xref: /linux/net/ipv6/ip6_fib.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old = atomic_read(&net->ipv6.fib6_sernum);
95 
96 	do {
97 		new = old < INT_MAX ? old + 1 : 1;
98 	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99 
100 	return new;
101 }
102 
103 enum {
104 	FIB6_NO_SERNUM_CHANGE = 0,
105 };
106 
107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 	struct fib6_node *fn;
110 
111 	fn = rcu_dereference_protected(f6i->fib6_node,
112 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 	if (fn)
114 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 	struct fib6_info *f6i;
150 	size_t sz = sizeof(*f6i);
151 
152 	if (with_fib6_nh)
153 		sz += sizeof(struct fib6_nh);
154 
155 	f6i = kzalloc(sz, gfp_flags);
156 	if (!f6i)
157 		return NULL;
158 
159 	/* fib6_siblings is a union with nh_list, so this initializes both */
160 	INIT_LIST_HEAD(&f6i->fib6_siblings);
161 	refcount_set(&f6i->fib6_ref, 1);
162 
163 	INIT_HLIST_NODE(&f6i->gc_link);
164 
165 	return f6i;
166 }
167 
168 void fib6_info_destroy_rcu(struct rcu_head *head)
169 {
170 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171 
172 	WARN_ON(f6i->fib6_node);
173 
174 	if (f6i->nh)
175 		nexthop_put(f6i->nh);
176 	else
177 		fib6_nh_release(f6i->fib6_nh);
178 
179 	ip_fib_metrics_put(f6i->fib6_metrics);
180 	kfree(f6i);
181 }
182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183 
184 static struct fib6_node *node_alloc(struct net *net)
185 {
186 	struct fib6_node *fn;
187 
188 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 	if (fn)
190 		net->ipv6.rt6_stats->fib_nodes++;
191 
192 	return fn;
193 }
194 
195 static void node_free_immediate(struct net *net, struct fib6_node *fn)
196 {
197 	kmem_cache_free(fib6_node_kmem, fn);
198 	net->ipv6.rt6_stats->fib_nodes--;
199 }
200 
201 static void node_free_rcu(struct rcu_head *head)
202 {
203 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
204 
205 	kmem_cache_free(fib6_node_kmem, fn);
206 }
207 
208 static void node_free(struct net *net, struct fib6_node *fn)
209 {
210 	call_rcu(&fn->rcu, node_free_rcu);
211 	net->ipv6.rt6_stats->fib_nodes--;
212 }
213 
214 static void fib6_free_table(struct fib6_table *table)
215 {
216 	inetpeer_invalidate_tree(&table->tb6_peers);
217 	kfree(table);
218 }
219 
220 static void fib6_link_table(struct net *net, struct fib6_table *tb)
221 {
222 	unsigned int h;
223 
224 	/*
225 	 * Initialize table lock at a single place to give lockdep a key,
226 	 * tables aren't visible prior to being linked to the list.
227 	 */
228 	spin_lock_init(&tb->tb6_lock);
229 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
230 
231 	/*
232 	 * No protection necessary, this is the only list mutatation
233 	 * operation, tables never disappear once they exist.
234 	 */
235 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
236 }
237 
238 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
239 
240 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
241 {
242 	struct fib6_table *table;
243 
244 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
245 	if (table) {
246 		table->tb6_id = id;
247 		rcu_assign_pointer(table->tb6_root.leaf,
248 				   net->ipv6.fib6_null_entry);
249 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
250 		inet_peer_base_init(&table->tb6_peers);
251 		INIT_HLIST_HEAD(&table->tb6_gc_hlist);
252 	}
253 
254 	return table;
255 }
256 
257 struct fib6_table *fib6_new_table(struct net *net, u32 id)
258 {
259 	struct fib6_table *tb;
260 
261 	if (id == 0)
262 		id = RT6_TABLE_MAIN;
263 	tb = fib6_get_table(net, id);
264 	if (tb)
265 		return tb;
266 
267 	tb = fib6_alloc_table(net, id);
268 	if (tb)
269 		fib6_link_table(net, tb);
270 
271 	return tb;
272 }
273 EXPORT_SYMBOL_GPL(fib6_new_table);
274 
275 struct fib6_table *fib6_get_table(struct net *net, u32 id)
276 {
277 	struct fib6_table *tb;
278 	struct hlist_head *head;
279 	unsigned int h;
280 
281 	if (id == 0)
282 		id = RT6_TABLE_MAIN;
283 	h = id & (FIB6_TABLE_HASHSZ - 1);
284 	rcu_read_lock();
285 	head = &net->ipv6.fib_table_hash[h];
286 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
287 		if (tb->tb6_id == id) {
288 			rcu_read_unlock();
289 			return tb;
290 		}
291 	}
292 	rcu_read_unlock();
293 
294 	return NULL;
295 }
296 EXPORT_SYMBOL_GPL(fib6_get_table);
297 
298 static void __net_init fib6_tables_init(struct net *net)
299 {
300 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
302 }
303 #else
304 
305 struct fib6_table *fib6_new_table(struct net *net, u32 id)
306 {
307 	return fib6_get_table(net, id);
308 }
309 
310 struct fib6_table *fib6_get_table(struct net *net, u32 id)
311 {
312 	  return net->ipv6.fib6_main_tbl;
313 }
314 
315 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
316 				   const struct sk_buff *skb,
317 				   int flags, pol_lookup_t lookup)
318 {
319 	struct rt6_info *rt;
320 
321 	rt = pol_lookup_func(lookup,
322 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
323 	if (rt->dst.error == -EAGAIN) {
324 		ip6_rt_put_flags(rt, flags);
325 		rt = net->ipv6.ip6_null_entry;
326 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
327 			dst_hold(&rt->dst);
328 	}
329 
330 	return &rt->dst;
331 }
332 
333 /* called with rcu lock held; no reference taken on fib6_info */
334 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
335 		struct fib6_result *res, int flags)
336 {
337 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
338 				 res, flags);
339 }
340 
341 static void __net_init fib6_tables_init(struct net *net)
342 {
343 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
344 }
345 
346 #endif
347 
348 unsigned int fib6_tables_seq_read(struct net *net)
349 {
350 	unsigned int h, fib_seq = 0;
351 
352 	rcu_read_lock();
353 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
354 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
355 		struct fib6_table *tb;
356 
357 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
358 			fib_seq += tb->fib_seq;
359 	}
360 	rcu_read_unlock();
361 
362 	return fib_seq;
363 }
364 
365 static int call_fib6_entry_notifier(struct notifier_block *nb,
366 				    enum fib_event_type event_type,
367 				    struct fib6_info *rt,
368 				    struct netlink_ext_ack *extack)
369 {
370 	struct fib6_entry_notifier_info info = {
371 		.info.extack = extack,
372 		.rt = rt,
373 	};
374 
375 	return call_fib6_notifier(nb, event_type, &info.info);
376 }
377 
378 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
379 					      enum fib_event_type event_type,
380 					      struct fib6_info *rt,
381 					      unsigned int nsiblings,
382 					      struct netlink_ext_ack *extack)
383 {
384 	struct fib6_entry_notifier_info info = {
385 		.info.extack = extack,
386 		.rt = rt,
387 		.nsiblings = nsiblings,
388 	};
389 
390 	return call_fib6_notifier(nb, event_type, &info.info);
391 }
392 
393 int call_fib6_entry_notifiers(struct net *net,
394 			      enum fib_event_type event_type,
395 			      struct fib6_info *rt,
396 			      struct netlink_ext_ack *extack)
397 {
398 	struct fib6_entry_notifier_info info = {
399 		.info.extack = extack,
400 		.rt = rt,
401 	};
402 
403 	rt->fib6_table->fib_seq++;
404 	return call_fib6_notifiers(net, event_type, &info.info);
405 }
406 
407 int call_fib6_multipath_entry_notifiers(struct net *net,
408 					enum fib_event_type event_type,
409 					struct fib6_info *rt,
410 					unsigned int nsiblings,
411 					struct netlink_ext_ack *extack)
412 {
413 	struct fib6_entry_notifier_info info = {
414 		.info.extack = extack,
415 		.rt = rt,
416 		.nsiblings = nsiblings,
417 	};
418 
419 	rt->fib6_table->fib_seq++;
420 	return call_fib6_notifiers(net, event_type, &info.info);
421 }
422 
423 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
424 {
425 	struct fib6_entry_notifier_info info = {
426 		.rt = rt,
427 		.nsiblings = rt->fib6_nsiblings,
428 	};
429 
430 	rt->fib6_table->fib_seq++;
431 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
432 }
433 
434 struct fib6_dump_arg {
435 	struct net *net;
436 	struct notifier_block *nb;
437 	struct netlink_ext_ack *extack;
438 };
439 
440 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
441 {
442 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
443 	int err;
444 
445 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
446 		return 0;
447 
448 	if (rt->fib6_nsiblings)
449 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
450 							 rt,
451 							 rt->fib6_nsiblings,
452 							 arg->extack);
453 	else
454 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
455 					       arg->extack);
456 
457 	return err;
458 }
459 
460 static int fib6_node_dump(struct fib6_walker *w)
461 {
462 	int err;
463 
464 	err = fib6_rt_dump(w->leaf, w->args);
465 	w->leaf = NULL;
466 	return err;
467 }
468 
469 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
470 			   struct fib6_walker *w)
471 {
472 	int err;
473 
474 	w->root = &tb->tb6_root;
475 	spin_lock_bh(&tb->tb6_lock);
476 	err = fib6_walk(net, w);
477 	spin_unlock_bh(&tb->tb6_lock);
478 	return err;
479 }
480 
481 /* Called with rcu_read_lock() */
482 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
483 		     struct netlink_ext_ack *extack)
484 {
485 	struct fib6_dump_arg arg;
486 	struct fib6_walker *w;
487 	unsigned int h;
488 	int err = 0;
489 
490 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
491 	if (!w)
492 		return -ENOMEM;
493 
494 	w->func = fib6_node_dump;
495 	arg.net = net;
496 	arg.nb = nb;
497 	arg.extack = extack;
498 	w->args = &arg;
499 
500 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
501 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
502 		struct fib6_table *tb;
503 
504 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
505 			err = fib6_table_dump(net, tb, w);
506 			if (err)
507 				goto out;
508 		}
509 	}
510 
511 out:
512 	kfree(w);
513 
514 	/* The tree traversal function should never return a positive value. */
515 	return err > 0 ? -EINVAL : err;
516 }
517 
518 static int fib6_dump_node(struct fib6_walker *w)
519 {
520 	int res;
521 	struct fib6_info *rt;
522 
523 	for_each_fib6_walker_rt(w) {
524 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
525 		if (res >= 0) {
526 			/* Frame is full, suspend walking */
527 			w->leaf = rt;
528 
529 			/* We'll restart from this node, so if some routes were
530 			 * already dumped, skip them next time.
531 			 */
532 			w->skip_in_node += res;
533 
534 			return 1;
535 		}
536 		w->skip_in_node = 0;
537 
538 		/* Multipath routes are dumped in one route with the
539 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
540 		 * last sibling of this route (no need to dump the
541 		 * sibling routes again)
542 		 */
543 		if (rt->fib6_nsiblings)
544 			rt = list_last_entry(&rt->fib6_siblings,
545 					     struct fib6_info,
546 					     fib6_siblings);
547 	}
548 	w->leaf = NULL;
549 	return 0;
550 }
551 
552 static void fib6_dump_end(struct netlink_callback *cb)
553 {
554 	struct net *net = sock_net(cb->skb->sk);
555 	struct fib6_walker *w = (void *)cb->args[2];
556 
557 	if (w) {
558 		if (cb->args[4]) {
559 			cb->args[4] = 0;
560 			fib6_walker_unlink(net, w);
561 		}
562 		cb->args[2] = 0;
563 		kfree(w);
564 	}
565 	cb->done = (void *)cb->args[3];
566 	cb->args[1] = 3;
567 }
568 
569 static int fib6_dump_done(struct netlink_callback *cb)
570 {
571 	fib6_dump_end(cb);
572 	return cb->done ? cb->done(cb) : 0;
573 }
574 
575 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
576 			   struct netlink_callback *cb)
577 {
578 	struct net *net = sock_net(skb->sk);
579 	struct fib6_walker *w;
580 	int res;
581 
582 	w = (void *)cb->args[2];
583 	w->root = &table->tb6_root;
584 
585 	if (cb->args[4] == 0) {
586 		w->count = 0;
587 		w->skip = 0;
588 		w->skip_in_node = 0;
589 
590 		spin_lock_bh(&table->tb6_lock);
591 		res = fib6_walk(net, w);
592 		spin_unlock_bh(&table->tb6_lock);
593 		if (res > 0) {
594 			cb->args[4] = 1;
595 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
596 		}
597 	} else {
598 		int sernum = READ_ONCE(w->root->fn_sernum);
599 		if (cb->args[5] != sernum) {
600 			/* Begin at the root if the tree changed */
601 			cb->args[5] = sernum;
602 			w->state = FWS_INIT;
603 			w->node = w->root;
604 			w->skip = w->count;
605 			w->skip_in_node = 0;
606 		} else
607 			w->skip = 0;
608 
609 		spin_lock_bh(&table->tb6_lock);
610 		res = fib6_walk_continue(w);
611 		spin_unlock_bh(&table->tb6_lock);
612 		if (res <= 0) {
613 			fib6_walker_unlink(net, w);
614 			cb->args[4] = 0;
615 		}
616 	}
617 
618 	return res;
619 }
620 
621 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
622 {
623 	struct rt6_rtnl_dump_arg arg = {
624 		.filter.dump_exceptions = true,
625 		.filter.dump_routes = true,
626 		.filter.rtnl_held = true,
627 	};
628 	const struct nlmsghdr *nlh = cb->nlh;
629 	struct net *net = sock_net(skb->sk);
630 	unsigned int h, s_h;
631 	unsigned int e = 0, s_e;
632 	struct fib6_walker *w;
633 	struct fib6_table *tb;
634 	struct hlist_head *head;
635 	int res = 0;
636 
637 	if (cb->strict_check) {
638 		int err;
639 
640 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
641 		if (err < 0)
642 			return err;
643 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
644 		struct rtmsg *rtm = nlmsg_data(nlh);
645 
646 		if (rtm->rtm_flags & RTM_F_PREFIX)
647 			arg.filter.flags = RTM_F_PREFIX;
648 	}
649 
650 	w = (void *)cb->args[2];
651 	if (!w) {
652 		/* New dump:
653 		 *
654 		 * 1. hook callback destructor.
655 		 */
656 		cb->args[3] = (long)cb->done;
657 		cb->done = fib6_dump_done;
658 
659 		/*
660 		 * 2. allocate and initialize walker.
661 		 */
662 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
663 		if (!w)
664 			return -ENOMEM;
665 		w->func = fib6_dump_node;
666 		cb->args[2] = (long)w;
667 	}
668 
669 	arg.skb = skb;
670 	arg.cb = cb;
671 	arg.net = net;
672 	w->args = &arg;
673 
674 	if (arg.filter.table_id) {
675 		tb = fib6_get_table(net, arg.filter.table_id);
676 		if (!tb) {
677 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
678 				goto out;
679 
680 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
681 			return -ENOENT;
682 		}
683 
684 		if (!cb->args[0]) {
685 			res = fib6_dump_table(tb, skb, cb);
686 			if (!res)
687 				cb->args[0] = 1;
688 		}
689 		goto out;
690 	}
691 
692 	s_h = cb->args[0];
693 	s_e = cb->args[1];
694 
695 	rcu_read_lock();
696 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
697 		e = 0;
698 		head = &net->ipv6.fib_table_hash[h];
699 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
700 			if (e < s_e)
701 				goto next;
702 			res = fib6_dump_table(tb, skb, cb);
703 			if (res != 0)
704 				goto out_unlock;
705 next:
706 			e++;
707 		}
708 	}
709 out_unlock:
710 	rcu_read_unlock();
711 	cb->args[1] = e;
712 	cb->args[0] = h;
713 out:
714 	res = res < 0 ? res : skb->len;
715 	if (res <= 0)
716 		fib6_dump_end(cb);
717 	return res;
718 }
719 
720 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
721 {
722 	if (!f6i)
723 		return;
724 
725 	if (f6i->fib6_metrics == &dst_default_metrics) {
726 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
727 
728 		if (!p)
729 			return;
730 
731 		refcount_set(&p->refcnt, 1);
732 		f6i->fib6_metrics = p;
733 	}
734 
735 	f6i->fib6_metrics->metrics[metric - 1] = val;
736 }
737 
738 /*
739  *	Routing Table
740  *
741  *	return the appropriate node for a routing tree "add" operation
742  *	by either creating and inserting or by returning an existing
743  *	node.
744  */
745 
746 static struct fib6_node *fib6_add_1(struct net *net,
747 				    struct fib6_table *table,
748 				    struct fib6_node *root,
749 				    struct in6_addr *addr, int plen,
750 				    int offset, int allow_create,
751 				    int replace_required,
752 				    struct netlink_ext_ack *extack)
753 {
754 	struct fib6_node *fn, *in, *ln;
755 	struct fib6_node *pn = NULL;
756 	struct rt6key *key;
757 	int	bit;
758 	__be32	dir = 0;
759 
760 	/* insert node in tree */
761 
762 	fn = root;
763 
764 	do {
765 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
766 					    lockdep_is_held(&table->tb6_lock));
767 		key = (struct rt6key *)((u8 *)leaf + offset);
768 
769 		/*
770 		 *	Prefix match
771 		 */
772 		if (plen < fn->fn_bit ||
773 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
774 			if (!allow_create) {
775 				if (replace_required) {
776 					NL_SET_ERR_MSG(extack,
777 						       "Can not replace route - no match found");
778 					pr_warn("Can't replace route, no match found\n");
779 					return ERR_PTR(-ENOENT);
780 				}
781 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
782 			}
783 			goto insert_above;
784 		}
785 
786 		/*
787 		 *	Exact match ?
788 		 */
789 
790 		if (plen == fn->fn_bit) {
791 			/* clean up an intermediate node */
792 			if (!(fn->fn_flags & RTN_RTINFO)) {
793 				RCU_INIT_POINTER(fn->leaf, NULL);
794 				fib6_info_release(leaf);
795 			/* remove null_entry in the root node */
796 			} else if (fn->fn_flags & RTN_TL_ROOT &&
797 				   rcu_access_pointer(fn->leaf) ==
798 				   net->ipv6.fib6_null_entry) {
799 				RCU_INIT_POINTER(fn->leaf, NULL);
800 			}
801 
802 			return fn;
803 		}
804 
805 		/*
806 		 *	We have more bits to go
807 		 */
808 
809 		/* Try to walk down on tree. */
810 		dir = addr_bit_set(addr, fn->fn_bit);
811 		pn = fn;
812 		fn = dir ?
813 		     rcu_dereference_protected(fn->right,
814 					lockdep_is_held(&table->tb6_lock)) :
815 		     rcu_dereference_protected(fn->left,
816 					lockdep_is_held(&table->tb6_lock));
817 	} while (fn);
818 
819 	if (!allow_create) {
820 		/* We should not create new node because
821 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
822 		 * I assume it is safe to require NLM_F_CREATE when
823 		 * REPLACE flag is used! Later we may want to remove the
824 		 * check for replace_required, because according
825 		 * to netlink specification, NLM_F_CREATE
826 		 * MUST be specified if new route is created.
827 		 * That would keep IPv6 consistent with IPv4
828 		 */
829 		if (replace_required) {
830 			NL_SET_ERR_MSG(extack,
831 				       "Can not replace route - no match found");
832 			pr_warn("Can't replace route, no match found\n");
833 			return ERR_PTR(-ENOENT);
834 		}
835 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
836 	}
837 	/*
838 	 *	We walked to the bottom of tree.
839 	 *	Create new leaf node without children.
840 	 */
841 
842 	ln = node_alloc(net);
843 
844 	if (!ln)
845 		return ERR_PTR(-ENOMEM);
846 	ln->fn_bit = plen;
847 	RCU_INIT_POINTER(ln->parent, pn);
848 
849 	if (dir)
850 		rcu_assign_pointer(pn->right, ln);
851 	else
852 		rcu_assign_pointer(pn->left, ln);
853 
854 	return ln;
855 
856 
857 insert_above:
858 	/*
859 	 * split since we don't have a common prefix anymore or
860 	 * we have a less significant route.
861 	 * we've to insert an intermediate node on the list
862 	 * this new node will point to the one we need to create
863 	 * and the current
864 	 */
865 
866 	pn = rcu_dereference_protected(fn->parent,
867 				       lockdep_is_held(&table->tb6_lock));
868 
869 	/* find 1st bit in difference between the 2 addrs.
870 
871 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
872 	   but if it is >= plen, the value is ignored in any case.
873 	 */
874 
875 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
876 
877 	/*
878 	 *		(intermediate)[in]
879 	 *	          /	   \
880 	 *	(new leaf node)[ln] (old node)[fn]
881 	 */
882 	if (plen > bit) {
883 		in = node_alloc(net);
884 		ln = node_alloc(net);
885 
886 		if (!in || !ln) {
887 			if (in)
888 				node_free_immediate(net, in);
889 			if (ln)
890 				node_free_immediate(net, ln);
891 			return ERR_PTR(-ENOMEM);
892 		}
893 
894 		/*
895 		 * new intermediate node.
896 		 * RTN_RTINFO will
897 		 * be off since that an address that chooses one of
898 		 * the branches would not match less specific routes
899 		 * in the other branch
900 		 */
901 
902 		in->fn_bit = bit;
903 
904 		RCU_INIT_POINTER(in->parent, pn);
905 		in->leaf = fn->leaf;
906 		fib6_info_hold(rcu_dereference_protected(in->leaf,
907 				lockdep_is_held(&table->tb6_lock)));
908 
909 		/* update parent pointer */
910 		if (dir)
911 			rcu_assign_pointer(pn->right, in);
912 		else
913 			rcu_assign_pointer(pn->left, in);
914 
915 		ln->fn_bit = plen;
916 
917 		RCU_INIT_POINTER(ln->parent, in);
918 		rcu_assign_pointer(fn->parent, in);
919 
920 		if (addr_bit_set(addr, bit)) {
921 			rcu_assign_pointer(in->right, ln);
922 			rcu_assign_pointer(in->left, fn);
923 		} else {
924 			rcu_assign_pointer(in->left, ln);
925 			rcu_assign_pointer(in->right, fn);
926 		}
927 	} else { /* plen <= bit */
928 
929 		/*
930 		 *		(new leaf node)[ln]
931 		 *	          /	   \
932 		 *	     (old node)[fn] NULL
933 		 */
934 
935 		ln = node_alloc(net);
936 
937 		if (!ln)
938 			return ERR_PTR(-ENOMEM);
939 
940 		ln->fn_bit = plen;
941 
942 		RCU_INIT_POINTER(ln->parent, pn);
943 
944 		if (addr_bit_set(&key->addr, plen))
945 			RCU_INIT_POINTER(ln->right, fn);
946 		else
947 			RCU_INIT_POINTER(ln->left, fn);
948 
949 		rcu_assign_pointer(fn->parent, ln);
950 
951 		if (dir)
952 			rcu_assign_pointer(pn->right, ln);
953 		else
954 			rcu_assign_pointer(pn->left, ln);
955 	}
956 	return ln;
957 }
958 
959 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
960 				  const struct fib6_info *match,
961 				  const struct fib6_table *table)
962 {
963 	int cpu;
964 
965 	if (!fib6_nh->rt6i_pcpu)
966 		return;
967 
968 	/* release the reference to this fib entry from
969 	 * all of its cached pcpu routes
970 	 */
971 	for_each_possible_cpu(cpu) {
972 		struct rt6_info **ppcpu_rt;
973 		struct rt6_info *pcpu_rt;
974 
975 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
976 		pcpu_rt = *ppcpu_rt;
977 
978 		/* only dropping the 'from' reference if the cached route
979 		 * is using 'match'. The cached pcpu_rt->from only changes
980 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
981 		 * change from one fib6_info reference to another
982 		 */
983 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
984 			struct fib6_info *from;
985 
986 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
987 			fib6_info_release(from);
988 		}
989 	}
990 }
991 
992 struct fib6_nh_pcpu_arg {
993 	struct fib6_info	*from;
994 	const struct fib6_table *table;
995 };
996 
997 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
998 {
999 	struct fib6_nh_pcpu_arg *arg = _arg;
1000 
1001 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
1002 	return 0;
1003 }
1004 
1005 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1006 				const struct fib6_table *table)
1007 {
1008 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1009 	 * while we are cleaning them here.
1010 	 */
1011 	f6i->fib6_destroying = 1;
1012 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1013 
1014 	if (f6i->nh) {
1015 		struct fib6_nh_pcpu_arg arg = {
1016 			.from = f6i,
1017 			.table = table
1018 		};
1019 
1020 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1021 					 &arg);
1022 	} else {
1023 		struct fib6_nh *fib6_nh;
1024 
1025 		fib6_nh = f6i->fib6_nh;
1026 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1027 	}
1028 }
1029 
1030 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1031 			  struct net *net)
1032 {
1033 	struct fib6_table *table = rt->fib6_table;
1034 
1035 	/* Flush all cached dst in exception table */
1036 	rt6_flush_exceptions(rt);
1037 	fib6_drop_pcpu_from(rt, table);
1038 
1039 	if (rt->nh && !list_empty(&rt->nh_list))
1040 		list_del_init(&rt->nh_list);
1041 
1042 	if (refcount_read(&rt->fib6_ref) != 1) {
1043 		/* This route is used as dummy address holder in some split
1044 		 * nodes. It is not leaked, but it still holds other resources,
1045 		 * which must be released in time. So, scan ascendant nodes
1046 		 * and replace dummy references to this route with references
1047 		 * to still alive ones.
1048 		 */
1049 		while (fn) {
1050 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1051 					    lockdep_is_held(&table->tb6_lock));
1052 			struct fib6_info *new_leaf;
1053 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1054 				new_leaf = fib6_find_prefix(net, table, fn);
1055 				fib6_info_hold(new_leaf);
1056 
1057 				rcu_assign_pointer(fn->leaf, new_leaf);
1058 				fib6_info_release(rt);
1059 			}
1060 			fn = rcu_dereference_protected(fn->parent,
1061 				    lockdep_is_held(&table->tb6_lock));
1062 		}
1063 	}
1064 
1065 	fib6_clean_expires(rt);
1066 	fib6_remove_gc_list(rt);
1067 }
1068 
1069 /*
1070  *	Insert routing information in a node.
1071  */
1072 
1073 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1074 			    struct nl_info *info,
1075 			    struct netlink_ext_ack *extack)
1076 {
1077 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1078 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1079 	struct fib6_info *iter = NULL;
1080 	struct fib6_info __rcu **ins;
1081 	struct fib6_info __rcu **fallback_ins = NULL;
1082 	int replace = (info->nlh &&
1083 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1084 	int add = (!info->nlh ||
1085 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1086 	int found = 0;
1087 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1088 	bool notify_sibling_rt = false;
1089 	u16 nlflags = NLM_F_EXCL;
1090 	int err;
1091 
1092 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1093 		nlflags |= NLM_F_APPEND;
1094 
1095 	ins = &fn->leaf;
1096 
1097 	for (iter = leaf; iter;
1098 	     iter = rcu_dereference_protected(iter->fib6_next,
1099 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1100 		/*
1101 		 *	Search for duplicates
1102 		 */
1103 
1104 		if (iter->fib6_metric == rt->fib6_metric) {
1105 			/*
1106 			 *	Same priority level
1107 			 */
1108 			if (info->nlh &&
1109 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1110 				return -EEXIST;
1111 
1112 			nlflags &= ~NLM_F_EXCL;
1113 			if (replace) {
1114 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1115 					found++;
1116 					break;
1117 				}
1118 				fallback_ins = fallback_ins ?: ins;
1119 				goto next_iter;
1120 			}
1121 
1122 			if (rt6_duplicate_nexthop(iter, rt)) {
1123 				if (rt->fib6_nsiblings)
1124 					rt->fib6_nsiblings = 0;
1125 				if (!(iter->fib6_flags & RTF_EXPIRES))
1126 					return -EEXIST;
1127 				if (!(rt->fib6_flags & RTF_EXPIRES)) {
1128 					fib6_clean_expires(iter);
1129 					fib6_remove_gc_list(iter);
1130 				} else {
1131 					fib6_set_expires(iter, rt->expires);
1132 					fib6_add_gc_list(iter);
1133 				}
1134 
1135 				if (rt->fib6_pmtu)
1136 					fib6_metric_set(iter, RTAX_MTU,
1137 							rt->fib6_pmtu);
1138 				return -EEXIST;
1139 			}
1140 			/* If we have the same destination and the same metric,
1141 			 * but not the same gateway, then the route we try to
1142 			 * add is sibling to this route, increment our counter
1143 			 * of siblings, and later we will add our route to the
1144 			 * list.
1145 			 * Only static routes (which don't have flag
1146 			 * RTF_EXPIRES) are used for ECMPv6.
1147 			 *
1148 			 * To avoid long list, we only had siblings if the
1149 			 * route have a gateway.
1150 			 */
1151 			if (rt_can_ecmp &&
1152 			    rt6_qualify_for_ecmp(iter))
1153 				rt->fib6_nsiblings++;
1154 		}
1155 
1156 		if (iter->fib6_metric > rt->fib6_metric)
1157 			break;
1158 
1159 next_iter:
1160 		ins = &iter->fib6_next;
1161 	}
1162 
1163 	if (fallback_ins && !found) {
1164 		/* No matching route with same ecmp-able-ness found, replace
1165 		 * first matching route
1166 		 */
1167 		ins = fallback_ins;
1168 		iter = rcu_dereference_protected(*ins,
1169 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1170 		found++;
1171 	}
1172 
1173 	/* Reset round-robin state, if necessary */
1174 	if (ins == &fn->leaf)
1175 		fn->rr_ptr = NULL;
1176 
1177 	/* Link this route to others same route. */
1178 	if (rt->fib6_nsiblings) {
1179 		unsigned int fib6_nsiblings;
1180 		struct fib6_info *sibling, *temp_sibling;
1181 
1182 		/* Find the first route that have the same metric */
1183 		sibling = leaf;
1184 		notify_sibling_rt = true;
1185 		while (sibling) {
1186 			if (sibling->fib6_metric == rt->fib6_metric &&
1187 			    rt6_qualify_for_ecmp(sibling)) {
1188 				list_add_tail(&rt->fib6_siblings,
1189 					      &sibling->fib6_siblings);
1190 				break;
1191 			}
1192 			sibling = rcu_dereference_protected(sibling->fib6_next,
1193 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1194 			notify_sibling_rt = false;
1195 		}
1196 		/* For each sibling in the list, increment the counter of
1197 		 * siblings. BUG() if counters does not match, list of siblings
1198 		 * is broken!
1199 		 */
1200 		fib6_nsiblings = 0;
1201 		list_for_each_entry_safe(sibling, temp_sibling,
1202 					 &rt->fib6_siblings, fib6_siblings) {
1203 			sibling->fib6_nsiblings++;
1204 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1205 			fib6_nsiblings++;
1206 		}
1207 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1208 		rt6_multipath_rebalance(temp_sibling);
1209 	}
1210 
1211 	/*
1212 	 *	insert node
1213 	 */
1214 	if (!replace) {
1215 		if (!add)
1216 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1217 
1218 add:
1219 		nlflags |= NLM_F_CREATE;
1220 
1221 		/* The route should only be notified if it is the first
1222 		 * route in the node or if it is added as a sibling
1223 		 * route to the first route in the node.
1224 		 */
1225 		if (!info->skip_notify_kernel &&
1226 		    (notify_sibling_rt || ins == &fn->leaf)) {
1227 			enum fib_event_type fib_event;
1228 
1229 			if (notify_sibling_rt)
1230 				fib_event = FIB_EVENT_ENTRY_APPEND;
1231 			else
1232 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1233 			err = call_fib6_entry_notifiers(info->nl_net,
1234 							fib_event, rt,
1235 							extack);
1236 			if (err) {
1237 				struct fib6_info *sibling, *next_sibling;
1238 
1239 				/* If the route has siblings, then it first
1240 				 * needs to be unlinked from them.
1241 				 */
1242 				if (!rt->fib6_nsiblings)
1243 					return err;
1244 
1245 				list_for_each_entry_safe(sibling, next_sibling,
1246 							 &rt->fib6_siblings,
1247 							 fib6_siblings)
1248 					sibling->fib6_nsiblings--;
1249 				rt->fib6_nsiblings = 0;
1250 				list_del_init(&rt->fib6_siblings);
1251 				rt6_multipath_rebalance(next_sibling);
1252 				return err;
1253 			}
1254 		}
1255 
1256 		rcu_assign_pointer(rt->fib6_next, iter);
1257 		fib6_info_hold(rt);
1258 		rcu_assign_pointer(rt->fib6_node, fn);
1259 		rcu_assign_pointer(*ins, rt);
1260 		if (!info->skip_notify)
1261 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1262 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1263 
1264 		if (!(fn->fn_flags & RTN_RTINFO)) {
1265 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1266 			fn->fn_flags |= RTN_RTINFO;
1267 		}
1268 
1269 	} else {
1270 		int nsiblings;
1271 
1272 		if (!found) {
1273 			if (add)
1274 				goto add;
1275 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1276 			return -ENOENT;
1277 		}
1278 
1279 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1280 			err = call_fib6_entry_notifiers(info->nl_net,
1281 							FIB_EVENT_ENTRY_REPLACE,
1282 							rt, extack);
1283 			if (err)
1284 				return err;
1285 		}
1286 
1287 		fib6_info_hold(rt);
1288 		rcu_assign_pointer(rt->fib6_node, fn);
1289 		rt->fib6_next = iter->fib6_next;
1290 		rcu_assign_pointer(*ins, rt);
1291 		if (!info->skip_notify)
1292 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1293 		if (!(fn->fn_flags & RTN_RTINFO)) {
1294 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1295 			fn->fn_flags |= RTN_RTINFO;
1296 		}
1297 		nsiblings = iter->fib6_nsiblings;
1298 		iter->fib6_node = NULL;
1299 		fib6_purge_rt(iter, fn, info->nl_net);
1300 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1301 			fn->rr_ptr = NULL;
1302 		fib6_info_release(iter);
1303 
1304 		if (nsiblings) {
1305 			/* Replacing an ECMP route, remove all siblings */
1306 			ins = &rt->fib6_next;
1307 			iter = rcu_dereference_protected(*ins,
1308 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1309 			while (iter) {
1310 				if (iter->fib6_metric > rt->fib6_metric)
1311 					break;
1312 				if (rt6_qualify_for_ecmp(iter)) {
1313 					*ins = iter->fib6_next;
1314 					iter->fib6_node = NULL;
1315 					fib6_purge_rt(iter, fn, info->nl_net);
1316 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1317 						fn->rr_ptr = NULL;
1318 					fib6_info_release(iter);
1319 					nsiblings--;
1320 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1321 				} else {
1322 					ins = &iter->fib6_next;
1323 				}
1324 				iter = rcu_dereference_protected(*ins,
1325 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1326 			}
1327 			WARN_ON(nsiblings != 0);
1328 		}
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1335 {
1336 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1337 	    (rt->fib6_flags & RTF_EXPIRES))
1338 		mod_timer(&net->ipv6.ip6_fib_timer,
1339 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1340 }
1341 
1342 void fib6_force_start_gc(struct net *net)
1343 {
1344 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1345 		mod_timer(&net->ipv6.ip6_fib_timer,
1346 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1347 }
1348 
1349 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1350 					   int sernum)
1351 {
1352 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1353 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1354 
1355 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1356 	smp_wmb();
1357 	while (fn) {
1358 		WRITE_ONCE(fn->fn_sernum, sernum);
1359 		fn = rcu_dereference_protected(fn->parent,
1360 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1361 	}
1362 }
1363 
1364 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1365 {
1366 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1367 }
1368 
1369 /* allow ipv4 to update sernum via ipv6_stub */
1370 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1371 {
1372 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1373 	fib6_update_sernum_upto_root(net, f6i);
1374 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1375 }
1376 
1377 /*
1378  *	Add routing information to the routing tree.
1379  *	<destination addr>/<source addr>
1380  *	with source addr info in sub-trees
1381  *	Need to own table->tb6_lock
1382  */
1383 
1384 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1385 	     struct nl_info *info, struct netlink_ext_ack *extack)
1386 {
1387 	struct fib6_table *table = rt->fib6_table;
1388 	struct fib6_node *fn, *pn = NULL;
1389 	int err = -ENOMEM;
1390 	int allow_create = 1;
1391 	int replace_required = 0;
1392 
1393 	if (info->nlh) {
1394 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1395 			allow_create = 0;
1396 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1397 			replace_required = 1;
1398 	}
1399 	if (!allow_create && !replace_required)
1400 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1401 
1402 	fn = fib6_add_1(info->nl_net, table, root,
1403 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1404 			offsetof(struct fib6_info, fib6_dst), allow_create,
1405 			replace_required, extack);
1406 	if (IS_ERR(fn)) {
1407 		err = PTR_ERR(fn);
1408 		fn = NULL;
1409 		goto out;
1410 	}
1411 
1412 	pn = fn;
1413 
1414 #ifdef CONFIG_IPV6_SUBTREES
1415 	if (rt->fib6_src.plen) {
1416 		struct fib6_node *sn;
1417 
1418 		if (!rcu_access_pointer(fn->subtree)) {
1419 			struct fib6_node *sfn;
1420 
1421 			/*
1422 			 * Create subtree.
1423 			 *
1424 			 *		fn[main tree]
1425 			 *		|
1426 			 *		sfn[subtree root]
1427 			 *		   \
1428 			 *		    sn[new leaf node]
1429 			 */
1430 
1431 			/* Create subtree root node */
1432 			sfn = node_alloc(info->nl_net);
1433 			if (!sfn)
1434 				goto failure;
1435 
1436 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1437 			rcu_assign_pointer(sfn->leaf,
1438 					   info->nl_net->ipv6.fib6_null_entry);
1439 			sfn->fn_flags = RTN_ROOT;
1440 
1441 			/* Now add the first leaf node to new subtree */
1442 
1443 			sn = fib6_add_1(info->nl_net, table, sfn,
1444 					&rt->fib6_src.addr, rt->fib6_src.plen,
1445 					offsetof(struct fib6_info, fib6_src),
1446 					allow_create, replace_required, extack);
1447 
1448 			if (IS_ERR(sn)) {
1449 				/* If it is failed, discard just allocated
1450 				   root, and then (in failure) stale node
1451 				   in main tree.
1452 				 */
1453 				node_free_immediate(info->nl_net, sfn);
1454 				err = PTR_ERR(sn);
1455 				goto failure;
1456 			}
1457 
1458 			/* Now link new subtree to main tree */
1459 			rcu_assign_pointer(sfn->parent, fn);
1460 			rcu_assign_pointer(fn->subtree, sfn);
1461 		} else {
1462 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1463 					&rt->fib6_src.addr, rt->fib6_src.plen,
1464 					offsetof(struct fib6_info, fib6_src),
1465 					allow_create, replace_required, extack);
1466 
1467 			if (IS_ERR(sn)) {
1468 				err = PTR_ERR(sn);
1469 				goto failure;
1470 			}
1471 		}
1472 
1473 		if (!rcu_access_pointer(fn->leaf)) {
1474 			if (fn->fn_flags & RTN_TL_ROOT) {
1475 				/* put back null_entry for root node */
1476 				rcu_assign_pointer(fn->leaf,
1477 					    info->nl_net->ipv6.fib6_null_entry);
1478 			} else {
1479 				fib6_info_hold(rt);
1480 				rcu_assign_pointer(fn->leaf, rt);
1481 			}
1482 		}
1483 		fn = sn;
1484 	}
1485 #endif
1486 
1487 	err = fib6_add_rt2node(fn, rt, info, extack);
1488 	if (!err) {
1489 		if (rt->nh)
1490 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1491 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1492 
1493 		if (rt->fib6_flags & RTF_EXPIRES)
1494 			fib6_add_gc_list(rt);
1495 
1496 		fib6_start_gc(info->nl_net, rt);
1497 	}
1498 
1499 out:
1500 	if (err) {
1501 #ifdef CONFIG_IPV6_SUBTREES
1502 		/*
1503 		 * If fib6_add_1 has cleared the old leaf pointer in the
1504 		 * super-tree leaf node we have to find a new one for it.
1505 		 */
1506 		if (pn != fn) {
1507 			struct fib6_info *pn_leaf =
1508 				rcu_dereference_protected(pn->leaf,
1509 				    lockdep_is_held(&table->tb6_lock));
1510 			if (pn_leaf == rt) {
1511 				pn_leaf = NULL;
1512 				RCU_INIT_POINTER(pn->leaf, NULL);
1513 				fib6_info_release(rt);
1514 			}
1515 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1516 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1517 							   pn);
1518 				if (!pn_leaf)
1519 					pn_leaf =
1520 					    info->nl_net->ipv6.fib6_null_entry;
1521 				fib6_info_hold(pn_leaf);
1522 				rcu_assign_pointer(pn->leaf, pn_leaf);
1523 			}
1524 		}
1525 #endif
1526 		goto failure;
1527 	} else if (fib6_requires_src(rt)) {
1528 		fib6_routes_require_src_inc(info->nl_net);
1529 	}
1530 	return err;
1531 
1532 failure:
1533 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1534 	 * 1. fn is an intermediate node and we failed to add the new
1535 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1536 	 * failure case.
1537 	 * 2. fn is the root node in the table and we fail to add the first
1538 	 * default route to it.
1539 	 */
1540 	if (fn &&
1541 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1542 	     (fn->fn_flags & RTN_TL_ROOT &&
1543 	      !rcu_access_pointer(fn->leaf))))
1544 		fib6_repair_tree(info->nl_net, table, fn);
1545 	return err;
1546 }
1547 
1548 /*
1549  *	Routing tree lookup
1550  *
1551  */
1552 
1553 struct lookup_args {
1554 	int			offset;		/* key offset on fib6_info */
1555 	const struct in6_addr	*addr;		/* search key			*/
1556 };
1557 
1558 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1559 					    struct lookup_args *args)
1560 {
1561 	struct fib6_node *fn;
1562 	__be32 dir;
1563 
1564 	if (unlikely(args->offset == 0))
1565 		return NULL;
1566 
1567 	/*
1568 	 *	Descend on a tree
1569 	 */
1570 
1571 	fn = root;
1572 
1573 	for (;;) {
1574 		struct fib6_node *next;
1575 
1576 		dir = addr_bit_set(args->addr, fn->fn_bit);
1577 
1578 		next = dir ? rcu_dereference(fn->right) :
1579 			     rcu_dereference(fn->left);
1580 
1581 		if (next) {
1582 			fn = next;
1583 			continue;
1584 		}
1585 		break;
1586 	}
1587 
1588 	while (fn) {
1589 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1590 
1591 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1592 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1593 			struct rt6key *key;
1594 
1595 			if (!leaf)
1596 				goto backtrack;
1597 
1598 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1599 
1600 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1601 #ifdef CONFIG_IPV6_SUBTREES
1602 				if (subtree) {
1603 					struct fib6_node *sfn;
1604 					sfn = fib6_node_lookup_1(subtree,
1605 								 args + 1);
1606 					if (!sfn)
1607 						goto backtrack;
1608 					fn = sfn;
1609 				}
1610 #endif
1611 				if (fn->fn_flags & RTN_RTINFO)
1612 					return fn;
1613 			}
1614 		}
1615 backtrack:
1616 		if (fn->fn_flags & RTN_ROOT)
1617 			break;
1618 
1619 		fn = rcu_dereference(fn->parent);
1620 	}
1621 
1622 	return NULL;
1623 }
1624 
1625 /* called with rcu_read_lock() held
1626  */
1627 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1628 				   const struct in6_addr *daddr,
1629 				   const struct in6_addr *saddr)
1630 {
1631 	struct fib6_node *fn;
1632 	struct lookup_args args[] = {
1633 		{
1634 			.offset = offsetof(struct fib6_info, fib6_dst),
1635 			.addr = daddr,
1636 		},
1637 #ifdef CONFIG_IPV6_SUBTREES
1638 		{
1639 			.offset = offsetof(struct fib6_info, fib6_src),
1640 			.addr = saddr,
1641 		},
1642 #endif
1643 		{
1644 			.offset = 0,	/* sentinel */
1645 		}
1646 	};
1647 
1648 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1649 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1650 		fn = root;
1651 
1652 	return fn;
1653 }
1654 
1655 /*
1656  *	Get node with specified destination prefix (and source prefix,
1657  *	if subtrees are used)
1658  *	exact_match == true means we try to find fn with exact match of
1659  *	the passed in prefix addr
1660  *	exact_match == false means we try to find fn with longest prefix
1661  *	match of the passed in prefix addr. This is useful for finding fn
1662  *	for cached route as it will be stored in the exception table under
1663  *	the node with longest prefix length.
1664  */
1665 
1666 
1667 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1668 				       const struct in6_addr *addr,
1669 				       int plen, int offset,
1670 				       bool exact_match)
1671 {
1672 	struct fib6_node *fn, *prev = NULL;
1673 
1674 	for (fn = root; fn ; ) {
1675 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1676 		struct rt6key *key;
1677 
1678 		/* This node is being deleted */
1679 		if (!leaf) {
1680 			if (plen <= fn->fn_bit)
1681 				goto out;
1682 			else
1683 				goto next;
1684 		}
1685 
1686 		key = (struct rt6key *)((u8 *)leaf + offset);
1687 
1688 		/*
1689 		 *	Prefix match
1690 		 */
1691 		if (plen < fn->fn_bit ||
1692 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1693 			goto out;
1694 
1695 		if (plen == fn->fn_bit)
1696 			return fn;
1697 
1698 		if (fn->fn_flags & RTN_RTINFO)
1699 			prev = fn;
1700 
1701 next:
1702 		/*
1703 		 *	We have more bits to go
1704 		 */
1705 		if (addr_bit_set(addr, fn->fn_bit))
1706 			fn = rcu_dereference(fn->right);
1707 		else
1708 			fn = rcu_dereference(fn->left);
1709 	}
1710 out:
1711 	if (exact_match)
1712 		return NULL;
1713 	else
1714 		return prev;
1715 }
1716 
1717 struct fib6_node *fib6_locate(struct fib6_node *root,
1718 			      const struct in6_addr *daddr, int dst_len,
1719 			      const struct in6_addr *saddr, int src_len,
1720 			      bool exact_match)
1721 {
1722 	struct fib6_node *fn;
1723 
1724 	fn = fib6_locate_1(root, daddr, dst_len,
1725 			   offsetof(struct fib6_info, fib6_dst),
1726 			   exact_match);
1727 
1728 #ifdef CONFIG_IPV6_SUBTREES
1729 	if (src_len) {
1730 		WARN_ON(saddr == NULL);
1731 		if (fn) {
1732 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1733 
1734 			if (subtree) {
1735 				fn = fib6_locate_1(subtree, saddr, src_len,
1736 					   offsetof(struct fib6_info, fib6_src),
1737 					   exact_match);
1738 			}
1739 		}
1740 	}
1741 #endif
1742 
1743 	if (fn && fn->fn_flags & RTN_RTINFO)
1744 		return fn;
1745 
1746 	return NULL;
1747 }
1748 
1749 
1750 /*
1751  *	Deletion
1752  *
1753  */
1754 
1755 static struct fib6_info *fib6_find_prefix(struct net *net,
1756 					 struct fib6_table *table,
1757 					 struct fib6_node *fn)
1758 {
1759 	struct fib6_node *child_left, *child_right;
1760 
1761 	if (fn->fn_flags & RTN_ROOT)
1762 		return net->ipv6.fib6_null_entry;
1763 
1764 	while (fn) {
1765 		child_left = rcu_dereference_protected(fn->left,
1766 				    lockdep_is_held(&table->tb6_lock));
1767 		child_right = rcu_dereference_protected(fn->right,
1768 				    lockdep_is_held(&table->tb6_lock));
1769 		if (child_left)
1770 			return rcu_dereference_protected(child_left->leaf,
1771 					lockdep_is_held(&table->tb6_lock));
1772 		if (child_right)
1773 			return rcu_dereference_protected(child_right->leaf,
1774 					lockdep_is_held(&table->tb6_lock));
1775 
1776 		fn = FIB6_SUBTREE(fn);
1777 	}
1778 	return NULL;
1779 }
1780 
1781 /*
1782  *	Called to trim the tree of intermediate nodes when possible. "fn"
1783  *	is the node we want to try and remove.
1784  *	Need to own table->tb6_lock
1785  */
1786 
1787 static struct fib6_node *fib6_repair_tree(struct net *net,
1788 					  struct fib6_table *table,
1789 					  struct fib6_node *fn)
1790 {
1791 	int children;
1792 	int nstate;
1793 	struct fib6_node *child;
1794 	struct fib6_walker *w;
1795 	int iter = 0;
1796 
1797 	/* Set fn->leaf to null_entry for root node. */
1798 	if (fn->fn_flags & RTN_TL_ROOT) {
1799 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1800 		return fn;
1801 	}
1802 
1803 	for (;;) {
1804 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1805 					    lockdep_is_held(&table->tb6_lock));
1806 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1807 					    lockdep_is_held(&table->tb6_lock));
1808 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1809 					    lockdep_is_held(&table->tb6_lock));
1810 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1811 					    lockdep_is_held(&table->tb6_lock));
1812 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1813 					    lockdep_is_held(&table->tb6_lock));
1814 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1815 					    lockdep_is_held(&table->tb6_lock));
1816 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1817 					    lockdep_is_held(&table->tb6_lock));
1818 		struct fib6_info *new_fn_leaf;
1819 
1820 		pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1821 		iter++;
1822 
1823 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1824 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1825 		WARN_ON(fn_leaf);
1826 
1827 		children = 0;
1828 		child = NULL;
1829 		if (fn_r) {
1830 			child = fn_r;
1831 			children |= 1;
1832 		}
1833 		if (fn_l) {
1834 			child = fn_l;
1835 			children |= 2;
1836 		}
1837 
1838 		if (children == 3 || FIB6_SUBTREE(fn)
1839 #ifdef CONFIG_IPV6_SUBTREES
1840 		    /* Subtree root (i.e. fn) may have one child */
1841 		    || (children && fn->fn_flags & RTN_ROOT)
1842 #endif
1843 		    ) {
1844 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1845 #if RT6_DEBUG >= 2
1846 			if (!new_fn_leaf) {
1847 				WARN_ON(!new_fn_leaf);
1848 				new_fn_leaf = net->ipv6.fib6_null_entry;
1849 			}
1850 #endif
1851 			fib6_info_hold(new_fn_leaf);
1852 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1853 			return pn;
1854 		}
1855 
1856 #ifdef CONFIG_IPV6_SUBTREES
1857 		if (FIB6_SUBTREE(pn) == fn) {
1858 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1859 			RCU_INIT_POINTER(pn->subtree, NULL);
1860 			nstate = FWS_L;
1861 		} else {
1862 			WARN_ON(fn->fn_flags & RTN_ROOT);
1863 #endif
1864 			if (pn_r == fn)
1865 				rcu_assign_pointer(pn->right, child);
1866 			else if (pn_l == fn)
1867 				rcu_assign_pointer(pn->left, child);
1868 #if RT6_DEBUG >= 2
1869 			else
1870 				WARN_ON(1);
1871 #endif
1872 			if (child)
1873 				rcu_assign_pointer(child->parent, pn);
1874 			nstate = FWS_R;
1875 #ifdef CONFIG_IPV6_SUBTREES
1876 		}
1877 #endif
1878 
1879 		read_lock(&net->ipv6.fib6_walker_lock);
1880 		FOR_WALKERS(net, w) {
1881 			if (!child) {
1882 				if (w->node == fn) {
1883 					pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1884 						 w, w->state, nstate);
1885 					w->node = pn;
1886 					w->state = nstate;
1887 				}
1888 			} else {
1889 				if (w->node == fn) {
1890 					w->node = child;
1891 					if (children&2) {
1892 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1893 							 w, w->state);
1894 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1895 					} else {
1896 						pr_debug("W %p adjusted by delnode 2, s=%d\n",
1897 							 w, w->state);
1898 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1899 					}
1900 				}
1901 			}
1902 		}
1903 		read_unlock(&net->ipv6.fib6_walker_lock);
1904 
1905 		node_free(net, fn);
1906 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1907 			return pn;
1908 
1909 		RCU_INIT_POINTER(pn->leaf, NULL);
1910 		fib6_info_release(pn_leaf);
1911 		fn = pn;
1912 	}
1913 }
1914 
1915 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1916 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1917 {
1918 	struct fib6_info *leaf, *replace_rt = NULL;
1919 	struct fib6_walker *w;
1920 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1921 				    lockdep_is_held(&table->tb6_lock));
1922 	struct net *net = info->nl_net;
1923 	bool notify_del = false;
1924 
1925 	/* If the deleted route is the first in the node and it is not part of
1926 	 * a multipath route, then we need to replace it with the next route
1927 	 * in the node, if exists.
1928 	 */
1929 	leaf = rcu_dereference_protected(fn->leaf,
1930 					 lockdep_is_held(&table->tb6_lock));
1931 	if (leaf == rt && !rt->fib6_nsiblings) {
1932 		if (rcu_access_pointer(rt->fib6_next))
1933 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1934 					    lockdep_is_held(&table->tb6_lock));
1935 		else
1936 			notify_del = true;
1937 	}
1938 
1939 	/* Unlink it */
1940 	*rtp = rt->fib6_next;
1941 	rt->fib6_node = NULL;
1942 	net->ipv6.rt6_stats->fib_rt_entries--;
1943 	net->ipv6.rt6_stats->fib_discarded_routes++;
1944 
1945 	/* Reset round-robin state, if necessary */
1946 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1947 		fn->rr_ptr = NULL;
1948 
1949 	/* Remove this entry from other siblings */
1950 	if (rt->fib6_nsiblings) {
1951 		struct fib6_info *sibling, *next_sibling;
1952 
1953 		/* The route is deleted from a multipath route. If this
1954 		 * multipath route is the first route in the node, then we need
1955 		 * to emit a delete notification. Otherwise, we need to skip
1956 		 * the notification.
1957 		 */
1958 		if (rt->fib6_metric == leaf->fib6_metric &&
1959 		    rt6_qualify_for_ecmp(leaf))
1960 			notify_del = true;
1961 		list_for_each_entry_safe(sibling, next_sibling,
1962 					 &rt->fib6_siblings, fib6_siblings)
1963 			sibling->fib6_nsiblings--;
1964 		rt->fib6_nsiblings = 0;
1965 		list_del_init(&rt->fib6_siblings);
1966 		rt6_multipath_rebalance(next_sibling);
1967 	}
1968 
1969 	/* Adjust walkers */
1970 	read_lock(&net->ipv6.fib6_walker_lock);
1971 	FOR_WALKERS(net, w) {
1972 		if (w->state == FWS_C && w->leaf == rt) {
1973 			pr_debug("walker %p adjusted by delroute\n", w);
1974 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1975 					    lockdep_is_held(&table->tb6_lock));
1976 			if (!w->leaf)
1977 				w->state = FWS_U;
1978 		}
1979 	}
1980 	read_unlock(&net->ipv6.fib6_walker_lock);
1981 
1982 	/* If it was last route, call fib6_repair_tree() to:
1983 	 * 1. For root node, put back null_entry as how the table was created.
1984 	 * 2. For other nodes, expunge its radix tree node.
1985 	 */
1986 	if (!rcu_access_pointer(fn->leaf)) {
1987 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1988 			fn->fn_flags &= ~RTN_RTINFO;
1989 			net->ipv6.rt6_stats->fib_route_nodes--;
1990 		}
1991 		fn = fib6_repair_tree(net, table, fn);
1992 	}
1993 
1994 	fib6_purge_rt(rt, fn, net);
1995 
1996 	if (!info->skip_notify_kernel) {
1997 		if (notify_del)
1998 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1999 						  rt, NULL);
2000 		else if (replace_rt)
2001 			call_fib6_entry_notifiers_replace(net, replace_rt);
2002 	}
2003 	if (!info->skip_notify)
2004 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2005 
2006 	fib6_info_release(rt);
2007 }
2008 
2009 /* Need to own table->tb6_lock */
2010 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2011 {
2012 	struct net *net = info->nl_net;
2013 	struct fib6_info __rcu **rtp;
2014 	struct fib6_info __rcu **rtp_next;
2015 	struct fib6_table *table;
2016 	struct fib6_node *fn;
2017 
2018 	if (rt == net->ipv6.fib6_null_entry)
2019 		return -ENOENT;
2020 
2021 	table = rt->fib6_table;
2022 	fn = rcu_dereference_protected(rt->fib6_node,
2023 				       lockdep_is_held(&table->tb6_lock));
2024 	if (!fn)
2025 		return -ENOENT;
2026 
2027 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2028 
2029 	/*
2030 	 *	Walk the leaf entries looking for ourself
2031 	 */
2032 
2033 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2034 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2035 					lockdep_is_held(&table->tb6_lock));
2036 		if (rt == cur) {
2037 			if (fib6_requires_src(cur))
2038 				fib6_routes_require_src_dec(info->nl_net);
2039 			fib6_del_route(table, fn, rtp, info);
2040 			return 0;
2041 		}
2042 		rtp_next = &cur->fib6_next;
2043 	}
2044 	return -ENOENT;
2045 }
2046 
2047 /*
2048  *	Tree traversal function.
2049  *
2050  *	Certainly, it is not interrupt safe.
2051  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2052  *	It means, that we can modify tree during walking
2053  *	and use this function for garbage collection, clone pruning,
2054  *	cleaning tree when a device goes down etc. etc.
2055  *
2056  *	It guarantees that every node will be traversed,
2057  *	and that it will be traversed only once.
2058  *
2059  *	Callback function w->func may return:
2060  *	0 -> continue walking.
2061  *	positive value -> walking is suspended (used by tree dumps,
2062  *	and probably by gc, if it will be split to several slices)
2063  *	negative value -> terminate walking.
2064  *
2065  *	The function itself returns:
2066  *	0   -> walk is complete.
2067  *	>0  -> walk is incomplete (i.e. suspended)
2068  *	<0  -> walk is terminated by an error.
2069  *
2070  *	This function is called with tb6_lock held.
2071  */
2072 
2073 static int fib6_walk_continue(struct fib6_walker *w)
2074 {
2075 	struct fib6_node *fn, *pn, *left, *right;
2076 
2077 	/* w->root should always be table->tb6_root */
2078 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2079 
2080 	for (;;) {
2081 		fn = w->node;
2082 		if (!fn)
2083 			return 0;
2084 
2085 		switch (w->state) {
2086 #ifdef CONFIG_IPV6_SUBTREES
2087 		case FWS_S:
2088 			if (FIB6_SUBTREE(fn)) {
2089 				w->node = FIB6_SUBTREE(fn);
2090 				continue;
2091 			}
2092 			w->state = FWS_L;
2093 			fallthrough;
2094 #endif
2095 		case FWS_L:
2096 			left = rcu_dereference_protected(fn->left, 1);
2097 			if (left) {
2098 				w->node = left;
2099 				w->state = FWS_INIT;
2100 				continue;
2101 			}
2102 			w->state = FWS_R;
2103 			fallthrough;
2104 		case FWS_R:
2105 			right = rcu_dereference_protected(fn->right, 1);
2106 			if (right) {
2107 				w->node = right;
2108 				w->state = FWS_INIT;
2109 				continue;
2110 			}
2111 			w->state = FWS_C;
2112 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2113 			fallthrough;
2114 		case FWS_C:
2115 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2116 				int err;
2117 
2118 				if (w->skip) {
2119 					w->skip--;
2120 					goto skip;
2121 				}
2122 
2123 				err = w->func(w);
2124 				if (err)
2125 					return err;
2126 
2127 				w->count++;
2128 				continue;
2129 			}
2130 skip:
2131 			w->state = FWS_U;
2132 			fallthrough;
2133 		case FWS_U:
2134 			if (fn == w->root)
2135 				return 0;
2136 			pn = rcu_dereference_protected(fn->parent, 1);
2137 			left = rcu_dereference_protected(pn->left, 1);
2138 			right = rcu_dereference_protected(pn->right, 1);
2139 			w->node = pn;
2140 #ifdef CONFIG_IPV6_SUBTREES
2141 			if (FIB6_SUBTREE(pn) == fn) {
2142 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2143 				w->state = FWS_L;
2144 				continue;
2145 			}
2146 #endif
2147 			if (left == fn) {
2148 				w->state = FWS_R;
2149 				continue;
2150 			}
2151 			if (right == fn) {
2152 				w->state = FWS_C;
2153 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2154 				continue;
2155 			}
2156 #if RT6_DEBUG >= 2
2157 			WARN_ON(1);
2158 #endif
2159 		}
2160 	}
2161 }
2162 
2163 static int fib6_walk(struct net *net, struct fib6_walker *w)
2164 {
2165 	int res;
2166 
2167 	w->state = FWS_INIT;
2168 	w->node = w->root;
2169 
2170 	fib6_walker_link(net, w);
2171 	res = fib6_walk_continue(w);
2172 	if (res <= 0)
2173 		fib6_walker_unlink(net, w);
2174 	return res;
2175 }
2176 
2177 static int fib6_clean_node(struct fib6_walker *w)
2178 {
2179 	int res;
2180 	struct fib6_info *rt;
2181 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2182 	struct nl_info info = {
2183 		.nl_net = c->net,
2184 		.skip_notify = c->skip_notify,
2185 	};
2186 
2187 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2188 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2189 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2190 
2191 	if (!c->func) {
2192 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2193 		w->leaf = NULL;
2194 		return 0;
2195 	}
2196 
2197 	for_each_fib6_walker_rt(w) {
2198 		res = c->func(rt, c->arg);
2199 		if (res == -1) {
2200 			w->leaf = rt;
2201 			res = fib6_del(rt, &info);
2202 			if (res) {
2203 #if RT6_DEBUG >= 2
2204 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2205 					 __func__, rt,
2206 					 rcu_access_pointer(rt->fib6_node),
2207 					 res);
2208 #endif
2209 				continue;
2210 			}
2211 			return 0;
2212 		} else if (res == -2) {
2213 			if (WARN_ON(!rt->fib6_nsiblings))
2214 				continue;
2215 			rt = list_last_entry(&rt->fib6_siblings,
2216 					     struct fib6_info, fib6_siblings);
2217 			continue;
2218 		}
2219 		WARN_ON(res != 0);
2220 	}
2221 	w->leaf = rt;
2222 	return 0;
2223 }
2224 
2225 /*
2226  *	Convenient frontend to tree walker.
2227  *
2228  *	func is called on each route.
2229  *		It may return -2 -> skip multipath route.
2230  *			      -1 -> delete this route.
2231  *		              0  -> continue walking
2232  */
2233 
2234 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2235 			    int (*func)(struct fib6_info *, void *arg),
2236 			    int sernum, void *arg, bool skip_notify)
2237 {
2238 	struct fib6_cleaner c;
2239 
2240 	c.w.root = root;
2241 	c.w.func = fib6_clean_node;
2242 	c.w.count = 0;
2243 	c.w.skip = 0;
2244 	c.w.skip_in_node = 0;
2245 	c.func = func;
2246 	c.sernum = sernum;
2247 	c.arg = arg;
2248 	c.net = net;
2249 	c.skip_notify = skip_notify;
2250 
2251 	fib6_walk(net, &c.w);
2252 }
2253 
2254 static void __fib6_clean_all(struct net *net,
2255 			     int (*func)(struct fib6_info *, void *),
2256 			     int sernum, void *arg, bool skip_notify)
2257 {
2258 	struct fib6_table *table;
2259 	struct hlist_head *head;
2260 	unsigned int h;
2261 
2262 	rcu_read_lock();
2263 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2264 		head = &net->ipv6.fib_table_hash[h];
2265 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2266 			spin_lock_bh(&table->tb6_lock);
2267 			fib6_clean_tree(net, &table->tb6_root,
2268 					func, sernum, arg, skip_notify);
2269 			spin_unlock_bh(&table->tb6_lock);
2270 		}
2271 	}
2272 	rcu_read_unlock();
2273 }
2274 
2275 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2276 		    void *arg)
2277 {
2278 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2279 }
2280 
2281 void fib6_clean_all_skip_notify(struct net *net,
2282 				int (*func)(struct fib6_info *, void *),
2283 				void *arg)
2284 {
2285 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2286 }
2287 
2288 static void fib6_flush_trees(struct net *net)
2289 {
2290 	int new_sernum = fib6_new_sernum(net);
2291 
2292 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2293 }
2294 
2295 /*
2296  *	Garbage collection
2297  */
2298 
2299 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2300 {
2301 	unsigned long now = jiffies;
2302 
2303 	/*
2304 	 *	check addrconf expiration here.
2305 	 *	Routes are expired even if they are in use.
2306 	 */
2307 
2308 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2309 		if (time_after(now, rt->expires)) {
2310 			pr_debug("expiring %p\n", rt);
2311 			return -1;
2312 		}
2313 		gc_args->more++;
2314 	}
2315 
2316 	/*	Also age clones in the exception table.
2317 	 *	Note, that clones are aged out
2318 	 *	only if they are not in use now.
2319 	 */
2320 	rt6_age_exceptions(rt, gc_args, now);
2321 
2322 	return 0;
2323 }
2324 
2325 static void fib6_gc_table(struct net *net,
2326 			  struct fib6_table *tb6,
2327 			  struct fib6_gc_args *gc_args)
2328 {
2329 	struct fib6_info *rt;
2330 	struct hlist_node *n;
2331 	struct nl_info info = {
2332 		.nl_net = net,
2333 		.skip_notify = false,
2334 	};
2335 
2336 	hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2337 		if (fib6_age(rt, gc_args) == -1)
2338 			fib6_del(rt, &info);
2339 }
2340 
2341 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2342 {
2343 	struct fib6_table *table;
2344 	struct hlist_head *head;
2345 	unsigned int h;
2346 
2347 	rcu_read_lock();
2348 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2349 		head = &net->ipv6.fib_table_hash[h];
2350 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2351 			spin_lock_bh(&table->tb6_lock);
2352 
2353 			fib6_gc_table(net, table, gc_args);
2354 
2355 			spin_unlock_bh(&table->tb6_lock);
2356 		}
2357 	}
2358 	rcu_read_unlock();
2359 }
2360 
2361 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2362 {
2363 	struct fib6_gc_args gc_args;
2364 	unsigned long now;
2365 
2366 	if (force) {
2367 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2368 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2369 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2370 		return;
2371 	}
2372 	gc_args.timeout = expires ? (int)expires :
2373 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2374 	gc_args.more = 0;
2375 
2376 	fib6_gc_all(net, &gc_args);
2377 	now = jiffies;
2378 	net->ipv6.ip6_rt_last_gc = now;
2379 
2380 	if (gc_args.more)
2381 		mod_timer(&net->ipv6.ip6_fib_timer,
2382 			  round_jiffies(now
2383 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2384 	else
2385 		del_timer(&net->ipv6.ip6_fib_timer);
2386 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2387 }
2388 
2389 static void fib6_gc_timer_cb(struct timer_list *t)
2390 {
2391 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2392 
2393 	fib6_run_gc(0, arg, true);
2394 }
2395 
2396 static int __net_init fib6_net_init(struct net *net)
2397 {
2398 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2399 	int err;
2400 
2401 	err = fib6_notifier_init(net);
2402 	if (err)
2403 		return err;
2404 
2405 	/* Default to 3-tuple */
2406 	net->ipv6.sysctl.multipath_hash_fields =
2407 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2408 
2409 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2410 	rwlock_init(&net->ipv6.fib6_walker_lock);
2411 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2412 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2413 
2414 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2415 	if (!net->ipv6.rt6_stats)
2416 		goto out_notifier;
2417 
2418 	/* Avoid false sharing : Use at least a full cache line */
2419 	size = max_t(size_t, size, L1_CACHE_BYTES);
2420 
2421 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2422 	if (!net->ipv6.fib_table_hash)
2423 		goto out_rt6_stats;
2424 
2425 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2426 					  GFP_KERNEL);
2427 	if (!net->ipv6.fib6_main_tbl)
2428 		goto out_fib_table_hash;
2429 
2430 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2431 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2432 			   net->ipv6.fib6_null_entry);
2433 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2434 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2435 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2436 	INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2437 
2438 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2439 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2440 					   GFP_KERNEL);
2441 	if (!net->ipv6.fib6_local_tbl)
2442 		goto out_fib6_main_tbl;
2443 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2444 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2445 			   net->ipv6.fib6_null_entry);
2446 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2447 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2448 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2449 	INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2450 #endif
2451 	fib6_tables_init(net);
2452 
2453 	return 0;
2454 
2455 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2456 out_fib6_main_tbl:
2457 	kfree(net->ipv6.fib6_main_tbl);
2458 #endif
2459 out_fib_table_hash:
2460 	kfree(net->ipv6.fib_table_hash);
2461 out_rt6_stats:
2462 	kfree(net->ipv6.rt6_stats);
2463 out_notifier:
2464 	fib6_notifier_exit(net);
2465 	return -ENOMEM;
2466 }
2467 
2468 static void fib6_net_exit(struct net *net)
2469 {
2470 	unsigned int i;
2471 
2472 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2473 
2474 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2475 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2476 		struct hlist_node *tmp;
2477 		struct fib6_table *tb;
2478 
2479 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2480 			hlist_del(&tb->tb6_hlist);
2481 			fib6_free_table(tb);
2482 		}
2483 	}
2484 
2485 	kfree(net->ipv6.fib_table_hash);
2486 	kfree(net->ipv6.rt6_stats);
2487 	fib6_notifier_exit(net);
2488 }
2489 
2490 static struct pernet_operations fib6_net_ops = {
2491 	.init = fib6_net_init,
2492 	.exit = fib6_net_exit,
2493 };
2494 
2495 int __init fib6_init(void)
2496 {
2497 	int ret = -ENOMEM;
2498 
2499 	fib6_node_kmem = KMEM_CACHE(fib6_node,
2500 				    SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2501 	if (!fib6_node_kmem)
2502 		goto out;
2503 
2504 	ret = register_pernet_subsys(&fib6_net_ops);
2505 	if (ret)
2506 		goto out_kmem_cache_create;
2507 
2508 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2509 				   inet6_dump_fib, 0);
2510 	if (ret)
2511 		goto out_unregister_subsys;
2512 
2513 	__fib6_flush_trees = fib6_flush_trees;
2514 out:
2515 	return ret;
2516 
2517 out_unregister_subsys:
2518 	unregister_pernet_subsys(&fib6_net_ops);
2519 out_kmem_cache_create:
2520 	kmem_cache_destroy(fib6_node_kmem);
2521 	goto out;
2522 }
2523 
2524 void fib6_gc_cleanup(void)
2525 {
2526 	unregister_pernet_subsys(&fib6_net_ops);
2527 	kmem_cache_destroy(fib6_node_kmem);
2528 }
2529 
2530 #ifdef CONFIG_PROC_FS
2531 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2532 {
2533 	struct fib6_info *rt = v;
2534 	struct ipv6_route_iter *iter = seq->private;
2535 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2536 	unsigned int flags = rt->fib6_flags;
2537 	const struct net_device *dev;
2538 
2539 	if (rt->nh)
2540 		fib6_nh = nexthop_fib6_nh(rt->nh);
2541 
2542 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2543 
2544 #ifdef CONFIG_IPV6_SUBTREES
2545 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2546 #else
2547 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2548 #endif
2549 	if (fib6_nh->fib_nh_gw_family) {
2550 		flags |= RTF_GATEWAY;
2551 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2552 	} else {
2553 		seq_puts(seq, "00000000000000000000000000000000");
2554 	}
2555 
2556 	dev = fib6_nh->fib_nh_dev;
2557 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2558 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2559 		   flags, dev ? dev->name : "");
2560 	iter->w.leaf = NULL;
2561 	return 0;
2562 }
2563 
2564 static int ipv6_route_yield(struct fib6_walker *w)
2565 {
2566 	struct ipv6_route_iter *iter = w->args;
2567 
2568 	if (!iter->skip)
2569 		return 1;
2570 
2571 	do {
2572 		iter->w.leaf = rcu_dereference_protected(
2573 				iter->w.leaf->fib6_next,
2574 				lockdep_is_held(&iter->tbl->tb6_lock));
2575 		iter->skip--;
2576 		if (!iter->skip && iter->w.leaf)
2577 			return 1;
2578 	} while (iter->w.leaf);
2579 
2580 	return 0;
2581 }
2582 
2583 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2584 				      struct net *net)
2585 {
2586 	memset(&iter->w, 0, sizeof(iter->w));
2587 	iter->w.func = ipv6_route_yield;
2588 	iter->w.root = &iter->tbl->tb6_root;
2589 	iter->w.state = FWS_INIT;
2590 	iter->w.node = iter->w.root;
2591 	iter->w.args = iter;
2592 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2593 	INIT_LIST_HEAD(&iter->w.lh);
2594 	fib6_walker_link(net, &iter->w);
2595 }
2596 
2597 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2598 						    struct net *net)
2599 {
2600 	unsigned int h;
2601 	struct hlist_node *node;
2602 
2603 	if (tbl) {
2604 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2605 		node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2606 	} else {
2607 		h = 0;
2608 		node = NULL;
2609 	}
2610 
2611 	while (!node && h < FIB6_TABLE_HASHSZ) {
2612 		node = rcu_dereference(
2613 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2614 	}
2615 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2616 }
2617 
2618 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2619 {
2620 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2621 
2622 	if (iter->sernum != sernum) {
2623 		iter->sernum = sernum;
2624 		iter->w.state = FWS_INIT;
2625 		iter->w.node = iter->w.root;
2626 		WARN_ON(iter->w.skip);
2627 		iter->w.skip = iter->w.count;
2628 	}
2629 }
2630 
2631 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2632 {
2633 	int r;
2634 	struct fib6_info *n;
2635 	struct net *net = seq_file_net(seq);
2636 	struct ipv6_route_iter *iter = seq->private;
2637 
2638 	++(*pos);
2639 	if (!v)
2640 		goto iter_table;
2641 
2642 	n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2643 	if (n)
2644 		return n;
2645 
2646 iter_table:
2647 	ipv6_route_check_sernum(iter);
2648 	spin_lock_bh(&iter->tbl->tb6_lock);
2649 	r = fib6_walk_continue(&iter->w);
2650 	spin_unlock_bh(&iter->tbl->tb6_lock);
2651 	if (r > 0) {
2652 		return iter->w.leaf;
2653 	} else if (r < 0) {
2654 		fib6_walker_unlink(net, &iter->w);
2655 		return NULL;
2656 	}
2657 	fib6_walker_unlink(net, &iter->w);
2658 
2659 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2660 	if (!iter->tbl)
2661 		return NULL;
2662 
2663 	ipv6_route_seq_setup_walk(iter, net);
2664 	goto iter_table;
2665 }
2666 
2667 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2668 	__acquires(RCU)
2669 {
2670 	struct net *net = seq_file_net(seq);
2671 	struct ipv6_route_iter *iter = seq->private;
2672 
2673 	rcu_read_lock();
2674 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2675 	iter->skip = *pos;
2676 
2677 	if (iter->tbl) {
2678 		loff_t p = 0;
2679 
2680 		ipv6_route_seq_setup_walk(iter, net);
2681 		return ipv6_route_seq_next(seq, NULL, &p);
2682 	} else {
2683 		return NULL;
2684 	}
2685 }
2686 
2687 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2688 {
2689 	struct fib6_walker *w = &iter->w;
2690 	return w->node && !(w->state == FWS_U && w->node == w->root);
2691 }
2692 
2693 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2694 	__releases(RCU)
2695 {
2696 	struct net *net = seq_file_net(seq);
2697 	struct ipv6_route_iter *iter = seq->private;
2698 
2699 	if (ipv6_route_iter_active(iter))
2700 		fib6_walker_unlink(net, &iter->w);
2701 
2702 	rcu_read_unlock();
2703 }
2704 
2705 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2706 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2707 				    struct bpf_iter_meta *meta,
2708 				    void *v)
2709 {
2710 	struct bpf_iter__ipv6_route ctx;
2711 
2712 	ctx.meta = meta;
2713 	ctx.rt = v;
2714 	return bpf_iter_run_prog(prog, &ctx);
2715 }
2716 
2717 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2718 {
2719 	struct ipv6_route_iter *iter = seq->private;
2720 	struct bpf_iter_meta meta;
2721 	struct bpf_prog *prog;
2722 	int ret;
2723 
2724 	meta.seq = seq;
2725 	prog = bpf_iter_get_info(&meta, false);
2726 	if (!prog)
2727 		return ipv6_route_native_seq_show(seq, v);
2728 
2729 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2730 	iter->w.leaf = NULL;
2731 
2732 	return ret;
2733 }
2734 
2735 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2736 {
2737 	struct bpf_iter_meta meta;
2738 	struct bpf_prog *prog;
2739 
2740 	if (!v) {
2741 		meta.seq = seq;
2742 		prog = bpf_iter_get_info(&meta, true);
2743 		if (prog)
2744 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2745 	}
2746 
2747 	ipv6_route_native_seq_stop(seq, v);
2748 }
2749 #else
2750 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2751 {
2752 	return ipv6_route_native_seq_show(seq, v);
2753 }
2754 
2755 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2756 {
2757 	ipv6_route_native_seq_stop(seq, v);
2758 }
2759 #endif
2760 
2761 const struct seq_operations ipv6_route_seq_ops = {
2762 	.start	= ipv6_route_seq_start,
2763 	.next	= ipv6_route_seq_next,
2764 	.stop	= ipv6_route_seq_stop,
2765 	.show	= ipv6_route_seq_show
2766 };
2767 #endif /* CONFIG_PROC_FS */
2768