 621 cb->args[4] = 0; 622 } 623 } 624 625 return res; 626 } 627 628 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 629 { 630 struct rt6_rtnl_dump_arg arg = { 631 .filter.dump_exceptions = true, 632 .filter.dump_routes = true, 633 .filter.rtnl_held = false, 634 }; 635 const struct nlmsghdr *nlh = cb->nlh; 636 struct net *net = sock_net(skb->sk); 637 unsigned int e = 0, s_e; 638 struct hlist_head *head; 639 struct fib6_walker *w; 640 struct fib6_table *tb; 641 unsigned int h, s_h; 642 int err = 0; 643 644 rcu_read_lock(); 645 if (cb->strict_check) { 646 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 647 if (err < 0) 648 goto unlock; 649 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 650 struct rtmsg *rtm = nlmsg_data(nlh); 651 652 if (rtm->rtm_flags & RTM_F_PREFIX) 653 arg.filter.flags = RTM_F_PREFIX; 654 } 655 656 w = (void *)cb->args[2]; 657 if (!w) { 658 /* New dump: 659 * 660 * 1. allocate and initialize walker. 661 */ 662 w = kzalloc(sizeof(*w), GFP_ATOMIC); 663 if (!w) { 664 err = -ENOMEM; 665 goto unlock; 666 } 667 w->func = fib6_dump_node; 668 cb->args[2] = (long)w; 669 670 /* 2. hook callback destructor. 671 */ 672 cb->args[3] = (long)cb->done; 673 cb->done = fib6_dump_done; 674 675 } 676 677 arg.skb = skb; 678 arg.cb = cb; 679 arg.net = net; 680 w->args = &arg; 681 682 if (arg.filter.table_id) { 683 tb = fib6_get_table(net, arg.filter.table_id); 684 if (!tb) { 685 if (rtnl_msg_family(cb->nlh) != PF_INET6) 686 goto unlock; 687 688 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 689 err = -ENOENT; 690 goto unlock; 691 } 692 693 if (!cb->args[0]) { 694 err = fib6_dump_table(tb, skb, cb); 695 if (!err) 696 cb->args[0] = 1; 697 } 698 goto unlock; 699 } 700 701 s_h = cb->args[0]; 702 s_e = cb->args[1]; 703 704 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 705 e = 0; 706 head = &net->ipv6.fib_table_hash[h]; 707 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 708 if (e < s_e) 709 goto next; 710 err = fib6_dump_table(tb, skb, cb); 711 if (err != 0) 712 goto out; 713 next: 714 e++; 715 } 716 } 717 out: 718 cb->args[1] = e; 719 cb->args[0] = h; 720 721 unlock: 722 rcu_read_unlock(); 723 if (err <= 0) 724 fib6_dump_end(cb); 725 return err; 726 } 727 728 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 729 { 730 if (!f6i) 731 return; 732 733 if (f6i->fib6_metrics == &dst_default_metrics) { 734 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 735 736 if (!p) 737 return; 738 739 refcount_set(&p->refcnt, 1); 740 f6i->fib6_metrics = p; 741 } 742 743 f6i->fib6_metrics->metrics[metric - 1] = val; 744 } 745 746 /* 747 * Routing Table 748 * 749 * return the appropriate node for a routing tree "add" operation 750 * by either creating and inserting or by returning an existing 751 * node. 752 */ 753 754 static struct fib6_node *fib6_add_1(struct net *net, 755 struct fib6_table *table, 756 struct fib6_node *root, 757 struct in6_addr *addr, int plen, 758 int offset, int allow_create, 759 int replace_required, 760 struct netlink_ext_ack *extack) 761 { 762 struct fib6_node *fn, *in, *ln; 763 struct fib6_node *pn = NULL; 764 struct rt6key *key; 765 int bit; 766 __be32 dir = 0; 767 768 /* insert node in tree */ 769 770 fn = root; 771 772 do { 773 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 774 lockdep_is_held(&table->tb6_lock)); 775 key = (struct rt6key *)((u8 *)leaf + offset); 776 777 /* 778 * Prefix match 779 */ 780 if (plen < fn->fn_bit || 781 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 782 if (!allow_create) { 783 if (replace_required) { 784 NL_SET_ERR_MSG(extack, 785 "Can not replace route - no match found"); 786 pr_warn("Can't replace route, no match found\n"); 787 return ERR_PTR(-ENOENT); 788 } 789 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 790 } 791 goto insert_above; 792 } 793 794 /* 795 * Exact match ? 796 */ 797 798 if (plen == fn->fn_bit) { 799 /* clean up an intermediate node */ 800 if (!(fn->fn_flags & RTN_RTINFO)) { 801 RCU_INIT_POINTER(fn->leaf, NULL); 802 fib6_info_release(leaf); 803 /* remove null_entry in the root node */ 804 } else if (fn->fn_flags & RTN_TL_ROOT && 805 rcu_access_pointer(fn->leaf) == 806 net->ipv6.fib6_null_entry) { 807 RCU_INIT_POINTER(fn->leaf, NULL); 808 } 809 810 return fn; 811 } 812 813 /* 814 * We have more bits to go 815 */ 816 817 /* Try to walk down on tree. */ 818 dir = addr_bit_set(addr, fn->fn_bit); 819 pn = fn; 820 fn = dir ? 821 rcu_dereference_protected(fn->right, 822 lockdep_is_held(&table->tb6_lock)) : 823 rcu_dereference_protected(fn->left, 824 lockdep_is_held(&table->tb6_lock)); 825 } while (fn); 826 827 if (!allow_create) { 828 /* We should not create new node because 829 * NLM_F_REPLACE was specified without NLM_F_CREATE 830 * I assume it is safe to require NLM_F_CREATE when 831 * REPLACE flag is used! Later we may want to remove the 832 * check for replace_required, because according 833 * to netlink specification, NLM_F_CREATE 834 * MUST be specified if new route is created. 835 * That would keep IPv6 consistent with IPv4 836 */ 837 if (replace_required) { 838 NL_SET_ERR_MSG(extack, 839 "Can not replace route - no match found"); 840 pr_warn("Can't replace route, no match found\n"); 841 return ERR_PTR(-ENOENT); 842 } 843 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 844 } 845 /* 846 * We walked to the bottom of tree. 847 * Create new leaf node without children. 848 */ 849 850 ln = node_alloc(net); 851 852 if (!ln) 853 return ERR_PTR(-ENOMEM); 854 ln->fn_bit = plen; 855 RCU_INIT_POINTER(ln->parent, pn); 856 857 if (dir) 858 rcu_assign_pointer(pn->right, ln); 859 else 860 rcu_assign_pointer(pn->left, ln); 861 862 return ln; 863 864 865 insert_above: 866 /* 867 * split since we don't have a common prefix anymore or 868 * we have a less significant route. 869 * we've to insert an intermediate node on the list 870 * this new node will point to the one we need to create 871 * and the current 872 */ 873 874 pn = rcu_dereference_protected(fn->parent, 875 lockdep_is_held(&table->tb6_lock)); 876 877 /* find 1st bit in difference between the 2 addrs. 878 879 See comment in __ipv6_addr_diff: bit may be an invalid value, 880 but if it is >= plen, the value is ignored in any case. 881 */ 882 883 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 884 885 /* 886 * (intermediate)[in] 887 * / \ 888 * (new leaf node)[ln] (old node)[fn] 889 */ 890 if (plen > bit) { 891 in = node_alloc(net); 892 ln = node_alloc(net); 893 894 if (!in || !ln) { 895 if (in) 896 node_free_immediate(net, in); 897 if (ln) 898 node_free_immediate(net, ln); 899 return ERR_PTR(-ENOMEM); 900 } 901 902 /* 903 * new intermediate node. 904 * RTN_RTINFO will 905 * be off since that an address that chooses one of 906 * the branches would not match less specific routes 907 * in the other branch 908 */ 909 910 in->fn_bit = bit; 911 912 RCU_INIT_POINTER(in->parent, pn); 913 in->leaf = fn->leaf; 914 fib6_info_hold(rcu_dereference_protected(in->leaf, 915 lockdep_is_held(&table->tb6_lock))); 916 917 /* update parent pointer */ 918 if (dir) 919 rcu_assign_pointer(pn->right, in); 920 else 921 rcu_assign_pointer(pn->left, in); 922 923 ln->fn_bit = plen; 924 925 RCU_INIT_POINTER(ln->parent, in); 926 rcu_assign_pointer(fn->parent, in); 927 928 if (addr_bit_set(addr, bit)) { 929 rcu_assign_pointer(in->right, ln); 930 rcu_assign_pointer(in->left, fn); 931 } else { 932 rcu_assign_pointer(in->left, ln); 933 rcu_assign_pointer(in->right, fn); 934 } 935 } else { /* plen <= bit */ 936 937 /* 938 * (new leaf node)[ln] 939 * / \ 940 * (old node)[fn] NULL 941 */ 942 943 ln = node_alloc(net); 944 945 if (!ln) 946 return ERR_PTR(-ENOMEM); 947 948 ln->fn_bit = plen; 949 950 RCU_INIT_POINTER(ln->parent, pn); 951 952 if (addr_bit_set(&key->addr, plen)) 953 RCU_INIT_POINTER(ln->right, fn); 954 else 955 RCU_INIT_POINTER(ln->left, fn); 956 957 rcu_assign_pointer(fn->parent, ln); 958 959 if (dir) 960 rcu_assign_pointer(pn->right, ln); 961 else 962 rcu_assign_pointer(pn->left, ln); 963 } 964 return ln; 965 } 966 967 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 968 const struct fib6_info *match) 969 { 970 int cpu; 971 972 if (!fib6_nh->rt6i_pcpu) 973 return; 974 975 rcu_read_lock(); 976 /* release the reference to this fib entry from 977 * all of its cached pcpu routes 978 */ 979 for_each_possible_cpu(cpu) { 980 struct rt6_info **ppcpu_rt; 981 struct rt6_info *pcpu_rt; 982 983 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 984 985 /* Paired with xchg() in rt6_get_pcpu_route() */ 986 pcpu_rt = READ_ONCE(*ppcpu_rt); 987 988 /* only dropping the 'from' reference if the cached route 989 * is using 'match'. The cached pcpu_rt->from only changes 990 * from a fib6_info to NULL (ip6_dst_destroy); it can never 991 * change from one fib6_info reference to another 992 */ 993 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 994 struct fib6_info *from; 995 996 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL)); 997 fib6_info_release(from); 998 } 999 } 1000 rcu_read_unlock(); 1001 } 1002 1003 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 1004 { 1005 struct fib6_info *arg = _arg; 1006 1007 __fib6_drop_pcpu_from(nh, arg); 1008 return 0; 1009 } 1010 1011 static void fib6_drop_pcpu_from(struct fib6_info *f6i) 1012 { 1013 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1014 * while we are cleaning them here. 1015 */ 1016 f6i->fib6_destroying = 1; 1017 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1018 1019 if (f6i->nh) { 1020 rcu_read_lock(); 1021 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, f6i); 1022 rcu_read_unlock(); 1023 } else { 1024 struct fib6_nh *fib6_nh; 1025 1026 fib6_nh = f6i->fib6_nh; 1027 __fib6_drop_pcpu_from(fib6_nh, f6i); 1028 } 1029 } 1030 1031 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1032 struct net *net) 1033 { 1034 struct fib6_table *table = rt->fib6_table; 1035 1036 /* Flush all cached dst in exception table */ 1037 rt6_flush_exceptions(rt); 1038 fib6_drop_pcpu_from(rt); 1039 1040 if (rt->nh) { 1041 spin_lock(&rt->nh->lock); 1042 1043 if (!list_empty(&rt->nh_list)) 1044 list_del_init(&rt->nh_list); 1045 1046 spin_unlock(&rt->nh->lock); 1047 } 1048 1049 if (refcount_read(&rt->fib6_ref) != 1) { 1050 /* This route is used as dummy address holder in some split 1051 * nodes. It is not leaked, but it still holds other resources, 1052 * which must be released in time. So, scan ascendant nodes 1053 * and replace dummy references to this route with references 1054 * to still alive ones. 1055 */ 1056 while (fn) { 1057 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1058 lockdep_is_held(&table->tb6_lock)); 1059 struct fib6_info *new_leaf; 1060 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1061 new_leaf = fib6_find_prefix(net, table, fn); 1062 fib6_info_hold(new_leaf); 1063 1064 rcu_assign_pointer(fn->leaf, new_leaf); 1065 fib6_info_release(rt); 1066 } 1067 fn = rcu_dereference_protected(fn->parent, 1068 lockdep_is_held(&table->tb6_lock)); 1069 } 1070 } 1071 1072 fib6_clean_expires(rt); 1073 fib6_remove_gc_list(rt); 1074 } 1075 1076 /* 1077 * Insert routing information in a node. 1078 */ 1079 1080 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1081 struct nl_info *info, struct netlink_ext_ack *extack, 1082 struct list_head *purge_list) 1083 { 1084 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1085 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1086 struct fib6_info *iter = NULL; 1087 struct fib6_info __rcu **ins; 1088 struct fib6_info __rcu **fallback_ins = NULL; 1089 int replace = (info->nlh && 1090 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1091 int add = (!info->nlh || 1092 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1093 int found = 0; 1094 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1095 bool notify_sibling_rt = false; 1096 u16 nlflags = NLM_F_EXCL; 1097 int err; 1098 1099 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1100 nlflags |= NLM_F_APPEND; 1101 1102 ins = &fn->leaf; 1103 1104 for (iter = leaf; iter; 1105 iter = rcu_dereference_protected(iter->fib6_next, 1106 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1107 /* 1108 * Search for duplicates 1109 */ 1110 1111 if (iter->fib6_metric == rt->fib6_metric) { 1112 /* 1113 * Same priority level 1114 */ 1115 if (info->nlh && 1116 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1117 return -EEXIST; 1118 1119 nlflags &= ~NLM_F_EXCL; 1120 if (replace) { 1121 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1122 found++; 1123 break; 1124 } 1125 fallback_ins = fallback_ins ?: ins; 1126 goto next_iter; 1127 } 1128 1129 if (rt6_duplicate_nexthop(iter, rt)) { 1130 if (rt->fib6_nsiblings) 1131 WRITE_ONCE(rt->fib6_nsiblings, 0); 1132 if (!(iter->fib6_flags & RTF_EXPIRES)) 1133 return -EEXIST; 1134 if (!(rt->fib6_flags & RTF_EXPIRES)) { 1135 fib6_clean_expires(iter); 1136 fib6_remove_gc_list(iter); 1137 } else { 1138 fib6_set_expires(iter, rt->expires); 1139 fib6_add_gc_list(iter); 1140 } 1141 1142 if (rt->fib6_pmtu) 1143 fib6_metric_set(iter, RTAX_MTU, 1144 rt->fib6_pmtu); 1145 return -EEXIST; 1146 } 1147 /* If we have the same destination and the same metric, 1148 * but not the same gateway, then the route we try to 1149 * add is sibling to this route, increment our counter 1150 * of siblings, and later we will add our route to the 1151 * list. 1152 * Only static routes (which don't have flag 1153 * RTF_EXPIRES) are used for ECMPv6. 1154 * 1155 * To avoid long list, we only had siblings if the 1156 * route have a gateway. 1157 */ 1158 if (rt_can_ecmp && 1159 rt6_qualify_for_ecmp(iter)) 1160 WRITE_ONCE(rt->fib6_nsiblings, 1161 rt->fib6_nsiblings + 1); 1162 } 1163 1164 if (iter->fib6_metric > rt->fib6_metric) 1165 break; 1166 1167 next_iter: 1168 ins = &iter->fib6_next; 1169 } 1170 1171 if (fallback_ins && !found) { 1172 /* No matching route with same ecmp-able-ness found, replace 1173 * first matching route 1174 */ 1175 ins = fallback_ins; 1176 iter = rcu_dereference_protected(*ins, 1177 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1178 found++; 1179 } 1180 1181 /* Reset round-robin state, if necessary */ 1182 if (ins == &fn->leaf) 1183 fn->rr_ptr = NULL; 1184 1185 /* Link this route to others same route. */ 1186 if (rt->fib6_nsiblings) { 1187 unsigned int fib6_nsiblings; 1188 struct fib6_info *sibling, *temp_sibling; 1189 1190 /* Find the first route that have the same metric */ 1191 sibling = leaf; 1192 notify_sibling_rt = true; 1193 while (sibling) { 1194 if (sibling->fib6_metric == rt->fib6_metric && 1195 rt6_qualify_for_ecmp(sibling)) { 1196 list_add_tail_rcu(&rt->fib6_siblings, 1197 &sibling->fib6_siblings); 1198 break; 1199 } 1200 sibling = rcu_dereference_protected(sibling->fib6_next, 1201 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1202 notify_sibling_rt = false; 1203 } 1204 /* For each sibling in the list, increment the counter of 1205 * siblings. BUG() if counters does not match, list of siblings 1206 * is broken! 1207 */ 1208 fib6_nsiblings = 0; 1209 list_for_each_entry_safe(sibling, temp_sibling, 1210 &rt->fib6_siblings, fib6_siblings) { 1211 WRITE_ONCE(sibling->fib6_nsiblings, 1212 sibling->fib6_nsiblings + 1); 1213 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1214 fib6_nsiblings++; 1215 } 1216 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1217 rcu_read_lock(); 1218 rt6_multipath_rebalance(temp_sibling); 1219 rcu_read_unlock(); 1220 } 1221 1222 /* 1223 * insert node 1224 */ 1225 if (!replace) { 1226 if (!add) 1227 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1228 1229 add: 1230 nlflags |= NLM_F_CREATE; 1231 1232 /* The route should only be notified if it is the first 1233 * route in the node or if it is added as a sibling 1234 * route to the first route in the node. 1235 */ 1236 if (!info->skip_notify_kernel && 1237 (notify_sibling_rt || ins == &fn->leaf)) { 1238 enum fib_event_type fib_event; 1239 1240 if (notify_sibling_rt) 1241 fib_event = FIB_EVENT_ENTRY_APPEND; 1242 else 1243 fib_event = FIB_EVENT_ENTRY_REPLACE; 1244 err = call_fib6_entry_notifiers(info->nl_net, 1245 fib_event, rt, 1246 extack); 1247 if (err) { 1248 struct fib6_info *sibling, *next_sibling; 1249 1250 /* If the route has siblings, then it first 1251 * needs to be unlinked from them. 1252 */ 1253 if (!rt->fib6_nsiblings) 1254 return err; 1255 1256 list_for_each_entry_safe(sibling, next_sibling, 1257 &rt->fib6_siblings, 1258 fib6_siblings) 1259 WRITE_ONCE(sibling->fib6_nsiblings, 1260 sibling->fib6_nsiblings - 1); 1261 WRITE_ONCE(rt->fib6_nsiblings, 0); 1262 list_del_rcu(&rt->fib6_siblings); 1263 rcu_read_lock(); 1264 rt6_multipath_rebalance(next_sibling); 1265 rcu_read_unlock(); 1266 return err; 1267 } 1268 } 1269 1270 rcu_assign_pointer(rt->fib6_next, iter); 1271 fib6_info_hold(rt); 1272 rcu_assign_pointer(rt->fib6_node, fn); 1273 rcu_assign_pointer(*ins, rt); 1274 if (!info->skip_notify) 1275 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1276 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1277 1278 if (!(fn->fn_flags & RTN_RTINFO)) { 1279 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1280 fn->fn_flags |= RTN_RTINFO; 1281 } 1282 1283 } else { 1284 int nsiblings; 1285 1286 if (!found) { 1287 if (add) 1288 goto add; 1289 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1290 return -ENOENT; 1291 } 1292 1293 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1294 err = call_fib6_entry_notifiers(info->nl_net, 1295 FIB_EVENT_ENTRY_REPLACE, 1296 rt, extack); 1297 if (err) 1298 return err; 1299 } 1300 1301 fib6_info_hold(rt); 1302 rcu_assign_pointer(rt->fib6_node, fn); 1303 rt->fib6_next = iter->fib6_next; 1304 rcu_assign_pointer(*ins, rt); 1305 if (!info->skip_notify) 1306 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1307 if (!(fn->fn_flags & RTN_RTINFO)) { 1308 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1309 fn->fn_flags |= RTN_RTINFO; 1310 } 1311 nsiblings = iter->fib6_nsiblings; 1312 iter->fib6_node = NULL; 1313 list_add(&iter->purge_link, purge_list); 1314 if (rcu_access_pointer(fn->rr_ptr) == iter) 1315 fn->rr_ptr = NULL; 1316 1317 if (nsiblings) { 1318 /* Replacing an ECMP route, remove all siblings */ 1319 ins = &rt->fib6_next; 1320 iter = rcu_dereference_protected(*ins, 1321 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1322 while (iter) { 1323 if (iter->fib6_metric > rt->fib6_metric) 1324 break; 1325 if (rt6_qualify_for_ecmp(iter)) { 1326 *ins = iter->fib6_next; 1327 iter->fib6_node = NULL; 1328 list_add(&iter->purge_link, purge_list); 1329 if (rcu_access_pointer(fn->rr_ptr) == iter) 1330 fn->rr_ptr = NULL; 1331 nsiblings--; 1332 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1333 } else { 1334 ins = &iter->fib6_next; 1335 } 1336 iter = rcu_dereference_protected(*ins, 1337 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1338 } 1339 WARN_ON(nsiblings != 0); 1340 } 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int fib6_add_rt2node_nh(struct fib6_node *fn, struct fib6_info *rt, 1347 struct nl_info *info, struct netlink_ext_ack *extack, 1348 struct list_head *purge_list) 1349 { 1350 int err; 1351 1352 spin_lock(&rt->nh->lock); 1353 1354 if (rt->nh->dead) { 1355 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 1356 err = -EINVAL; 1357 } else { 1358 err = fib6_add_rt2node(fn, rt, info, extack, purge_list); 1359 if (!err) 1360 list_add(&rt->nh_list, &rt->nh->f6i_list); 1361 } 1362 1363 spin_unlock(&rt->nh->lock); 1364 1365 return err; 1366 } 1367 1368 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1369 { 1370 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1371 (rt->fib6_flags & RTF_EXPIRES)) 1372 mod_timer(&net->ipv6.ip6_fib_timer, 1373 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1374 } 1375 1376 void fib6_force_start_gc(struct net *net) 1377 { 1378 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1379 mod_timer(&net->ipv6.ip6_fib_timer, 1380 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1381 } 1382 1383 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1384 int sernum) 1385 { 1386 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1387 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1388 1389 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1390 smp_wmb(); 1391 while (fn) { 1392 WRITE_ONCE(fn->fn_sernum, sernum); 1393 fn = rcu_dereference_protected(fn->parent, 1394 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1395 } 1396 } 1397 1398 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1399 { 1400 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1401 } 1402 1403 /* allow ipv4 to update sernum via ipv6_stub */ 1404 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1405 { 1406 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1407 fib6_update_sernum_upto_root(net, f6i); 1408 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1409 } 1410 1411 /* 1412 * Add routing information to the routing tree. 1413 * <destination addr>/<source addr> 1414 * with source addr info in sub-trees 1415 * Need to own table->tb6_lock 1416 */ 1417 1418 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1419 struct nl_info *info, struct netlink_ext_ack *extack) 1420 { 1421 struct fib6_table *table = rt->fib6_table; 1422 LIST_HEAD(purge_list); 1423 struct fib6_node *fn; 1424 #ifdef CONFIG_IPV6_SUBTREES 1425 struct fib6_node *pn = NULL; 1426 #endif 1427 int err = -ENOMEM; 1428 int allow_create = 1; 1429 int replace_required = 0; 1430 1431 if (info->nlh) { 1432 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1433 allow_create = 0; 1434 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1435 replace_required = 1; 1436 } 1437 if (!allow_create && !replace_required) 1438 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1439 1440 fn = fib6_add_1(info->nl_net, table, root, 1441 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1442 offsetof(struct fib6_info, fib6_dst), allow_create, 1443 replace_required, extack); 1444 if (IS_ERR(fn)) { 1445 err = PTR_ERR(fn); 1446 fn = NULL; 1447 goto out; 1448 } 1449 1450 #ifdef CONFIG_IPV6_SUBTREES 1451 pn = fn; 1452 1453 if (rt->fib6_src.plen) { 1454 struct fib6_node *sn; 1455 1456 if (!rcu_access_pointer(fn->subtree)) { 1457 struct fib6_node *sfn; 1458 1459 /* 1460 * Create subtree. 1461 * 1462 * fn[main tree] 1463 * | 1464 * sfn[subtree root] 1465 * \ 1466 * sn[new leaf node] 1467 */ 1468 1469 /* Create subtree root node */ 1470 sfn = node_alloc(info->nl_net); 1471 if (!sfn) 1472 goto failure; 1473 1474 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1475 rcu_assign_pointer(sfn->leaf, 1476 info->nl_net->ipv6.fib6_null_entry); 1477 sfn->fn_flags = RTN_ROOT; 1478 1479 /* Now add the first leaf node to new subtree */ 1480 1481 sn = fib6_add_1(info->nl_net, table, sfn, 1482 &rt->fib6_src.addr, rt->fib6_src.plen, 1483 offsetof(struct fib6_info, fib6_src), 1484 allow_create, replace_required, extack); 1485 1486 if (IS_ERR(sn)) { 1487 /* If it is failed, discard just allocated 1488 root, and then (in failure) stale node 1489 in main tree. 1490 */ 1491 node_free_immediate(info->nl_net, sfn); 1492 err = PTR_ERR(sn); 1493 goto failure; 1494 } 1495 1496 /* Now link new subtree to main tree */ 1497 rcu_assign_pointer(sfn->parent, fn); 1498 rcu_assign_pointer(fn->subtree, sfn); 1499 } else { 1500 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1501 &rt->fib6_src.addr, rt->fib6_src.plen, 1502 offsetof(struct fib6_info, fib6_src), 1503 allow_create, replace_required, extack); 1504 1505 if (IS_ERR(sn)) { 1506 err = PTR_ERR(sn); 1507 goto failure; 1508 } 1509 } 1510 1511 if (!rcu_access_pointer(fn->leaf)) { 1512 if (fn->fn_flags & RTN_TL_ROOT) { 1513 /* put back null_entry for root node */ 1514 rcu_assign_pointer(fn->leaf, 1515 info->nl_net->ipv6.fib6_null_entry); 1516 } else { 1517 fib6_info_hold(rt); 1518 rcu_assign_pointer(fn->leaf, rt); 1519 } 1520 } 1521 fn = sn; 1522 } 1523 #endif 1524 1525 if (rt->nh) 1526 err = fib6_add_rt2node_nh(fn, rt, info, extack, &purge_list); 1527 else 1528 err = fib6_add_rt2node(fn, rt, info, extack, &purge_list); 1529 if (!err) { 1530 struct fib6_info *iter, *next; 1531 1532 list_for_each_entry_safe(iter, next, &purge_list, purge_link) { 1533 list_del(&iter->purge_link); 1534 fib6_purge_rt(iter, fn, info->nl_net); 1535 fib6_info_release(iter); 1536 } 1537 1538 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1539 1540 if (rt->fib6_flags & RTF_EXPIRES) 1541 fib6_add_gc_list(rt); 1542 1543 fib6_start_gc(info->nl_net, rt); 1544 } 1545 1546 out: 1547 if (err) { 1548 #ifdef CONFIG_IPV6_SUBTREES 1549 /* 1550 * If fib6_add_1 has cleared the old leaf pointer in the 1551 * super-tree leaf node we have to find a new one for it. 1552 */ 1553 if (pn != fn) { 1554 struct fib6_info *pn_leaf = 1555 rcu_dereference_protected(pn->leaf, 1556 lockdep_is_held(&table->tb6_lock)); 1557 if (pn_leaf == rt) { 1558 pn_leaf = NULL; 1559 RCU_INIT_POINTER(pn->leaf, NULL); 1560 fib6_info_release(rt); 1561 } 1562 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1563 pn_leaf = fib6_find_prefix(info->nl_net, table, 1564 pn); 1565 if (!pn_leaf) 1566 pn_leaf = 1567 info->nl_net->ipv6.fib6_null_entry; 1568 fib6_info_hold(pn_leaf); 1569 rcu_assign_pointer(pn->leaf, pn_leaf); 1570 } 1571 } 1572 #endif 1573 goto failure; 1574 } else if (fib6_requires_src(rt)) { 1575 fib6_routes_require_src_inc(info->nl_net); 1576 } 1577 return err; 1578 1579 failure: 1580 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1581 * 1. fn is an intermediate node and we failed to add the new 1582 * route to it in both subtree creation failure and fib6_add_rt2node() 1583 * failure case. 1584 * 2. fn is the root node in the table and we fail to add the first 1585 * default route to it. 1586 */ 1587 if (fn && 1588 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1589 (fn->fn_flags & RTN_TL_ROOT && 1590 !rcu_access_pointer(fn->leaf)))) 1591 fib6_repair_tree(info->nl_net, table, fn); 1592 return err; 1593 } 1594 1595 /* 1596 * Routing tree lookup 1597 * 1598 */ 1599 1600 struct lookup_args { 1601 int offset; /* key offset on fib6_info */ 1602 const struct in6_addr *addr; /* search key */ 1603 }; 1604 1605 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1606 struct lookup_args *args) 1607 { 1608 struct fib6_node *fn; 1609 __be32 dir; 1610 1611 if (unlikely(args->offset == 0)) 1612 return NULL; 1613 1614 /* 1615 * Descend on a tree 1616 */ 1617 1618 fn = root; 1619 1620 for (;;) { 1621 struct fib6_node *next; 1622 1623 dir = addr_bit_set(args->addr, fn->fn_bit); 1624 1625 next = dir ? rcu_dereference(fn->right) : 1626 rcu_dereference(fn->left); 1627 1628 if (next) { 1629 fn = next; 1630 continue; 1631 } 1632 break; 1633 } 1634 1635 while (fn) { 1636 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1637 1638 if (subtree || fn->fn_flags & RTN_RTINFO) { 1639 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1640 struct rt6key *key; 1641 1642 if (!leaf) 1643 goto backtrack; 1644 1645 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1646 1647 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1648 #ifdef CONFIG_IPV6_SUBTREES 1649 if (subtree) { 1650 struct fib6_node *sfn; 1651 sfn = fib6_node_lookup_1(subtree, 1652 args + 1); 1653 if (!sfn) 1654 goto backtrack; 1655 fn = sfn; 1656 } 1657 #endif 1658 if (fn->fn_flags & RTN_RTINFO) 1659 return fn; 1660 } 1661 } 1662 backtrack: 1663 if (fn->fn_flags & RTN_ROOT) 1664 break; 1665 1666 fn = rcu_dereference(fn->parent); 1667 } 1668 1669 return NULL; 1670 } 1671 1672 /* called with rcu_read_lock() held 1673 */ 1674 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1675 const struct in6_addr *daddr, 1676 const struct in6_addr *saddr) 1677 { 1678 struct fib6_node *fn; 1679 struct lookup_args args[] = { 1680 { 1681 .offset = offsetof(struct fib6_info, fib6_dst), 1682 .addr = daddr, 1683 }, 1684 #ifdef CONFIG_IPV6_SUBTREES 1685 { 1686 .offset = offsetof(struct fib6_info, fib6_src), 1687 .addr = saddr, 1688 }, 1689 #endif 1690 { 1691 .offset = 0, /* sentinel */ 1692 } 1693 }; 1694 1695 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1696 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1697 fn = root; 1698 1699 return fn; 1700 } 1701 1702 /* 1703 * Get node with specified destination prefix (and source prefix, 1704 * if subtrees are used) 1705 * exact_match == true means we try to find fn with exact match of 1706 * the passed in prefix addr 1707 * exact_match == false means we try to find fn with longest prefix 1708 * match of the passed in prefix addr. This is useful for finding fn 1709 * for cached route as it will be stored in the exception table under 1710 * the node with longest prefix length. 1711 */ 1712 1713 1714 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1715 const struct in6_addr *addr, 1716 int plen, int offset, 1717 bool exact_match) 1718 { 1719 struct fib6_node *fn, *prev = NULL; 1720 1721 for (fn = root; fn ; ) { 1722 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1723 struct rt6key *key; 1724 1725 /* This node is being deleted */ 1726 if (!leaf) { 1727 if (plen <= fn->fn_bit) 1728 goto out; 1729 else 1730 goto next; 1731 } 1732 1733 key = (struct rt6key *)((u8 *)leaf + offset); 1734 1735 /* 1736 * Prefix match 1737 */ 1738 if (plen < fn->fn_bit || 1739 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1740 goto out; 1741 1742 if (plen == fn->fn_bit) 1743 return fn; 1744 1745 if (fn->fn_flags & RTN_RTINFO) 1746 prev = fn; 1747 1748 next: 1749 /* 1750 * We have more bits to go 1751 */ 1752 if (addr_bit_set(addr, fn->fn_bit)) 1753 fn = rcu_dereference(fn->right); 1754 else 1755 fn = rcu_dereference(fn->left); 1756 } 1757 out: 1758 if (exact_match) 1759 return NULL; 1760 else 1761 return prev; 1762 } 1763 1764 struct fib6_node *fib6_locate(struct fib6_node *root, 1765 const struct in6_addr *daddr, int dst_len, 1766 const struct in6_addr *saddr, int src_len, 1767 bool exact_match) 1768 { 1769 struct fib6_node *fn; 1770 1771 fn = fib6_locate_1(root, daddr, dst_len, 1772 offsetof(struct fib6_info, fib6_dst), 1773 exact_match); 1774 1775 #ifdef CONFIG_IPV6_SUBTREES 1776 if (src_len) { 1777 WARN_ON(saddr == NULL); 1778 if (fn) { 1779 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1780 1781 if (subtree) { 1782 fn = fib6_locate_1(subtree, saddr, src_len, 1783 offsetof(struct fib6_info, fib6_src), 1784 exact_match); 1785 } 1786 } 1787 } 1788 #endif 1789 1790 if (fn && fn->fn_flags & RTN_RTINFO) 1791 return fn; 1792 1793 return NULL; 1794 } 1795 1796 1797 /* 1798 * Deletion 1799 * 1800 */ 1801 1802 static struct fib6_info *fib6_find_prefix(struct net *net, 1803 struct fib6_table *table, 1804 struct fib6_node *fn) 1805 { 1806 struct fib6_node *child_left, *child_right; 1807 1808 if (fn->fn_flags & RTN_ROOT) 1809 return net->ipv6.fib6_null_entry; 1810 1811 while (fn) { 1812 child_left = rcu_dereference_protected(fn->left, 1813 lockdep_is_held(&table->tb6_lock)); 1814 child_right = rcu_dereference_protected(fn->right, 1815 lockdep_is_held(&table->tb6_lock)); 1816 if (child_left) 1817 return rcu_dereference_protected(child_left->leaf, 1818 lockdep_is_held(&table->tb6_lock)); 1819 if (child_right) 1820 return rcu_dereference_protected(child_right->leaf, 1821 lockdep_is_held(&table->tb6_lock)); 1822 1823 fn = FIB6_SUBTREE(fn); 1824 } 1825 return NULL; 1826 } 1827 1828 /* 1829 * Called to trim the tree of intermediate nodes when possible. "fn" 1830 * is the node we want to try and remove. 1831 * Need to own table->tb6_lock 1832 */ 1833 1834 static struct fib6_node *fib6_repair_tree(struct net *net, 1835 struct fib6_table *table, 1836 struct fib6_node *fn) 1837 { 1838 int children; 1839 int nstate; 1840 struct fib6_node *child; 1841 struct fib6_walker *w; 1842 int iter = 0; 1843 1844 /* Set fn->leaf to null_entry for root node. */ 1845 if (fn->fn_flags & RTN_TL_ROOT) { 1846 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1847 return fn; 1848 } 1849 1850 for (;;) { 1851 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1852 lockdep_is_held(&table->tb6_lock)); 1853 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1854 lockdep_is_held(&table->tb6_lock)); 1855 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1856 lockdep_is_held(&table->tb6_lock)); 1857 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1858 lockdep_is_held(&table->tb6_lock)); 1859 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1860 lockdep_is_held(&table->tb6_lock)); 1861 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1862 lockdep_is_held(&table->tb6_lock)); 1863 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1864 lockdep_is_held(&table->tb6_lock)); 1865 struct fib6_info *new_fn_leaf; 1866 1867 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1868 iter++; 1869 1870 WARN_ON(fn->fn_flags & RTN_RTINFO); 1871 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1872 WARN_ON(fn_leaf); 1873 1874 children = 0; 1875 child = NULL; 1876 if (fn_r) { 1877 child = fn_r; 1878 children |= 1; 1879 } 1880 if (fn_l) { 1881 child = fn_l; 1882 children |= 2; 1883 } 1884 1885 if (children == 3 || FIB6_SUBTREE(fn) 1886 #ifdef CONFIG_IPV6_SUBTREES 1887 /* Subtree root (i.e. fn) may have one child */ 1888 || (children && fn->fn_flags & RTN_ROOT) 1889 #endif 1890 ) { 1891 new_fn_leaf = fib6_find_prefix(net, table, fn); 1892 #if RT6_DEBUG >= 2 1893 if (!new_fn_leaf) { 1894 WARN_ON(!new_fn_leaf); 1895 new_fn_leaf = net->ipv6.fib6_null_entry; 1896 } 1897 #endif 1898 fib6_info_hold(new_fn_leaf); 1899 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1900 return pn; 1901 } 1902 1903 #ifdef CONFIG_IPV6_SUBTREES 1904 if (FIB6_SUBTREE(pn) == fn) { 1905 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1906 RCU_INIT_POINTER(pn->subtree, NULL); 1907 nstate = FWS_L; 1908 } else { 1909 WARN_ON(fn->fn_flags & RTN_ROOT); 1910 #endif 1911 if (pn_r == fn) 1912 rcu_assign_pointer(pn->right, child); 1913 else if (pn_l == fn) 1914 rcu_assign_pointer(pn->left, child); 1915 #if RT6_DEBUG >= 2 1916 else 1917 WARN_ON(1); 1918 #endif 1919 if (child) 1920 rcu_assign_pointer(child->parent, pn); 1921 nstate = FWS_R; 1922 #ifdef CONFIG_IPV6_SUBTREES 1923 } 1924 #endif 1925 1926 read_lock(&net->ipv6.fib6_walker_lock); 1927 FOR_WALKERS(net, w) { 1928 if (!child) { 1929 if (w->node == fn) { 1930 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1931 w, w->state, nstate); 1932 w->node = pn; 1933 w->state = nstate; 1934 } 1935 } else { 1936 if (w->node == fn) { 1937 w->node = child; 1938 if (children&2) { 1939 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1940 w, w->state); 1941 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1942 } else { 1943 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1944 w, w->state); 1945 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1946 } 1947 } 1948 } 1949 } 1950 read_unlock(&net->ipv6.fib6_walker_lock); 1951 1952 node_free(net, fn); 1953 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1954 return pn; 1955 1956 RCU_INIT_POINTER(pn->leaf, NULL); 1957 fib6_info_release(pn_leaf); 1958 fn = pn; 1959 } 1960 } 1961 1962 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1963 struct fib6_info __rcu **rtp, struct nl_info *info) 1964 { 1965 struct fib6_info *leaf, *replace_rt = NULL; 1966 struct fib6_walker *w; 1967 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1968 lockdep_is_held(&table->tb6_lock)); 1969 struct net *net = info->nl_net; 1970 bool notify_del = false; 1971 1972 /* If the deleted route is the first in the node and it is not part of 1973 * a multipath route, then we need to replace it with the next route 1974 * in the node, if exists. 1975 */ 1976 leaf = rcu_dereference_protected(fn->leaf, 1977 lockdep_is_held(&table->tb6_lock)); 1978 if (leaf == rt && !rt->fib6_nsiblings) { 1979 if (rcu_access_pointer(rt->fib6_next)) 1980 replace_rt = rcu_dereference_protected(rt->fib6_next, 1981 lockdep_is_held(&table->tb6_lock)); 1982 else 1983 notify_del = true; 1984 } 1985 1986 /* Unlink it */ 1987 *rtp = rt->fib6_next; 1988 rt->fib6_node = NULL; 1989 net->ipv6.rt6_stats->fib_rt_entries--; 1990 net->ipv6.rt6_stats->fib_discarded_routes++; 1991 1992 /* Reset round-robin state, if necessary */ 1993 if (rcu_access_pointer(fn->rr_ptr) == rt) 1994 fn->rr_ptr = NULL; 1995 1996 /* Remove this entry from other siblings */ 1997 if (rt->fib6_nsiblings) { 1998 struct fib6_info *sibling, *next_sibling; 1999 2000 /* The route is deleted from a multipath route. If this 2001 * multipath route is the first route in the node, then we need 2002 * to emit a delete notification. Otherwise, we need to skip 2003 * the notification. 2004 */ 2005 if (rt->fib6_metric == leaf->fib6_metric && 2006 rt6_qualify_for_ecmp(leaf)) 2007 notify_del = true; 2008 list_for_each_entry_safe(sibling, next_sibling, 2009 &rt->fib6_siblings, fib6_siblings) 2010 WRITE_ONCE(sibling->fib6_nsiblings, 2011 sibling->fib6_nsiblings - 1); 2012 WRITE_ONCE(rt->fib6_nsiblings, 0); 2013 list_del_rcu(&rt->fib6_siblings); 2014 rt6_multipath_rebalance(next_sibling); 2015 } 2016 2017 /* Adjust walkers */ 2018 read_lock(&net->ipv6.fib6_walker_lock); 2019 FOR_WALKERS(net, w) { 2020 if (w->state == FWS_C && w->leaf == rt) { 2021 pr_debug("walker %p adjusted by delroute\n", w); 2022 w->leaf = rcu_dereference_protected(rt->fib6_next, 2023 lockdep_is_held(&table->tb6_lock)); 2024 if (!w->leaf) 2025 w->state = FWS_U; 2026 } 2027 } 2028 read_unlock(&net->ipv6.fib6_walker_lock); 2029 2030 /* If it was last route, call fib6_repair_tree() to: 2031 * 1. For root node, put back null_entry as how the table was created. 2032 * 2. For other nodes, expunge its radix tree node. 2033 */ 2034 if (!rcu_access_pointer(fn->leaf)) { 2035 if (!(fn->fn_flags & RTN_TL_ROOT)) { 2036 fn->fn_flags &= ~RTN_RTINFO; 2037 net->ipv6.rt6_stats->fib_route_nodes--; 2038 } 2039 fn = fib6_repair_tree(net, table, fn); 2040 } 2041 2042 fib6_purge_rt(rt, fn, net); 2043 2044 if (!info->skip_notify_kernel) { 2045 if (notify_del) 2046 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 2047 rt, NULL); 2048 else if (replace_rt) 2049 call_fib6_entry_notifiers_replace(net, replace_rt); 2050 } 2051 if (!info->skip_notify) 2052 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 2053 2054 fib6_info_release(rt); 2055 } 2056 2057 /* Need to own table->tb6_lock */ 2058 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2059 { 2060 struct net *net = info->nl_net; 2061 struct fib6_info __rcu **rtp; 2062 struct fib6_info __rcu **rtp_next; 2063 struct fib6_table *table; 2064 struct fib6_node *fn; 2065 2066 if (rt == net->ipv6.fib6_null_entry) 2067 return -ENOENT; 2068 2069 table = rt->fib6_table; 2070 fn = rcu_dereference_protected(rt->fib6_node, 2071 lockdep_is_held(&table->tb6_lock)); 2072 if (!fn) 2073 return -ENOENT; 2074 2075 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2076 2077 /* 2078 * Walk the leaf entries looking for ourself 2079 */ 2080 2081 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2082 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2083 lockdep_is_held(&table->tb6_lock)); 2084 if (rt == cur) { 2085 if (fib6_requires_src(cur)) 2086 fib6_routes_require_src_dec(info->nl_net); 2087 fib6_del_route(table, fn, rtp, info); 2088 return 0; 2089 } 2090 rtp_next = &cur->fib6_next; 2091 } 2092 return -ENOENT; 2093 } 2094 2095 /* 2096 * Tree traversal function. 2097 * 2098 * Certainly, it is not interrupt safe. 2099 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2100 * It means, that we can modify tree during walking 2101 * and use this function for garbage collection, clone pruning, 2102 * cleaning tree when a device goes down etc. etc. 2103 * 2104 * It guarantees that every node will be traversed, 2105 * and that it will be traversed only once. 2106 * 2107 * Callback function w->func may return: 2108 * 0 -> continue walking. 2109 * positive value -> walking is suspended (used by tree dumps, 2110 * and probably by gc, if it will be split to several slices) 2111 * negative value -> terminate walking. 2112 * 2113 * The function itself returns: 2114 * 0 -> walk is complete. 2115 * >0 -> walk is incomplete (i.e. suspended) 2116 * <0 -> walk is terminated by an error. 2117 * 2118 * This function is called with tb6_lock held. 2119 */ 2120 2121 static int fib6_walk_continue(struct fib6_walker *w) 2122 { 2123 struct fib6_node *fn, *pn, *left, *right; 2124 2125 /* w->root should always be table->tb6_root */ 2126 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2127 2128 for (;;) { 2129 fn = w->node; 2130 if (!fn) 2131 return 0; 2132 2133 switch (w->state) { 2134 #ifdef CONFIG_IPV6_SUBTREES 2135 case FWS_S: 2136 if (FIB6_SUBTREE(fn)) { 2137 w->node = FIB6_SUBTREE(fn); 2138 continue; 2139 } 2140 w->state = FWS_L; 2141 fallthrough; 2142 #endif 2143 case FWS_L: 2144 left = rcu_dereference_protected(fn->left, 1); 2145 if (left) { 2146 w->node = left; 2147 w->state = FWS_INIT; 2148 continue; 2149 } 2150 w->state = FWS_R; 2151 fallthrough; 2152 case FWS_R: 2153 right = rcu_dereference_protected(fn->right, 1); 2154 if (right) { 2155 w->node = right; 2156 w->state = FWS_INIT; 2157 continue; 2158 } 2159 w->state = FWS_C; 2160 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2161 fallthrough; 2162 case FWS_C: 2163 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2164 int err; 2165 2166 if (w->skip) { 2167 w->skip--; 2168 goto skip; 2169 } 2170 2171 err = w->func(w); 2172 if (err) 2173 return err; 2174 2175 w->count++; 2176 continue; 2177 } 2178 skip: 2179 w->state = FWS_U; 2180 fallthrough; 2181 case FWS_U: 2182 if (fn == w->root) 2183 return 0; 2184 pn = rcu_dereference_protected(fn->parent, 1); 2185 left = rcu_dereference_protected(pn->left, 1); 2186 right = rcu_dereference_protected(pn->right, 1); 2187 w->node = pn; 2188 #ifdef CONFIG_IPV6_SUBTREES 2189 if (FIB6_SUBTREE(pn) == fn) { 2190 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2191 w->state = FWS_L; 2192 continue; 2193 } 2194 #endif 2195 if (left == fn) { 2196 w->state = FWS_R; 2197 continue; 2198 } 2199 if (right == fn) { 2200 w->state = FWS_C; 2201 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2202 continue; 2203 } 2204 #if RT6_DEBUG >= 2 2205 WARN_ON(1); 2206 #endif 2207 } 2208 } 2209 } 2210 2211 static int fib6_walk(struct net *net, struct fib6_walker *w) 2212 { 2213 int res; 2214 2215 w->state = FWS_INIT; 2216 w->node = w->root; 2217 2218 fib6_walker_link(net, w); 2219 res = fib6_walk_continue(w); 2220 if (res <= 0) 2221 fib6_walker_unlink(net, w); 2222 return res; 2223 } 2224 2225 static int fib6_clean_node(struct fib6_walker *w) 2226 { 2227 int res; 2228 struct fib6_info *rt; 2229 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2230 struct nl_info info = { 2231 .nl_net = c->net, 2232 .skip_notify = c->skip_notify, 2233 }; 2234 2235 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2236 READ_ONCE(w->node->fn_sernum) != c->sernum) 2237 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2238 2239 if (!c->func) { 2240 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2241 w->leaf = NULL; 2242 return 0; 2243 } 2244 2245 for_each_fib6_walker_rt(w) { 2246 res = c->func(rt, c->arg); 2247 if (res == -1) { 2248 w->leaf = rt; 2249 res = fib6_del(rt, &info); 2250 if (res) { 2251 #if RT6_DEBUG >= 2 2252 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2253 __func__, rt, 2254 rcu_access_pointer(rt->fib6_node), 2255 res); 2256 #endif 2257 continue; 2258 } 2259 return 0; 2260 } else if (res == -2) { 2261 if (WARN_ON(!rt->fib6_nsiblings)) 2262 continue; 2263 rt = list_last_entry(&rt->fib6_siblings, 2264 struct fib6_info, fib6_siblings); 2265 continue; 2266 } 2267 WARN_ON(res != 0); 2268 } 2269 w->leaf = rt; 2270 return 0; 2271 } 2272 2273 /* 2274 * Convenient frontend to tree walker. 2275 * 2276 * func is called on each route. 2277 * It may return -2 -> skip multipath route. 2278 * -1 -> delete this route. 2279 * 0 -> continue walking 2280 */ 2281 2282 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2283 int (*func)(struct fib6_info *, void *arg), 2284 int sernum, void *arg, bool skip_notify) 2285 { 2286 struct fib6_cleaner c; 2287 2288 c.w.root = root; 2289 c.w.func = fib6_clean_node; 2290 c.w.count = 0; 2291 c.w.skip = 0; 2292 c.w.skip_in_node = 0; 2293 c.func = func; 2294 c.sernum = sernum; 2295 c.arg = arg; 2296 c.net = net; 2297 c.skip_notify = skip_notify; 2298 2299 fib6_walk(net, &c.w); 2300 } 2301 2302 static void __fib6_clean_all(struct net *net, 2303 int (*func)(struct fib6_info *, void *), 2304 int sernum, void *arg, bool skip_notify) 2305 { 2306 struct fib6_table *table; 2307 struct hlist_head *head; 2308 unsigned int h; 2309 2310 rcu_read_lock(); 2311 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2312 head = &net->ipv6.fib_table_hash[h]; 2313 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2314 spin_lock_bh(&table->tb6_lock); 2315 fib6_clean_tree(net, &table->tb6_root, 2316 func, sernum, arg, skip_notify); 2317 spin_unlock_bh(&table->tb6_lock); 2318 } 2319 } 2320 rcu_read_unlock(); 2321 } 2322 2323 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2324 void *arg) 2325 { 2326 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2327 } 2328 2329 void fib6_clean_all_skip_notify(struct net *net, 2330 int (*func)(struct fib6_info *, void *), 2331 void *arg) 2332 { 2333 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2334 } 2335 2336 static void fib6_flush_trees(struct net *net) 2337 { 2338 int new_sernum = fib6_new_sernum(net); 2339 2340 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2341 } 2342 2343 /* 2344 * Garbage collection 2345 */ 2346 2347 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args) 2348 { 2349 unsigned long now = jiffies; 2350 2351 /* 2352 * check addrconf expiration here. 2353 * Routes are expired even if they are in use. 2354 */ 2355 2356 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2357 if (time_after(now, rt->expires)) { 2358 pr_debug("expiring %p\n", rt); 2359 return -1; 2360 } 2361 gc_args->more++; 2362 } 2363 2364 /* Also age clones in the exception table. 2365 * Note, that clones are aged out 2366 * only if they are not in use now. 2367 */ 2368 rt6_age_exceptions(rt, gc_args, now); 2369 2370 return 0; 2371 } 2372 2373 static void fib6_gc_table(struct net *net, 2374 struct fib6_table *tb6, 2375 struct fib6_gc_args *gc_args) 2376 { 2377 struct fib6_info *rt; 2378 struct hlist_node *n; 2379 struct nl_info info = { 2380 .nl_net = net, 2381 .skip_notify = false, 2382 }; 2383 2384 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link) 2385 if (fib6_age(rt, gc_args) == -1) 2386 fib6_del(rt, &info); 2387 } 2388 2389 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args) 2390 { 2391 struct fib6_table *table; 2392 struct hlist_head *head; 2393 unsigned int h; 2394 2395 rcu_read_lock(); 2396 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2397 head = &net->ipv6.fib_table_hash[h]; 2398 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2399 spin_lock_bh(&table->tb6_lock); 2400 2401 fib6_gc_table(net, table, gc_args); 2402 2403 spin_unlock_bh(&table->tb6_lock); 2404 } 2405 } 2406 rcu_read_unlock(); 2407 } 2408 2409 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2410 { 2411 struct fib6_gc_args gc_args; 2412 unsigned long now; 2413 2414 if (force) { 2415 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2416 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2417 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2418 return; 2419 } 2420 gc_args.timeout = expires ? (int)expires : 2421 net->ipv6.sysctl.ip6_rt_gc_interval; 2422 gc_args.more = 0; 2423 2424 fib6_gc_all(net, &gc_args); 2425 now = jiffies; 2426 net->ipv6.ip6_rt_last_gc = now; 2427 2428 if (gc_args.more) 2429 mod_timer(&net->ipv6.ip6_fib_timer, 2430 round_jiffies(now 2431 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2432 else 2433 timer_delete(&net->ipv6.ip6_fib_timer); 2434 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2435 } 2436 2437 static void fib6_gc_timer_cb(struct timer_list *t) 2438 { 2439 struct net *arg = timer_container_of(arg, t, ipv6.ip6_fib_timer); 2440 2441 fib6_run_gc(0, arg, true); 2442 } 2443 2444 static int __net_init fib6_net_init(struct net *net) 2445 { 2446 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2447 int err; 2448 2449 err = fib6_notifier_init(net); 2450 if (err) 2451 return err; 2452 2453 /* Default to 3-tuple */ 2454 net->ipv6.sysctl.multipath_hash_fields = 2455 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2456 2457 spin_lock_init(&net->ipv6.fib6_gc_lock); 2458 rwlock_init(&net->ipv6.fib6_walker_lock); 2459 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2460 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2461 2462 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2463 if (!net->ipv6.rt6_stats) 2464 goto out_notifier; 2465 2466 /* Avoid false sharing : Use at least a full cache line */ 2467 size = max_t(size_t, size, L1_CACHE_BYTES); 2468 2469 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2470 if (!net->ipv6.fib_table_hash) 2471 goto out_rt6_stats; 2472 2473 spin_lock_init(&net->ipv6.fib_table_hash_lock); 2474 2475 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2476 GFP_KERNEL); 2477 if (!net->ipv6.fib6_main_tbl) 2478 goto out_fib_table_hash; 2479 2480 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2481 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2482 net->ipv6.fib6_null_entry); 2483 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2484 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2485 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2486 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist); 2487 2488 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2489 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2490 GFP_KERNEL); 2491 if (!net->ipv6.fib6_local_tbl) 2492 goto out_fib6_main_tbl; 2493 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2494 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2495 net->ipv6.fib6_null_entry); 2496 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2497 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2498 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2499 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist); 2500 #endif 2501 fib6_tables_init(net); 2502 2503 return 0; 2504 2505 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2506 out_fib6_main_tbl: 2507 kfree(net->ipv6.fib6_main_tbl); 2508 #endif 2509 out_fib_table_hash: 2510 kfree(net->ipv6.fib_table_hash); 2511 out_rt6_stats: 2512 kfree(net->ipv6.rt6_stats); 2513 out_notifier: 2514 fib6_notifier_exit(net); 2515 return -ENOMEM; 2516 } 2517 2518 static void fib6_net_exit(struct net *net) 2519 { 2520 unsigned int i; 2521 2522 timer_delete_sync(&net->ipv6.ip6_fib_timer); 2523 2524 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2525 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2526 struct hlist_node *tmp; 2527 struct fib6_table *tb; 2528 2529 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2530 hlist_del(&tb->tb6_hlist); 2531 fib6_free_table(tb); 2532 } 2533 } 2534 2535 kfree(net->ipv6.fib_table_hash); 2536 kfree(net->ipv6.rt6_stats); 2537 fib6_notifier_exit(net); 2538 } 2539 2540 static struct pernet_operations fib6_net_ops = { 2541 .init = fib6_net_init, 2542 .exit = fib6_net_exit, 2543 }; 2544 2545 static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = { 2546 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE, 2547 .dumpit = inet6_dump_fib, 2548 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE}, 2549 }; 2550 2551 int __init fib6_init(void) 2552 { 2553 int ret = -ENOMEM; 2554 2555 fib6_node_kmem = KMEM_CACHE(fib6_node, 2556 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT); 2557 if (!fib6_node_kmem) 2558 goto out; 2559 2560 ret = register_pernet_subsys(&fib6_net_ops); 2561 if (ret) 2562 goto out_kmem_cache_create; 2563 2564 ret = rtnl_register_many(fib6_rtnl_msg_handlers); 2565 if (ret) 2566 goto out_unregister_subsys; 2567 2568 __fib6_flush_trees = fib6_flush_trees; 2569 out: 2570 return ret; 2571 2572 out_unregister_subsys: 2573 unregister_pernet_subsys(&fib6_net_ops); 2574 out_kmem_cache_create: 2575 kmem_cache_destroy(fib6_node_kmem); 2576 goto out; 2577 } 2578 2579 void fib6_gc_cleanup(void) 2580 { 2581 unregister_pernet_subsys(&fib6_net_ops); 2582 kmem_cache_destroy(fib6_node_kmem); 2583 } 2584 2585 #ifdef CONFIG_PROC_FS 2586 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2587 { 2588 struct fib6_info *rt = v; 2589 struct ipv6_route_iter *iter = seq->private; 2590 struct fib6_nh *fib6_nh = rt->fib6_nh; 2591 unsigned int flags = rt->fib6_flags; 2592 const struct net_device *dev; 2593 2594 if (rt->nh) 2595 fib6_nh = nexthop_fib6_nh(rt->nh); 2596 2597 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2598 2599 #ifdef CONFIG_IPV6_SUBTREES 2600 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2601 #else 2602 seq_puts(seq, "00000000000000000000000000000000 00 "); 2603 #endif 2604 if (fib6_nh->fib_nh_gw_family) { 2605 flags |= RTF_GATEWAY; 2606 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2607 } else { 2608 seq_puts(seq, "00000000000000000000000000000000"); 2609 } 2610 2611 dev = fib6_nh->fib_nh_dev; 2612 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2613 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2614 flags, dev ? dev->name : ""); 2615 iter->w.leaf = NULL; 2616 return 0; 2617 } 2618 2619 static int ipv6_route_yield(struct fib6_walker *w) 2620 { 2621 struct ipv6_route_iter *iter = w->args; 2622 2623 if (!iter->skip) 2624 return 1; 2625 2626 do { 2627 iter->w.leaf = rcu_dereference_protected( 2628 iter->w.leaf->fib6_next, 2629 lockdep_is_held(&iter->tbl->tb6_lock)); 2630 iter->skip--; 2631 if (!iter->skip && iter->w.leaf) 2632 return 1; 2633 } while (iter->w.leaf); 2634 2635 return 0; 2636 } 2637 2638 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2639 struct net *net) 2640 { 2641 memset(&iter->w, 0, sizeof(iter->w)); 2642 iter->w.func = ipv6_route_yield; 2643 iter->w.root = &iter->tbl->tb6_root; 2644 iter->w.state = FWS_INIT; 2645 iter->w.node = iter->w.root; 2646 iter->w.args = iter; 2647 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2648 INIT_LIST_HEAD(&iter->w.lh); 2649 fib6_walker_link(net, &iter->w); 2650 } 2651 2652 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2653 struct net *net) 2654 { 2655 unsigned int h; 2656 struct hlist_node *node; 2657 2658 if (tbl) { 2659 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2660 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2661 } else { 2662 h = 0; 2663 node = NULL; 2664 } 2665 2666 while (!node && h < FIB6_TABLE_HASHSZ) { 2667 node = rcu_dereference( 2668 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2669 } 2670 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2671 } 2672 2673 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2674 { 2675 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2676 2677 if (iter->sernum != sernum) { 2678 iter->sernum = sernum; 2679 iter->w.state = FWS_INIT; 2680 iter->w.node = iter->w.root; 2681 WARN_ON(iter->w.skip); 2682 iter->w.skip = iter->w.count; 2683 } 2684 } 2685 2686 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2687 { 2688 int r; 2689 struct fib6_info *n; 2690 struct net *net = seq_file_net(seq); 2691 struct ipv6_route_iter *iter = seq->private; 2692 2693 ++(*pos); 2694 if (!v) 2695 goto iter_table; 2696 2697 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2698 if (n) 2699 return n; 2700 2701 iter_table: 2702 ipv6_route_check_sernum(iter); 2703 spin_lock_bh(&iter->tbl->tb6_lock); 2704 r = fib6_walk_continue(&iter->w); 2705 spin_unlock_bh(&iter->tbl->tb6_lock); 2706 if (r > 0) { 2707 return iter->w.leaf; 2708 } else if (r < 0) { 2709 fib6_walker_unlink(net, &iter->w); 2710 return NULL; 2711 } 2712 fib6_walker_unlink(net, &iter->w); 2713 2714 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2715 if (!iter->tbl) 2716 return NULL; 2717 2718 ipv6_route_seq_setup_walk(iter, net); 2719 goto iter_table; 2720 } 2721 2722 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2723 __acquires(RCU) 2724 { 2725 struct net *net = seq_file_net(seq); 2726 struct ipv6_route_iter *iter = seq->private; 2727 2728 rcu_read_lock(); 2729 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2730 iter->skip = *pos; 2731 2732 if (iter->tbl) { 2733 loff_t p = 0; 2734 2735 ipv6_route_seq_setup_walk(iter, net); 2736 return ipv6_route_seq_next(seq, NULL, &p); 2737 } else { 2738 return NULL; 2739 } 2740 } 2741 2742 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2743 { 2744 struct fib6_walker *w = &iter->w; 2745 return w->node && !(w->state == FWS_U && w->node == w->root); 2746 } 2747 2748 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2749 __releases(RCU) 2750 { 2751 struct net *net = seq_file_net(seq); 2752 struct ipv6_route_iter *iter = seq->private; 2753 2754 if (ipv6_route_iter_active(iter)) 2755 fib6_walker_unlink(net, &iter->w); 2756 2757 rcu_read_unlock(); 2758 } 2759 2760 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2761 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2762 struct bpf_iter_meta *meta, 2763 void *v) 2764 { 2765 struct bpf_iter__ipv6_route ctx; 2766 2767 ctx.meta = meta; 2768 ctx.rt = v; 2769 return bpf_iter_run_prog(prog, &ctx); 2770 } 2771 2772 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2773 { 2774 struct ipv6_route_iter *iter = seq->private; 2775 struct bpf_iter_meta meta; 2776 struct bpf_prog *prog; 2777 int ret; 2778 2779 meta.seq = seq; 2780 prog = bpf_iter_get_info(&meta, false); 2781 if (!prog) 2782 return ipv6_route_native_seq_show(seq, v); 2783 2784 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2785 iter->w.leaf = NULL; 2786 2787 return ret; 2788 } 2789 2790 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2791 { 2792 struct bpf_iter_meta meta; 2793 struct bpf_prog *prog; 2794 2795 if (!v) { 2796 meta.seq = seq; 2797 prog = bpf_iter_get_info(&meta, true); 2798 if (prog) 2799 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2800 } 2801 2802 ipv6_route_native_seq_stop(seq, v); 2803 } 2804 #else 2805 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2806 { 2807 return ipv6_route_native_seq_show(seq, v); 2808 } 2809 2810 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2811 { 2812 ipv6_route_native_seq_stop(seq, v); 2813 } 2814 #endif 2815 2816 const struct seq_operations ipv6_route_seq_ops = { 2817 .start = ipv6_route_seq_start, 2818 .next = ipv6_route_seq_next, 2819 .stop = ipv6_route_seq_stop, 2820 .show = ipv6_route_seq_show 2821 }; 2822 #endif /* CONFIG_PROC_FS */ 2823