1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old = atomic_read(&net->ipv6.fib6_sernum); 95 96 do { 97 new = old < INT_MAX ? old + 1 : 1; 98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new)); 99 100 return new; 101 } 102 103 enum { 104 FIB6_NO_SERNUM_CHANGE = 0, 105 }; 106 107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 108 { 109 struct fib6_node *fn; 110 111 fn = rcu_dereference_protected(f6i->fib6_node, 112 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 113 if (fn) 114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 115 } 116 117 /* 118 * Auxiliary address test functions for the radix tree. 119 * 120 * These assume a 32bit processor (although it will work on 121 * 64bit processors) 122 */ 123 124 /* 125 * test bit 126 */ 127 #if defined(__LITTLE_ENDIAN) 128 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 129 #else 130 # define BITOP_BE32_SWIZZLE 0 131 #endif 132 133 static __be32 addr_bit_set(const void *token, int fn_bit) 134 { 135 const __be32 *addr = token; 136 /* 137 * Here, 138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 139 * is optimized version of 140 * htonl(1 << ((~fn_bit)&0x1F)) 141 * See include/asm-generic/bitops/le.h. 142 */ 143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 144 addr[fn_bit >> 5]; 145 } 146 147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 148 { 149 struct fib6_info *f6i; 150 size_t sz = sizeof(*f6i); 151 152 if (with_fib6_nh) 153 sz += sizeof(struct fib6_nh); 154 155 f6i = kzalloc(sz, gfp_flags); 156 if (!f6i) 157 return NULL; 158 159 /* fib6_siblings is a union with nh_list, so this initializes both */ 160 INIT_LIST_HEAD(&f6i->fib6_siblings); 161 refcount_set(&f6i->fib6_ref, 1); 162 163 INIT_HLIST_NODE(&f6i->gc_link); 164 165 return f6i; 166 } 167 168 void fib6_info_destroy_rcu(struct rcu_head *head) 169 { 170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 171 172 WARN_ON(f6i->fib6_node); 173 174 if (f6i->nh) 175 nexthop_put(f6i->nh); 176 else 177 fib6_nh_release(f6i->fib6_nh); 178 179 ip_fib_metrics_put(f6i->fib6_metrics); 180 kfree(f6i); 181 } 182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 183 184 static struct fib6_node *node_alloc(struct net *net) 185 { 186 struct fib6_node *fn; 187 188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 189 if (fn) 190 net->ipv6.rt6_stats->fib_nodes++; 191 192 return fn; 193 } 194 195 static void node_free_immediate(struct net *net, struct fib6_node *fn) 196 { 197 kmem_cache_free(fib6_node_kmem, fn); 198 net->ipv6.rt6_stats->fib_nodes--; 199 } 200 201 static void node_free(struct net *net, struct fib6_node *fn) 202 { 203 kfree_rcu(fn, rcu); 204 net->ipv6.rt6_stats->fib_nodes--; 205 } 206 207 static void fib6_free_table(struct fib6_table *table) 208 { 209 inetpeer_invalidate_tree(&table->tb6_peers); 210 kfree(table); 211 } 212 213 static void fib6_link_table(struct net *net, struct fib6_table *tb) 214 { 215 unsigned int h; 216 217 /* 218 * Initialize table lock at a single place to give lockdep a key, 219 * tables aren't visible prior to being linked to the list. 220 */ 221 spin_lock_init(&tb->tb6_lock); 222 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 223 224 /* 225 * No protection necessary, this is the only list mutatation 226 * operation, tables never disappear once they exist. 227 */ 228 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 229 } 230 231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 232 233 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 234 { 235 struct fib6_table *table; 236 237 table = kzalloc(sizeof(*table), GFP_ATOMIC); 238 if (table) { 239 table->tb6_id = id; 240 rcu_assign_pointer(table->tb6_root.leaf, 241 net->ipv6.fib6_null_entry); 242 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 243 inet_peer_base_init(&table->tb6_peers); 244 INIT_HLIST_HEAD(&table->tb6_gc_hlist); 245 } 246 247 return table; 248 } 249 250 struct fib6_table *fib6_new_table(struct net *net, u32 id) 251 { 252 struct fib6_table *tb; 253 254 if (id == 0) 255 id = RT6_TABLE_MAIN; 256 tb = fib6_get_table(net, id); 257 if (tb) 258 return tb; 259 260 tb = fib6_alloc_table(net, id); 261 if (tb) 262 fib6_link_table(net, tb); 263 264 return tb; 265 } 266 EXPORT_SYMBOL_GPL(fib6_new_table); 267 268 struct fib6_table *fib6_get_table(struct net *net, u32 id) 269 { 270 struct fib6_table *tb; 271 struct hlist_head *head; 272 unsigned int h; 273 274 if (id == 0) 275 id = RT6_TABLE_MAIN; 276 h = id & (FIB6_TABLE_HASHSZ - 1); 277 rcu_read_lock(); 278 head = &net->ipv6.fib_table_hash[h]; 279 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 280 if (tb->tb6_id == id) { 281 rcu_read_unlock(); 282 return tb; 283 } 284 } 285 rcu_read_unlock(); 286 287 return NULL; 288 } 289 EXPORT_SYMBOL_GPL(fib6_get_table); 290 291 static void __net_init fib6_tables_init(struct net *net) 292 { 293 fib6_link_table(net, net->ipv6.fib6_main_tbl); 294 fib6_link_table(net, net->ipv6.fib6_local_tbl); 295 } 296 #else 297 298 struct fib6_table *fib6_new_table(struct net *net, u32 id) 299 { 300 return fib6_get_table(net, id); 301 } 302 303 struct fib6_table *fib6_get_table(struct net *net, u32 id) 304 { 305 return net->ipv6.fib6_main_tbl; 306 } 307 308 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 309 const struct sk_buff *skb, 310 int flags, pol_lookup_t lookup) 311 { 312 struct rt6_info *rt; 313 314 rt = pol_lookup_func(lookup, 315 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 316 if (rt->dst.error == -EAGAIN) { 317 ip6_rt_put_flags(rt, flags); 318 rt = net->ipv6.ip6_null_entry; 319 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 320 dst_hold(&rt->dst); 321 } 322 323 return &rt->dst; 324 } 325 326 /* called with rcu lock held; no reference taken on fib6_info */ 327 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 328 struct fib6_result *res, int flags) 329 { 330 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 331 res, flags); 332 } 333 334 static void __net_init fib6_tables_init(struct net *net) 335 { 336 fib6_link_table(net, net->ipv6.fib6_main_tbl); 337 } 338 339 #endif 340 341 unsigned int fib6_tables_seq_read(const struct net *net) 342 { 343 unsigned int h, fib_seq = 0; 344 345 rcu_read_lock(); 346 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 347 const struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 348 const struct fib6_table *tb; 349 350 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 351 fib_seq += READ_ONCE(tb->fib_seq); 352 } 353 rcu_read_unlock(); 354 355 return fib_seq; 356 } 357 358 static int call_fib6_entry_notifier(struct notifier_block *nb, 359 enum fib_event_type event_type, 360 struct fib6_info *rt, 361 struct netlink_ext_ack *extack) 362 { 363 struct fib6_entry_notifier_info info = { 364 .info.extack = extack, 365 .rt = rt, 366 }; 367 368 return call_fib6_notifier(nb, event_type, &info.info); 369 } 370 371 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 372 enum fib_event_type event_type, 373 struct fib6_info *rt, 374 unsigned int nsiblings, 375 struct netlink_ext_ack *extack) 376 { 377 struct fib6_entry_notifier_info info = { 378 .info.extack = extack, 379 .rt = rt, 380 .nsiblings = nsiblings, 381 }; 382 383 return call_fib6_notifier(nb, event_type, &info.info); 384 } 385 386 int call_fib6_entry_notifiers(struct net *net, 387 enum fib_event_type event_type, 388 struct fib6_info *rt, 389 struct netlink_ext_ack *extack) 390 { 391 struct fib6_entry_notifier_info info = { 392 .info.extack = extack, 393 .rt = rt, 394 }; 395 396 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 397 return call_fib6_notifiers(net, event_type, &info.info); 398 } 399 400 int call_fib6_multipath_entry_notifiers(struct net *net, 401 enum fib_event_type event_type, 402 struct fib6_info *rt, 403 unsigned int nsiblings, 404 struct netlink_ext_ack *extack) 405 { 406 struct fib6_entry_notifier_info info = { 407 .info.extack = extack, 408 .rt = rt, 409 .nsiblings = nsiblings, 410 }; 411 412 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 413 return call_fib6_notifiers(net, event_type, &info.info); 414 } 415 416 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 417 { 418 struct fib6_entry_notifier_info info = { 419 .rt = rt, 420 .nsiblings = rt->fib6_nsiblings, 421 }; 422 423 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1); 424 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 425 } 426 427 struct fib6_dump_arg { 428 struct net *net; 429 struct notifier_block *nb; 430 struct netlink_ext_ack *extack; 431 }; 432 433 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 434 { 435 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 436 int err; 437 438 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 439 return 0; 440 441 if (rt->fib6_nsiblings) 442 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 443 rt, 444 rt->fib6_nsiblings, 445 arg->extack); 446 else 447 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 448 arg->extack); 449 450 return err; 451 } 452 453 static int fib6_node_dump(struct fib6_walker *w) 454 { 455 int err; 456 457 err = fib6_rt_dump(w->leaf, w->args); 458 w->leaf = NULL; 459 return err; 460 } 461 462 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 463 struct fib6_walker *w) 464 { 465 int err; 466 467 w->root = &tb->tb6_root; 468 spin_lock_bh(&tb->tb6_lock); 469 err = fib6_walk(net, w); 470 spin_unlock_bh(&tb->tb6_lock); 471 return err; 472 } 473 474 /* Called with rcu_read_lock() */ 475 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 476 struct netlink_ext_ack *extack) 477 { 478 struct fib6_dump_arg arg; 479 struct fib6_walker *w; 480 unsigned int h; 481 int err = 0; 482 483 w = kzalloc(sizeof(*w), GFP_ATOMIC); 484 if (!w) 485 return -ENOMEM; 486 487 w->func = fib6_node_dump; 488 arg.net = net; 489 arg.nb = nb; 490 arg.extack = extack; 491 w->args = &arg; 492 493 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 494 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 495 struct fib6_table *tb; 496 497 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 498 err = fib6_table_dump(net, tb, w); 499 if (err) 500 goto out; 501 } 502 } 503 504 out: 505 kfree(w); 506 507 /* The tree traversal function should never return a positive value. */ 508 return err > 0 ? -EINVAL : err; 509 } 510 511 static int fib6_dump_node(struct fib6_walker *w) 512 { 513 int res; 514 struct fib6_info *rt; 515 516 for_each_fib6_walker_rt(w) { 517 res = rt6_dump_route(rt, w->args, w->skip_in_node); 518 if (res >= 0) { 519 /* Frame is full, suspend walking */ 520 w->leaf = rt; 521 522 /* We'll restart from this node, so if some routes were 523 * already dumped, skip them next time. 524 */ 525 w->skip_in_node += res; 526 527 return 1; 528 } 529 w->skip_in_node = 0; 530 531 /* Multipath routes are dumped in one route with the 532 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 533 * last sibling of this route (no need to dump the 534 * sibling routes again) 535 */ 536 if (rt->fib6_nsiblings) 537 rt = list_last_entry(&rt->fib6_siblings, 538 struct fib6_info, 539 fib6_siblings); 540 } 541 w->leaf = NULL; 542 return 0; 543 } 544 545 static void fib6_dump_end(struct netlink_callback *cb) 546 { 547 struct net *net = sock_net(cb->skb->sk); 548 struct fib6_walker *w = (void *)cb->args[2]; 549 550 if (w) { 551 if (cb->args[4]) { 552 cb->args[4] = 0; 553 fib6_walker_unlink(net, w); 554 } 555 cb->args[2] = 0; 556 kfree(w); 557 } 558 cb->done = (void *)cb->args[3]; 559 cb->args[1] = 3; 560 } 561 562 static int fib6_dump_done(struct netlink_callback *cb) 563 { 564 fib6_dump_end(cb); 565 return cb->done ? cb->done(cb) : 0; 566 } 567 568 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 569 struct netlink_callback *cb) 570 { 571 struct net *net = sock_net(skb->sk); 572 struct fib6_walker *w; 573 int res; 574 575 w = (void *)cb->args[2]; 576 w->root = &table->tb6_root; 577 578 if (cb->args[4] == 0) { 579 w->count = 0; 580 w->skip = 0; 581 w->skip_in_node = 0; 582 583 spin_lock_bh(&table->tb6_lock); 584 res = fib6_walk(net, w); 585 spin_unlock_bh(&table->tb6_lock); 586 if (res > 0) { 587 cb->args[4] = 1; 588 cb->args[5] = READ_ONCE(w->root->fn_sernum); 589 } 590 } else { 591 int sernum = READ_ONCE(w->root->fn_sernum); 592 if (cb->args[5] != sernum) { 593 /* Begin at the root if the tree changed */ 594 cb->args[5] = sernum; 595 w->state = FWS_INIT; 596 w->node = w->root; 597 w->skip = w->count; 598 w->skip_in_node = 0; 599 } else 600 w->skip = 0; 601 602 spin_lock_bh(&table->tb6_lock); 603 res = fib6_walk_continue(w); 604 spin_unlock_bh(&table->tb6_lock); 605 if (res <= 0) { 606 fib6_walker_unlink(net, w); 607 cb->args[4] = 0; 608 } 609 } 610 611 return res; 612 } 613 614 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 615 { 616 struct rt6_rtnl_dump_arg arg = { 617 .filter.dump_exceptions = true, 618 .filter.dump_routes = true, 619 .filter.rtnl_held = false, 620 }; 621 const struct nlmsghdr *nlh = cb->nlh; 622 struct net *net = sock_net(skb->sk); 623 unsigned int e = 0, s_e; 624 struct hlist_head *head; 625 struct fib6_walker *w; 626 struct fib6_table *tb; 627 unsigned int h, s_h; 628 int err = 0; 629 630 rcu_read_lock(); 631 if (cb->strict_check) { 632 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 633 if (err < 0) 634 goto unlock; 635 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 636 struct rtmsg *rtm = nlmsg_data(nlh); 637 638 if (rtm->rtm_flags & RTM_F_PREFIX) 639 arg.filter.flags = RTM_F_PREFIX; 640 } 641 642 w = (void *)cb->args[2]; 643 if (!w) { 644 /* New dump: 645 * 646 * 1. allocate and initialize walker. 647 */ 648 w = kzalloc(sizeof(*w), GFP_ATOMIC); 649 if (!w) { 650 err = -ENOMEM; 651 goto unlock; 652 } 653 w->func = fib6_dump_node; 654 cb->args[2] = (long)w; 655 656 /* 2. hook callback destructor. 657 */ 658 cb->args[3] = (long)cb->done; 659 cb->done = fib6_dump_done; 660 661 } 662 663 arg.skb = skb; 664 arg.cb = cb; 665 arg.net = net; 666 w->args = &arg; 667 668 if (arg.filter.table_id) { 669 tb = fib6_get_table(net, arg.filter.table_id); 670 if (!tb) { 671 if (rtnl_msg_family(cb->nlh) != PF_INET6) 672 goto unlock; 673 674 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 675 err = -ENOENT; 676 goto unlock; 677 } 678 679 if (!cb->args[0]) { 680 err = fib6_dump_table(tb, skb, cb); 681 if (!err) 682 cb->args[0] = 1; 683 } 684 goto unlock; 685 } 686 687 s_h = cb->args[0]; 688 s_e = cb->args[1]; 689 690 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 691 e = 0; 692 head = &net->ipv6.fib_table_hash[h]; 693 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 694 if (e < s_e) 695 goto next; 696 err = fib6_dump_table(tb, skb, cb); 697 if (err != 0) 698 goto out; 699 next: 700 e++; 701 } 702 } 703 out: 704 cb->args[1] = e; 705 cb->args[0] = h; 706 707 unlock: 708 rcu_read_unlock(); 709 if (err <= 0) 710 fib6_dump_end(cb); 711 return err; 712 } 713 714 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 715 { 716 if (!f6i) 717 return; 718 719 if (f6i->fib6_metrics == &dst_default_metrics) { 720 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 721 722 if (!p) 723 return; 724 725 refcount_set(&p->refcnt, 1); 726 f6i->fib6_metrics = p; 727 } 728 729 f6i->fib6_metrics->metrics[metric - 1] = val; 730 } 731 732 /* 733 * Routing Table 734 * 735 * return the appropriate node for a routing tree "add" operation 736 * by either creating and inserting or by returning an existing 737 * node. 738 */ 739 740 static struct fib6_node *fib6_add_1(struct net *net, 741 struct fib6_table *table, 742 struct fib6_node *root, 743 struct in6_addr *addr, int plen, 744 int offset, int allow_create, 745 int replace_required, 746 struct netlink_ext_ack *extack) 747 { 748 struct fib6_node *fn, *in, *ln; 749 struct fib6_node *pn = NULL; 750 struct rt6key *key; 751 int bit; 752 __be32 dir = 0; 753 754 /* insert node in tree */ 755 756 fn = root; 757 758 do { 759 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 760 lockdep_is_held(&table->tb6_lock)); 761 key = (struct rt6key *)((u8 *)leaf + offset); 762 763 /* 764 * Prefix match 765 */ 766 if (plen < fn->fn_bit || 767 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 768 if (!allow_create) { 769 if (replace_required) { 770 NL_SET_ERR_MSG(extack, 771 "Can not replace route - no match found"); 772 pr_warn("Can't replace route, no match found\n"); 773 return ERR_PTR(-ENOENT); 774 } 775 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 776 } 777 goto insert_above; 778 } 779 780 /* 781 * Exact match ? 782 */ 783 784 if (plen == fn->fn_bit) { 785 /* clean up an intermediate node */ 786 if (!(fn->fn_flags & RTN_RTINFO)) { 787 RCU_INIT_POINTER(fn->leaf, NULL); 788 fib6_info_release(leaf); 789 /* remove null_entry in the root node */ 790 } else if (fn->fn_flags & RTN_TL_ROOT && 791 rcu_access_pointer(fn->leaf) == 792 net->ipv6.fib6_null_entry) { 793 RCU_INIT_POINTER(fn->leaf, NULL); 794 } 795 796 return fn; 797 } 798 799 /* 800 * We have more bits to go 801 */ 802 803 /* Try to walk down on tree. */ 804 dir = addr_bit_set(addr, fn->fn_bit); 805 pn = fn; 806 fn = dir ? 807 rcu_dereference_protected(fn->right, 808 lockdep_is_held(&table->tb6_lock)) : 809 rcu_dereference_protected(fn->left, 810 lockdep_is_held(&table->tb6_lock)); 811 } while (fn); 812 813 if (!allow_create) { 814 /* We should not create new node because 815 * NLM_F_REPLACE was specified without NLM_F_CREATE 816 * I assume it is safe to require NLM_F_CREATE when 817 * REPLACE flag is used! Later we may want to remove the 818 * check for replace_required, because according 819 * to netlink specification, NLM_F_CREATE 820 * MUST be specified if new route is created. 821 * That would keep IPv6 consistent with IPv4 822 */ 823 if (replace_required) { 824 NL_SET_ERR_MSG(extack, 825 "Can not replace route - no match found"); 826 pr_warn("Can't replace route, no match found\n"); 827 return ERR_PTR(-ENOENT); 828 } 829 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 830 } 831 /* 832 * We walked to the bottom of tree. 833 * Create new leaf node without children. 834 */ 835 836 ln = node_alloc(net); 837 838 if (!ln) 839 return ERR_PTR(-ENOMEM); 840 ln->fn_bit = plen; 841 RCU_INIT_POINTER(ln->parent, pn); 842 843 if (dir) 844 rcu_assign_pointer(pn->right, ln); 845 else 846 rcu_assign_pointer(pn->left, ln); 847 848 return ln; 849 850 851 insert_above: 852 /* 853 * split since we don't have a common prefix anymore or 854 * we have a less significant route. 855 * we've to insert an intermediate node on the list 856 * this new node will point to the one we need to create 857 * and the current 858 */ 859 860 pn = rcu_dereference_protected(fn->parent, 861 lockdep_is_held(&table->tb6_lock)); 862 863 /* find 1st bit in difference between the 2 addrs. 864 865 See comment in __ipv6_addr_diff: bit may be an invalid value, 866 but if it is >= plen, the value is ignored in any case. 867 */ 868 869 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 870 871 /* 872 * (intermediate)[in] 873 * / \ 874 * (new leaf node)[ln] (old node)[fn] 875 */ 876 if (plen > bit) { 877 in = node_alloc(net); 878 ln = node_alloc(net); 879 880 if (!in || !ln) { 881 if (in) 882 node_free_immediate(net, in); 883 if (ln) 884 node_free_immediate(net, ln); 885 return ERR_PTR(-ENOMEM); 886 } 887 888 /* 889 * new intermediate node. 890 * RTN_RTINFO will 891 * be off since that an address that chooses one of 892 * the branches would not match less specific routes 893 * in the other branch 894 */ 895 896 in->fn_bit = bit; 897 898 RCU_INIT_POINTER(in->parent, pn); 899 in->leaf = fn->leaf; 900 fib6_info_hold(rcu_dereference_protected(in->leaf, 901 lockdep_is_held(&table->tb6_lock))); 902 903 /* update parent pointer */ 904 if (dir) 905 rcu_assign_pointer(pn->right, in); 906 else 907 rcu_assign_pointer(pn->left, in); 908 909 ln->fn_bit = plen; 910 911 RCU_INIT_POINTER(ln->parent, in); 912 rcu_assign_pointer(fn->parent, in); 913 914 if (addr_bit_set(addr, bit)) { 915 rcu_assign_pointer(in->right, ln); 916 rcu_assign_pointer(in->left, fn); 917 } else { 918 rcu_assign_pointer(in->left, ln); 919 rcu_assign_pointer(in->right, fn); 920 } 921 } else { /* plen <= bit */ 922 923 /* 924 * (new leaf node)[ln] 925 * / \ 926 * (old node)[fn] NULL 927 */ 928 929 ln = node_alloc(net); 930 931 if (!ln) 932 return ERR_PTR(-ENOMEM); 933 934 ln->fn_bit = plen; 935 936 RCU_INIT_POINTER(ln->parent, pn); 937 938 if (addr_bit_set(&key->addr, plen)) 939 RCU_INIT_POINTER(ln->right, fn); 940 else 941 RCU_INIT_POINTER(ln->left, fn); 942 943 rcu_assign_pointer(fn->parent, ln); 944 945 if (dir) 946 rcu_assign_pointer(pn->right, ln); 947 else 948 rcu_assign_pointer(pn->left, ln); 949 } 950 return ln; 951 } 952 953 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 954 const struct fib6_info *match, 955 const struct fib6_table *table) 956 { 957 int cpu; 958 959 if (!fib6_nh->rt6i_pcpu) 960 return; 961 962 rcu_read_lock(); 963 /* release the reference to this fib entry from 964 * all of its cached pcpu routes 965 */ 966 for_each_possible_cpu(cpu) { 967 struct rt6_info **ppcpu_rt; 968 struct rt6_info *pcpu_rt; 969 970 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 971 972 /* Paired with xchg() in rt6_get_pcpu_route() */ 973 pcpu_rt = READ_ONCE(*ppcpu_rt); 974 975 /* only dropping the 'from' reference if the cached route 976 * is using 'match'. The cached pcpu_rt->from only changes 977 * from a fib6_info to NULL (ip6_dst_destroy); it can never 978 * change from one fib6_info reference to another 979 */ 980 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 981 struct fib6_info *from; 982 983 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL)); 984 fib6_info_release(from); 985 } 986 } 987 rcu_read_unlock(); 988 } 989 990 struct fib6_nh_pcpu_arg { 991 struct fib6_info *from; 992 const struct fib6_table *table; 993 }; 994 995 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 996 { 997 struct fib6_nh_pcpu_arg *arg = _arg; 998 999 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 1000 return 0; 1001 } 1002 1003 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1004 const struct fib6_table *table) 1005 { 1006 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1007 * while we are cleaning them here. 1008 */ 1009 f6i->fib6_destroying = 1; 1010 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1011 1012 if (f6i->nh) { 1013 struct fib6_nh_pcpu_arg arg = { 1014 .from = f6i, 1015 .table = table 1016 }; 1017 1018 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1019 &arg); 1020 } else { 1021 struct fib6_nh *fib6_nh; 1022 1023 fib6_nh = f6i->fib6_nh; 1024 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1025 } 1026 } 1027 1028 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1029 struct net *net) 1030 { 1031 struct fib6_table *table = rt->fib6_table; 1032 1033 /* Flush all cached dst in exception table */ 1034 rt6_flush_exceptions(rt); 1035 fib6_drop_pcpu_from(rt, table); 1036 1037 if (rt->nh && !list_empty(&rt->nh_list)) 1038 list_del_init(&rt->nh_list); 1039 1040 if (refcount_read(&rt->fib6_ref) != 1) { 1041 /* This route is used as dummy address holder in some split 1042 * nodes. It is not leaked, but it still holds other resources, 1043 * which must be released in time. So, scan ascendant nodes 1044 * and replace dummy references to this route with references 1045 * to still alive ones. 1046 */ 1047 while (fn) { 1048 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1049 lockdep_is_held(&table->tb6_lock)); 1050 struct fib6_info *new_leaf; 1051 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1052 new_leaf = fib6_find_prefix(net, table, fn); 1053 fib6_info_hold(new_leaf); 1054 1055 rcu_assign_pointer(fn->leaf, new_leaf); 1056 fib6_info_release(rt); 1057 } 1058 fn = rcu_dereference_protected(fn->parent, 1059 lockdep_is_held(&table->tb6_lock)); 1060 } 1061 } 1062 1063 fib6_clean_expires(rt); 1064 fib6_remove_gc_list(rt); 1065 } 1066 1067 /* 1068 * Insert routing information in a node. 1069 */ 1070 1071 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1072 struct nl_info *info, 1073 struct netlink_ext_ack *extack) 1074 { 1075 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1076 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1077 struct fib6_info *iter = NULL; 1078 struct fib6_info __rcu **ins; 1079 struct fib6_info __rcu **fallback_ins = NULL; 1080 int replace = (info->nlh && 1081 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1082 int add = (!info->nlh || 1083 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1084 int found = 0; 1085 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1086 bool notify_sibling_rt = false; 1087 u16 nlflags = NLM_F_EXCL; 1088 int err; 1089 1090 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1091 nlflags |= NLM_F_APPEND; 1092 1093 ins = &fn->leaf; 1094 1095 for (iter = leaf; iter; 1096 iter = rcu_dereference_protected(iter->fib6_next, 1097 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1098 /* 1099 * Search for duplicates 1100 */ 1101 1102 if (iter->fib6_metric == rt->fib6_metric) { 1103 /* 1104 * Same priority level 1105 */ 1106 if (info->nlh && 1107 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1108 return -EEXIST; 1109 1110 nlflags &= ~NLM_F_EXCL; 1111 if (replace) { 1112 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1113 found++; 1114 break; 1115 } 1116 fallback_ins = fallback_ins ?: ins; 1117 goto next_iter; 1118 } 1119 1120 if (rt6_duplicate_nexthop(iter, rt)) { 1121 if (rt->fib6_nsiblings) 1122 rt->fib6_nsiblings = 0; 1123 if (!(iter->fib6_flags & RTF_EXPIRES)) 1124 return -EEXIST; 1125 if (!(rt->fib6_flags & RTF_EXPIRES)) { 1126 fib6_clean_expires(iter); 1127 fib6_remove_gc_list(iter); 1128 } else { 1129 fib6_set_expires(iter, rt->expires); 1130 fib6_add_gc_list(iter); 1131 } 1132 1133 if (rt->fib6_pmtu) 1134 fib6_metric_set(iter, RTAX_MTU, 1135 rt->fib6_pmtu); 1136 return -EEXIST; 1137 } 1138 /* If we have the same destination and the same metric, 1139 * but not the same gateway, then the route we try to 1140 * add is sibling to this route, increment our counter 1141 * of siblings, and later we will add our route to the 1142 * list. 1143 * Only static routes (which don't have flag 1144 * RTF_EXPIRES) are used for ECMPv6. 1145 * 1146 * To avoid long list, we only had siblings if the 1147 * route have a gateway. 1148 */ 1149 if (rt_can_ecmp && 1150 rt6_qualify_for_ecmp(iter)) 1151 rt->fib6_nsiblings++; 1152 } 1153 1154 if (iter->fib6_metric > rt->fib6_metric) 1155 break; 1156 1157 next_iter: 1158 ins = &iter->fib6_next; 1159 } 1160 1161 if (fallback_ins && !found) { 1162 /* No matching route with same ecmp-able-ness found, replace 1163 * first matching route 1164 */ 1165 ins = fallback_ins; 1166 iter = rcu_dereference_protected(*ins, 1167 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1168 found++; 1169 } 1170 1171 /* Reset round-robin state, if necessary */ 1172 if (ins == &fn->leaf) 1173 fn->rr_ptr = NULL; 1174 1175 /* Link this route to others same route. */ 1176 if (rt->fib6_nsiblings) { 1177 unsigned int fib6_nsiblings; 1178 struct fib6_info *sibling, *temp_sibling; 1179 1180 /* Find the first route that have the same metric */ 1181 sibling = leaf; 1182 notify_sibling_rt = true; 1183 while (sibling) { 1184 if (sibling->fib6_metric == rt->fib6_metric && 1185 rt6_qualify_for_ecmp(sibling)) { 1186 list_add_tail_rcu(&rt->fib6_siblings, 1187 &sibling->fib6_siblings); 1188 break; 1189 } 1190 sibling = rcu_dereference_protected(sibling->fib6_next, 1191 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1192 notify_sibling_rt = false; 1193 } 1194 /* For each sibling in the list, increment the counter of 1195 * siblings. BUG() if counters does not match, list of siblings 1196 * is broken! 1197 */ 1198 fib6_nsiblings = 0; 1199 list_for_each_entry_safe(sibling, temp_sibling, 1200 &rt->fib6_siblings, fib6_siblings) { 1201 sibling->fib6_nsiblings++; 1202 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1203 fib6_nsiblings++; 1204 } 1205 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1206 rt6_multipath_rebalance(temp_sibling); 1207 } 1208 1209 /* 1210 * insert node 1211 */ 1212 if (!replace) { 1213 if (!add) 1214 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1215 1216 add: 1217 nlflags |= NLM_F_CREATE; 1218 1219 /* The route should only be notified if it is the first 1220 * route in the node or if it is added as a sibling 1221 * route to the first route in the node. 1222 */ 1223 if (!info->skip_notify_kernel && 1224 (notify_sibling_rt || ins == &fn->leaf)) { 1225 enum fib_event_type fib_event; 1226 1227 if (notify_sibling_rt) 1228 fib_event = FIB_EVENT_ENTRY_APPEND; 1229 else 1230 fib_event = FIB_EVENT_ENTRY_REPLACE; 1231 err = call_fib6_entry_notifiers(info->nl_net, 1232 fib_event, rt, 1233 extack); 1234 if (err) { 1235 struct fib6_info *sibling, *next_sibling; 1236 1237 /* If the route has siblings, then it first 1238 * needs to be unlinked from them. 1239 */ 1240 if (!rt->fib6_nsiblings) 1241 return err; 1242 1243 list_for_each_entry_safe(sibling, next_sibling, 1244 &rt->fib6_siblings, 1245 fib6_siblings) 1246 sibling->fib6_nsiblings--; 1247 rt->fib6_nsiblings = 0; 1248 list_del_rcu(&rt->fib6_siblings); 1249 rt6_multipath_rebalance(next_sibling); 1250 return err; 1251 } 1252 } 1253 1254 rcu_assign_pointer(rt->fib6_next, iter); 1255 fib6_info_hold(rt); 1256 rcu_assign_pointer(rt->fib6_node, fn); 1257 rcu_assign_pointer(*ins, rt); 1258 if (!info->skip_notify) 1259 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1260 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1261 1262 if (!(fn->fn_flags & RTN_RTINFO)) { 1263 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1264 fn->fn_flags |= RTN_RTINFO; 1265 } 1266 1267 } else { 1268 int nsiblings; 1269 1270 if (!found) { 1271 if (add) 1272 goto add; 1273 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1274 return -ENOENT; 1275 } 1276 1277 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1278 err = call_fib6_entry_notifiers(info->nl_net, 1279 FIB_EVENT_ENTRY_REPLACE, 1280 rt, extack); 1281 if (err) 1282 return err; 1283 } 1284 1285 fib6_info_hold(rt); 1286 rcu_assign_pointer(rt->fib6_node, fn); 1287 rt->fib6_next = iter->fib6_next; 1288 rcu_assign_pointer(*ins, rt); 1289 if (!info->skip_notify) 1290 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1291 if (!(fn->fn_flags & RTN_RTINFO)) { 1292 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1293 fn->fn_flags |= RTN_RTINFO; 1294 } 1295 nsiblings = iter->fib6_nsiblings; 1296 iter->fib6_node = NULL; 1297 fib6_purge_rt(iter, fn, info->nl_net); 1298 if (rcu_access_pointer(fn->rr_ptr) == iter) 1299 fn->rr_ptr = NULL; 1300 fib6_info_release(iter); 1301 1302 if (nsiblings) { 1303 /* Replacing an ECMP route, remove all siblings */ 1304 ins = &rt->fib6_next; 1305 iter = rcu_dereference_protected(*ins, 1306 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1307 while (iter) { 1308 if (iter->fib6_metric > rt->fib6_metric) 1309 break; 1310 if (rt6_qualify_for_ecmp(iter)) { 1311 *ins = iter->fib6_next; 1312 iter->fib6_node = NULL; 1313 fib6_purge_rt(iter, fn, info->nl_net); 1314 if (rcu_access_pointer(fn->rr_ptr) == iter) 1315 fn->rr_ptr = NULL; 1316 fib6_info_release(iter); 1317 nsiblings--; 1318 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1319 } else { 1320 ins = &iter->fib6_next; 1321 } 1322 iter = rcu_dereference_protected(*ins, 1323 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1324 } 1325 WARN_ON(nsiblings != 0); 1326 } 1327 } 1328 1329 return 0; 1330 } 1331 1332 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1333 { 1334 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1335 (rt->fib6_flags & RTF_EXPIRES)) 1336 mod_timer(&net->ipv6.ip6_fib_timer, 1337 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1338 } 1339 1340 void fib6_force_start_gc(struct net *net) 1341 { 1342 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1343 mod_timer(&net->ipv6.ip6_fib_timer, 1344 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1345 } 1346 1347 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1348 int sernum) 1349 { 1350 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1351 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1352 1353 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1354 smp_wmb(); 1355 while (fn) { 1356 WRITE_ONCE(fn->fn_sernum, sernum); 1357 fn = rcu_dereference_protected(fn->parent, 1358 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1359 } 1360 } 1361 1362 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1363 { 1364 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1365 } 1366 1367 /* allow ipv4 to update sernum via ipv6_stub */ 1368 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1369 { 1370 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1371 fib6_update_sernum_upto_root(net, f6i); 1372 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1373 } 1374 1375 /* 1376 * Add routing information to the routing tree. 1377 * <destination addr>/<source addr> 1378 * with source addr info in sub-trees 1379 * Need to own table->tb6_lock 1380 */ 1381 1382 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1383 struct nl_info *info, struct netlink_ext_ack *extack) 1384 { 1385 struct fib6_table *table = rt->fib6_table; 1386 struct fib6_node *fn; 1387 #ifdef CONFIG_IPV6_SUBTREES 1388 struct fib6_node *pn = NULL; 1389 #endif 1390 int err = -ENOMEM; 1391 int allow_create = 1; 1392 int replace_required = 0; 1393 1394 if (info->nlh) { 1395 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1396 allow_create = 0; 1397 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1398 replace_required = 1; 1399 } 1400 if (!allow_create && !replace_required) 1401 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1402 1403 fn = fib6_add_1(info->nl_net, table, root, 1404 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1405 offsetof(struct fib6_info, fib6_dst), allow_create, 1406 replace_required, extack); 1407 if (IS_ERR(fn)) { 1408 err = PTR_ERR(fn); 1409 fn = NULL; 1410 goto out; 1411 } 1412 1413 #ifdef CONFIG_IPV6_SUBTREES 1414 pn = fn; 1415 1416 if (rt->fib6_src.plen) { 1417 struct fib6_node *sn; 1418 1419 if (!rcu_access_pointer(fn->subtree)) { 1420 struct fib6_node *sfn; 1421 1422 /* 1423 * Create subtree. 1424 * 1425 * fn[main tree] 1426 * | 1427 * sfn[subtree root] 1428 * \ 1429 * sn[new leaf node] 1430 */ 1431 1432 /* Create subtree root node */ 1433 sfn = node_alloc(info->nl_net); 1434 if (!sfn) 1435 goto failure; 1436 1437 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1438 rcu_assign_pointer(sfn->leaf, 1439 info->nl_net->ipv6.fib6_null_entry); 1440 sfn->fn_flags = RTN_ROOT; 1441 1442 /* Now add the first leaf node to new subtree */ 1443 1444 sn = fib6_add_1(info->nl_net, table, sfn, 1445 &rt->fib6_src.addr, rt->fib6_src.plen, 1446 offsetof(struct fib6_info, fib6_src), 1447 allow_create, replace_required, extack); 1448 1449 if (IS_ERR(sn)) { 1450 /* If it is failed, discard just allocated 1451 root, and then (in failure) stale node 1452 in main tree. 1453 */ 1454 node_free_immediate(info->nl_net, sfn); 1455 err = PTR_ERR(sn); 1456 goto failure; 1457 } 1458 1459 /* Now link new subtree to main tree */ 1460 rcu_assign_pointer(sfn->parent, fn); 1461 rcu_assign_pointer(fn->subtree, sfn); 1462 } else { 1463 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1464 &rt->fib6_src.addr, rt->fib6_src.plen, 1465 offsetof(struct fib6_info, fib6_src), 1466 allow_create, replace_required, extack); 1467 1468 if (IS_ERR(sn)) { 1469 err = PTR_ERR(sn); 1470 goto failure; 1471 } 1472 } 1473 1474 if (!rcu_access_pointer(fn->leaf)) { 1475 if (fn->fn_flags & RTN_TL_ROOT) { 1476 /* put back null_entry for root node */ 1477 rcu_assign_pointer(fn->leaf, 1478 info->nl_net->ipv6.fib6_null_entry); 1479 } else { 1480 fib6_info_hold(rt); 1481 rcu_assign_pointer(fn->leaf, rt); 1482 } 1483 } 1484 fn = sn; 1485 } 1486 #endif 1487 1488 err = fib6_add_rt2node(fn, rt, info, extack); 1489 if (!err) { 1490 if (rt->nh) 1491 list_add(&rt->nh_list, &rt->nh->f6i_list); 1492 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1493 1494 if (rt->fib6_flags & RTF_EXPIRES) 1495 fib6_add_gc_list(rt); 1496 1497 fib6_start_gc(info->nl_net, rt); 1498 } 1499 1500 out: 1501 if (err) { 1502 #ifdef CONFIG_IPV6_SUBTREES 1503 /* 1504 * If fib6_add_1 has cleared the old leaf pointer in the 1505 * super-tree leaf node we have to find a new one for it. 1506 */ 1507 if (pn != fn) { 1508 struct fib6_info *pn_leaf = 1509 rcu_dereference_protected(pn->leaf, 1510 lockdep_is_held(&table->tb6_lock)); 1511 if (pn_leaf == rt) { 1512 pn_leaf = NULL; 1513 RCU_INIT_POINTER(pn->leaf, NULL); 1514 fib6_info_release(rt); 1515 } 1516 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1517 pn_leaf = fib6_find_prefix(info->nl_net, table, 1518 pn); 1519 if (!pn_leaf) 1520 pn_leaf = 1521 info->nl_net->ipv6.fib6_null_entry; 1522 fib6_info_hold(pn_leaf); 1523 rcu_assign_pointer(pn->leaf, pn_leaf); 1524 } 1525 } 1526 #endif 1527 goto failure; 1528 } else if (fib6_requires_src(rt)) { 1529 fib6_routes_require_src_inc(info->nl_net); 1530 } 1531 return err; 1532 1533 failure: 1534 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1535 * 1. fn is an intermediate node and we failed to add the new 1536 * route to it in both subtree creation failure and fib6_add_rt2node() 1537 * failure case. 1538 * 2. fn is the root node in the table and we fail to add the first 1539 * default route to it. 1540 */ 1541 if (fn && 1542 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1543 (fn->fn_flags & RTN_TL_ROOT && 1544 !rcu_access_pointer(fn->leaf)))) 1545 fib6_repair_tree(info->nl_net, table, fn); 1546 return err; 1547 } 1548 1549 /* 1550 * Routing tree lookup 1551 * 1552 */ 1553 1554 struct lookup_args { 1555 int offset; /* key offset on fib6_info */ 1556 const struct in6_addr *addr; /* search key */ 1557 }; 1558 1559 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1560 struct lookup_args *args) 1561 { 1562 struct fib6_node *fn; 1563 __be32 dir; 1564 1565 if (unlikely(args->offset == 0)) 1566 return NULL; 1567 1568 /* 1569 * Descend on a tree 1570 */ 1571 1572 fn = root; 1573 1574 for (;;) { 1575 struct fib6_node *next; 1576 1577 dir = addr_bit_set(args->addr, fn->fn_bit); 1578 1579 next = dir ? rcu_dereference(fn->right) : 1580 rcu_dereference(fn->left); 1581 1582 if (next) { 1583 fn = next; 1584 continue; 1585 } 1586 break; 1587 } 1588 1589 while (fn) { 1590 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1591 1592 if (subtree || fn->fn_flags & RTN_RTINFO) { 1593 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1594 struct rt6key *key; 1595 1596 if (!leaf) 1597 goto backtrack; 1598 1599 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1600 1601 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1602 #ifdef CONFIG_IPV6_SUBTREES 1603 if (subtree) { 1604 struct fib6_node *sfn; 1605 sfn = fib6_node_lookup_1(subtree, 1606 args + 1); 1607 if (!sfn) 1608 goto backtrack; 1609 fn = sfn; 1610 } 1611 #endif 1612 if (fn->fn_flags & RTN_RTINFO) 1613 return fn; 1614 } 1615 } 1616 backtrack: 1617 if (fn->fn_flags & RTN_ROOT) 1618 break; 1619 1620 fn = rcu_dereference(fn->parent); 1621 } 1622 1623 return NULL; 1624 } 1625 1626 /* called with rcu_read_lock() held 1627 */ 1628 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1629 const struct in6_addr *daddr, 1630 const struct in6_addr *saddr) 1631 { 1632 struct fib6_node *fn; 1633 struct lookup_args args[] = { 1634 { 1635 .offset = offsetof(struct fib6_info, fib6_dst), 1636 .addr = daddr, 1637 }, 1638 #ifdef CONFIG_IPV6_SUBTREES 1639 { 1640 .offset = offsetof(struct fib6_info, fib6_src), 1641 .addr = saddr, 1642 }, 1643 #endif 1644 { 1645 .offset = 0, /* sentinel */ 1646 } 1647 }; 1648 1649 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1650 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1651 fn = root; 1652 1653 return fn; 1654 } 1655 1656 /* 1657 * Get node with specified destination prefix (and source prefix, 1658 * if subtrees are used) 1659 * exact_match == true means we try to find fn with exact match of 1660 * the passed in prefix addr 1661 * exact_match == false means we try to find fn with longest prefix 1662 * match of the passed in prefix addr. This is useful for finding fn 1663 * for cached route as it will be stored in the exception table under 1664 * the node with longest prefix length. 1665 */ 1666 1667 1668 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1669 const struct in6_addr *addr, 1670 int plen, int offset, 1671 bool exact_match) 1672 { 1673 struct fib6_node *fn, *prev = NULL; 1674 1675 for (fn = root; fn ; ) { 1676 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1677 struct rt6key *key; 1678 1679 /* This node is being deleted */ 1680 if (!leaf) { 1681 if (plen <= fn->fn_bit) 1682 goto out; 1683 else 1684 goto next; 1685 } 1686 1687 key = (struct rt6key *)((u8 *)leaf + offset); 1688 1689 /* 1690 * Prefix match 1691 */ 1692 if (plen < fn->fn_bit || 1693 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1694 goto out; 1695 1696 if (plen == fn->fn_bit) 1697 return fn; 1698 1699 if (fn->fn_flags & RTN_RTINFO) 1700 prev = fn; 1701 1702 next: 1703 /* 1704 * We have more bits to go 1705 */ 1706 if (addr_bit_set(addr, fn->fn_bit)) 1707 fn = rcu_dereference(fn->right); 1708 else 1709 fn = rcu_dereference(fn->left); 1710 } 1711 out: 1712 if (exact_match) 1713 return NULL; 1714 else 1715 return prev; 1716 } 1717 1718 struct fib6_node *fib6_locate(struct fib6_node *root, 1719 const struct in6_addr *daddr, int dst_len, 1720 const struct in6_addr *saddr, int src_len, 1721 bool exact_match) 1722 { 1723 struct fib6_node *fn; 1724 1725 fn = fib6_locate_1(root, daddr, dst_len, 1726 offsetof(struct fib6_info, fib6_dst), 1727 exact_match); 1728 1729 #ifdef CONFIG_IPV6_SUBTREES 1730 if (src_len) { 1731 WARN_ON(saddr == NULL); 1732 if (fn) { 1733 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1734 1735 if (subtree) { 1736 fn = fib6_locate_1(subtree, saddr, src_len, 1737 offsetof(struct fib6_info, fib6_src), 1738 exact_match); 1739 } 1740 } 1741 } 1742 #endif 1743 1744 if (fn && fn->fn_flags & RTN_RTINFO) 1745 return fn; 1746 1747 return NULL; 1748 } 1749 1750 1751 /* 1752 * Deletion 1753 * 1754 */ 1755 1756 static struct fib6_info *fib6_find_prefix(struct net *net, 1757 struct fib6_table *table, 1758 struct fib6_node *fn) 1759 { 1760 struct fib6_node *child_left, *child_right; 1761 1762 if (fn->fn_flags & RTN_ROOT) 1763 return net->ipv6.fib6_null_entry; 1764 1765 while (fn) { 1766 child_left = rcu_dereference_protected(fn->left, 1767 lockdep_is_held(&table->tb6_lock)); 1768 child_right = rcu_dereference_protected(fn->right, 1769 lockdep_is_held(&table->tb6_lock)); 1770 if (child_left) 1771 return rcu_dereference_protected(child_left->leaf, 1772 lockdep_is_held(&table->tb6_lock)); 1773 if (child_right) 1774 return rcu_dereference_protected(child_right->leaf, 1775 lockdep_is_held(&table->tb6_lock)); 1776 1777 fn = FIB6_SUBTREE(fn); 1778 } 1779 return NULL; 1780 } 1781 1782 /* 1783 * Called to trim the tree of intermediate nodes when possible. "fn" 1784 * is the node we want to try and remove. 1785 * Need to own table->tb6_lock 1786 */ 1787 1788 static struct fib6_node *fib6_repair_tree(struct net *net, 1789 struct fib6_table *table, 1790 struct fib6_node *fn) 1791 { 1792 int children; 1793 int nstate; 1794 struct fib6_node *child; 1795 struct fib6_walker *w; 1796 int iter = 0; 1797 1798 /* Set fn->leaf to null_entry for root node. */ 1799 if (fn->fn_flags & RTN_TL_ROOT) { 1800 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1801 return fn; 1802 } 1803 1804 for (;;) { 1805 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1806 lockdep_is_held(&table->tb6_lock)); 1807 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1808 lockdep_is_held(&table->tb6_lock)); 1809 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1810 lockdep_is_held(&table->tb6_lock)); 1811 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1812 lockdep_is_held(&table->tb6_lock)); 1813 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1814 lockdep_is_held(&table->tb6_lock)); 1815 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1816 lockdep_is_held(&table->tb6_lock)); 1817 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1818 lockdep_is_held(&table->tb6_lock)); 1819 struct fib6_info *new_fn_leaf; 1820 1821 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1822 iter++; 1823 1824 WARN_ON(fn->fn_flags & RTN_RTINFO); 1825 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1826 WARN_ON(fn_leaf); 1827 1828 children = 0; 1829 child = NULL; 1830 if (fn_r) { 1831 child = fn_r; 1832 children |= 1; 1833 } 1834 if (fn_l) { 1835 child = fn_l; 1836 children |= 2; 1837 } 1838 1839 if (children == 3 || FIB6_SUBTREE(fn) 1840 #ifdef CONFIG_IPV6_SUBTREES 1841 /* Subtree root (i.e. fn) may have one child */ 1842 || (children && fn->fn_flags & RTN_ROOT) 1843 #endif 1844 ) { 1845 new_fn_leaf = fib6_find_prefix(net, table, fn); 1846 #if RT6_DEBUG >= 2 1847 if (!new_fn_leaf) { 1848 WARN_ON(!new_fn_leaf); 1849 new_fn_leaf = net->ipv6.fib6_null_entry; 1850 } 1851 #endif 1852 fib6_info_hold(new_fn_leaf); 1853 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1854 return pn; 1855 } 1856 1857 #ifdef CONFIG_IPV6_SUBTREES 1858 if (FIB6_SUBTREE(pn) == fn) { 1859 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1860 RCU_INIT_POINTER(pn->subtree, NULL); 1861 nstate = FWS_L; 1862 } else { 1863 WARN_ON(fn->fn_flags & RTN_ROOT); 1864 #endif 1865 if (pn_r == fn) 1866 rcu_assign_pointer(pn->right, child); 1867 else if (pn_l == fn) 1868 rcu_assign_pointer(pn->left, child); 1869 #if RT6_DEBUG >= 2 1870 else 1871 WARN_ON(1); 1872 #endif 1873 if (child) 1874 rcu_assign_pointer(child->parent, pn); 1875 nstate = FWS_R; 1876 #ifdef CONFIG_IPV6_SUBTREES 1877 } 1878 #endif 1879 1880 read_lock(&net->ipv6.fib6_walker_lock); 1881 FOR_WALKERS(net, w) { 1882 if (!child) { 1883 if (w->node == fn) { 1884 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n", 1885 w, w->state, nstate); 1886 w->node = pn; 1887 w->state = nstate; 1888 } 1889 } else { 1890 if (w->node == fn) { 1891 w->node = child; 1892 if (children&2) { 1893 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1894 w, w->state); 1895 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1896 } else { 1897 pr_debug("W %p adjusted by delnode 2, s=%d\n", 1898 w, w->state); 1899 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1900 } 1901 } 1902 } 1903 } 1904 read_unlock(&net->ipv6.fib6_walker_lock); 1905 1906 node_free(net, fn); 1907 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1908 return pn; 1909 1910 RCU_INIT_POINTER(pn->leaf, NULL); 1911 fib6_info_release(pn_leaf); 1912 fn = pn; 1913 } 1914 } 1915 1916 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1917 struct fib6_info __rcu **rtp, struct nl_info *info) 1918 { 1919 struct fib6_info *leaf, *replace_rt = NULL; 1920 struct fib6_walker *w; 1921 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1922 lockdep_is_held(&table->tb6_lock)); 1923 struct net *net = info->nl_net; 1924 bool notify_del = false; 1925 1926 /* If the deleted route is the first in the node and it is not part of 1927 * a multipath route, then we need to replace it with the next route 1928 * in the node, if exists. 1929 */ 1930 leaf = rcu_dereference_protected(fn->leaf, 1931 lockdep_is_held(&table->tb6_lock)); 1932 if (leaf == rt && !rt->fib6_nsiblings) { 1933 if (rcu_access_pointer(rt->fib6_next)) 1934 replace_rt = rcu_dereference_protected(rt->fib6_next, 1935 lockdep_is_held(&table->tb6_lock)); 1936 else 1937 notify_del = true; 1938 } 1939 1940 /* Unlink it */ 1941 *rtp = rt->fib6_next; 1942 rt->fib6_node = NULL; 1943 net->ipv6.rt6_stats->fib_rt_entries--; 1944 net->ipv6.rt6_stats->fib_discarded_routes++; 1945 1946 /* Reset round-robin state, if necessary */ 1947 if (rcu_access_pointer(fn->rr_ptr) == rt) 1948 fn->rr_ptr = NULL; 1949 1950 /* Remove this entry from other siblings */ 1951 if (rt->fib6_nsiblings) { 1952 struct fib6_info *sibling, *next_sibling; 1953 1954 /* The route is deleted from a multipath route. If this 1955 * multipath route is the first route in the node, then we need 1956 * to emit a delete notification. Otherwise, we need to skip 1957 * the notification. 1958 */ 1959 if (rt->fib6_metric == leaf->fib6_metric && 1960 rt6_qualify_for_ecmp(leaf)) 1961 notify_del = true; 1962 list_for_each_entry_safe(sibling, next_sibling, 1963 &rt->fib6_siblings, fib6_siblings) 1964 sibling->fib6_nsiblings--; 1965 rt->fib6_nsiblings = 0; 1966 list_del_rcu(&rt->fib6_siblings); 1967 rt6_multipath_rebalance(next_sibling); 1968 } 1969 1970 /* Adjust walkers */ 1971 read_lock(&net->ipv6.fib6_walker_lock); 1972 FOR_WALKERS(net, w) { 1973 if (w->state == FWS_C && w->leaf == rt) { 1974 pr_debug("walker %p adjusted by delroute\n", w); 1975 w->leaf = rcu_dereference_protected(rt->fib6_next, 1976 lockdep_is_held(&table->tb6_lock)); 1977 if (!w->leaf) 1978 w->state = FWS_U; 1979 } 1980 } 1981 read_unlock(&net->ipv6.fib6_walker_lock); 1982 1983 /* If it was last route, call fib6_repair_tree() to: 1984 * 1. For root node, put back null_entry as how the table was created. 1985 * 2. For other nodes, expunge its radix tree node. 1986 */ 1987 if (!rcu_access_pointer(fn->leaf)) { 1988 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1989 fn->fn_flags &= ~RTN_RTINFO; 1990 net->ipv6.rt6_stats->fib_route_nodes--; 1991 } 1992 fn = fib6_repair_tree(net, table, fn); 1993 } 1994 1995 fib6_purge_rt(rt, fn, net); 1996 1997 if (!info->skip_notify_kernel) { 1998 if (notify_del) 1999 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 2000 rt, NULL); 2001 else if (replace_rt) 2002 call_fib6_entry_notifiers_replace(net, replace_rt); 2003 } 2004 if (!info->skip_notify) 2005 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 2006 2007 fib6_info_release(rt); 2008 } 2009 2010 /* Need to own table->tb6_lock */ 2011 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2012 { 2013 struct net *net = info->nl_net; 2014 struct fib6_info __rcu **rtp; 2015 struct fib6_info __rcu **rtp_next; 2016 struct fib6_table *table; 2017 struct fib6_node *fn; 2018 2019 if (rt == net->ipv6.fib6_null_entry) 2020 return -ENOENT; 2021 2022 table = rt->fib6_table; 2023 fn = rcu_dereference_protected(rt->fib6_node, 2024 lockdep_is_held(&table->tb6_lock)); 2025 if (!fn) 2026 return -ENOENT; 2027 2028 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2029 2030 /* 2031 * Walk the leaf entries looking for ourself 2032 */ 2033 2034 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2035 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2036 lockdep_is_held(&table->tb6_lock)); 2037 if (rt == cur) { 2038 if (fib6_requires_src(cur)) 2039 fib6_routes_require_src_dec(info->nl_net); 2040 fib6_del_route(table, fn, rtp, info); 2041 return 0; 2042 } 2043 rtp_next = &cur->fib6_next; 2044 } 2045 return -ENOENT; 2046 } 2047 2048 /* 2049 * Tree traversal function. 2050 * 2051 * Certainly, it is not interrupt safe. 2052 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2053 * It means, that we can modify tree during walking 2054 * and use this function for garbage collection, clone pruning, 2055 * cleaning tree when a device goes down etc. etc. 2056 * 2057 * It guarantees that every node will be traversed, 2058 * and that it will be traversed only once. 2059 * 2060 * Callback function w->func may return: 2061 * 0 -> continue walking. 2062 * positive value -> walking is suspended (used by tree dumps, 2063 * and probably by gc, if it will be split to several slices) 2064 * negative value -> terminate walking. 2065 * 2066 * The function itself returns: 2067 * 0 -> walk is complete. 2068 * >0 -> walk is incomplete (i.e. suspended) 2069 * <0 -> walk is terminated by an error. 2070 * 2071 * This function is called with tb6_lock held. 2072 */ 2073 2074 static int fib6_walk_continue(struct fib6_walker *w) 2075 { 2076 struct fib6_node *fn, *pn, *left, *right; 2077 2078 /* w->root should always be table->tb6_root */ 2079 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2080 2081 for (;;) { 2082 fn = w->node; 2083 if (!fn) 2084 return 0; 2085 2086 switch (w->state) { 2087 #ifdef CONFIG_IPV6_SUBTREES 2088 case FWS_S: 2089 if (FIB6_SUBTREE(fn)) { 2090 w->node = FIB6_SUBTREE(fn); 2091 continue; 2092 } 2093 w->state = FWS_L; 2094 fallthrough; 2095 #endif 2096 case FWS_L: 2097 left = rcu_dereference_protected(fn->left, 1); 2098 if (left) { 2099 w->node = left; 2100 w->state = FWS_INIT; 2101 continue; 2102 } 2103 w->state = FWS_R; 2104 fallthrough; 2105 case FWS_R: 2106 right = rcu_dereference_protected(fn->right, 1); 2107 if (right) { 2108 w->node = right; 2109 w->state = FWS_INIT; 2110 continue; 2111 } 2112 w->state = FWS_C; 2113 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2114 fallthrough; 2115 case FWS_C: 2116 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2117 int err; 2118 2119 if (w->skip) { 2120 w->skip--; 2121 goto skip; 2122 } 2123 2124 err = w->func(w); 2125 if (err) 2126 return err; 2127 2128 w->count++; 2129 continue; 2130 } 2131 skip: 2132 w->state = FWS_U; 2133 fallthrough; 2134 case FWS_U: 2135 if (fn == w->root) 2136 return 0; 2137 pn = rcu_dereference_protected(fn->parent, 1); 2138 left = rcu_dereference_protected(pn->left, 1); 2139 right = rcu_dereference_protected(pn->right, 1); 2140 w->node = pn; 2141 #ifdef CONFIG_IPV6_SUBTREES 2142 if (FIB6_SUBTREE(pn) == fn) { 2143 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2144 w->state = FWS_L; 2145 continue; 2146 } 2147 #endif 2148 if (left == fn) { 2149 w->state = FWS_R; 2150 continue; 2151 } 2152 if (right == fn) { 2153 w->state = FWS_C; 2154 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2155 continue; 2156 } 2157 #if RT6_DEBUG >= 2 2158 WARN_ON(1); 2159 #endif 2160 } 2161 } 2162 } 2163 2164 static int fib6_walk(struct net *net, struct fib6_walker *w) 2165 { 2166 int res; 2167 2168 w->state = FWS_INIT; 2169 w->node = w->root; 2170 2171 fib6_walker_link(net, w); 2172 res = fib6_walk_continue(w); 2173 if (res <= 0) 2174 fib6_walker_unlink(net, w); 2175 return res; 2176 } 2177 2178 static int fib6_clean_node(struct fib6_walker *w) 2179 { 2180 int res; 2181 struct fib6_info *rt; 2182 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2183 struct nl_info info = { 2184 .nl_net = c->net, 2185 .skip_notify = c->skip_notify, 2186 }; 2187 2188 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2189 READ_ONCE(w->node->fn_sernum) != c->sernum) 2190 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2191 2192 if (!c->func) { 2193 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2194 w->leaf = NULL; 2195 return 0; 2196 } 2197 2198 for_each_fib6_walker_rt(w) { 2199 res = c->func(rt, c->arg); 2200 if (res == -1) { 2201 w->leaf = rt; 2202 res = fib6_del(rt, &info); 2203 if (res) { 2204 #if RT6_DEBUG >= 2 2205 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2206 __func__, rt, 2207 rcu_access_pointer(rt->fib6_node), 2208 res); 2209 #endif 2210 continue; 2211 } 2212 return 0; 2213 } else if (res == -2) { 2214 if (WARN_ON(!rt->fib6_nsiblings)) 2215 continue; 2216 rt = list_last_entry(&rt->fib6_siblings, 2217 struct fib6_info, fib6_siblings); 2218 continue; 2219 } 2220 WARN_ON(res != 0); 2221 } 2222 w->leaf = rt; 2223 return 0; 2224 } 2225 2226 /* 2227 * Convenient frontend to tree walker. 2228 * 2229 * func is called on each route. 2230 * It may return -2 -> skip multipath route. 2231 * -1 -> delete this route. 2232 * 0 -> continue walking 2233 */ 2234 2235 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2236 int (*func)(struct fib6_info *, void *arg), 2237 int sernum, void *arg, bool skip_notify) 2238 { 2239 struct fib6_cleaner c; 2240 2241 c.w.root = root; 2242 c.w.func = fib6_clean_node; 2243 c.w.count = 0; 2244 c.w.skip = 0; 2245 c.w.skip_in_node = 0; 2246 c.func = func; 2247 c.sernum = sernum; 2248 c.arg = arg; 2249 c.net = net; 2250 c.skip_notify = skip_notify; 2251 2252 fib6_walk(net, &c.w); 2253 } 2254 2255 static void __fib6_clean_all(struct net *net, 2256 int (*func)(struct fib6_info *, void *), 2257 int sernum, void *arg, bool skip_notify) 2258 { 2259 struct fib6_table *table; 2260 struct hlist_head *head; 2261 unsigned int h; 2262 2263 rcu_read_lock(); 2264 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2265 head = &net->ipv6.fib_table_hash[h]; 2266 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2267 spin_lock_bh(&table->tb6_lock); 2268 fib6_clean_tree(net, &table->tb6_root, 2269 func, sernum, arg, skip_notify); 2270 spin_unlock_bh(&table->tb6_lock); 2271 } 2272 } 2273 rcu_read_unlock(); 2274 } 2275 2276 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2277 void *arg) 2278 { 2279 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2280 } 2281 2282 void fib6_clean_all_skip_notify(struct net *net, 2283 int (*func)(struct fib6_info *, void *), 2284 void *arg) 2285 { 2286 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2287 } 2288 2289 static void fib6_flush_trees(struct net *net) 2290 { 2291 int new_sernum = fib6_new_sernum(net); 2292 2293 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2294 } 2295 2296 /* 2297 * Garbage collection 2298 */ 2299 2300 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args) 2301 { 2302 unsigned long now = jiffies; 2303 2304 /* 2305 * check addrconf expiration here. 2306 * Routes are expired even if they are in use. 2307 */ 2308 2309 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2310 if (time_after(now, rt->expires)) { 2311 pr_debug("expiring %p\n", rt); 2312 return -1; 2313 } 2314 gc_args->more++; 2315 } 2316 2317 /* Also age clones in the exception table. 2318 * Note, that clones are aged out 2319 * only if they are not in use now. 2320 */ 2321 rt6_age_exceptions(rt, gc_args, now); 2322 2323 return 0; 2324 } 2325 2326 static void fib6_gc_table(struct net *net, 2327 struct fib6_table *tb6, 2328 struct fib6_gc_args *gc_args) 2329 { 2330 struct fib6_info *rt; 2331 struct hlist_node *n; 2332 struct nl_info info = { 2333 .nl_net = net, 2334 .skip_notify = false, 2335 }; 2336 2337 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link) 2338 if (fib6_age(rt, gc_args) == -1) 2339 fib6_del(rt, &info); 2340 } 2341 2342 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args) 2343 { 2344 struct fib6_table *table; 2345 struct hlist_head *head; 2346 unsigned int h; 2347 2348 rcu_read_lock(); 2349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2350 head = &net->ipv6.fib_table_hash[h]; 2351 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2352 spin_lock_bh(&table->tb6_lock); 2353 2354 fib6_gc_table(net, table, gc_args); 2355 2356 spin_unlock_bh(&table->tb6_lock); 2357 } 2358 } 2359 rcu_read_unlock(); 2360 } 2361 2362 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2363 { 2364 struct fib6_gc_args gc_args; 2365 unsigned long now; 2366 2367 if (force) { 2368 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2369 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2370 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2371 return; 2372 } 2373 gc_args.timeout = expires ? (int)expires : 2374 net->ipv6.sysctl.ip6_rt_gc_interval; 2375 gc_args.more = 0; 2376 2377 fib6_gc_all(net, &gc_args); 2378 now = jiffies; 2379 net->ipv6.ip6_rt_last_gc = now; 2380 2381 if (gc_args.more) 2382 mod_timer(&net->ipv6.ip6_fib_timer, 2383 round_jiffies(now 2384 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2385 else 2386 del_timer(&net->ipv6.ip6_fib_timer); 2387 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2388 } 2389 2390 static void fib6_gc_timer_cb(struct timer_list *t) 2391 { 2392 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2393 2394 fib6_run_gc(0, arg, true); 2395 } 2396 2397 static int __net_init fib6_net_init(struct net *net) 2398 { 2399 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2400 int err; 2401 2402 err = fib6_notifier_init(net); 2403 if (err) 2404 return err; 2405 2406 /* Default to 3-tuple */ 2407 net->ipv6.sysctl.multipath_hash_fields = 2408 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2409 2410 spin_lock_init(&net->ipv6.fib6_gc_lock); 2411 rwlock_init(&net->ipv6.fib6_walker_lock); 2412 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2413 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2414 2415 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2416 if (!net->ipv6.rt6_stats) 2417 goto out_notifier; 2418 2419 /* Avoid false sharing : Use at least a full cache line */ 2420 size = max_t(size_t, size, L1_CACHE_BYTES); 2421 2422 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2423 if (!net->ipv6.fib_table_hash) 2424 goto out_rt6_stats; 2425 2426 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2427 GFP_KERNEL); 2428 if (!net->ipv6.fib6_main_tbl) 2429 goto out_fib_table_hash; 2430 2431 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2432 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2433 net->ipv6.fib6_null_entry); 2434 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2435 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2436 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2437 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist); 2438 2439 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2440 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2441 GFP_KERNEL); 2442 if (!net->ipv6.fib6_local_tbl) 2443 goto out_fib6_main_tbl; 2444 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2445 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2446 net->ipv6.fib6_null_entry); 2447 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2448 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2449 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2450 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist); 2451 #endif 2452 fib6_tables_init(net); 2453 2454 return 0; 2455 2456 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2457 out_fib6_main_tbl: 2458 kfree(net->ipv6.fib6_main_tbl); 2459 #endif 2460 out_fib_table_hash: 2461 kfree(net->ipv6.fib_table_hash); 2462 out_rt6_stats: 2463 kfree(net->ipv6.rt6_stats); 2464 out_notifier: 2465 fib6_notifier_exit(net); 2466 return -ENOMEM; 2467 } 2468 2469 static void fib6_net_exit(struct net *net) 2470 { 2471 unsigned int i; 2472 2473 del_timer_sync(&net->ipv6.ip6_fib_timer); 2474 2475 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2476 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2477 struct hlist_node *tmp; 2478 struct fib6_table *tb; 2479 2480 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2481 hlist_del(&tb->tb6_hlist); 2482 fib6_free_table(tb); 2483 } 2484 } 2485 2486 kfree(net->ipv6.fib_table_hash); 2487 kfree(net->ipv6.rt6_stats); 2488 fib6_notifier_exit(net); 2489 } 2490 2491 static struct pernet_operations fib6_net_ops = { 2492 .init = fib6_net_init, 2493 .exit = fib6_net_exit, 2494 }; 2495 2496 static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = { 2497 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE, 2498 .dumpit = inet6_dump_fib, 2499 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE}, 2500 }; 2501 2502 int __init fib6_init(void) 2503 { 2504 int ret = -ENOMEM; 2505 2506 fib6_node_kmem = KMEM_CACHE(fib6_node, 2507 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT); 2508 if (!fib6_node_kmem) 2509 goto out; 2510 2511 ret = register_pernet_subsys(&fib6_net_ops); 2512 if (ret) 2513 goto out_kmem_cache_create; 2514 2515 ret = rtnl_register_many(fib6_rtnl_msg_handlers); 2516 if (ret) 2517 goto out_unregister_subsys; 2518 2519 __fib6_flush_trees = fib6_flush_trees; 2520 out: 2521 return ret; 2522 2523 out_unregister_subsys: 2524 unregister_pernet_subsys(&fib6_net_ops); 2525 out_kmem_cache_create: 2526 kmem_cache_destroy(fib6_node_kmem); 2527 goto out; 2528 } 2529 2530 void fib6_gc_cleanup(void) 2531 { 2532 unregister_pernet_subsys(&fib6_net_ops); 2533 kmem_cache_destroy(fib6_node_kmem); 2534 } 2535 2536 #ifdef CONFIG_PROC_FS 2537 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2538 { 2539 struct fib6_info *rt = v; 2540 struct ipv6_route_iter *iter = seq->private; 2541 struct fib6_nh *fib6_nh = rt->fib6_nh; 2542 unsigned int flags = rt->fib6_flags; 2543 const struct net_device *dev; 2544 2545 if (rt->nh) 2546 fib6_nh = nexthop_fib6_nh(rt->nh); 2547 2548 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2549 2550 #ifdef CONFIG_IPV6_SUBTREES 2551 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2552 #else 2553 seq_puts(seq, "00000000000000000000000000000000 00 "); 2554 #endif 2555 if (fib6_nh->fib_nh_gw_family) { 2556 flags |= RTF_GATEWAY; 2557 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2558 } else { 2559 seq_puts(seq, "00000000000000000000000000000000"); 2560 } 2561 2562 dev = fib6_nh->fib_nh_dev; 2563 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2564 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2565 flags, dev ? dev->name : ""); 2566 iter->w.leaf = NULL; 2567 return 0; 2568 } 2569 2570 static int ipv6_route_yield(struct fib6_walker *w) 2571 { 2572 struct ipv6_route_iter *iter = w->args; 2573 2574 if (!iter->skip) 2575 return 1; 2576 2577 do { 2578 iter->w.leaf = rcu_dereference_protected( 2579 iter->w.leaf->fib6_next, 2580 lockdep_is_held(&iter->tbl->tb6_lock)); 2581 iter->skip--; 2582 if (!iter->skip && iter->w.leaf) 2583 return 1; 2584 } while (iter->w.leaf); 2585 2586 return 0; 2587 } 2588 2589 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2590 struct net *net) 2591 { 2592 memset(&iter->w, 0, sizeof(iter->w)); 2593 iter->w.func = ipv6_route_yield; 2594 iter->w.root = &iter->tbl->tb6_root; 2595 iter->w.state = FWS_INIT; 2596 iter->w.node = iter->w.root; 2597 iter->w.args = iter; 2598 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2599 INIT_LIST_HEAD(&iter->w.lh); 2600 fib6_walker_link(net, &iter->w); 2601 } 2602 2603 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2604 struct net *net) 2605 { 2606 unsigned int h; 2607 struct hlist_node *node; 2608 2609 if (tbl) { 2610 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2611 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist)); 2612 } else { 2613 h = 0; 2614 node = NULL; 2615 } 2616 2617 while (!node && h < FIB6_TABLE_HASHSZ) { 2618 node = rcu_dereference( 2619 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2620 } 2621 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2622 } 2623 2624 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2625 { 2626 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2627 2628 if (iter->sernum != sernum) { 2629 iter->sernum = sernum; 2630 iter->w.state = FWS_INIT; 2631 iter->w.node = iter->w.root; 2632 WARN_ON(iter->w.skip); 2633 iter->w.skip = iter->w.count; 2634 } 2635 } 2636 2637 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2638 { 2639 int r; 2640 struct fib6_info *n; 2641 struct net *net = seq_file_net(seq); 2642 struct ipv6_route_iter *iter = seq->private; 2643 2644 ++(*pos); 2645 if (!v) 2646 goto iter_table; 2647 2648 n = rcu_dereference(((struct fib6_info *)v)->fib6_next); 2649 if (n) 2650 return n; 2651 2652 iter_table: 2653 ipv6_route_check_sernum(iter); 2654 spin_lock_bh(&iter->tbl->tb6_lock); 2655 r = fib6_walk_continue(&iter->w); 2656 spin_unlock_bh(&iter->tbl->tb6_lock); 2657 if (r > 0) { 2658 return iter->w.leaf; 2659 } else if (r < 0) { 2660 fib6_walker_unlink(net, &iter->w); 2661 return NULL; 2662 } 2663 fib6_walker_unlink(net, &iter->w); 2664 2665 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2666 if (!iter->tbl) 2667 return NULL; 2668 2669 ipv6_route_seq_setup_walk(iter, net); 2670 goto iter_table; 2671 } 2672 2673 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2674 __acquires(RCU) 2675 { 2676 struct net *net = seq_file_net(seq); 2677 struct ipv6_route_iter *iter = seq->private; 2678 2679 rcu_read_lock(); 2680 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2681 iter->skip = *pos; 2682 2683 if (iter->tbl) { 2684 loff_t p = 0; 2685 2686 ipv6_route_seq_setup_walk(iter, net); 2687 return ipv6_route_seq_next(seq, NULL, &p); 2688 } else { 2689 return NULL; 2690 } 2691 } 2692 2693 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2694 { 2695 struct fib6_walker *w = &iter->w; 2696 return w->node && !(w->state == FWS_U && w->node == w->root); 2697 } 2698 2699 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2700 __releases(RCU) 2701 { 2702 struct net *net = seq_file_net(seq); 2703 struct ipv6_route_iter *iter = seq->private; 2704 2705 if (ipv6_route_iter_active(iter)) 2706 fib6_walker_unlink(net, &iter->w); 2707 2708 rcu_read_unlock(); 2709 } 2710 2711 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2712 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2713 struct bpf_iter_meta *meta, 2714 void *v) 2715 { 2716 struct bpf_iter__ipv6_route ctx; 2717 2718 ctx.meta = meta; 2719 ctx.rt = v; 2720 return bpf_iter_run_prog(prog, &ctx); 2721 } 2722 2723 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2724 { 2725 struct ipv6_route_iter *iter = seq->private; 2726 struct bpf_iter_meta meta; 2727 struct bpf_prog *prog; 2728 int ret; 2729 2730 meta.seq = seq; 2731 prog = bpf_iter_get_info(&meta, false); 2732 if (!prog) 2733 return ipv6_route_native_seq_show(seq, v); 2734 2735 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2736 iter->w.leaf = NULL; 2737 2738 return ret; 2739 } 2740 2741 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2742 { 2743 struct bpf_iter_meta meta; 2744 struct bpf_prog *prog; 2745 2746 if (!v) { 2747 meta.seq = seq; 2748 prog = bpf_iter_get_info(&meta, true); 2749 if (prog) 2750 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2751 } 2752 2753 ipv6_route_native_seq_stop(seq, v); 2754 } 2755 #else 2756 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2757 { 2758 return ipv6_route_native_seq_show(seq, v); 2759 } 2760 2761 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2762 { 2763 ipv6_route_native_seq_stop(seq, v); 2764 } 2765 #endif 2766 2767 const struct seq_operations ipv6_route_seq_ops = { 2768 .start = ipv6_route_seq_start, 2769 .next = ipv6_route_seq_next, 2770 .stop = ipv6_route_seq_stop, 2771 .show = ipv6_route_seq_show 2772 }; 2773 #endif /* CONFIG_PROC_FS */ 2774