1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Changes: 14 * Yuji SEKIYA @USAGI: Support default route on router node; 15 * remove ip6_null_entry from the top of 16 * routing table. 17 * Ville Nuorvala: Fixed routing subtrees. 18 */ 19 20 #define pr_fmt(fmt) "IPv6: " fmt 21 22 #include <linux/errno.h> 23 #include <linux/types.h> 24 #include <linux/net.h> 25 #include <linux/route.h> 26 #include <linux/netdevice.h> 27 #include <linux/in6.h> 28 #include <linux/init.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 32 #include <net/ipv6.h> 33 #include <net/ndisc.h> 34 #include <net/addrconf.h> 35 #include <net/lwtunnel.h> 36 #include <net/fib_notifier.h> 37 38 #include <net/ip6_fib.h> 39 #include <net/ip6_route.h> 40 41 static struct kmem_cache *fib6_node_kmem __read_mostly; 42 43 struct fib6_cleaner { 44 struct fib6_walker w; 45 struct net *net; 46 int (*func)(struct rt6_info *, void *arg); 47 int sernum; 48 void *arg; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct rt6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(unsigned long arg); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old; 95 96 do { 97 old = atomic_read(&net->ipv6.fib6_sernum); 98 new = old < INT_MAX ? old + 1 : 1; 99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 100 old, new) != old); 101 return new; 102 } 103 104 enum { 105 FIB6_NO_SERNUM_CHANGE = 0, 106 }; 107 108 void fib6_update_sernum(struct rt6_info *rt) 109 { 110 struct fib6_table *table = rt->rt6i_table; 111 struct net *net = dev_net(rt->dst.dev); 112 struct fib6_node *fn; 113 114 spin_lock_bh(&table->tb6_lock); 115 fn = rcu_dereference_protected(rt->rt6i_node, 116 lockdep_is_held(&table->tb6_lock)); 117 if (fn) 118 fn->fn_sernum = fib6_new_sernum(net); 119 spin_unlock_bh(&table->tb6_lock); 120 } 121 122 /* 123 * Auxiliary address test functions for the radix tree. 124 * 125 * These assume a 32bit processor (although it will work on 126 * 64bit processors) 127 */ 128 129 /* 130 * test bit 131 */ 132 #if defined(__LITTLE_ENDIAN) 133 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 134 #else 135 # define BITOP_BE32_SWIZZLE 0 136 #endif 137 138 static __be32 addr_bit_set(const void *token, int fn_bit) 139 { 140 const __be32 *addr = token; 141 /* 142 * Here, 143 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 144 * is optimized version of 145 * htonl(1 << ((~fn_bit)&0x1F)) 146 * See include/asm-generic/bitops/le.h. 147 */ 148 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 149 addr[fn_bit >> 5]; 150 } 151 152 static struct fib6_node *node_alloc(struct net *net) 153 { 154 struct fib6_node *fn; 155 156 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 157 if (fn) 158 net->ipv6.rt6_stats->fib_nodes++; 159 160 return fn; 161 } 162 163 static void node_free_immediate(struct net *net, struct fib6_node *fn) 164 { 165 kmem_cache_free(fib6_node_kmem, fn); 166 net->ipv6.rt6_stats->fib_nodes--; 167 } 168 169 static void node_free_rcu(struct rcu_head *head) 170 { 171 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 172 173 kmem_cache_free(fib6_node_kmem, fn); 174 } 175 176 static void node_free(struct net *net, struct fib6_node *fn) 177 { 178 call_rcu(&fn->rcu, node_free_rcu); 179 net->ipv6.rt6_stats->fib_nodes--; 180 } 181 182 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt) 183 { 184 int cpu; 185 186 if (!non_pcpu_rt->rt6i_pcpu) 187 return; 188 189 for_each_possible_cpu(cpu) { 190 struct rt6_info **ppcpu_rt; 191 struct rt6_info *pcpu_rt; 192 193 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu); 194 pcpu_rt = *ppcpu_rt; 195 if (pcpu_rt) { 196 dst_dev_put(&pcpu_rt->dst); 197 dst_release(&pcpu_rt->dst); 198 *ppcpu_rt = NULL; 199 } 200 } 201 } 202 EXPORT_SYMBOL_GPL(rt6_free_pcpu); 203 204 static void fib6_free_table(struct fib6_table *table) 205 { 206 inetpeer_invalidate_tree(&table->tb6_peers); 207 kfree(table); 208 } 209 210 static void fib6_link_table(struct net *net, struct fib6_table *tb) 211 { 212 unsigned int h; 213 214 /* 215 * Initialize table lock at a single place to give lockdep a key, 216 * tables aren't visible prior to being linked to the list. 217 */ 218 spin_lock_init(&tb->tb6_lock); 219 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 220 221 /* 222 * No protection necessary, this is the only list mutatation 223 * operation, tables never disappear once they exist. 224 */ 225 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 226 } 227 228 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 229 230 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 231 { 232 struct fib6_table *table; 233 234 table = kzalloc(sizeof(*table), GFP_ATOMIC); 235 if (table) { 236 table->tb6_id = id; 237 rcu_assign_pointer(table->tb6_root.leaf, 238 net->ipv6.ip6_null_entry); 239 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 240 inet_peer_base_init(&table->tb6_peers); 241 } 242 243 return table; 244 } 245 246 struct fib6_table *fib6_new_table(struct net *net, u32 id) 247 { 248 struct fib6_table *tb; 249 250 if (id == 0) 251 id = RT6_TABLE_MAIN; 252 tb = fib6_get_table(net, id); 253 if (tb) 254 return tb; 255 256 tb = fib6_alloc_table(net, id); 257 if (tb) 258 fib6_link_table(net, tb); 259 260 return tb; 261 } 262 EXPORT_SYMBOL_GPL(fib6_new_table); 263 264 struct fib6_table *fib6_get_table(struct net *net, u32 id) 265 { 266 struct fib6_table *tb; 267 struct hlist_head *head; 268 unsigned int h; 269 270 if (id == 0) 271 id = RT6_TABLE_MAIN; 272 h = id & (FIB6_TABLE_HASHSZ - 1); 273 rcu_read_lock(); 274 head = &net->ipv6.fib_table_hash[h]; 275 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 276 if (tb->tb6_id == id) { 277 rcu_read_unlock(); 278 return tb; 279 } 280 } 281 rcu_read_unlock(); 282 283 return NULL; 284 } 285 EXPORT_SYMBOL_GPL(fib6_get_table); 286 287 static void __net_init fib6_tables_init(struct net *net) 288 { 289 fib6_link_table(net, net->ipv6.fib6_main_tbl); 290 fib6_link_table(net, net->ipv6.fib6_local_tbl); 291 } 292 #else 293 294 struct fib6_table *fib6_new_table(struct net *net, u32 id) 295 { 296 return fib6_get_table(net, id); 297 } 298 299 struct fib6_table *fib6_get_table(struct net *net, u32 id) 300 { 301 return net->ipv6.fib6_main_tbl; 302 } 303 304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 305 int flags, pol_lookup_t lookup) 306 { 307 struct rt6_info *rt; 308 309 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 310 if (rt->dst.error == -EAGAIN) { 311 ip6_rt_put(rt); 312 rt = net->ipv6.ip6_null_entry; 313 dst_hold(&rt->dst); 314 } 315 316 return &rt->dst; 317 } 318 319 static void __net_init fib6_tables_init(struct net *net) 320 { 321 fib6_link_table(net, net->ipv6.fib6_main_tbl); 322 } 323 324 #endif 325 326 unsigned int fib6_tables_seq_read(struct net *net) 327 { 328 unsigned int h, fib_seq = 0; 329 330 rcu_read_lock(); 331 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 332 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 333 struct fib6_table *tb; 334 335 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 336 fib_seq += tb->fib_seq; 337 } 338 rcu_read_unlock(); 339 340 return fib_seq; 341 } 342 343 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net, 344 enum fib_event_type event_type, 345 struct rt6_info *rt) 346 { 347 struct fib6_entry_notifier_info info = { 348 .rt = rt, 349 }; 350 351 return call_fib6_notifier(nb, net, event_type, &info.info); 352 } 353 354 static int call_fib6_entry_notifiers(struct net *net, 355 enum fib_event_type event_type, 356 struct rt6_info *rt) 357 { 358 struct fib6_entry_notifier_info info = { 359 .rt = rt, 360 }; 361 362 rt->rt6i_table->fib_seq++; 363 return call_fib6_notifiers(net, event_type, &info.info); 364 } 365 366 struct fib6_dump_arg { 367 struct net *net; 368 struct notifier_block *nb; 369 }; 370 371 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg) 372 { 373 if (rt == arg->net->ipv6.ip6_null_entry) 374 return; 375 call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt); 376 } 377 378 static int fib6_node_dump(struct fib6_walker *w) 379 { 380 struct rt6_info *rt; 381 382 for_each_fib6_walker_rt(w) 383 fib6_rt_dump(rt, w->args); 384 w->leaf = NULL; 385 return 0; 386 } 387 388 static void fib6_table_dump(struct net *net, struct fib6_table *tb, 389 struct fib6_walker *w) 390 { 391 w->root = &tb->tb6_root; 392 spin_lock_bh(&tb->tb6_lock); 393 fib6_walk(net, w); 394 spin_unlock_bh(&tb->tb6_lock); 395 } 396 397 /* Called with rcu_read_lock() */ 398 int fib6_tables_dump(struct net *net, struct notifier_block *nb) 399 { 400 struct fib6_dump_arg arg; 401 struct fib6_walker *w; 402 unsigned int h; 403 404 w = kzalloc(sizeof(*w), GFP_ATOMIC); 405 if (!w) 406 return -ENOMEM; 407 408 w->func = fib6_node_dump; 409 arg.net = net; 410 arg.nb = nb; 411 w->args = &arg; 412 413 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 414 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 415 struct fib6_table *tb; 416 417 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 418 fib6_table_dump(net, tb, w); 419 } 420 421 kfree(w); 422 423 return 0; 424 } 425 426 static int fib6_dump_node(struct fib6_walker *w) 427 { 428 int res; 429 struct rt6_info *rt; 430 431 for_each_fib6_walker_rt(w) { 432 res = rt6_dump_route(rt, w->args); 433 if (res < 0) { 434 /* Frame is full, suspend walking */ 435 w->leaf = rt; 436 return 1; 437 } 438 439 /* Multipath routes are dumped in one route with the 440 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 441 * last sibling of this route (no need to dump the 442 * sibling routes again) 443 */ 444 if (rt->rt6i_nsiblings) 445 rt = list_last_entry(&rt->rt6i_siblings, 446 struct rt6_info, 447 rt6i_siblings); 448 } 449 w->leaf = NULL; 450 return 0; 451 } 452 453 static void fib6_dump_end(struct netlink_callback *cb) 454 { 455 struct net *net = sock_net(cb->skb->sk); 456 struct fib6_walker *w = (void *)cb->args[2]; 457 458 if (w) { 459 if (cb->args[4]) { 460 cb->args[4] = 0; 461 fib6_walker_unlink(net, w); 462 } 463 cb->args[2] = 0; 464 kfree(w); 465 } 466 cb->done = (void *)cb->args[3]; 467 cb->args[1] = 3; 468 } 469 470 static int fib6_dump_done(struct netlink_callback *cb) 471 { 472 fib6_dump_end(cb); 473 return cb->done ? cb->done(cb) : 0; 474 } 475 476 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 477 struct netlink_callback *cb) 478 { 479 struct net *net = sock_net(skb->sk); 480 struct fib6_walker *w; 481 int res; 482 483 w = (void *)cb->args[2]; 484 w->root = &table->tb6_root; 485 486 if (cb->args[4] == 0) { 487 w->count = 0; 488 w->skip = 0; 489 490 spin_lock_bh(&table->tb6_lock); 491 res = fib6_walk(net, w); 492 spin_unlock_bh(&table->tb6_lock); 493 if (res > 0) { 494 cb->args[4] = 1; 495 cb->args[5] = w->root->fn_sernum; 496 } 497 } else { 498 if (cb->args[5] != w->root->fn_sernum) { 499 /* Begin at the root if the tree changed */ 500 cb->args[5] = w->root->fn_sernum; 501 w->state = FWS_INIT; 502 w->node = w->root; 503 w->skip = w->count; 504 } else 505 w->skip = 0; 506 507 spin_lock_bh(&table->tb6_lock); 508 res = fib6_walk_continue(w); 509 spin_unlock_bh(&table->tb6_lock); 510 if (res <= 0) { 511 fib6_walker_unlink(net, w); 512 cb->args[4] = 0; 513 } 514 } 515 516 return res; 517 } 518 519 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 520 { 521 struct net *net = sock_net(skb->sk); 522 unsigned int h, s_h; 523 unsigned int e = 0, s_e; 524 struct rt6_rtnl_dump_arg arg; 525 struct fib6_walker *w; 526 struct fib6_table *tb; 527 struct hlist_head *head; 528 int res = 0; 529 530 s_h = cb->args[0]; 531 s_e = cb->args[1]; 532 533 w = (void *)cb->args[2]; 534 if (!w) { 535 /* New dump: 536 * 537 * 1. hook callback destructor. 538 */ 539 cb->args[3] = (long)cb->done; 540 cb->done = fib6_dump_done; 541 542 /* 543 * 2. allocate and initialize walker. 544 */ 545 w = kzalloc(sizeof(*w), GFP_ATOMIC); 546 if (!w) 547 return -ENOMEM; 548 w->func = fib6_dump_node; 549 cb->args[2] = (long)w; 550 } 551 552 arg.skb = skb; 553 arg.cb = cb; 554 arg.net = net; 555 w->args = &arg; 556 557 rcu_read_lock(); 558 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 559 e = 0; 560 head = &net->ipv6.fib_table_hash[h]; 561 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 562 if (e < s_e) 563 goto next; 564 res = fib6_dump_table(tb, skb, cb); 565 if (res != 0) 566 goto out; 567 next: 568 e++; 569 } 570 } 571 out: 572 rcu_read_unlock(); 573 cb->args[1] = e; 574 cb->args[0] = h; 575 576 res = res < 0 ? res : skb->len; 577 if (res <= 0) 578 fib6_dump_end(cb); 579 return res; 580 } 581 582 /* 583 * Routing Table 584 * 585 * return the appropriate node for a routing tree "add" operation 586 * by either creating and inserting or by returning an existing 587 * node. 588 */ 589 590 static struct fib6_node *fib6_add_1(struct net *net, 591 struct fib6_table *table, 592 struct fib6_node *root, 593 struct in6_addr *addr, int plen, 594 int offset, int allow_create, 595 int replace_required, 596 struct netlink_ext_ack *extack) 597 { 598 struct fib6_node *fn, *in, *ln; 599 struct fib6_node *pn = NULL; 600 struct rt6key *key; 601 int bit; 602 __be32 dir = 0; 603 604 RT6_TRACE("fib6_add_1\n"); 605 606 /* insert node in tree */ 607 608 fn = root; 609 610 do { 611 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 612 lockdep_is_held(&table->tb6_lock)); 613 key = (struct rt6key *)((u8 *)leaf + offset); 614 615 /* 616 * Prefix match 617 */ 618 if (plen < fn->fn_bit || 619 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 620 if (!allow_create) { 621 if (replace_required) { 622 NL_SET_ERR_MSG(extack, 623 "Can not replace route - no match found"); 624 pr_warn("Can't replace route, no match found\n"); 625 return ERR_PTR(-ENOENT); 626 } 627 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 628 } 629 goto insert_above; 630 } 631 632 /* 633 * Exact match ? 634 */ 635 636 if (plen == fn->fn_bit) { 637 /* clean up an intermediate node */ 638 if (!(fn->fn_flags & RTN_RTINFO)) { 639 RCU_INIT_POINTER(fn->leaf, NULL); 640 rt6_release(leaf); 641 } 642 643 return fn; 644 } 645 646 /* 647 * We have more bits to go 648 */ 649 650 /* Try to walk down on tree. */ 651 dir = addr_bit_set(addr, fn->fn_bit); 652 pn = fn; 653 fn = dir ? 654 rcu_dereference_protected(fn->right, 655 lockdep_is_held(&table->tb6_lock)) : 656 rcu_dereference_protected(fn->left, 657 lockdep_is_held(&table->tb6_lock)); 658 } while (fn); 659 660 if (!allow_create) { 661 /* We should not create new node because 662 * NLM_F_REPLACE was specified without NLM_F_CREATE 663 * I assume it is safe to require NLM_F_CREATE when 664 * REPLACE flag is used! Later we may want to remove the 665 * check for replace_required, because according 666 * to netlink specification, NLM_F_CREATE 667 * MUST be specified if new route is created. 668 * That would keep IPv6 consistent with IPv4 669 */ 670 if (replace_required) { 671 NL_SET_ERR_MSG(extack, 672 "Can not replace route - no match found"); 673 pr_warn("Can't replace route, no match found\n"); 674 return ERR_PTR(-ENOENT); 675 } 676 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 677 } 678 /* 679 * We walked to the bottom of tree. 680 * Create new leaf node without children. 681 */ 682 683 ln = node_alloc(net); 684 685 if (!ln) 686 return ERR_PTR(-ENOMEM); 687 ln->fn_bit = plen; 688 RCU_INIT_POINTER(ln->parent, pn); 689 690 if (dir) 691 rcu_assign_pointer(pn->right, ln); 692 else 693 rcu_assign_pointer(pn->left, ln); 694 695 return ln; 696 697 698 insert_above: 699 /* 700 * split since we don't have a common prefix anymore or 701 * we have a less significant route. 702 * we've to insert an intermediate node on the list 703 * this new node will point to the one we need to create 704 * and the current 705 */ 706 707 pn = rcu_dereference_protected(fn->parent, 708 lockdep_is_held(&table->tb6_lock)); 709 710 /* find 1st bit in difference between the 2 addrs. 711 712 See comment in __ipv6_addr_diff: bit may be an invalid value, 713 but if it is >= plen, the value is ignored in any case. 714 */ 715 716 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 717 718 /* 719 * (intermediate)[in] 720 * / \ 721 * (new leaf node)[ln] (old node)[fn] 722 */ 723 if (plen > bit) { 724 in = node_alloc(net); 725 ln = node_alloc(net); 726 727 if (!in || !ln) { 728 if (in) 729 node_free_immediate(net, in); 730 if (ln) 731 node_free_immediate(net, ln); 732 return ERR_PTR(-ENOMEM); 733 } 734 735 /* 736 * new intermediate node. 737 * RTN_RTINFO will 738 * be off since that an address that chooses one of 739 * the branches would not match less specific routes 740 * in the other branch 741 */ 742 743 in->fn_bit = bit; 744 745 RCU_INIT_POINTER(in->parent, pn); 746 in->leaf = fn->leaf; 747 atomic_inc(&rcu_dereference_protected(in->leaf, 748 lockdep_is_held(&table->tb6_lock))->rt6i_ref); 749 750 /* update parent pointer */ 751 if (dir) 752 rcu_assign_pointer(pn->right, in); 753 else 754 rcu_assign_pointer(pn->left, in); 755 756 ln->fn_bit = plen; 757 758 RCU_INIT_POINTER(ln->parent, in); 759 rcu_assign_pointer(fn->parent, in); 760 761 if (addr_bit_set(addr, bit)) { 762 rcu_assign_pointer(in->right, ln); 763 rcu_assign_pointer(in->left, fn); 764 } else { 765 rcu_assign_pointer(in->left, ln); 766 rcu_assign_pointer(in->right, fn); 767 } 768 } else { /* plen <= bit */ 769 770 /* 771 * (new leaf node)[ln] 772 * / \ 773 * (old node)[fn] NULL 774 */ 775 776 ln = node_alloc(net); 777 778 if (!ln) 779 return ERR_PTR(-ENOMEM); 780 781 ln->fn_bit = plen; 782 783 RCU_INIT_POINTER(ln->parent, pn); 784 785 if (addr_bit_set(&key->addr, plen)) 786 RCU_INIT_POINTER(ln->right, fn); 787 else 788 RCU_INIT_POINTER(ln->left, fn); 789 790 rcu_assign_pointer(fn->parent, ln); 791 792 if (dir) 793 rcu_assign_pointer(pn->right, ln); 794 else 795 rcu_assign_pointer(pn->left, ln); 796 } 797 return ln; 798 } 799 800 static bool rt6_qualify_for_ecmp(struct rt6_info *rt) 801 { 802 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) == 803 RTF_GATEWAY; 804 } 805 806 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc) 807 { 808 int i; 809 810 for (i = 0; i < RTAX_MAX; i++) { 811 if (test_bit(i, mxc->mx_valid)) 812 mp[i] = mxc->mx[i]; 813 } 814 } 815 816 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc) 817 { 818 if (!mxc->mx) 819 return 0; 820 821 if (dst->flags & DST_HOST) { 822 u32 *mp = dst_metrics_write_ptr(dst); 823 824 if (unlikely(!mp)) 825 return -ENOMEM; 826 827 fib6_copy_metrics(mp, mxc); 828 } else { 829 dst_init_metrics(dst, mxc->mx, false); 830 831 /* We've stolen mx now. */ 832 mxc->mx = NULL; 833 } 834 835 return 0; 836 } 837 838 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn, 839 struct net *net) 840 { 841 struct fib6_table *table = rt->rt6i_table; 842 843 if (atomic_read(&rt->rt6i_ref) != 1) { 844 /* This route is used as dummy address holder in some split 845 * nodes. It is not leaked, but it still holds other resources, 846 * which must be released in time. So, scan ascendant nodes 847 * and replace dummy references to this route with references 848 * to still alive ones. 849 */ 850 while (fn) { 851 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 852 lockdep_is_held(&table->tb6_lock)); 853 struct rt6_info *new_leaf; 854 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 855 new_leaf = fib6_find_prefix(net, table, fn); 856 atomic_inc(&new_leaf->rt6i_ref); 857 rcu_assign_pointer(fn->leaf, new_leaf); 858 rt6_release(rt); 859 } 860 fn = rcu_dereference_protected(fn->parent, 861 lockdep_is_held(&table->tb6_lock)); 862 } 863 } 864 } 865 866 /* 867 * Insert routing information in a node. 868 */ 869 870 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 871 struct nl_info *info, struct mx6_config *mxc) 872 { 873 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 874 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 875 struct rt6_info *iter = NULL; 876 struct rt6_info __rcu **ins; 877 struct rt6_info __rcu **fallback_ins = NULL; 878 int replace = (info->nlh && 879 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 880 int add = (!info->nlh || 881 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 882 int found = 0; 883 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 884 u16 nlflags = NLM_F_EXCL; 885 int err; 886 887 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 888 nlflags |= NLM_F_APPEND; 889 890 ins = &fn->leaf; 891 892 for (iter = leaf; iter; 893 iter = rcu_dereference_protected(iter->dst.rt6_next, 894 lockdep_is_held(&rt->rt6i_table->tb6_lock))) { 895 /* 896 * Search for duplicates 897 */ 898 899 if (iter->rt6i_metric == rt->rt6i_metric) { 900 /* 901 * Same priority level 902 */ 903 if (info->nlh && 904 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 905 return -EEXIST; 906 907 nlflags &= ~NLM_F_EXCL; 908 if (replace) { 909 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 910 found++; 911 break; 912 } 913 if (rt_can_ecmp) 914 fallback_ins = fallback_ins ?: ins; 915 goto next_iter; 916 } 917 918 if (rt6_duplicate_nexthop(iter, rt)) { 919 if (rt->rt6i_nsiblings) 920 rt->rt6i_nsiblings = 0; 921 if (!(iter->rt6i_flags & RTF_EXPIRES)) 922 return -EEXIST; 923 if (!(rt->rt6i_flags & RTF_EXPIRES)) 924 rt6_clean_expires(iter); 925 else 926 rt6_set_expires(iter, rt->dst.expires); 927 iter->rt6i_pmtu = rt->rt6i_pmtu; 928 return -EEXIST; 929 } 930 /* If we have the same destination and the same metric, 931 * but not the same gateway, then the route we try to 932 * add is sibling to this route, increment our counter 933 * of siblings, and later we will add our route to the 934 * list. 935 * Only static routes (which don't have flag 936 * RTF_EXPIRES) are used for ECMPv6. 937 * 938 * To avoid long list, we only had siblings if the 939 * route have a gateway. 940 */ 941 if (rt_can_ecmp && 942 rt6_qualify_for_ecmp(iter)) 943 rt->rt6i_nsiblings++; 944 } 945 946 if (iter->rt6i_metric > rt->rt6i_metric) 947 break; 948 949 next_iter: 950 ins = &iter->dst.rt6_next; 951 } 952 953 if (fallback_ins && !found) { 954 /* No ECMP-able route found, replace first non-ECMP one */ 955 ins = fallback_ins; 956 iter = rcu_dereference_protected(*ins, 957 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 958 found++; 959 } 960 961 /* Reset round-robin state, if necessary */ 962 if (ins == &fn->leaf) 963 fn->rr_ptr = NULL; 964 965 /* Link this route to others same route. */ 966 if (rt->rt6i_nsiblings) { 967 unsigned int rt6i_nsiblings; 968 struct rt6_info *sibling, *temp_sibling; 969 970 /* Find the first route that have the same metric */ 971 sibling = leaf; 972 while (sibling) { 973 if (sibling->rt6i_metric == rt->rt6i_metric && 974 rt6_qualify_for_ecmp(sibling)) { 975 list_add_tail(&rt->rt6i_siblings, 976 &sibling->rt6i_siblings); 977 break; 978 } 979 sibling = rcu_dereference_protected(sibling->dst.rt6_next, 980 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 981 } 982 /* For each sibling in the list, increment the counter of 983 * siblings. BUG() if counters does not match, list of siblings 984 * is broken! 985 */ 986 rt6i_nsiblings = 0; 987 list_for_each_entry_safe(sibling, temp_sibling, 988 &rt->rt6i_siblings, rt6i_siblings) { 989 sibling->rt6i_nsiblings++; 990 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings); 991 rt6i_nsiblings++; 992 } 993 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings); 994 } 995 996 /* 997 * insert node 998 */ 999 if (!replace) { 1000 if (!add) 1001 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1002 1003 add: 1004 nlflags |= NLM_F_CREATE; 1005 err = fib6_commit_metrics(&rt->dst, mxc); 1006 if (err) 1007 return err; 1008 1009 rcu_assign_pointer(rt->dst.rt6_next, iter); 1010 atomic_inc(&rt->rt6i_ref); 1011 rcu_assign_pointer(rt->rt6i_node, fn); 1012 rcu_assign_pointer(*ins, rt); 1013 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD, 1014 rt); 1015 if (!info->skip_notify) 1016 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1017 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1018 1019 if (!(fn->fn_flags & RTN_RTINFO)) { 1020 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1021 fn->fn_flags |= RTN_RTINFO; 1022 } 1023 1024 } else { 1025 int nsiblings; 1026 1027 if (!found) { 1028 if (add) 1029 goto add; 1030 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1031 return -ENOENT; 1032 } 1033 1034 err = fib6_commit_metrics(&rt->dst, mxc); 1035 if (err) 1036 return err; 1037 1038 atomic_inc(&rt->rt6i_ref); 1039 rcu_assign_pointer(rt->rt6i_node, fn); 1040 rt->dst.rt6_next = iter->dst.rt6_next; 1041 rcu_assign_pointer(*ins, rt); 1042 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE, 1043 rt); 1044 if (!info->skip_notify) 1045 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1046 if (!(fn->fn_flags & RTN_RTINFO)) { 1047 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1048 fn->fn_flags |= RTN_RTINFO; 1049 } 1050 nsiblings = iter->rt6i_nsiblings; 1051 iter->rt6i_node = NULL; 1052 fib6_purge_rt(iter, fn, info->nl_net); 1053 if (rcu_access_pointer(fn->rr_ptr) == iter) 1054 fn->rr_ptr = NULL; 1055 rt6_release(iter); 1056 1057 if (nsiblings) { 1058 /* Replacing an ECMP route, remove all siblings */ 1059 ins = &rt->dst.rt6_next; 1060 iter = rcu_dereference_protected(*ins, 1061 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1062 while (iter) { 1063 if (iter->rt6i_metric > rt->rt6i_metric) 1064 break; 1065 if (rt6_qualify_for_ecmp(iter)) { 1066 *ins = iter->dst.rt6_next; 1067 iter->rt6i_node = NULL; 1068 fib6_purge_rt(iter, fn, info->nl_net); 1069 if (rcu_access_pointer(fn->rr_ptr) == iter) 1070 fn->rr_ptr = NULL; 1071 rt6_release(iter); 1072 nsiblings--; 1073 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1074 } else { 1075 ins = &iter->dst.rt6_next; 1076 } 1077 iter = rcu_dereference_protected(*ins, 1078 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1079 } 1080 WARN_ON(nsiblings != 0); 1081 } 1082 } 1083 1084 return 0; 1085 } 1086 1087 static void fib6_start_gc(struct net *net, struct rt6_info *rt) 1088 { 1089 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1090 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE))) 1091 mod_timer(&net->ipv6.ip6_fib_timer, 1092 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1093 } 1094 1095 void fib6_force_start_gc(struct net *net) 1096 { 1097 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1098 mod_timer(&net->ipv6.ip6_fib_timer, 1099 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1100 } 1101 1102 static void fib6_update_sernum_upto_root(struct rt6_info *rt, 1103 int sernum) 1104 { 1105 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node, 1106 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1107 1108 /* paired with smp_rmb() in rt6_get_cookie_safe() */ 1109 smp_wmb(); 1110 while (fn) { 1111 fn->fn_sernum = sernum; 1112 fn = rcu_dereference_protected(fn->parent, 1113 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1114 } 1115 } 1116 1117 /* 1118 * Add routing information to the routing tree. 1119 * <destination addr>/<source addr> 1120 * with source addr info in sub-trees 1121 * Need to own table->tb6_lock 1122 */ 1123 1124 int fib6_add(struct fib6_node *root, struct rt6_info *rt, 1125 struct nl_info *info, struct mx6_config *mxc, 1126 struct netlink_ext_ack *extack) 1127 { 1128 struct fib6_table *table = rt->rt6i_table; 1129 struct fib6_node *fn, *pn = NULL; 1130 int err = -ENOMEM; 1131 int allow_create = 1; 1132 int replace_required = 0; 1133 int sernum = fib6_new_sernum(info->nl_net); 1134 1135 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt))) 1136 return -EINVAL; 1137 if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE)) 1138 return -EINVAL; 1139 1140 if (info->nlh) { 1141 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1142 allow_create = 0; 1143 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1144 replace_required = 1; 1145 } 1146 if (!allow_create && !replace_required) 1147 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1148 1149 fn = fib6_add_1(info->nl_net, table, root, 1150 &rt->rt6i_dst.addr, rt->rt6i_dst.plen, 1151 offsetof(struct rt6_info, rt6i_dst), allow_create, 1152 replace_required, extack); 1153 if (IS_ERR(fn)) { 1154 err = PTR_ERR(fn); 1155 fn = NULL; 1156 goto out; 1157 } 1158 1159 pn = fn; 1160 1161 #ifdef CONFIG_IPV6_SUBTREES 1162 if (rt->rt6i_src.plen) { 1163 struct fib6_node *sn; 1164 1165 if (!rcu_access_pointer(fn->subtree)) { 1166 struct fib6_node *sfn; 1167 1168 /* 1169 * Create subtree. 1170 * 1171 * fn[main tree] 1172 * | 1173 * sfn[subtree root] 1174 * \ 1175 * sn[new leaf node] 1176 */ 1177 1178 /* Create subtree root node */ 1179 sfn = node_alloc(info->nl_net); 1180 if (!sfn) 1181 goto failure; 1182 1183 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 1184 rcu_assign_pointer(sfn->leaf, 1185 info->nl_net->ipv6.ip6_null_entry); 1186 sfn->fn_flags = RTN_ROOT; 1187 1188 /* Now add the first leaf node to new subtree */ 1189 1190 sn = fib6_add_1(info->nl_net, table, sfn, 1191 &rt->rt6i_src.addr, rt->rt6i_src.plen, 1192 offsetof(struct rt6_info, rt6i_src), 1193 allow_create, replace_required, extack); 1194 1195 if (IS_ERR(sn)) { 1196 /* If it is failed, discard just allocated 1197 root, and then (in failure) stale node 1198 in main tree. 1199 */ 1200 node_free_immediate(info->nl_net, sfn); 1201 err = PTR_ERR(sn); 1202 goto failure; 1203 } 1204 1205 /* Now link new subtree to main tree */ 1206 rcu_assign_pointer(sfn->parent, fn); 1207 rcu_assign_pointer(fn->subtree, sfn); 1208 } else { 1209 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1210 &rt->rt6i_src.addr, rt->rt6i_src.plen, 1211 offsetof(struct rt6_info, rt6i_src), 1212 allow_create, replace_required, extack); 1213 1214 if (IS_ERR(sn)) { 1215 err = PTR_ERR(sn); 1216 goto failure; 1217 } 1218 } 1219 1220 if (!rcu_access_pointer(fn->leaf)) { 1221 atomic_inc(&rt->rt6i_ref); 1222 rcu_assign_pointer(fn->leaf, rt); 1223 } 1224 fn = sn; 1225 } 1226 #endif 1227 1228 err = fib6_add_rt2node(fn, rt, info, mxc); 1229 if (!err) { 1230 fib6_update_sernum_upto_root(rt, sernum); 1231 fib6_start_gc(info->nl_net, rt); 1232 } 1233 1234 out: 1235 if (err) { 1236 #ifdef CONFIG_IPV6_SUBTREES 1237 /* 1238 * If fib6_add_1 has cleared the old leaf pointer in the 1239 * super-tree leaf node we have to find a new one for it. 1240 */ 1241 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1242 lockdep_is_held(&table->tb6_lock)); 1243 if (pn != fn && pn_leaf == rt) { 1244 pn_leaf = NULL; 1245 RCU_INIT_POINTER(pn->leaf, NULL); 1246 atomic_dec(&rt->rt6i_ref); 1247 } 1248 if (pn != fn && !pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1249 pn_leaf = fib6_find_prefix(info->nl_net, table, pn); 1250 #if RT6_DEBUG >= 2 1251 if (!pn_leaf) { 1252 WARN_ON(!pn_leaf); 1253 pn_leaf = info->nl_net->ipv6.ip6_null_entry; 1254 } 1255 #endif 1256 atomic_inc(&pn_leaf->rt6i_ref); 1257 rcu_assign_pointer(pn->leaf, pn_leaf); 1258 } 1259 #endif 1260 goto failure; 1261 } 1262 return err; 1263 1264 failure: 1265 /* fn->leaf could be NULL if fn is an intermediate node and we 1266 * failed to add the new route to it in both subtree creation 1267 * failure and fib6_add_rt2node() failure case. 1268 * In both cases, fib6_repair_tree() should be called to fix 1269 * fn->leaf. 1270 */ 1271 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 1272 fib6_repair_tree(info->nl_net, table, fn); 1273 /* Always release dst as dst->__refcnt is guaranteed 1274 * to be taken before entering this function 1275 */ 1276 dst_release_immediate(&rt->dst); 1277 return err; 1278 } 1279 1280 /* 1281 * Routing tree lookup 1282 * 1283 */ 1284 1285 struct lookup_args { 1286 int offset; /* key offset on rt6_info */ 1287 const struct in6_addr *addr; /* search key */ 1288 }; 1289 1290 static struct fib6_node *fib6_lookup_1(struct fib6_node *root, 1291 struct lookup_args *args) 1292 { 1293 struct fib6_node *fn; 1294 __be32 dir; 1295 1296 if (unlikely(args->offset == 0)) 1297 return NULL; 1298 1299 /* 1300 * Descend on a tree 1301 */ 1302 1303 fn = root; 1304 1305 for (;;) { 1306 struct fib6_node *next; 1307 1308 dir = addr_bit_set(args->addr, fn->fn_bit); 1309 1310 next = dir ? rcu_dereference(fn->right) : 1311 rcu_dereference(fn->left); 1312 1313 if (next) { 1314 fn = next; 1315 continue; 1316 } 1317 break; 1318 } 1319 1320 while (fn) { 1321 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1322 1323 if (subtree || fn->fn_flags & RTN_RTINFO) { 1324 struct rt6_info *leaf = rcu_dereference(fn->leaf); 1325 struct rt6key *key; 1326 1327 if (!leaf) 1328 goto backtrack; 1329 1330 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1331 1332 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1333 #ifdef CONFIG_IPV6_SUBTREES 1334 if (subtree) { 1335 struct fib6_node *sfn; 1336 sfn = fib6_lookup_1(subtree, args + 1); 1337 if (!sfn) 1338 goto backtrack; 1339 fn = sfn; 1340 } 1341 #endif 1342 if (fn->fn_flags & RTN_RTINFO) 1343 return fn; 1344 } 1345 } 1346 backtrack: 1347 if (fn->fn_flags & RTN_ROOT) 1348 break; 1349 1350 fn = rcu_dereference(fn->parent); 1351 } 1352 1353 return NULL; 1354 } 1355 1356 /* called with rcu_read_lock() held 1357 */ 1358 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 1359 const struct in6_addr *saddr) 1360 { 1361 struct fib6_node *fn; 1362 struct lookup_args args[] = { 1363 { 1364 .offset = offsetof(struct rt6_info, rt6i_dst), 1365 .addr = daddr, 1366 }, 1367 #ifdef CONFIG_IPV6_SUBTREES 1368 { 1369 .offset = offsetof(struct rt6_info, rt6i_src), 1370 .addr = saddr, 1371 }, 1372 #endif 1373 { 1374 .offset = 0, /* sentinel */ 1375 } 1376 }; 1377 1378 fn = fib6_lookup_1(root, daddr ? args : args + 1); 1379 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1380 fn = root; 1381 1382 return fn; 1383 } 1384 1385 /* 1386 * Get node with specified destination prefix (and source prefix, 1387 * if subtrees are used) 1388 * exact_match == true means we try to find fn with exact match of 1389 * the passed in prefix addr 1390 * exact_match == false means we try to find fn with longest prefix 1391 * match of the passed in prefix addr. This is useful for finding fn 1392 * for cached route as it will be stored in the exception table under 1393 * the node with longest prefix length. 1394 */ 1395 1396 1397 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1398 const struct in6_addr *addr, 1399 int plen, int offset, 1400 bool exact_match) 1401 { 1402 struct fib6_node *fn, *prev = NULL; 1403 1404 for (fn = root; fn ; ) { 1405 struct rt6_info *leaf = rcu_dereference(fn->leaf); 1406 struct rt6key *key; 1407 1408 /* This node is being deleted */ 1409 if (!leaf) { 1410 if (plen <= fn->fn_bit) 1411 goto out; 1412 else 1413 goto next; 1414 } 1415 1416 key = (struct rt6key *)((u8 *)leaf + offset); 1417 1418 /* 1419 * Prefix match 1420 */ 1421 if (plen < fn->fn_bit || 1422 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1423 goto out; 1424 1425 if (plen == fn->fn_bit) 1426 return fn; 1427 1428 prev = fn; 1429 1430 next: 1431 /* 1432 * We have more bits to go 1433 */ 1434 if (addr_bit_set(addr, fn->fn_bit)) 1435 fn = rcu_dereference(fn->right); 1436 else 1437 fn = rcu_dereference(fn->left); 1438 } 1439 out: 1440 if (exact_match) 1441 return NULL; 1442 else 1443 return prev; 1444 } 1445 1446 struct fib6_node *fib6_locate(struct fib6_node *root, 1447 const struct in6_addr *daddr, int dst_len, 1448 const struct in6_addr *saddr, int src_len, 1449 bool exact_match) 1450 { 1451 struct fib6_node *fn; 1452 1453 fn = fib6_locate_1(root, daddr, dst_len, 1454 offsetof(struct rt6_info, rt6i_dst), 1455 exact_match); 1456 1457 #ifdef CONFIG_IPV6_SUBTREES 1458 if (src_len) { 1459 WARN_ON(saddr == NULL); 1460 if (fn) { 1461 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1462 1463 if (subtree) { 1464 fn = fib6_locate_1(subtree, saddr, src_len, 1465 offsetof(struct rt6_info, rt6i_src), 1466 exact_match); 1467 } 1468 } 1469 } 1470 #endif 1471 1472 if (fn && fn->fn_flags & RTN_RTINFO) 1473 return fn; 1474 1475 return NULL; 1476 } 1477 1478 1479 /* 1480 * Deletion 1481 * 1482 */ 1483 1484 static struct rt6_info *fib6_find_prefix(struct net *net, 1485 struct fib6_table *table, 1486 struct fib6_node *fn) 1487 { 1488 struct fib6_node *child_left, *child_right; 1489 1490 if (fn->fn_flags & RTN_ROOT) 1491 return net->ipv6.ip6_null_entry; 1492 1493 while (fn) { 1494 child_left = rcu_dereference_protected(fn->left, 1495 lockdep_is_held(&table->tb6_lock)); 1496 child_right = rcu_dereference_protected(fn->right, 1497 lockdep_is_held(&table->tb6_lock)); 1498 if (child_left) 1499 return rcu_dereference_protected(child_left->leaf, 1500 lockdep_is_held(&table->tb6_lock)); 1501 if (child_right) 1502 return rcu_dereference_protected(child_right->leaf, 1503 lockdep_is_held(&table->tb6_lock)); 1504 1505 fn = FIB6_SUBTREE(fn); 1506 } 1507 return NULL; 1508 } 1509 1510 /* 1511 * Called to trim the tree of intermediate nodes when possible. "fn" 1512 * is the node we want to try and remove. 1513 * Need to own table->tb6_lock 1514 */ 1515 1516 static struct fib6_node *fib6_repair_tree(struct net *net, 1517 struct fib6_table *table, 1518 struct fib6_node *fn) 1519 { 1520 int children; 1521 int nstate; 1522 struct fib6_node *child; 1523 struct fib6_walker *w; 1524 int iter = 0; 1525 1526 for (;;) { 1527 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1528 lockdep_is_held(&table->tb6_lock)); 1529 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1530 lockdep_is_held(&table->tb6_lock)); 1531 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1532 lockdep_is_held(&table->tb6_lock)); 1533 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1534 lockdep_is_held(&table->tb6_lock)); 1535 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1536 lockdep_is_held(&table->tb6_lock)); 1537 struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1538 lockdep_is_held(&table->tb6_lock)); 1539 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1540 lockdep_is_held(&table->tb6_lock)); 1541 struct rt6_info *new_fn_leaf; 1542 1543 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1544 iter++; 1545 1546 WARN_ON(fn->fn_flags & RTN_RTINFO); 1547 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1548 WARN_ON(fn_leaf); 1549 1550 children = 0; 1551 child = NULL; 1552 if (fn_r) 1553 child = fn_r, children |= 1; 1554 if (fn_l) 1555 child = fn_l, children |= 2; 1556 1557 if (children == 3 || FIB6_SUBTREE(fn) 1558 #ifdef CONFIG_IPV6_SUBTREES 1559 /* Subtree root (i.e. fn) may have one child */ 1560 || (children && fn->fn_flags & RTN_ROOT) 1561 #endif 1562 ) { 1563 new_fn_leaf = fib6_find_prefix(net, table, fn); 1564 #if RT6_DEBUG >= 2 1565 if (!new_fn_leaf) { 1566 WARN_ON(!new_fn_leaf); 1567 new_fn_leaf = net->ipv6.ip6_null_entry; 1568 } 1569 #endif 1570 atomic_inc(&new_fn_leaf->rt6i_ref); 1571 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1572 return pn; 1573 } 1574 1575 #ifdef CONFIG_IPV6_SUBTREES 1576 if (FIB6_SUBTREE(pn) == fn) { 1577 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1578 RCU_INIT_POINTER(pn->subtree, NULL); 1579 nstate = FWS_L; 1580 } else { 1581 WARN_ON(fn->fn_flags & RTN_ROOT); 1582 #endif 1583 if (pn_r == fn) 1584 rcu_assign_pointer(pn->right, child); 1585 else if (pn_l == fn) 1586 rcu_assign_pointer(pn->left, child); 1587 #if RT6_DEBUG >= 2 1588 else 1589 WARN_ON(1); 1590 #endif 1591 if (child) 1592 rcu_assign_pointer(child->parent, pn); 1593 nstate = FWS_R; 1594 #ifdef CONFIG_IPV6_SUBTREES 1595 } 1596 #endif 1597 1598 read_lock(&net->ipv6.fib6_walker_lock); 1599 FOR_WALKERS(net, w) { 1600 if (!child) { 1601 if (w->node == fn) { 1602 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1603 w->node = pn; 1604 w->state = nstate; 1605 } 1606 } else { 1607 if (w->node == fn) { 1608 w->node = child; 1609 if (children&2) { 1610 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1611 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1612 } else { 1613 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1614 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1615 } 1616 } 1617 } 1618 } 1619 read_unlock(&net->ipv6.fib6_walker_lock); 1620 1621 node_free(net, fn); 1622 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1623 return pn; 1624 1625 RCU_INIT_POINTER(pn->leaf, NULL); 1626 rt6_release(pn_leaf); 1627 fn = pn; 1628 } 1629 } 1630 1631 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1632 struct rt6_info __rcu **rtp, struct nl_info *info) 1633 { 1634 struct fib6_walker *w; 1635 struct rt6_info *rt = rcu_dereference_protected(*rtp, 1636 lockdep_is_held(&table->tb6_lock)); 1637 struct net *net = info->nl_net; 1638 1639 RT6_TRACE("fib6_del_route\n"); 1640 1641 WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE); 1642 1643 /* Unlink it */ 1644 *rtp = rt->dst.rt6_next; 1645 rt->rt6i_node = NULL; 1646 net->ipv6.rt6_stats->fib_rt_entries--; 1647 net->ipv6.rt6_stats->fib_discarded_routes++; 1648 1649 /* Flush all cached dst in exception table */ 1650 rt6_flush_exceptions(rt); 1651 1652 /* Reset round-robin state, if necessary */ 1653 if (rcu_access_pointer(fn->rr_ptr) == rt) 1654 fn->rr_ptr = NULL; 1655 1656 /* Remove this entry from other siblings */ 1657 if (rt->rt6i_nsiblings) { 1658 struct rt6_info *sibling, *next_sibling; 1659 1660 list_for_each_entry_safe(sibling, next_sibling, 1661 &rt->rt6i_siblings, rt6i_siblings) 1662 sibling->rt6i_nsiblings--; 1663 rt->rt6i_nsiblings = 0; 1664 list_del_init(&rt->rt6i_siblings); 1665 } 1666 1667 /* Adjust walkers */ 1668 read_lock(&net->ipv6.fib6_walker_lock); 1669 FOR_WALKERS(net, w) { 1670 if (w->state == FWS_C && w->leaf == rt) { 1671 RT6_TRACE("walker %p adjusted by delroute\n", w); 1672 w->leaf = rcu_dereference_protected(rt->dst.rt6_next, 1673 lockdep_is_held(&table->tb6_lock)); 1674 if (!w->leaf) 1675 w->state = FWS_U; 1676 } 1677 } 1678 read_unlock(&net->ipv6.fib6_walker_lock); 1679 1680 /* If it was last route, expunge its radix tree node */ 1681 if (!rcu_access_pointer(fn->leaf)) { 1682 fn->fn_flags &= ~RTN_RTINFO; 1683 net->ipv6.rt6_stats->fib_route_nodes--; 1684 fn = fib6_repair_tree(net, table, fn); 1685 } 1686 1687 fib6_purge_rt(rt, fn, net); 1688 1689 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt); 1690 if (!info->skip_notify) 1691 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1692 rt6_release(rt); 1693 } 1694 1695 /* Need to own table->tb6_lock */ 1696 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1697 { 1698 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node, 1699 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1700 struct fib6_table *table = rt->rt6i_table; 1701 struct net *net = info->nl_net; 1702 struct rt6_info __rcu **rtp; 1703 struct rt6_info __rcu **rtp_next; 1704 1705 #if RT6_DEBUG >= 2 1706 if (rt->dst.obsolete > 0) { 1707 WARN_ON(fn); 1708 return -ENOENT; 1709 } 1710 #endif 1711 if (!fn || rt == net->ipv6.ip6_null_entry) 1712 return -ENOENT; 1713 1714 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1715 1716 /* remove cached dst from exception table */ 1717 if (rt->rt6i_flags & RTF_CACHE) 1718 return rt6_remove_exception_rt(rt); 1719 1720 /* 1721 * Walk the leaf entries looking for ourself 1722 */ 1723 1724 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 1725 struct rt6_info *cur = rcu_dereference_protected(*rtp, 1726 lockdep_is_held(&table->tb6_lock)); 1727 if (rt == cur) { 1728 fib6_del_route(table, fn, rtp, info); 1729 return 0; 1730 } 1731 rtp_next = &cur->dst.rt6_next; 1732 } 1733 return -ENOENT; 1734 } 1735 1736 /* 1737 * Tree traversal function. 1738 * 1739 * Certainly, it is not interrupt safe. 1740 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1741 * It means, that we can modify tree during walking 1742 * and use this function for garbage collection, clone pruning, 1743 * cleaning tree when a device goes down etc. etc. 1744 * 1745 * It guarantees that every node will be traversed, 1746 * and that it will be traversed only once. 1747 * 1748 * Callback function w->func may return: 1749 * 0 -> continue walking. 1750 * positive value -> walking is suspended (used by tree dumps, 1751 * and probably by gc, if it will be split to several slices) 1752 * negative value -> terminate walking. 1753 * 1754 * The function itself returns: 1755 * 0 -> walk is complete. 1756 * >0 -> walk is incomplete (i.e. suspended) 1757 * <0 -> walk is terminated by an error. 1758 * 1759 * This function is called with tb6_lock held. 1760 */ 1761 1762 static int fib6_walk_continue(struct fib6_walker *w) 1763 { 1764 struct fib6_node *fn, *pn, *left, *right; 1765 1766 /* w->root should always be table->tb6_root */ 1767 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 1768 1769 for (;;) { 1770 fn = w->node; 1771 if (!fn) 1772 return 0; 1773 1774 switch (w->state) { 1775 #ifdef CONFIG_IPV6_SUBTREES 1776 case FWS_S: 1777 if (FIB6_SUBTREE(fn)) { 1778 w->node = FIB6_SUBTREE(fn); 1779 continue; 1780 } 1781 w->state = FWS_L; 1782 #endif 1783 /* fall through */ 1784 case FWS_L: 1785 left = rcu_dereference_protected(fn->left, 1); 1786 if (left) { 1787 w->node = left; 1788 w->state = FWS_INIT; 1789 continue; 1790 } 1791 w->state = FWS_R; 1792 /* fall through */ 1793 case FWS_R: 1794 right = rcu_dereference_protected(fn->right, 1); 1795 if (right) { 1796 w->node = right; 1797 w->state = FWS_INIT; 1798 continue; 1799 } 1800 w->state = FWS_C; 1801 w->leaf = rcu_dereference_protected(fn->leaf, 1); 1802 /* fall through */ 1803 case FWS_C: 1804 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 1805 int err; 1806 1807 if (w->skip) { 1808 w->skip--; 1809 goto skip; 1810 } 1811 1812 err = w->func(w); 1813 if (err) 1814 return err; 1815 1816 w->count++; 1817 continue; 1818 } 1819 skip: 1820 w->state = FWS_U; 1821 /* fall through */ 1822 case FWS_U: 1823 if (fn == w->root) 1824 return 0; 1825 pn = rcu_dereference_protected(fn->parent, 1); 1826 left = rcu_dereference_protected(pn->left, 1); 1827 right = rcu_dereference_protected(pn->right, 1); 1828 w->node = pn; 1829 #ifdef CONFIG_IPV6_SUBTREES 1830 if (FIB6_SUBTREE(pn) == fn) { 1831 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1832 w->state = FWS_L; 1833 continue; 1834 } 1835 #endif 1836 if (left == fn) { 1837 w->state = FWS_R; 1838 continue; 1839 } 1840 if (right == fn) { 1841 w->state = FWS_C; 1842 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 1843 continue; 1844 } 1845 #if RT6_DEBUG >= 2 1846 WARN_ON(1); 1847 #endif 1848 } 1849 } 1850 } 1851 1852 static int fib6_walk(struct net *net, struct fib6_walker *w) 1853 { 1854 int res; 1855 1856 w->state = FWS_INIT; 1857 w->node = w->root; 1858 1859 fib6_walker_link(net, w); 1860 res = fib6_walk_continue(w); 1861 if (res <= 0) 1862 fib6_walker_unlink(net, w); 1863 return res; 1864 } 1865 1866 static int fib6_clean_node(struct fib6_walker *w) 1867 { 1868 int res; 1869 struct rt6_info *rt; 1870 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 1871 struct nl_info info = { 1872 .nl_net = c->net, 1873 }; 1874 1875 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 1876 w->node->fn_sernum != c->sernum) 1877 w->node->fn_sernum = c->sernum; 1878 1879 if (!c->func) { 1880 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 1881 w->leaf = NULL; 1882 return 0; 1883 } 1884 1885 for_each_fib6_walker_rt(w) { 1886 res = c->func(rt, c->arg); 1887 if (res < 0) { 1888 w->leaf = rt; 1889 res = fib6_del(rt, &info); 1890 if (res) { 1891 #if RT6_DEBUG >= 2 1892 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 1893 __func__, rt, 1894 rcu_access_pointer(rt->rt6i_node), 1895 res); 1896 #endif 1897 continue; 1898 } 1899 return 0; 1900 } 1901 WARN_ON(res != 0); 1902 } 1903 w->leaf = rt; 1904 return 0; 1905 } 1906 1907 /* 1908 * Convenient frontend to tree walker. 1909 * 1910 * func is called on each route. 1911 * It may return -1 -> delete this route. 1912 * 0 -> continue walking 1913 */ 1914 1915 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1916 int (*func)(struct rt6_info *, void *arg), 1917 int sernum, void *arg) 1918 { 1919 struct fib6_cleaner c; 1920 1921 c.w.root = root; 1922 c.w.func = fib6_clean_node; 1923 c.w.count = 0; 1924 c.w.skip = 0; 1925 c.func = func; 1926 c.sernum = sernum; 1927 c.arg = arg; 1928 c.net = net; 1929 1930 fib6_walk(net, &c.w); 1931 } 1932 1933 static void __fib6_clean_all(struct net *net, 1934 int (*func)(struct rt6_info *, void *), 1935 int sernum, void *arg) 1936 { 1937 struct fib6_table *table; 1938 struct hlist_head *head; 1939 unsigned int h; 1940 1941 rcu_read_lock(); 1942 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1943 head = &net->ipv6.fib_table_hash[h]; 1944 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 1945 spin_lock_bh(&table->tb6_lock); 1946 fib6_clean_tree(net, &table->tb6_root, 1947 func, sernum, arg); 1948 spin_unlock_bh(&table->tb6_lock); 1949 } 1950 } 1951 rcu_read_unlock(); 1952 } 1953 1954 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *), 1955 void *arg) 1956 { 1957 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg); 1958 } 1959 1960 static void fib6_flush_trees(struct net *net) 1961 { 1962 int new_sernum = fib6_new_sernum(net); 1963 1964 __fib6_clean_all(net, NULL, new_sernum, NULL); 1965 } 1966 1967 /* 1968 * Garbage collection 1969 */ 1970 1971 static int fib6_age(struct rt6_info *rt, void *arg) 1972 { 1973 struct fib6_gc_args *gc_args = arg; 1974 unsigned long now = jiffies; 1975 1976 /* 1977 * check addrconf expiration here. 1978 * Routes are expired even if they are in use. 1979 */ 1980 1981 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) { 1982 if (time_after(now, rt->dst.expires)) { 1983 RT6_TRACE("expiring %p\n", rt); 1984 return -1; 1985 } 1986 gc_args->more++; 1987 } 1988 1989 /* Also age clones in the exception table. 1990 * Note, that clones are aged out 1991 * only if they are not in use now. 1992 */ 1993 rt6_age_exceptions(rt, gc_args, now); 1994 1995 return 0; 1996 } 1997 1998 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 1999 { 2000 struct fib6_gc_args gc_args; 2001 unsigned long now; 2002 2003 if (force) { 2004 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2005 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2006 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2007 return; 2008 } 2009 gc_args.timeout = expires ? (int)expires : 2010 net->ipv6.sysctl.ip6_rt_gc_interval; 2011 gc_args.more = 0; 2012 2013 fib6_clean_all(net, fib6_age, &gc_args); 2014 now = jiffies; 2015 net->ipv6.ip6_rt_last_gc = now; 2016 2017 if (gc_args.more) 2018 mod_timer(&net->ipv6.ip6_fib_timer, 2019 round_jiffies(now 2020 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2021 else 2022 del_timer(&net->ipv6.ip6_fib_timer); 2023 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2024 } 2025 2026 static void fib6_gc_timer_cb(unsigned long arg) 2027 { 2028 fib6_run_gc(0, (struct net *)arg, true); 2029 } 2030 2031 static int __net_init fib6_net_init(struct net *net) 2032 { 2033 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2034 int err; 2035 2036 err = fib6_notifier_init(net); 2037 if (err) 2038 return err; 2039 2040 spin_lock_init(&net->ipv6.fib6_gc_lock); 2041 rwlock_init(&net->ipv6.fib6_walker_lock); 2042 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2043 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net); 2044 2045 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2046 if (!net->ipv6.rt6_stats) 2047 goto out_timer; 2048 2049 /* Avoid false sharing : Use at least a full cache line */ 2050 size = max_t(size_t, size, L1_CACHE_BYTES); 2051 2052 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2053 if (!net->ipv6.fib_table_hash) 2054 goto out_rt6_stats; 2055 2056 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2057 GFP_KERNEL); 2058 if (!net->ipv6.fib6_main_tbl) 2059 goto out_fib_table_hash; 2060 2061 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2062 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2063 net->ipv6.ip6_null_entry); 2064 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2065 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2066 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2067 2068 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2069 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2070 GFP_KERNEL); 2071 if (!net->ipv6.fib6_local_tbl) 2072 goto out_fib6_main_tbl; 2073 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2074 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2075 net->ipv6.ip6_null_entry); 2076 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2077 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2078 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2079 #endif 2080 fib6_tables_init(net); 2081 2082 return 0; 2083 2084 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2085 out_fib6_main_tbl: 2086 kfree(net->ipv6.fib6_main_tbl); 2087 #endif 2088 out_fib_table_hash: 2089 kfree(net->ipv6.fib_table_hash); 2090 out_rt6_stats: 2091 kfree(net->ipv6.rt6_stats); 2092 out_timer: 2093 fib6_notifier_exit(net); 2094 return -ENOMEM; 2095 } 2096 2097 static void fib6_net_exit(struct net *net) 2098 { 2099 unsigned int i; 2100 2101 rt6_ifdown(net, NULL); 2102 del_timer_sync(&net->ipv6.ip6_fib_timer); 2103 2104 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2105 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2106 struct hlist_node *tmp; 2107 struct fib6_table *tb; 2108 2109 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2110 hlist_del(&tb->tb6_hlist); 2111 fib6_free_table(tb); 2112 } 2113 } 2114 2115 kfree(net->ipv6.fib_table_hash); 2116 kfree(net->ipv6.rt6_stats); 2117 fib6_notifier_exit(net); 2118 } 2119 2120 static struct pernet_operations fib6_net_ops = { 2121 .init = fib6_net_init, 2122 .exit = fib6_net_exit, 2123 }; 2124 2125 int __init fib6_init(void) 2126 { 2127 int ret = -ENOMEM; 2128 2129 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2130 sizeof(struct fib6_node), 2131 0, SLAB_HWCACHE_ALIGN, 2132 NULL); 2133 if (!fib6_node_kmem) 2134 goto out; 2135 2136 ret = register_pernet_subsys(&fib6_net_ops); 2137 if (ret) 2138 goto out_kmem_cache_create; 2139 2140 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib, 2141 0); 2142 if (ret) 2143 goto out_unregister_subsys; 2144 2145 __fib6_flush_trees = fib6_flush_trees; 2146 out: 2147 return ret; 2148 2149 out_unregister_subsys: 2150 unregister_pernet_subsys(&fib6_net_ops); 2151 out_kmem_cache_create: 2152 kmem_cache_destroy(fib6_node_kmem); 2153 goto out; 2154 } 2155 2156 void fib6_gc_cleanup(void) 2157 { 2158 unregister_pernet_subsys(&fib6_net_ops); 2159 kmem_cache_destroy(fib6_node_kmem); 2160 } 2161 2162 #ifdef CONFIG_PROC_FS 2163 2164 struct ipv6_route_iter { 2165 struct seq_net_private p; 2166 struct fib6_walker w; 2167 loff_t skip; 2168 struct fib6_table *tbl; 2169 int sernum; 2170 }; 2171 2172 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2173 { 2174 struct rt6_info *rt = v; 2175 struct ipv6_route_iter *iter = seq->private; 2176 2177 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen); 2178 2179 #ifdef CONFIG_IPV6_SUBTREES 2180 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen); 2181 #else 2182 seq_puts(seq, "00000000000000000000000000000000 00 "); 2183 #endif 2184 if (rt->rt6i_flags & RTF_GATEWAY) 2185 seq_printf(seq, "%pi6", &rt->rt6i_gateway); 2186 else 2187 seq_puts(seq, "00000000000000000000000000000000"); 2188 2189 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2190 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt), 2191 rt->dst.__use, rt->rt6i_flags, 2192 rt->dst.dev ? rt->dst.dev->name : ""); 2193 iter->w.leaf = NULL; 2194 return 0; 2195 } 2196 2197 static int ipv6_route_yield(struct fib6_walker *w) 2198 { 2199 struct ipv6_route_iter *iter = w->args; 2200 2201 if (!iter->skip) 2202 return 1; 2203 2204 do { 2205 iter->w.leaf = rcu_dereference_protected( 2206 iter->w.leaf->dst.rt6_next, 2207 lockdep_is_held(&iter->tbl->tb6_lock)); 2208 iter->skip--; 2209 if (!iter->skip && iter->w.leaf) 2210 return 1; 2211 } while (iter->w.leaf); 2212 2213 return 0; 2214 } 2215 2216 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2217 struct net *net) 2218 { 2219 memset(&iter->w, 0, sizeof(iter->w)); 2220 iter->w.func = ipv6_route_yield; 2221 iter->w.root = &iter->tbl->tb6_root; 2222 iter->w.state = FWS_INIT; 2223 iter->w.node = iter->w.root; 2224 iter->w.args = iter; 2225 iter->sernum = iter->w.root->fn_sernum; 2226 INIT_LIST_HEAD(&iter->w.lh); 2227 fib6_walker_link(net, &iter->w); 2228 } 2229 2230 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2231 struct net *net) 2232 { 2233 unsigned int h; 2234 struct hlist_node *node; 2235 2236 if (tbl) { 2237 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2238 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2239 } else { 2240 h = 0; 2241 node = NULL; 2242 } 2243 2244 while (!node && h < FIB6_TABLE_HASHSZ) { 2245 node = rcu_dereference_bh( 2246 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2247 } 2248 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2249 } 2250 2251 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2252 { 2253 if (iter->sernum != iter->w.root->fn_sernum) { 2254 iter->sernum = iter->w.root->fn_sernum; 2255 iter->w.state = FWS_INIT; 2256 iter->w.node = iter->w.root; 2257 WARN_ON(iter->w.skip); 2258 iter->w.skip = iter->w.count; 2259 } 2260 } 2261 2262 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2263 { 2264 int r; 2265 struct rt6_info *n; 2266 struct net *net = seq_file_net(seq); 2267 struct ipv6_route_iter *iter = seq->private; 2268 2269 if (!v) 2270 goto iter_table; 2271 2272 n = rcu_dereference_bh(((struct rt6_info *)v)->dst.rt6_next); 2273 if (n) { 2274 ++*pos; 2275 return n; 2276 } 2277 2278 iter_table: 2279 ipv6_route_check_sernum(iter); 2280 spin_lock_bh(&iter->tbl->tb6_lock); 2281 r = fib6_walk_continue(&iter->w); 2282 spin_unlock_bh(&iter->tbl->tb6_lock); 2283 if (r > 0) { 2284 if (v) 2285 ++*pos; 2286 return iter->w.leaf; 2287 } else if (r < 0) { 2288 fib6_walker_unlink(net, &iter->w); 2289 return NULL; 2290 } 2291 fib6_walker_unlink(net, &iter->w); 2292 2293 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2294 if (!iter->tbl) 2295 return NULL; 2296 2297 ipv6_route_seq_setup_walk(iter, net); 2298 goto iter_table; 2299 } 2300 2301 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2302 __acquires(RCU_BH) 2303 { 2304 struct net *net = seq_file_net(seq); 2305 struct ipv6_route_iter *iter = seq->private; 2306 2307 rcu_read_lock_bh(); 2308 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2309 iter->skip = *pos; 2310 2311 if (iter->tbl) { 2312 ipv6_route_seq_setup_walk(iter, net); 2313 return ipv6_route_seq_next(seq, NULL, pos); 2314 } else { 2315 return NULL; 2316 } 2317 } 2318 2319 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2320 { 2321 struct fib6_walker *w = &iter->w; 2322 return w->node && !(w->state == FWS_U && w->node == w->root); 2323 } 2324 2325 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2326 __releases(RCU_BH) 2327 { 2328 struct net *net = seq_file_net(seq); 2329 struct ipv6_route_iter *iter = seq->private; 2330 2331 if (ipv6_route_iter_active(iter)) 2332 fib6_walker_unlink(net, &iter->w); 2333 2334 rcu_read_unlock_bh(); 2335 } 2336 2337 static const struct seq_operations ipv6_route_seq_ops = { 2338 .start = ipv6_route_seq_start, 2339 .next = ipv6_route_seq_next, 2340 .stop = ipv6_route_seq_stop, 2341 .show = ipv6_route_seq_show 2342 }; 2343 2344 int ipv6_route_open(struct inode *inode, struct file *file) 2345 { 2346 return seq_open_net(inode, file, &ipv6_route_seq_ops, 2347 sizeof(struct ipv6_route_iter)); 2348 } 2349 2350 #endif /* CONFIG_PROC_FS */ 2351