1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 INIT_HLIST_NODE(&f6i->gc_link); 164 165 return f6i; 166 } 167 168 void fib6_info_destroy_rcu(struct rcu_head *head) 169 { 170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 171 172 WARN_ON(f6i->fib6_node); 173 174 if (f6i->nh) 175 nexthop_put(f6i->nh); 176 else 177 fib6_nh_release(f6i->fib6_nh); 178 179 ip_fib_metrics_put(f6i->fib6_metrics); 180 kfree(f6i); 181 } 182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 183 184 static struct fib6_node *node_alloc(struct net *net) 185 { 186 struct fib6_node *fn; 187 188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 189 if (fn) 190 net->ipv6.rt6_stats->fib_nodes++; 191 192 return fn; 193 } 194 195 static void node_free_immediate(struct net *net, struct fib6_node *fn) 196 { 197 kmem_cache_free(fib6_node_kmem, fn); 198 net->ipv6.rt6_stats->fib_nodes--; 199 } 200 201 static void node_free(struct net *net, struct fib6_node *fn) 202 { 203 kfree_rcu(fn, rcu); 204 net->ipv6.rt6_stats->fib_nodes--; 205 } 206 207 static void fib6_free_table(struct fib6_table *table) 208 { 209 inetpeer_invalidate_tree(&table->tb6_peers); 210 kfree(table); 211 } 212 213 static void fib6_link_table(struct net *net, struct fib6_table *tb) 214 { 215 unsigned int h; 216 217 /* 218 * Initialize table lock at a single place to give lockdep a key, 219 * tables aren't visible prior to being linked to the list. 220 */ 221 spin_lock_init(&tb->tb6_lock); 222 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 223 224 /* 225 * No protection necessary, this is the only list mutatation 226 * operation, tables never disappear once they exist. 227 */ 228 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 229 } 230 231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 232 233 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 234 { 235 struct fib6_table *table; 236 237 table = kzalloc(sizeof(*table), GFP_ATOMIC); 238 if (table) { 239 table->tb6_id = id; 240 rcu_assign_pointer(table->tb6_root.leaf, 241 net->ipv6.fib6_null_entry); 242 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 243 inet_peer_base_init(&table->tb6_peers); 244 INIT_HLIST_HEAD(&table->tb6_gc_hlist); 245 } 246 247 return table; 248 } 249 250 struct fib6_table *fib6_new_table(struct net *net, u32 id) 251 { 252 struct fib6_table *tb, *new_tb; 253 254 if (id == 0) 255 id = RT6_TABLE_MAIN; 256 257 tb = fib6_get_table(net, id); 258 if (tb) 259 return tb; 260 261 new_tb = fib6_alloc_table(net, id); 262 if (!new_tb) 263 return NULL; 264 265 spin_lock_bh(&net->ipv6.fib_table_hash_lock); 266 267 tb = fib6_get_table(net, id); 268 if (unlikely(tb)) { 269 spin_unlock_bh(&net->ipv6.fib_table_hash_lock); 270 kfree(new_tb); 271 return tb; 272 } 273 274 fib6_link_table(net, new_tb); 275 276 spin_unlock_bh(&net->ipv6.fib_table_hash_lock); 277 278 return new_tb; 279 } 280 EXPORT_SYMBOL_GPL(fib6_new_table); 281 282 struct fib6_table *fib6_get_table(struct net *net, u32 id) 283 { 284 struct hlist_head *head; 285 struct fib6_table *tb; 286 287 if (!id) 288 id = RT6_TABLE_MAIN; 289 290 head = &net->ipv6.fib_table_hash[id & (FIB6_TABLE_HASHSZ - 1)]; 291 292 /* See comment in fib6_link_table(). RCU is not required, 293 * but rcu_dereference_raw() is used to avoid data-race. 294 */ 295 hlist_for_each_entry_rcu(tb, head, tb6_hlist, true) 296 if (tb->tb6_id == id) 297 return tb; 298 299 return NULL; 300 } 301 EXPORT_SYMBOL_GPL(fib6_get_table); 302 303 static void __net_init fib6_tables_init(struct net *net) 304 { 305 fib6_link_table(net, net->ipv6.fib6_main_tbl); 306 fib6_link_table(net, net->ipv6.fib6_local_tbl); 307 } 308 #else 309 310 struct fib6_table *fib6_new_table(struct net *net, u32 id) 311 { 312 return fib6_get_table(net, id); 313 } 314 315 struct fib6_table *fib6_get_table(struct net *net, u32 id) 316 { 317 return net->ipv6.fib6_main_tbl; 318 } 319 320 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 321 const struct sk_buff *skb, 322 int flags, pol_lookup_t lookup) 323 { 324 struct rt6_info *rt; 325 326 rt = pol_lookup_func(lookup, 327 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 328 if (rt->dst.error == -EAGAIN) { 329 ip6_rt_put_flags(rt, flags); 330 rt = net->ipv6.ip6_null_entry; 331 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 332 dst_hold(&rt->dst); 333 } 334 335 return &rt->dst; 336 } 337 338 /* called with rcu lock held; no reference taken on fib6_info */ 339 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 340 struct fib6_result *res, int flags) 341 { 342 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 343 res, flags); 344 } 345 346 static void __net_init fib6_tables_init(struct net *net) 347 { 348 fib6_link_table(net, net->ipv6.fib6_main_tbl); 349 } 350 351 #endif 352 353 unsigned int fib6_tables_seq_read(const struct net *net) 354 { 355 unsigned int h, fib_seq = 0; 356 357 rcu_read_lock(); 358 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 359 const struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 360 const struct fib6_table *tb; 361 362 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 363 fib_seq += READ_ONCE(tb->fib_seq); 364 } 365 rcu_read_unlock(); 366 367 return fib_seq; 368 } 369 370 static int call_fib6_entry_notifier(struct notifier_block *nb, 371 enum fib_event_type event_type, 372 struct fib6_info *rt, 373 struct netlink_ext_ack *extack) 374 { 375 struct fib6_entry_notifier_info info = { 376 .info.extack = extack, 377 .rt = rt, 378 }; 379 380 return call_fib6_notifier(nb, event_type, &info.info); 381 } 382 383 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 384 enum fib_event_type event_type, 385 struct fib6_info *rt, 386 unsigned int nsiblings, 387 struct netlink_ext_ack *extack) 388 { 389 struct fib6_entry_notifier_info info = { 390 .info.extack = extack, 391 .rt = rt, 392 .nsiblings = nsiblings, 393 }; 394 395 return call_fib6_notifier(nb, event_type, &info.info); 396 } 397 398 int call_fib6_entry_notifiers(struct net *net, 399 enum fib_event_type event_type, 400 struct fib6_info *rt, 401 struct netlink_ext_ack *extack) 402 { 403 struct fib6_entry_notifier_info info = { 404 .info.extack = extack, 405 .rt = rt, 406 }; 407 408 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 409 return call_fib6_notifiers(net, event_type, &info.info); 410 } 411 412 int call_fib6_multipath_entry_notifiers(struct net *net, 413 enum fib_event_type event_type, 414 struct fib6_info *rt, 415 unsigned int nsiblings, 416 struct netlink_ext_ack *extack) 417 { 418 struct fib6_entry_notifier_info info = { 419 .info.extack = extack, 420 .rt = rt, 421 .nsiblings = nsiblings, 422 }; 423 424 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 425 return call_fib6_notifiers(net, event_type, &info.info); 426 } 427 428 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 429 { 430 struct fib6_entry_notifier_info info = { 431 .rt = rt, 432 .nsiblings = rt->fib6_nsiblings, 433 }; 434 435 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 436 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 437 } 438 439 struct fib6_dump_arg { 440 struct net *net; 441 struct notifier_block *nb; 442 struct netlink_ext_ack *extack; 443 }; 444 445 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 446 { 447 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 448 int err; 449 450 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 451 return 0; 452 453 if (rt->fib6_nsiblings) 454 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 455 rt, 456 rt->fib6_nsiblings, 457 arg->extack); 458 else 459 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 460 arg->extack); 461 462 return err; 463 } 464 465 static int fib6_node_dump(struct fib6_walker *w) 466 { 467 int err; 468 469 err = fib6_rt_dump(w->leaf, w->args); 470 w->leaf = NULL; 471 return err; 472 } 473 474 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 475 struct fib6_walker *w) 476 { 477 int err; 478 479 w->root = &tb->tb6_root; 480 spin_lock_bh(&tb->tb6_lock); 481 err = fib6_walk(net, w); 482 spin_unlock_bh(&tb->tb6_lock); 483 return err; 484 } 485 486 /* Called with rcu_read_lock() */ 487 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 488 struct netlink_ext_ack *extack) 489 { 490 struct fib6_dump_arg arg; 491 struct fib6_walker *w; 492 unsigned int h; 493 int err = 0; 494 495 w = kzalloc(sizeof(*w), GFP_ATOMIC); 496 if (!w) 497 return -ENOMEM; 498 499 w->func = fib6_node_dump; 500 arg.net = net; 501 arg.nb = nb; 502 arg.extack = extack; 503 w->args = &arg; 504 505 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 506 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 507 struct fib6_table *tb; 508 509 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 510 err = fib6_table_dump(net, tb, w); 511 if (err) 512 goto out; 513 } 514 } 515 516 out: 517 kfree(w); 518 519 /* The tree traversal function should never return a positive value. */ 520 return err > 0 ? -EINVAL : err; 521 } 522 523 static int fib6_dump_node(struct fib6_walker *w) 524 { 525 int res; 526 struct fib6_info *rt; 527 528 for_each_fib6_walker_rt(w) { 529 res = rt6_dump_route(rt, w->args, w->skip_in_node); 530 if (res >= 0) { 531 /* Frame is full, suspend walking */ 532 w->leaf = rt; 533 534 /* We'll restart from this node, so if some routes were 535 * already dumped, skip them next time. 536 */ 537 w->skip_in_node += res; 538 539 return 1; 540 } 541 w->skip_in_node = 0; 542 543 /* Multipath routes are dumped in one route with the 544 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 545 * last sibling of this route (no need to dump the 546 * sibling routes again) 547 */ 548 if (rt->fib6_nsiblings) 549 rt = list_last_entry(&rt->fib6_siblings, 550 struct fib6_info, 551 fib6_siblings); 552 } 553 w->leaf = NULL; 554 return 0; 555 } 556 557 static void fib6_dump_end(struct netlink_callback *cb) 558 { 559 struct net *net = sock_net(cb->skb->sk); 560 struct fib6_walker *w = (void *)cb->args[2]; 561 562 if (w) { 563 if (cb->args[4]) { 564 cb->args[4] = 0; 565 fib6_walker_unlink(net, w); 566 } 567 cb->args[2] = 0; 568 kfree(w); 569 } 570 cb->done = (void *)cb->args[3]; 571 cb->args[1] = 3; 572 } 573 574 static int fib6_dump_done(struct netlink_callback *cb) 575 { 576 fib6_dump_end(cb); 577 return cb->done ? cb->done(cb) : 0; 578 } 579 580 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 581 struct netlink_callback *cb) 582 { 583 struct net *net = sock_net(skb->sk); 584 struct fib6_walker *w; 585 int res; 586 587 w = (void *)cb->args[2]; 588 w->root = &table->tb6_root; 589 590 if (cb->args[4] == 0) { 591 w->count = 0; 592 w->skip = 0; 593 w->skip_in_node = 0; 594 595 spin_lock_bh(&table->tb6_lock); 596 res = fib6_walk(net, w); 597 spin_unlock_bh(&table->tb6_lock); 598 if (res > 0) { 599 cb->args[4] = 1; 600 cb->args[5] = READ_ONCE(w->root->fn_sernum); 601 } 602 } else { 603 int sernum = READ_ONCE(w->root->fn_sernum); 604 if (cb->args[5] != sernum) { 605 /* Begin at the root if the tree changed */ 606 cb->args[5] = sernum; 607 w->state = FWS_INIT; 608 w->node = w->root; 609 w->skip = w->count; 610 w->skip_in_node = 0; 611 } else 612 w->skip = 0; 613 614 spin_lock_bh(&table->tb6_lock); 615 res = fib6_walk_continue(w); 616 spin_unlock_bh(&table->tb6_lock); 617 if (res <= 0) { 618 fib6_walker_unlink(net, w); 619 cb->args[4] = 0; 620 } 621 } 622 623 return res; 624 } 625 626 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 627 { 628 struct rt6_rtnl_dump_arg arg = { 629 .filter.dump_exceptions = true, 630 .filter.dump_routes = true, 631 .filter.rtnl_held = false, 632 }; 633 const struct nlmsghdr *nlh = cb->nlh; 634 struct net *net = sock_net(skb->sk); 635 unsigned int e = 0, s_e; 636 struct hlist_head *head; 637 struct fib6_walker *w; 638 struct fib6_table *tb; 639 unsigned int h, s_h; 640 int err = 0; 641 642 rcu_read_lock(); 643 if (cb->strict_check) { 644 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 645 if (err < 0) 646 goto unlock; 647 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 648 struct rtmsg *rtm = nlmsg_data(nlh); 649 650 if (rtm->rtm_flags & RTM_F_PREFIX) 651 arg.filter.flags = RTM_F_PREFIX; 652 } 653 654 w = (void *)cb->args[2]; 655 if (!w) { 656 /* New dump: 657 * 658 * 1. allocate and initialize walker. 659 */ 660 w = kzalloc(sizeof(*w), GFP_ATOMIC); 661 if (!w) { 662 err = -ENOMEM; 663 goto unlock; 664 } 665 w->func = fib6_dump_node; 666 cb->args[2] = (long)w; 667 668 /* 2. hook callback destructor. 669 */ 670 cb->args[3] = (long)cb->done; 671 cb->done = fib6_dump_done; 672 673 } 674 675 arg.skb = skb; 676 arg.cb = cb; 677 arg.net = net; 678 w->args = &arg; 679 680 if (arg.filter.table_id) { 681 tb = fib6_get_table(net, arg.filter.table_id); 682 if (!tb) { 683 if (rtnl_msg_family(cb->nlh) != PF_INET6) 684 goto unlock; 685 686 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 687 err = -ENOENT; 688 goto unlock; 689 } 690 691 if (!cb->args[0]) { 692 err = fib6_dump_table(tb, skb, cb); 693 if (!err) 694 cb->args[0] = 1; 695 } 696 goto unlock; 697 } 698 699 s_h = cb->args[0]; 700 s_e = cb->args[1]; 701 702 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 703 e = 0; 704 head = &net->ipv6.fib_table_hash[h]; 705 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 706 if (e < s_e) 707 goto next; 708 err = fib6_dump_table(tb, skb, cb); 709 if (err != 0) 710 goto out; 711 next: 712 e++; 713 } 714 } 715 out: 716 cb->args[1] = e; 717 cb->args[0] = h; 718 719 unlock: 720 rcu_read_unlock(); 721 if (err <= 0) 722 fib6_dump_end(cb); 723 return err; 724 } 725 726 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 727 { 728 if (!f6i) 729 return; 730 731 if (f6i->fib6_metrics == &dst_default_metrics) { 732 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 733 734 if (!p) 735 return; 736 737 refcount_set(&p->refcnt, 1); 738 f6i->fib6_metrics = p; 739 } 740 741 f6i->fib6_metrics->metrics[metric - 1] = val; 742 } 743 744 /* 745 * Routing Table 746 * 747 * return the appropriate node for a routing tree "add" operation 748 * by either creating and inserting or by returning an existing 749 * node. 750 */ 751 752 static struct fib6_node *fib6_add_1(struct net *net, 753 struct fib6_table *table, 754 struct fib6_node *root, 755 struct in6_addr *addr, int plen, 756 int offset, int allow_create, 757 int replace_required, 758 struct netlink_ext_ack *extack) 759 { 760 struct fib6_node *fn, *in, *ln; 761 struct fib6_node *pn = NULL; 762 struct rt6key *key; 763 int bit; 764 __be32 dir = 0; 765 766 /* insert node in tree */ 767 768 fn = root; 769 770 do { 771 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 772 lockdep_is_held(&table->tb6_lock)); 773 key = (struct rt6key *)((u8 *)leaf + offset); 774 775 /* 776 * Prefix match 777 */ 778 if (plen < fn->fn_bit || 779 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 780 if (!allow_create) { 781 if (replace_required) { 782 NL_SET_ERR_MSG(extack, 783 "Can not replace route - no match found"); 784 pr_warn("Can't replace route, no match found\n"); 785 return ERR_PTR(-ENOENT); 786 } 787 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 788 } 789 goto insert_above; 790 } 791 792 /* 793 * Exact match ? 794 */ 795 796 if (plen == fn->fn_bit) { 797 /* clean up an intermediate node */ 798 if (!(fn->fn_flags & RTN_RTINFO)) { 799 RCU_INIT_POINTER(fn->leaf, NULL); 800 fib6_info_release(leaf); 801 /* remove null_entry in the root node */ 802 } else if (fn->fn_flags & RTN_TL_ROOT && 803 rcu_access_pointer(fn->leaf) == 804 net->ipv6.fib6_null_entry) { 805 RCU_INIT_POINTER(fn->leaf, NULL); 806 } 807 808 return fn; 809 } 810 811 /* 812 * We have more bits to go 813 */ 814 815 /* Try to walk down on tree. */ 816 dir = addr_bit_set(addr, fn->fn_bit); 817 pn = fn; 818 fn = dir ? 819 rcu_dereference_protected(fn->right, 820 lockdep_is_held(&table->tb6_lock)) : 821 rcu_dereference_protected(fn->left, 822 lockdep_is_held(&table->tb6_lock)); 823 } while (fn); 824 825 if (!allow_create) { 826 /* We should not create new node because 827 * NLM_F_REPLACE was specified without NLM_F_CREATE 828 * I assume it is safe to require NLM_F_CREATE when 829 * REPLACE flag is used! Later we may want to remove the 830 * check for replace_required, because according 831 * to netlink specification, NLM_F_CREATE 832 * MUST be specified if new route is created. 833 * That would keep IPv6 consistent with IPv4 834 */ 835 if (replace_required) { 836 NL_SET_ERR_MSG(extack, 837 "Can not replace route - no match found"); 838 pr_warn("Can't replace route, no match found\n"); 839 return ERR_PTR(-ENOENT); 840 } 841 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 842 } 843 /* 844 * We walked to the bottom of tree. 845 * Create new leaf node without children. 846 */ 847 848 ln = node_alloc(net); 849 850 if (!ln) 851 return ERR_PTR(-ENOMEM); 852 ln->fn_bit = plen; 853 RCU_INIT_POINTER(ln->parent, pn); 854 855 if (dir) 856 rcu_assign_pointer(pn->right, ln); 857 else 858 rcu_assign_pointer(pn->left, ln); 859 860 return ln; 861 862 863 insert_above: 864 /* 865 * split since we don't have a common prefix anymore or 866 * we have a less significant route. 867 * we've to insert an intermediate node on the list 868 * this new node will point to the one we need to create 869 * and the current 870 */ 871 872 pn = rcu_dereference_protected(fn->parent, 873 lockdep_is_held(&table->tb6_lock)); 874 875 /* find 1st bit in difference between the 2 addrs. 876 877 See comment in __ipv6_addr_diff: bit may be an invalid value, 878 but if it is >= plen, the value is ignored in any case. 879 */ 880 881 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 882 883 /* 884 * (intermediate)[in] 885 * / \ 886 * (new leaf node)[ln] (old node)[fn] 887 */ 888 if (plen > bit) { 889 in = node_alloc(net); 890 ln = node_alloc(net); 891 892 if (!in || !ln) { 893 if (in) 894 node_free_immediate(net, in); 895 if (ln) 896 node_free_immediate(net, ln); 897 return ERR_PTR(-ENOMEM); 898 } 899 900 /* 901 * new intermediate node. 902 * RTN_RTINFO will 903 * be off since that an address that chooses one of 904 * the branches would not match less specific routes 905 * in the other branch 906 */ 907 908 in->fn_bit = bit; 909 910 RCU_INIT_POINTER(in->parent, pn); 911 in->leaf = fn->leaf; 912 fib6_info_hold(rcu_dereference_protected(in->leaf, 913 lockdep_is_held(&table->tb6_lock))); 914 915 /* update parent pointer */ 916 if (dir) 917 rcu_assign_pointer(pn->right, in); 918 else 919 rcu_assign_pointer(pn->left, in); 920 921 ln->fn_bit = plen; 922 923 RCU_INIT_POINTER(ln->parent, in); 924 rcu_assign_pointer(fn->parent, in); 925 926 if (addr_bit_set(addr, bit)) { 927 rcu_assign_pointer(in->right, ln); 928 rcu_assign_pointer(in->left, fn); 929 } else { 930 rcu_assign_pointer(in->left, ln); 931 rcu_assign_pointer(in->right, fn); 932 } 933 } else { /* plen <= bit */ 934 935 /* 936 * (new leaf node)[ln] 937 * / \ 938 * (old node)[fn] NULL 939 */ 940 941 ln = node_alloc(net); 942 943 if (!ln) 944 return ERR_PTR(-ENOMEM); 945 946 ln->fn_bit = plen; 947 948 RCU_INIT_POINTER(ln->parent, pn); 949 950 if (addr_bit_set(&key->addr, plen)) 951 RCU_INIT_POINTER(ln->right, fn); 952 else 953 RCU_INIT_POINTER(ln->left, fn); 954 955 rcu_assign_pointer(fn->parent, ln); 956 957 if (dir) 958 rcu_assign_pointer(pn->right, ln); 959 else 960 rcu_assign_pointer(pn->left, ln); 961 } 962 return ln; 963 } 964 965 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 966 const struct fib6_info *match, 967 const struct fib6_table *table) 968 { 969 int cpu; 970 971 if (!fib6_nh->rt6i_pcpu) 972 return; 973 974 rcu_read_lock(); 975 /* release the reference to this fib entry from 976 * all of its cached pcpu routes 977 */ 978 for_each_possible_cpu(cpu) { 979 struct rt6_info **ppcpu_rt; 980 struct rt6_info *pcpu_rt; 981 982 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 983 984 /* Paired with xchg() in rt6_get_pcpu_route() */ 985 pcpu_rt = READ_ONCE(*ppcpu_rt); 986 987 /* only dropping the 'from' reference if the cached route 988 * is using 'match'. The cached pcpu_rt->from only changes 989 * from a fib6_info to NULL (ip6_dst_destroy); it can never 990 * change from one fib6_info reference to another 991 */ 992 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 993 struct fib6_info *from; 994 995 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL)); 996 fib6_info_release(from); 997 } 998 } 999 rcu_read_unlock(); 1000 } 1001 1002 struct fib6_nh_pcpu_arg { 1003 struct fib6_info *from; 1004 const struct fib6_table *table; 1005 }; 1006 1007 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 1008 { 1009 struct fib6_nh_pcpu_arg *arg = _arg; 1010 1011 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 1012 return 0; 1013 } 1014 1015 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1016 const struct fib6_table *table) 1017 { 1018 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1019 * while we are cleaning them here. 1020 */ 1021 f6i->fib6_destroying = 1; 1022 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1023 1024 if (f6i->nh) { 1025 struct fib6_nh_pcpu_arg arg = { 1026 .from = f6i, 1027 .table = table 1028 }; 1029 1030 rcu_read_lock(); 1031 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, &arg); 1032 rcu_read_unlock(); 1033 } else { 1034 struct fib6_nh *fib6_nh; 1035 1036 fib6_nh = f6i->fib6_nh; 1037 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1038 } 1039 } 1040 1041 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1042 struct net *net) 1043 { 1044 struct fib6_table *table = rt->fib6_table; 1045 1046 /* Flush all cached dst in exception table */ 1047 rt6_flush_exceptions(rt); 1048 fib6_drop_pcpu_from(rt, table); 1049 1050 if (rt->nh) { 1051 spin_lock(&rt->nh->lock); 1052 1053 if (!list_empty(&rt->nh_list)) 1054 list_del_init(&rt->nh_list); 1055 1056 spin_unlock(&rt->nh->lock); 1057 } 1058 1059 if (refcount_read(&rt->fib6_ref) != 1) { 1060 /* This route is used as dummy address holder in some split 1061 * nodes. It is not leaked, but it still holds other resources, 1062 * which must be released in time. So, scan ascendant nodes 1063 * and replace dummy references to this route with references 1064 * to still alive ones. 1065 */ 1066 while (fn) { 1067 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1068 lockdep_is_held(&table->tb6_lock)); 1069 struct fib6_info *new_leaf; 1070 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1071 new_leaf = fib6_find_prefix(net, table, fn); 1072 fib6_info_hold(new_leaf); 1073 1074 rcu_assign_pointer(fn->leaf, new_leaf); 1075 fib6_info_release(rt); 1076 } 1077 fn = rcu_dereference_protected(fn->parent, 1078 lockdep_is_held(&table->tb6_lock)); 1079 } 1080 } 1081 1082 fib6_clean_expires(rt); 1083 fib6_remove_gc_list(rt); 1084 } 1085 1086 /* 1087 * Insert routing information in a node. 1088 */ 1089 1090 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1091 struct nl_info *info, struct netlink_ext_ack *extack, 1092 struct list_head *purge_list) 1093 { 1094 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1095 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1096 struct fib6_info *iter = NULL; 1097 struct fib6_info __rcu **ins; 1098 struct fib6_info __rcu **fallback_ins = NULL; 1099 int replace = (info->nlh && 1100 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1101 int add = (!info->nlh || 1102 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1103 int found = 0; 1104 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1105 bool notify_sibling_rt = false; 1106 u16 nlflags = NLM_F_EXCL; 1107 int err; 1108 1109 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1110 nlflags |= NLM_F_APPEND; 1111 1112 ins = &fn->leaf; 1113 1114 for (iter = leaf; iter; 1115 iter = rcu_dereference_protected(iter->fib6_next, 1116 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1117 /* 1118 * Search for duplicates 1119 */ 1120 1121 if (iter->fib6_metric == rt->fib6_metric) { 1122 /* 1123 * Same priority level 1124 */ 1125 if (info->nlh && 1126 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1127 return -EEXIST; 1128 1129 nlflags &= ~NLM_F_EXCL; 1130 if (replace) { 1131 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1132 found++; 1133 break; 1134 } 1135 fallback_ins = fallback_ins ?: ins; 1136 goto next_iter; 1137 } 1138 1139 if (rt6_duplicate_nexthop(iter, rt)) { 1140 if (rt->fib6_nsiblings) 1141 rt->fib6_nsiblings = 0; 1142 if (!(iter->fib6_flags & RTF_EXPIRES)) 1143 return -EEXIST; 1144 if (!(rt->fib6_flags & RTF_EXPIRES)) { 1145 fib6_clean_expires(iter); 1146 fib6_remove_gc_list(iter); 1147 } else { 1148 fib6_set_expires(iter, rt->expires); 1149 fib6_add_gc_list(iter); 1150 } 1151 1152 if (rt->fib6_pmtu) 1153 fib6_metric_set(iter, RTAX_MTU, 1154 rt->fib6_pmtu); 1155 return -EEXIST; 1156 } 1157 /* If we have the same destination and the same metric, 1158 * but not the same gateway, then the route we try to 1159 * add is sibling to this route, increment our counter 1160 * of siblings, and later we will add our route to the 1161 * list. 1162 * Only static routes (which don't have flag 1163 * RTF_EXPIRES) are used for ECMPv6. 1164 * 1165 * To avoid long list, we only had siblings if the 1166 * route have a gateway. 1167 */ 1168 if (rt_can_ecmp && 1169 rt6_qualify_for_ecmp(iter)) 1170 rt->fib6_nsiblings++; 1171 } 1172 1173 if (iter->fib6_metric > rt->fib6_metric) 1174 break; 1175 1176 next_iter: 1177 ins = &iter->fib6_next; 1178 } 1179 1180 if (fallback_ins && !found) { 1181 /* No matching route with same ecmp-able-ness found, replace 1182 * first matching route 1183 */ 1184 ins = fallback_ins; 1185 iter = rcu_dereference_protected(*ins, 1186 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1187 found++; 1188 } 1189 1190 /* Reset round-robin state, if necessary */ 1191 if (ins == &fn->leaf) 1192 fn->rr_ptr = NULL; 1193 1194 /* Link this route to others same route. */ 1195 if (rt->fib6_nsiblings) { 1196 unsigned int fib6_nsiblings; 1197 struct fib6_info *sibling, *temp_sibling; 1198 1199 /* Find the first route that have the same metric */ 1200 sibling = leaf; 1201 notify_sibling_rt = true; 1202 while (sibling) { 1203 if (sibling->fib6_metric == rt->fib6_metric && 1204 rt6_qualify_for_ecmp(sibling)) { 1205 list_add_tail_rcu(&rt->fib6_siblings, 1206 &sibling->fib6_siblings); 1207 break; 1208 } 1209 sibling = rcu_dereference_protected(sibling->fib6_next, 1210 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1211 notify_sibling_rt = false; 1212 } 1213 /* For each sibling in the list, increment the counter of 1214 * siblings. BUG() if counters does not match, list of siblings 1215 * is broken! 1216 */ 1217 fib6_nsiblings = 0; 1218 list_for_each_entry_safe(sibling, temp_sibling, 1219 &rt->fib6_siblings, fib6_siblings) { 1220 sibling->fib6_nsiblings++; 1221 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1222 fib6_nsiblings++; 1223 } 1224 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1225 rcu_read_lock(); 1226 rt6_multipath_rebalance(temp_sibling); 1227 rcu_read_unlock(); 1228 } 1229 1230 /* 1231 * insert node 1232 */ 1233 if (!replace) { 1234 if (!add) 1235 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1236 1237 add: 1238 nlflags |= NLM_F_CREATE; 1239 1240 /* The route should only be notified if it is the first 1241 * route in the node or if it is added as a sibling 1242 * route to the first route in the node. 1243 */ 1244 if (!info->skip_notify_kernel && 1245 (notify_sibling_rt || ins == &fn->leaf)) { 1246 enum fib_event_type fib_event; 1247 1248 if (notify_sibling_rt) 1249 fib_event = FIB_EVENT_ENTRY_APPEND; 1250 else 1251 fib_event = FIB_EVENT_ENTRY_REPLACE; 1252 err = call_fib6_entry_notifiers(info->nl_net, 1253 fib_event, rt, 1254 extack); 1255 if (err) { 1256 struct fib6_info *sibling, *next_sibling; 1257 1258 /* If the route has siblings, then it first 1259 * needs to be unlinked from them. 1260 */ 1261 if (!rt->fib6_nsiblings) 1262 return err; 1263 1264 list_for_each_entry_safe(sibling, next_sibling, 1265 &rt->fib6_siblings, 1266 fib6_siblings) 1267 sibling->fib6_nsiblings--; 1268 rt->fib6_nsiblings = 0; 1269 list_del_rcu(&rt->fib6_siblings); 1270 rcu_read_lock(); 1271 rt6_multipath_rebalance(next_sibling); 1272 rcu_read_unlock(); 1273 return err; 1274 } 1275 } 1276 1277 rcu_assign_pointer(rt->fib6_next, iter); 1278 fib6_info_hold(rt); 1279 rcu_assign_pointer(rt->fib6_node, fn); 1280 rcu_assign_pointer(*ins, rt); 1281 if (!info->skip_notify) 1282 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1283 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1284 1285 if (!(fn->fn_flags & RTN_RTINFO)) { 1286 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1287 fn->fn_flags |= RTN_RTINFO; 1288 } 1289 1290 } else { 1291 int nsiblings; 1292 1293 if (!found) { 1294 if (add) 1295 goto add; 1296 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1297 return -ENOENT; 1298 } 1299 1300 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1301 err = call_fib6_entry_notifiers(info->nl_net, 1302 FIB_EVENT_ENTRY_REPLACE, 1303 rt, extack); 1304 if (err) 1305 return err; 1306 } 1307 1308 fib6_info_hold(rt); 1309 rcu_assign_pointer(rt->fib6_node, fn); 1310 rt->fib6_next = iter->fib6_next; 1311 rcu_assign_pointer(*ins, rt); 1312 if (!info->skip_notify) 1313 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1314 if (!(fn->fn_flags & RTN_RTINFO)) { 1315 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1316 fn->fn_flags |= RTN_RTINFO; 1317 } 1318 nsiblings = iter->fib6_nsiblings; 1319 iter->fib6_node = NULL; 1320 list_add(&iter->purge_link, purge_list); 1321 if (rcu_access_pointer(fn->rr_ptr) == iter) 1322 fn->rr_ptr = NULL; 1323 1324 if (nsiblings) { 1325 /* Replacing an ECMP route, remove all siblings */ 1326 ins = &rt->fib6_next; 1327 iter = rcu_dereference_protected(*ins, 1328 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1329 while (iter) { 1330 if (iter->fib6_metric > rt->fib6_metric) 1331 break; 1332 if (rt6_qualify_for_ecmp(iter)) { 1333 *ins = iter->fib6_next; 1334 iter->fib6_node = NULL; 1335 list_add(&iter->purge_link, purge_list); 1336 if (rcu_access_pointer(fn->rr_ptr) == iter) 1337 fn->rr_ptr = NULL; 1338 nsiblings--; 1339 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1340 } else { 1341 ins = &iter->fib6_next; 1342 } 1343 iter = rcu_dereference_protected(*ins, 1344 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1345 } 1346 WARN_ON(nsiblings != 0); 1347 } 1348 } 1349 1350 return 0; 1351 } 1352 1353 static int fib6_add_rt2node_nh(struct fib6_node *fn, struct fib6_info *rt, 1354 struct nl_info *info, struct netlink_ext_ack *extack, 1355 struct list_head *purge_list) 1356 { 1357 int err; 1358 1359 spin_lock(&rt->nh->lock); 1360 1361 if (rt->nh->dead) { 1362 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 1363 err = -EINVAL; 1364 } else { 1365 err = fib6_add_rt2node(fn, rt, info, extack, purge_list); 1366 if (!err) 1367 list_add(&rt->nh_list, &rt->nh->f6i_list); 1368 } 1369 1370 spin_unlock(&rt->nh->lock); 1371 1372 return err; 1373 } 1374 1375 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1376 { 1377 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1378 (rt->fib6_flags & RTF_EXPIRES)) 1379 mod_timer(&net->ipv6.ip6_fib_timer, 1380 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1381 } 1382 1383 void fib6_force_start_gc(struct net *net) 1384 { 1385 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1386 mod_timer(&net->ipv6.ip6_fib_timer, 1387 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1388 } 1389 1390 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1391 int sernum) 1392 { 1393 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1394 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1395 1396 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1397 smp_wmb(); 1398 while (fn) { 1399 WRITE_ONCE(fn->fn_sernum, sernum); 1400 fn = rcu_dereference_protected(fn->parent, 1401 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1402 } 1403 } 1404 1405 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1406 { 1407 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1408 } 1409 1410 /* allow ipv4 to update sernum via ipv6_stub */ 1411 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1412 { 1413 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1414 fib6_update_sernum_upto_root(net, f6i); 1415 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1416 } 1417 1418 /* 1419 * Add routing information to the routing tree. 1420 * <destination addr>/<source addr> 1421 * with source addr info in sub-trees 1422 * Need to own table->tb6_lock 1423 */ 1424 1425 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1426 struct nl_info *info, struct netlink_ext_ack *extack) 1427 { 1428 struct fib6_table *table = rt->fib6_table; 1429 LIST_HEAD(purge_list); 1430 struct fib6_node *fn; 1431 #ifdef CONFIG_IPV6_SUBTREES 1432 struct fib6_node *pn = NULL; 1433 #endif 1434 int err = -ENOMEM; 1435 int allow_create = 1; 1436 int replace_required = 0; 1437 1438 if (info->nlh) { 1439 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1440 allow_create = 0; 1441 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1442 replace_required = 1; 1443 } 1444 if (!allow_create && !replace_required) 1445 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1446 1447 fn = fib6_add_1(info->nl_net, table, root, 1448 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1449 offsetof(struct fib6_info, fib6_dst), allow_create, 1450 replace_required, extack); 1451 if (IS_ERR(fn)) { 1452 err = PTR_ERR(fn); 1453 fn = NULL; 1454 goto out; 1455 } 1456 1457 #ifdef CONFIG_IPV6_SUBTREES 1458 pn = fn; 1459 1460 if (rt->fib6_src.plen) { 1461 struct fib6_node *sn; 1462 1463 if (!rcu_access_pointer(fn->subtree)) { 1464 struct fib6_node *sfn; 1465 1466 /* 1467 * Create subtree. 1468 * 1469 * fn[main tree] 1470 * | 1471 * sfn[subtree root] 1472 * \ 1473 * sn[new leaf node] 1474 */ 1475 1476 /* Create subtree root node */ 1477 sfn = node_alloc(info->nl_net); 1478 if (!sfn) 1479 goto failure; 1480 1481 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1482 rcu_assign_pointer(sfn->leaf, 1483 info->nl_net->ipv6.fib6_null_entry); 1484 sfn->fn_flags = RTN_ROOT; 1485 1486 /* Now add the first leaf node to new subtree */ 1487 1488 sn = fib6_add_1(info->nl_net, table, sfn, 1489 &rt->fib6_src.addr, rt->fib6_src.plen, 1490 offsetof(struct fib6_info, fib6_src), 1491 allow_create, replace_required, extack); 1492 1493 if (IS_ERR(sn)) { 1494 /* If it is failed, discard just allocated 1495 root, and then (in failure) stale node 1496 in main tree. 1497 */ 1498 node_free_immediate(info->nl_net, sfn); 1499 err = PTR_ERR(sn); 1500 goto failure; 1501 } 1502 1503 /* Now link new subtree to main tree */ 1504 rcu_assign_pointer(sfn->parent, fn); 1505 rcu_assign_pointer(fn->subtree, sfn); 1506 } else { 1507 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1508 &rt->fib6_src.addr, rt->fib6_src.plen, 1509 offsetof(struct fib6_info, fib6_src), 1510 allow_create, replace_required, extack); 1511 1512 if (IS_ERR(sn)) { 1513 err = PTR_ERR(sn); 1514 goto failure; 1515 } 1516 } 1517 1518 if (!rcu_access_pointer(fn->leaf)) { 1519 if (fn->fn_flags & RTN_TL_ROOT) { 1520 /* put back null_entry for root node */ 1521 rcu_assign_pointer(fn->leaf, 1522 info->nl_net->ipv6.fib6_null_entry); 1523 } else { 1524 fib6_info_hold(rt); 1525 rcu_assign_pointer(fn->leaf, rt); 1526 } 1527 } 1528 fn = sn; 1529 } 1530 #endif 1531 1532 if (rt->nh) 1533 err = fib6_add_rt2node_nh(fn, rt, info, extack, &purge_list); 1534 else 1535 err = fib6_add_rt2node(fn, rt, info, extack, &purge_list); 1536 if (!err) { 1537 struct fib6_info *iter, *next; 1538 1539 list_for_each_entry_safe(iter, next, &purge_list, purge_link) { 1540 list_del(&iter->purge_link); 1541 fib6_purge_rt(iter, fn, info->nl_net); 1542 fib6_info_release(iter); 1543 } 1544 1545 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1546 1547 if (rt->fib6_flags & RTF_EXPIRES) 1548 fib6_add_gc_list(rt); 1549 1550 fib6_start_gc(info->nl_net, rt); 1551 } 1552 1553 out: 1554 if (err) { 1555 #ifdef CONFIG_IPV6_SUBTREES 1556 /* 1557 * If fib6_add_1 has cleared the old leaf pointer in the 1558 * super-tree leaf node we have to find a new one for it. 1559 */ 1560 if (pn != fn) { 1561 struct fib6_info *pn_leaf = 1562 rcu_dereference_protected(pn->leaf, 1563 lockdep_is_held(&table->tb6_lock)); 1564 if (pn_leaf == rt) { 1565 pn_leaf = NULL; 1566 RCU_INIT_POINTER(pn->leaf, NULL); 1567 fib6_info_release(rt); 1568 } 1569 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1570 pn_leaf = fib6_find_prefix(info->nl_net, table, 1571 pn); 1572 if (!pn_leaf) 1573 pn_leaf = 1574 info->nl_net->ipv6.fib6_null_entry; 1575 fib6_info_hold(pn_leaf); 1576 rcu_assign_pointer(pn->leaf, pn_leaf); 1577 } 1578 } 1579 #endif 1580 goto failure; 1581 } else if (fib6_requires_src(rt)) { 1582 fib6_routes_require_src_inc(info->nl_net); 1583 } 1584 return err; 1585 1586 failure: 1587 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1588 * 1. fn is an intermediate node and we failed to add the new 1589 * route to it in both subtree creation failure and fib6_add_rt2node() 1590 * failure case. 1591 * 2. fn is the root node in the table and we fail to add the first 1592 * default route to it. 1593 */ 1594 if (fn && 1595 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1596 (fn->fn_flags & RTN_TL_ROOT && 1597 !rcu_access_pointer(fn->leaf)))) 1598 fib6_repair_tree(info->nl_net, table, fn); 1599 return err; 1600 } 1601 1602 /* 1603 * Routing tree lookup 1604 * 1605 */ 1606 1607 struct lookup_args { 1608 int offset; /* key offset on fib6_info */ 1609 const struct in6_addr *addr; /* search key */ 1610 }; 1611 1612 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1613 struct lookup_args *args) 1614 { 1615 struct fib6_node *fn; 1616 __be32 dir; 1617 1618 if (unlikely(args->offset == 0)) 1619 return NULL; 1620 1621 /* 1622 * Descend on a tree 1623 */ 1624 1625 fn = root; 1626 1627 for (;;) { 1628 struct fib6_node *next; 1629 1630 dir = addr_bit_set(args->addr, fn->fn_bit); 1631 1632 next = dir ? rcu_dereference(fn->right) : 1633 rcu_dereference(fn->left); 1634 1635 if (next) { 1636 fn = next; 1637 continue; 1638 } 1639 break; 1640 } 1641 1642 while (fn) { 1643 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1644 1645 if (subtree || fn->fn_flags & RTN_RTINFO) { 1646 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1647 struct rt6key *key; 1648 1649 if (!leaf) 1650 goto backtrack; 1651 1652 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1653 1654 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1655 #ifdef CONFIG_IPV6_SUBTREES 1656 if (subtree) { 1657 struct fib6_node *sfn; 1658 sfn = fib6_node_lookup_1(subtree, 1659 args + 1); 1660 if (!sfn) 1661 goto backtrack; 1662 fn = sfn; 1663 } 1664 #endif 1665 if (fn->fn_flags & RTN_RTINFO) 1666 return fn; 1667 } 1668 } 1669 backtrack: 1670 if (fn->fn_flags & RTN_ROOT) 1671 break; 1672 1673 fn = rcu_dereference(fn->parent); 1674 } 1675 1676 return NULL; 1677 } 1678 1679 /* called with rcu_read_lock() held 1680 */ 1681 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1682 const struct in6_addr *daddr, 1683 const struct in6_addr *saddr) 1684 { 1685 struct fib6_node *fn; 1686 struct lookup_args args[] = { 1687 { 1688 .offset = offsetof(struct fib6_info, fib6_dst), 1689 .addr = daddr, 1690 }, 1691 #ifdef CONFIG_IPV6_SUBTREES 1692 { 1693 .offset = offsetof(struct fib6_info, fib6_src), 1694 .addr = saddr, 1695 }, 1696 #endif 1697 { 1698 .offset = 0, /* sentinel */ 1699 } 1700 }; 1701 1702 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1703 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1704 fn = root; 1705 1706 return fn; 1707 } 1708 1709 /* 1710 * Get node with specified destination prefix (and source prefix, 1711 * if subtrees are used) 1712 * exact_match == true means we try to find fn with exact match of 1713 * the passed in prefix addr 1714 * exact_match == false means we try to find fn with longest prefix 1715 * match of the passed in prefix addr. This is useful for finding fn 1716 * for cached route as it will be stored in the exception table under 1717 * the node with longest prefix length. 1718 */ 1719 1720 1721 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1722 const struct in6_addr *addr, 1723 int plen, int offset, 1724 bool exact_match) 1725 { 1726 struct fib6_node *fn, *prev = NULL; 1727 1728 for (fn = root; fn ; ) { 1729 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1730 struct rt6key *key; 1731 1732 /* This node is being deleted */ 1733 if (!leaf) { 1734 if (plen <= fn->fn_bit) 1735 goto out; 1736 else 1737 goto next; 1738 } 1739 1740 key = (struct rt6key *)((u8 *)leaf + offset); 1741 1742 /* 1743 * Prefix match 1744 */ 1745 if (plen < fn->fn_bit || 1746 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1747 goto out; 1748 1749 if (plen == fn->fn_bit) 1750 return fn; 1751 1752 if (fn->fn_flags & RTN_RTINFO) 1753 prev = fn; 1754 1755 next: 1756 /* 1757 * We have more bits to go 1758 */ 1759 if (addr_bit_set(addr, fn->fn_bit)) 1760 fn = rcu_dereference(fn->right); 1761 else 1762 fn = rcu_dereference(fn->left); 1763 } 1764 out: 1765 if (exact_match) 1766 return NULL; 1767 else 1768 return prev; 1769 } 1770 1771 struct fib6_node *fib6_locate(struct fib6_node *root, 1772 const struct in6_addr *daddr, int dst_len, 1773 const struct in6_addr *saddr, int src_len, 1774 bool exact_match) 1775 { 1776 struct fib6_node *fn; 1777 1778 fn = fib6_locate_1(root, daddr, dst_len, 1779 offsetof(struct fib6_info, fib6_dst), 1780 exact_match); 1781 1782 #ifdef CONFIG_IPV6_SUBTREES 1783 if (src_len) { 1784 WARN_ON(saddr == NULL); 1785 if (fn) { 1786 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1787 1788 if (subtree) { 1789 fn = fib6_locate_1(subtree, saddr, src_len, 1790 offsetof(struct fib6_info, fib6_src), 1791 exact_match); 1792 } 1793 } 1794 } 1795 #endif 1796 1797 if (fn && fn->fn_flags & RTN_RTINFO) 1798 return fn; 1799 1800 return NULL; 1801 } 1802 1803 1804 /* 1805 * Deletion 1806 * 1807 */ 1808 1809 static struct fib6_info *fib6_find_prefix(struct net *net, 1810 struct fib6_table *table, 1811 struct fib6_node *fn) 1812 { 1813 struct fib6_node *child_left, *child_right; 1814 1815 if (fn->fn_flags & RTN_ROOT) 1816 return net->ipv6.fib6_null_entry; 1817 1818 while (fn) { 1819 child_left = rcu_dereference_protected(fn->left, 1820 lockdep_is_held(&table->tb6_lock)); 1821 child_right = rcu_dereference_protected(fn->right, 1822 lockdep_is_held(&table->tb6_lock)); 1823 if (child_left) 1824 return rcu_dereference_protected(child_left->leaf, 1825 lockdep_is_held(&table->tb6_lock)); 1826 if (child_right) 1827 return rcu_dereference_protected(child_right->leaf, 1828 lockdep_is_held(&table->tb6_lock)); 1829 1830 fn = FIB6_SUBTREE(fn); 1831 } 1832 return NULL; 1833 } 1834 1835 /* 1836 * Called to trim the tree of intermediate nodes when possible. "fn" 1837 * is the node we want to try and remove. 1838 * Need to own table->tb6_lock 1839 */ 1840 1841 static struct fib6_node *fib6_repair_tree(struct net *net, 1842 struct fib6_table *table, 1843 struct fib6_node *fn) 1844 { 1845 int children; 1846 int nstate; 1847 struct fib6_node *child; 1848 struct fib6_walker *w; 1849 int iter = 0; 1850 1851 /* Set fn->leaf to null_entry for root node. */ 1852 if (fn->fn_flags & RTN_TL_ROOT) { 1853 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1854 return fn; 1855 } 1856 1857 for (;;) { 1858 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1859 lockdep_is_held(&table->tb6_lock)); 1860 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1861 lockdep_is_held(&table->tb6_lock)); 1862 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1863 lockdep_is_held(&table->tb6_lock)); 1864 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1865 lockdep_is_held(&table->tb6_lock)); 1866 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1867 lockdep_is_held(&table->tb6_lock)); 1868 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1869 lockdep_is_held(&table->tb6_lock)); 1870 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1871 lockdep_is_held(&table->tb6_lock)); 1872 struct fib6_info *new_fn_leaf; 1873 1874 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1875 iter++; 1876 1877 WARN_ON(fn->fn_flags & RTN_RTINFO); 1878 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1879 WARN_ON(fn_leaf); 1880 1881 children = 0; 1882 child = NULL; 1883 if (fn_r) { 1884 child = fn_r; 1885 children |= 1; 1886 } 1887 if (fn_l) { 1888 child = fn_l; 1889 children |= 2; 1890 } 1891 1892 if (children == 3 || FIB6_SUBTREE(fn) 1893 #ifdef CONFIG_IPV6_SUBTREES 1894 /* Subtree root (i.e. fn) may have one child */ 1895 || (children && fn->fn_flags & RTN_ROOT) 1896 #endif 1897 ) { 1898 new_fn_leaf = fib6_find_prefix(net, table, fn); 1899 #if RT6_DEBUG >= 2 1900 if (!new_fn_leaf) { 1901 WARN_ON(!new_fn_leaf); 1902 new_fn_leaf = net->ipv6.fib6_null_entry; 1903 } 1904 #endif 1905 fib6_info_hold(new_fn_leaf); 1906 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1907 return pn; 1908 } 1909 1910 #ifdef CONFIG_IPV6_SUBTREES 1911 if (FIB6_SUBTREE(pn) == fn) { 1912 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1913 RCU_INIT_POINTER(pn->subtree, NULL); 1914 nstate = FWS_L; 1915 } else { 1916 WARN_ON(fn->fn_flags & RTN_ROOT); 1917 #endif 1918 if (pn_r == fn) 1919 rcu_assign_pointer(pn->right, child); 1920 else if (pn_l == fn) 1921 rcu_assign_pointer(pn->left, child); 1922 #if RT6_DEBUG >= 2 1923 else 1924 WARN_ON(1); 1925 #endif 1926 if (child) 1927 rcu_assign_pointer(child->parent, pn); 1928 nstate = FWS_R; 1929 #ifdef CONFIG_IPV6_SUBTREES 1930 } 1931 #endif 1932 1933 read_lock(&net->ipv6.fib6_walker_lock); 1934 FOR_WALKERS(net, w) { 1935 if (!child) { 1936 if (w->node == fn) { 1937 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1938 w, w->state, nstate); 1939 w->node = pn; 1940 w->state = nstate; 1941 } 1942 } else { 1943 if (w->node == fn) { 1944 w->node = child; 1945 if (children&2) { 1946 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1947 w, w->state); 1948 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1949 } else { 1950 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1951 w, w->state); 1952 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1953 } 1954 } 1955 } 1956 } 1957 read_unlock(&net->ipv6.fib6_walker_lock); 1958 1959 node_free(net, fn); 1960 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1961 return pn; 1962 1963 RCU_INIT_POINTER(pn->leaf, NULL); 1964 fib6_info_release(pn_leaf); 1965 fn = pn; 1966 } 1967 } 1968 1969 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1970 struct fib6_info __rcu **rtp, struct nl_info *info) 1971 { 1972 struct fib6_info *leaf, *replace_rt = NULL; 1973 struct fib6_walker *w; 1974 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1975 lockdep_is_held(&table->tb6_lock)); 1976 struct net *net = info->nl_net; 1977 bool notify_del = false; 1978 1979 /* If the deleted route is the first in the node and it is not part of 1980 * a multipath route, then we need to replace it with the next route 1981 * in the node, if exists. 1982 */ 1983 leaf = rcu_dereference_protected(fn->leaf, 1984 lockdep_is_held(&table->tb6_lock)); 1985 if (leaf == rt && !rt->fib6_nsiblings) { 1986 if (rcu_access_pointer(rt->fib6_next)) 1987 replace_rt = rcu_dereference_protected(rt->fib6_next, 1988 lockdep_is_held(&table->tb6_lock)); 1989 else 1990 notify_del = true; 1991 } 1992 1993 /* Unlink it */ 1994 *rtp = rt->fib6_next; 1995 rt->fib6_node = NULL; 1996 net->ipv6.rt6_stats->fib_rt_entries--; 1997 net->ipv6.rt6_stats->fib_discarded_routes++; 1998 1999 /* Reset round-robin state, if necessary */ 2000 if (rcu_access_pointer(fn->rr_ptr) == rt) 2001 fn->rr_ptr = NULL; 2002 2003 /* Remove this entry from other siblings */ 2004 if (rt->fib6_nsiblings) { 2005 struct fib6_info *sibling, *next_sibling; 2006 2007 /* The route is deleted from a multipath route. If this 2008 * multipath route is the first route in the node, then we need 2009 * to emit a delete notification. Otherwise, we need to skip 2010 * the notification. 2011 */ 2012 if (rt->fib6_metric == leaf->fib6_metric && 2013 rt6_qualify_for_ecmp(leaf)) 2014 notify_del = true; 2015 list_for_each_entry_safe(sibling, next_sibling, 2016 &rt->fib6_siblings, fib6_siblings) 2017 sibling->fib6_nsiblings--; 2018 rt->fib6_nsiblings = 0; 2019 list_del_rcu(&rt->fib6_siblings); 2020 rt6_multipath_rebalance(next_sibling); 2021 } 2022 2023 /* Adjust walkers */ 2024 read_lock(&net->ipv6.fib6_walker_lock); 2025 FOR_WALKERS(net, w) { 2026 if (w->state == FWS_C && w->leaf == rt) { 2027 pr_debug("walker %p adjusted by delroute\n", w); 2028 w->leaf = rcu_dereference_protected(rt->fib6_next, 2029 lockdep_is_held(&table->tb6_lock)); 2030 if (!w->leaf) 2031 w->state = FWS_U; 2032 } 2033 } 2034 read_unlock(&net->ipv6.fib6_walker_lock); 2035 2036 /* If it was last route, call fib6_repair_tree() to: 2037 * 1. For root node, put back null_entry as how the table was created. 2038 * 2. For other nodes, expunge its radix tree node. 2039 */ 2040 if (!rcu_access_pointer(fn->leaf)) { 2041 if (!(fn->fn_flags & RTN_TL_ROOT)) { 2042 fn->fn_flags &= ~RTN_RTINFO; 2043 net->ipv6.rt6_stats->fib_route_nodes--; 2044 } 2045 fn = fib6_repair_tree(net, table, fn); 2046 } 2047 2048 fib6_purge_rt(rt, fn, net); 2049 2050 if (!info->skip_notify_kernel) { 2051 if (notify_del) 2052 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 2053 rt, NULL); 2054 else if (replace_rt) 2055 call_fib6_entry_notifiers_replace(net, replace_rt); 2056 } 2057 if (!info->skip_notify) 2058 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 2059 2060 fib6_info_release(rt); 2061 } 2062 2063 /* Need to own table->tb6_lock */ 2064 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2065 { 2066 struct net *net = info->nl_net; 2067 struct fib6_info __rcu **rtp; 2068 struct fib6_info __rcu **rtp_next; 2069 struct fib6_table *table; 2070 struct fib6_node *fn; 2071 2072 if (rt == net->ipv6.fib6_null_entry) 2073 return -ENOENT; 2074 2075 table = rt->fib6_table; 2076 fn = rcu_dereference_protected(rt->fib6_node, 2077 lockdep_is_held(&table->tb6_lock)); 2078 if (!fn) 2079 return -ENOENT; 2080 2081 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2082 2083 /* 2084 * Walk the leaf entries looking for ourself 2085 */ 2086 2087 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2088 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2089 lockdep_is_held(&table->tb6_lock)); 2090 if (rt == cur) { 2091 if (fib6_requires_src(cur)) 2092 fib6_routes_require_src_dec(info->nl_net); 2093 fib6_del_route(table, fn, rtp, info); 2094 return 0; 2095 } 2096 rtp_next = &cur->fib6_next; 2097 } 2098 return -ENOENT; 2099 } 2100 2101 /* 2102 * Tree traversal function. 2103 * 2104 * Certainly, it is not interrupt safe. 2105 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2106 * It means, that we can modify tree during walking 2107 * and use this function for garbage collection, clone pruning, 2108 * cleaning tree when a device goes down etc. etc. 2109 * 2110 * It guarantees that every node will be traversed, 2111 * and that it will be traversed only once. 2112 * 2113 * Callback function w->func may return: 2114 * 0 -> continue walking. 2115 * positive value -> walking is suspended (used by tree dumps, 2116 * and probably by gc, if it will be split to several slices) 2117 * negative value -> terminate walking. 2118 * 2119 * The function itself returns: 2120 * 0 -> walk is complete. 2121 * >0 -> walk is incomplete (i.e. suspended) 2122 * <0 -> walk is terminated by an error. 2123 * 2124 * This function is called with tb6_lock held. 2125 */ 2126 2127 static int fib6_walk_continue(struct fib6_walker *w) 2128 { 2129 struct fib6_node *fn, *pn, *left, *right; 2130 2131 /* w->root should always be table->tb6_root */ 2132 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2133 2134 for (;;) { 2135 fn = w->node; 2136 if (!fn) 2137 return 0; 2138 2139 switch (w->state) { 2140 #ifdef CONFIG_IPV6_SUBTREES 2141 case FWS_S: 2142 if (FIB6_SUBTREE(fn)) { 2143 w->node = FIB6_SUBTREE(fn); 2144 continue; 2145 } 2146 w->state = FWS_L; 2147 fallthrough; 2148 #endif 2149 case FWS_L: 2150 left = rcu_dereference_protected(fn->left, 1); 2151 if (left) { 2152 w->node = left; 2153 w->state = FWS_INIT; 2154 continue; 2155 } 2156 w->state = FWS_R; 2157 fallthrough; 2158 case FWS_R: 2159 right = rcu_dereference_protected(fn->right, 1); 2160 if (right) { 2161 w->node = right; 2162 w->state = FWS_INIT; 2163 continue; 2164 } 2165 w->state = FWS_C; 2166 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2167 fallthrough; 2168 case FWS_C: 2169 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2170 int err; 2171 2172 if (w->skip) { 2173 w->skip--; 2174 goto skip; 2175 } 2176 2177 err = w->func(w); 2178 if (err) 2179 return err; 2180 2181 w->count++; 2182 continue; 2183 } 2184 skip: 2185 w->state = FWS_U; 2186 fallthrough; 2187 case FWS_U: 2188 if (fn == w->root) 2189 return 0; 2190 pn = rcu_dereference_protected(fn->parent, 1); 2191 left = rcu_dereference_protected(pn->left, 1); 2192 right = rcu_dereference_protected(pn->right, 1); 2193 w->node = pn; 2194 #ifdef CONFIG_IPV6_SUBTREES 2195 if (FIB6_SUBTREE(pn) == fn) { 2196 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2197 w->state = FWS_L; 2198 continue; 2199 } 2200 #endif 2201 if (left == fn) { 2202 w->state = FWS_R; 2203 continue; 2204 } 2205 if (right == fn) { 2206 w->state = FWS_C; 2207 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2208 continue; 2209 } 2210 #if RT6_DEBUG >= 2 2211 WARN_ON(1); 2212 #endif 2213 } 2214 } 2215 } 2216 2217 static int fib6_walk(struct net *net, struct fib6_walker *w) 2218 { 2219 int res; 2220 2221 w->state = FWS_INIT; 2222 w->node = w->root; 2223 2224 fib6_walker_link(net, w); 2225 res = fib6_walk_continue(w); 2226 if (res <= 0) 2227 fib6_walker_unlink(net, w); 2228 return res; 2229 } 2230 2231 static int fib6_clean_node(struct fib6_walker *w) 2232 { 2233 int res; 2234 struct fib6_info *rt; 2235 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2236 struct nl_info info = { 2237 .nl_net = c->net, 2238 .skip_notify = c->skip_notify, 2239 }; 2240 2241 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2242 READ_ONCE(w->node->fn_sernum) != c->sernum) 2243 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2244 2245 if (!c->func) { 2246 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2247 w->leaf = NULL; 2248 return 0; 2249 } 2250 2251 for_each_fib6_walker_rt(w) { 2252 res = c->func(rt, c->arg); 2253 if (res == -1) { 2254 w->leaf = rt; 2255 res = fib6_del(rt, &info); 2256 if (res) { 2257 #if RT6_DEBUG >= 2 2258 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2259 __func__, rt, 2260 rcu_access_pointer(rt->fib6_node), 2261 res); 2262 #endif 2263 continue; 2264 } 2265 return 0; 2266 } else if (res == -2) { 2267 if (WARN_ON(!rt->fib6_nsiblings)) 2268 continue; 2269 rt = list_last_entry(&rt->fib6_siblings, 2270 struct fib6_info, fib6_siblings); 2271 continue; 2272 } 2273 WARN_ON(res != 0); 2274 } 2275 w->leaf = rt; 2276 return 0; 2277 } 2278 2279 /* 2280 * Convenient frontend to tree walker. 2281 * 2282 * func is called on each route. 2283 * It may return -2 -> skip multipath route. 2284 * -1 -> delete this route. 2285 * 0 -> continue walking 2286 */ 2287 2288 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2289 int (*func)(struct fib6_info *, void *arg), 2290 int sernum, void *arg, bool skip_notify) 2291 { 2292 struct fib6_cleaner c; 2293 2294 c.w.root = root; 2295 c.w.func = fib6_clean_node; 2296 c.w.count = 0; 2297 c.w.skip = 0; 2298 c.w.skip_in_node = 0; 2299 c.func = func; 2300 c.sernum = sernum; 2301 c.arg = arg; 2302 c.net = net; 2303 c.skip_notify = skip_notify; 2304 2305 fib6_walk(net, &c.w); 2306 } 2307 2308 static void __fib6_clean_all(struct net *net, 2309 int (*func)(struct fib6_info *, void *), 2310 int sernum, void *arg, bool skip_notify) 2311 { 2312 struct fib6_table *table; 2313 struct hlist_head *head; 2314 unsigned int h; 2315 2316 rcu_read_lock(); 2317 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2318 head = &net->ipv6.fib_table_hash[h]; 2319 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2320 spin_lock_bh(&table->tb6_lock); 2321 fib6_clean_tree(net, &table->tb6_root, 2322 func, sernum, arg, skip_notify); 2323 spin_unlock_bh(&table->tb6_lock); 2324 } 2325 } 2326 rcu_read_unlock(); 2327 } 2328 2329 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2330 void *arg) 2331 { 2332 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2333 } 2334 2335 void fib6_clean_all_skip_notify(struct net *net, 2336 int (*func)(struct fib6_info *, void *), 2337 void *arg) 2338 { 2339 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2340 } 2341 2342 static void fib6_flush_trees(struct net *net) 2343 { 2344 int new_sernum = fib6_new_sernum(net); 2345 2346 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2347 } 2348 2349 /* 2350 * Garbage collection 2351 */ 2352 2353 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args) 2354 { 2355 unsigned long now = jiffies; 2356 2357 /* 2358 * check addrconf expiration here. 2359 * Routes are expired even if they are in use. 2360 */ 2361 2362 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2363 if (time_after(now, rt->expires)) { 2364 pr_debug("expiring %p\n", rt); 2365 return -1; 2366 } 2367 gc_args->more++; 2368 } 2369 2370 /* Also age clones in the exception table. 2371 * Note, that clones are aged out 2372 * only if they are not in use now. 2373 */ 2374 rt6_age_exceptions(rt, gc_args, now); 2375 2376 return 0; 2377 } 2378 2379 static void fib6_gc_table(struct net *net, 2380 struct fib6_table *tb6, 2381 struct fib6_gc_args *gc_args) 2382 { 2383 struct fib6_info *rt; 2384 struct hlist_node *n; 2385 struct nl_info info = { 2386 .nl_net = net, 2387 .skip_notify = false, 2388 }; 2389 2390 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link) 2391 if (fib6_age(rt, gc_args) == -1) 2392 fib6_del(rt, &info); 2393 } 2394 2395 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args) 2396 { 2397 struct fib6_table *table; 2398 struct hlist_head *head; 2399 unsigned int h; 2400 2401 rcu_read_lock(); 2402 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2403 head = &net->ipv6.fib_table_hash[h]; 2404 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2405 spin_lock_bh(&table->tb6_lock); 2406 2407 fib6_gc_table(net, table, gc_args); 2408 2409 spin_unlock_bh(&table->tb6_lock); 2410 } 2411 } 2412 rcu_read_unlock(); 2413 } 2414 2415 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2416 { 2417 struct fib6_gc_args gc_args; 2418 unsigned long now; 2419 2420 if (force) { 2421 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2422 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2423 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2424 return; 2425 } 2426 gc_args.timeout = expires ? (int)expires : 2427 net->ipv6.sysctl.ip6_rt_gc_interval; 2428 gc_args.more = 0; 2429 2430 fib6_gc_all(net, &gc_args); 2431 now = jiffies; 2432 net->ipv6.ip6_rt_last_gc = now; 2433 2434 if (gc_args.more) 2435 mod_timer(&net->ipv6.ip6_fib_timer, 2436 round_jiffies(now 2437 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2438 else 2439 timer_delete(&net->ipv6.ip6_fib_timer); 2440 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2441 } 2442 2443 static void fib6_gc_timer_cb(struct timer_list *t) 2444 { 2445 struct net *arg = timer_container_of(arg, t, ipv6.ip6_fib_timer); 2446 2447 fib6_run_gc(0, arg, true); 2448 } 2449 2450 static int __net_init fib6_net_init(struct net *net) 2451 { 2452 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2453 int err; 2454 2455 err = fib6_notifier_init(net); 2456 if (err) 2457 return err; 2458 2459 /* Default to 3-tuple */ 2460 net->ipv6.sysctl.multipath_hash_fields = 2461 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2462 2463 spin_lock_init(&net->ipv6.fib6_gc_lock); 2464 rwlock_init(&net->ipv6.fib6_walker_lock); 2465 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2466 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2467 2468 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2469 if (!net->ipv6.rt6_stats) 2470 goto out_notifier; 2471 2472 /* Avoid false sharing : Use at least a full cache line */ 2473 size = max_t(size_t, size, L1_CACHE_BYTES); 2474 2475 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2476 if (!net->ipv6.fib_table_hash) 2477 goto out_rt6_stats; 2478 2479 spin_lock_init(&net->ipv6.fib_table_hash_lock); 2480 2481 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2482 GFP_KERNEL); 2483 if (!net->ipv6.fib6_main_tbl) 2484 goto out_fib_table_hash; 2485 2486 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2487 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2488 net->ipv6.fib6_null_entry); 2489 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2490 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2491 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2492 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist); 2493 2494 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2495 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2496 GFP_KERNEL); 2497 if (!net->ipv6.fib6_local_tbl) 2498 goto out_fib6_main_tbl; 2499 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2500 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2501 net->ipv6.fib6_null_entry); 2502 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2503 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2504 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2505 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist); 2506 #endif 2507 fib6_tables_init(net); 2508 2509 return 0; 2510 2511 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2512 out_fib6_main_tbl: 2513 kfree(net->ipv6.fib6_main_tbl); 2514 #endif 2515 out_fib_table_hash: 2516 kfree(net->ipv6.fib_table_hash); 2517 out_rt6_stats: 2518 kfree(net->ipv6.rt6_stats); 2519 out_notifier: 2520 fib6_notifier_exit(net); 2521 return -ENOMEM; 2522 } 2523 2524 static void fib6_net_exit(struct net *net) 2525 { 2526 unsigned int i; 2527 2528 timer_delete_sync(&net->ipv6.ip6_fib_timer); 2529 2530 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2531 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2532 struct hlist_node *tmp; 2533 struct fib6_table *tb; 2534 2535 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2536 hlist_del(&tb->tb6_hlist); 2537 fib6_free_table(tb); 2538 } 2539 } 2540 2541 kfree(net->ipv6.fib_table_hash); 2542 kfree(net->ipv6.rt6_stats); 2543 fib6_notifier_exit(net); 2544 } 2545 2546 static struct pernet_operations fib6_net_ops = { 2547 .init = fib6_net_init, 2548 .exit = fib6_net_exit, 2549 }; 2550 2551 static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = { 2552 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE, 2553 .dumpit = inet6_dump_fib, 2554 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE}, 2555 }; 2556 2557 int __init fib6_init(void) 2558 { 2559 int ret = -ENOMEM; 2560 2561 fib6_node_kmem = KMEM_CACHE(fib6_node, 2562 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT); 2563 if (!fib6_node_kmem) 2564 goto out; 2565 2566 ret = register_pernet_subsys(&fib6_net_ops); 2567 if (ret) 2568 goto out_kmem_cache_create; 2569 2570 ret = rtnl_register_many(fib6_rtnl_msg_handlers); 2571 if (ret) 2572 goto out_unregister_subsys; 2573 2574 __fib6_flush_trees = fib6_flush_trees; 2575 out: 2576 return ret; 2577 2578 out_unregister_subsys: 2579 unregister_pernet_subsys(&fib6_net_ops); 2580 out_kmem_cache_create: 2581 kmem_cache_destroy(fib6_node_kmem); 2582 goto out; 2583 } 2584 2585 void fib6_gc_cleanup(void) 2586 { 2587 unregister_pernet_subsys(&fib6_net_ops); 2588 kmem_cache_destroy(fib6_node_kmem); 2589 } 2590 2591 #ifdef CONFIG_PROC_FS 2592 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2593 { 2594 struct fib6_info *rt = v; 2595 struct ipv6_route_iter *iter = seq->private; 2596 struct fib6_nh *fib6_nh = rt->fib6_nh; 2597 unsigned int flags = rt->fib6_flags; 2598 const struct net_device *dev; 2599 2600 if (rt->nh) 2601 fib6_nh = nexthop_fib6_nh(rt->nh); 2602 2603 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2604 2605 #ifdef CONFIG_IPV6_SUBTREES 2606 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2607 #else 2608 seq_puts(seq, "00000000000000000000000000000000 00 "); 2609 #endif 2610 if (fib6_nh->fib_nh_gw_family) { 2611 flags |= RTF_GATEWAY; 2612 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2613 } else { 2614 seq_puts(seq, "00000000000000000000000000000000"); 2615 } 2616 2617 dev = fib6_nh->fib_nh_dev; 2618 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2619 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2620 flags, dev ? dev->name : ""); 2621 iter->w.leaf = NULL; 2622 return 0; 2623 } 2624 2625 static int ipv6_route_yield(struct fib6_walker *w) 2626 { 2627 struct ipv6_route_iter *iter = w->args; 2628 2629 if (!iter->skip) 2630 return 1; 2631 2632 do { 2633 iter->w.leaf = rcu_dereference_protected( 2634 iter->w.leaf->fib6_next, 2635 lockdep_is_held(&iter->tbl->tb6_lock)); 2636 iter->skip--; 2637 if (!iter->skip && iter->w.leaf) 2638 return 1; 2639 } while (iter->w.leaf); 2640 2641 return 0; 2642 } 2643 2644 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2645 struct net *net) 2646 { 2647 memset(&iter->w, 0, sizeof(iter->w)); 2648 iter->w.func = ipv6_route_yield; 2649 iter->w.root = &iter->tbl->tb6_root; 2650 iter->w.state = FWS_INIT; 2651 iter->w.node = iter->w.root; 2652 iter->w.args = iter; 2653 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2654 INIT_LIST_HEAD(&iter->w.lh); 2655 fib6_walker_link(net, &iter->w); 2656 } 2657 2658 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2659 struct net *net) 2660 { 2661 unsigned int h; 2662 struct hlist_node *node; 2663 2664 if (tbl) { 2665 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2666 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2667 } else { 2668 h = 0; 2669 node = NULL; 2670 } 2671 2672 while (!node && h < FIB6_TABLE_HASHSZ) { 2673 node = rcu_dereference( 2674 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2675 } 2676 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2677 } 2678 2679 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2680 { 2681 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2682 2683 if (iter->sernum != sernum) { 2684 iter->sernum = sernum; 2685 iter->w.state = FWS_INIT; 2686 iter->w.node = iter->w.root; 2687 WARN_ON(iter->w.skip); 2688 iter->w.skip = iter->w.count; 2689 } 2690 } 2691 2692 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2693 { 2694 int r; 2695 struct fib6_info *n; 2696 struct net *net = seq_file_net(seq); 2697 struct ipv6_route_iter *iter = seq->private; 2698 2699 ++(*pos); 2700 if (!v) 2701 goto iter_table; 2702 2703 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2704 if (n) 2705 return n; 2706 2707 iter_table: 2708 ipv6_route_check_sernum(iter); 2709 spin_lock_bh(&iter->tbl->tb6_lock); 2710 r = fib6_walk_continue(&iter->w); 2711 spin_unlock_bh(&iter->tbl->tb6_lock); 2712 if (r > 0) { 2713 return iter->w.leaf; 2714 } else if (r < 0) { 2715 fib6_walker_unlink(net, &iter->w); 2716 return NULL; 2717 } 2718 fib6_walker_unlink(net, &iter->w); 2719 2720 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2721 if (!iter->tbl) 2722 return NULL; 2723 2724 ipv6_route_seq_setup_walk(iter, net); 2725 goto iter_table; 2726 } 2727 2728 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2729 __acquires(RCU) 2730 { 2731 struct net *net = seq_file_net(seq); 2732 struct ipv6_route_iter *iter = seq->private; 2733 2734 rcu_read_lock(); 2735 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2736 iter->skip = *pos; 2737 2738 if (iter->tbl) { 2739 loff_t p = 0; 2740 2741 ipv6_route_seq_setup_walk(iter, net); 2742 return ipv6_route_seq_next(seq, NULL, &p); 2743 } else { 2744 return NULL; 2745 } 2746 } 2747 2748 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2749 { 2750 struct fib6_walker *w = &iter->w; 2751 return w->node && !(w->state == FWS_U && w->node == w->root); 2752 } 2753 2754 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2755 __releases(RCU) 2756 { 2757 struct net *net = seq_file_net(seq); 2758 struct ipv6_route_iter *iter = seq->private; 2759 2760 if (ipv6_route_iter_active(iter)) 2761 fib6_walker_unlink(net, &iter->w); 2762 2763 rcu_read_unlock(); 2764 } 2765 2766 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2767 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2768 struct bpf_iter_meta *meta, 2769 void *v) 2770 { 2771 struct bpf_iter__ipv6_route ctx; 2772 2773 ctx.meta = meta; 2774 ctx.rt = v; 2775 return bpf_iter_run_prog(prog, &ctx); 2776 } 2777 2778 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2779 { 2780 struct ipv6_route_iter *iter = seq->private; 2781 struct bpf_iter_meta meta; 2782 struct bpf_prog *prog; 2783 int ret; 2784 2785 meta.seq = seq; 2786 prog = bpf_iter_get_info(&meta, false); 2787 if (!prog) 2788 return ipv6_route_native_seq_show(seq, v); 2789 2790 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2791 iter->w.leaf = NULL; 2792 2793 return ret; 2794 } 2795 2796 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2797 { 2798 struct bpf_iter_meta meta; 2799 struct bpf_prog *prog; 2800 2801 if (!v) { 2802 meta.seq = seq; 2803 prog = bpf_iter_get_info(&meta, true); 2804 if (prog) 2805 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2806 } 2807 2808 ipv6_route_native_seq_stop(seq, v); 2809 } 2810 #else 2811 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2812 { 2813 return ipv6_route_native_seq_show(seq, v); 2814 } 2815 2816 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2817 { 2818 ipv6_route_native_seq_stop(seq, v); 2819 } 2820 #endif 2821 2822 const struct seq_operations ipv6_route_seq_ops = { 2823 .start = ipv6_route_seq_start, 2824 .next = ipv6_route_seq_next, 2825 .stop = ipv6_route_seq_stop, 2826 .show = ipv6_route_seq_show 2827 }; 2828 #endif /* CONFIG_PROC_FS */ 2829