xref: /linux/net/ipv6/ip6_fib.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 #define RT6_DEBUG 2
42 
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48 
49 static struct kmem_cache *fib6_node_kmem __read_mostly;
50 
51 struct fib6_cleaner {
52 	struct fib6_walker w;
53 	struct net *net;
54 	int (*func)(struct rt6_info *, void *arg);
55 	int sernum;
56 	void *arg;
57 };
58 
59 #ifdef CONFIG_IPV6_SUBTREES
60 #define FWS_INIT FWS_S
61 #else
62 #define FWS_INIT FWS_L
63 #endif
64 
65 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
66 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
67 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
68 static int fib6_walk(struct net *net, struct fib6_walker *w);
69 static int fib6_walk_continue(struct fib6_walker *w);
70 
71 /*
72  *	A routing update causes an increase of the serial number on the
73  *	affected subtree. This allows for cached routes to be asynchronously
74  *	tested when modifications are made to the destination cache as a
75  *	result of redirects, path MTU changes, etc.
76  */
77 
78 static void fib6_gc_timer_cb(unsigned long arg);
79 
80 #define FOR_WALKERS(net, w) \
81 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
82 
83 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
84 {
85 	write_lock_bh(&net->ipv6.fib6_walker_lock);
86 	list_add(&w->lh, &net->ipv6.fib6_walkers);
87 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89 
90 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
91 {
92 	write_lock_bh(&net->ipv6.fib6_walker_lock);
93 	list_del(&w->lh);
94 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
95 }
96 
97 static int fib6_new_sernum(struct net *net)
98 {
99 	int new, old;
100 
101 	do {
102 		old = atomic_read(&net->ipv6.fib6_sernum);
103 		new = old < INT_MAX ? old + 1 : 1;
104 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
105 				old, new) != old);
106 	return new;
107 }
108 
109 enum {
110 	FIB6_NO_SERNUM_CHANGE = 0,
111 };
112 
113 /*
114  *	Auxiliary address test functions for the radix tree.
115  *
116  *	These assume a 32bit processor (although it will work on
117  *	64bit processors)
118  */
119 
120 /*
121  *	test bit
122  */
123 #if defined(__LITTLE_ENDIAN)
124 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
125 #else
126 # define BITOP_BE32_SWIZZLE	0
127 #endif
128 
129 static __be32 addr_bit_set(const void *token, int fn_bit)
130 {
131 	const __be32 *addr = token;
132 	/*
133 	 * Here,
134 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
135 	 * is optimized version of
136 	 *	htonl(1 << ((~fn_bit)&0x1F))
137 	 * See include/asm-generic/bitops/le.h.
138 	 */
139 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
140 	       addr[fn_bit >> 5];
141 }
142 
143 static struct fib6_node *node_alloc(void)
144 {
145 	struct fib6_node *fn;
146 
147 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
148 
149 	return fn;
150 }
151 
152 static void node_free_immediate(struct fib6_node *fn)
153 {
154 	kmem_cache_free(fib6_node_kmem, fn);
155 }
156 
157 static void node_free_rcu(struct rcu_head *head)
158 {
159 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
160 
161 	kmem_cache_free(fib6_node_kmem, fn);
162 }
163 
164 static void node_free(struct fib6_node *fn)
165 {
166 	call_rcu(&fn->rcu, node_free_rcu);
167 }
168 
169 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
170 {
171 	int cpu;
172 
173 	if (!non_pcpu_rt->rt6i_pcpu)
174 		return;
175 
176 	for_each_possible_cpu(cpu) {
177 		struct rt6_info **ppcpu_rt;
178 		struct rt6_info *pcpu_rt;
179 
180 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
181 		pcpu_rt = *ppcpu_rt;
182 		if (pcpu_rt) {
183 			dst_dev_put(&pcpu_rt->dst);
184 			dst_release(&pcpu_rt->dst);
185 			*ppcpu_rt = NULL;
186 		}
187 	}
188 
189 	free_percpu(non_pcpu_rt->rt6i_pcpu);
190 	non_pcpu_rt->rt6i_pcpu = NULL;
191 }
192 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
193 
194 static void fib6_free_table(struct fib6_table *table)
195 {
196 	inetpeer_invalidate_tree(&table->tb6_peers);
197 	kfree(table);
198 }
199 
200 static void fib6_link_table(struct net *net, struct fib6_table *tb)
201 {
202 	unsigned int h;
203 
204 	/*
205 	 * Initialize table lock at a single place to give lockdep a key,
206 	 * tables aren't visible prior to being linked to the list.
207 	 */
208 	rwlock_init(&tb->tb6_lock);
209 
210 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
211 
212 	/*
213 	 * No protection necessary, this is the only list mutatation
214 	 * operation, tables never disappear once they exist.
215 	 */
216 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
217 }
218 
219 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
220 
221 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
222 {
223 	struct fib6_table *table;
224 
225 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
226 	if (table) {
227 		table->tb6_id = id;
228 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
229 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
230 		inet_peer_base_init(&table->tb6_peers);
231 	}
232 
233 	return table;
234 }
235 
236 struct fib6_table *fib6_new_table(struct net *net, u32 id)
237 {
238 	struct fib6_table *tb;
239 
240 	if (id == 0)
241 		id = RT6_TABLE_MAIN;
242 	tb = fib6_get_table(net, id);
243 	if (tb)
244 		return tb;
245 
246 	tb = fib6_alloc_table(net, id);
247 	if (tb)
248 		fib6_link_table(net, tb);
249 
250 	return tb;
251 }
252 EXPORT_SYMBOL_GPL(fib6_new_table);
253 
254 struct fib6_table *fib6_get_table(struct net *net, u32 id)
255 {
256 	struct fib6_table *tb;
257 	struct hlist_head *head;
258 	unsigned int h;
259 
260 	if (id == 0)
261 		id = RT6_TABLE_MAIN;
262 	h = id & (FIB6_TABLE_HASHSZ - 1);
263 	rcu_read_lock();
264 	head = &net->ipv6.fib_table_hash[h];
265 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
266 		if (tb->tb6_id == id) {
267 			rcu_read_unlock();
268 			return tb;
269 		}
270 	}
271 	rcu_read_unlock();
272 
273 	return NULL;
274 }
275 EXPORT_SYMBOL_GPL(fib6_get_table);
276 
277 static void __net_init fib6_tables_init(struct net *net)
278 {
279 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
280 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
281 }
282 #else
283 
284 struct fib6_table *fib6_new_table(struct net *net, u32 id)
285 {
286 	return fib6_get_table(net, id);
287 }
288 
289 struct fib6_table *fib6_get_table(struct net *net, u32 id)
290 {
291 	  return net->ipv6.fib6_main_tbl;
292 }
293 
294 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
295 				   int flags, pol_lookup_t lookup)
296 {
297 	struct rt6_info *rt;
298 
299 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
300 	if (rt->dst.error == -EAGAIN) {
301 		ip6_rt_put(rt);
302 		rt = net->ipv6.ip6_null_entry;
303 		dst_hold(&rt->dst);
304 	}
305 
306 	return &rt->dst;
307 }
308 
309 static void __net_init fib6_tables_init(struct net *net)
310 {
311 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
312 }
313 
314 #endif
315 
316 unsigned int fib6_tables_seq_read(struct net *net)
317 {
318 	unsigned int h, fib_seq = 0;
319 
320 	rcu_read_lock();
321 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
322 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
323 		struct fib6_table *tb;
324 
325 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
326 			read_lock_bh(&tb->tb6_lock);
327 			fib_seq += tb->fib_seq;
328 			read_unlock_bh(&tb->tb6_lock);
329 		}
330 	}
331 	rcu_read_unlock();
332 
333 	return fib_seq;
334 }
335 
336 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
337 				    enum fib_event_type event_type,
338 				    struct rt6_info *rt)
339 {
340 	struct fib6_entry_notifier_info info = {
341 		.rt = rt,
342 	};
343 
344 	return call_fib6_notifier(nb, net, event_type, &info.info);
345 }
346 
347 static int call_fib6_entry_notifiers(struct net *net,
348 				     enum fib_event_type event_type,
349 				     struct rt6_info *rt)
350 {
351 	struct fib6_entry_notifier_info info = {
352 		.rt = rt,
353 	};
354 
355 	rt->rt6i_table->fib_seq++;
356 	return call_fib6_notifiers(net, event_type, &info.info);
357 }
358 
359 struct fib6_dump_arg {
360 	struct net *net;
361 	struct notifier_block *nb;
362 };
363 
364 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
365 {
366 	if (rt == arg->net->ipv6.ip6_null_entry)
367 		return;
368 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
369 }
370 
371 static int fib6_node_dump(struct fib6_walker *w)
372 {
373 	struct rt6_info *rt;
374 
375 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next)
376 		fib6_rt_dump(rt, w->args);
377 	w->leaf = NULL;
378 	return 0;
379 }
380 
381 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
382 			    struct fib6_walker *w)
383 {
384 	w->root = &tb->tb6_root;
385 	read_lock_bh(&tb->tb6_lock);
386 	fib6_walk(net, w);
387 	read_unlock_bh(&tb->tb6_lock);
388 }
389 
390 /* Called with rcu_read_lock() */
391 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
392 {
393 	struct fib6_dump_arg arg;
394 	struct fib6_walker *w;
395 	unsigned int h;
396 
397 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
398 	if (!w)
399 		return -ENOMEM;
400 
401 	w->func = fib6_node_dump;
402 	arg.net = net;
403 	arg.nb = nb;
404 	w->args = &arg;
405 
406 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
407 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
408 		struct fib6_table *tb;
409 
410 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
411 			fib6_table_dump(net, tb, w);
412 	}
413 
414 	kfree(w);
415 
416 	return 0;
417 }
418 
419 static int fib6_dump_node(struct fib6_walker *w)
420 {
421 	int res;
422 	struct rt6_info *rt;
423 
424 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
425 		res = rt6_dump_route(rt, w->args);
426 		if (res < 0) {
427 			/* Frame is full, suspend walking */
428 			w->leaf = rt;
429 			return 1;
430 		}
431 
432 		/* Multipath routes are dumped in one route with the
433 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
434 		 * last sibling of this route (no need to dump the
435 		 * sibling routes again)
436 		 */
437 		if (rt->rt6i_nsiblings)
438 			rt = list_last_entry(&rt->rt6i_siblings,
439 					     struct rt6_info,
440 					     rt6i_siblings);
441 	}
442 	w->leaf = NULL;
443 	return 0;
444 }
445 
446 static void fib6_dump_end(struct netlink_callback *cb)
447 {
448 	struct net *net = sock_net(cb->skb->sk);
449 	struct fib6_walker *w = (void *)cb->args[2];
450 
451 	if (w) {
452 		if (cb->args[4]) {
453 			cb->args[4] = 0;
454 			fib6_walker_unlink(net, w);
455 		}
456 		cb->args[2] = 0;
457 		kfree(w);
458 	}
459 	cb->done = (void *)cb->args[3];
460 	cb->args[1] = 3;
461 }
462 
463 static int fib6_dump_done(struct netlink_callback *cb)
464 {
465 	fib6_dump_end(cb);
466 	return cb->done ? cb->done(cb) : 0;
467 }
468 
469 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
470 			   struct netlink_callback *cb)
471 {
472 	struct net *net = sock_net(skb->sk);
473 	struct fib6_walker *w;
474 	int res;
475 
476 	w = (void *)cb->args[2];
477 	w->root = &table->tb6_root;
478 
479 	if (cb->args[4] == 0) {
480 		w->count = 0;
481 		w->skip = 0;
482 
483 		read_lock_bh(&table->tb6_lock);
484 		res = fib6_walk(net, w);
485 		read_unlock_bh(&table->tb6_lock);
486 		if (res > 0) {
487 			cb->args[4] = 1;
488 			cb->args[5] = w->root->fn_sernum;
489 		}
490 	} else {
491 		if (cb->args[5] != w->root->fn_sernum) {
492 			/* Begin at the root if the tree changed */
493 			cb->args[5] = w->root->fn_sernum;
494 			w->state = FWS_INIT;
495 			w->node = w->root;
496 			w->skip = w->count;
497 		} else
498 			w->skip = 0;
499 
500 		read_lock_bh(&table->tb6_lock);
501 		res = fib6_walk_continue(w);
502 		read_unlock_bh(&table->tb6_lock);
503 		if (res <= 0) {
504 			fib6_walker_unlink(net, w);
505 			cb->args[4] = 0;
506 		}
507 	}
508 
509 	return res;
510 }
511 
512 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
513 {
514 	struct net *net = sock_net(skb->sk);
515 	unsigned int h, s_h;
516 	unsigned int e = 0, s_e;
517 	struct rt6_rtnl_dump_arg arg;
518 	struct fib6_walker *w;
519 	struct fib6_table *tb;
520 	struct hlist_head *head;
521 	int res = 0;
522 
523 	s_h = cb->args[0];
524 	s_e = cb->args[1];
525 
526 	w = (void *)cb->args[2];
527 	if (!w) {
528 		/* New dump:
529 		 *
530 		 * 1. hook callback destructor.
531 		 */
532 		cb->args[3] = (long)cb->done;
533 		cb->done = fib6_dump_done;
534 
535 		/*
536 		 * 2. allocate and initialize walker.
537 		 */
538 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
539 		if (!w)
540 			return -ENOMEM;
541 		w->func = fib6_dump_node;
542 		cb->args[2] = (long)w;
543 	}
544 
545 	arg.skb = skb;
546 	arg.cb = cb;
547 	arg.net = net;
548 	w->args = &arg;
549 
550 	rcu_read_lock();
551 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
552 		e = 0;
553 		head = &net->ipv6.fib_table_hash[h];
554 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
555 			if (e < s_e)
556 				goto next;
557 			res = fib6_dump_table(tb, skb, cb);
558 			if (res != 0)
559 				goto out;
560 next:
561 			e++;
562 		}
563 	}
564 out:
565 	rcu_read_unlock();
566 	cb->args[1] = e;
567 	cb->args[0] = h;
568 
569 	res = res < 0 ? res : skb->len;
570 	if (res <= 0)
571 		fib6_dump_end(cb);
572 	return res;
573 }
574 
575 /*
576  *	Routing Table
577  *
578  *	return the appropriate node for a routing tree "add" operation
579  *	by either creating and inserting or by returning an existing
580  *	node.
581  */
582 
583 static struct fib6_node *fib6_add_1(struct fib6_node *root,
584 				     struct in6_addr *addr, int plen,
585 				     int offset, int allow_create,
586 				     int replace_required, int sernum,
587 				     struct netlink_ext_ack *extack)
588 {
589 	struct fib6_node *fn, *in, *ln;
590 	struct fib6_node *pn = NULL;
591 	struct rt6key *key;
592 	int	bit;
593 	__be32	dir = 0;
594 
595 	RT6_TRACE("fib6_add_1\n");
596 
597 	/* insert node in tree */
598 
599 	fn = root;
600 
601 	do {
602 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
603 
604 		/*
605 		 *	Prefix match
606 		 */
607 		if (plen < fn->fn_bit ||
608 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
609 			if (!allow_create) {
610 				if (replace_required) {
611 					NL_SET_ERR_MSG(extack,
612 						       "Can not replace route - no match found");
613 					pr_warn("Can't replace route, no match found\n");
614 					return ERR_PTR(-ENOENT);
615 				}
616 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
617 			}
618 			goto insert_above;
619 		}
620 
621 		/*
622 		 *	Exact match ?
623 		 */
624 
625 		if (plen == fn->fn_bit) {
626 			/* clean up an intermediate node */
627 			if (!(fn->fn_flags & RTN_RTINFO)) {
628 				rt6_release(fn->leaf);
629 				fn->leaf = NULL;
630 			}
631 
632 			fn->fn_sernum = sernum;
633 
634 			return fn;
635 		}
636 
637 		/*
638 		 *	We have more bits to go
639 		 */
640 
641 		/* Try to walk down on tree. */
642 		fn->fn_sernum = sernum;
643 		dir = addr_bit_set(addr, fn->fn_bit);
644 		pn = fn;
645 		fn = dir ? fn->right : fn->left;
646 	} while (fn);
647 
648 	if (!allow_create) {
649 		/* We should not create new node because
650 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
651 		 * I assume it is safe to require NLM_F_CREATE when
652 		 * REPLACE flag is used! Later we may want to remove the
653 		 * check for replace_required, because according
654 		 * to netlink specification, NLM_F_CREATE
655 		 * MUST be specified if new route is created.
656 		 * That would keep IPv6 consistent with IPv4
657 		 */
658 		if (replace_required) {
659 			NL_SET_ERR_MSG(extack,
660 				       "Can not replace route - no match found");
661 			pr_warn("Can't replace route, no match found\n");
662 			return ERR_PTR(-ENOENT);
663 		}
664 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
665 	}
666 	/*
667 	 *	We walked to the bottom of tree.
668 	 *	Create new leaf node without children.
669 	 */
670 
671 	ln = node_alloc();
672 
673 	if (!ln)
674 		return ERR_PTR(-ENOMEM);
675 	ln->fn_bit = plen;
676 
677 	ln->parent = pn;
678 	ln->fn_sernum = sernum;
679 
680 	if (dir)
681 		pn->right = ln;
682 	else
683 		pn->left  = ln;
684 
685 	return ln;
686 
687 
688 insert_above:
689 	/*
690 	 * split since we don't have a common prefix anymore or
691 	 * we have a less significant route.
692 	 * we've to insert an intermediate node on the list
693 	 * this new node will point to the one we need to create
694 	 * and the current
695 	 */
696 
697 	pn = fn->parent;
698 
699 	/* find 1st bit in difference between the 2 addrs.
700 
701 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
702 	   but if it is >= plen, the value is ignored in any case.
703 	 */
704 
705 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
706 
707 	/*
708 	 *		(intermediate)[in]
709 	 *	          /	   \
710 	 *	(new leaf node)[ln] (old node)[fn]
711 	 */
712 	if (plen > bit) {
713 		in = node_alloc();
714 		ln = node_alloc();
715 
716 		if (!in || !ln) {
717 			if (in)
718 				node_free_immediate(in);
719 			if (ln)
720 				node_free_immediate(ln);
721 			return ERR_PTR(-ENOMEM);
722 		}
723 
724 		/*
725 		 * new intermediate node.
726 		 * RTN_RTINFO will
727 		 * be off since that an address that chooses one of
728 		 * the branches would not match less specific routes
729 		 * in the other branch
730 		 */
731 
732 		in->fn_bit = bit;
733 
734 		in->parent = pn;
735 		in->leaf = fn->leaf;
736 		atomic_inc(&in->leaf->rt6i_ref);
737 
738 		in->fn_sernum = sernum;
739 
740 		/* update parent pointer */
741 		if (dir)
742 			pn->right = in;
743 		else
744 			pn->left  = in;
745 
746 		ln->fn_bit = plen;
747 
748 		ln->parent = in;
749 		fn->parent = in;
750 
751 		ln->fn_sernum = sernum;
752 
753 		if (addr_bit_set(addr, bit)) {
754 			in->right = ln;
755 			in->left  = fn;
756 		} else {
757 			in->left  = ln;
758 			in->right = fn;
759 		}
760 	} else { /* plen <= bit */
761 
762 		/*
763 		 *		(new leaf node)[ln]
764 		 *	          /	   \
765 		 *	     (old node)[fn] NULL
766 		 */
767 
768 		ln = node_alloc();
769 
770 		if (!ln)
771 			return ERR_PTR(-ENOMEM);
772 
773 		ln->fn_bit = plen;
774 
775 		ln->parent = pn;
776 
777 		ln->fn_sernum = sernum;
778 
779 		if (dir)
780 			pn->right = ln;
781 		else
782 			pn->left  = ln;
783 
784 		if (addr_bit_set(&key->addr, plen))
785 			ln->right = fn;
786 		else
787 			ln->left  = fn;
788 
789 		fn->parent = ln;
790 	}
791 	return ln;
792 }
793 
794 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
795 {
796 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
797 	       RTF_GATEWAY;
798 }
799 
800 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
801 {
802 	int i;
803 
804 	for (i = 0; i < RTAX_MAX; i++) {
805 		if (test_bit(i, mxc->mx_valid))
806 			mp[i] = mxc->mx[i];
807 	}
808 }
809 
810 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
811 {
812 	if (!mxc->mx)
813 		return 0;
814 
815 	if (dst->flags & DST_HOST) {
816 		u32 *mp = dst_metrics_write_ptr(dst);
817 
818 		if (unlikely(!mp))
819 			return -ENOMEM;
820 
821 		fib6_copy_metrics(mp, mxc);
822 	} else {
823 		dst_init_metrics(dst, mxc->mx, false);
824 
825 		/* We've stolen mx now. */
826 		mxc->mx = NULL;
827 	}
828 
829 	return 0;
830 }
831 
832 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
833 			  struct net *net)
834 {
835 	if (atomic_read(&rt->rt6i_ref) != 1) {
836 		/* This route is used as dummy address holder in some split
837 		 * nodes. It is not leaked, but it still holds other resources,
838 		 * which must be released in time. So, scan ascendant nodes
839 		 * and replace dummy references to this route with references
840 		 * to still alive ones.
841 		 */
842 		while (fn) {
843 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
844 				fn->leaf = fib6_find_prefix(net, fn);
845 				atomic_inc(&fn->leaf->rt6i_ref);
846 				rt6_release(rt);
847 			}
848 			fn = fn->parent;
849 		}
850 	}
851 }
852 
853 /*
854  *	Insert routing information in a node.
855  */
856 
857 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
858 			    struct nl_info *info, struct mx6_config *mxc)
859 {
860 	struct rt6_info *iter = NULL;
861 	struct rt6_info **ins;
862 	struct rt6_info **fallback_ins = NULL;
863 	int replace = (info->nlh &&
864 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
865 	int add = (!info->nlh ||
866 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
867 	int found = 0;
868 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
869 	u16 nlflags = NLM_F_EXCL;
870 	int err;
871 
872 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
873 		nlflags |= NLM_F_APPEND;
874 
875 	ins = &fn->leaf;
876 
877 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
878 		/*
879 		 *	Search for duplicates
880 		 */
881 
882 		if (iter->rt6i_metric == rt->rt6i_metric) {
883 			/*
884 			 *	Same priority level
885 			 */
886 			if (info->nlh &&
887 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
888 				return -EEXIST;
889 
890 			nlflags &= ~NLM_F_EXCL;
891 			if (replace) {
892 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
893 					found++;
894 					break;
895 				}
896 				if (rt_can_ecmp)
897 					fallback_ins = fallback_ins ?: ins;
898 				goto next_iter;
899 			}
900 
901 			if (rt6_duplicate_nexthop(iter, rt)) {
902 				if (rt->rt6i_nsiblings)
903 					rt->rt6i_nsiblings = 0;
904 				if (!(iter->rt6i_flags & RTF_EXPIRES))
905 					return -EEXIST;
906 				if (!(rt->rt6i_flags & RTF_EXPIRES))
907 					rt6_clean_expires(iter);
908 				else
909 					rt6_set_expires(iter, rt->dst.expires);
910 				iter->rt6i_pmtu = rt->rt6i_pmtu;
911 				return -EEXIST;
912 			}
913 			/* If we have the same destination and the same metric,
914 			 * but not the same gateway, then the route we try to
915 			 * add is sibling to this route, increment our counter
916 			 * of siblings, and later we will add our route to the
917 			 * list.
918 			 * Only static routes (which don't have flag
919 			 * RTF_EXPIRES) are used for ECMPv6.
920 			 *
921 			 * To avoid long list, we only had siblings if the
922 			 * route have a gateway.
923 			 */
924 			if (rt_can_ecmp &&
925 			    rt6_qualify_for_ecmp(iter))
926 				rt->rt6i_nsiblings++;
927 		}
928 
929 		if (iter->rt6i_metric > rt->rt6i_metric)
930 			break;
931 
932 next_iter:
933 		ins = &iter->dst.rt6_next;
934 	}
935 
936 	if (fallback_ins && !found) {
937 		/* No ECMP-able route found, replace first non-ECMP one */
938 		ins = fallback_ins;
939 		iter = *ins;
940 		found++;
941 	}
942 
943 	/* Reset round-robin state, if necessary */
944 	if (ins == &fn->leaf)
945 		fn->rr_ptr = NULL;
946 
947 	/* Link this route to others same route. */
948 	if (rt->rt6i_nsiblings) {
949 		unsigned int rt6i_nsiblings;
950 		struct rt6_info *sibling, *temp_sibling;
951 
952 		/* Find the first route that have the same metric */
953 		sibling = fn->leaf;
954 		while (sibling) {
955 			if (sibling->rt6i_metric == rt->rt6i_metric &&
956 			    rt6_qualify_for_ecmp(sibling)) {
957 				list_add_tail(&rt->rt6i_siblings,
958 					      &sibling->rt6i_siblings);
959 				break;
960 			}
961 			sibling = sibling->dst.rt6_next;
962 		}
963 		/* For each sibling in the list, increment the counter of
964 		 * siblings. BUG() if counters does not match, list of siblings
965 		 * is broken!
966 		 */
967 		rt6i_nsiblings = 0;
968 		list_for_each_entry_safe(sibling, temp_sibling,
969 					 &rt->rt6i_siblings, rt6i_siblings) {
970 			sibling->rt6i_nsiblings++;
971 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
972 			rt6i_nsiblings++;
973 		}
974 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
975 	}
976 
977 	/*
978 	 *	insert node
979 	 */
980 	if (!replace) {
981 		if (!add)
982 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
983 
984 add:
985 		nlflags |= NLM_F_CREATE;
986 		err = fib6_commit_metrics(&rt->dst, mxc);
987 		if (err)
988 			return err;
989 
990 		rt->dst.rt6_next = iter;
991 		*ins = rt;
992 		rcu_assign_pointer(rt->rt6i_node, fn);
993 		atomic_inc(&rt->rt6i_ref);
994 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
995 					  rt);
996 		if (!info->skip_notify)
997 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
998 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
999 
1000 		if (!(fn->fn_flags & RTN_RTINFO)) {
1001 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1002 			fn->fn_flags |= RTN_RTINFO;
1003 		}
1004 
1005 	} else {
1006 		int nsiblings;
1007 
1008 		if (!found) {
1009 			if (add)
1010 				goto add;
1011 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1012 			return -ENOENT;
1013 		}
1014 
1015 		err = fib6_commit_metrics(&rt->dst, mxc);
1016 		if (err)
1017 			return err;
1018 
1019 		*ins = rt;
1020 		rcu_assign_pointer(rt->rt6i_node, fn);
1021 		rt->dst.rt6_next = iter->dst.rt6_next;
1022 		atomic_inc(&rt->rt6i_ref);
1023 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1024 					  rt);
1025 		if (!info->skip_notify)
1026 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1027 		if (!(fn->fn_flags & RTN_RTINFO)) {
1028 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1029 			fn->fn_flags |= RTN_RTINFO;
1030 		}
1031 		nsiblings = iter->rt6i_nsiblings;
1032 		iter->rt6i_node = NULL;
1033 		fib6_purge_rt(iter, fn, info->nl_net);
1034 		if (fn->rr_ptr == iter)
1035 			fn->rr_ptr = NULL;
1036 		rt6_release(iter);
1037 
1038 		if (nsiblings) {
1039 			/* Replacing an ECMP route, remove all siblings */
1040 			ins = &rt->dst.rt6_next;
1041 			iter = *ins;
1042 			while (iter) {
1043 				if (iter->rt6i_metric > rt->rt6i_metric)
1044 					break;
1045 				if (rt6_qualify_for_ecmp(iter)) {
1046 					*ins = iter->dst.rt6_next;
1047 					iter->rt6i_node = NULL;
1048 					fib6_purge_rt(iter, fn, info->nl_net);
1049 					if (fn->rr_ptr == iter)
1050 						fn->rr_ptr = NULL;
1051 					rt6_release(iter);
1052 					nsiblings--;
1053 				} else {
1054 					ins = &iter->dst.rt6_next;
1055 				}
1056 				iter = *ins;
1057 			}
1058 			WARN_ON(nsiblings != 0);
1059 		}
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1066 {
1067 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1068 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1069 		mod_timer(&net->ipv6.ip6_fib_timer,
1070 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1071 }
1072 
1073 void fib6_force_start_gc(struct net *net)
1074 {
1075 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1076 		mod_timer(&net->ipv6.ip6_fib_timer,
1077 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1078 }
1079 
1080 /*
1081  *	Add routing information to the routing tree.
1082  *	<destination addr>/<source addr>
1083  *	with source addr info in sub-trees
1084  */
1085 
1086 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1087 	     struct nl_info *info, struct mx6_config *mxc,
1088 	     struct netlink_ext_ack *extack)
1089 {
1090 	struct fib6_node *fn, *pn = NULL;
1091 	int err = -ENOMEM;
1092 	int allow_create = 1;
1093 	int replace_required = 0;
1094 	int sernum = fib6_new_sernum(info->nl_net);
1095 
1096 	if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1097 		return -EINVAL;
1098 
1099 	if (info->nlh) {
1100 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1101 			allow_create = 0;
1102 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1103 			replace_required = 1;
1104 	}
1105 	if (!allow_create && !replace_required)
1106 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1107 
1108 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1109 			offsetof(struct rt6_info, rt6i_dst), allow_create,
1110 			replace_required, sernum, extack);
1111 	if (IS_ERR(fn)) {
1112 		err = PTR_ERR(fn);
1113 		fn = NULL;
1114 		goto out;
1115 	}
1116 
1117 	pn = fn;
1118 
1119 #ifdef CONFIG_IPV6_SUBTREES
1120 	if (rt->rt6i_src.plen) {
1121 		struct fib6_node *sn;
1122 
1123 		if (!fn->subtree) {
1124 			struct fib6_node *sfn;
1125 
1126 			/*
1127 			 * Create subtree.
1128 			 *
1129 			 *		fn[main tree]
1130 			 *		|
1131 			 *		sfn[subtree root]
1132 			 *		   \
1133 			 *		    sn[new leaf node]
1134 			 */
1135 
1136 			/* Create subtree root node */
1137 			sfn = node_alloc();
1138 			if (!sfn)
1139 				goto failure;
1140 
1141 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1142 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1143 			sfn->fn_flags = RTN_ROOT;
1144 			sfn->fn_sernum = sernum;
1145 
1146 			/* Now add the first leaf node to new subtree */
1147 
1148 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1149 					rt->rt6i_src.plen,
1150 					offsetof(struct rt6_info, rt6i_src),
1151 					allow_create, replace_required, sernum,
1152 					extack);
1153 
1154 			if (IS_ERR(sn)) {
1155 				/* If it is failed, discard just allocated
1156 				   root, and then (in failure) stale node
1157 				   in main tree.
1158 				 */
1159 				node_free_immediate(sfn);
1160 				err = PTR_ERR(sn);
1161 				goto failure;
1162 			}
1163 
1164 			/* Now link new subtree to main tree */
1165 			sfn->parent = fn;
1166 			fn->subtree = sfn;
1167 		} else {
1168 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1169 					rt->rt6i_src.plen,
1170 					offsetof(struct rt6_info, rt6i_src),
1171 					allow_create, replace_required, sernum,
1172 					extack);
1173 
1174 			if (IS_ERR(sn)) {
1175 				err = PTR_ERR(sn);
1176 				goto failure;
1177 			}
1178 		}
1179 
1180 		if (!fn->leaf) {
1181 			fn->leaf = rt;
1182 			atomic_inc(&rt->rt6i_ref);
1183 		}
1184 		fn = sn;
1185 	}
1186 #endif
1187 
1188 	err = fib6_add_rt2node(fn, rt, info, mxc);
1189 	if (!err) {
1190 		fib6_start_gc(info->nl_net, rt);
1191 		if (!(rt->rt6i_flags & RTF_CACHE))
1192 			fib6_prune_clones(info->nl_net, pn);
1193 	}
1194 
1195 out:
1196 	if (err) {
1197 #ifdef CONFIG_IPV6_SUBTREES
1198 		/*
1199 		 * If fib6_add_1 has cleared the old leaf pointer in the
1200 		 * super-tree leaf node we have to find a new one for it.
1201 		 */
1202 		if (pn != fn && pn->leaf == rt) {
1203 			pn->leaf = NULL;
1204 			atomic_dec(&rt->rt6i_ref);
1205 		}
1206 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1207 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1208 #if RT6_DEBUG >= 2
1209 			if (!pn->leaf) {
1210 				WARN_ON(pn->leaf == NULL);
1211 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1212 			}
1213 #endif
1214 			atomic_inc(&pn->leaf->rt6i_ref);
1215 		}
1216 #endif
1217 		goto failure;
1218 	}
1219 	return err;
1220 
1221 failure:
1222 	/* fn->leaf could be NULL if fn is an intermediate node and we
1223 	 * failed to add the new route to it in both subtree creation
1224 	 * failure and fib6_add_rt2node() failure case.
1225 	 * In both cases, fib6_repair_tree() should be called to fix
1226 	 * fn->leaf.
1227 	 */
1228 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1229 		fib6_repair_tree(info->nl_net, fn);
1230 	/* Always release dst as dst->__refcnt is guaranteed
1231 	 * to be taken before entering this function
1232 	 */
1233 	dst_release_immediate(&rt->dst);
1234 	return err;
1235 }
1236 
1237 /*
1238  *	Routing tree lookup
1239  *
1240  */
1241 
1242 struct lookup_args {
1243 	int			offset;		/* key offset on rt6_info	*/
1244 	const struct in6_addr	*addr;		/* search key			*/
1245 };
1246 
1247 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1248 				       struct lookup_args *args)
1249 {
1250 	struct fib6_node *fn;
1251 	__be32 dir;
1252 
1253 	if (unlikely(args->offset == 0))
1254 		return NULL;
1255 
1256 	/*
1257 	 *	Descend on a tree
1258 	 */
1259 
1260 	fn = root;
1261 
1262 	for (;;) {
1263 		struct fib6_node *next;
1264 
1265 		dir = addr_bit_set(args->addr, fn->fn_bit);
1266 
1267 		next = dir ? fn->right : fn->left;
1268 
1269 		if (next) {
1270 			fn = next;
1271 			continue;
1272 		}
1273 		break;
1274 	}
1275 
1276 	while (fn) {
1277 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1278 			struct rt6key *key;
1279 
1280 			key = (struct rt6key *) ((u8 *) fn->leaf +
1281 						 args->offset);
1282 
1283 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1284 #ifdef CONFIG_IPV6_SUBTREES
1285 				if (fn->subtree) {
1286 					struct fib6_node *sfn;
1287 					sfn = fib6_lookup_1(fn->subtree,
1288 							    args + 1);
1289 					if (!sfn)
1290 						goto backtrack;
1291 					fn = sfn;
1292 				}
1293 #endif
1294 				if (fn->fn_flags & RTN_RTINFO)
1295 					return fn;
1296 			}
1297 		}
1298 #ifdef CONFIG_IPV6_SUBTREES
1299 backtrack:
1300 #endif
1301 		if (fn->fn_flags & RTN_ROOT)
1302 			break;
1303 
1304 		fn = fn->parent;
1305 	}
1306 
1307 	return NULL;
1308 }
1309 
1310 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1311 			      const struct in6_addr *saddr)
1312 {
1313 	struct fib6_node *fn;
1314 	struct lookup_args args[] = {
1315 		{
1316 			.offset = offsetof(struct rt6_info, rt6i_dst),
1317 			.addr = daddr,
1318 		},
1319 #ifdef CONFIG_IPV6_SUBTREES
1320 		{
1321 			.offset = offsetof(struct rt6_info, rt6i_src),
1322 			.addr = saddr,
1323 		},
1324 #endif
1325 		{
1326 			.offset = 0,	/* sentinel */
1327 		}
1328 	};
1329 
1330 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1331 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1332 		fn = root;
1333 
1334 	return fn;
1335 }
1336 
1337 /*
1338  *	Get node with specified destination prefix (and source prefix,
1339  *	if subtrees are used)
1340  */
1341 
1342 
1343 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1344 				       const struct in6_addr *addr,
1345 				       int plen, int offset)
1346 {
1347 	struct fib6_node *fn;
1348 
1349 	for (fn = root; fn ; ) {
1350 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1351 
1352 		/*
1353 		 *	Prefix match
1354 		 */
1355 		if (plen < fn->fn_bit ||
1356 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1357 			return NULL;
1358 
1359 		if (plen == fn->fn_bit)
1360 			return fn;
1361 
1362 		/*
1363 		 *	We have more bits to go
1364 		 */
1365 		if (addr_bit_set(addr, fn->fn_bit))
1366 			fn = fn->right;
1367 		else
1368 			fn = fn->left;
1369 	}
1370 	return NULL;
1371 }
1372 
1373 struct fib6_node *fib6_locate(struct fib6_node *root,
1374 			      const struct in6_addr *daddr, int dst_len,
1375 			      const struct in6_addr *saddr, int src_len)
1376 {
1377 	struct fib6_node *fn;
1378 
1379 	fn = fib6_locate_1(root, daddr, dst_len,
1380 			   offsetof(struct rt6_info, rt6i_dst));
1381 
1382 #ifdef CONFIG_IPV6_SUBTREES
1383 	if (src_len) {
1384 		WARN_ON(saddr == NULL);
1385 		if (fn && fn->subtree)
1386 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1387 					   offsetof(struct rt6_info, rt6i_src));
1388 	}
1389 #endif
1390 
1391 	if (fn && fn->fn_flags & RTN_RTINFO)
1392 		return fn;
1393 
1394 	return NULL;
1395 }
1396 
1397 
1398 /*
1399  *	Deletion
1400  *
1401  */
1402 
1403 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1404 {
1405 	if (fn->fn_flags & RTN_ROOT)
1406 		return net->ipv6.ip6_null_entry;
1407 
1408 	while (fn) {
1409 		if (fn->left)
1410 			return fn->left->leaf;
1411 		if (fn->right)
1412 			return fn->right->leaf;
1413 
1414 		fn = FIB6_SUBTREE(fn);
1415 	}
1416 	return NULL;
1417 }
1418 
1419 /*
1420  *	Called to trim the tree of intermediate nodes when possible. "fn"
1421  *	is the node we want to try and remove.
1422  */
1423 
1424 static struct fib6_node *fib6_repair_tree(struct net *net,
1425 					   struct fib6_node *fn)
1426 {
1427 	int children;
1428 	int nstate;
1429 	struct fib6_node *child, *pn;
1430 	struct fib6_walker *w;
1431 	int iter = 0;
1432 
1433 	for (;;) {
1434 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1435 		iter++;
1436 
1437 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1438 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1439 		WARN_ON(fn->leaf);
1440 
1441 		children = 0;
1442 		child = NULL;
1443 		if (fn->right)
1444 			child = fn->right, children |= 1;
1445 		if (fn->left)
1446 			child = fn->left, children |= 2;
1447 
1448 		if (children == 3 || FIB6_SUBTREE(fn)
1449 #ifdef CONFIG_IPV6_SUBTREES
1450 		    /* Subtree root (i.e. fn) may have one child */
1451 		    || (children && fn->fn_flags & RTN_ROOT)
1452 #endif
1453 		    ) {
1454 			fn->leaf = fib6_find_prefix(net, fn);
1455 #if RT6_DEBUG >= 2
1456 			if (!fn->leaf) {
1457 				WARN_ON(!fn->leaf);
1458 				fn->leaf = net->ipv6.ip6_null_entry;
1459 			}
1460 #endif
1461 			atomic_inc(&fn->leaf->rt6i_ref);
1462 			return fn->parent;
1463 		}
1464 
1465 		pn = fn->parent;
1466 #ifdef CONFIG_IPV6_SUBTREES
1467 		if (FIB6_SUBTREE(pn) == fn) {
1468 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1469 			FIB6_SUBTREE(pn) = NULL;
1470 			nstate = FWS_L;
1471 		} else {
1472 			WARN_ON(fn->fn_flags & RTN_ROOT);
1473 #endif
1474 			if (pn->right == fn)
1475 				pn->right = child;
1476 			else if (pn->left == fn)
1477 				pn->left = child;
1478 #if RT6_DEBUG >= 2
1479 			else
1480 				WARN_ON(1);
1481 #endif
1482 			if (child)
1483 				child->parent = pn;
1484 			nstate = FWS_R;
1485 #ifdef CONFIG_IPV6_SUBTREES
1486 		}
1487 #endif
1488 
1489 		read_lock(&net->ipv6.fib6_walker_lock);
1490 		FOR_WALKERS(net, w) {
1491 			if (!child) {
1492 				if (w->root == fn) {
1493 					w->root = w->node = NULL;
1494 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1495 				} else if (w->node == fn) {
1496 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1497 					w->node = pn;
1498 					w->state = nstate;
1499 				}
1500 			} else {
1501 				if (w->root == fn) {
1502 					w->root = child;
1503 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1504 				}
1505 				if (w->node == fn) {
1506 					w->node = child;
1507 					if (children&2) {
1508 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1509 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1510 					} else {
1511 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1512 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1513 					}
1514 				}
1515 			}
1516 		}
1517 		read_unlock(&net->ipv6.fib6_walker_lock);
1518 
1519 		node_free(fn);
1520 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1521 			return pn;
1522 
1523 		rt6_release(pn->leaf);
1524 		pn->leaf = NULL;
1525 		fn = pn;
1526 	}
1527 }
1528 
1529 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1530 			   struct nl_info *info)
1531 {
1532 	struct fib6_walker *w;
1533 	struct rt6_info *rt = *rtp;
1534 	struct net *net = info->nl_net;
1535 
1536 	RT6_TRACE("fib6_del_route\n");
1537 
1538 	/* Unlink it */
1539 	*rtp = rt->dst.rt6_next;
1540 	rt->rt6i_node = NULL;
1541 	net->ipv6.rt6_stats->fib_rt_entries--;
1542 	net->ipv6.rt6_stats->fib_discarded_routes++;
1543 
1544 	/* Reset round-robin state, if necessary */
1545 	if (fn->rr_ptr == rt)
1546 		fn->rr_ptr = NULL;
1547 
1548 	/* Remove this entry from other siblings */
1549 	if (rt->rt6i_nsiblings) {
1550 		struct rt6_info *sibling, *next_sibling;
1551 
1552 		list_for_each_entry_safe(sibling, next_sibling,
1553 					 &rt->rt6i_siblings, rt6i_siblings)
1554 			sibling->rt6i_nsiblings--;
1555 		rt->rt6i_nsiblings = 0;
1556 		list_del_init(&rt->rt6i_siblings);
1557 	}
1558 
1559 	/* Adjust walkers */
1560 	read_lock(&net->ipv6.fib6_walker_lock);
1561 	FOR_WALKERS(net, w) {
1562 		if (w->state == FWS_C && w->leaf == rt) {
1563 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1564 			w->leaf = rt->dst.rt6_next;
1565 			if (!w->leaf)
1566 				w->state = FWS_U;
1567 		}
1568 	}
1569 	read_unlock(&net->ipv6.fib6_walker_lock);
1570 
1571 	rt->dst.rt6_next = NULL;
1572 
1573 	/* If it was last route, expunge its radix tree node */
1574 	if (!fn->leaf) {
1575 		fn->fn_flags &= ~RTN_RTINFO;
1576 		net->ipv6.rt6_stats->fib_route_nodes--;
1577 		fn = fib6_repair_tree(net, fn);
1578 	}
1579 
1580 	fib6_purge_rt(rt, fn, net);
1581 
1582 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt);
1583 	if (!info->skip_notify)
1584 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1585 	rt6_release(rt);
1586 }
1587 
1588 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1589 {
1590 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1591 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1592 	struct net *net = info->nl_net;
1593 	struct rt6_info **rtp;
1594 
1595 #if RT6_DEBUG >= 2
1596 	if (rt->dst.obsolete > 0) {
1597 		WARN_ON(fn);
1598 		return -ENOENT;
1599 	}
1600 #endif
1601 	if (!fn || rt == net->ipv6.ip6_null_entry)
1602 		return -ENOENT;
1603 
1604 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1605 
1606 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1607 		struct fib6_node *pn = fn;
1608 #ifdef CONFIG_IPV6_SUBTREES
1609 		/* clones of this route might be in another subtree */
1610 		if (rt->rt6i_src.plen) {
1611 			while (!(pn->fn_flags & RTN_ROOT))
1612 				pn = pn->parent;
1613 			pn = pn->parent;
1614 		}
1615 #endif
1616 		fib6_prune_clones(info->nl_net, pn);
1617 	}
1618 
1619 	/*
1620 	 *	Walk the leaf entries looking for ourself
1621 	 */
1622 
1623 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1624 		if (*rtp == rt) {
1625 			fib6_del_route(fn, rtp, info);
1626 			return 0;
1627 		}
1628 	}
1629 	return -ENOENT;
1630 }
1631 
1632 /*
1633  *	Tree traversal function.
1634  *
1635  *	Certainly, it is not interrupt safe.
1636  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1637  *	It means, that we can modify tree during walking
1638  *	and use this function for garbage collection, clone pruning,
1639  *	cleaning tree when a device goes down etc. etc.
1640  *
1641  *	It guarantees that every node will be traversed,
1642  *	and that it will be traversed only once.
1643  *
1644  *	Callback function w->func may return:
1645  *	0 -> continue walking.
1646  *	positive value -> walking is suspended (used by tree dumps,
1647  *	and probably by gc, if it will be split to several slices)
1648  *	negative value -> terminate walking.
1649  *
1650  *	The function itself returns:
1651  *	0   -> walk is complete.
1652  *	>0  -> walk is incomplete (i.e. suspended)
1653  *	<0  -> walk is terminated by an error.
1654  */
1655 
1656 static int fib6_walk_continue(struct fib6_walker *w)
1657 {
1658 	struct fib6_node *fn, *pn;
1659 
1660 	for (;;) {
1661 		fn = w->node;
1662 		if (!fn)
1663 			return 0;
1664 
1665 		if (w->prune && fn != w->root &&
1666 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1667 			w->state = FWS_C;
1668 			w->leaf = fn->leaf;
1669 		}
1670 		switch (w->state) {
1671 #ifdef CONFIG_IPV6_SUBTREES
1672 		case FWS_S:
1673 			if (FIB6_SUBTREE(fn)) {
1674 				w->node = FIB6_SUBTREE(fn);
1675 				continue;
1676 			}
1677 			w->state = FWS_L;
1678 #endif
1679 		case FWS_L:
1680 			if (fn->left) {
1681 				w->node = fn->left;
1682 				w->state = FWS_INIT;
1683 				continue;
1684 			}
1685 			w->state = FWS_R;
1686 		case FWS_R:
1687 			if (fn->right) {
1688 				w->node = fn->right;
1689 				w->state = FWS_INIT;
1690 				continue;
1691 			}
1692 			w->state = FWS_C;
1693 			w->leaf = fn->leaf;
1694 		case FWS_C:
1695 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1696 				int err;
1697 
1698 				if (w->skip) {
1699 					w->skip--;
1700 					goto skip;
1701 				}
1702 
1703 				err = w->func(w);
1704 				if (err)
1705 					return err;
1706 
1707 				w->count++;
1708 				continue;
1709 			}
1710 skip:
1711 			w->state = FWS_U;
1712 		case FWS_U:
1713 			if (fn == w->root)
1714 				return 0;
1715 			pn = fn->parent;
1716 			w->node = pn;
1717 #ifdef CONFIG_IPV6_SUBTREES
1718 			if (FIB6_SUBTREE(pn) == fn) {
1719 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1720 				w->state = FWS_L;
1721 				continue;
1722 			}
1723 #endif
1724 			if (pn->left == fn) {
1725 				w->state = FWS_R;
1726 				continue;
1727 			}
1728 			if (pn->right == fn) {
1729 				w->state = FWS_C;
1730 				w->leaf = w->node->leaf;
1731 				continue;
1732 			}
1733 #if RT6_DEBUG >= 2
1734 			WARN_ON(1);
1735 #endif
1736 		}
1737 	}
1738 }
1739 
1740 static int fib6_walk(struct net *net, struct fib6_walker *w)
1741 {
1742 	int res;
1743 
1744 	w->state = FWS_INIT;
1745 	w->node = w->root;
1746 
1747 	fib6_walker_link(net, w);
1748 	res = fib6_walk_continue(w);
1749 	if (res <= 0)
1750 		fib6_walker_unlink(net, w);
1751 	return res;
1752 }
1753 
1754 static int fib6_clean_node(struct fib6_walker *w)
1755 {
1756 	int res;
1757 	struct rt6_info *rt;
1758 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1759 	struct nl_info info = {
1760 		.nl_net = c->net,
1761 	};
1762 
1763 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1764 	    w->node->fn_sernum != c->sernum)
1765 		w->node->fn_sernum = c->sernum;
1766 
1767 	if (!c->func) {
1768 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1769 		w->leaf = NULL;
1770 		return 0;
1771 	}
1772 
1773 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1774 		res = c->func(rt, c->arg);
1775 		if (res < 0) {
1776 			w->leaf = rt;
1777 			res = fib6_del(rt, &info);
1778 			if (res) {
1779 #if RT6_DEBUG >= 2
1780 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1781 					 __func__, rt,
1782 					 rcu_access_pointer(rt->rt6i_node),
1783 					 res);
1784 #endif
1785 				continue;
1786 			}
1787 			return 0;
1788 		}
1789 		WARN_ON(res != 0);
1790 	}
1791 	w->leaf = rt;
1792 	return 0;
1793 }
1794 
1795 /*
1796  *	Convenient frontend to tree walker.
1797  *
1798  *	func is called on each route.
1799  *		It may return -1 -> delete this route.
1800  *		              0  -> continue walking
1801  *
1802  *	prune==1 -> only immediate children of node (certainly,
1803  *	ignoring pure split nodes) will be scanned.
1804  */
1805 
1806 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1807 			    int (*func)(struct rt6_info *, void *arg),
1808 			    bool prune, int sernum, void *arg)
1809 {
1810 	struct fib6_cleaner c;
1811 
1812 	c.w.root = root;
1813 	c.w.func = fib6_clean_node;
1814 	c.w.prune = prune;
1815 	c.w.count = 0;
1816 	c.w.skip = 0;
1817 	c.func = func;
1818 	c.sernum = sernum;
1819 	c.arg = arg;
1820 	c.net = net;
1821 
1822 	fib6_walk(net, &c.w);
1823 }
1824 
1825 static void __fib6_clean_all(struct net *net,
1826 			     int (*func)(struct rt6_info *, void *),
1827 			     int sernum, void *arg)
1828 {
1829 	struct fib6_table *table;
1830 	struct hlist_head *head;
1831 	unsigned int h;
1832 
1833 	rcu_read_lock();
1834 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1835 		head = &net->ipv6.fib_table_hash[h];
1836 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1837 			write_lock_bh(&table->tb6_lock);
1838 			fib6_clean_tree(net, &table->tb6_root,
1839 					func, false, sernum, arg);
1840 			write_unlock_bh(&table->tb6_lock);
1841 		}
1842 	}
1843 	rcu_read_unlock();
1844 }
1845 
1846 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1847 		    void *arg)
1848 {
1849 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1850 }
1851 
1852 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1853 {
1854 	if (rt->rt6i_flags & RTF_CACHE) {
1855 		RT6_TRACE("pruning clone %p\n", rt);
1856 		return -1;
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1863 {
1864 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1865 			FIB6_NO_SERNUM_CHANGE, NULL);
1866 }
1867 
1868 static void fib6_flush_trees(struct net *net)
1869 {
1870 	int new_sernum = fib6_new_sernum(net);
1871 
1872 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1873 }
1874 
1875 /*
1876  *	Garbage collection
1877  */
1878 
1879 struct fib6_gc_args
1880 {
1881 	int			timeout;
1882 	int			more;
1883 };
1884 
1885 static int fib6_age(struct rt6_info *rt, void *arg)
1886 {
1887 	struct fib6_gc_args *gc_args = arg;
1888 	unsigned long now = jiffies;
1889 
1890 	/*
1891 	 *	check addrconf expiration here.
1892 	 *	Routes are expired even if they are in use.
1893 	 *
1894 	 *	Also age clones. Note, that clones are aged out
1895 	 *	only if they are not in use now.
1896 	 */
1897 
1898 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1899 		if (time_after(now, rt->dst.expires)) {
1900 			RT6_TRACE("expiring %p\n", rt);
1901 			return -1;
1902 		}
1903 		gc_args->more++;
1904 	} else if (rt->rt6i_flags & RTF_CACHE) {
1905 		if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout))
1906 			rt->dst.obsolete = DST_OBSOLETE_KILL;
1907 		if (atomic_read(&rt->dst.__refcnt) == 1 &&
1908 		    rt->dst.obsolete == DST_OBSOLETE_KILL) {
1909 			RT6_TRACE("aging clone %p\n", rt);
1910 			return -1;
1911 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1912 			struct neighbour *neigh;
1913 			__u8 neigh_flags = 0;
1914 
1915 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1916 			if (neigh) {
1917 				neigh_flags = neigh->flags;
1918 				neigh_release(neigh);
1919 			}
1920 			if (!(neigh_flags & NTF_ROUTER)) {
1921 				RT6_TRACE("purging route %p via non-router but gateway\n",
1922 					  rt);
1923 				return -1;
1924 			}
1925 		}
1926 		gc_args->more++;
1927 	}
1928 
1929 	return 0;
1930 }
1931 
1932 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1933 {
1934 	struct fib6_gc_args gc_args;
1935 	unsigned long now;
1936 
1937 	if (force) {
1938 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
1939 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1940 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1941 		return;
1942 	}
1943 	gc_args.timeout = expires ? (int)expires :
1944 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1945 	gc_args.more = 0;
1946 
1947 	fib6_clean_all(net, fib6_age, &gc_args);
1948 	now = jiffies;
1949 	net->ipv6.ip6_rt_last_gc = now;
1950 
1951 	if (gc_args.more)
1952 		mod_timer(&net->ipv6.ip6_fib_timer,
1953 			  round_jiffies(now
1954 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1955 	else
1956 		del_timer(&net->ipv6.ip6_fib_timer);
1957 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1958 }
1959 
1960 static void fib6_gc_timer_cb(unsigned long arg)
1961 {
1962 	fib6_run_gc(0, (struct net *)arg, true);
1963 }
1964 
1965 static int __net_init fib6_net_init(struct net *net)
1966 {
1967 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1968 	int err;
1969 
1970 	err = fib6_notifier_init(net);
1971 	if (err)
1972 		return err;
1973 
1974 	spin_lock_init(&net->ipv6.fib6_gc_lock);
1975 	rwlock_init(&net->ipv6.fib6_walker_lock);
1976 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1977 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1978 
1979 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1980 	if (!net->ipv6.rt6_stats)
1981 		goto out_timer;
1982 
1983 	/* Avoid false sharing : Use at least a full cache line */
1984 	size = max_t(size_t, size, L1_CACHE_BYTES);
1985 
1986 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1987 	if (!net->ipv6.fib_table_hash)
1988 		goto out_rt6_stats;
1989 
1990 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1991 					  GFP_KERNEL);
1992 	if (!net->ipv6.fib6_main_tbl)
1993 		goto out_fib_table_hash;
1994 
1995 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1996 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1997 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1998 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1999 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2000 
2001 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2002 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2003 					   GFP_KERNEL);
2004 	if (!net->ipv6.fib6_local_tbl)
2005 		goto out_fib6_main_tbl;
2006 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2007 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
2008 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2009 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2010 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2011 #endif
2012 	fib6_tables_init(net);
2013 
2014 	return 0;
2015 
2016 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2017 out_fib6_main_tbl:
2018 	kfree(net->ipv6.fib6_main_tbl);
2019 #endif
2020 out_fib_table_hash:
2021 	kfree(net->ipv6.fib_table_hash);
2022 out_rt6_stats:
2023 	kfree(net->ipv6.rt6_stats);
2024 out_timer:
2025 	fib6_notifier_exit(net);
2026 	return -ENOMEM;
2027 }
2028 
2029 static void fib6_net_exit(struct net *net)
2030 {
2031 	unsigned int i;
2032 
2033 	rt6_ifdown(net, NULL);
2034 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2035 
2036 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2037 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2038 		struct hlist_node *tmp;
2039 		struct fib6_table *tb;
2040 
2041 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2042 			hlist_del(&tb->tb6_hlist);
2043 			fib6_free_table(tb);
2044 		}
2045 	}
2046 
2047 	kfree(net->ipv6.fib_table_hash);
2048 	kfree(net->ipv6.rt6_stats);
2049 	fib6_notifier_exit(net);
2050 }
2051 
2052 static struct pernet_operations fib6_net_ops = {
2053 	.init = fib6_net_init,
2054 	.exit = fib6_net_exit,
2055 };
2056 
2057 int __init fib6_init(void)
2058 {
2059 	int ret = -ENOMEM;
2060 
2061 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2062 					   sizeof(struct fib6_node),
2063 					   0, SLAB_HWCACHE_ALIGN,
2064 					   NULL);
2065 	if (!fib6_node_kmem)
2066 		goto out;
2067 
2068 	ret = register_pernet_subsys(&fib6_net_ops);
2069 	if (ret)
2070 		goto out_kmem_cache_create;
2071 
2072 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
2073 			      0);
2074 	if (ret)
2075 		goto out_unregister_subsys;
2076 
2077 	__fib6_flush_trees = fib6_flush_trees;
2078 out:
2079 	return ret;
2080 
2081 out_unregister_subsys:
2082 	unregister_pernet_subsys(&fib6_net_ops);
2083 out_kmem_cache_create:
2084 	kmem_cache_destroy(fib6_node_kmem);
2085 	goto out;
2086 }
2087 
2088 void fib6_gc_cleanup(void)
2089 {
2090 	unregister_pernet_subsys(&fib6_net_ops);
2091 	kmem_cache_destroy(fib6_node_kmem);
2092 }
2093 
2094 #ifdef CONFIG_PROC_FS
2095 
2096 struct ipv6_route_iter {
2097 	struct seq_net_private p;
2098 	struct fib6_walker w;
2099 	loff_t skip;
2100 	struct fib6_table *tbl;
2101 	int sernum;
2102 };
2103 
2104 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2105 {
2106 	struct rt6_info *rt = v;
2107 	struct ipv6_route_iter *iter = seq->private;
2108 
2109 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2110 
2111 #ifdef CONFIG_IPV6_SUBTREES
2112 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2113 #else
2114 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2115 #endif
2116 	if (rt->rt6i_flags & RTF_GATEWAY)
2117 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2118 	else
2119 		seq_puts(seq, "00000000000000000000000000000000");
2120 
2121 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2122 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2123 		   rt->dst.__use, rt->rt6i_flags,
2124 		   rt->dst.dev ? rt->dst.dev->name : "");
2125 	iter->w.leaf = NULL;
2126 	return 0;
2127 }
2128 
2129 static int ipv6_route_yield(struct fib6_walker *w)
2130 {
2131 	struct ipv6_route_iter *iter = w->args;
2132 
2133 	if (!iter->skip)
2134 		return 1;
2135 
2136 	do {
2137 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
2138 		iter->skip--;
2139 		if (!iter->skip && iter->w.leaf)
2140 			return 1;
2141 	} while (iter->w.leaf);
2142 
2143 	return 0;
2144 }
2145 
2146 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2147 				      struct net *net)
2148 {
2149 	memset(&iter->w, 0, sizeof(iter->w));
2150 	iter->w.func = ipv6_route_yield;
2151 	iter->w.root = &iter->tbl->tb6_root;
2152 	iter->w.state = FWS_INIT;
2153 	iter->w.node = iter->w.root;
2154 	iter->w.args = iter;
2155 	iter->sernum = iter->w.root->fn_sernum;
2156 	INIT_LIST_HEAD(&iter->w.lh);
2157 	fib6_walker_link(net, &iter->w);
2158 }
2159 
2160 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2161 						    struct net *net)
2162 {
2163 	unsigned int h;
2164 	struct hlist_node *node;
2165 
2166 	if (tbl) {
2167 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2168 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2169 	} else {
2170 		h = 0;
2171 		node = NULL;
2172 	}
2173 
2174 	while (!node && h < FIB6_TABLE_HASHSZ) {
2175 		node = rcu_dereference_bh(
2176 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2177 	}
2178 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2179 }
2180 
2181 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2182 {
2183 	if (iter->sernum != iter->w.root->fn_sernum) {
2184 		iter->sernum = iter->w.root->fn_sernum;
2185 		iter->w.state = FWS_INIT;
2186 		iter->w.node = iter->w.root;
2187 		WARN_ON(iter->w.skip);
2188 		iter->w.skip = iter->w.count;
2189 	}
2190 }
2191 
2192 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2193 {
2194 	int r;
2195 	struct rt6_info *n;
2196 	struct net *net = seq_file_net(seq);
2197 	struct ipv6_route_iter *iter = seq->private;
2198 
2199 	if (!v)
2200 		goto iter_table;
2201 
2202 	n = ((struct rt6_info *)v)->dst.rt6_next;
2203 	if (n) {
2204 		++*pos;
2205 		return n;
2206 	}
2207 
2208 iter_table:
2209 	ipv6_route_check_sernum(iter);
2210 	read_lock(&iter->tbl->tb6_lock);
2211 	r = fib6_walk_continue(&iter->w);
2212 	read_unlock(&iter->tbl->tb6_lock);
2213 	if (r > 0) {
2214 		if (v)
2215 			++*pos;
2216 		return iter->w.leaf;
2217 	} else if (r < 0) {
2218 		fib6_walker_unlink(net, &iter->w);
2219 		return NULL;
2220 	}
2221 	fib6_walker_unlink(net, &iter->w);
2222 
2223 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2224 	if (!iter->tbl)
2225 		return NULL;
2226 
2227 	ipv6_route_seq_setup_walk(iter, net);
2228 	goto iter_table;
2229 }
2230 
2231 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2232 	__acquires(RCU_BH)
2233 {
2234 	struct net *net = seq_file_net(seq);
2235 	struct ipv6_route_iter *iter = seq->private;
2236 
2237 	rcu_read_lock_bh();
2238 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2239 	iter->skip = *pos;
2240 
2241 	if (iter->tbl) {
2242 		ipv6_route_seq_setup_walk(iter, net);
2243 		return ipv6_route_seq_next(seq, NULL, pos);
2244 	} else {
2245 		return NULL;
2246 	}
2247 }
2248 
2249 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2250 {
2251 	struct fib6_walker *w = &iter->w;
2252 	return w->node && !(w->state == FWS_U && w->node == w->root);
2253 }
2254 
2255 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2256 	__releases(RCU_BH)
2257 {
2258 	struct net *net = seq_file_net(seq);
2259 	struct ipv6_route_iter *iter = seq->private;
2260 
2261 	if (ipv6_route_iter_active(iter))
2262 		fib6_walker_unlink(net, &iter->w);
2263 
2264 	rcu_read_unlock_bh();
2265 }
2266 
2267 static const struct seq_operations ipv6_route_seq_ops = {
2268 	.start	= ipv6_route_seq_start,
2269 	.next	= ipv6_route_seq_next,
2270 	.stop	= ipv6_route_seq_stop,
2271 	.show	= ipv6_route_seq_show
2272 };
2273 
2274 int ipv6_route_open(struct inode *inode, struct file *file)
2275 {
2276 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2277 			    sizeof(struct ipv6_route_iter));
2278 }
2279 
2280 #endif /* CONFIG_PROC_FS */
2281