xref: /linux/net/ipv6/ip6_fib.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 static DEFINE_RWLOCK(fib6_walker_lock);
59 
60 #ifdef CONFIG_IPV6_SUBTREES
61 #define FWS_INIT FWS_S
62 #else
63 #define FWS_INIT FWS_L
64 #endif
65 
66 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
67 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
68 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
69 static int fib6_walk(struct fib6_walker *w);
70 static int fib6_walk_continue(struct fib6_walker *w);
71 
72 /*
73  *	A routing update causes an increase of the serial number on the
74  *	affected subtree. This allows for cached routes to be asynchronously
75  *	tested when modifications are made to the destination cache as a
76  *	result of redirects, path MTU changes, etc.
77  */
78 
79 static void fib6_gc_timer_cb(unsigned long arg);
80 
81 static LIST_HEAD(fib6_walkers);
82 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
83 
84 static void fib6_walker_link(struct fib6_walker *w)
85 {
86 	write_lock_bh(&fib6_walker_lock);
87 	list_add(&w->lh, &fib6_walkers);
88 	write_unlock_bh(&fib6_walker_lock);
89 }
90 
91 static void fib6_walker_unlink(struct fib6_walker *w)
92 {
93 	write_lock_bh(&fib6_walker_lock);
94 	list_del(&w->lh);
95 	write_unlock_bh(&fib6_walker_lock);
96 }
97 
98 static int fib6_new_sernum(struct net *net)
99 {
100 	int new, old;
101 
102 	do {
103 		old = atomic_read(&net->ipv6.fib6_sernum);
104 		new = old < INT_MAX ? old + 1 : 1;
105 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
106 				old, new) != old);
107 	return new;
108 }
109 
110 enum {
111 	FIB6_NO_SERNUM_CHANGE = 0,
112 };
113 
114 /*
115  *	Auxiliary address test functions for the radix tree.
116  *
117  *	These assume a 32bit processor (although it will work on
118  *	64bit processors)
119  */
120 
121 /*
122  *	test bit
123  */
124 #if defined(__LITTLE_ENDIAN)
125 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
126 #else
127 # define BITOP_BE32_SWIZZLE	0
128 #endif
129 
130 static __be32 addr_bit_set(const void *token, int fn_bit)
131 {
132 	const __be32 *addr = token;
133 	/*
134 	 * Here,
135 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
136 	 * is optimized version of
137 	 *	htonl(1 << ((~fn_bit)&0x1F))
138 	 * See include/asm-generic/bitops/le.h.
139 	 */
140 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
141 	       addr[fn_bit >> 5];
142 }
143 
144 static struct fib6_node *node_alloc(void)
145 {
146 	struct fib6_node *fn;
147 
148 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
149 
150 	return fn;
151 }
152 
153 static void node_free(struct fib6_node *fn)
154 {
155 	kmem_cache_free(fib6_node_kmem, fn);
156 }
157 
158 static void rt6_rcu_free(struct rt6_info *rt)
159 {
160 	call_rcu(&rt->dst.rcu_head, dst_rcu_free);
161 }
162 
163 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
164 {
165 	int cpu;
166 
167 	if (!non_pcpu_rt->rt6i_pcpu)
168 		return;
169 
170 	for_each_possible_cpu(cpu) {
171 		struct rt6_info **ppcpu_rt;
172 		struct rt6_info *pcpu_rt;
173 
174 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
175 		pcpu_rt = *ppcpu_rt;
176 		if (pcpu_rt) {
177 			rt6_rcu_free(pcpu_rt);
178 			*ppcpu_rt = NULL;
179 		}
180 	}
181 
182 	non_pcpu_rt->rt6i_pcpu = NULL;
183 }
184 
185 static void rt6_release(struct rt6_info *rt)
186 {
187 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
188 		rt6_free_pcpu(rt);
189 		rt6_rcu_free(rt);
190 	}
191 }
192 
193 static void fib6_link_table(struct net *net, struct fib6_table *tb)
194 {
195 	unsigned int h;
196 
197 	/*
198 	 * Initialize table lock at a single place to give lockdep a key,
199 	 * tables aren't visible prior to being linked to the list.
200 	 */
201 	rwlock_init(&tb->tb6_lock);
202 
203 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
204 
205 	/*
206 	 * No protection necessary, this is the only list mutatation
207 	 * operation, tables never disappear once they exist.
208 	 */
209 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
210 }
211 
212 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
213 
214 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
215 {
216 	struct fib6_table *table;
217 
218 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
219 	if (table) {
220 		table->tb6_id = id;
221 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
222 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
223 		inet_peer_base_init(&table->tb6_peers);
224 	}
225 
226 	return table;
227 }
228 
229 struct fib6_table *fib6_new_table(struct net *net, u32 id)
230 {
231 	struct fib6_table *tb;
232 
233 	if (id == 0)
234 		id = RT6_TABLE_MAIN;
235 	tb = fib6_get_table(net, id);
236 	if (tb)
237 		return tb;
238 
239 	tb = fib6_alloc_table(net, id);
240 	if (tb)
241 		fib6_link_table(net, tb);
242 
243 	return tb;
244 }
245 
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 	struct hlist_head *head;
250 	unsigned int h;
251 
252 	if (id == 0)
253 		id = RT6_TABLE_MAIN;
254 	h = id & (FIB6_TABLE_HASHSZ - 1);
255 	rcu_read_lock();
256 	head = &net->ipv6.fib_table_hash[h];
257 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 		if (tb->tb6_id == id) {
259 			rcu_read_unlock();
260 			return tb;
261 		}
262 	}
263 	rcu_read_unlock();
264 
265 	return NULL;
266 }
267 EXPORT_SYMBOL_GPL(fib6_get_table);
268 
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
273 }
274 #else
275 
276 struct fib6_table *fib6_new_table(struct net *net, u32 id)
277 {
278 	return fib6_get_table(net, id);
279 }
280 
281 struct fib6_table *fib6_get_table(struct net *net, u32 id)
282 {
283 	  return net->ipv6.fib6_main_tbl;
284 }
285 
286 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287 				   int flags, pol_lookup_t lookup)
288 {
289 	struct rt6_info *rt;
290 
291 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292 	if (rt->rt6i_flags & RTF_REJECT &&
293 	    rt->dst.error == -EAGAIN) {
294 		ip6_rt_put(rt);
295 		rt = net->ipv6.ip6_null_entry;
296 		dst_hold(&rt->dst);
297 	}
298 
299 	return &rt->dst;
300 }
301 
302 static void __net_init fib6_tables_init(struct net *net)
303 {
304 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
305 }
306 
307 #endif
308 
309 static int fib6_dump_node(struct fib6_walker *w)
310 {
311 	int res;
312 	struct rt6_info *rt;
313 
314 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315 		res = rt6_dump_route(rt, w->args);
316 		if (res < 0) {
317 			/* Frame is full, suspend walking */
318 			w->leaf = rt;
319 			return 1;
320 		}
321 	}
322 	w->leaf = NULL;
323 	return 0;
324 }
325 
326 static void fib6_dump_end(struct netlink_callback *cb)
327 {
328 	struct fib6_walker *w = (void *)cb->args[2];
329 
330 	if (w) {
331 		if (cb->args[4]) {
332 			cb->args[4] = 0;
333 			fib6_walker_unlink(w);
334 		}
335 		cb->args[2] = 0;
336 		kfree(w);
337 	}
338 	cb->done = (void *)cb->args[3];
339 	cb->args[1] = 3;
340 }
341 
342 static int fib6_dump_done(struct netlink_callback *cb)
343 {
344 	fib6_dump_end(cb);
345 	return cb->done ? cb->done(cb) : 0;
346 }
347 
348 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
349 			   struct netlink_callback *cb)
350 {
351 	struct fib6_walker *w;
352 	int res;
353 
354 	w = (void *)cb->args[2];
355 	w->root = &table->tb6_root;
356 
357 	if (cb->args[4] == 0) {
358 		w->count = 0;
359 		w->skip = 0;
360 
361 		read_lock_bh(&table->tb6_lock);
362 		res = fib6_walk(w);
363 		read_unlock_bh(&table->tb6_lock);
364 		if (res > 0) {
365 			cb->args[4] = 1;
366 			cb->args[5] = w->root->fn_sernum;
367 		}
368 	} else {
369 		if (cb->args[5] != w->root->fn_sernum) {
370 			/* Begin at the root if the tree changed */
371 			cb->args[5] = w->root->fn_sernum;
372 			w->state = FWS_INIT;
373 			w->node = w->root;
374 			w->skip = w->count;
375 		} else
376 			w->skip = 0;
377 
378 		read_lock_bh(&table->tb6_lock);
379 		res = fib6_walk_continue(w);
380 		read_unlock_bh(&table->tb6_lock);
381 		if (res <= 0) {
382 			fib6_walker_unlink(w);
383 			cb->args[4] = 0;
384 		}
385 	}
386 
387 	return res;
388 }
389 
390 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
391 {
392 	struct net *net = sock_net(skb->sk);
393 	unsigned int h, s_h;
394 	unsigned int e = 0, s_e;
395 	struct rt6_rtnl_dump_arg arg;
396 	struct fib6_walker *w;
397 	struct fib6_table *tb;
398 	struct hlist_head *head;
399 	int res = 0;
400 
401 	s_h = cb->args[0];
402 	s_e = cb->args[1];
403 
404 	w = (void *)cb->args[2];
405 	if (!w) {
406 		/* New dump:
407 		 *
408 		 * 1. hook callback destructor.
409 		 */
410 		cb->args[3] = (long)cb->done;
411 		cb->done = fib6_dump_done;
412 
413 		/*
414 		 * 2. allocate and initialize walker.
415 		 */
416 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
417 		if (!w)
418 			return -ENOMEM;
419 		w->func = fib6_dump_node;
420 		cb->args[2] = (long)w;
421 	}
422 
423 	arg.skb = skb;
424 	arg.cb = cb;
425 	arg.net = net;
426 	w->args = &arg;
427 
428 	rcu_read_lock();
429 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
430 		e = 0;
431 		head = &net->ipv6.fib_table_hash[h];
432 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
433 			if (e < s_e)
434 				goto next;
435 			res = fib6_dump_table(tb, skb, cb);
436 			if (res != 0)
437 				goto out;
438 next:
439 			e++;
440 		}
441 	}
442 out:
443 	rcu_read_unlock();
444 	cb->args[1] = e;
445 	cb->args[0] = h;
446 
447 	res = res < 0 ? res : skb->len;
448 	if (res <= 0)
449 		fib6_dump_end(cb);
450 	return res;
451 }
452 
453 /*
454  *	Routing Table
455  *
456  *	return the appropriate node for a routing tree "add" operation
457  *	by either creating and inserting or by returning an existing
458  *	node.
459  */
460 
461 static struct fib6_node *fib6_add_1(struct fib6_node *root,
462 				     struct in6_addr *addr, int plen,
463 				     int offset, int allow_create,
464 				     int replace_required, int sernum)
465 {
466 	struct fib6_node *fn, *in, *ln;
467 	struct fib6_node *pn = NULL;
468 	struct rt6key *key;
469 	int	bit;
470 	__be32	dir = 0;
471 
472 	RT6_TRACE("fib6_add_1\n");
473 
474 	/* insert node in tree */
475 
476 	fn = root;
477 
478 	do {
479 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
480 
481 		/*
482 		 *	Prefix match
483 		 */
484 		if (plen < fn->fn_bit ||
485 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
486 			if (!allow_create) {
487 				if (replace_required) {
488 					pr_warn("Can't replace route, no match found\n");
489 					return ERR_PTR(-ENOENT);
490 				}
491 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
492 			}
493 			goto insert_above;
494 		}
495 
496 		/*
497 		 *	Exact match ?
498 		 */
499 
500 		if (plen == fn->fn_bit) {
501 			/* clean up an intermediate node */
502 			if (!(fn->fn_flags & RTN_RTINFO)) {
503 				rt6_release(fn->leaf);
504 				fn->leaf = NULL;
505 			}
506 
507 			fn->fn_sernum = sernum;
508 
509 			return fn;
510 		}
511 
512 		/*
513 		 *	We have more bits to go
514 		 */
515 
516 		/* Try to walk down on tree. */
517 		fn->fn_sernum = sernum;
518 		dir = addr_bit_set(addr, fn->fn_bit);
519 		pn = fn;
520 		fn = dir ? fn->right : fn->left;
521 	} while (fn);
522 
523 	if (!allow_create) {
524 		/* We should not create new node because
525 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
526 		 * I assume it is safe to require NLM_F_CREATE when
527 		 * REPLACE flag is used! Later we may want to remove the
528 		 * check for replace_required, because according
529 		 * to netlink specification, NLM_F_CREATE
530 		 * MUST be specified if new route is created.
531 		 * That would keep IPv6 consistent with IPv4
532 		 */
533 		if (replace_required) {
534 			pr_warn("Can't replace route, no match found\n");
535 			return ERR_PTR(-ENOENT);
536 		}
537 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
538 	}
539 	/*
540 	 *	We walked to the bottom of tree.
541 	 *	Create new leaf node without children.
542 	 */
543 
544 	ln = node_alloc();
545 
546 	if (!ln)
547 		return ERR_PTR(-ENOMEM);
548 	ln->fn_bit = plen;
549 
550 	ln->parent = pn;
551 	ln->fn_sernum = sernum;
552 
553 	if (dir)
554 		pn->right = ln;
555 	else
556 		pn->left  = ln;
557 
558 	return ln;
559 
560 
561 insert_above:
562 	/*
563 	 * split since we don't have a common prefix anymore or
564 	 * we have a less significant route.
565 	 * we've to insert an intermediate node on the list
566 	 * this new node will point to the one we need to create
567 	 * and the current
568 	 */
569 
570 	pn = fn->parent;
571 
572 	/* find 1st bit in difference between the 2 addrs.
573 
574 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
575 	   but if it is >= plen, the value is ignored in any case.
576 	 */
577 
578 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
579 
580 	/*
581 	 *		(intermediate)[in]
582 	 *	          /	   \
583 	 *	(new leaf node)[ln] (old node)[fn]
584 	 */
585 	if (plen > bit) {
586 		in = node_alloc();
587 		ln = node_alloc();
588 
589 		if (!in || !ln) {
590 			if (in)
591 				node_free(in);
592 			if (ln)
593 				node_free(ln);
594 			return ERR_PTR(-ENOMEM);
595 		}
596 
597 		/*
598 		 * new intermediate node.
599 		 * RTN_RTINFO will
600 		 * be off since that an address that chooses one of
601 		 * the branches would not match less specific routes
602 		 * in the other branch
603 		 */
604 
605 		in->fn_bit = bit;
606 
607 		in->parent = pn;
608 		in->leaf = fn->leaf;
609 		atomic_inc(&in->leaf->rt6i_ref);
610 
611 		in->fn_sernum = sernum;
612 
613 		/* update parent pointer */
614 		if (dir)
615 			pn->right = in;
616 		else
617 			pn->left  = in;
618 
619 		ln->fn_bit = plen;
620 
621 		ln->parent = in;
622 		fn->parent = in;
623 
624 		ln->fn_sernum = sernum;
625 
626 		if (addr_bit_set(addr, bit)) {
627 			in->right = ln;
628 			in->left  = fn;
629 		} else {
630 			in->left  = ln;
631 			in->right = fn;
632 		}
633 	} else { /* plen <= bit */
634 
635 		/*
636 		 *		(new leaf node)[ln]
637 		 *	          /	   \
638 		 *	     (old node)[fn] NULL
639 		 */
640 
641 		ln = node_alloc();
642 
643 		if (!ln)
644 			return ERR_PTR(-ENOMEM);
645 
646 		ln->fn_bit = plen;
647 
648 		ln->parent = pn;
649 
650 		ln->fn_sernum = sernum;
651 
652 		if (dir)
653 			pn->right = ln;
654 		else
655 			pn->left  = ln;
656 
657 		if (addr_bit_set(&key->addr, plen))
658 			ln->right = fn;
659 		else
660 			ln->left  = fn;
661 
662 		fn->parent = ln;
663 	}
664 	return ln;
665 }
666 
667 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
668 {
669 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
670 	       RTF_GATEWAY;
671 }
672 
673 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
674 {
675 	int i;
676 
677 	for (i = 0; i < RTAX_MAX; i++) {
678 		if (test_bit(i, mxc->mx_valid))
679 			mp[i] = mxc->mx[i];
680 	}
681 }
682 
683 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
684 {
685 	if (!mxc->mx)
686 		return 0;
687 
688 	if (dst->flags & DST_HOST) {
689 		u32 *mp = dst_metrics_write_ptr(dst);
690 
691 		if (unlikely(!mp))
692 			return -ENOMEM;
693 
694 		fib6_copy_metrics(mp, mxc);
695 	} else {
696 		dst_init_metrics(dst, mxc->mx, false);
697 
698 		/* We've stolen mx now. */
699 		mxc->mx = NULL;
700 	}
701 
702 	return 0;
703 }
704 
705 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
706 			  struct net *net)
707 {
708 	if (atomic_read(&rt->rt6i_ref) != 1) {
709 		/* This route is used as dummy address holder in some split
710 		 * nodes. It is not leaked, but it still holds other resources,
711 		 * which must be released in time. So, scan ascendant nodes
712 		 * and replace dummy references to this route with references
713 		 * to still alive ones.
714 		 */
715 		while (fn) {
716 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
717 				fn->leaf = fib6_find_prefix(net, fn);
718 				atomic_inc(&fn->leaf->rt6i_ref);
719 				rt6_release(rt);
720 			}
721 			fn = fn->parent;
722 		}
723 		/* No more references are possible at this point. */
724 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
725 	}
726 }
727 
728 /*
729  *	Insert routing information in a node.
730  */
731 
732 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
733 			    struct nl_info *info, struct mx6_config *mxc)
734 {
735 	struct rt6_info *iter = NULL;
736 	struct rt6_info **ins;
737 	struct rt6_info **fallback_ins = NULL;
738 	int replace = (info->nlh &&
739 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
740 	int add = (!info->nlh ||
741 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
742 	int found = 0;
743 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
744 	int err;
745 
746 	ins = &fn->leaf;
747 
748 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
749 		/*
750 		 *	Search for duplicates
751 		 */
752 
753 		if (iter->rt6i_metric == rt->rt6i_metric) {
754 			/*
755 			 *	Same priority level
756 			 */
757 			if (info->nlh &&
758 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
759 				return -EEXIST;
760 			if (replace) {
761 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
762 					found++;
763 					break;
764 				}
765 				if (rt_can_ecmp)
766 					fallback_ins = fallback_ins ?: ins;
767 				goto next_iter;
768 			}
769 
770 			if (iter->dst.dev == rt->dst.dev &&
771 			    iter->rt6i_idev == rt->rt6i_idev &&
772 			    ipv6_addr_equal(&iter->rt6i_gateway,
773 					    &rt->rt6i_gateway)) {
774 				if (rt->rt6i_nsiblings)
775 					rt->rt6i_nsiblings = 0;
776 				if (!(iter->rt6i_flags & RTF_EXPIRES))
777 					return -EEXIST;
778 				if (!(rt->rt6i_flags & RTF_EXPIRES))
779 					rt6_clean_expires(iter);
780 				else
781 					rt6_set_expires(iter, rt->dst.expires);
782 				iter->rt6i_pmtu = rt->rt6i_pmtu;
783 				return -EEXIST;
784 			}
785 			/* If we have the same destination and the same metric,
786 			 * but not the same gateway, then the route we try to
787 			 * add is sibling to this route, increment our counter
788 			 * of siblings, and later we will add our route to the
789 			 * list.
790 			 * Only static routes (which don't have flag
791 			 * RTF_EXPIRES) are used for ECMPv6.
792 			 *
793 			 * To avoid long list, we only had siblings if the
794 			 * route have a gateway.
795 			 */
796 			if (rt_can_ecmp &&
797 			    rt6_qualify_for_ecmp(iter))
798 				rt->rt6i_nsiblings++;
799 		}
800 
801 		if (iter->rt6i_metric > rt->rt6i_metric)
802 			break;
803 
804 next_iter:
805 		ins = &iter->dst.rt6_next;
806 	}
807 
808 	if (fallback_ins && !found) {
809 		/* No ECMP-able route found, replace first non-ECMP one */
810 		ins = fallback_ins;
811 		iter = *ins;
812 		found++;
813 	}
814 
815 	/* Reset round-robin state, if necessary */
816 	if (ins == &fn->leaf)
817 		fn->rr_ptr = NULL;
818 
819 	/* Link this route to others same route. */
820 	if (rt->rt6i_nsiblings) {
821 		unsigned int rt6i_nsiblings;
822 		struct rt6_info *sibling, *temp_sibling;
823 
824 		/* Find the first route that have the same metric */
825 		sibling = fn->leaf;
826 		while (sibling) {
827 			if (sibling->rt6i_metric == rt->rt6i_metric &&
828 			    rt6_qualify_for_ecmp(sibling)) {
829 				list_add_tail(&rt->rt6i_siblings,
830 					      &sibling->rt6i_siblings);
831 				break;
832 			}
833 			sibling = sibling->dst.rt6_next;
834 		}
835 		/* For each sibling in the list, increment the counter of
836 		 * siblings. BUG() if counters does not match, list of siblings
837 		 * is broken!
838 		 */
839 		rt6i_nsiblings = 0;
840 		list_for_each_entry_safe(sibling, temp_sibling,
841 					 &rt->rt6i_siblings, rt6i_siblings) {
842 			sibling->rt6i_nsiblings++;
843 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
844 			rt6i_nsiblings++;
845 		}
846 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
847 	}
848 
849 	/*
850 	 *	insert node
851 	 */
852 	if (!replace) {
853 		if (!add)
854 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
855 
856 add:
857 		err = fib6_commit_metrics(&rt->dst, mxc);
858 		if (err)
859 			return err;
860 
861 		rt->dst.rt6_next = iter;
862 		*ins = rt;
863 		rt->rt6i_node = fn;
864 		atomic_inc(&rt->rt6i_ref);
865 		inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
866 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
867 
868 		if (!(fn->fn_flags & RTN_RTINFO)) {
869 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
870 			fn->fn_flags |= RTN_RTINFO;
871 		}
872 
873 	} else {
874 		int nsiblings;
875 
876 		if (!found) {
877 			if (add)
878 				goto add;
879 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
880 			return -ENOENT;
881 		}
882 
883 		err = fib6_commit_metrics(&rt->dst, mxc);
884 		if (err)
885 			return err;
886 
887 		*ins = rt;
888 		rt->rt6i_node = fn;
889 		rt->dst.rt6_next = iter->dst.rt6_next;
890 		atomic_inc(&rt->rt6i_ref);
891 		inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
892 		if (!(fn->fn_flags & RTN_RTINFO)) {
893 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
894 			fn->fn_flags |= RTN_RTINFO;
895 		}
896 		nsiblings = iter->rt6i_nsiblings;
897 		fib6_purge_rt(iter, fn, info->nl_net);
898 		rt6_release(iter);
899 
900 		if (nsiblings) {
901 			/* Replacing an ECMP route, remove all siblings */
902 			ins = &rt->dst.rt6_next;
903 			iter = *ins;
904 			while (iter) {
905 				if (rt6_qualify_for_ecmp(iter)) {
906 					*ins = iter->dst.rt6_next;
907 					fib6_purge_rt(iter, fn, info->nl_net);
908 					rt6_release(iter);
909 					nsiblings--;
910 				} else {
911 					ins = &iter->dst.rt6_next;
912 				}
913 				iter = *ins;
914 			}
915 			WARN_ON(nsiblings != 0);
916 		}
917 	}
918 
919 	return 0;
920 }
921 
922 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
923 {
924 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
925 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
926 		mod_timer(&net->ipv6.ip6_fib_timer,
927 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
928 }
929 
930 void fib6_force_start_gc(struct net *net)
931 {
932 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
933 		mod_timer(&net->ipv6.ip6_fib_timer,
934 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
935 }
936 
937 /*
938  *	Add routing information to the routing tree.
939  *	<destination addr>/<source addr>
940  *	with source addr info in sub-trees
941  */
942 
943 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
944 	     struct nl_info *info, struct mx6_config *mxc)
945 {
946 	struct fib6_node *fn, *pn = NULL;
947 	int err = -ENOMEM;
948 	int allow_create = 1;
949 	int replace_required = 0;
950 	int sernum = fib6_new_sernum(info->nl_net);
951 
952 	if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
953 			 !atomic_read(&rt->dst.__refcnt)))
954 		return -EINVAL;
955 
956 	if (info->nlh) {
957 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
958 			allow_create = 0;
959 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
960 			replace_required = 1;
961 	}
962 	if (!allow_create && !replace_required)
963 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
964 
965 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
966 			offsetof(struct rt6_info, rt6i_dst), allow_create,
967 			replace_required, sernum);
968 	if (IS_ERR(fn)) {
969 		err = PTR_ERR(fn);
970 		fn = NULL;
971 		goto out;
972 	}
973 
974 	pn = fn;
975 
976 #ifdef CONFIG_IPV6_SUBTREES
977 	if (rt->rt6i_src.plen) {
978 		struct fib6_node *sn;
979 
980 		if (!fn->subtree) {
981 			struct fib6_node *sfn;
982 
983 			/*
984 			 * Create subtree.
985 			 *
986 			 *		fn[main tree]
987 			 *		|
988 			 *		sfn[subtree root]
989 			 *		   \
990 			 *		    sn[new leaf node]
991 			 */
992 
993 			/* Create subtree root node */
994 			sfn = node_alloc();
995 			if (!sfn)
996 				goto st_failure;
997 
998 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
999 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1000 			sfn->fn_flags = RTN_ROOT;
1001 			sfn->fn_sernum = sernum;
1002 
1003 			/* Now add the first leaf node to new subtree */
1004 
1005 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1006 					rt->rt6i_src.plen,
1007 					offsetof(struct rt6_info, rt6i_src),
1008 					allow_create, replace_required, sernum);
1009 
1010 			if (IS_ERR(sn)) {
1011 				/* If it is failed, discard just allocated
1012 				   root, and then (in st_failure) stale node
1013 				   in main tree.
1014 				 */
1015 				node_free(sfn);
1016 				err = PTR_ERR(sn);
1017 				goto st_failure;
1018 			}
1019 
1020 			/* Now link new subtree to main tree */
1021 			sfn->parent = fn;
1022 			fn->subtree = sfn;
1023 		} else {
1024 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1025 					rt->rt6i_src.plen,
1026 					offsetof(struct rt6_info, rt6i_src),
1027 					allow_create, replace_required, sernum);
1028 
1029 			if (IS_ERR(sn)) {
1030 				err = PTR_ERR(sn);
1031 				goto st_failure;
1032 			}
1033 		}
1034 
1035 		if (!fn->leaf) {
1036 			fn->leaf = rt;
1037 			atomic_inc(&rt->rt6i_ref);
1038 		}
1039 		fn = sn;
1040 	}
1041 #endif
1042 
1043 	err = fib6_add_rt2node(fn, rt, info, mxc);
1044 	if (!err) {
1045 		fib6_start_gc(info->nl_net, rt);
1046 		if (!(rt->rt6i_flags & RTF_CACHE))
1047 			fib6_prune_clones(info->nl_net, pn);
1048 		rt->dst.flags &= ~DST_NOCACHE;
1049 	}
1050 
1051 out:
1052 	if (err) {
1053 #ifdef CONFIG_IPV6_SUBTREES
1054 		/*
1055 		 * If fib6_add_1 has cleared the old leaf pointer in the
1056 		 * super-tree leaf node we have to find a new one for it.
1057 		 */
1058 		if (pn != fn && pn->leaf == rt) {
1059 			pn->leaf = NULL;
1060 			atomic_dec(&rt->rt6i_ref);
1061 		}
1062 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1063 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1064 #if RT6_DEBUG >= 2
1065 			if (!pn->leaf) {
1066 				WARN_ON(pn->leaf == NULL);
1067 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1068 			}
1069 #endif
1070 			atomic_inc(&pn->leaf->rt6i_ref);
1071 		}
1072 #endif
1073 		if (!(rt->dst.flags & DST_NOCACHE))
1074 			dst_free(&rt->dst);
1075 	}
1076 	return err;
1077 
1078 #ifdef CONFIG_IPV6_SUBTREES
1079 	/* Subtree creation failed, probably main tree node
1080 	   is orphan. If it is, shoot it.
1081 	 */
1082 st_failure:
1083 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1084 		fib6_repair_tree(info->nl_net, fn);
1085 	if (!(rt->dst.flags & DST_NOCACHE))
1086 		dst_free(&rt->dst);
1087 	return err;
1088 #endif
1089 }
1090 
1091 /*
1092  *	Routing tree lookup
1093  *
1094  */
1095 
1096 struct lookup_args {
1097 	int			offset;		/* key offset on rt6_info	*/
1098 	const struct in6_addr	*addr;		/* search key			*/
1099 };
1100 
1101 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1102 				       struct lookup_args *args)
1103 {
1104 	struct fib6_node *fn;
1105 	__be32 dir;
1106 
1107 	if (unlikely(args->offset == 0))
1108 		return NULL;
1109 
1110 	/*
1111 	 *	Descend on a tree
1112 	 */
1113 
1114 	fn = root;
1115 
1116 	for (;;) {
1117 		struct fib6_node *next;
1118 
1119 		dir = addr_bit_set(args->addr, fn->fn_bit);
1120 
1121 		next = dir ? fn->right : fn->left;
1122 
1123 		if (next) {
1124 			fn = next;
1125 			continue;
1126 		}
1127 		break;
1128 	}
1129 
1130 	while (fn) {
1131 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1132 			struct rt6key *key;
1133 
1134 			key = (struct rt6key *) ((u8 *) fn->leaf +
1135 						 args->offset);
1136 
1137 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1138 #ifdef CONFIG_IPV6_SUBTREES
1139 				if (fn->subtree) {
1140 					struct fib6_node *sfn;
1141 					sfn = fib6_lookup_1(fn->subtree,
1142 							    args + 1);
1143 					if (!sfn)
1144 						goto backtrack;
1145 					fn = sfn;
1146 				}
1147 #endif
1148 				if (fn->fn_flags & RTN_RTINFO)
1149 					return fn;
1150 			}
1151 		}
1152 #ifdef CONFIG_IPV6_SUBTREES
1153 backtrack:
1154 #endif
1155 		if (fn->fn_flags & RTN_ROOT)
1156 			break;
1157 
1158 		fn = fn->parent;
1159 	}
1160 
1161 	return NULL;
1162 }
1163 
1164 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1165 			      const struct in6_addr *saddr)
1166 {
1167 	struct fib6_node *fn;
1168 	struct lookup_args args[] = {
1169 		{
1170 			.offset = offsetof(struct rt6_info, rt6i_dst),
1171 			.addr = daddr,
1172 		},
1173 #ifdef CONFIG_IPV6_SUBTREES
1174 		{
1175 			.offset = offsetof(struct rt6_info, rt6i_src),
1176 			.addr = saddr,
1177 		},
1178 #endif
1179 		{
1180 			.offset = 0,	/* sentinel */
1181 		}
1182 	};
1183 
1184 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1185 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1186 		fn = root;
1187 
1188 	return fn;
1189 }
1190 
1191 /*
1192  *	Get node with specified destination prefix (and source prefix,
1193  *	if subtrees are used)
1194  */
1195 
1196 
1197 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1198 				       const struct in6_addr *addr,
1199 				       int plen, int offset)
1200 {
1201 	struct fib6_node *fn;
1202 
1203 	for (fn = root; fn ; ) {
1204 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1205 
1206 		/*
1207 		 *	Prefix match
1208 		 */
1209 		if (plen < fn->fn_bit ||
1210 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1211 			return NULL;
1212 
1213 		if (plen == fn->fn_bit)
1214 			return fn;
1215 
1216 		/*
1217 		 *	We have more bits to go
1218 		 */
1219 		if (addr_bit_set(addr, fn->fn_bit))
1220 			fn = fn->right;
1221 		else
1222 			fn = fn->left;
1223 	}
1224 	return NULL;
1225 }
1226 
1227 struct fib6_node *fib6_locate(struct fib6_node *root,
1228 			      const struct in6_addr *daddr, int dst_len,
1229 			      const struct in6_addr *saddr, int src_len)
1230 {
1231 	struct fib6_node *fn;
1232 
1233 	fn = fib6_locate_1(root, daddr, dst_len,
1234 			   offsetof(struct rt6_info, rt6i_dst));
1235 
1236 #ifdef CONFIG_IPV6_SUBTREES
1237 	if (src_len) {
1238 		WARN_ON(saddr == NULL);
1239 		if (fn && fn->subtree)
1240 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1241 					   offsetof(struct rt6_info, rt6i_src));
1242 	}
1243 #endif
1244 
1245 	if (fn && fn->fn_flags & RTN_RTINFO)
1246 		return fn;
1247 
1248 	return NULL;
1249 }
1250 
1251 
1252 /*
1253  *	Deletion
1254  *
1255  */
1256 
1257 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1258 {
1259 	if (fn->fn_flags & RTN_ROOT)
1260 		return net->ipv6.ip6_null_entry;
1261 
1262 	while (fn) {
1263 		if (fn->left)
1264 			return fn->left->leaf;
1265 		if (fn->right)
1266 			return fn->right->leaf;
1267 
1268 		fn = FIB6_SUBTREE(fn);
1269 	}
1270 	return NULL;
1271 }
1272 
1273 /*
1274  *	Called to trim the tree of intermediate nodes when possible. "fn"
1275  *	is the node we want to try and remove.
1276  */
1277 
1278 static struct fib6_node *fib6_repair_tree(struct net *net,
1279 					   struct fib6_node *fn)
1280 {
1281 	int children;
1282 	int nstate;
1283 	struct fib6_node *child, *pn;
1284 	struct fib6_walker *w;
1285 	int iter = 0;
1286 
1287 	for (;;) {
1288 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1289 		iter++;
1290 
1291 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1292 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1293 		WARN_ON(fn->leaf);
1294 
1295 		children = 0;
1296 		child = NULL;
1297 		if (fn->right)
1298 			child = fn->right, children |= 1;
1299 		if (fn->left)
1300 			child = fn->left, children |= 2;
1301 
1302 		if (children == 3 || FIB6_SUBTREE(fn)
1303 #ifdef CONFIG_IPV6_SUBTREES
1304 		    /* Subtree root (i.e. fn) may have one child */
1305 		    || (children && fn->fn_flags & RTN_ROOT)
1306 #endif
1307 		    ) {
1308 			fn->leaf = fib6_find_prefix(net, fn);
1309 #if RT6_DEBUG >= 2
1310 			if (!fn->leaf) {
1311 				WARN_ON(!fn->leaf);
1312 				fn->leaf = net->ipv6.ip6_null_entry;
1313 			}
1314 #endif
1315 			atomic_inc(&fn->leaf->rt6i_ref);
1316 			return fn->parent;
1317 		}
1318 
1319 		pn = fn->parent;
1320 #ifdef CONFIG_IPV6_SUBTREES
1321 		if (FIB6_SUBTREE(pn) == fn) {
1322 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1323 			FIB6_SUBTREE(pn) = NULL;
1324 			nstate = FWS_L;
1325 		} else {
1326 			WARN_ON(fn->fn_flags & RTN_ROOT);
1327 #endif
1328 			if (pn->right == fn)
1329 				pn->right = child;
1330 			else if (pn->left == fn)
1331 				pn->left = child;
1332 #if RT6_DEBUG >= 2
1333 			else
1334 				WARN_ON(1);
1335 #endif
1336 			if (child)
1337 				child->parent = pn;
1338 			nstate = FWS_R;
1339 #ifdef CONFIG_IPV6_SUBTREES
1340 		}
1341 #endif
1342 
1343 		read_lock(&fib6_walker_lock);
1344 		FOR_WALKERS(w) {
1345 			if (!child) {
1346 				if (w->root == fn) {
1347 					w->root = w->node = NULL;
1348 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1349 				} else if (w->node == fn) {
1350 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1351 					w->node = pn;
1352 					w->state = nstate;
1353 				}
1354 			} else {
1355 				if (w->root == fn) {
1356 					w->root = child;
1357 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1358 				}
1359 				if (w->node == fn) {
1360 					w->node = child;
1361 					if (children&2) {
1362 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1363 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1364 					} else {
1365 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1366 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1367 					}
1368 				}
1369 			}
1370 		}
1371 		read_unlock(&fib6_walker_lock);
1372 
1373 		node_free(fn);
1374 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1375 			return pn;
1376 
1377 		rt6_release(pn->leaf);
1378 		pn->leaf = NULL;
1379 		fn = pn;
1380 	}
1381 }
1382 
1383 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1384 			   struct nl_info *info)
1385 {
1386 	struct fib6_walker *w;
1387 	struct rt6_info *rt = *rtp;
1388 	struct net *net = info->nl_net;
1389 
1390 	RT6_TRACE("fib6_del_route\n");
1391 
1392 	/* Unlink it */
1393 	*rtp = rt->dst.rt6_next;
1394 	rt->rt6i_node = NULL;
1395 	net->ipv6.rt6_stats->fib_rt_entries--;
1396 	net->ipv6.rt6_stats->fib_discarded_routes++;
1397 
1398 	/* Reset round-robin state, if necessary */
1399 	if (fn->rr_ptr == rt)
1400 		fn->rr_ptr = NULL;
1401 
1402 	/* Remove this entry from other siblings */
1403 	if (rt->rt6i_nsiblings) {
1404 		struct rt6_info *sibling, *next_sibling;
1405 
1406 		list_for_each_entry_safe(sibling, next_sibling,
1407 					 &rt->rt6i_siblings, rt6i_siblings)
1408 			sibling->rt6i_nsiblings--;
1409 		rt->rt6i_nsiblings = 0;
1410 		list_del_init(&rt->rt6i_siblings);
1411 	}
1412 
1413 	/* Adjust walkers */
1414 	read_lock(&fib6_walker_lock);
1415 	FOR_WALKERS(w) {
1416 		if (w->state == FWS_C && w->leaf == rt) {
1417 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1418 			w->leaf = rt->dst.rt6_next;
1419 			if (!w->leaf)
1420 				w->state = FWS_U;
1421 		}
1422 	}
1423 	read_unlock(&fib6_walker_lock);
1424 
1425 	rt->dst.rt6_next = NULL;
1426 
1427 	/* If it was last route, expunge its radix tree node */
1428 	if (!fn->leaf) {
1429 		fn->fn_flags &= ~RTN_RTINFO;
1430 		net->ipv6.rt6_stats->fib_route_nodes--;
1431 		fn = fib6_repair_tree(net, fn);
1432 	}
1433 
1434 	fib6_purge_rt(rt, fn, net);
1435 
1436 	inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1437 	rt6_release(rt);
1438 }
1439 
1440 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1441 {
1442 	struct net *net = info->nl_net;
1443 	struct fib6_node *fn = rt->rt6i_node;
1444 	struct rt6_info **rtp;
1445 
1446 #if RT6_DEBUG >= 2
1447 	if (rt->dst.obsolete > 0) {
1448 		WARN_ON(fn);
1449 		return -ENOENT;
1450 	}
1451 #endif
1452 	if (!fn || rt == net->ipv6.ip6_null_entry)
1453 		return -ENOENT;
1454 
1455 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1456 
1457 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1458 		struct fib6_node *pn = fn;
1459 #ifdef CONFIG_IPV6_SUBTREES
1460 		/* clones of this route might be in another subtree */
1461 		if (rt->rt6i_src.plen) {
1462 			while (!(pn->fn_flags & RTN_ROOT))
1463 				pn = pn->parent;
1464 			pn = pn->parent;
1465 		}
1466 #endif
1467 		fib6_prune_clones(info->nl_net, pn);
1468 	}
1469 
1470 	/*
1471 	 *	Walk the leaf entries looking for ourself
1472 	 */
1473 
1474 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1475 		if (*rtp == rt) {
1476 			fib6_del_route(fn, rtp, info);
1477 			return 0;
1478 		}
1479 	}
1480 	return -ENOENT;
1481 }
1482 
1483 /*
1484  *	Tree traversal function.
1485  *
1486  *	Certainly, it is not interrupt safe.
1487  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1488  *	It means, that we can modify tree during walking
1489  *	and use this function for garbage collection, clone pruning,
1490  *	cleaning tree when a device goes down etc. etc.
1491  *
1492  *	It guarantees that every node will be traversed,
1493  *	and that it will be traversed only once.
1494  *
1495  *	Callback function w->func may return:
1496  *	0 -> continue walking.
1497  *	positive value -> walking is suspended (used by tree dumps,
1498  *	and probably by gc, if it will be split to several slices)
1499  *	negative value -> terminate walking.
1500  *
1501  *	The function itself returns:
1502  *	0   -> walk is complete.
1503  *	>0  -> walk is incomplete (i.e. suspended)
1504  *	<0  -> walk is terminated by an error.
1505  */
1506 
1507 static int fib6_walk_continue(struct fib6_walker *w)
1508 {
1509 	struct fib6_node *fn, *pn;
1510 
1511 	for (;;) {
1512 		fn = w->node;
1513 		if (!fn)
1514 			return 0;
1515 
1516 		if (w->prune && fn != w->root &&
1517 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1518 			w->state = FWS_C;
1519 			w->leaf = fn->leaf;
1520 		}
1521 		switch (w->state) {
1522 #ifdef CONFIG_IPV6_SUBTREES
1523 		case FWS_S:
1524 			if (FIB6_SUBTREE(fn)) {
1525 				w->node = FIB6_SUBTREE(fn);
1526 				continue;
1527 			}
1528 			w->state = FWS_L;
1529 #endif
1530 		case FWS_L:
1531 			if (fn->left) {
1532 				w->node = fn->left;
1533 				w->state = FWS_INIT;
1534 				continue;
1535 			}
1536 			w->state = FWS_R;
1537 		case FWS_R:
1538 			if (fn->right) {
1539 				w->node = fn->right;
1540 				w->state = FWS_INIT;
1541 				continue;
1542 			}
1543 			w->state = FWS_C;
1544 			w->leaf = fn->leaf;
1545 		case FWS_C:
1546 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1547 				int err;
1548 
1549 				if (w->skip) {
1550 					w->skip--;
1551 					goto skip;
1552 				}
1553 
1554 				err = w->func(w);
1555 				if (err)
1556 					return err;
1557 
1558 				w->count++;
1559 				continue;
1560 			}
1561 skip:
1562 			w->state = FWS_U;
1563 		case FWS_U:
1564 			if (fn == w->root)
1565 				return 0;
1566 			pn = fn->parent;
1567 			w->node = pn;
1568 #ifdef CONFIG_IPV6_SUBTREES
1569 			if (FIB6_SUBTREE(pn) == fn) {
1570 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1571 				w->state = FWS_L;
1572 				continue;
1573 			}
1574 #endif
1575 			if (pn->left == fn) {
1576 				w->state = FWS_R;
1577 				continue;
1578 			}
1579 			if (pn->right == fn) {
1580 				w->state = FWS_C;
1581 				w->leaf = w->node->leaf;
1582 				continue;
1583 			}
1584 #if RT6_DEBUG >= 2
1585 			WARN_ON(1);
1586 #endif
1587 		}
1588 	}
1589 }
1590 
1591 static int fib6_walk(struct fib6_walker *w)
1592 {
1593 	int res;
1594 
1595 	w->state = FWS_INIT;
1596 	w->node = w->root;
1597 
1598 	fib6_walker_link(w);
1599 	res = fib6_walk_continue(w);
1600 	if (res <= 0)
1601 		fib6_walker_unlink(w);
1602 	return res;
1603 }
1604 
1605 static int fib6_clean_node(struct fib6_walker *w)
1606 {
1607 	int res;
1608 	struct rt6_info *rt;
1609 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1610 	struct nl_info info = {
1611 		.nl_net = c->net,
1612 	};
1613 
1614 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1615 	    w->node->fn_sernum != c->sernum)
1616 		w->node->fn_sernum = c->sernum;
1617 
1618 	if (!c->func) {
1619 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1620 		w->leaf = NULL;
1621 		return 0;
1622 	}
1623 
1624 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1625 		res = c->func(rt, c->arg);
1626 		if (res < 0) {
1627 			w->leaf = rt;
1628 			res = fib6_del(rt, &info);
1629 			if (res) {
1630 #if RT6_DEBUG >= 2
1631 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1632 					 __func__, rt, rt->rt6i_node, res);
1633 #endif
1634 				continue;
1635 			}
1636 			return 0;
1637 		}
1638 		WARN_ON(res != 0);
1639 	}
1640 	w->leaf = rt;
1641 	return 0;
1642 }
1643 
1644 /*
1645  *	Convenient frontend to tree walker.
1646  *
1647  *	func is called on each route.
1648  *		It may return -1 -> delete this route.
1649  *		              0  -> continue walking
1650  *
1651  *	prune==1 -> only immediate children of node (certainly,
1652  *	ignoring pure split nodes) will be scanned.
1653  */
1654 
1655 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1656 			    int (*func)(struct rt6_info *, void *arg),
1657 			    bool prune, int sernum, void *arg)
1658 {
1659 	struct fib6_cleaner c;
1660 
1661 	c.w.root = root;
1662 	c.w.func = fib6_clean_node;
1663 	c.w.prune = prune;
1664 	c.w.count = 0;
1665 	c.w.skip = 0;
1666 	c.func = func;
1667 	c.sernum = sernum;
1668 	c.arg = arg;
1669 	c.net = net;
1670 
1671 	fib6_walk(&c.w);
1672 }
1673 
1674 static void __fib6_clean_all(struct net *net,
1675 			     int (*func)(struct rt6_info *, void *),
1676 			     int sernum, void *arg)
1677 {
1678 	struct fib6_table *table;
1679 	struct hlist_head *head;
1680 	unsigned int h;
1681 
1682 	rcu_read_lock();
1683 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1684 		head = &net->ipv6.fib_table_hash[h];
1685 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1686 			write_lock_bh(&table->tb6_lock);
1687 			fib6_clean_tree(net, &table->tb6_root,
1688 					func, false, sernum, arg);
1689 			write_unlock_bh(&table->tb6_lock);
1690 		}
1691 	}
1692 	rcu_read_unlock();
1693 }
1694 
1695 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1696 		    void *arg)
1697 {
1698 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1699 }
1700 
1701 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1702 {
1703 	if (rt->rt6i_flags & RTF_CACHE) {
1704 		RT6_TRACE("pruning clone %p\n", rt);
1705 		return -1;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1712 {
1713 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1714 			FIB6_NO_SERNUM_CHANGE, NULL);
1715 }
1716 
1717 static void fib6_flush_trees(struct net *net)
1718 {
1719 	int new_sernum = fib6_new_sernum(net);
1720 
1721 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1722 }
1723 
1724 /*
1725  *	Garbage collection
1726  */
1727 
1728 static struct fib6_gc_args
1729 {
1730 	int			timeout;
1731 	int			more;
1732 } gc_args;
1733 
1734 static int fib6_age(struct rt6_info *rt, void *arg)
1735 {
1736 	unsigned long now = jiffies;
1737 
1738 	/*
1739 	 *	check addrconf expiration here.
1740 	 *	Routes are expired even if they are in use.
1741 	 *
1742 	 *	Also age clones. Note, that clones are aged out
1743 	 *	only if they are not in use now.
1744 	 */
1745 
1746 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1747 		if (time_after(now, rt->dst.expires)) {
1748 			RT6_TRACE("expiring %p\n", rt);
1749 			return -1;
1750 		}
1751 		gc_args.more++;
1752 	} else if (rt->rt6i_flags & RTF_CACHE) {
1753 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1754 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1755 			RT6_TRACE("aging clone %p\n", rt);
1756 			return -1;
1757 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1758 			struct neighbour *neigh;
1759 			__u8 neigh_flags = 0;
1760 
1761 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1762 			if (neigh) {
1763 				neigh_flags = neigh->flags;
1764 				neigh_release(neigh);
1765 			}
1766 			if (!(neigh_flags & NTF_ROUTER)) {
1767 				RT6_TRACE("purging route %p via non-router but gateway\n",
1768 					  rt);
1769 				return -1;
1770 			}
1771 		}
1772 		gc_args.more++;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static DEFINE_SPINLOCK(fib6_gc_lock);
1779 
1780 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1781 {
1782 	unsigned long now;
1783 
1784 	if (force) {
1785 		spin_lock_bh(&fib6_gc_lock);
1786 	} else if (!spin_trylock_bh(&fib6_gc_lock)) {
1787 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1788 		return;
1789 	}
1790 	gc_args.timeout = expires ? (int)expires :
1791 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1792 
1793 	gc_args.more = icmp6_dst_gc();
1794 
1795 	fib6_clean_all(net, fib6_age, NULL);
1796 	now = jiffies;
1797 	net->ipv6.ip6_rt_last_gc = now;
1798 
1799 	if (gc_args.more)
1800 		mod_timer(&net->ipv6.ip6_fib_timer,
1801 			  round_jiffies(now
1802 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1803 	else
1804 		del_timer(&net->ipv6.ip6_fib_timer);
1805 	spin_unlock_bh(&fib6_gc_lock);
1806 }
1807 
1808 static void fib6_gc_timer_cb(unsigned long arg)
1809 {
1810 	fib6_run_gc(0, (struct net *)arg, true);
1811 }
1812 
1813 static int __net_init fib6_net_init(struct net *net)
1814 {
1815 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1816 
1817 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1818 
1819 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1820 	if (!net->ipv6.rt6_stats)
1821 		goto out_timer;
1822 
1823 	/* Avoid false sharing : Use at least a full cache line */
1824 	size = max_t(size_t, size, L1_CACHE_BYTES);
1825 
1826 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1827 	if (!net->ipv6.fib_table_hash)
1828 		goto out_rt6_stats;
1829 
1830 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1831 					  GFP_KERNEL);
1832 	if (!net->ipv6.fib6_main_tbl)
1833 		goto out_fib_table_hash;
1834 
1835 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1836 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1837 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1838 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1839 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1840 
1841 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1842 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1843 					   GFP_KERNEL);
1844 	if (!net->ipv6.fib6_local_tbl)
1845 		goto out_fib6_main_tbl;
1846 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1847 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1848 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1849 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1850 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1851 #endif
1852 	fib6_tables_init(net);
1853 
1854 	return 0;
1855 
1856 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1857 out_fib6_main_tbl:
1858 	kfree(net->ipv6.fib6_main_tbl);
1859 #endif
1860 out_fib_table_hash:
1861 	kfree(net->ipv6.fib_table_hash);
1862 out_rt6_stats:
1863 	kfree(net->ipv6.rt6_stats);
1864 out_timer:
1865 	return -ENOMEM;
1866 }
1867 
1868 static void fib6_net_exit(struct net *net)
1869 {
1870 	rt6_ifdown(net, NULL);
1871 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1872 
1873 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1874 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1875 	kfree(net->ipv6.fib6_local_tbl);
1876 #endif
1877 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1878 	kfree(net->ipv6.fib6_main_tbl);
1879 	kfree(net->ipv6.fib_table_hash);
1880 	kfree(net->ipv6.rt6_stats);
1881 }
1882 
1883 static struct pernet_operations fib6_net_ops = {
1884 	.init = fib6_net_init,
1885 	.exit = fib6_net_exit,
1886 };
1887 
1888 int __init fib6_init(void)
1889 {
1890 	int ret = -ENOMEM;
1891 
1892 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1893 					   sizeof(struct fib6_node),
1894 					   0, SLAB_HWCACHE_ALIGN,
1895 					   NULL);
1896 	if (!fib6_node_kmem)
1897 		goto out;
1898 
1899 	ret = register_pernet_subsys(&fib6_net_ops);
1900 	if (ret)
1901 		goto out_kmem_cache_create;
1902 
1903 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1904 			      NULL);
1905 	if (ret)
1906 		goto out_unregister_subsys;
1907 
1908 	__fib6_flush_trees = fib6_flush_trees;
1909 out:
1910 	return ret;
1911 
1912 out_unregister_subsys:
1913 	unregister_pernet_subsys(&fib6_net_ops);
1914 out_kmem_cache_create:
1915 	kmem_cache_destroy(fib6_node_kmem);
1916 	goto out;
1917 }
1918 
1919 void fib6_gc_cleanup(void)
1920 {
1921 	unregister_pernet_subsys(&fib6_net_ops);
1922 	kmem_cache_destroy(fib6_node_kmem);
1923 }
1924 
1925 #ifdef CONFIG_PROC_FS
1926 
1927 struct ipv6_route_iter {
1928 	struct seq_net_private p;
1929 	struct fib6_walker w;
1930 	loff_t skip;
1931 	struct fib6_table *tbl;
1932 	int sernum;
1933 };
1934 
1935 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1936 {
1937 	struct rt6_info *rt = v;
1938 	struct ipv6_route_iter *iter = seq->private;
1939 
1940 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1941 
1942 #ifdef CONFIG_IPV6_SUBTREES
1943 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1944 #else
1945 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1946 #endif
1947 	if (rt->rt6i_flags & RTF_GATEWAY)
1948 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1949 	else
1950 		seq_puts(seq, "00000000000000000000000000000000");
1951 
1952 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1953 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1954 		   rt->dst.__use, rt->rt6i_flags,
1955 		   rt->dst.dev ? rt->dst.dev->name : "");
1956 	iter->w.leaf = NULL;
1957 	return 0;
1958 }
1959 
1960 static int ipv6_route_yield(struct fib6_walker *w)
1961 {
1962 	struct ipv6_route_iter *iter = w->args;
1963 
1964 	if (!iter->skip)
1965 		return 1;
1966 
1967 	do {
1968 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1969 		iter->skip--;
1970 		if (!iter->skip && iter->w.leaf)
1971 			return 1;
1972 	} while (iter->w.leaf);
1973 
1974 	return 0;
1975 }
1976 
1977 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1978 {
1979 	memset(&iter->w, 0, sizeof(iter->w));
1980 	iter->w.func = ipv6_route_yield;
1981 	iter->w.root = &iter->tbl->tb6_root;
1982 	iter->w.state = FWS_INIT;
1983 	iter->w.node = iter->w.root;
1984 	iter->w.args = iter;
1985 	iter->sernum = iter->w.root->fn_sernum;
1986 	INIT_LIST_HEAD(&iter->w.lh);
1987 	fib6_walker_link(&iter->w);
1988 }
1989 
1990 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1991 						    struct net *net)
1992 {
1993 	unsigned int h;
1994 	struct hlist_node *node;
1995 
1996 	if (tbl) {
1997 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1998 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1999 	} else {
2000 		h = 0;
2001 		node = NULL;
2002 	}
2003 
2004 	while (!node && h < FIB6_TABLE_HASHSZ) {
2005 		node = rcu_dereference_bh(
2006 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2007 	}
2008 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2009 }
2010 
2011 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2012 {
2013 	if (iter->sernum != iter->w.root->fn_sernum) {
2014 		iter->sernum = iter->w.root->fn_sernum;
2015 		iter->w.state = FWS_INIT;
2016 		iter->w.node = iter->w.root;
2017 		WARN_ON(iter->w.skip);
2018 		iter->w.skip = iter->w.count;
2019 	}
2020 }
2021 
2022 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2023 {
2024 	int r;
2025 	struct rt6_info *n;
2026 	struct net *net = seq_file_net(seq);
2027 	struct ipv6_route_iter *iter = seq->private;
2028 
2029 	if (!v)
2030 		goto iter_table;
2031 
2032 	n = ((struct rt6_info *)v)->dst.rt6_next;
2033 	if (n) {
2034 		++*pos;
2035 		return n;
2036 	}
2037 
2038 iter_table:
2039 	ipv6_route_check_sernum(iter);
2040 	read_lock(&iter->tbl->tb6_lock);
2041 	r = fib6_walk_continue(&iter->w);
2042 	read_unlock(&iter->tbl->tb6_lock);
2043 	if (r > 0) {
2044 		if (v)
2045 			++*pos;
2046 		return iter->w.leaf;
2047 	} else if (r < 0) {
2048 		fib6_walker_unlink(&iter->w);
2049 		return NULL;
2050 	}
2051 	fib6_walker_unlink(&iter->w);
2052 
2053 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2054 	if (!iter->tbl)
2055 		return NULL;
2056 
2057 	ipv6_route_seq_setup_walk(iter);
2058 	goto iter_table;
2059 }
2060 
2061 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2062 	__acquires(RCU_BH)
2063 {
2064 	struct net *net = seq_file_net(seq);
2065 	struct ipv6_route_iter *iter = seq->private;
2066 
2067 	rcu_read_lock_bh();
2068 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2069 	iter->skip = *pos;
2070 
2071 	if (iter->tbl) {
2072 		ipv6_route_seq_setup_walk(iter);
2073 		return ipv6_route_seq_next(seq, NULL, pos);
2074 	} else {
2075 		return NULL;
2076 	}
2077 }
2078 
2079 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2080 {
2081 	struct fib6_walker *w = &iter->w;
2082 	return w->node && !(w->state == FWS_U && w->node == w->root);
2083 }
2084 
2085 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2086 	__releases(RCU_BH)
2087 {
2088 	struct ipv6_route_iter *iter = seq->private;
2089 
2090 	if (ipv6_route_iter_active(iter))
2091 		fib6_walker_unlink(&iter->w);
2092 
2093 	rcu_read_unlock_bh();
2094 }
2095 
2096 static const struct seq_operations ipv6_route_seq_ops = {
2097 	.start	= ipv6_route_seq_start,
2098 	.next	= ipv6_route_seq_next,
2099 	.stop	= ipv6_route_seq_stop,
2100 	.show	= ipv6_route_seq_show
2101 };
2102 
2103 int ipv6_route_open(struct inode *inode, struct file *file)
2104 {
2105 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2106 			    sizeof(struct ipv6_route_iter));
2107 }
2108 
2109 #endif /* CONFIG_PROC_FS */
2110