xref: /linux/net/ipv6/ip6_fib.c (revision 995231c820e3bd3633cb38bf4ea6f2541e1da331)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 static struct kmem_cache *fib6_node_kmem __read_mostly;
42 
43 struct fib6_cleaner {
44 	struct fib6_walker w;
45 	struct net *net;
46 	int (*func)(struct rt6_info *, void *arg);
47 	int sernum;
48 	void *arg;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct rt6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(unsigned long arg);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old;
95 
96 	do {
97 		old = atomic_read(&net->ipv6.fib6_sernum);
98 		new = old < INT_MAX ? old + 1 : 1;
99 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 				old, new) != old);
101 	return new;
102 }
103 
104 enum {
105 	FIB6_NO_SERNUM_CHANGE = 0,
106 };
107 
108 void fib6_update_sernum(struct rt6_info *rt)
109 {
110 	struct fib6_table *table = rt->rt6i_table;
111 	struct net *net = dev_net(rt->dst.dev);
112 	struct fib6_node *fn;
113 
114 	spin_lock_bh(&table->tb6_lock);
115 	fn = rcu_dereference_protected(rt->rt6i_node,
116 			lockdep_is_held(&table->tb6_lock));
117 	if (fn)
118 		fn->fn_sernum = fib6_new_sernum(net);
119 	spin_unlock_bh(&table->tb6_lock);
120 }
121 
122 /*
123  *	Auxiliary address test functions for the radix tree.
124  *
125  *	These assume a 32bit processor (although it will work on
126  *	64bit processors)
127  */
128 
129 /*
130  *	test bit
131  */
132 #if defined(__LITTLE_ENDIAN)
133 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
134 #else
135 # define BITOP_BE32_SWIZZLE	0
136 #endif
137 
138 static __be32 addr_bit_set(const void *token, int fn_bit)
139 {
140 	const __be32 *addr = token;
141 	/*
142 	 * Here,
143 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
144 	 * is optimized version of
145 	 *	htonl(1 << ((~fn_bit)&0x1F))
146 	 * See include/asm-generic/bitops/le.h.
147 	 */
148 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
149 	       addr[fn_bit >> 5];
150 }
151 
152 static struct fib6_node *node_alloc(struct net *net)
153 {
154 	struct fib6_node *fn;
155 
156 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
157 	if (fn)
158 		net->ipv6.rt6_stats->fib_nodes++;
159 
160 	return fn;
161 }
162 
163 static void node_free_immediate(struct net *net, struct fib6_node *fn)
164 {
165 	kmem_cache_free(fib6_node_kmem, fn);
166 	net->ipv6.rt6_stats->fib_nodes--;
167 }
168 
169 static void node_free_rcu(struct rcu_head *head)
170 {
171 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
172 
173 	kmem_cache_free(fib6_node_kmem, fn);
174 }
175 
176 static void node_free(struct net *net, struct fib6_node *fn)
177 {
178 	call_rcu(&fn->rcu, node_free_rcu);
179 	net->ipv6.rt6_stats->fib_nodes--;
180 }
181 
182 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
183 {
184 	int cpu;
185 
186 	if (!non_pcpu_rt->rt6i_pcpu)
187 		return;
188 
189 	for_each_possible_cpu(cpu) {
190 		struct rt6_info **ppcpu_rt;
191 		struct rt6_info *pcpu_rt;
192 
193 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
194 		pcpu_rt = *ppcpu_rt;
195 		if (pcpu_rt) {
196 			dst_dev_put(&pcpu_rt->dst);
197 			dst_release(&pcpu_rt->dst);
198 			*ppcpu_rt = NULL;
199 		}
200 	}
201 }
202 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
203 
204 static void fib6_free_table(struct fib6_table *table)
205 {
206 	inetpeer_invalidate_tree(&table->tb6_peers);
207 	kfree(table);
208 }
209 
210 static void fib6_link_table(struct net *net, struct fib6_table *tb)
211 {
212 	unsigned int h;
213 
214 	/*
215 	 * Initialize table lock at a single place to give lockdep a key,
216 	 * tables aren't visible prior to being linked to the list.
217 	 */
218 	spin_lock_init(&tb->tb6_lock);
219 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
220 
221 	/*
222 	 * No protection necessary, this is the only list mutatation
223 	 * operation, tables never disappear once they exist.
224 	 */
225 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
226 }
227 
228 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
229 
230 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
231 {
232 	struct fib6_table *table;
233 
234 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
235 	if (table) {
236 		table->tb6_id = id;
237 		rcu_assign_pointer(table->tb6_root.leaf,
238 				   net->ipv6.ip6_null_entry);
239 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
240 		inet_peer_base_init(&table->tb6_peers);
241 	}
242 
243 	return table;
244 }
245 
246 struct fib6_table *fib6_new_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 
250 	if (id == 0)
251 		id = RT6_TABLE_MAIN;
252 	tb = fib6_get_table(net, id);
253 	if (tb)
254 		return tb;
255 
256 	tb = fib6_alloc_table(net, id);
257 	if (tb)
258 		fib6_link_table(net, tb);
259 
260 	return tb;
261 }
262 EXPORT_SYMBOL_GPL(fib6_new_table);
263 
264 struct fib6_table *fib6_get_table(struct net *net, u32 id)
265 {
266 	struct fib6_table *tb;
267 	struct hlist_head *head;
268 	unsigned int h;
269 
270 	if (id == 0)
271 		id = RT6_TABLE_MAIN;
272 	h = id & (FIB6_TABLE_HASHSZ - 1);
273 	rcu_read_lock();
274 	head = &net->ipv6.fib_table_hash[h];
275 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
276 		if (tb->tb6_id == id) {
277 			rcu_read_unlock();
278 			return tb;
279 		}
280 	}
281 	rcu_read_unlock();
282 
283 	return NULL;
284 }
285 EXPORT_SYMBOL_GPL(fib6_get_table);
286 
287 static void __net_init fib6_tables_init(struct net *net)
288 {
289 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
290 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
291 }
292 #else
293 
294 struct fib6_table *fib6_new_table(struct net *net, u32 id)
295 {
296 	return fib6_get_table(net, id);
297 }
298 
299 struct fib6_table *fib6_get_table(struct net *net, u32 id)
300 {
301 	  return net->ipv6.fib6_main_tbl;
302 }
303 
304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
305 				   int flags, pol_lookup_t lookup)
306 {
307 	struct rt6_info *rt;
308 
309 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
310 	if (rt->dst.error == -EAGAIN) {
311 		ip6_rt_put(rt);
312 		rt = net->ipv6.ip6_null_entry;
313 		dst_hold(&rt->dst);
314 	}
315 
316 	return &rt->dst;
317 }
318 
319 static void __net_init fib6_tables_init(struct net *net)
320 {
321 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
322 }
323 
324 #endif
325 
326 unsigned int fib6_tables_seq_read(struct net *net)
327 {
328 	unsigned int h, fib_seq = 0;
329 
330 	rcu_read_lock();
331 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
332 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
333 		struct fib6_table *tb;
334 
335 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
336 			fib_seq += tb->fib_seq;
337 	}
338 	rcu_read_unlock();
339 
340 	return fib_seq;
341 }
342 
343 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
344 				    enum fib_event_type event_type,
345 				    struct rt6_info *rt)
346 {
347 	struct fib6_entry_notifier_info info = {
348 		.rt = rt,
349 	};
350 
351 	return call_fib6_notifier(nb, net, event_type, &info.info);
352 }
353 
354 static int call_fib6_entry_notifiers(struct net *net,
355 				     enum fib_event_type event_type,
356 				     struct rt6_info *rt)
357 {
358 	struct fib6_entry_notifier_info info = {
359 		.rt = rt,
360 	};
361 
362 	rt->rt6i_table->fib_seq++;
363 	return call_fib6_notifiers(net, event_type, &info.info);
364 }
365 
366 struct fib6_dump_arg {
367 	struct net *net;
368 	struct notifier_block *nb;
369 };
370 
371 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
372 {
373 	if (rt == arg->net->ipv6.ip6_null_entry)
374 		return;
375 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
376 }
377 
378 static int fib6_node_dump(struct fib6_walker *w)
379 {
380 	struct rt6_info *rt;
381 
382 	for_each_fib6_walker_rt(w)
383 		fib6_rt_dump(rt, w->args);
384 	w->leaf = NULL;
385 	return 0;
386 }
387 
388 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
389 			    struct fib6_walker *w)
390 {
391 	w->root = &tb->tb6_root;
392 	spin_lock_bh(&tb->tb6_lock);
393 	fib6_walk(net, w);
394 	spin_unlock_bh(&tb->tb6_lock);
395 }
396 
397 /* Called with rcu_read_lock() */
398 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
399 {
400 	struct fib6_dump_arg arg;
401 	struct fib6_walker *w;
402 	unsigned int h;
403 
404 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
405 	if (!w)
406 		return -ENOMEM;
407 
408 	w->func = fib6_node_dump;
409 	arg.net = net;
410 	arg.nb = nb;
411 	w->args = &arg;
412 
413 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
414 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
415 		struct fib6_table *tb;
416 
417 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
418 			fib6_table_dump(net, tb, w);
419 	}
420 
421 	kfree(w);
422 
423 	return 0;
424 }
425 
426 static int fib6_dump_node(struct fib6_walker *w)
427 {
428 	int res;
429 	struct rt6_info *rt;
430 
431 	for_each_fib6_walker_rt(w) {
432 		res = rt6_dump_route(rt, w->args);
433 		if (res < 0) {
434 			/* Frame is full, suspend walking */
435 			w->leaf = rt;
436 			return 1;
437 		}
438 
439 		/* Multipath routes are dumped in one route with the
440 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
441 		 * last sibling of this route (no need to dump the
442 		 * sibling routes again)
443 		 */
444 		if (rt->rt6i_nsiblings)
445 			rt = list_last_entry(&rt->rt6i_siblings,
446 					     struct rt6_info,
447 					     rt6i_siblings);
448 	}
449 	w->leaf = NULL;
450 	return 0;
451 }
452 
453 static void fib6_dump_end(struct netlink_callback *cb)
454 {
455 	struct net *net = sock_net(cb->skb->sk);
456 	struct fib6_walker *w = (void *)cb->args[2];
457 
458 	if (w) {
459 		if (cb->args[4]) {
460 			cb->args[4] = 0;
461 			fib6_walker_unlink(net, w);
462 		}
463 		cb->args[2] = 0;
464 		kfree(w);
465 	}
466 	cb->done = (void *)cb->args[3];
467 	cb->args[1] = 3;
468 }
469 
470 static int fib6_dump_done(struct netlink_callback *cb)
471 {
472 	fib6_dump_end(cb);
473 	return cb->done ? cb->done(cb) : 0;
474 }
475 
476 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
477 			   struct netlink_callback *cb)
478 {
479 	struct net *net = sock_net(skb->sk);
480 	struct fib6_walker *w;
481 	int res;
482 
483 	w = (void *)cb->args[2];
484 	w->root = &table->tb6_root;
485 
486 	if (cb->args[4] == 0) {
487 		w->count = 0;
488 		w->skip = 0;
489 
490 		spin_lock_bh(&table->tb6_lock);
491 		res = fib6_walk(net, w);
492 		spin_unlock_bh(&table->tb6_lock);
493 		if (res > 0) {
494 			cb->args[4] = 1;
495 			cb->args[5] = w->root->fn_sernum;
496 		}
497 	} else {
498 		if (cb->args[5] != w->root->fn_sernum) {
499 			/* Begin at the root if the tree changed */
500 			cb->args[5] = w->root->fn_sernum;
501 			w->state = FWS_INIT;
502 			w->node = w->root;
503 			w->skip = w->count;
504 		} else
505 			w->skip = 0;
506 
507 		spin_lock_bh(&table->tb6_lock);
508 		res = fib6_walk_continue(w);
509 		spin_unlock_bh(&table->tb6_lock);
510 		if (res <= 0) {
511 			fib6_walker_unlink(net, w);
512 			cb->args[4] = 0;
513 		}
514 	}
515 
516 	return res;
517 }
518 
519 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
520 {
521 	struct net *net = sock_net(skb->sk);
522 	unsigned int h, s_h;
523 	unsigned int e = 0, s_e;
524 	struct rt6_rtnl_dump_arg arg;
525 	struct fib6_walker *w;
526 	struct fib6_table *tb;
527 	struct hlist_head *head;
528 	int res = 0;
529 
530 	s_h = cb->args[0];
531 	s_e = cb->args[1];
532 
533 	w = (void *)cb->args[2];
534 	if (!w) {
535 		/* New dump:
536 		 *
537 		 * 1. hook callback destructor.
538 		 */
539 		cb->args[3] = (long)cb->done;
540 		cb->done = fib6_dump_done;
541 
542 		/*
543 		 * 2. allocate and initialize walker.
544 		 */
545 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
546 		if (!w)
547 			return -ENOMEM;
548 		w->func = fib6_dump_node;
549 		cb->args[2] = (long)w;
550 	}
551 
552 	arg.skb = skb;
553 	arg.cb = cb;
554 	arg.net = net;
555 	w->args = &arg;
556 
557 	rcu_read_lock();
558 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
559 		e = 0;
560 		head = &net->ipv6.fib_table_hash[h];
561 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
562 			if (e < s_e)
563 				goto next;
564 			res = fib6_dump_table(tb, skb, cb);
565 			if (res != 0)
566 				goto out;
567 next:
568 			e++;
569 		}
570 	}
571 out:
572 	rcu_read_unlock();
573 	cb->args[1] = e;
574 	cb->args[0] = h;
575 
576 	res = res < 0 ? res : skb->len;
577 	if (res <= 0)
578 		fib6_dump_end(cb);
579 	return res;
580 }
581 
582 /*
583  *	Routing Table
584  *
585  *	return the appropriate node for a routing tree "add" operation
586  *	by either creating and inserting or by returning an existing
587  *	node.
588  */
589 
590 static struct fib6_node *fib6_add_1(struct net *net,
591 				    struct fib6_table *table,
592 				    struct fib6_node *root,
593 				    struct in6_addr *addr, int plen,
594 				    int offset, int allow_create,
595 				    int replace_required,
596 				    struct netlink_ext_ack *extack)
597 {
598 	struct fib6_node *fn, *in, *ln;
599 	struct fib6_node *pn = NULL;
600 	struct rt6key *key;
601 	int	bit;
602 	__be32	dir = 0;
603 
604 	RT6_TRACE("fib6_add_1\n");
605 
606 	/* insert node in tree */
607 
608 	fn = root;
609 
610 	do {
611 		struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
612 					    lockdep_is_held(&table->tb6_lock));
613 		key = (struct rt6key *)((u8 *)leaf + offset);
614 
615 		/*
616 		 *	Prefix match
617 		 */
618 		if (plen < fn->fn_bit ||
619 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
620 			if (!allow_create) {
621 				if (replace_required) {
622 					NL_SET_ERR_MSG(extack,
623 						       "Can not replace route - no match found");
624 					pr_warn("Can't replace route, no match found\n");
625 					return ERR_PTR(-ENOENT);
626 				}
627 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
628 			}
629 			goto insert_above;
630 		}
631 
632 		/*
633 		 *	Exact match ?
634 		 */
635 
636 		if (plen == fn->fn_bit) {
637 			/* clean up an intermediate node */
638 			if (!(fn->fn_flags & RTN_RTINFO)) {
639 				RCU_INIT_POINTER(fn->leaf, NULL);
640 				rt6_release(leaf);
641 			}
642 
643 			return fn;
644 		}
645 
646 		/*
647 		 *	We have more bits to go
648 		 */
649 
650 		/* Try to walk down on tree. */
651 		dir = addr_bit_set(addr, fn->fn_bit);
652 		pn = fn;
653 		fn = dir ?
654 		     rcu_dereference_protected(fn->right,
655 					lockdep_is_held(&table->tb6_lock)) :
656 		     rcu_dereference_protected(fn->left,
657 					lockdep_is_held(&table->tb6_lock));
658 	} while (fn);
659 
660 	if (!allow_create) {
661 		/* We should not create new node because
662 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
663 		 * I assume it is safe to require NLM_F_CREATE when
664 		 * REPLACE flag is used! Later we may want to remove the
665 		 * check for replace_required, because according
666 		 * to netlink specification, NLM_F_CREATE
667 		 * MUST be specified if new route is created.
668 		 * That would keep IPv6 consistent with IPv4
669 		 */
670 		if (replace_required) {
671 			NL_SET_ERR_MSG(extack,
672 				       "Can not replace route - no match found");
673 			pr_warn("Can't replace route, no match found\n");
674 			return ERR_PTR(-ENOENT);
675 		}
676 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
677 	}
678 	/*
679 	 *	We walked to the bottom of tree.
680 	 *	Create new leaf node without children.
681 	 */
682 
683 	ln = node_alloc(net);
684 
685 	if (!ln)
686 		return ERR_PTR(-ENOMEM);
687 	ln->fn_bit = plen;
688 	RCU_INIT_POINTER(ln->parent, pn);
689 
690 	if (dir)
691 		rcu_assign_pointer(pn->right, ln);
692 	else
693 		rcu_assign_pointer(pn->left, ln);
694 
695 	return ln;
696 
697 
698 insert_above:
699 	/*
700 	 * split since we don't have a common prefix anymore or
701 	 * we have a less significant route.
702 	 * we've to insert an intermediate node on the list
703 	 * this new node will point to the one we need to create
704 	 * and the current
705 	 */
706 
707 	pn = rcu_dereference_protected(fn->parent,
708 				       lockdep_is_held(&table->tb6_lock));
709 
710 	/* find 1st bit in difference between the 2 addrs.
711 
712 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
713 	   but if it is >= plen, the value is ignored in any case.
714 	 */
715 
716 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
717 
718 	/*
719 	 *		(intermediate)[in]
720 	 *	          /	   \
721 	 *	(new leaf node)[ln] (old node)[fn]
722 	 */
723 	if (plen > bit) {
724 		in = node_alloc(net);
725 		ln = node_alloc(net);
726 
727 		if (!in || !ln) {
728 			if (in)
729 				node_free_immediate(net, in);
730 			if (ln)
731 				node_free_immediate(net, ln);
732 			return ERR_PTR(-ENOMEM);
733 		}
734 
735 		/*
736 		 * new intermediate node.
737 		 * RTN_RTINFO will
738 		 * be off since that an address that chooses one of
739 		 * the branches would not match less specific routes
740 		 * in the other branch
741 		 */
742 
743 		in->fn_bit = bit;
744 
745 		RCU_INIT_POINTER(in->parent, pn);
746 		in->leaf = fn->leaf;
747 		atomic_inc(&rcu_dereference_protected(in->leaf,
748 				lockdep_is_held(&table->tb6_lock))->rt6i_ref);
749 
750 		/* update parent pointer */
751 		if (dir)
752 			rcu_assign_pointer(pn->right, in);
753 		else
754 			rcu_assign_pointer(pn->left, in);
755 
756 		ln->fn_bit = plen;
757 
758 		RCU_INIT_POINTER(ln->parent, in);
759 		rcu_assign_pointer(fn->parent, in);
760 
761 		if (addr_bit_set(addr, bit)) {
762 			rcu_assign_pointer(in->right, ln);
763 			rcu_assign_pointer(in->left, fn);
764 		} else {
765 			rcu_assign_pointer(in->left, ln);
766 			rcu_assign_pointer(in->right, fn);
767 		}
768 	} else { /* plen <= bit */
769 
770 		/*
771 		 *		(new leaf node)[ln]
772 		 *	          /	   \
773 		 *	     (old node)[fn] NULL
774 		 */
775 
776 		ln = node_alloc(net);
777 
778 		if (!ln)
779 			return ERR_PTR(-ENOMEM);
780 
781 		ln->fn_bit = plen;
782 
783 		RCU_INIT_POINTER(ln->parent, pn);
784 
785 		if (addr_bit_set(&key->addr, plen))
786 			RCU_INIT_POINTER(ln->right, fn);
787 		else
788 			RCU_INIT_POINTER(ln->left, fn);
789 
790 		rcu_assign_pointer(fn->parent, ln);
791 
792 		if (dir)
793 			rcu_assign_pointer(pn->right, ln);
794 		else
795 			rcu_assign_pointer(pn->left, ln);
796 	}
797 	return ln;
798 }
799 
800 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
801 {
802 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
803 	       RTF_GATEWAY;
804 }
805 
806 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
807 {
808 	int i;
809 
810 	for (i = 0; i < RTAX_MAX; i++) {
811 		if (test_bit(i, mxc->mx_valid))
812 			mp[i] = mxc->mx[i];
813 	}
814 }
815 
816 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
817 {
818 	if (!mxc->mx)
819 		return 0;
820 
821 	if (dst->flags & DST_HOST) {
822 		u32 *mp = dst_metrics_write_ptr(dst);
823 
824 		if (unlikely(!mp))
825 			return -ENOMEM;
826 
827 		fib6_copy_metrics(mp, mxc);
828 	} else {
829 		dst_init_metrics(dst, mxc->mx, false);
830 
831 		/* We've stolen mx now. */
832 		mxc->mx = NULL;
833 	}
834 
835 	return 0;
836 }
837 
838 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
839 			  struct net *net)
840 {
841 	struct fib6_table *table = rt->rt6i_table;
842 
843 	if (atomic_read(&rt->rt6i_ref) != 1) {
844 		/* This route is used as dummy address holder in some split
845 		 * nodes. It is not leaked, but it still holds other resources,
846 		 * which must be released in time. So, scan ascendant nodes
847 		 * and replace dummy references to this route with references
848 		 * to still alive ones.
849 		 */
850 		while (fn) {
851 			struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
852 					    lockdep_is_held(&table->tb6_lock));
853 			struct rt6_info *new_leaf;
854 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
855 				new_leaf = fib6_find_prefix(net, table, fn);
856 				atomic_inc(&new_leaf->rt6i_ref);
857 				rcu_assign_pointer(fn->leaf, new_leaf);
858 				rt6_release(rt);
859 			}
860 			fn = rcu_dereference_protected(fn->parent,
861 				    lockdep_is_held(&table->tb6_lock));
862 		}
863 	}
864 }
865 
866 /*
867  *	Insert routing information in a node.
868  */
869 
870 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
871 			    struct nl_info *info, struct mx6_config *mxc)
872 {
873 	struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
874 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
875 	struct rt6_info *iter = NULL;
876 	struct rt6_info __rcu **ins;
877 	struct rt6_info __rcu **fallback_ins = NULL;
878 	int replace = (info->nlh &&
879 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
880 	int add = (!info->nlh ||
881 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
882 	int found = 0;
883 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
884 	u16 nlflags = NLM_F_EXCL;
885 	int err;
886 
887 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
888 		nlflags |= NLM_F_APPEND;
889 
890 	ins = &fn->leaf;
891 
892 	for (iter = leaf; iter;
893 	     iter = rcu_dereference_protected(iter->dst.rt6_next,
894 				lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
895 		/*
896 		 *	Search for duplicates
897 		 */
898 
899 		if (iter->rt6i_metric == rt->rt6i_metric) {
900 			/*
901 			 *	Same priority level
902 			 */
903 			if (info->nlh &&
904 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
905 				return -EEXIST;
906 
907 			nlflags &= ~NLM_F_EXCL;
908 			if (replace) {
909 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
910 					found++;
911 					break;
912 				}
913 				if (rt_can_ecmp)
914 					fallback_ins = fallback_ins ?: ins;
915 				goto next_iter;
916 			}
917 
918 			if (rt6_duplicate_nexthop(iter, rt)) {
919 				if (rt->rt6i_nsiblings)
920 					rt->rt6i_nsiblings = 0;
921 				if (!(iter->rt6i_flags & RTF_EXPIRES))
922 					return -EEXIST;
923 				if (!(rt->rt6i_flags & RTF_EXPIRES))
924 					rt6_clean_expires(iter);
925 				else
926 					rt6_set_expires(iter, rt->dst.expires);
927 				iter->rt6i_pmtu = rt->rt6i_pmtu;
928 				return -EEXIST;
929 			}
930 			/* If we have the same destination and the same metric,
931 			 * but not the same gateway, then the route we try to
932 			 * add is sibling to this route, increment our counter
933 			 * of siblings, and later we will add our route to the
934 			 * list.
935 			 * Only static routes (which don't have flag
936 			 * RTF_EXPIRES) are used for ECMPv6.
937 			 *
938 			 * To avoid long list, we only had siblings if the
939 			 * route have a gateway.
940 			 */
941 			if (rt_can_ecmp &&
942 			    rt6_qualify_for_ecmp(iter))
943 				rt->rt6i_nsiblings++;
944 		}
945 
946 		if (iter->rt6i_metric > rt->rt6i_metric)
947 			break;
948 
949 next_iter:
950 		ins = &iter->dst.rt6_next;
951 	}
952 
953 	if (fallback_ins && !found) {
954 		/* No ECMP-able route found, replace first non-ECMP one */
955 		ins = fallback_ins;
956 		iter = rcu_dereference_protected(*ins,
957 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
958 		found++;
959 	}
960 
961 	/* Reset round-robin state, if necessary */
962 	if (ins == &fn->leaf)
963 		fn->rr_ptr = NULL;
964 
965 	/* Link this route to others same route. */
966 	if (rt->rt6i_nsiblings) {
967 		unsigned int rt6i_nsiblings;
968 		struct rt6_info *sibling, *temp_sibling;
969 
970 		/* Find the first route that have the same metric */
971 		sibling = leaf;
972 		while (sibling) {
973 			if (sibling->rt6i_metric == rt->rt6i_metric &&
974 			    rt6_qualify_for_ecmp(sibling)) {
975 				list_add_tail(&rt->rt6i_siblings,
976 					      &sibling->rt6i_siblings);
977 				break;
978 			}
979 			sibling = rcu_dereference_protected(sibling->dst.rt6_next,
980 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
981 		}
982 		/* For each sibling in the list, increment the counter of
983 		 * siblings. BUG() if counters does not match, list of siblings
984 		 * is broken!
985 		 */
986 		rt6i_nsiblings = 0;
987 		list_for_each_entry_safe(sibling, temp_sibling,
988 					 &rt->rt6i_siblings, rt6i_siblings) {
989 			sibling->rt6i_nsiblings++;
990 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
991 			rt6i_nsiblings++;
992 		}
993 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
994 	}
995 
996 	/*
997 	 *	insert node
998 	 */
999 	if (!replace) {
1000 		if (!add)
1001 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1002 
1003 add:
1004 		nlflags |= NLM_F_CREATE;
1005 		err = fib6_commit_metrics(&rt->dst, mxc);
1006 		if (err)
1007 			return err;
1008 
1009 		rcu_assign_pointer(rt->dst.rt6_next, iter);
1010 		atomic_inc(&rt->rt6i_ref);
1011 		rcu_assign_pointer(rt->rt6i_node, fn);
1012 		rcu_assign_pointer(*ins, rt);
1013 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
1014 					  rt);
1015 		if (!info->skip_notify)
1016 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1017 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1018 
1019 		if (!(fn->fn_flags & RTN_RTINFO)) {
1020 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1021 			fn->fn_flags |= RTN_RTINFO;
1022 		}
1023 
1024 	} else {
1025 		int nsiblings;
1026 
1027 		if (!found) {
1028 			if (add)
1029 				goto add;
1030 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1031 			return -ENOENT;
1032 		}
1033 
1034 		err = fib6_commit_metrics(&rt->dst, mxc);
1035 		if (err)
1036 			return err;
1037 
1038 		atomic_inc(&rt->rt6i_ref);
1039 		rcu_assign_pointer(rt->rt6i_node, fn);
1040 		rt->dst.rt6_next = iter->dst.rt6_next;
1041 		rcu_assign_pointer(*ins, rt);
1042 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1043 					  rt);
1044 		if (!info->skip_notify)
1045 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1046 		if (!(fn->fn_flags & RTN_RTINFO)) {
1047 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1048 			fn->fn_flags |= RTN_RTINFO;
1049 		}
1050 		nsiblings = iter->rt6i_nsiblings;
1051 		iter->rt6i_node = NULL;
1052 		fib6_purge_rt(iter, fn, info->nl_net);
1053 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1054 			fn->rr_ptr = NULL;
1055 		rt6_release(iter);
1056 
1057 		if (nsiblings) {
1058 			/* Replacing an ECMP route, remove all siblings */
1059 			ins = &rt->dst.rt6_next;
1060 			iter = rcu_dereference_protected(*ins,
1061 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1062 			while (iter) {
1063 				if (iter->rt6i_metric > rt->rt6i_metric)
1064 					break;
1065 				if (rt6_qualify_for_ecmp(iter)) {
1066 					*ins = iter->dst.rt6_next;
1067 					iter->rt6i_node = NULL;
1068 					fib6_purge_rt(iter, fn, info->nl_net);
1069 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1070 						fn->rr_ptr = NULL;
1071 					rt6_release(iter);
1072 					nsiblings--;
1073 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1074 				} else {
1075 					ins = &iter->dst.rt6_next;
1076 				}
1077 				iter = rcu_dereference_protected(*ins,
1078 					lockdep_is_held(&rt->rt6i_table->tb6_lock));
1079 			}
1080 			WARN_ON(nsiblings != 0);
1081 		}
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1088 {
1089 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1090 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1091 		mod_timer(&net->ipv6.ip6_fib_timer,
1092 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1093 }
1094 
1095 void fib6_force_start_gc(struct net *net)
1096 {
1097 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1098 		mod_timer(&net->ipv6.ip6_fib_timer,
1099 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1100 }
1101 
1102 static void fib6_update_sernum_upto_root(struct rt6_info *rt,
1103 					 int sernum)
1104 {
1105 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1106 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1107 
1108 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1109 	smp_wmb();
1110 	while (fn) {
1111 		fn->fn_sernum = sernum;
1112 		fn = rcu_dereference_protected(fn->parent,
1113 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1114 	}
1115 }
1116 
1117 /*
1118  *	Add routing information to the routing tree.
1119  *	<destination addr>/<source addr>
1120  *	with source addr info in sub-trees
1121  *	Need to own table->tb6_lock
1122  */
1123 
1124 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1125 	     struct nl_info *info, struct mx6_config *mxc,
1126 	     struct netlink_ext_ack *extack)
1127 {
1128 	struct fib6_table *table = rt->rt6i_table;
1129 	struct fib6_node *fn, *pn = NULL;
1130 	int err = -ENOMEM;
1131 	int allow_create = 1;
1132 	int replace_required = 0;
1133 	int sernum = fib6_new_sernum(info->nl_net);
1134 
1135 	if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1136 		return -EINVAL;
1137 	if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1138 		return -EINVAL;
1139 
1140 	if (info->nlh) {
1141 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1142 			allow_create = 0;
1143 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1144 			replace_required = 1;
1145 	}
1146 	if (!allow_create && !replace_required)
1147 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1148 
1149 	fn = fib6_add_1(info->nl_net, table, root,
1150 			&rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1151 			offsetof(struct rt6_info, rt6i_dst), allow_create,
1152 			replace_required, extack);
1153 	if (IS_ERR(fn)) {
1154 		err = PTR_ERR(fn);
1155 		fn = NULL;
1156 		goto out;
1157 	}
1158 
1159 	pn = fn;
1160 
1161 #ifdef CONFIG_IPV6_SUBTREES
1162 	if (rt->rt6i_src.plen) {
1163 		struct fib6_node *sn;
1164 
1165 		if (!rcu_access_pointer(fn->subtree)) {
1166 			struct fib6_node *sfn;
1167 
1168 			/*
1169 			 * Create subtree.
1170 			 *
1171 			 *		fn[main tree]
1172 			 *		|
1173 			 *		sfn[subtree root]
1174 			 *		   \
1175 			 *		    sn[new leaf node]
1176 			 */
1177 
1178 			/* Create subtree root node */
1179 			sfn = node_alloc(info->nl_net);
1180 			if (!sfn)
1181 				goto failure;
1182 
1183 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1184 			rcu_assign_pointer(sfn->leaf,
1185 					   info->nl_net->ipv6.ip6_null_entry);
1186 			sfn->fn_flags = RTN_ROOT;
1187 
1188 			/* Now add the first leaf node to new subtree */
1189 
1190 			sn = fib6_add_1(info->nl_net, table, sfn,
1191 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1192 					offsetof(struct rt6_info, rt6i_src),
1193 					allow_create, replace_required, extack);
1194 
1195 			if (IS_ERR(sn)) {
1196 				/* If it is failed, discard just allocated
1197 				   root, and then (in failure) stale node
1198 				   in main tree.
1199 				 */
1200 				node_free_immediate(info->nl_net, sfn);
1201 				err = PTR_ERR(sn);
1202 				goto failure;
1203 			}
1204 
1205 			/* Now link new subtree to main tree */
1206 			rcu_assign_pointer(sfn->parent, fn);
1207 			rcu_assign_pointer(fn->subtree, sfn);
1208 		} else {
1209 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1210 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1211 					offsetof(struct rt6_info, rt6i_src),
1212 					allow_create, replace_required, extack);
1213 
1214 			if (IS_ERR(sn)) {
1215 				err = PTR_ERR(sn);
1216 				goto failure;
1217 			}
1218 		}
1219 
1220 		if (!rcu_access_pointer(fn->leaf)) {
1221 			atomic_inc(&rt->rt6i_ref);
1222 			rcu_assign_pointer(fn->leaf, rt);
1223 		}
1224 		fn = sn;
1225 	}
1226 #endif
1227 
1228 	err = fib6_add_rt2node(fn, rt, info, mxc);
1229 	if (!err) {
1230 		fib6_update_sernum_upto_root(rt, sernum);
1231 		fib6_start_gc(info->nl_net, rt);
1232 	}
1233 
1234 out:
1235 	if (err) {
1236 #ifdef CONFIG_IPV6_SUBTREES
1237 		/*
1238 		 * If fib6_add_1 has cleared the old leaf pointer in the
1239 		 * super-tree leaf node we have to find a new one for it.
1240 		 */
1241 		struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1242 					    lockdep_is_held(&table->tb6_lock));
1243 		if (pn != fn && pn_leaf == rt) {
1244 			pn_leaf = NULL;
1245 			RCU_INIT_POINTER(pn->leaf, NULL);
1246 			atomic_dec(&rt->rt6i_ref);
1247 		}
1248 		if (pn != fn && !pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1249 			pn_leaf = fib6_find_prefix(info->nl_net, table, pn);
1250 #if RT6_DEBUG >= 2
1251 			if (!pn_leaf) {
1252 				WARN_ON(!pn_leaf);
1253 				pn_leaf = info->nl_net->ipv6.ip6_null_entry;
1254 			}
1255 #endif
1256 			atomic_inc(&pn_leaf->rt6i_ref);
1257 			rcu_assign_pointer(pn->leaf, pn_leaf);
1258 		}
1259 #endif
1260 		goto failure;
1261 	}
1262 	return err;
1263 
1264 failure:
1265 	/* fn->leaf could be NULL if fn is an intermediate node and we
1266 	 * failed to add the new route to it in both subtree creation
1267 	 * failure and fib6_add_rt2node() failure case.
1268 	 * In both cases, fib6_repair_tree() should be called to fix
1269 	 * fn->leaf.
1270 	 */
1271 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1272 		fib6_repair_tree(info->nl_net, table, fn);
1273 	/* Always release dst as dst->__refcnt is guaranteed
1274 	 * to be taken before entering this function
1275 	 */
1276 	dst_release_immediate(&rt->dst);
1277 	return err;
1278 }
1279 
1280 /*
1281  *	Routing tree lookup
1282  *
1283  */
1284 
1285 struct lookup_args {
1286 	int			offset;		/* key offset on rt6_info	*/
1287 	const struct in6_addr	*addr;		/* search key			*/
1288 };
1289 
1290 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1291 				       struct lookup_args *args)
1292 {
1293 	struct fib6_node *fn;
1294 	__be32 dir;
1295 
1296 	if (unlikely(args->offset == 0))
1297 		return NULL;
1298 
1299 	/*
1300 	 *	Descend on a tree
1301 	 */
1302 
1303 	fn = root;
1304 
1305 	for (;;) {
1306 		struct fib6_node *next;
1307 
1308 		dir = addr_bit_set(args->addr, fn->fn_bit);
1309 
1310 		next = dir ? rcu_dereference(fn->right) :
1311 			     rcu_dereference(fn->left);
1312 
1313 		if (next) {
1314 			fn = next;
1315 			continue;
1316 		}
1317 		break;
1318 	}
1319 
1320 	while (fn) {
1321 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1322 
1323 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1324 			struct rt6_info *leaf = rcu_dereference(fn->leaf);
1325 			struct rt6key *key;
1326 
1327 			if (!leaf)
1328 				goto backtrack;
1329 
1330 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1331 
1332 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1333 #ifdef CONFIG_IPV6_SUBTREES
1334 				if (subtree) {
1335 					struct fib6_node *sfn;
1336 					sfn = fib6_lookup_1(subtree, args + 1);
1337 					if (!sfn)
1338 						goto backtrack;
1339 					fn = sfn;
1340 				}
1341 #endif
1342 				if (fn->fn_flags & RTN_RTINFO)
1343 					return fn;
1344 			}
1345 		}
1346 backtrack:
1347 		if (fn->fn_flags & RTN_ROOT)
1348 			break;
1349 
1350 		fn = rcu_dereference(fn->parent);
1351 	}
1352 
1353 	return NULL;
1354 }
1355 
1356 /* called with rcu_read_lock() held
1357  */
1358 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1359 			      const struct in6_addr *saddr)
1360 {
1361 	struct fib6_node *fn;
1362 	struct lookup_args args[] = {
1363 		{
1364 			.offset = offsetof(struct rt6_info, rt6i_dst),
1365 			.addr = daddr,
1366 		},
1367 #ifdef CONFIG_IPV6_SUBTREES
1368 		{
1369 			.offset = offsetof(struct rt6_info, rt6i_src),
1370 			.addr = saddr,
1371 		},
1372 #endif
1373 		{
1374 			.offset = 0,	/* sentinel */
1375 		}
1376 	};
1377 
1378 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1379 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1380 		fn = root;
1381 
1382 	return fn;
1383 }
1384 
1385 /*
1386  *	Get node with specified destination prefix (and source prefix,
1387  *	if subtrees are used)
1388  *	exact_match == true means we try to find fn with exact match of
1389  *	the passed in prefix addr
1390  *	exact_match == false means we try to find fn with longest prefix
1391  *	match of the passed in prefix addr. This is useful for finding fn
1392  *	for cached route as it will be stored in the exception table under
1393  *	the node with longest prefix length.
1394  */
1395 
1396 
1397 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1398 				       const struct in6_addr *addr,
1399 				       int plen, int offset,
1400 				       bool exact_match)
1401 {
1402 	struct fib6_node *fn, *prev = NULL;
1403 
1404 	for (fn = root; fn ; ) {
1405 		struct rt6_info *leaf = rcu_dereference(fn->leaf);
1406 		struct rt6key *key;
1407 
1408 		/* This node is being deleted */
1409 		if (!leaf) {
1410 			if (plen <= fn->fn_bit)
1411 				goto out;
1412 			else
1413 				goto next;
1414 		}
1415 
1416 		key = (struct rt6key *)((u8 *)leaf + offset);
1417 
1418 		/*
1419 		 *	Prefix match
1420 		 */
1421 		if (plen < fn->fn_bit ||
1422 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1423 			goto out;
1424 
1425 		if (plen == fn->fn_bit)
1426 			return fn;
1427 
1428 		prev = fn;
1429 
1430 next:
1431 		/*
1432 		 *	We have more bits to go
1433 		 */
1434 		if (addr_bit_set(addr, fn->fn_bit))
1435 			fn = rcu_dereference(fn->right);
1436 		else
1437 			fn = rcu_dereference(fn->left);
1438 	}
1439 out:
1440 	if (exact_match)
1441 		return NULL;
1442 	else
1443 		return prev;
1444 }
1445 
1446 struct fib6_node *fib6_locate(struct fib6_node *root,
1447 			      const struct in6_addr *daddr, int dst_len,
1448 			      const struct in6_addr *saddr, int src_len,
1449 			      bool exact_match)
1450 {
1451 	struct fib6_node *fn;
1452 
1453 	fn = fib6_locate_1(root, daddr, dst_len,
1454 			   offsetof(struct rt6_info, rt6i_dst),
1455 			   exact_match);
1456 
1457 #ifdef CONFIG_IPV6_SUBTREES
1458 	if (src_len) {
1459 		WARN_ON(saddr == NULL);
1460 		if (fn) {
1461 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1462 
1463 			if (subtree) {
1464 				fn = fib6_locate_1(subtree, saddr, src_len,
1465 					   offsetof(struct rt6_info, rt6i_src),
1466 					   exact_match);
1467 			}
1468 		}
1469 	}
1470 #endif
1471 
1472 	if (fn && fn->fn_flags & RTN_RTINFO)
1473 		return fn;
1474 
1475 	return NULL;
1476 }
1477 
1478 
1479 /*
1480  *	Deletion
1481  *
1482  */
1483 
1484 static struct rt6_info *fib6_find_prefix(struct net *net,
1485 					 struct fib6_table *table,
1486 					 struct fib6_node *fn)
1487 {
1488 	struct fib6_node *child_left, *child_right;
1489 
1490 	if (fn->fn_flags & RTN_ROOT)
1491 		return net->ipv6.ip6_null_entry;
1492 
1493 	while (fn) {
1494 		child_left = rcu_dereference_protected(fn->left,
1495 				    lockdep_is_held(&table->tb6_lock));
1496 		child_right = rcu_dereference_protected(fn->right,
1497 				    lockdep_is_held(&table->tb6_lock));
1498 		if (child_left)
1499 			return rcu_dereference_protected(child_left->leaf,
1500 					lockdep_is_held(&table->tb6_lock));
1501 		if (child_right)
1502 			return rcu_dereference_protected(child_right->leaf,
1503 					lockdep_is_held(&table->tb6_lock));
1504 
1505 		fn = FIB6_SUBTREE(fn);
1506 	}
1507 	return NULL;
1508 }
1509 
1510 /*
1511  *	Called to trim the tree of intermediate nodes when possible. "fn"
1512  *	is the node we want to try and remove.
1513  *	Need to own table->tb6_lock
1514  */
1515 
1516 static struct fib6_node *fib6_repair_tree(struct net *net,
1517 					  struct fib6_table *table,
1518 					  struct fib6_node *fn)
1519 {
1520 	int children;
1521 	int nstate;
1522 	struct fib6_node *child;
1523 	struct fib6_walker *w;
1524 	int iter = 0;
1525 
1526 	for (;;) {
1527 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1528 					    lockdep_is_held(&table->tb6_lock));
1529 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1530 					    lockdep_is_held(&table->tb6_lock));
1531 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1532 					    lockdep_is_held(&table->tb6_lock));
1533 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1534 					    lockdep_is_held(&table->tb6_lock));
1535 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1536 					    lockdep_is_held(&table->tb6_lock));
1537 		struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1538 					    lockdep_is_held(&table->tb6_lock));
1539 		struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1540 					    lockdep_is_held(&table->tb6_lock));
1541 		struct rt6_info *new_fn_leaf;
1542 
1543 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1544 		iter++;
1545 
1546 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1547 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1548 		WARN_ON(fn_leaf);
1549 
1550 		children = 0;
1551 		child = NULL;
1552 		if (fn_r)
1553 			child = fn_r, children |= 1;
1554 		if (fn_l)
1555 			child = fn_l, children |= 2;
1556 
1557 		if (children == 3 || FIB6_SUBTREE(fn)
1558 #ifdef CONFIG_IPV6_SUBTREES
1559 		    /* Subtree root (i.e. fn) may have one child */
1560 		    || (children && fn->fn_flags & RTN_ROOT)
1561 #endif
1562 		    ) {
1563 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1564 #if RT6_DEBUG >= 2
1565 			if (!new_fn_leaf) {
1566 				WARN_ON(!new_fn_leaf);
1567 				new_fn_leaf = net->ipv6.ip6_null_entry;
1568 			}
1569 #endif
1570 			atomic_inc(&new_fn_leaf->rt6i_ref);
1571 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1572 			return pn;
1573 		}
1574 
1575 #ifdef CONFIG_IPV6_SUBTREES
1576 		if (FIB6_SUBTREE(pn) == fn) {
1577 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1578 			RCU_INIT_POINTER(pn->subtree, NULL);
1579 			nstate = FWS_L;
1580 		} else {
1581 			WARN_ON(fn->fn_flags & RTN_ROOT);
1582 #endif
1583 			if (pn_r == fn)
1584 				rcu_assign_pointer(pn->right, child);
1585 			else if (pn_l == fn)
1586 				rcu_assign_pointer(pn->left, child);
1587 #if RT6_DEBUG >= 2
1588 			else
1589 				WARN_ON(1);
1590 #endif
1591 			if (child)
1592 				rcu_assign_pointer(child->parent, pn);
1593 			nstate = FWS_R;
1594 #ifdef CONFIG_IPV6_SUBTREES
1595 		}
1596 #endif
1597 
1598 		read_lock(&net->ipv6.fib6_walker_lock);
1599 		FOR_WALKERS(net, w) {
1600 			if (!child) {
1601 				if (w->node == fn) {
1602 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1603 					w->node = pn;
1604 					w->state = nstate;
1605 				}
1606 			} else {
1607 				if (w->node == fn) {
1608 					w->node = child;
1609 					if (children&2) {
1610 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1611 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1612 					} else {
1613 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1614 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1615 					}
1616 				}
1617 			}
1618 		}
1619 		read_unlock(&net->ipv6.fib6_walker_lock);
1620 
1621 		node_free(net, fn);
1622 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1623 			return pn;
1624 
1625 		RCU_INIT_POINTER(pn->leaf, NULL);
1626 		rt6_release(pn_leaf);
1627 		fn = pn;
1628 	}
1629 }
1630 
1631 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1632 			   struct rt6_info __rcu **rtp, struct nl_info *info)
1633 {
1634 	struct fib6_walker *w;
1635 	struct rt6_info *rt = rcu_dereference_protected(*rtp,
1636 				    lockdep_is_held(&table->tb6_lock));
1637 	struct net *net = info->nl_net;
1638 
1639 	RT6_TRACE("fib6_del_route\n");
1640 
1641 	WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1642 
1643 	/* Unlink it */
1644 	*rtp = rt->dst.rt6_next;
1645 	rt->rt6i_node = NULL;
1646 	net->ipv6.rt6_stats->fib_rt_entries--;
1647 	net->ipv6.rt6_stats->fib_discarded_routes++;
1648 
1649 	/* Flush all cached dst in exception table */
1650 	rt6_flush_exceptions(rt);
1651 
1652 	/* Reset round-robin state, if necessary */
1653 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1654 		fn->rr_ptr = NULL;
1655 
1656 	/* Remove this entry from other siblings */
1657 	if (rt->rt6i_nsiblings) {
1658 		struct rt6_info *sibling, *next_sibling;
1659 
1660 		list_for_each_entry_safe(sibling, next_sibling,
1661 					 &rt->rt6i_siblings, rt6i_siblings)
1662 			sibling->rt6i_nsiblings--;
1663 		rt->rt6i_nsiblings = 0;
1664 		list_del_init(&rt->rt6i_siblings);
1665 	}
1666 
1667 	/* Adjust walkers */
1668 	read_lock(&net->ipv6.fib6_walker_lock);
1669 	FOR_WALKERS(net, w) {
1670 		if (w->state == FWS_C && w->leaf == rt) {
1671 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1672 			w->leaf = rcu_dereference_protected(rt->dst.rt6_next,
1673 					    lockdep_is_held(&table->tb6_lock));
1674 			if (!w->leaf)
1675 				w->state = FWS_U;
1676 		}
1677 	}
1678 	read_unlock(&net->ipv6.fib6_walker_lock);
1679 
1680 	/* If it was last route, expunge its radix tree node */
1681 	if (!rcu_access_pointer(fn->leaf)) {
1682 		fn->fn_flags &= ~RTN_RTINFO;
1683 		net->ipv6.rt6_stats->fib_route_nodes--;
1684 		fn = fib6_repair_tree(net, table, fn);
1685 	}
1686 
1687 	fib6_purge_rt(rt, fn, net);
1688 
1689 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt);
1690 	if (!info->skip_notify)
1691 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1692 	rt6_release(rt);
1693 }
1694 
1695 /* Need to own table->tb6_lock */
1696 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1697 {
1698 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1699 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1700 	struct fib6_table *table = rt->rt6i_table;
1701 	struct net *net = info->nl_net;
1702 	struct rt6_info __rcu **rtp;
1703 	struct rt6_info __rcu **rtp_next;
1704 
1705 #if RT6_DEBUG >= 2
1706 	if (rt->dst.obsolete > 0) {
1707 		WARN_ON(fn);
1708 		return -ENOENT;
1709 	}
1710 #endif
1711 	if (!fn || rt == net->ipv6.ip6_null_entry)
1712 		return -ENOENT;
1713 
1714 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1715 
1716 	/* remove cached dst from exception table */
1717 	if (rt->rt6i_flags & RTF_CACHE)
1718 		return rt6_remove_exception_rt(rt);
1719 
1720 	/*
1721 	 *	Walk the leaf entries looking for ourself
1722 	 */
1723 
1724 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1725 		struct rt6_info *cur = rcu_dereference_protected(*rtp,
1726 					lockdep_is_held(&table->tb6_lock));
1727 		if (rt == cur) {
1728 			fib6_del_route(table, fn, rtp, info);
1729 			return 0;
1730 		}
1731 		rtp_next = &cur->dst.rt6_next;
1732 	}
1733 	return -ENOENT;
1734 }
1735 
1736 /*
1737  *	Tree traversal function.
1738  *
1739  *	Certainly, it is not interrupt safe.
1740  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1741  *	It means, that we can modify tree during walking
1742  *	and use this function for garbage collection, clone pruning,
1743  *	cleaning tree when a device goes down etc. etc.
1744  *
1745  *	It guarantees that every node will be traversed,
1746  *	and that it will be traversed only once.
1747  *
1748  *	Callback function w->func may return:
1749  *	0 -> continue walking.
1750  *	positive value -> walking is suspended (used by tree dumps,
1751  *	and probably by gc, if it will be split to several slices)
1752  *	negative value -> terminate walking.
1753  *
1754  *	The function itself returns:
1755  *	0   -> walk is complete.
1756  *	>0  -> walk is incomplete (i.e. suspended)
1757  *	<0  -> walk is terminated by an error.
1758  *
1759  *	This function is called with tb6_lock held.
1760  */
1761 
1762 static int fib6_walk_continue(struct fib6_walker *w)
1763 {
1764 	struct fib6_node *fn, *pn, *left, *right;
1765 
1766 	/* w->root should always be table->tb6_root */
1767 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1768 
1769 	for (;;) {
1770 		fn = w->node;
1771 		if (!fn)
1772 			return 0;
1773 
1774 		switch (w->state) {
1775 #ifdef CONFIG_IPV6_SUBTREES
1776 		case FWS_S:
1777 			if (FIB6_SUBTREE(fn)) {
1778 				w->node = FIB6_SUBTREE(fn);
1779 				continue;
1780 			}
1781 			w->state = FWS_L;
1782 #endif
1783 			/* fall through */
1784 		case FWS_L:
1785 			left = rcu_dereference_protected(fn->left, 1);
1786 			if (left) {
1787 				w->node = left;
1788 				w->state = FWS_INIT;
1789 				continue;
1790 			}
1791 			w->state = FWS_R;
1792 			/* fall through */
1793 		case FWS_R:
1794 			right = rcu_dereference_protected(fn->right, 1);
1795 			if (right) {
1796 				w->node = right;
1797 				w->state = FWS_INIT;
1798 				continue;
1799 			}
1800 			w->state = FWS_C;
1801 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1802 			/* fall through */
1803 		case FWS_C:
1804 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1805 				int err;
1806 
1807 				if (w->skip) {
1808 					w->skip--;
1809 					goto skip;
1810 				}
1811 
1812 				err = w->func(w);
1813 				if (err)
1814 					return err;
1815 
1816 				w->count++;
1817 				continue;
1818 			}
1819 skip:
1820 			w->state = FWS_U;
1821 			/* fall through */
1822 		case FWS_U:
1823 			if (fn == w->root)
1824 				return 0;
1825 			pn = rcu_dereference_protected(fn->parent, 1);
1826 			left = rcu_dereference_protected(pn->left, 1);
1827 			right = rcu_dereference_protected(pn->right, 1);
1828 			w->node = pn;
1829 #ifdef CONFIG_IPV6_SUBTREES
1830 			if (FIB6_SUBTREE(pn) == fn) {
1831 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1832 				w->state = FWS_L;
1833 				continue;
1834 			}
1835 #endif
1836 			if (left == fn) {
1837 				w->state = FWS_R;
1838 				continue;
1839 			}
1840 			if (right == fn) {
1841 				w->state = FWS_C;
1842 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1843 				continue;
1844 			}
1845 #if RT6_DEBUG >= 2
1846 			WARN_ON(1);
1847 #endif
1848 		}
1849 	}
1850 }
1851 
1852 static int fib6_walk(struct net *net, struct fib6_walker *w)
1853 {
1854 	int res;
1855 
1856 	w->state = FWS_INIT;
1857 	w->node = w->root;
1858 
1859 	fib6_walker_link(net, w);
1860 	res = fib6_walk_continue(w);
1861 	if (res <= 0)
1862 		fib6_walker_unlink(net, w);
1863 	return res;
1864 }
1865 
1866 static int fib6_clean_node(struct fib6_walker *w)
1867 {
1868 	int res;
1869 	struct rt6_info *rt;
1870 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1871 	struct nl_info info = {
1872 		.nl_net = c->net,
1873 	};
1874 
1875 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1876 	    w->node->fn_sernum != c->sernum)
1877 		w->node->fn_sernum = c->sernum;
1878 
1879 	if (!c->func) {
1880 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1881 		w->leaf = NULL;
1882 		return 0;
1883 	}
1884 
1885 	for_each_fib6_walker_rt(w) {
1886 		res = c->func(rt, c->arg);
1887 		if (res < 0) {
1888 			w->leaf = rt;
1889 			res = fib6_del(rt, &info);
1890 			if (res) {
1891 #if RT6_DEBUG >= 2
1892 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1893 					 __func__, rt,
1894 					 rcu_access_pointer(rt->rt6i_node),
1895 					 res);
1896 #endif
1897 				continue;
1898 			}
1899 			return 0;
1900 		}
1901 		WARN_ON(res != 0);
1902 	}
1903 	w->leaf = rt;
1904 	return 0;
1905 }
1906 
1907 /*
1908  *	Convenient frontend to tree walker.
1909  *
1910  *	func is called on each route.
1911  *		It may return -1 -> delete this route.
1912  *		              0  -> continue walking
1913  */
1914 
1915 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1916 			    int (*func)(struct rt6_info *, void *arg),
1917 			    int sernum, void *arg)
1918 {
1919 	struct fib6_cleaner c;
1920 
1921 	c.w.root = root;
1922 	c.w.func = fib6_clean_node;
1923 	c.w.count = 0;
1924 	c.w.skip = 0;
1925 	c.func = func;
1926 	c.sernum = sernum;
1927 	c.arg = arg;
1928 	c.net = net;
1929 
1930 	fib6_walk(net, &c.w);
1931 }
1932 
1933 static void __fib6_clean_all(struct net *net,
1934 			     int (*func)(struct rt6_info *, void *),
1935 			     int sernum, void *arg)
1936 {
1937 	struct fib6_table *table;
1938 	struct hlist_head *head;
1939 	unsigned int h;
1940 
1941 	rcu_read_lock();
1942 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1943 		head = &net->ipv6.fib_table_hash[h];
1944 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1945 			spin_lock_bh(&table->tb6_lock);
1946 			fib6_clean_tree(net, &table->tb6_root,
1947 					func, sernum, arg);
1948 			spin_unlock_bh(&table->tb6_lock);
1949 		}
1950 	}
1951 	rcu_read_unlock();
1952 }
1953 
1954 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1955 		    void *arg)
1956 {
1957 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1958 }
1959 
1960 static void fib6_flush_trees(struct net *net)
1961 {
1962 	int new_sernum = fib6_new_sernum(net);
1963 
1964 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1965 }
1966 
1967 /*
1968  *	Garbage collection
1969  */
1970 
1971 static int fib6_age(struct rt6_info *rt, void *arg)
1972 {
1973 	struct fib6_gc_args *gc_args = arg;
1974 	unsigned long now = jiffies;
1975 
1976 	/*
1977 	 *	check addrconf expiration here.
1978 	 *	Routes are expired even if they are in use.
1979 	 */
1980 
1981 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1982 		if (time_after(now, rt->dst.expires)) {
1983 			RT6_TRACE("expiring %p\n", rt);
1984 			return -1;
1985 		}
1986 		gc_args->more++;
1987 	}
1988 
1989 	/*	Also age clones in the exception table.
1990 	 *	Note, that clones are aged out
1991 	 *	only if they are not in use now.
1992 	 */
1993 	rt6_age_exceptions(rt, gc_args, now);
1994 
1995 	return 0;
1996 }
1997 
1998 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1999 {
2000 	struct fib6_gc_args gc_args;
2001 	unsigned long now;
2002 
2003 	if (force) {
2004 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2005 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2006 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2007 		return;
2008 	}
2009 	gc_args.timeout = expires ? (int)expires :
2010 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2011 	gc_args.more = 0;
2012 
2013 	fib6_clean_all(net, fib6_age, &gc_args);
2014 	now = jiffies;
2015 	net->ipv6.ip6_rt_last_gc = now;
2016 
2017 	if (gc_args.more)
2018 		mod_timer(&net->ipv6.ip6_fib_timer,
2019 			  round_jiffies(now
2020 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2021 	else
2022 		del_timer(&net->ipv6.ip6_fib_timer);
2023 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2024 }
2025 
2026 static void fib6_gc_timer_cb(unsigned long arg)
2027 {
2028 	fib6_run_gc(0, (struct net *)arg, true);
2029 }
2030 
2031 static int __net_init fib6_net_init(struct net *net)
2032 {
2033 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2034 	int err;
2035 
2036 	err = fib6_notifier_init(net);
2037 	if (err)
2038 		return err;
2039 
2040 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2041 	rwlock_init(&net->ipv6.fib6_walker_lock);
2042 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2043 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
2044 
2045 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2046 	if (!net->ipv6.rt6_stats)
2047 		goto out_timer;
2048 
2049 	/* Avoid false sharing : Use at least a full cache line */
2050 	size = max_t(size_t, size, L1_CACHE_BYTES);
2051 
2052 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2053 	if (!net->ipv6.fib_table_hash)
2054 		goto out_rt6_stats;
2055 
2056 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2057 					  GFP_KERNEL);
2058 	if (!net->ipv6.fib6_main_tbl)
2059 		goto out_fib_table_hash;
2060 
2061 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2062 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2063 			   net->ipv6.ip6_null_entry);
2064 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2065 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2066 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2067 
2068 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2069 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2070 					   GFP_KERNEL);
2071 	if (!net->ipv6.fib6_local_tbl)
2072 		goto out_fib6_main_tbl;
2073 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2074 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2075 			   net->ipv6.ip6_null_entry);
2076 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2077 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2078 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2079 #endif
2080 	fib6_tables_init(net);
2081 
2082 	return 0;
2083 
2084 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2085 out_fib6_main_tbl:
2086 	kfree(net->ipv6.fib6_main_tbl);
2087 #endif
2088 out_fib_table_hash:
2089 	kfree(net->ipv6.fib_table_hash);
2090 out_rt6_stats:
2091 	kfree(net->ipv6.rt6_stats);
2092 out_timer:
2093 	fib6_notifier_exit(net);
2094 	return -ENOMEM;
2095 }
2096 
2097 static void fib6_net_exit(struct net *net)
2098 {
2099 	unsigned int i;
2100 
2101 	rt6_ifdown(net, NULL);
2102 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2103 
2104 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2105 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2106 		struct hlist_node *tmp;
2107 		struct fib6_table *tb;
2108 
2109 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2110 			hlist_del(&tb->tb6_hlist);
2111 			fib6_free_table(tb);
2112 		}
2113 	}
2114 
2115 	kfree(net->ipv6.fib_table_hash);
2116 	kfree(net->ipv6.rt6_stats);
2117 	fib6_notifier_exit(net);
2118 }
2119 
2120 static struct pernet_operations fib6_net_ops = {
2121 	.init = fib6_net_init,
2122 	.exit = fib6_net_exit,
2123 };
2124 
2125 int __init fib6_init(void)
2126 {
2127 	int ret = -ENOMEM;
2128 
2129 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2130 					   sizeof(struct fib6_node),
2131 					   0, SLAB_HWCACHE_ALIGN,
2132 					   NULL);
2133 	if (!fib6_node_kmem)
2134 		goto out;
2135 
2136 	ret = register_pernet_subsys(&fib6_net_ops);
2137 	if (ret)
2138 		goto out_kmem_cache_create;
2139 
2140 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
2141 			      0);
2142 	if (ret)
2143 		goto out_unregister_subsys;
2144 
2145 	__fib6_flush_trees = fib6_flush_trees;
2146 out:
2147 	return ret;
2148 
2149 out_unregister_subsys:
2150 	unregister_pernet_subsys(&fib6_net_ops);
2151 out_kmem_cache_create:
2152 	kmem_cache_destroy(fib6_node_kmem);
2153 	goto out;
2154 }
2155 
2156 void fib6_gc_cleanup(void)
2157 {
2158 	unregister_pernet_subsys(&fib6_net_ops);
2159 	kmem_cache_destroy(fib6_node_kmem);
2160 }
2161 
2162 #ifdef CONFIG_PROC_FS
2163 
2164 struct ipv6_route_iter {
2165 	struct seq_net_private p;
2166 	struct fib6_walker w;
2167 	loff_t skip;
2168 	struct fib6_table *tbl;
2169 	int sernum;
2170 };
2171 
2172 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2173 {
2174 	struct rt6_info *rt = v;
2175 	struct ipv6_route_iter *iter = seq->private;
2176 
2177 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2178 
2179 #ifdef CONFIG_IPV6_SUBTREES
2180 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2181 #else
2182 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2183 #endif
2184 	if (rt->rt6i_flags & RTF_GATEWAY)
2185 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2186 	else
2187 		seq_puts(seq, "00000000000000000000000000000000");
2188 
2189 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2190 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2191 		   rt->dst.__use, rt->rt6i_flags,
2192 		   rt->dst.dev ? rt->dst.dev->name : "");
2193 	iter->w.leaf = NULL;
2194 	return 0;
2195 }
2196 
2197 static int ipv6_route_yield(struct fib6_walker *w)
2198 {
2199 	struct ipv6_route_iter *iter = w->args;
2200 
2201 	if (!iter->skip)
2202 		return 1;
2203 
2204 	do {
2205 		iter->w.leaf = rcu_dereference_protected(
2206 				iter->w.leaf->dst.rt6_next,
2207 				lockdep_is_held(&iter->tbl->tb6_lock));
2208 		iter->skip--;
2209 		if (!iter->skip && iter->w.leaf)
2210 			return 1;
2211 	} while (iter->w.leaf);
2212 
2213 	return 0;
2214 }
2215 
2216 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2217 				      struct net *net)
2218 {
2219 	memset(&iter->w, 0, sizeof(iter->w));
2220 	iter->w.func = ipv6_route_yield;
2221 	iter->w.root = &iter->tbl->tb6_root;
2222 	iter->w.state = FWS_INIT;
2223 	iter->w.node = iter->w.root;
2224 	iter->w.args = iter;
2225 	iter->sernum = iter->w.root->fn_sernum;
2226 	INIT_LIST_HEAD(&iter->w.lh);
2227 	fib6_walker_link(net, &iter->w);
2228 }
2229 
2230 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2231 						    struct net *net)
2232 {
2233 	unsigned int h;
2234 	struct hlist_node *node;
2235 
2236 	if (tbl) {
2237 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2238 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2239 	} else {
2240 		h = 0;
2241 		node = NULL;
2242 	}
2243 
2244 	while (!node && h < FIB6_TABLE_HASHSZ) {
2245 		node = rcu_dereference_bh(
2246 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2247 	}
2248 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2249 }
2250 
2251 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2252 {
2253 	if (iter->sernum != iter->w.root->fn_sernum) {
2254 		iter->sernum = iter->w.root->fn_sernum;
2255 		iter->w.state = FWS_INIT;
2256 		iter->w.node = iter->w.root;
2257 		WARN_ON(iter->w.skip);
2258 		iter->w.skip = iter->w.count;
2259 	}
2260 }
2261 
2262 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2263 {
2264 	int r;
2265 	struct rt6_info *n;
2266 	struct net *net = seq_file_net(seq);
2267 	struct ipv6_route_iter *iter = seq->private;
2268 
2269 	if (!v)
2270 		goto iter_table;
2271 
2272 	n = rcu_dereference_bh(((struct rt6_info *)v)->dst.rt6_next);
2273 	if (n) {
2274 		++*pos;
2275 		return n;
2276 	}
2277 
2278 iter_table:
2279 	ipv6_route_check_sernum(iter);
2280 	spin_lock_bh(&iter->tbl->tb6_lock);
2281 	r = fib6_walk_continue(&iter->w);
2282 	spin_unlock_bh(&iter->tbl->tb6_lock);
2283 	if (r > 0) {
2284 		if (v)
2285 			++*pos;
2286 		return iter->w.leaf;
2287 	} else if (r < 0) {
2288 		fib6_walker_unlink(net, &iter->w);
2289 		return NULL;
2290 	}
2291 	fib6_walker_unlink(net, &iter->w);
2292 
2293 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2294 	if (!iter->tbl)
2295 		return NULL;
2296 
2297 	ipv6_route_seq_setup_walk(iter, net);
2298 	goto iter_table;
2299 }
2300 
2301 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2302 	__acquires(RCU_BH)
2303 {
2304 	struct net *net = seq_file_net(seq);
2305 	struct ipv6_route_iter *iter = seq->private;
2306 
2307 	rcu_read_lock_bh();
2308 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2309 	iter->skip = *pos;
2310 
2311 	if (iter->tbl) {
2312 		ipv6_route_seq_setup_walk(iter, net);
2313 		return ipv6_route_seq_next(seq, NULL, pos);
2314 	} else {
2315 		return NULL;
2316 	}
2317 }
2318 
2319 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2320 {
2321 	struct fib6_walker *w = &iter->w;
2322 	return w->node && !(w->state == FWS_U && w->node == w->root);
2323 }
2324 
2325 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2326 	__releases(RCU_BH)
2327 {
2328 	struct net *net = seq_file_net(seq);
2329 	struct ipv6_route_iter *iter = seq->private;
2330 
2331 	if (ipv6_route_iter_active(iter))
2332 		fib6_walker_unlink(net, &iter->w);
2333 
2334 	rcu_read_unlock_bh();
2335 }
2336 
2337 static const struct seq_operations ipv6_route_seq_ops = {
2338 	.start	= ipv6_route_seq_start,
2339 	.next	= ipv6_route_seq_next,
2340 	.stop	= ipv6_route_seq_stop,
2341 	.show	= ipv6_route_seq_show
2342 };
2343 
2344 int ipv6_route_open(struct inode *inode, struct file *file)
2345 {
2346 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2347 			    sizeof(struct ipv6_route_iter));
2348 }
2349 
2350 #endif /* CONFIG_PROC_FS */
2351